Welcome to the website of the Robots, Agents, and Interaction (RAI) group at the Department of Data Science & Knowledge Engineering of the Faculty of Science and Engineering (FSE) at Maastricht University.
RAI has strong experience in the design and implementation of machine learning, data mining, computer vision, and robotics. This includes broad know-how in research involving learning and coordination among autonomous agents (software or robots), human-robot interaction, human activity & emotion recognition in HCI/HRI (Human-Computer/Robot Interaction), swarm and modular robotics, automated negotiation, and AI knowledge transfer.
Swarmlab and Robotlab operate within RAI since 2010 and 2002, respectively.







News
New article accepted in IEEE Multimedia Magazine
Our article entitled “e-3 learning: a Dataset for Affect-driven Adaptation of Computer-Based Learning” DOI (identifier) 10.1109/MMUL.2019.2945716″ was accepted in IEEE Multimedia Magazine.
New article accepted in Elsevier Neurocomputing Journal
Our paper titled “Audio-visual Domain Adaptation using conditional semi-supervised Generative Adversarial Networks” has been accepted in Elsevier Neurocomputing, 2019, Elsevier.
New paper to be presented at ACII 2019
Our paper titled “Multimodal and Temporal Perception of Audio-visual Cues for Emotion Recognition” has been selected for oral presentation at the 8th International Conference on Affective Computing & Intelligent Interaction (ACII 2019). ACII 2019 will take place in Cambridge, the United Kingdom between 3rd-6th September 2019.
2 papers to be presented at ESANN 2019
Two papers were accepted for presentation at the 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2019) which will take place in Bruges, Belgium from 24 to 26 April 2019. Here are the authors and titles:
- C. Athanasiadis, E. Hortal and S. Asteriadis, Bridging face and sound modalities through Domain Adaptation Metric Learning
- M. Maggiolo, G. Spanakis: Autoregressive Convolutional Recurrent Neural Network for Univariate and Multivariate Time Series Prediction
Paper accepted at the 17th IEEE International Conference on Machine Learning and Applications (ICMLA’18)
Within the frame of H2020 MaTHiSiS EU project, our paper titled “Towards Affect Recognition through Interactions with Learning Materials” is accepted as a regular paper for oral presenation at ICMLA’18. The conference will take place in Orlando, Florida, next December.
New paper to be presented at the 2018 IEEE Computer Vision and Pattern Recognition Workshops (CVPRW)
Within the frame of the H2020 ICT4Life EU project, D. Dotti, M. Popa and S. Asteriadis will be presenting their work on Behavior and Personality Analysis in a nonsocial context Dataset, next June, at the IEEE Computer Vision and Pattern Recognition Workshop on Understanding Subjective Attributes of Data
Predict Facebook reactions: New paper out!
Our paper titled “Social Emotion Mining Techniques for Facebook Posts Reaction Prediction” is accepted for publication at the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018) as a full paper.
This paper was authored by four of our Master in Artificial Intelligence students and their supervisor (Florian Krebs, Bruno Lubascher, Tobias Moers, Pieter Schaap, Gerasimos Spanakis) as part of a semester research project and explored how deep learning techniques (CNN and RNN) can be used to set up a prediction module for reaction predictions on Facebook posts.
New article in Diabetes, Obesity and Metabolism Journal
Our joint work with the Faculty of Health, Medicine and Life Sciences (FHML) ‘A risk score of BMI, HbA1c and triglycerides predicts future glycemic control in type 2 diabetes’ has been accepted for publication at the Diabetes, Obesity and Metabolism Journal.
New book chapter
A description of the platform employed in ICT4Life has been published as a book chapter; it is a joint work of the ICT4Life consortium, in which, RAI, plays a leading role in AAL activities and machine intelligence applications.
For more details:
- A. Sánchez-Rico, P. Garel, I. Notarangelo, M. Quintana, G. Hernández, S. Asteriadis, M. Popa, N. Vretos, V. Solachidis, M. Burgos, A. Girault. ICT Services for Life Improvement for the Elderly. Stud Health Technol Inform. 242:600-605, 2017
ICT4Life project link: http://www.ict4life.eu/
New article in IEEE multimedia
Oour joint work with UPM and CERTH ‘Behaviour analysis through multimodal sensing for improving Parkinson and Alzheimer patients quality of life’ has been accepted for publication at IEEE multimedia magazine