
ROS: an open-source Robot Operating System

Morgan Quigley∗, Brian Gerkey†, Ken Conley†, Josh Faust†, Tully Foote†,
Jeremy Leibs‡, Eric Berger†, Rob Wheeler†, Andrew Ng∗

∗Computer Science Department, Stanford University, Stanford, CA
†Willow Garage, Menlo Park, CA

‡Computer Science Department, University of Southern California

Abstract— This paper gives an overview of ROS, an open-
source robot operating system. ROS is not an operating system
in the traditional sense of process management and scheduling;
rather, it provides a structured communications layer above
the host operating systems of a heterogenous compute cluster.
In this paper, we discuss how ROS relates to existing robot
software frameworks, and briefly overview some of the available
application software which uses ROS.

I. INTRODUCTION

Writing software for robots is difficult, particularly as the
scale and scope of robotics continues to grow. Different
types of robots can have wildly varying hardware, making
code reuse nontrivial. On top of this, the sheer size of the
required code can be daunting, as it must contain a deep
stack starting from driver-level software and continuing up
through perception, abstract reasoning, and beyond. Since the
required breadth of expertise is well beyond the capabilities
of any single researcher, robotics software architectures must
also support large-scale software integration efforts.

To meet these challenges, many robotics researchers, in-
cluding ourselves, have previously created a wide variety
of frameworks to manage complexity and facilitate rapid
prototyping of software for experiments, resulting in the
many robotic software systems currently used in academia
and industry [1]. Each of these frameworks was designed for
a particular purpose, perhaps in response to perceived weak-
nesses of other available frameworks, or to place emphasis
on aspects which were seen as most important in the design
process.

ROS, the framework described in this paper, is also the
product of tradeoffs and prioritizations made during its de-
sign cycle. We believe its emphasis on large-scale integrative
robotics research will be useful in a wide variety of situations
as robotic systems grow ever more complex. In this paper,
we discuss the design goals of ROS, how our implementation
works towards them, and demonstrate how ROS handles
several common use cases of robotics software development.

II. DESIGN GOALS

We do not claim that ROS is the best framework for
all robotics software. In fact, we do not believe that such
a framework exists; the field of robotics is far too broad
for a single solution. ROS was designed to meet a specific
set of challenges encountered when developing large-scale

Fig. 1. A typical ROS network configuration

service robots as part of the STAIR project [2] at Stanford
University1 and the Personal Robots Program [3] at Willow
Garage,2 but the resulting architecture is far more general
than the service-robot and mobile-manipulation domains.

The philosophical goals of ROS can be summarized as:
• Peer-to-peer
• Tools-based
• Multi-lingual
• Thin
• Free and Open-Source
To our knowledge, no existing framework has this same

set of design criteria. In this section, we will elaborate these
philosophies and shows how they influenced the design and
implementation of ROS.

A. Peer-to-Peer

A system built using ROS consists of a number of pro-
cesses, potentially on a number of different hosts, connected
at runtime in a peer-to-peer topology. Although frameworks
based on a central server (e.g., CARMEN [4]) can also re-
alize the benefits of the multi-process and multi-host design,
a central data server is problematic if the computers are
connected in a heterogenous network.

For example, on the large service robots for which ROS
was designed, there are typically several onboard computers
connected via ethernet. This network segment is bridged
via wireless LAN to high-power offboard machines that
are running computation-intensive tasks such as computer
vision or speech recognition (Figure 1). Running the central
server either onboard or offboard would result in unnecessary

1http://stair.stanford.edu
2http://pr.willowgarage.com



traffic flowing across the (slow) wireless link, because many
message routes are fully contained in the subnets either
onboard or offboard the robot. In contrast, peer-to-peer
connectivity, combined with buffering or “fanout” software
modules where necessary, avoids the issue entirely.

The peer-to-peer topology requires some sort of lookup
mechanism to allow processes to find each other at runtime.
We call this the name service, or master, and will describe
it in more detail shortly.

B. Multi-lingual

When writing code, many individuals have preferences for
some programming languages above others. These prefer-
ences are the result of personal tradeoffs between program-
ming time, ease of debugging, syntax, runtime efficiency,
and a host of other reasons, both technical and cultural. For
these reasons, we have designed ROS to be language-neutral.
ROS currently supports four very different languages: C++,
Python, Octave, and LISP, with other language ports in
various states of completion.

The ROS specification is at the messaging layer, not any
deeper. Peer-to-peer connection negotiation and configura-
tion occurs in XML-RPC, for which reasonable implemen-
tations exist in most major languages. Rather than provide
a C-based implementation with stub interfaces generated
for all major languages, we prefer instead to implement
ROS natively in each target language, to better follow the
conventions of each language. However, in some cases it is
expedient to add support for a new language by wrapping
an existing library: the Octave client is implemented by
wrapping the ROS C++ library.

To support cross-language development, ROS uses a sim-
ple, language-neutral interface definition language (IDL) to
describe the messages sent between modules. The IDL uses
(very) short text files to describe fields of each message,
and allows composition of messages, as illustrated by the
complete IDL file for a point cloud message:

Header header
Point32[] pts
ChannelFloat32[] chan

Code generators for each supported language then generate
native implementations which “feel” like native objects, and
are automatically serialized and deserialized by ROS as
messages are sent and received. This saves considerable
programmer time and errors: the previous 3-line IDL file
automatically expands to 137 lines of C++, 96 lines of
Python, 81 lines of Lisp, and 99 lines of Octave. Because the
messages are generated automatically from such simple text
files, it becomes easy to enumerate new types of messages.
At time of writing, the known ROS-based codebases contain
over four hundred types of messages, which transport data
ranging from sensor feeds to object detections to maps.

The end result is a language-neutral message processing
scheme where different languages can be mixed and matched
as desired.

C. Tools-based

In an effort to manage the complexity of ROS, we have
opted for a microkernel design, where a large number of
small tools are used to build and run the various ROS com-
ponents, rather than constructing a monolithic development
and runtime environment.

These tools perform various tasks, e.g., navigate the source
code tree, get and set configuration parameters, visualize
the peer-to-peer connection topology, measure bandwidth
utilization, graphically plot message data, auto-generate doc-
umentation, and so on. Although we could have implemented
core services such as a global clock and a logger inside
the master module, we have attempted to push everything
into separate modules. We believe the loss in efficiency is
more than offset by the gains in stability and complexity
management.

D. Thin

As eloquently described in [5], most existing robotics
software projects contain drivers or algorithms which could
be reusable outside of the project. Unfortunately, due to
a variety of reasons, much of this code has become so
entangled with the middleware that it is difficult to “extract”
its functionality and re-use it outside of its original context.

To combat this tendency, we encourage all driver and
algorithm development to occur in standalone libraries that
have no dependencies on ROS. The ROS build system
performs modular builds inside the source code tree, and
its use of CMake makes it comparatively easy to follow this
“thin” ideology. Placing virtually all complexity in libraries,
and only creating small executables which expose library
functionality to ROS, allows for easier code extraction and
reuse beyond its original intent. As an added benefit, unit
testing is often far easier when code is factored into libraries,
as standalone test programs can be written to exercise various
features of the library.

ROS re-uses code from numerous other open-source
projects, such as the drivers, navigation system, and sim-
ulators from the Player project [6], vision algorithms from
OpenCV [7], and planning algorithms from OpenRAVE [8],
among many others. In each case, ROS is used only to expose
various configuration options and to route data into and out of
the respective software, with as little wrapping or patching
as possible. To benefit from the continual community im-
provements, the ROS build system can automatically update
source code from external repositories, apply patches, and
so on.

E. Free and Open-Source

The full source code of ROS is publicly available. We
believe this to be critical to facilitate debugging at all levels
of the software stack. While proprietary environments such
as Microsoft Robotics Studio [9] and Webots [10] have
many commendable attributes, we feel there is no substitute
for a fully open platform. This is particularly true when
hardware and many levels of software are being designed
and debugged in parallel.



ROS is distributed under the terms of the BSD license,
which allows the development of both non-commercial and
commercial projects. ROS passes data between modules
using inter-process communications, and does not require
that modules link together in the same executable. As such,
systems built around ROS can use fine-grain licensing of
their various components: individual modules can incorpo-
rate software protected by various licenses ranging from GPL
to BSD to proprietary, but license “contamination” ends at
the module boundary.

III. NOMENCLATURE

The fundamental concepts of the ROS implementation are
nodes, messages, topics, and services,

Nodes are processes that perform computation. ROS is
designed to be modular at a fine-grained scale: a system
is typically comprised of many nodes. In this context, the
term “node” is interchangable with “software module.” Our
use of the term “node” arises from visualizations of ROS-
based systems at runtime: when many nodes are running, it
is convenient to render the peer-to-peer communications as
a graph, with processes as graph nodes and the peer-to-peer
links as arcs.

Nodes communicate with each other by passing messages.
A message is a a strictly typed data structure. Standard
primitive types (integer, floating point, boolean, etc.) are
supported, as are arrays of primitive types and constants.
Messages can be composed of other messages, and arrays of
other messages, nested arbritrarily deep.

A node sends a message by publishing it to a given topic,
which is simply a string such as “odometry” or “map.” A
node that is interested in a certain kind of data will subscribe
to the appropriate topic. There may be multiple concurrent
publishers and subscribers for a single topic, and a single
node may publish and/or subscribe to multiple topics. In
general, publishers and subscribers are not aware of each
others’ existence.

The simplest communications are along pipelines:

microphone

speech recognition

dialog manager

speech synthesis

speaker

However, graphs are usually far more complex, often con-
taining cycles and one-to-many or many-to-many connec-
tions.

Although the topic-based publish-subscribe model is a
flexible communications paradigm, its “broadcast” routing
scheme is not appropriate for synchronous transactions,
which can simplify the design of some nodes. In ROS, we
call this a service, defined by a string name and a pair
of strictly typed messages: one for the request and one for
the response. This is analogous to web services, which are
defined by URIs and have request and response documents
of well-defined types. Note that, unlike topics, only one node
can advertise a service of any particular name: there can only
be one service called ”classify image”, for example, just as
there can only be one web service at any given URI.

IV. USE CASES

In this section, we will describe a number of common
scenarios encountered when using robotic software frame-
works. The open architecture of ROS allows for the creation
of a wide variety of tools; in describing the ROS approach
to these use cases, we will also be introducing a number of
the tools designed to be used with ROS.

A. Debugging a single node
When performing robotics research, often the scope of

the investigation is limited to a well-defined area of the
system, such as a node which performs some type of
planning, reasoning, perception, or control. However, to get
a robotic system up and running for experiments, a much
larger software ecosystem must exist. For example, to do
vision-based grasping experiments, drivers must be running
for the camera(s) and manipulator(s), and any number of
intermediate processing nodes (e.g., object recognizers, pose
detectors, trajectory planners) must also be up and running.
This adds a significant amount of difficulty to integrative
robotics research.

ROS is designed to minimize the difficulty of debugging
in such settings, as its modular structure allows nodes
undergoing active development to run alongside pre-existing,
well-debugged nodes. Because nodes connect to each other
at runtime, the graph can be dynamically modified. In the
previous example of vision-based grasping, a graph with
perhaps a dozen nodes is required to provide the infras-
tructure. This “infrastructure” graph can be started and left
running during an entire experimental session. Only the
node(s) undergoing source code modification need to be
periodically restarted, at which time ROS silently handles
the graph modifications. This can result in a massive increase
in productivity, particularly as the robotic system becomes
more complex and interconnected.

To emphasize, altering the graph in ROS simply amounts
to starting or stopping a process. In debugging settings, this
is typically done at the command line or in a debugger. The
ease of inserting and removing nodes from a running ROS-
based system is one of its most powerful and fundamental
features.

B. Logging and playback
Research in robotic perception is often done most con-

veniently with logged sensor data, to permit controlled



comparisons of various algorithms and to simplify the ex-
perimental procedure. ROS supports this approach by pro-
viding generic logging and playback functionality. Any ROS
message stream can be dumped to disk and later replayed.
Importantly, this can all be done at the command line; it
requires no modification of the source code of any pieces of
software in the graph.

For example, the following network graph could be
quickly set up to collect a dataset for visual-odometry
research:

camera

logger visualizer

robot

The resulting message dump can be played back into a
different graph, which contains the node under development:

logger vision research visualizer

As before, node instantiation can be performed simply by
launching a process; it can be done at the command line, in
a debugger, from a script, etc.

To facilitate logging and monitoring of systems distributed
across many hosts, the rosconsole library builds upon the
Apache project’s log4cxx system to provide a convenient
and elegant logging interface, allowing printf-style diag-
nostic messages to be routed through the network to a single
stream called rosout.

C. Packaged subsystems
Some areas of robotics research, such as indoor robot

navigation, have matured to the point where “out of the
box” algorithms can work reasonably well. ROS leverages
the algorithms implemented in the Player project to provide
a navigation system, producing this graph:

robot

localization

planner

laser map

Although each node can be run from the command line, re-
peatedly typing the commands to launch the processes could

get tedious. To allow for “packaged” functionality such as a
navigation system, ROS provides a tool called roslaunch,
which reads an XML description of a graph and instantiates
the graph on the cluster, optionally on specific hosts. The
end-user experience of launching the navigation system then
boils down to

roslaunch navstack.xml

and a single Ctrl-C will gracefully close all five processes.
This functionality can also significantly aid sharing and reuse
of large demonstrations of integrative robotics research, as
the set-up and tear-down of large distributed systems can be
easily replicated.

D. Collaborative Development

Due to the vast scope of robotics and artificial intelligence,
collaboration between researchers is necessary in order to
build large systems. To support collaborative development,
the ROS software system is organized into packages. Our
definition of “package” is deliberately open-ended: a ROS
package is simply a directory which contains an XML file
describing the package and stating any dependencies.

A collection of ROS packages is a directory tree with ROS
packages at the leaves: a ROS package repository may thus
contain an arbitrarily complex scheme of subdirectories. For
example, one ROS repository has root directories including
“nav,” “vision,” and “motion planning,” each of which con-
tains many packages as subdirectories.

ROS provides a utility called rospack to query and
inspect the code tree, search dependencies, find packages
by name, etc. A set of shell expansions called rosbash is
provided for convenience, accelerating command-line navi-
gation of the system.

The rospack utility is designed to support simultane-
ous development across multiple ROS package repositories.
Environment variables are used to define the roots of local
copies of ROS package repositories, and rospack crawls
the package trees as necessary. Recursive builds, supported
by the rosmake utility, allow for cross-package library
dependencies.

The open-ended nature of ROS packages allows for great
variation in their structure and purpose: some ROS packages
wrap existing software, such as Player or OpenCV, au-
tomating their builds and exporting their functionality. Some
packages build nodes for use in ROS graphs, other packages
provide libraries and standalone executables, and still others
provide scripts to automate demonstrations and tests. The
packaging system is meant to partition the building of ROS-
based software into small, manageable chunks, each of which
can be maintained and developed on its own schedule by its
own team of developers.

At time of writing, several hundred ROS packages exist
across several publicly-viewable repositories, and hundreds
more likely exist in private repositories at various institutions
and companies. The ROS core is distributed as its own
package repository in Sourceforge:
http://ros.sourceforge.net



However, the ros repository includes only the base ROS
communications infrastructure and graph-management tools.
Software which actually builds robotic systems using ROS
is provided in a second repository, also on Sourceforge:
http://personalrobots.sourceforge.net

This repository contains many useful tools and libraries, such
as those discussed in this paper.

E. Visualization and Monitoring

While designing and debugging robotics software, it often
becomes necessary to observe some state while the system
is running. Although printf is a familiar technique for
debugging programs on a single machine, this technique can
be difficult to extend to large-scale distributed systems, and
can become unwieldly for general-purpose monitoring.

Instead, ROS can exploit the dynamic nature of the
connectivity graph to “tap into” any message stream on
the system. Furthermore, the decoupling between publishers
and subscribers allows for the creation of general-purpose
visualizers. Simple programs can be written which subscribe
to a particular topic name and plot a particular type of data,
such as laser scans or images. However, a more powerful
concept is a visualization program which uses a plugin
architecture: this is done in the rviz program, which is
distributed with ROS. Visualization panels can be dynami-
cally instantiated to view a large variety of datatypes, such
as images, point clouds, geometric primitives (such as object
recognition results), render robot poses and trajectories, etc.
Plugins can be easily written to display more types of data.

A native ROS port is provided for Python, a dynamically-
typed language supporting introspection. Using Python, a
powerful utility called rostopic was written to filter
messages using expressions supplied on the command line,
resulting in an instantly customizable “message tap” which
can convert any portion of any data stream into a text stream.
These text streams can be piped to other UNIX command-
line tools such as grep, sed, and awk, to create complex
monitoring tools without writing any code.

Similarly, a tool called rxplot provides the functionality
of a virtual oscilloscope, plotting any variable in real-time as
a time series, again through the use of Python introspection
and expression evaluation.

F. Composition of functionality

In ROS, a “stack” of software is a cluster of nodes that
does something useful, as was illustrated in the navigation
example. As previously described, ROS is able to instantiate
a cluster of nodes with a single command, once the cluster
is described in an XML file. However, sometimes multiple
instantiations of a cluster are desired. For example, in multi-
robot experiments, a navigation stack will be needed for
each robot in the system, and robots with humanoid torsos
will likely need to instantiate two identical arm controllers.
ROS supports this by allowing nodes and entire roslaunch
cluster-description files to be pushed into a child namespace,
thus ensuring that there can be no name collisions. Essen-
tially, this prepends a string (the namespace) to all node,

topic, and service names, without requiring any modification
to the code of the node or cluster. The following graph
shows a hierarchical multi-robot control system constructed
by simply instantiating multiple navigation stacks, each in
their own namespace:

The previous graph was automatically generated by the
rxgraph tool, which can inspect and monitor any ROS
graph at runtime. Its output renders nodes as ovals, topics as
squares, and connectivity as arcs.

G. Transformations

Robotic systems often need to track spatial relationships
for a variety of reasons: between a mobile robot and some
fixed frame of reference for localization, between the various
sensor frames and manipulator frames, or to place frames on
target objects for control purposes.

To simplify and unify the treatment of spatial frames,
a transformation system has been written for ROS, called
tf. The tf system constructs a dynamic transformation
tree which relates all frames of reference in the system.
As information streams in from the various subsystems of
the robot (joint encoders, localization algorithms, etc.), the
tf system can produce streams of transformations between
nodes on the tree by constructing a path between the desired
nodes and performing the necessary calculations.

For example, the tf system can be used to easily generate
point clouds in a stationary “map” frame from laser scans
received by a tilting laser scanner on a moving robot. As
another example, consider a two-armed robot: the tf system
can stream the transformation from a wrist camera on one
robotic arm to the moving tool tip of the second arm of the
robot. These types of computations can be tedious, error-
prone, and difficult to debug when coded by hand, but the
tf implementation, combined with the dynamic messaging
infrastructure of ROS, allows for an automated, systematic
approach.



V. CONCLUSION

We have designed ROS to support our philosophy of
modular, tools-based software development. We anticipate
that its open-ended design can be extended and built upon by
others to build robot software systems which can be useful
to a variety of hardware platforms, research settings, and
runtime requirements.

ACKNOWLEDGEMENTS

We thank the fledgeling ROS user community for their
feedback and contributions, especially Rosen Diankov (au-
thor of the ROS Octave library) and Bhaskara Marthi (author
of the ROS LISP library).

REFERENCES

[1] J. Kramer and M. Scheutz, “Development environments for au-
tonomous mobile robots: A survey,” Autonomous Robots, vol. 22,
no. 2, pp. 101–132, 2007.

[2] M. Quigley, E. Berger, and A. Y. Ng, “STAIR: Hardware and Software
Architecture,” in AAAI 2007 Robotics Workshop, Vancouver, B.C,
August, 2007.

[3] K. Wyobek, E. Berger, H. V. der Loos, and K. Salisbury, “Towards a
personal robotics development platform: Rationale and design of an
intrinsically safe personal robot,” in Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2008.

[4] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardiza-
tion in mobile robot programming: The Carnegie Mellon Navigation
(CARMEN) Toolkit,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelli-
gent Robots and Systems (IROS), Las Vegas, Nevada, Oct. 2003, pp.
2436–2441.

[5] A. Makarenko, A. Brooks, and T. Kaupp, in Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), Nov. 2007.

[6] R. T. Vaughan and B. P. Gerkey, “Reusable robot code and the
Player/Stage Project,” in Software Engineering for Experimental
Robotics, ser. Springer Tracts on Advanced Robotics, D. Brugali, Ed.
Springer, 2007, pp. 267–289.

[7] G. Bradski and A. Kaehler, Learning OpenCV, Sep. 2008.
[8] R. Diankov and J. Kuffner, “The robotic busboy: Steps towards

developing a mobile robotic home assistant,” in Intelligent Autonomous
Systems, vol. 10, 2008.

[9] J. Jackson, “Microsoft robotics studio: A technical introduction,” in
IEEE Robotics and Automation Magazine, Dec. 2007, http://msdn.
microsoft.com/en-us/robotics.

[10] O. Michel, “Webots: a powerful realistic mobile robots simulator,” in
Proc. of the Second Intl. Workshop on RoboCup. Springer-Verlag,
1998.


