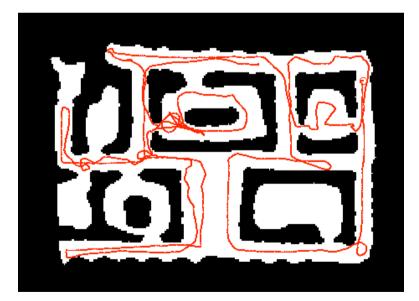
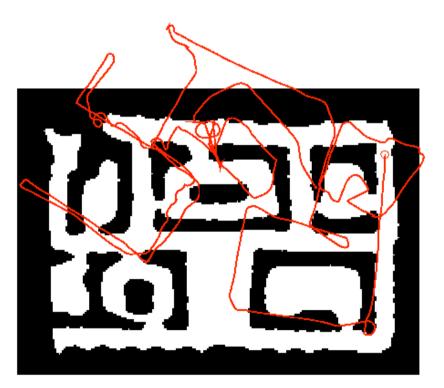
Probabilistic Robotics

Probabilistic Motion Models

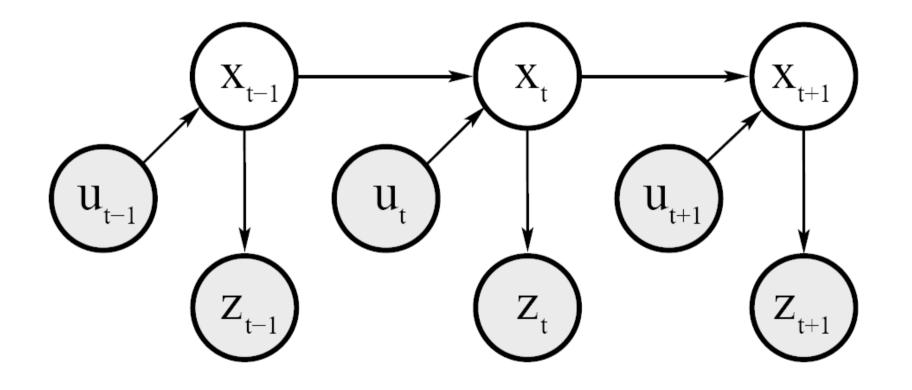
Robot Motion

- Robot motion is inherently uncertain.
- How can we model this uncertainty?





Dynamic Bayesian Network for Controls, States, and Sensations

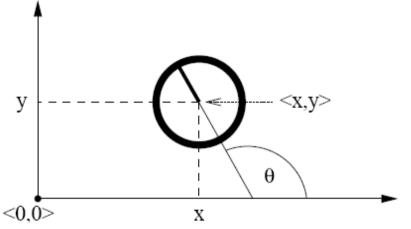


Probabilistic Motion Models

- To implement the Bayes Filter, we need the transition model p(x | x', u).
- The term p(x | x', u) specifies a posterior probability, that action u carries the robot from x' to x.
- In this section we will specify, how p(x | x', u) can be modeled based on the motion equations.

Coordinate Systems

- In general the configuration of a robot can be described by six parameters.
- Three-dimensional cartesian coordinates plus three Euler angles pitch, roll, and tilt.
- Throughout this section, we consider robots operating on a planar surface.
- The state space of such systems is threedimensional (x,y,θ).

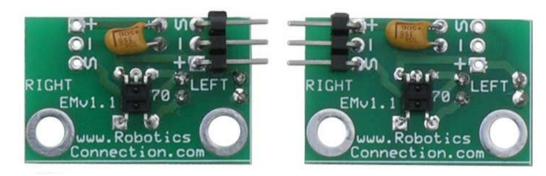


Typical Motion Models

- In practice, one often finds two types of motion models:
 - Odometry-based
 - Velocity-based (dead reckoning)
- Odometry-based models are used when systems are equipped with wheel encoders.
- Velocity-based models have to be applied when no wheel encoders are given.
- They calculate the new pose based on the velocities and the time elapsed.

Example Wheel Encoders

These modules require +5V and GND to power them, and provide a 0 to 5V output. They provide +5V output when they "see" white, and a 0V output when they "see" black.



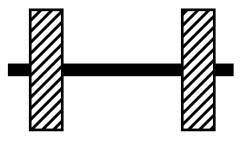
These disks are manufactured out of high quality laminated color plastic to offer a very crisp black to white transition. This enables a wheel encoder sensor to easily see the transitions.

Source: http://www.active-robots.com/

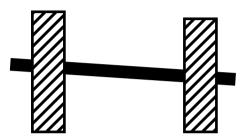
Dead Reckoning

- Mathematical procedure for determining the present location of a vehicle.
- Achieved by calculating the current pose of the vehicle based on its velocities and the time elapsed.

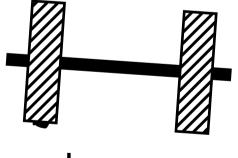
Reasons for Motion Errors



ideal case

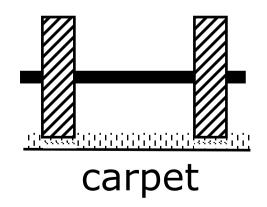


different wheel diameters



bump

and many more ...



Odometry Model

- Robot moves from $\langle \overline{x}, \overline{y}, \overline{\theta} \rangle$ to $\langle \overline{x}', \overline{y}', \overline{\theta}' \rangle$.
- Odometry information $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$.

$$\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$$

$$\delta_{rot1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \overline{\theta}$$

$$\delta_{rot2} = \overline{\theta}' - \overline{\theta} - \delta_{rot1}$$

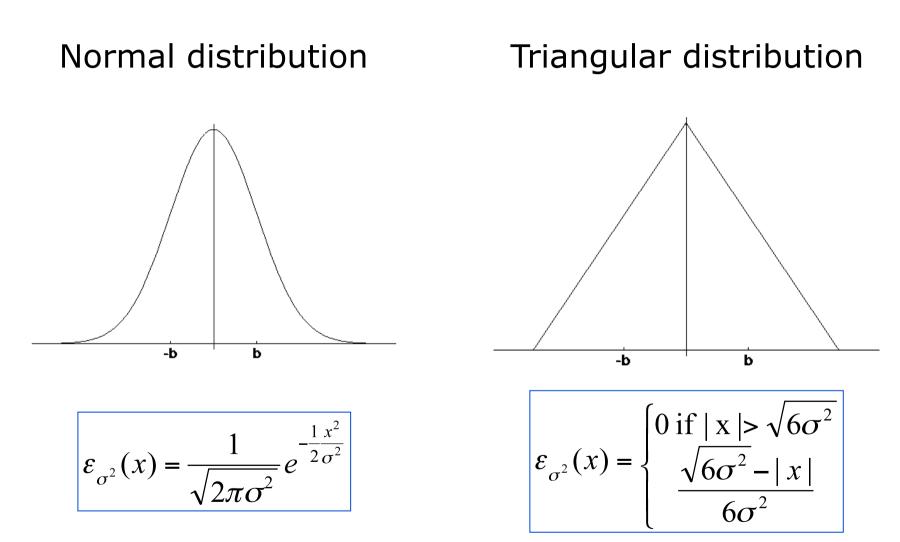
$$\delta_{rot2} = \delta_{rot1}$$

Noise Model for Odometry

• The measured motion is given by the true motion corrupted with noise.

$$\hat{\delta}_{rot1} = \delta_{rot1} + \varepsilon_{\alpha_1 |\delta_{rot1}| + \alpha_2 |\delta_{trans}|}$$
$$\hat{\delta}_{trans} = \delta_{trans} + \varepsilon_{\alpha_3 |\delta_{trans}| + \alpha_4 |\delta_{rot1} + \delta_{rot2}|}$$
$$\hat{\delta}_{rot2} = \delta_{rot2} + \varepsilon_{\alpha_1 |\delta_{rot2}| + \alpha_2 |\delta_{trans}|}$$

Typical Distributions for Probabilistic Motion Models



Calculating the Probability (zero-centered)

- For a normal distribution
 - 1. Algorithm **prob_normal_distribution**(*a*,*b*):

2. return
$$\frac{1}{\sqrt{2\pi b^2}} \exp\left\{-\frac{1}{2}\frac{a^2}{b^2}\right\}$$

- For a triangular distribution
 - 1. Algorithm **prob_triangular_distribution**(*a*,*b*):

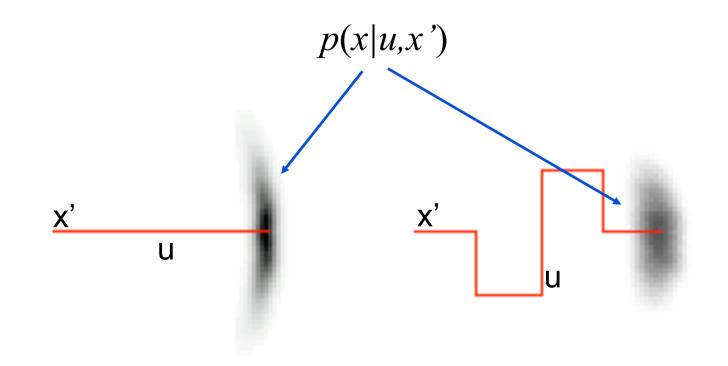
2. return
$$\max\left\{0, \frac{1}{\sqrt{6} b} - \frac{|a|}{6 b^2}\right\}$$

Calculating the Posterior Given x, x', and u

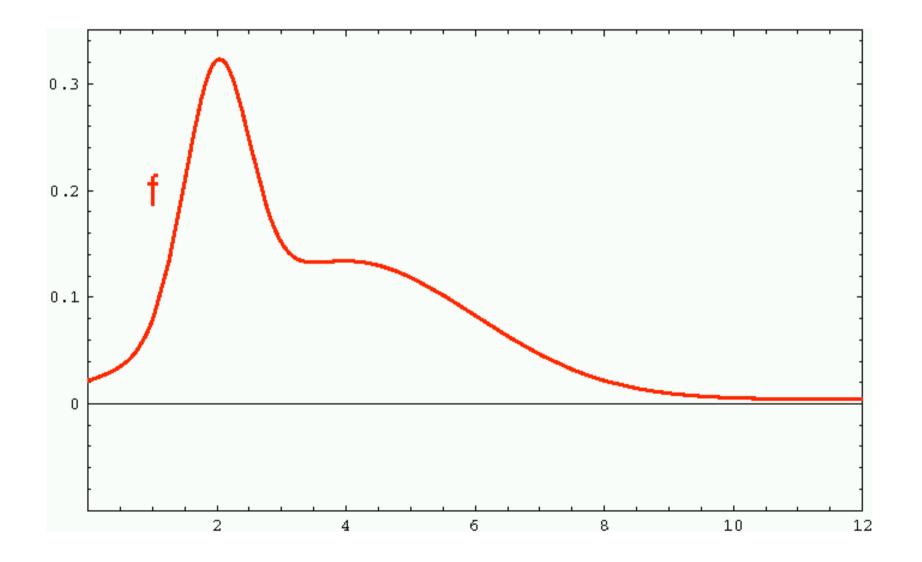
Algorithm motion_model_odometry(x,x',u) 1. 2. $\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$ 3. $\delta_{rot1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \overline{\theta}$ \longrightarrow odometry values (u) **4**. $\delta_{rot2} = \theta' - \theta - \delta_{rot1}$ 5. $\hat{\delta}_{trans} = \sqrt{(x'-x)^2 + (y'-y)^2}$ 6. $\hat{\delta}_{rot1} = \operatorname{atan2}(y'-y, x'-x) - \overline{\theta}$ values of interest (x,x') 7. $\hat{\delta}_{rot2} = \theta' - \theta - \hat{\delta}_{rot1}$ 8. $p_1 = \operatorname{prob}(\delta_{\operatorname{rot1}} - \hat{\delta}_{\operatorname{rot1}}, \alpha_1 | \hat{\delta}_{\operatorname{rot1}} | + \alpha_2 \hat{\delta}_{\operatorname{trans}})$ 9 $p_2 = \text{prob}(\delta_{\text{trans}} - \hat{\delta}_{\text{trans}}, \alpha_3 \hat{\delta}_{\text{trans}} + \alpha_4(|\hat{\delta}_{\text{rot}1}| + |\hat{\delta}_{\text{rot}2}|))$ 10. $p_3 = \operatorname{prob}(\delta_{rot2} - \hat{\delta}_{rot2}, \alpha_1 | \hat{\delta}_{rot2} | + \alpha_2 \hat{\delta}_{trans})$ 11. return $p_1 \cdot p_2 \cdot p_3$

Application

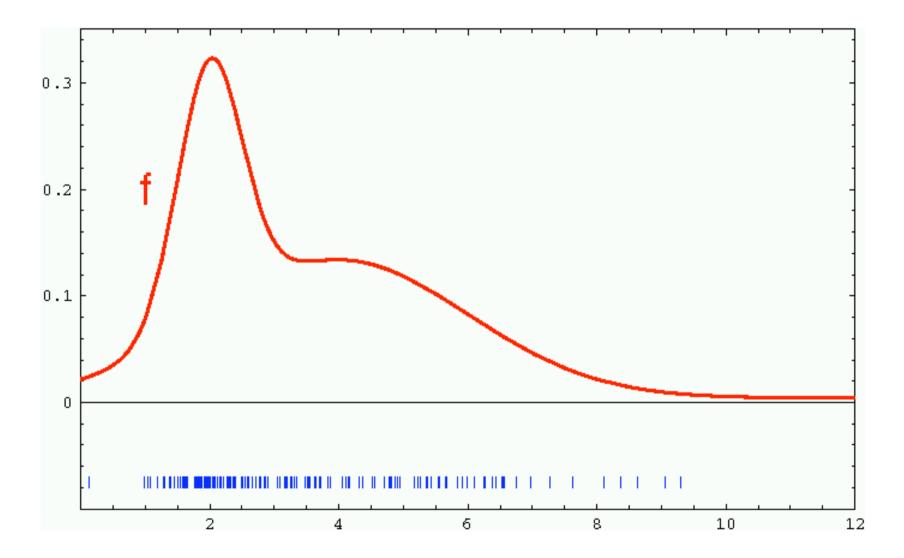
- Repeated application of the sensor model for short movements.
- Typical banana-shaped distributions obtained for 2d-projection of 3d posterior.



Sample-based Density Representation

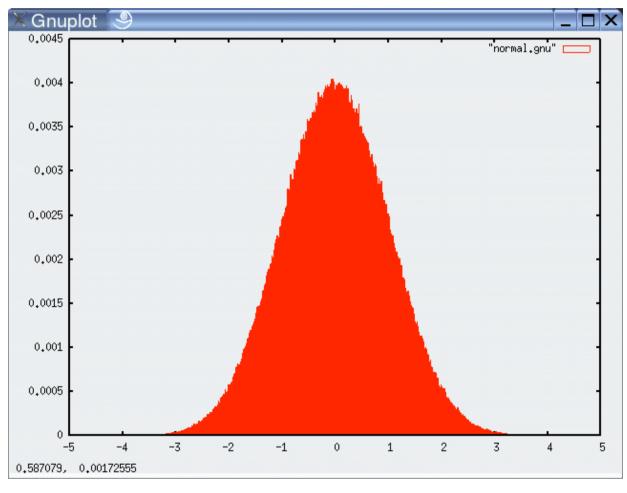


Sample-based Density Representation



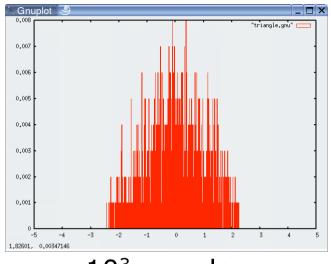
17

Normally Distributed Samples

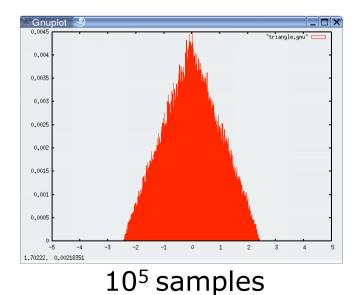


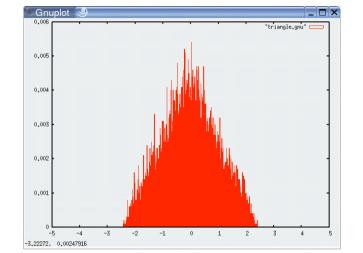
10⁶ samples

For Triangular Distribution

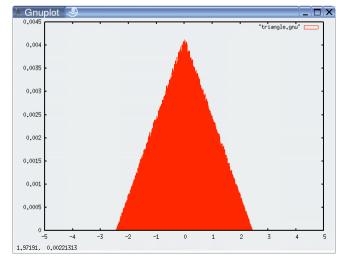


10³ samples

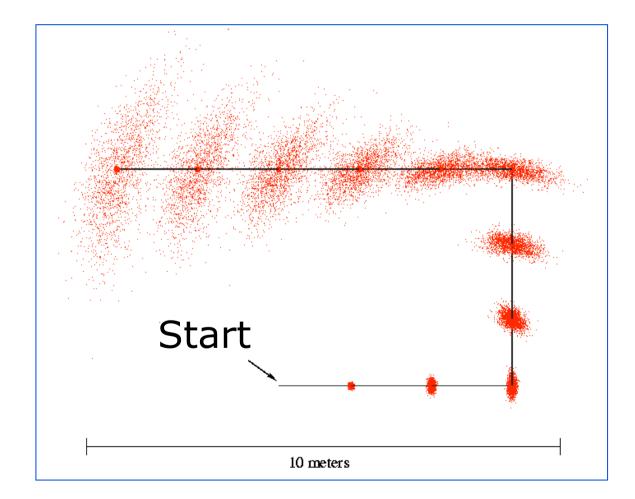




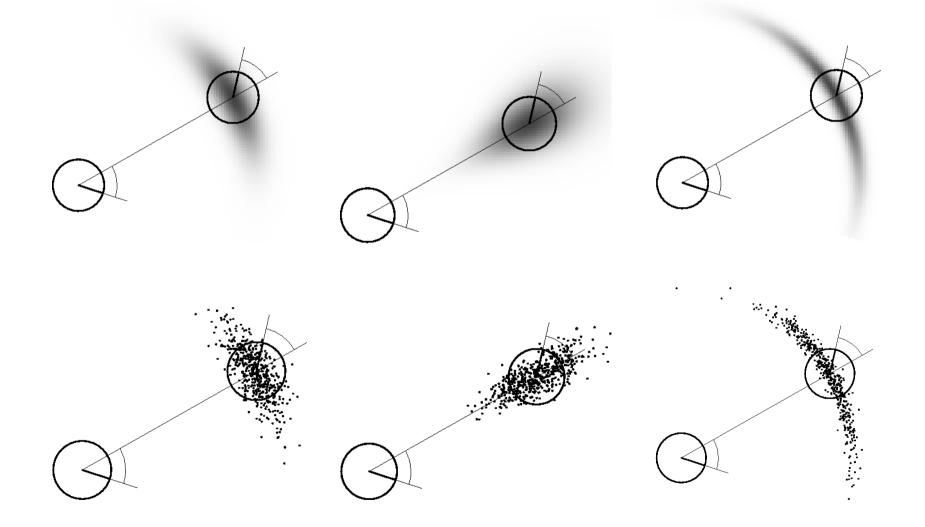
10⁴ samples



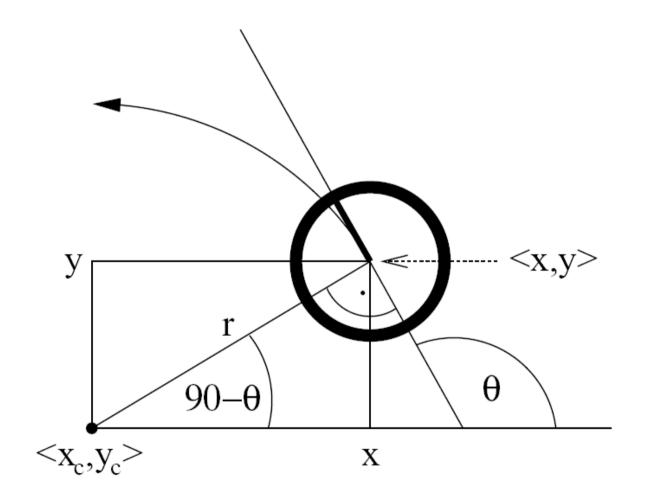
Sampling from Our Motion Model



Examples (Odometry-Based)

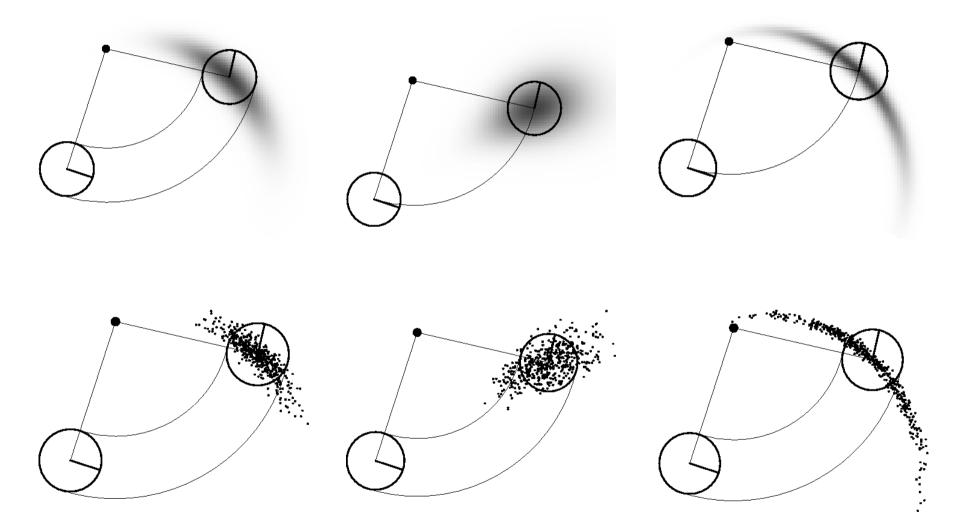


Velocity-Based Model



22

Examples (velocity based)



Summary

- We discussed motion models for odometry-based and velocity-based systems
- We discussed ways to calculate the posterior probability p(x | x', u).
- We also described how to sample from p(x | x', u).
- Typically the calculations are done in fixed time intervals Δt .
- In practice, the parameters of the models have to be learned.

Probabilistic Robotics

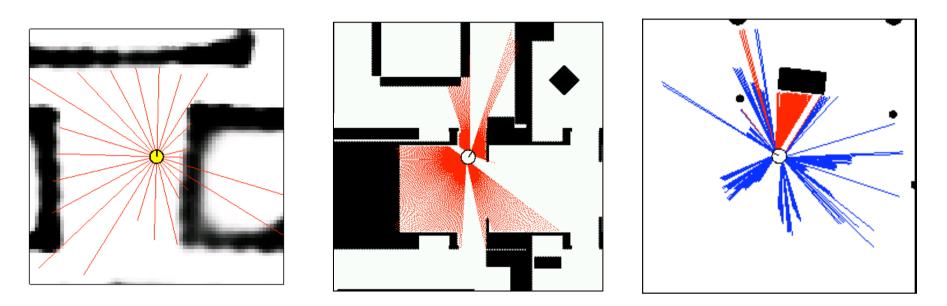
Probabilistic Sensor Models

Beam-based Scan-based Landmarks

Sensors for Mobile Robots

- Contact sensors: Bumpers
- Internal sensors
 - Accelerometers (spring-mounted masses)
 - Gyroscopes (spinning mass, laser light)
 - Compasses, inclinometers (earth magnetic field, gravity)
- Proximity sensors
 - Sonar (time of flight)
 - Radar (phase and frequency)
 - Laser range-finders (triangulation, tof, phase)
 - Infrared (intensity)
- Visual sensors: Cameras
- Satellite-based sensors: GPS

Proximity Sensors



- The central task is to determine P(z|x), i.e., the probability of a measurement z given that the robot is at position x.
- **Question**: Where do the probabilities come from?
- **Approach**: Let's try to explain a measurement.

Beam-based Sensor Model

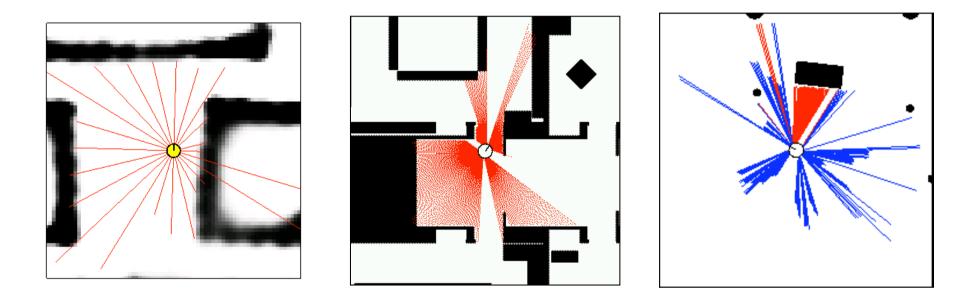
Scan z consists of K measurements.

$$Z = \{Z_1, Z_2, ..., Z_K\}$$

 Individual measurements are independent given the robot position.

$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

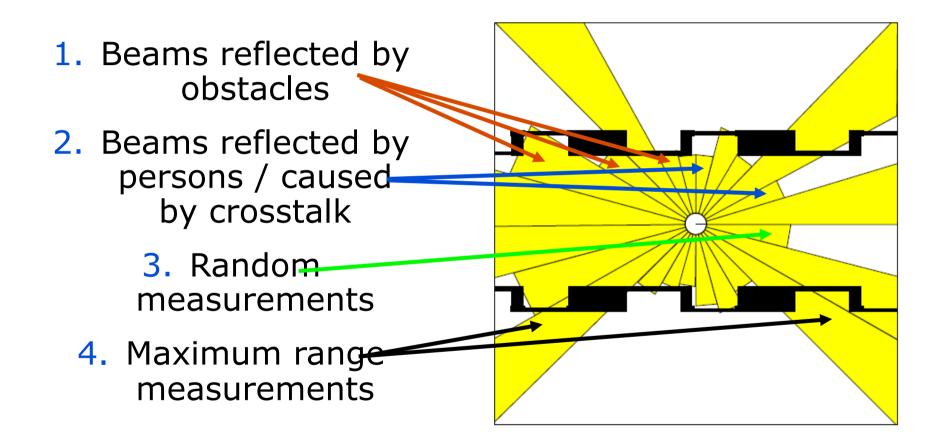
Beam-based Sensor Model



$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

29

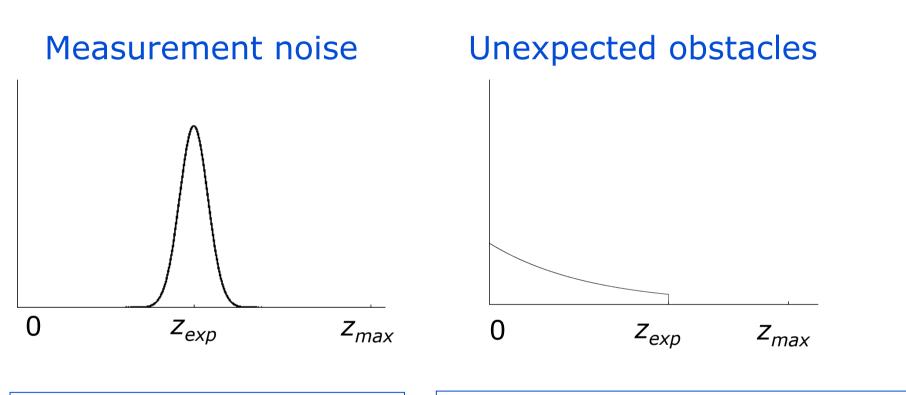
Typical Measurement Errors of an Range Measurements



Proximity Measurement

- Measurement can be caused by ...
 - a known obstacle.
 - cross-talk.
 - an unexpected obstacle (people, furniture, ...).
 - missing all obstacles (total reflection, glass, ...).
- Noise is due to uncertainty ...
 - in measuring distance to known obstacle.
 - in position of known obstacles.
 - in position of additional obstacles.
 - whether obstacle is missed.

Beam-based Proximity Model

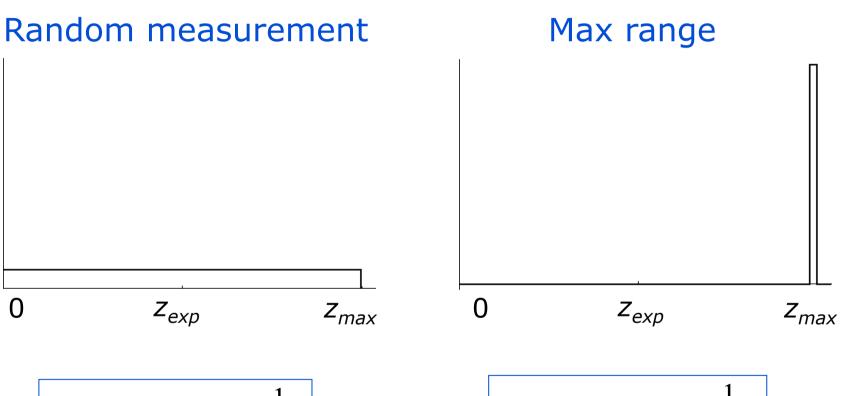


$$P_{hit}(z \mid x, m) = \eta \, \frac{1}{\sqrt{2\pi b}} e^{-\frac{1}{2} \frac{(z - z_{exp})^2}{b}}$$

$$P_{\text{unexp}}(z \mid x, m) = \begin{cases} \eta \ \lambda \ e^{-\lambda z} & z < z_{\text{exp}} \\ 0 & otherwise \end{cases}$$

32

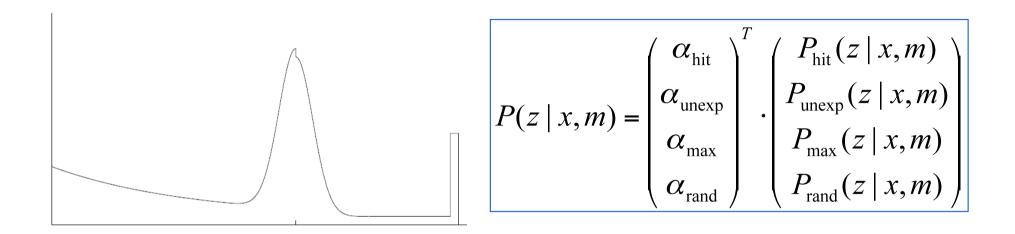
Beam-based Proximity Model



$$P_{rand}(z \mid x, m) = \eta \, \frac{1}{z_{\max}}$$

$$P_{\max}(z \mid x, m) = \eta \frac{1}{z_{small}}$$

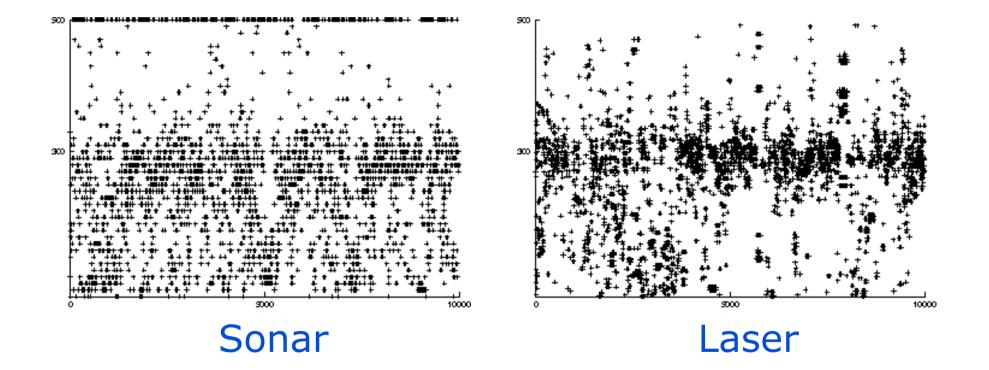
Resulting Mixture Density



How can we determine the model parameters?

Raw Sensor Data

Measured distances for expected distance of 300 cm.



Summary Beam-based Model

- Assumes independence between beams.
 - Justification?
- Models physical causes for measurements.
 - Mixture of densities for these causes.
- Implementation
 - Learn parameters based on real data.
 - Determine expected distances by ray-tracing.

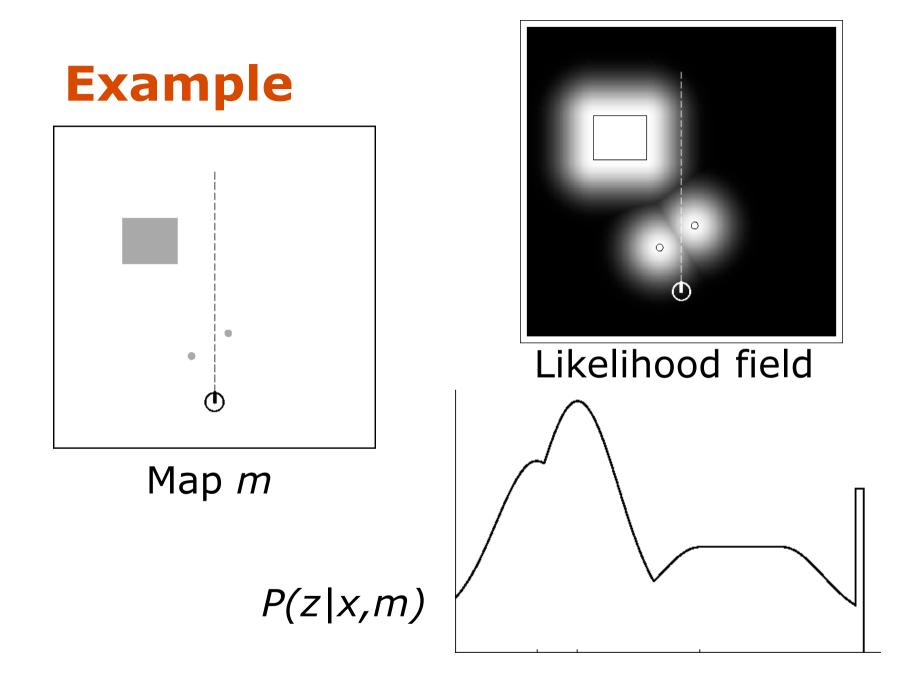
Scan-based Model

- Beam-based model is ...
 - not smooth for small obstacles and at edges.
 - not very efficient.

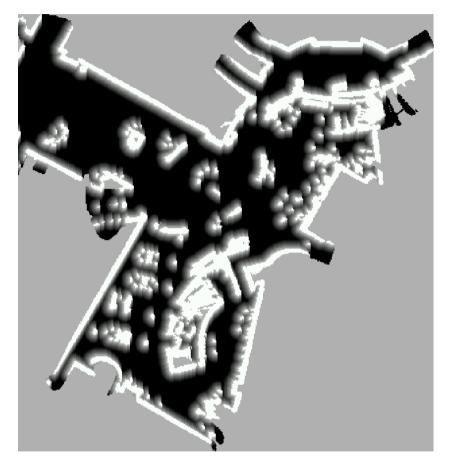
 Idea: Instead of following along the beam, just check the end point.

Scan-based Model

- Probability is a mixture of ...
 - a Gaussian distribution with mean at distance to closest obstacle,
 - a uniform distribution for random measurements, and
 - a small uniform distribution for max range measurements.
- Again, independence between different components is assumed.



San Jose Tech Museum



Occupancy grid map

Likelihood field

Properties of Scan-based Model

- Highly efficient, uses 2D tables only.
- Smooth w.r.t. to small changes in robot position.
- Ignores physical properties of beams.

Landmarks

- Active beacons (*e.g.*, radio, GPS)
- Passive (*e.g.*, visual, retro-reflective)
- Standard approach is triangulation
- Sensor provides
 - distance, or
 - bearing, or
 - distance and bearing.

Distance and Bearing

Summary of Sensor Models

- Explicitly modeling uncertainty in sensing is key to robustness.
- In many cases, good models can be found by the following approach:
 - 1. Determine parametric model of noise free measurement.
 - 2. Analyze sources of noise.
 - 3. Add adequate noise to parameters (eventually mix in densities for noise).
 - 4. Learn (and verify) parameters by fitting model to data.
 - 5. Likelihood of measurement is given by "probabilistically comparing" the actual with the expected measurement.
- This holds for motion models as well.