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Abstract

Localization is the problem of determining the position of a mobile robot from sensor data. Most existing
localization approaches are passive, i.e., they do not exploit the opportunity to control the robot’s effectors
during localization. This paper proposes an active localization approach. The approach is based on Markov
localization and provides rational criteria for (1) setting the robot’s motion direction (exploration), and (2)
determining the pointing direction of the sensors so as to most efficiently localize the robot. Furthermore, it
is able to deal with noisy sensors and approximative world models. The appropriateness of our approach is
demonstrated empirically using a mobile robot in a structured office environment.
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1 Introduction

To navigate reliably in indoor environments, a
mobile robot must know where it is. Over the last
few years, there has been a tremendous scientific
interest in algorithms for estimating a robot’s lo-
cation from sensor data. A recent book on this
issue [3] illustrates the importance of the local-
ization problem and provides a unique descrip-
tion of the state-of-the-art.

The majority of existing approaches to localiza-
tion are passive. Passive localization exclusively
addresses the estimation of the location based
on an incoming stream of sensor data. It rests
on the assumption that neither robot motion, nor

the pointing direction of the robot’s sensors can
be controlled. Active localization assumes that
during localization, the localization routine has
partial or full control over the robot, providing
the opportunity to increase the efficiency and
the robustness of localization. Key open issues
in active localization are “where to move” and
“where to look” so as to best localize the robot.

This paper demonstrates that active localization
is a promising research direction for develop-
ing more efficient and more robust localization
methods. In other sub-fields of artificial intel-
ligence (such as heuristic search and machine
learning), the value of active control during
learning and problem solving has long been
recognized. It has been shown, both through
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theoretical analysis and practical experimenta-
tion, that the complexity of achieving a task can
be greatly reduced by actively interacting with
the environment. For example, choosing the
right action during exploration can reduce ex-
ponential complexity to low-degree polynomial
complexity, as for example shown in Koenig’s
and Thrun’s work on exploration in heuristic
search and learning control [14,21]. Similarly,
active vision (see e.g., [1]) has also led to results
superior to passive approaches to computer vi-
sion. In the context of mobile robot localization,
actively controlling a robot is particularly bene-
ficial when the environment possesses relatively
few features that enable a robot to unambigu-
ously determine its location. This is the case in
many office environments. For example, corri-
dors and offices often look alike for a mobile
robot, hence random motion or perpetual wall
following is often incapable for determining a
robot’s position, or very inefficient.

In this paper we demonstrate that actively con-
trolling the robot’s actuators can significantly
improve the efficiency of localization. Our
framework is based on Markov localization,
a passive probabilistic approach to localiza-
tion which was recently developed in different
variants by [6,11,17,19]. At any point in time,
Markov localization maintains a probability
density (belief ) over the entire configuration
space of the robot; however, it does not provide
an answer as to how to control the robot’s actu-
ators. The guiding principle of our approach is
to control the actuators so as to minimize future
expected uncertainty. Uncertainty is measured
by the entropy of future belief distributions.
By choosing actions to minimize the expected
future uncertainty, the approach is capable of
actively localizing the robot.

The approach is empirically validated in the con-
text of two localization problems:

(1) Active navigation, which addresses the

questions of where to move next, and
(2) Active sensing, which addresses the prob-

lem of what sensors to use and where to
point them.

Our implementation assumes that initially, the
robot is given a metric map of its environment,
but it does not know where it is. Notice that
this is a difficult localization problem; most
existing approaches (see, e.g., [3]) concentrate
on situations where the initial robot location is
known and are not capable of localizing a robot
from scratch. Our approach has been empiri-
cally tested using a mobile robot equipped with
a circular array of 24 ultrasound sensors. The
key experimental result is that the efficiency of
localization is improved drastically by actively
controlling the robot’s motion direction and by
actively controlling its sensors.

2 Related Work

While most research has concentrated on passive
localization (see e.g., [3]), active localization has
received considerably little attention in the mo-
bile robotics community. This is primarily be-
cause the majority of literature concerned with
robot control (e.g., the planning community) as-
sumes that the position of the robot is known,
whereas research on localization has mainly fo-
cused on the estimation problem itself. In recent
years, navigation under uncertainty has been ad-
dressed by a few researchers [17,19], who de-
veloped the Markov navigation paradigm. How-
ever, both their approaches do not aim at ac-
tively localizing the robot. Localization occurs
as a side effect when operating the robot under
uncertainty. Moreover, as argued by Kaelbling
[11], there exist conditions under which the ap-
proach reported in [19] can exhibit cyclic be-
havior due to uncertainty in localization.

On the forefront of localization driven naviga-
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tion, [15] used a rehearsal procedure to check
whether a location has been visited while learn-
ing a map. In [13] the problem of active local-
ization is treated theoretically in finding “criti-
cal directions within the environment” under the
assumption of perfect sensors.

In [12], acting in the environment is modeled
as a partially observable Markov decision pro-
cess (POMDP). This approach derives an op-
timal strategy for moving to a target location
given that the position of the robot is not known
perfectly. In [11] this method is extended by ac-
tions allowing the robot to improve its position
estimation. This is done by minimizing the ex-
pected entropy after the immediate next robot
control action. While this approach is computa-
tionally tractable, its greediness might prevent
it from finding efficient solutions in realistic en-
vironments. For example, if disambiguating the
robot’s position requires the robot to move to
a remote location, greedy single-step entropy
minimization can fail to make the robot move
there. In our own work [20], we have developed
robot exploration techniques for efficiently map-
ping unknown environments. While such meth-
ods give better-than-random results when ap-
plied to localization, their primary goal is not
to localize a robot, and there are situations in
which they will fail to do so.

3 Markov Localization

3.1 General Equations

This section briefly outlines the basic Markov
localization algorithm upon which our approach
is based (see [18] for a detailed introduction).
The key idea of Markov localization is to com-
pute a probability distribution over all possible
locations in the environment.

���������
	�����
de-

notes the robot’s belief of being at position
�

at

time � . Here,
�
is a location in � - � - � space where� and � are Cartesian coordinates and � is the

robot’s orientation. Initially,
���������
���

reflects the
initial state of knowledge: if the robot knows its
starting position,

�������������
is centered on the cor-

rect location; if the robot does not know its ini-
tial location,

�������������
is uniformly distributed to

reflect the global uncertainty of the robot—the
latter is the case in all our experiments.

The belief
�����

is updated whenever . . .

. . . the robot moves. Robot motion is modeled
by a conditional probability, denoted by ��� �������� �

. �!� ���"�#���$�
denotes the probability that mo-

tion action % , when executed at
� �

, carries the
robot to

�
. �&� ���'�(���)�

is used to update the be-
lief upon robot motion, where *���������+	,�-���
denotes the resulting belief at time � :
*.0/21�354 	76 1�8:9<;>=@?'A � 351�BC1 � 8D.0/�1�3�4 	�E:F�6 1 � 8

(1)

In our implementation, �7� ���0�(���)�
is obtained

from a model of the robot’s kinematics.
. . . the robot senses. Let G denote a sensor

reading, and � � G �"���
the likelihood of per-

ceiving G at
�
. � � G �#���

is usually referred to as
map of the environment, since it specifies the
probability of observations at the different
locations in the environment. When sens-
ing G , the belief is updated according to the
following rule:

���������+	H�I���7J � � G �#��� *���K�����+	L�I���
� � G � (2)

Here � � G �
is a normalizer that ensures that the

belief
�����

sums up to 1 over all
�
.

While our description of Markov navigation is
brief, it is important that the reader grasps the
essentials of the approach: The robot maintains
a belief distribution

���������M�
which is updated

upon robot motion, and upon the arrival of sen-
sor data. Such probabilistic representations are
well-suited for mobile robot localization due to
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their ability to handle ambiguities and to repre-
sent degree-of-belief. In the next section we will
introduce our implementation of Markov local-
ization.

3.2 Position Probability Grids

While all implementations of Markov localiza-
tion rely on the update cycle presented in the pre-
vious section, the existing implementations can
be distinguished particularly by the discretiza-
tion of the state space

�
and the world model

they rely on: [17,19,11,10] use a topological rep-
resentation of the belief state, where each pos-
sible location

�
corresponds to a node in a topo-

logical map of the environment. Due to the na-
ture of this representation, the sensings G are ab-
stract features extracted from proximity sensors
(e.g. a percept G can be the detection of a T-
junction between two hallways within an office
building).

In contrast to these techniques, our implementa-
tion is based on a fine-grained, geometric variant
of Markov localization, where the spatial res-
olution is usually between 10 and 15 cm and
the angular resolution is usually 1 or 2 degrees.
We obtain the likelihood � � G �7���

directly from
a metric model of the environment and a model
of proximity sensors. The advantage of this ap-
proach is that it can operate based on the raw
data of proximity sensors and thus permits the
exploitation of arbitrary geometric features of
the environment such as the width of a corridor
or the size of a cupboard. Additionally, it can
easily be extended to incorporate the abstract
features or landmarks used in [17,19,11]. The
disadvantage of this grid-based method lies in
the huge state space which has to be maintained.
For a mid-size environment of size

���������
m �

and an angular resolution of �	� the state space
consists of 
��� ��� � ����� states. To deal with such
state spaces in real-time, we therefore modified

the basic approach with the purpose of reducing
the computational complexity. In essence, our
efficient implementation is based on the follow-
ing two techniques, which reduce the complex-
ity by several orders of magnitude:

(1) Pre-computation. The sensor model � � G � ���
for proximity sensors is pre-computed based on
a map and stored in a large look-up table. More
specifically, our approach pre-computes for each� - � location and each possible sensor angle �
the distance � to the nearest obstacle in that di-
rection, which is the expected measurement in a
noise-free world. During localization, probabili-
ties of the type � � G � � �

are computed by a mixture
of a Gaussian-uniform and a geometric density
function. An example of such a function given
a specific distance � is depicted in Figure 1.
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Fig. 1. Sensor model of ultrasound sensors and
laser-range finders.

Please note that the higher accuracy of laser-
range finders versus ultrasound sensors is rep-
resented by a smaller standard deviation of the
Gaussian distribution. With this sensor model,
computing � � G � ���

amounts to a fast series of two
table look-ups (see [5] for more details).

(2) Selective Computation. Most of the time
the probability mass is centered on a small num-
ber of location. With the exception of the ini-
tial global localization phase, the vast majority
of probabilities

��������� �I���
are usually close to

0 and can safely be ignored. This observation
is the basis for a selective computation scheme,
which enhances the computational speed of the
algorithm. Our implementation only considers
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locations
�

for which
��������� � ���

is above a
threshold

F
(see [2] for more details).

With these modifications, the time required for
processing a sensor scan usually takes less than
0.2 seconds on an Intel Pentium-200 processor.

4 Active Markov Localization

Position probability grids have been shown to
be able to robustly estimate the position of a
robot in unstructured and populated environ-
ments [6,4,9,8]. However, Markov localization
is passive. In this section we will derive criteria
on how to control the actuators of the robot so
as to best localize a robot.

4.1 General Equations

To choose optimal actions we have to trade off
the utility

� � % �
and costs � � % �

of each individ-
ual action % .

4.1.1 Utility of Actions

To eliminate uncertainty in the position estimate���������M�
, the robot must choose actions which

help it distinguish different locations. The en-
tropy of the belief, obtained by the following
formula

� 3�4+8 6�� ; = .0/21�354 6 1�8����
	
.0/21�354 6 1�8��
(3)

measures the uncertainty in the robot position:
If  ���M� � �

,
�����������

is centered on a single
position, whereas the entropy is maximal, if the
robot is completely uncertain and

���K�����M�
is uni-

formly distributed.F
In our current implementation � is set to 1% of

the a priori position probability.

Let �'���� ���L	�� F>���
denote the expected entropy

after having performed action % at time � and
after having fired the sensors of the robot; then
we can measure the utility

�
	�� % �
of performing

an action % by the decrease in uncertainty:

�+	�� % �:�  ���+	���� �'���� ���+	�� F����
(4)

By averaging over all possible sensings G , we
obtain Eq. (5). Here � � G � % �

is the probability of
perceiving sensing G after execution of action % .

� ��� � 3�4 	�� F 8��
6 ;

�
� 3�4 	�� F B� !�#" 8�A�3$ �B�"#8

(5)

6%� ;
��&

=D.�/21�3�4 	�� F�6 1DB� 
�'"#8)(
���
	�.�/21�3�4 	�� F�6 1DB� 
�'"#8:A�3* B�" 8

(6)

6%� ;
��&

=:AH3$ BK1�8D.�/21�3�4 	�� F+6 1DB
" 8+(
���
	 A�3* BK1�8�.�/21�3�4 	�� F+6 1DB�"#8AH3$ B�" 8 (7)

Let
���K�����+	�� F��� � G � % �

denote the belief of
being at position

�
after having performed % and

perceived G ; then expression (6) is obtained from
the definition of the entropy given in Eq. (3).
By applying the Markov update equations (1)
and (2) we finally get Eq. (7) for computing the
expected entropy for action % . Here, � � G � % �
serves as a normalizer ensuring that

���������
	�� F �
sums up to one over all

�
.

4.1.2 Costs of Actions

To find the best action we have to trade off the
utility of each action against the cost of exe-
cuting the action. Costs � 	 � % �

strongly depends
on the particular actions and can range from the
time needed to perform an action to the amount
of energy used up by the action (see e.g. Sec-
tion 4.2).
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4.1.3 Action Selection

Given the utility and costs of actions, the robot
chooses at any point � in time the action % �

that
maximizes

% � ���������	��
� � � 	 � % ������ � 	 � % � ���
(8)

Here
��� �

determines the relative importance
of certainty versus costs. The choice of

�
de-

pends on the application. In our experiments,
�

was set to 1.

In the next two sections we will present applica-
tions of this general scheme to (1) actively navi-
gating the robot and to (2) actively choosing the
optimal sensing direction.

4.2 Active Navigation

Active navigation addresses the problem of de-
termining where to move so as to best position
the robot. At first glance, one might use simple
motor control actions (such as “move 1 meter
forward”) as basic actions in active navigation.
However, just looking at the immediate next mo-
tor command is often insufficient. For example,
Figure 2 shows a typical situation occuring dur-
ing global localization in our department. Here
the robot was placed in the corridor and the fig-
ure gives the belief state

���K�����M�
after some me-

ters of random motion within this corridor (more
likely positions are darker). The two local max-
ima stem from the symmetry of the corridor and
in such a situation the robot has to move into
one of the offices in order to uniquely determine
its position.

We have chosen to consider arbitrary target
points as atomic actions in active navigation.
Target points are specified relative to the cur-
rent robot location, not in absolute coordinates.
For example, an action % ��� ��� �#�#���

m � ���
m

�

local maxima

Fig. 2. Outline of the department along with
position probabilities.

will make the robot move to a location 9 me-
ters behind it and 4 meters to the left. Because
actions are represented relative to the robot’s
position, the absolute position of such targets
strongly depends on the actual belief of the
position estimate. Figure 3 shows a situation
where the belief is concentrated on the two
positions marked by the big circles. The ac-
tion % ��� ��� � �#���

m � ���
m

�
might thus carry

the robot to the location marked “1” or to the
location marked “2”.

move<-9m,-4m>

1

2

Fig. 3. Absolute positions of target points.

To see, let � � �����
be the coordinate transforma-

tion, which expresses the real-world coordinates
of the target location of action % , assuming that
the robot is at

�
. Further let %�� and % � denote

the forward and the sideward component of the
movement action % , respectively. Then the three
components of the target point of action % exe-
cuted at location

�
are given by Eq. (9).

� � � �������"!
� � !$#&%('*) �,+ %-� #.)0/21 �,+ % �
� � � �������"3L� � 3 #&)4/21 �,+ %-� � %('5) �,+ % � (9)

� �#� � ��� � + � �,+ # % +
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The remainder of this section specifies the com-
putation of the utility and the costs of navigation
actions.

4.2.1 Utility of Navigation Actions

In order to determine the utility of moving to a
relative target location using Eq. (7) we have to
specify the entropy expected upon executing a
navigation action % . To compute

��������� 	�� F � % �
we apply the inverse of the coordinate transfor-
mation given in Eq. (9) and get the following
equation (compare Eq. (7)):

� �
� � 3�4 	�� F 8�� 6 � ;
��&
=:A�3$ �BC1�8H.0/21�354 	�6 � � E!F 351�8�8)(

� �!	 AH3$ 0BK1�8�.�/21�3�4 	&6 � � E:F 3�1�8�8A�3$ B�" 8 (10)

4.2.2 Costs of Navigation Actions

To estimate � � % �
for an action % we estimate

the expected costs on the cost-optimal path from
the current location of the robot to the target lo-
cation. To do so, our approach rests on the as-
sumption that a map of the environment is avail-
able, which specifies which point

�
is occupied

and which one is not. In our implementation the
world model is given as an occupancy grid map.

Occupancy probabilities: Let ������� � ��� denote the
probability that location

�
is blocked by an ob-

stacle. The robot has to compute the probabil-
ity that a target point % is occupied. Recall that
the robot does not know its exact location; thus,
it must estimate the probability that a target
point % is occupied. This probability will be de-
noted ������� � % �

. Geometric considerations permit
the “translation” from ������� ����� (in real-world co-
ordinates) to � ����� � % �

(in robot coordinates):

������� � % �!� ;(= ���K����� � ��� �	����� � �#� � ���>�
(11)

Again, � � � ���
is the coordinate transformation in-

troduced in Eq. (9). In essence, Eq. (11) com-
putes, for any

�
, the point % into real-world co-

ordinates � � �����
, then considers the occupancy of

this point (������� � � � ����� �
). The expected occupancy

is then obtained by averaging over all locations�
, weighted by the robot’s subjective belief of

actually being there
���������<����

. The result is
the expected occupancy of a point % relative to
the robot.

Cost and cost-optimal paths: Based on � ����� � % �
,

the expected path length and the cost-optimal
policy can be obtained through value iteration,
a popular version of dynamic programming (see
e.g., [16] for details). Value iteration assigns to
each location % a value � � % �

that represents its
distance to the robot. Initially, � � % �

is set to 0
for the location % � � � � � �

(which is the robot’s
location), and 
 for all other locations % . The
value function � � % �

is then updated recursively
according to the following rule:

� � % �!J � ������� � % � # � / 1
� � � ��� � �

(12)

Here � ���K�
is minimized over all neighbors of% , i.e., all locations that can be reached from %

with a single, atomic motor command. Eq. (12)
assumes that the costs for traversing a point % is
proportional to the probability that % is occupied
(������� � % �

). Iteratively applying this equation leads
to the cost function � � % �

for reaching any point% relative to the robot, and hill climbing in �
(starting at % ) gives the cost-optimal path from
the robot’s current position to any location % .

This completes the description of active naviga-
tion with the purpose of localization. To sum-
marize, actions represent arbitrary target points
relative to the robot’s current position. Actions
are selected by maximizing a weighted sum of
(1) expected decrease in uncertainty (entropy)
and (2) costs of moving there. Costs are consid-
ered because they may vary drastically between
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different target points.

4.3 Active Sensing

By active sensing we attack the problem of
where to point the robot’s sensors so as to best
localize the robot. Corresponding to active nav-
igation this is realized by pointing the sensor
into the direction which maximizes the expected
utility.

4.3.1 Utility of Sensing Actions

To see, let % + � � � ��� � � � �
denote the action of

pointing the sensor into the direction � relative
to the robot’s orientation. The expected entropy
of such an action is given in Eq. (13) (compare
Eq. (7)).

� ��� � � 3�4 	 �7F 8�� 6 � ;
� � &

= A�3$ + BK1�8D.�/21�3�4 	�6 1�8)(
���
	 A�3* + BC1�8�.�/21�3�4 	 6 1�8A�3* + B�"#8 (13)

Here G +
are only those sensings perceivable

in the corresponding direction � . Please note
that we replaced

���������L	 �7F'� ��� % + �
in Eq. (7)

by
���������+	�� ���

because pointing a sensor in a
specific direction does not change the location
of the robot.

In this work we assume that the costs for point-
ing a sensor do not depend on the pointing di-
rection. Thus we can neglect costs during active
sensing and select the pointing direction depend-
ing solely on the utility.

5 Experimental Results

In this section we test the influence of our active
extension to Markov localization on the perfor-

mance of the position estimation.

5.1 Efficient Implementation

The active navigation and sensing methods de-
scribed here have been implemented and tested
using position probability grids introduced in
Section 3.2. In our implementation of active nav-
igation the discretization of the possible actions
is as small as the resolution of the applied posi-
tion probability grid. The complexity of comput-
ing the utility of a single action is in � �2�@�0� �2���0�@�

,
where

�@�0�
is the number of possible locations

and
���0�

is the number of possible sensings (com-
pare Eq. (7)). This results in an overall complex-
ity of � �2�@�0� � � ���0�@�

for computing the best ac-
tion % according to Eq. (4). In order to make the
computation of the utilities tractable we approxi-
mate

�
by a set

�
	
of

�
Gaussian densities with

means ���� �
. The equations presented in Sec-

tion 4 are only applied to the means ��� . This sim-
plification is somewhat justified by the observa-
tion that in practice,

���������M�
is usually quickly

centered on a small number of hypotheses and
approximately zero anywhere else � . The cen-
ters of the Gaussians ��� are computed at runtime,
by scanning the belief state for local maxima

�
whose probability

���K����� �I���
exceeds a certain

threshold. While this modification often reduces
the size of

� �0�
by more than four orders of mag-

nitude we are convinced that the set of these
local maxima represents the most important as-
pects of the belief state at a sufficient rich level.
Together with the fast sensor model introduced
in Section 3.2 action selection can be performed
in reasonable time for active navigation and in
real-time for active sensing (see next sections).

� Before this concentration of the belief state is es-
tablished, the technique introduced here does not
apply.
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(a) (b) (c)

Fig. 4. (a) Environment and path of the robot. (b) Belief
���������M�

and (c) occupancy probabilities� ����� � % �
at pos. 2.

(a) (b) (c)

Fig. 5. (a) Expected costs � � % �
, (b) utility

� � % �
, and (c) payoff

� � % ���� � � % �
at pos. 2.

5.2 Active navigation

Active navigation was tested by placing the
robot in the corridor of our department as plot-
ted in Figure 4 (a). Notice that the corridor in
this environment is basically symmetric and
possesses various places that look alike, mak-
ing it difficult for the robot to determine where
it is. In this environment, the robot must move
into one of the offices, since only here it finds
distinguishing features due to the different fur-
niture in the offices. The state of the doors has
no influence on the position estimation itself
and is only used for determining the expected
costs of moving to the different target points.
In this particular experiment, the robot is only
able to uniquely localize itself by moving either
into room B or C.

In a total of 10 experiments, random wandering
and/or wall following consistently failed to lo-
calize the robot. This is because our wandering

routines are unable to move the robot through
narrow doors, and the symmetry of the corridor
made it impossible to uniquely determine the
robot’s location. In more than 20 experiments
using the active navigation approach presented
here, the robot always managed to localize itself
in a considerably short amount of time.

Figure 4 (a) also shows a representative exam-
ple of the path taken during active exploration.
In this particular run we started the robot at po-
sition 1 in the corridor facing south-west. The
task of the robot was to determine its position
within the environment and then to move into
room

�
(so that we could see that localization

was successful).

In order to deal with the computational complex-
ity of active localization (see Section 5.1), the
robot starts with random motion until the belief
is concentrated on several local maxima. After
about ten meters of such random motion, the
robot reached position 2 (c.F. 4(a)). Figure 4 (b)
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depicts the belief
���������M�

at this point in time
(more likely positions are darker). The positions
and orientations of the six local maxima consid-
ered for computing the utility and costs of ac-
tions are marked by the six circles.

The expected occupancy probabilities ������� � % �
,

obtained by Eq. (11), are depicted in Fig-
ure 4 (c). High probabilities are shown in dark
colors. Note that this figure roughly corresponds
to a weighted overlay of the environmental
map relative to the six local maxima, where the
weights are given by the probabilities of these
maxima. Figure 4 (c) also contains the origin
of the corresponding coordinate system. This
point represents the current position of the robot
or the action % � � ��� �#� �

m � � m �
, respectively

(with robot facing right). Figure 5 (a) displays
the expected costs for reaching the different
target points. These costs have been computed
using value iteration based on Eq. (12). Fig-
ure 5 (b) shows the utility of the target points,
according to Eq. (4). As can be seen there, the
expected decrease in uncertainty of locations in
rooms is high, thus making them favorable for
localization. The utility is also high, however,
for the two ends of the corridor, since those can
further reduce uncertainty. Based on the utility-
cost trade-off depicted in Figure 5 (c), the robot
now decides to first pick a target at the end of
the corridor.

At this point it is important to notice that the
exact trajectory from the current position to the
target point cannot be computed off-line. This
is due to unavoidable inaccuracies in the world
model and to unforeseen obstacles in populated
environments such as our office. These difficul-
ties are increased if the position of the robot
is not known, as is the case during localiza-
tion. To overcome these problems the robot must
be controlled by a reactive collision avoidance
technique. In our implementation a global plan-
ning module uses dynamic programming as de-
scribed in section 4.2 to generate a cost minimal

path to the target location (see [20]). Intermedi-
ate target points on this path are presented to our
reactive collision avoidance technique described
in [7]. The collision avoidance then generates
motion commands to safely guide the robot to
these targets. An overview of the architecture of
the navigation system is given in [22,4].

After having reached the end of the corridor
(position 3 in Figure 4 (a)) the belief state con-
tains only two local maxima (see Figure 6 (a)).
The occupancy probabilities and the resulting
costs of the different actions for this belief are
depicted in Figure 6 (b) and (c), respectively.
Please note that due to the state of the doors, the
costs for reaching room B or C are remarkably
lower than those for reaching the other rooms.
The ambiguity in the belief displayed in Fig-
ure 6 (a) can no longer be resolved without leav-
ing the corridor. Accordingly the utility shown
in Figure 7 (a) is low for target points in the cor-
ridor compared to the utility of actions which
guide the robot into the rooms. Because of the
state of the doors and the resulting costs, the
overall payoff as displayed in Figure 7 (b) is
maximal for target points in rooms B and C.

As shown in Figure 4 (a) the robot decided to
move into the room behind it on the right, which
in this case turned out to be room B. Here the
robot has been able to resolve the ambiguity
between the rooms B and C based on the dif-
ferent furniture in the two rooms. After hav-
ing uniquely determined its location the robot
moved straight to the target location in room A.
Figure 7 (c) shows the belief state at this point.
Please note that only ultrasound sensors were
used in these experiments.

5.3 Active Sensing

In the following experiments we demonstrate
how the efficiency of localization can be im-
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(a) (b) (c)

Fig. 6. (a) Belief
�����������

at pos. 3, (b) occupancy probabilities � ����� � % �
, and (c) expected costs � � % �

.

(a) (b) (c)

Fig. 7. (a) Utility
�,� % �

, (b) payoff
� � % ��� � � � % �

at pos. 3, and (c) final belief.

proved by choosing the optimal pointing di-
rection of the robot’s sensors. Our experiments
are conducted with two different sensors (ul-
trasound and laser-range finder ) in order to
demonstrate the ability of our technique to se-
lect the kind of sensor which is most appropriate
in the given situation (e.g. a camera mounted
on a pan head with two different zoom values).
The difference between ultrasound sensors and
laser-range finders lies in their accuracy. While
ultrasound sensors have an angular resolution
of

��� � , our laser-range finders have an angular
resolution of

� � . In addition to this, laser-range
finders are able to measure obstacles more accu-
rate than ultrasound sensors. Please note that in
our approach these differences are represented
solely in the model of the sensors, specifically in
the probabilities � � G � � �

of measuring distanceG if an obstacle is placed in distance � (c.F. 1).

Figure 8 shows the setup of the experiments: the
robot was placed in the corridor of our depart-
ment and moved up and down with a constant

velocity of 30 cm/sec. Obviously, this corridor
( � � � ��� � � � , all doors closed) is symmetric. In
order to allow the robot to uniquely determine
its location we installed a single box on one side
of the corridor. This obstacle could only be de-
tected by the robot’s ultrasound sensors. Thus,
to uniquely determine its location, the robot had
to choose ultrasound sensors pointing towards
this box.

Path of robot

Only detectable by sonars

Fig. 8. Experimental setup.

To simulate active sensing, we allowed the robot
to read only a single sensor at any point in time.
As a passive method, we chose a sensor at ran-
dom. This passive method was compared to our
active approach, where sensors are according to
Eq. (13). To evaluate the difference between the
two approaches we compute the error in local-
ization measured by the

�"F
norm, weighted by
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(c)

Fig. 9. Estimation error when using (a) only ultrasound, (b) only laser-range finder, and (c) both.

������� ���
. In the first experiment the robot was only

allowed to choose among its 24 ultrasound sen-
sors. The results are depicted in Figure 9 (a).
This figure plots the localization error as a func-
tion of the time, averaged over 12 runs, along
with their 95% confidence intervals (bars). Ap-
parently, the error decreases significantly faster
when sensors are selected actively (solid line).
This result clearly demonstrates the benefit of
active sensing.

Figure 9 (b) depicts the corresponding results for
the laser-range finder. In this case active sens-
ing is not superior to choosing a pointing direc-
tion randomly. Obviously none of the methods
is able to correctly determine the position of the
robot, which is due to the inability of the laser-
range finder to detect features breaking the sym-
metry of the corridor. During this kind of exper-
iments we always observed two local maxima
in the position probability distribution, one rep-
resenting the true location of the robot and one
representing the position mirrored by

����� � .

In the final experiment the robot was allowed
to choose among both, ultrasound sensors and
laser-range finders. The result is depicted in Fig-
ure 9 (c). Here again, active sensing signifi-
cantly improves the efficiency of the localiza-
tion process. In addition to this, active sensing
performs much better when choosing from both
sensors (Figure 9 (c)) than when being restricted
to only one kind of sensor (Figure 9 (a) and Fig-
ure 9 (b)). In order to estimate the certainty of
the two approaches of being at the true location

during this class of experiments we summed up
the probabilities assigned to positions close to
the true location of the robot. These probabilities
are depicted in Figure 10. As can be seen here
active sensing is certain of being at the true lo-
cation after less than 400 seconds. The random
strategy on the other hand is not able to uniquely
determine the position of the robot within the
scope of the experiment.
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Fig. 10. Probability assigned to correct position.

To shed light onto the question as to why active
localization performs significantly better than
the passive method we analyzed the sensor read-
ings that our active approach considered during
localization. The points depicted in Figure 11
have been generated by storing the sensor mea-
surements considered for localization and plot-
ting their end points relative to the true position
of the robot at that time.

(a) (b)

Fig. 11. End points of (a) ultrasound and (b) laser
sensings of actively selected sensings.

Please note that the points in Figure 11 (a) and
Figure 11 (b) stem from one experiment where

12



the robot was allowed to choose among both sen-
sors. Here the advantage of our method becomes
obvious: the less accurate ultrasound sensors are
only used to scan the box and its symmetric po-
sition (upper left cloud of points in Figure 11 (a))
in order to break the symmetry of the corridor.
In most other cases the laser sensors were pre-
ferred due to their higher accuracy (c.F. 11(b)).
This also explains why active sensing when us-
ing both sensors is significantly better than ac-
tive sensing when using only one kind of sen-
sor: by selecting the right kind of sensor our ap-
proach combines the accuracy of the laser-range
finder with the ability of the ultrasound sensors
to disambiguate the position estimation.

6 Conclusions

This paper advocates a new, active approach
to mobile robot localization. In active localiza-
tion, the robot controls its various effectors so
as to most efficiently localize itself. In essence,
actions are generated by maximizing the ex-
pected decrease of uncertainty, measured by en-
tropy. This basic principle has been applied to
two active localization problems: active naviga-
tion, and active sensing. In the case of active
navigation, expected costs are incorporated into
the action selection. Both approaches have been
verified empirically using our RWI B21 mobile
robot.

The key results of the experimental comparison
are:

(1) The efficiency of localization is increased
when actions are selected by minimizing
entropy. This is the case for both active nav-
igation and active sensing. In some cases,
the active component enabled a robot to lo-
calize itself where the passive counterpart
failed.

(2) The relative advantage of active localiza-
tion is particularly large if the environment
possesses relatively few features that en-
able a robot to unambiguously determine
its location.

Despite these encouraging results, there are
some limitations that deserve future research.
One of the key limitations arises from the al-
gorithmic complexity of the entropy prediction
(compare Eq. (7)). While some algorithmic
tricks made the computation of entropy feasi-
ble within the complexity bounds of our en-
vironment, more research is needed to scale
the approach to environments that are signifi-
cantly larger (e.g., 1000m

�
1000m). A second

limitation arises from the greediness of action
selection. In principle, the problem of optimal
exploration is NP hard, and there exist situa-
tions where greedy solutions will fail. However,
in none of our experiments we ever observed
that the robot was unable to localize itself using
our greedy approach, something that quite fre-
quently happened with the passive counterpart.
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