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Bayesian Filtering for
Location Estimation

L
ocation awareness is important to
many pervasive computing applica-
tions. Unfortunately, no location sen-
sor takes perfect measurements or
works well in all situations. Thus, the

motivation behind this article is twofold. First, we
believe the pervasive computing community will
benefit from a concise survey of Bayesian-filter tech-
niques. Because no sensor is perfect, representing
and operating on uncertainty with a statistical tool

such as Bayes filters is key in any
system using many sensors.

Second, estimating an object’s
location is arguably the most
fundamental sensing task in
many pervasive computing sce-
narios. It is thus a natural do-
main in which to illustrate the
application of Bayesian filter

techniques. Representing locations statistically
enables a unified interface for location informa-
tion. This lets us write applications independent
of the sensors used—even when using very dif-
ferent sensor types, such as GPS and infrared
badges. (A comparative survey of location sys-
tems appears elsewhere.1) 

Here, we illustrate fusing sensor data from ultra-
sound and infrared tags. We also discuss how to
combine high-resolution location information
from anonymous laser range finders with low-res-
olution location sensors that provide identification.

Bayes filters
Bayes filters2 probabilistically estimate a

dynamic system’s state from noisy observations.
In location estimation for pervasive computing,
the state is a person’s or object’s location, and
location sensors provide observations about the
state. The state could be a simple 2D position or
a complex vector including 3D position, pitch,
roll, yaw, and linear and rotational velocities.

Bayes filters represent the state at time t by ran-
dom variables xt. At each point in time, a prob-
ability distribution over xt, called belief, Bel(xt),
represents the uncertainty. Bayes filters aim to
sequentially estimate such beliefs over the state
space conditioned on all information contained in
the sensor data. 

To illustrate, let’s assume that the sensor data
consists of a sequence of time-indexed sensor
observations z1, z2, …, zt. The belief Bel(xt) is then
defined by the posterior density over the random
variable xt conditioned on all sensor data avail-
able at time t:

Bel(xt)=  p(xt | z1, z2, …, zt).                          (1)

Roughly speaking, the belief answers the ques-
tion, “What is the probability that the person is at
location x if the history of sensor measurements
is z1, z2, …, zt?” for all possible locations x. In gen-
eral, the complexity of computing such posterior
densities grows exponentially over time, because

Bayesian-filter techniques provide a powerful statistical tool to help
manage measurement uncertainty and perform multisensor fusion and
identity estimation. The authors survey Bayes filter implementations and
show their application to real-world location-estimation tasks common
in pervasive computing.
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the number of sensor measurements
increases over time. To make the com-
putation tractable, Bayes filters assume
the dynamic system is Markov—that is,
the current state variable xt contains all
relevant information. For locating objects,
the Markov assumption implies that sen-
sor measurements depend only on an
object’s current physical location and that

an object’s location at time t depends only
on the previous state xt–1. States before 
x t–1 provide no additional information.

Under the Markov assumption, we
can efficiently compute the belief in
Equation 1 without losing information.
Before we provide the update equations,
let’s briefly examine the recursive Bayes
filter update steps using Figure 1. In this

hypothetical one-dimensional scenario,
a person walks down a hallway carrying
a sensor (such as a camera) that signals
if the person walks by a door. The sensor
cannot distinguish different doors. We
are not suggesting this mobile camera
scenario is a viable location system
implementation; it simply illustrates
important Bayes filters properties. 
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Figure 1. A one-dimensional illustration of Bayes filters. A person carries a door-sensing camera that cannot distinguish different doors.
Each frame depicts the person’s position in the hallway and the current belief Bel(xt): (a) The person’s location is unknown. (b) The 
sensor sends a “door found” signal. (c) The person moves. (d) The sensor observes another door. (e) The person moves again.
Additionally, (b) and (d) depict the observation model p(z|x), the probability of observing a door at different locations in the hallway.



As Figure 1a illustrates by showing a
uniform distribution over possible loca-
tions, the person’s location is at first
unknown. The sensor then sends a
“door found” signal. The resulting belief
places high probability at places next to
doors and low probability elsewhere (see
Figure 1b). This distribution possesses
three peaks, each corresponding to one
of the environment’s (indistinguishable)
doors. Furthermore, the resulting distri-
bution assigns high probability to three
distinct locations, illustrating that the
probabilistic framework can handle mul-
tiple, conflicting hypotheses that natu-
rally arise in ambiguous situations.
Finally, even nondoor locations possess
nonzero probability because of the un-
certainty inherent in sensing; with a
small but nonzero probability, the sen-
sor might err and actually not be next to
a door. 

Figure 1c shows the person moving
and this motion’s effect on the belief,
assuming the person moves to the right
with typical walking speed. The Bayes
filter shifts the belief in the direction of
motion and smoothes it out to account
for inherent uncertainty in motion esti-
mates. Finally, Figures 1d and 1e depict
the belief after the sensor observes
another door and after the next motion,
respectively. Most of the probability
mass is placed on a location near one of
the doors, and the filter is now quite con-
fident of the person’s location.

Here’s how to update the Bayes filter.
Whenever a sensor provides a new
observation zt, the filter predicts the state
according to

(2)

The filter then corrects the predicted esti-
mate using this sensor observation:

(3)

Here, p(xt | xt–1) describes the system
dynamics—that is, how the system’s
state changes over time. 

In location estimation, this conditional
probability is the motion model—where
the object might be at time t, given that
it was previously at location xt–1. This
model strongly depends on the informa-
tion available to the estimation process.
It can range from predicting the next
position by estimating a person’s motion
velocity to predicting when a person will
exit the elevator by estimating the per-
son’s goal. 

In the hallway example, the motion
update corresponds to the change in
belief leading to Figure 1c and 1e. The
belief immediately after the prediction
and before the observation is the predic-
tive belief Bel−(xt). The perceptual model,
p(zt | xt), describes the likelihood of mak-
ing observation zt given that the person is
at location xt. As Figure 1b and 1d show,
the observation update rule increases the
probability of locations with high obser-
vation likelihoods. For location estima-
tion, the perceptual model is usually con-
sidered a given sensor technology’s
property. It depends on the sensors’ types
and positions and captures their error
characteristics. In Equation 3, αt is sim-
ply a normalizing constant that ensures
that the posterior over the entire state
space sums up to one. Bel(x0) is initial-
ized with prior knowledge about the
object’s location, typically uniformly dis-
tributed if no prior knowledge exists.

Bayes filters are an abstract concept in
that they provide only a probabilistic
framework for recursive state estimation.
Implementing Bayes filters requires spec-
ifying the perceptual model p(zt | xt), the
dynamics p(xt | xt–1), and the representa-
tion of the belief Bel(xt). The properties
of the different implementations of Bayes
filters strongly differ in how they repre-
sent probability densities over the state xt. 

We now discuss different belief repre-
sentations and their properties in the

context of location estimation for per-
vasive computing.

Kalman filters
Kalman filters are the most widely used

variant of Bayes filters.3 They approxi-
mate beliefs by their first and second
moment, which is virtually identical to a
unimodal Gaussian representation: 

(4)

Here, µt is the distribution’s mean (first
moment) and Σt is the d × d covariance
matrix (second moment), where d is the
state’s dimension. N(xt; µt, Σt) denotes
the probability of xt given a Gaussian
with mean µt and covariance Σt, as Equa-
tion 4 specifies. Σt represents the uncer-
tainty in the estimate—the larger the
covariance, the wider the distribution’s
spread. Kalman filters are optimal esti-
mators, assuming the initial uncertainty
is Gaussian and the observation model
and system dynamics are linear functions
of the state. Because most systems are
not strictly linear, people typically apply
extended Kalman filters, which linearize
the system using first-order Taylor series
expansions.3

Kalman filters’ main advantage is their
computational efficiency. We can imple-
ment both the prediction (Equation 2)
and correction (Equation 3) using effi-
cient matrix operations on the mean and
covariances. This efficiency, however,
comes at the cost of restricted represen-
tational power because Kalman filters
can represent only unimodal distribu-
tions. So, Kalman filters are best if the
uncertainty in the state is not too high,
which limits them to location tracking
using either accurate sensors or sensors
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with high update rates. For example, we
can apply Kalman filters to the estima-
tion problem shown in Figure 1 only
when we know the person’s initial loca-
tion and can limit sensor uncertainty. 

Despite Kalman filters’ restrictive
assumptions, practitioners have applied
them with great success to various track-
ing problems, where the filters yield effi-
cient, accurate estimates, even for some
highly nonlinear systems.

Multihypothesis tracking
Multihypothesis tracking can over-

come Kalman filters’ limitation to uni-
modal distributions. MHT represents
the belief as mixtures of Gaussians:4 

(5)

The MHT tracks each Gaussian
hypothesis using a Kalman filter. The
technique determines the hypotheses’
weights on the basis of how well the
hypotheses predict the sensor measure-
ments. In other words, at each update,
the weights are set proportional to the
likelihoods of the sensor measurements,
given the individual hypotheses. 

Owing to MHT approaches’ ability to
represent multimodal beliefs, they are
more widely applicable than the Kalman
filter. For example, in contrast to Kalman
filters, we can apply MHT approaches
to the problem illustrated in Figure 1.
However, MHT techniques are compu-
tationally more expensive and require
sophisticated techniques or heuristics to
determine when to add or delete hypo-
theses. Because each hypothesis is tracked
using a Kalman filter, these methods still
rely on the linearity assumptions of
Kalman filters. In practice, however, mul-
tihypothesis approaches have been
robust to violations of these assumptions.

Grid-based approaches
These approaches overcome the restric-

tions imposed on Kalman filters by rely-
ing on discrete, piecewise constant repre-
sentations of the belief. The update equa-
tions of discrete approaches are identical
to the Bayes filter updates (Equations 2
and 3), with summation replacing inte-
gration. For indoor location estimation,
grid-based filters tessellate the environ-
ment into small patches, typically between
10 cm and 1 m in size. Each grid cell con-
tains the belief that the person or object is
in each cell. 

A key advantage of these approaches
is that they can represent arbitrary dis-

tributions over the discrete state space
and can solve estimation problems such
as the one in Figure 1. The mobile-robot-
localization community has shown that
metric approximations provide accurate
position estimates in combination with
high robustness to sensor noise.5 Grid-
based approaches’ disadvantage is the
computational and space complexity
required to keep the position grid in
memory and to update it for every new
observation. Because the complexity
grows exponentially with the number of
dimensions, we can apply grid-based
approaches only to low-dimensional
estimation problems, such as estimating
a person’s position and orientation.

Topological approaches
We can avoid the computational com-

plexity of grid-based methods using non-
metric representations of an environment.
For instance, many indoor environments
provide a natural way to represent a per-
son’s location at a symbolic level such as
the room or hallway the person is cur-

rently in. Such representations result in
topological implementations of Bayes fil-
ters, where a graph represents the envi-
ronment.6 Each node in the graph cor-
responds to a location, and the edges
describe the environment’s connectivity,
typically given by hallways. The motion
model p(xt | xt−1), which describes where
a person walks, can be trained to repre-
sent typical motion patterns of individ-
uals moving through the environment. 

Topological approaches’ advantage is
their efficiency, because they represent
distributions over small, discrete state

spaces. Their disadvantage is the repre-
sentation’s coarseness. Estimates provide
only rough information about a person’s
location. Topological approaches are
typically adequate if the sensors in the
environment provide only very impre-
cise location information.

Particle filters
Particle filters represent beliefs by sets

of samples, or particles:7

(6)

Here, each is a state, and the are
nonnegative weights called importance
factors, which sum up to one. Particle
filters realize Bayes filter updates accord-
ing to a sampling procedure, often called
sequential importance sampling with
resampling. (An overview of particle fil-
ters and various applications appears
elsewhere.7)

Figure 2 illustrates the particle filter
algorithm using our one-dimensional
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Grid-based approaches’ disadvantage is the

computational and space complexity required

to keep the position grid in memory and to

update it for every new observation.



hallway example. A uniformly distrib-
uted sample set represents the person’s
initially unknown position (see Figure
2a). Each sample has the same impor-
tance factor w(x), as the equal heights
of all bars in Figure 2a indicate. In Fig-
ure 2b, the sensor detects the left door.
The particle filter incorporates the mea-

surement by adjusting and normalizing
each sample’s importance factor, lead-
ing to the sample set in the lower part
of Figure 2b. These samples are the
same as before, but now their impor-
tance factors are proportional to the
observation likelihood p(z | x), shown
in Figure 2b. 

When the person moves to the right,
particle filters randomly draw samples
from the current sample set (with prob-
ability given by the importance factors).
Then the filters use the model to guess
the possible succeeding location for each
new particle. This update implements
the general Bayes filter’s prediction step
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Figure 2. Applying particle filters to location estimation. The black bars depict the particles representing the belief Bel(xt). (a) A 
uniformly distributed sample set presents the person’s initially unknown position. (b) A sensor detecting the left door. The sample
set is obtained from weighing the importance factors in proportion to the likelihood of the measurement. (c) An implementation 
of the prediction step. The samples were drawn from the previous set with probability proportional to the importance factors. 
(d) A sensor detecting a second door. (e) The sample set obtained after another prediction step.



(Equation 2). Figure 2c shows the result-
ing sample set, which differs from the
original one in that most samples center
around three locations. This concentra-
tion of the samples is achieved through
sampling proportional to the weights. 

In Figure 2d, the sensor detects a sec-
ond door, leading to the likelihood p(z |
x). By weighing the importance factors in
proportion to this probability, we obtain
the sample set shown in the lower part of
Figure 2d. After the next prediction
update, most of the probability mass is
consistent with the person’s true loca-
tion. So, the result is consistent with the
general Bayes filter example in Figure 1.

Particle filters’ key advantage is their
ability to represent arbitrary probability
densities. Furthermore, unlike Kalman
filters, particle filters can converge to the
true posterior even in non-Gaussian, non-
linear dynamic systems. Compared to
grid-based approaches, particle filters are
very efficient because they automatically
focus their resources (particles) on
regions in state space with high proba-
bility. Because particle filters’ efficiency
strongly depends on the number of sam-
ples used for filtering, several improve-
ments have been made to more efficiently
use the available samples.8 However,
because these methods’ worst-case com-
plexity grows exponentially in the dimen-
sions of the state space, we must be care-
ful when applying particle filters to
high-dimensional estimation problems.

Comparison
Table 1 summarizes the advantages

and disadvantages of different Bayes fil-
ter implementations. Accuracy measures

how well the different approaches can
estimate location given adequate sensors.
Obviously, grid-based approaches can
reach arbitrary accuracy but at prohibi-
tively high computational costs. Kalman
filters’ limited robustness is due to the
unimodal belief representation. 

Both Kalman filters and MHT require
accurate sensors with rather high update
rates. Topological approaches require sen-
sors that relate to an environment’s lay-
out. Grid-based approaches and particle
filters can incorporate virtually any sensor
type. Kalman filters are the most efficient
in terms of memory and computation. 

Efficiency is a key disadvantage of
grid-based methods, although tree-based
implementations can reduce this prob-
lem.5 In general, if accurate sensors are
available, Kalman filters might be the
best choice. For specific sensors, and if
accurate location estimates are not
required, topological approaches pro-
vide a good way to estimate a person’s
location. Otherwise, particle filters are
an extremely flexible tool with low
implementation overhead.

Example applications
Here, we show sensor fusion of two

representative pervasive location tech-
nologies: infrared proximity badges and
ultrasonic time-of-flight tags. Then we
present a novel approach to tracking
multiple objects that combines the accu-
racy benefits of anonymous sensors such
as scanning infrared laser range finders
with the identification certainty of the
less accurate infrared and ultrasonic ID
sensors. Our hardware is the commer-
cial VersusTech infrared badge system,

MIT’s Cricket ultrasound tags, and the
LMS200 180-degree scanning laser
range finder from SICK, Inc. (Numerous
references to the seminal work in sensors
for location appears elsewhere.1) The
sensors are deployed throughout the
Intel Research laboratory in Seattle.

Sensor models
To apply Bayes filters to location esti-

mation using a specific sensor type, we
must first generate a sensor model p(z |
x) describing the likelihood of observing
a sensor measurement z given the person
or object’s state x. Such a model consists
of two types of information: a map of the
environment and the sensor noise. The
problem of constructing maps of indoor
environments has received substantial
attention in the robotics research com-
munity.9 Figure 3 illustrates sensor mod-
els for ultrasound tags, infrared badges,
and laser range finders, respectively.

Figure 3a shows the likelihood of
observing a 4.5-meter ultrasound mea-
surement for the different locations in
the environment. Because such time-of-
flight sensors provide information about
the distance between the sensor and the
person, the likelihood function is a ring
around the sensor’s location. The ring’s
width represents the uncertainty in the
measured distance and is often repre-
sented by a Gaussian distribution cen-
tered at the measured distance. Fur-
thermore, because ultrasound sensors
frequently produce measurements that
are far from the true distance owing to
reflections, all locations in the free space
have a nonzero likelihood, as the map’s
gray areas indicate. 
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TABLE 1

Comparing Bayes filters implementations (+, 0, and – represent good, neutral, and weak, respectively).

Kalman Multihypothesis Grid Topology Particle
tracking

Belief Unimodal Multimodal Discrete Discrete Discrete
Accuracy + + 0 – +
Robustness 0 + + + +
Sensor variety – – + 0 +
Efficiency + 0 – 0 0
Implementation 0 – 0 0 +



Figure 3b illustrates the sensor model
for the infrared badge system. Such sen-
sors provide no distance information—
only information about a person’s pres-
ence within a certain range of the
receiver. Accordingly, an infrared mea-
surement has a circular likelihood
around the sensor location. 

Figure 3c shows a scan taken from a
laser range finder. Because these sensors
are at fixed positions, detecting sensor
beams that return atypically short mea-
surements is straightforward. Several
adjacent short beams form a shadow
region indicating a person’s presence, as
Figure 3c shows. A Gaussian distribution
usually represents the likelihood for such
detected features with small uncertainty.

Multiple inaccurate ID sensors
Here we illustrate how to estimate a

person’s location using multiple inaccu-
rate ID sensors, such as the ultrasound
and infrared badge systems in our test
environment. Owing to these sensors’
high noise level, the belief over the per-
son’s location is typically uncertain and
multimodal; so, we chose particle filters
for this application. The state vector x
of the particles represents the person’s
position, orientation, and motion veloc-

ity. Bayes filters can naturally integrate
information from different sensors. In
this case, whenever an ultrasound or
infrared sensor detects the person, the
particles are weighted with observation
likelihoods such as in Figures 3a and 3b,
respectively.

Figure 4 shows snapshots from a typ-
ical sequence projected onto a map of the
environment. The person is wearing an
infrared badge and ultrasound tag and
starts in the upper-right corner as the icon
indicates (see Figure 4a). Because the sys-
tem doesn’t know the start location, the
samples are spread uniformly through-
out the environment’s free space. Figure
4b shows the belief after the person
moves out of the cubicles, at which point
the samples are spread over different
locations owing to the inaccurate sensor
information received so far. After an
ultrasound sensor detects the person, the
filter can estimate the location more accu-
rately (see Figure 4c). The estimates’ cer-
tainty continues to change depending on
the sensor measurements’ quality.

This example shows that particle filters
can extract reasonable location informa-
tion even from inaccurate sensors by inte-
grating measurements over time. How-
ever, we could use particle filters even more

efficiently by constraining the possible
locations. More specifically, we could con-
strain the state space to locations on a
Voronoi graph, which is a structure simi-
lar to a skeleton of an environment’s free
space.10 The key advantage of such graphs
is that they naturally represent typical
motion along the environment’s main
axes. This technique differs from a topo-
logical approach, however, because it
maintains high precision in the location
estimate—the particles can flow freely
along the graph’s edges in contrast to the
discrete probabilities stored only at the
graph nodes in a topological approach.6

Figure 5 shows a sample run using par-
ticle filters on Voronoi graphs. The lines
in the first frame indicate the Voronoi
graph. The sequence is based on data
identical to that in Figure 4 using uncon-
strained particle filters. In experiments we
found that such Voronoi graph tracking
produces better estimates using far fewer
particles. Furthermore, we can use the
Voronoi graph structure to learn a per-
son’s high-level motion patterns, such as
“person A typically goes into the printer
room when she walks down hallway 3.”
We can dynamically predict someone’s
destination in real time as he or she moves
about the environment, which is invalu-
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Ultrasound sensor

(a) (b) (c)

Infrared sensor Laser range finder
Detected person

Figure 3. Probabilistic models for (a) ultrasound tags, (b) infrared badges, and (c) laser range finders. The environment is 30 m × 30 m. 
In (a) and (b), darker areas indicate higher likelihoods of observing the corresponding measurement. Walls and other obstacles are
white because they have zero likelihood. In (c), laser-scan beams, along with a detected person, are blue. The person obstructs the laser
beams, thereby causing a “shadow” in the scan.



able to applications seeking to take pre-
dictive action. (More details on such learn-
ing approaches appear elsewhere.2,10)

Combining anonymous and 
ID sensors

One of the disadvantages of common
ID sensors is their limited accuracy. On
the other hand, sensors such as laser

range finders provide highly accurate
location estimates but do not identify
objects. In this example, we describe
how to use Bayesian filter techniques to
combine information from both types of
sensors to get accurate location and ID
information.

Figure 6 illustrates the problem of track-
ing multiple people with anonymous and

ID sensors. The solid and dotted lines are
trajectories of persons A and B, respec-
tively. As they walk, the anonymous sensor
observes their locations frequently. Initially,
their identity is unknown, but they are sep-
arated enough to be tracked reliably using
the anonymous sensor. Until they reach
ID sensor areas 3 and 4, both trajectories
have the same probability of belonging
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(a) (b) (c)

Initial Infrared Ultrasound

Figure 4. A particle filter for location estimation using infrared and ultrasound sensors: (a) A person wearing an infrared badge 
and ultrasound tags starts in the upper right corner. (b) After the person moves out of the cubicles, the samples are spread over 
different locations. (c) An ultrasound sensor detects the person.

(a) (b) (c)

Initial Infrared Ultrasound

Figure 5. A particle filter constrained to a Voronoi graph structure. The particles move along the graph’s edges: (a) The initial location
of the person is not known and the particles are spread over the entire graph. (b) After the person moves out of the cubicles, the
samples start to concentrate in the upper part of the graph. (c) An ultrasound sensor detects the person.



to either person A or B. Passing through
the coverage of ID sensors 3 and 4
resolves the ambiguity and determines
the IDs of both trajectories. Then, after
the paths cross, confusion exists about
the continuation of the two tracks. When
the people leave the light-gray area, the
anonymous sensor can’t determine which
trajectory to associate with which person.

The multitarget-tracking community
refers to this problem as the data-associ-
ation problem.4 Without ID sensors,
resolving this ambiguity would be impos-
sible. In our scenario, we can resolve the
ambiguity as soon as the people reach the
areas covered by ID sensors 5 and 6. To
do so, however, requires maintaining the
hypotheses for both possible track con-

tinuations—A going down and B going
up, or B going down and A going up.

To solve the identity-estimation prob-
lem, we use a combination of particle fil-
ters and Kalman filters, closely related
to MHT. The key idea is to track indi-
vidual people using Kalman filters,
which is possible owing to the accuracy
of laser range data (see Figure 3c). A par-
ticle filter maintains multiple hypothe-
ses regarding the identities of people,
where each particle is one hypothesis for
the identity of each tracked person. Put
differently, each particle is a collection
of Kalman filters annotated with identi-
ties.11 The resulting approach can track
multiple people and their identities. 

Figure 7 shows a small part of the data
set used for evaluating the approach. We
collected the complete data set with six
people, each of whom moved between
230 and 410 meters. In this challenging
sensor log, people’s paths frequently
crossed, and situations existed in which
up to four people were occluded to the
laser range finders by other people. Nev-
ertheless, our approach successfully esti-
mated each person’s location and identity.
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Laser range finder
Ultrasound receiver
Infrared receiver

Figure 7. The trajectories of three people
moving through the test environment. We
successfully tested the combination of
particle filters and Kalman filters on more
challenging data sets involving six people.

1 3 5

642

Person B

Person A

Track confusion

Figure 6. Tracking with anonymous and
ID sensors. The blue-shaded circles 
indicate areas covered by ID sensors such
as infrared receivers. Because these 
sensors provide no information about the
person’s location in the area, two people
in the same area can’t be distinguished.
Not shown is an additional anonymous
sensor, such as a laser range finder, 
providing accurate location information
at a high rate but no information about
the persons’ IDs.



W
e have codified our sensor
fusion techniques in a pro-
ject called the Location
Stack, a general framework

for location-aware pervasive computing
with a publicly available implementa-
tion.12 We are applying Bayes filters to
more complex scenarios, such as learning
a person’s activities from long-term sensor
logs. More complex estimation problems
apply structured versions of Bayes filters,
such as dynamic Bayesian networks.13

We strongly believe that probabilistic-
filter techniques have tremendous poten-
tial for inference problems in pervasive
computing. Location estimation is just
the beginning of connecting Bayesian
reasoning systems to raw sensor data.
The full power of such techniques lies in
their ability to represent uncertainty at
different levels of abstractions, thereby
enabling truly context-aware pervasive
computing systems.
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