Autonomous Systems

Lecture 2

Probabilities
Bayes rule
Bayes filters



Recursive Bayesian Updating

P(zn|x,21,...,20n-1) P(X| z1,...,20-1)

P(x Zly..yZn) =
( | ) P(Zn|Z1,...,Zn—1)

Markov assumption: z, is independent of z,,...,z,_; if
we know x.

P(zn|x) P(x|z1,...,2n-1)
P(Zn|Zl,...,Zn—l)

=7]P(Zn|X)P(X|Zl,...,Zn—1)
=M ..x HP(Z"|X) P(x)
i=l..n

P(.X|Zl,...,Zn) =




Example: Second Measurement

* P(z,lopen) = 0.5 P(z,|—~open) = 0.6
* P(open|z,)=2/3

P(z, |open) P(open|z,)

P(Open|zz,zl) =
P(z, |open) P(open|z,)+ P(z, | ~open) P(~open| z,)
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* Z, lowers the probability that the door is open.
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Actions

e Often the world is dynamic since
e actions carried out by the robot,
e actions carried out by other agents,
e or just the time passing by
change the world.

®* How can we incorporate such
actions?



Typical Actions

® The robot turns its wheels to move

® The robot uses its manipulator to grasp
an object

® Actions are never carried out with
absolute certainty.

® In contrast to measurements, actions
generally increase the uncertainty.



Modeling Actions

® To incorporate the outcome of an
action u into the current “belief”, we
use the conditional pdf

P(x|u,x’)

® This term specifies the pdf that

executing u changes the state
from x’ to x.



Example: Closing the door

-




State Transitions

P(x|u,x’) for u = “close door”:

0.9 ™4
“\__ 0

If the door is open, the action “close
door” succeeds in 90% of all cases.




Integrating the Outcome of Actions

Continuous case:

P(x|u) =fP(x lu, x")P(x")dx'

Discrete case:

P(x|u)= E P(x|u,x")P(x")



Example: The Resulting Belief
P(closed |u) = E P(closed |u,x")P(x'")
= P(closed |u,open)P(open)
+ P(closed | u,closed)P(closed)
9 5 1 3 15

= % 4% =

10 8 18 16
P(open|u) = E P(open|u,x")P(x")
= P(open|u,open)P(open)
+ P(open|u,closed)P(closed)
1 5 0 3 1

= % 4+ % =

10 8 1 8 16
=1- P(closed |u)
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Bayes Filters: Framework

e Given:
e Stream of observations z and action data u:
d={u,z ...,u,z}
e Sensor model P(z|x).
e Action model P(x|u,x’).
e Prior probability of the system state P(x).

e Wanted:

e Estimate of the state X of a dynamical system.
e The posterior of the state is also called Belief:

Bel(x,)=P(x, |u,,z, ...,u,,z,)
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Markov Assumption

p(z, | x5 2y,u,) = p(z,]x,)
p(x, | Xy 5 2,u,) = p(X, | X,_,u,)
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z = observation
Bayes Filters Y - ctate
Bel(x,) = P(x, |u,,z, ...,u,,z,)
Bayes =n P(z, | x,u,z,...,u) P(x, |u,z,...,u,)
Markov =n P(z, |x) P(x, |u,,z,...,u,)
Totalprob. =1 P(z,]x,) f P(x, |u,z,...,u,x,_)
P(x_ |u,z,....u,)dx,_,
Markov =n P(z,|x) f P(x, |u,x,_) P(x_ |u,z,....u)dx_
Markov =nP(z, |xt)fP(xt ju,, x,_ ) P(x,_, |u,z,...,z,,) dx,_,

=1 P(z, |xt)fP(xt \u,,x,_,) Bel(x,_,) dx,_
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Bel(xt) =1 P(Zt | xz)fp(xz |ut?xt—l) Bel(xt—l) dxt—l

Algorithm Bayes_ filter( Bel(x;.,),u,z;):
For all x, do

1.
2
3 bel(x,) = [ p(x, | u,,x,.) bel(x,.,) dx,
4. bel(xf)=77p(zf |xt)bel(xt)
5. endfor

6

Return bel(x,)
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Bayes Filters are Familiar!

Bel(x))=n P(z |x) [P(x, |u,x,_) Bel(x_) dx_
! ! 1 t t -1 -1 -1

e Kalman filters

® Particle filters

® Hidden Markov models

e Dynamic Bayesian networks

e Partially Observable Markov Decision
Processes (POMDPs)
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Summary

® Bayes rule allows us to compute
probabilities that are hard to assess
otherwise.

® Under the Markov assumption,
recursive Bayesian updating can be
used to efficiently combine evidence.

® Bayes filters are a probabilistic tool
for estimating the state of dynamic
systems.
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Demonstrations
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Sample-based Localization: Demo
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Another demo
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