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Abstract

This article presents linear regression and sup-
port vector regression as techniques to predict
protein expressions. Various feature selection
techniques and, in the latter case, kernels are
examined with respect to their influence on pre-
diction performance. Both linear regression
with prior feature selection on the Lasso, as
well as support vector regression with a radial
basis function kernel prove to be useful predic-
tion techniques. Including gene data in the fea-
ture space yields very limited success. Datasets
from different tissues prove to be not directly
compatible.

1 Introduction
In recent times, there has been a huge increase in avail-
able biological data due to high-throughput omics tech-
nologies. This includes measurements of genes, proteins,
microRNAs and metabolites. The availability of such
data enables the possibility of applying machine learn-
ing techniques in order to better understand the rela-
tionships between these different molecules. The devel-
opment of computer models of single cells is a current
area of research and a deeper understanding of the in-
ner workings of cells could potentially lead to the de-
velopment of (better) models. Eventually, sufficiently
sophisticated models could help with the diagnosis and
treatment of diseases.

In particular, this article focuses on how protein lev-
els in cells can be predicted based on available data. The
problem is approached by utilising regression techniques
such as linear and support vector regression. Addition-
ally, feature selection methods are investigated to narrow
down the set of relevant features in the hope of improv-
ing prediction accuracy.

The methods investigated in this paper are applied
on datasets provided by ”The Cancer Genome Atlas”
(TCGA) research network, a project dedicated to cata-
loguing genetic modifications related to cancer [11]. The
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main focus will be on the BRCA (breast invasive carci-
noma) dataset, but datasets from different organs and
tissues will be investigated as well to see whether the
results are consistent across different datasets and how
including them may influence prediction accuracy.

Implementations of machine learning techniques such
as linear regression and support vector regression are
taken from the scikit-learn Python package. [8]

The remainder of this paper is structured as de-
scribed in the following. In the next section, the tech-
niques applied in this paper, such as linear regression,
support vector regression and various feature selection
techniques will be discussed. The experiments section
will contain descriptions of several experimental setups
meant to measure the performance of different methods
and how they compare. This will be followed by a pre-
sentation of the obtained results as well as a discussion
thereof.

2 Methods

The task of predicting protein levels requires models to
be able to produce continuous, real-valued output vari-
ables from input variables of the same nature. Thus, re-
gression techniques are well suited for this problem and
will be the main focus in this paper.

2.1 Linear Regression

Linear regression is a statistical approach for building a
linear model which describes the relationship between a
dependent variable and a set of independent variables,
also called features. In this article, the focus will be on
multiple linear regression, which deals with multiple fea-
tures as opposed to simple linear regression, where only
one feature is used to build the model. The dependent
variable is generally denoted by y, while the features are
denoted by X.

Ordinary least squares linear regression aims to min-
imise the residual sum of squares between the predicted
and observed dependent variables by fitting a linear
model where each feature is assigned a coefficient, or
weight βi, determining its contribution to the predicted
variable. [6]
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This results in a model of the form

y = x0β0 + x1β1 + ...+ xnβn + ε = Xβ + ε (1)

with minimisation objective

β̂ = min
β
||Xβ − y|| (2)

2.2 Support Vector Regression (SVR)

While support vector machines are mainly known for
solving classification problems, the technique can be ex-
tended to work with regression problems.

Contrary to the classification algorithm, regression
requires the use of a loss function. While a variety of
different loss functions exist, the most common one is
the ε-insensitive loss function proposed by Vapnik [1].

L(y, g(x)) =

{
0 |y − g(x)| ≤ ε
|y − g(x)| − ε otherwise

(3)

where xi are the input, yi the target vectors and g(x)
the function to be fit.

The algorithm disregards all errors that lie within
this ε-insensitive tube and hence only deviations larger
than ε contribute to the cost. As a consequence, the
produced model depends only on a subset of the training
data, which are called support vectors.

With the help of the kernel trick, nonlinear regression
can be performed by using a mapping ϕ to map the
training vectors into a higher dimensional space in which
the regression problem can be solved in a linear fashion.
[9]

A selection of kernels K(x, y) = 〈ϕ(x), ϕ(y)〉 used in
this paper is given below.

Polynomial kernel
The polynomial kernel function is given by

K(x, y) = (x× y + 1)d (4)

where d determines the degree of the polynomial.

Radial basis function kernel
The radial basis function (RBF) kernel function is given
by

K(x, y) = e−
||x−y||2

2σ2 (5)

where σ is a free parameter.

2.3 Feature selection

Only selecting a subset of all the available features to in-
clude in the prediction model can often improve perfor-
mance. Typical causes for this phenomenon are erratic
data and multicollinearity among the features. [5]

Figure 1: Principle of support vector regression, showing
support and non-support vectors as well as the ε-tube.
Figure adapted from [3].

Rather than selecting a group of features to use for
all predictions, a separate group is selected for each pro-
tein, since different sets of features will be relevant for
different proteins.

Conceivably, manual feature selection based on prior
biological knowledge may be useful. Approaches to be
examined in this paper include using the gene which
codes for a particular protein as a feature, as well as
selecting all genes from all pathways that contain the
coding gene.

Besides manual selection, automatic feature selection
processes that do not require any prior knowledge are
often employed. Following is a description of selected
automatic feature selection techniques.

Univariate feature selection (UFS) A straight for-
ward approach to feature selection is to select the best
apparent features based on some univariate statistical
test.

To construct a ranking of all features, a sequential
approach to building a regression model is applied. Ini-
tially, all possible models consisting of only one feature
are built and the best one is selected as M1 for the next
step. Now, M1 is extended to a two-feature model by
again trying all remaining features and selecting the best
one as M2. This process is repeated until a model Mn is
selected, where n is the total amount of features.

The choice of the best additional feature in each step
is determined by the use of an F-test which assesses the
significance of improvement of a model Mi with respect
to its predecessor Mi−1. [13]

After the ranking is completed, a set of low perform-
ing features is discarded.

(p.2)
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Lasso The least absolute shrinkage and selection oper-
ator (or Lasso) tries to add features one by one, but pe-
nalises the addition of extra features. As a consequence,
coefficients of features not improving the model enough
to overcome the given penalty are set to zero. [10]

In contrast to linear regression, the objective function
is

β̂ = min
β

1

2n
||Xβ − y||22 + α||β||1 (6)

where n is the number of samples and α the penalty
constant.

Only those features that have nonzero coefficients are
selected from the constructed model to be used in further
analysis.

Recursive feature elimination (RFE) The recur-
sive feature elimination technique recursively selects de-
creasing sets of features based on a model which assigns
weights to features. Initially, the model is trained on
the whole set of features. The resulting weights are then
used to prune features by discarding the ones with the
smallest absolute weights. This process is repeated until
a prespecified number of features remains.

To find the number of features that will have the best
performance, this technique can simply be applied in a
cross-validation loop. [4]

3 Experiments
In general, the data to be used in prediction experiments
is evenly divided into training and test set.

The main measure of prediction accuracy used
throughout this article is the coefficient of determina-
tion, denoted by R2, which describes the proportion of
variance that can be explained by the model. [6] A value
R2 = 1 implies that the regression function fits the data
perfectly, whileR2 = 0 indicates that the model is unable
to predict any of the variance of the dependent variable.
When evaluating the model on unseen data, negative
values are possible as well.

3.1 Prediction on the BRCA dataset

In order to assess which method is best suited to predict
protein expressions, both linear regression and support
vector regression are tested on the BRCA dataset, which
is the biggest dataset offered by the TCGA network to
date. It consists of 938 samples and 215 features in the
form of proteins. This data is evenly split into a training
set on which the model is built, and a test set which is
used to evaluate the model performance on unseen data.

Multiple SVR models with different kernels, includ-
ing linear, radial basis function (RBF), and second &
third degree polynomial will be tested.

When using a linear kernel, the algorithm will often
fail to converge. To avoid this, the number of iterations
is restricted to a maximum of 500 for this experiment.

3.2 Comparison of feature selection
techniques

To measure the effects of different feature selection tech-
niques, separate prediction runs for each of the tech-
niques (univariate feature selection, recursive feature
elimination and the Lasso) as well as one without any
feature selection are executed.

As part of the experiment, the best 10% of features
is selected from the resulting ranking of the univariate
selection strategy.

Recursive feature elimination is performed in a 3-fold
cross-validation loop with a step size of three, i.e. each
iteration three features are removed.

3.3 Coding genes as features

Preliminary experiments have shown that simply provid-
ing all available gene data to the prediction algorithms
does not improve prediction accuracy. A possibly more
sensible approach is to only include genes coding for the
relevant protein. These genes are taken from a mapping
provided on the TCGA website.

To examine whether including these genes improves
the prediction results, three separate models are built
and tested. The first uses only the selected genes as
features, the second only the proteins, and the third in-
cludes both the selected genes and proteins.

Unfortunately, not all samples in the dataset contain
both protein and gene data. Thus, there are 441 samples
with both types of data left.

3.4 Pathway genes as features

Rather than just including the coding gene as a fea-
ture, additionally using genes in the same pathway as
the aforementioned coding gene might yield better per-
forming models. These genes interact with each other
and thus might be relevant features. Since a gene may
be present in more than one pathway, all genes from all
pathways which include the coding gene are used as ad-
ditional features.

The pathways themselves are provided by the Max
Planck Institute for Molecular Genetics. [7] Using this
and the mapping mentioned in the previous section, a
list containing all the relevant genes for each protein is
compiled. The given pathways may include genes for
which no data is available in this experimental setting
and consequently can not be used in the prediction.

In order to measure the effect these additional fea-
tures exhibit, one model with both the usual protein
features and the genes is built, as well as one using only

(p.3)
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the protein features to serve as a baseline in the compari-
son. These two models are built separately with support
vector regression using the RBF kernel and linear regres-
sion with prior feature selection through the Lasso.

3.5 Different datasets

To assess whether prediction performance can be im-
proved by increasing the number of samples and to deter-
mine if datasets from different tissues and cancer types
are compatible, additional datasets were taken into con-
sideration. They were selected based on having a com-
paratively high number of samples and are comprised of:
kidney renal clear cell carcinoma (KIRC) with 478 sam-
ples, prostate adenocarcinoma (PRAD) with 352 sam-
ples, head and neck squamous cell carcinoma (HNSC)
with 357 samples, and uterine corpus endometrial car-
cinoma (UCEC) with 440 samples. As a comparison,
BRCA, the main dataset used throughout this article,
consists of 938 samples.

The first part of the experiment consists of simply
training on a combination of each of the above with the
BRCA dataset while recording any changes in perfor-
mance.

For the second part, models trained on one single
dataset are tested on a different single dataset. To mit-
igate the effects of differing sample sizes, a number of
samples equal to the smallest dataset size is randomly
sampled from each dataset.

Support vector regression with the RBF kernel was
used for both parts of the experiment. If data for a cer-
tain protein was not available in any of the datasets, it
was omitted from all models constructed in this experi-
ment to ensure that results are comparable.

4 Results

4.1 Prediction on the BRCA dataset

Figure 2 shows a series of box-and-whiskers plots for,
from left to right, linear regression, support vector re-
gression with a linear kernel, a second degree polynomial
kernel, a third degree polynomial kernel and a radial ba-
sis function kernel.

The plots are standard box-and-whiskers plots as
proposed by Tukey [2], with the central line as the me-
dian, and the box spanning between the 25th and 75th
percentile of the data. The whiskers end at the lowest
(highest) data within 1.5 the interquartile range of the
lower (upper) quartile. Data above or below the whiskers
are considered outliers and marked by a +.

The different models have means:

Linear
Regression

SVR
Linear

SVR
Poly 2

SVR
Poly 3

SVR
RBF

1.0

0.5

0.0

0.5

1.0

R
2

Figure 2: Prediction using linear regression and support
vector regression with linear, second & third degree poly-
nomial and RBF kernel

Model Mean R2

Linear Regression 0.398
SVR Linear 0.346
SVR Poly 2nd 0.354
SVR Poly 3rd 0.430
SVR RBF 0.577

4.2 Comparison of feature selection
techniques

Figures 3-5 show three scatter plots corresponding to
the different feature selection techniques. The horizontal
axis refers to the R2 performances with prior feature se-
lection, while the vertical axis refers to the performances
without prior feature selection. A reference line y = x
was added to the graphs. Points below this line show a
better performance using the respective feature selection
technique, while points above it signify a better perfor-
mance without any feature selection.

The R2 means of the respective techniques are given
by:

Technique Mean R2

No feature selection 0.398
Lasso 0.560
UFS 0.504
RFE 0.495

4.3 Coding genes as features

A comparison of prediction using only the genes, only the
proteins and their combination is given in figure 6. The
depicted box-and-whiskers plot follows the same conven-
tions as described in section 4.1.

The means of the respective models are given by:

(p.4)
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Figure 3: Feature selection: Lasso
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Figure 4: Feature selection: Recursive feature elimina-
tion
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Figure 5: Feature selection: Univariate, F-test
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Figure 6: Prediction performance as R2 using only the
coding genes, only the proteins, and both.

Model Mean R2

Only genes 0.069
Only proteins 0.473
Both 0.501

4.4 Pathway genes as features
The results after including the genes from the relevant
pathways are captured in figure 7. The box-and-whisker
plots, from left to right, show the results of linear re-
gression with the usual protein features, linear regres-
sion with the additional gene features, and the next two
similarly for support vector regression.

The mean R2’s, including additional results using
only the genes are as follows:

Model LR SVR
Only genes -0.126 -0.185
Only proteins 0.467 0.498
Both 0.454 0.469

4.5 Different datasets
Building models on a combination of BRCA and each of
the other datasets leads to performances as depicted in
figure 8.

The means of the depicted box-and-whiskers plots
are given by:

Dataset(s) Mean R2

BRCA 0.580
BRCA+KIRC 0.567
BRCA+PRAD 0.563
BRCA+UCEC 0.565
BRCA+HNSC 0.565

Testing models on one dataset after training them on
a different one results in universally negative R2 values
as can be seen in table 1.

(p.5)



M. Kemmerling Prediction of protein levels in cells

LR LR 
 with genes

SVR SVR 
 with genes

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Figure 7: Prediction performance after including path-
way genes in linear regression and SVR
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Figure 8: Prediction performances (of combinations) of
different datasets.

trained on BRCA KIRC PRAD HNSC UCEC
tested on
BRCA -1.07 -0.68 -0.86 -0.45
KIRC -0.97 -1.00 -0.90 -0.89
PRAD -0.73 -1.51 -1.41 -1.13
HNSC -0.98 -0.96 -1.05 -0.95
UCEC -0.62 -1.31 -1.14 -1.27

Table 1: R2 of SVR trained exclusively on one dataset
and tested on another.

5 Discussion

5.1 Prediction on the BRCA dataset

The results of this prediction experiment can be divided
into two groups, linear regression and support vector re-
gression with a variety of kernels. In the latter group,
the RBF kernel appears to be the best performing one
in terms of mean R2 (0.577).

While linear regression can not compare to the best
SVR model, it still has the third highest mean R2 out of
all the models. It does, however, have the second highest
variance, which might be undesirable, since there will be
a comparatively big difference between proteins which
are well predicted and those that are not.

Concluding, in this setup, support vector regression
with the RBF kernel appears to be the method of choice.
It remains to be seen whether feature selection will
change this result.

5.2 Comparison of feature selection
techniques

Irrespective of the specific technique, feature selection
seems to most improve the predictions of those proteins
which have a comparatively low prediction accuracy. In
more technical terms, the correlation coefficient ρ be-
tween the R2 without feature selection X and the im-
provement Y using the respective technique is negative,
indicating that proteins with low initial prediction per-
formance benefit the most from feature selection.

Technique ρXY
Lasso -0.879
UFS -0.819
RFE -0.711

With all techniques, the majority of predictions ben-
efit from prior feature selection, but the exact amount
varies between techniques. The univariate strategy may
appear to be the least suitable one, since the number of
models that perform worse than without feature selec-
tion is the highest in comparison with the other two tech-
niques and further, the models that do perform worse
do so to a higher extent than with the other techniques.
However, looking at the mean R2, univariate feature se-
lection is slightly ahead of RFE. Both univariate fea-
ture selection and recursive feature elimination can not
compare to the Lasso, which almost exclusively improves
performance.

Indeed, performing Tukey’s honest significant dif-
ference test [12] to examine which feature selection
techniques yield significantly different results from each
other, the only pair that does not show any significantly
different results is UFS and RFE. This is illustrated in
figure 9, where only the confidence intervals of UFS and
RFE overlap.

(p.6)
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Figure 9: 95% confidence interval plot for the R2 means
of feature selection techniques. Intervals that do not
overlap indicate significant differences.

It is notable that there are proteins which defy the
general trend by for instance yielding better results using
univariate feature selection than with the Lasso. This
could serve as motivation to determine which technique
works best for each protein individually and build more
tailored models. However, it is questionable whether this
rather small improvement in accuracy justifies the loss
of simplicity in the analysis.

Applying feature selection presents an opportunity
to examine if some features are generally more useful
than others by simply counting how often each feature
is selected. For feature selection via the Lasso, this is
depicted in figure 10, where each feature is represented as
a bar, with height corresponding to the number of times
it has been selected as given on the vertical axis. Clearly,
this data is not uniformly distributed. Some features are
selected roughly 80% of the time, while others are only
chosen about 10% of the time. Thus, the data does show
that not all features are equally useful.

In principle, univariate feature selection and the
Lasso can also be used with SVR. Recursive feature elim-
ination relies on the weights assigned to each feature
to perform the selection, which makes this technique
unsuitable for non-linear kernels. The two remaining
feature selection methods result in a performance drop
when applied prior to SVR. Consequentially, feature se-
lection will only be used in combination with linear re-
gression for the remainder of this article.

Concluding, feature selection has a significant impact
on linear regression prediction performance, as can be
seen when looking to the results of the previous section,
where SVR with the RBF kernel was clearly the most
suitable technique. While linear regression was lagging
far behind without feature selection, with prior applica-
tion of the Lasso, it performs only marginally worse than
SVR.
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Figure 10: Number of times each of the 216 features is
selected using the Lasso.

5.3 Coding genes as features

Including only the genes coding for a protein as features
results in relatively poorly performing models on aver-
age, with a mean R2 of 0.069. However, figure 6 shows a
large amount of positive outliers, which suggests that in
some models the genes have significantly more predictive
power than in the average case.

Based on this observation, one would hope using the
gene expressions in addition to the protein expressions
would lead to some improvement in performance. Look-
ing at the plots of the protein-only and combined mod-
els, there is indeed a slight improvement with respective
R2 means of 0.473 and 0.501. To examine the signif-
icance of this improvement, a paired t-test is applied,
resulting in a t-statistic of 6.215 on 214 degrees of free-
dom and thus a p-value < 0.0001. Therefore, there is
strong evidence that, on average, including genes does
lead to better models. Of course, while statistically sig-
nificant, the improvement is still small. A 95% confi-
dence interval for the true mean difference is given by
0.0286± 0.0090 = (0.0195, 0.0376).

5.4 Pathway genes as features

As can be seen in figure 7, the inclusion of gene data
from the relevant pathways does, on average, not lead to
improvements using neither linear regression nor support
vector regression. While it may seem counter-intuitive
that providing more information decreases performance,
this is very well possible, as it is the rationale behind us-
ing feature selection as well as not using all the available
gene data in the first place. Looking at the mean R2

of the models, it is no surprise that including the genes
does not improve the performance, as the models using
only the genes fail to yield a positive R2.

(p.7)
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A paired t-test on the linear regression values yields
a t-statistic of 2.250 on 151 degrees of freedom, corre-
sponding to a p-value of 0.026. Hence, choosing a signif-
icance level of α = 0.05, the means of the models with
and without the pathway genes are significantly differ-
ent. A 95% confidence interval for the true mean dif-
ference is given by 0.0127 ± 0.0111 = (0.0016, 0.0238).
Unsurprisingly, there is even stronger evidence that in-
cluding the pathway genes in the SVR models decreases
prediction performance, with a t-statistic of 5.507, a p-
value < 0.0001 and a 95% confidence interval for the true
mean difference 0.0287± 0.0103 = (0.0184, 0.0390).

It is notable that, while neither prediction method
benefits from the added features, support vector regres-
sion appears to have greater trouble coping with them.

Despite the overall negative results in this experi-
ment, the general trend is not a universal one. Even
though most of the models suffer from the addition of the
gene data, some proteins can be better predicted when
including this data. Consequently, similar to section 5.2,
it might again be possible to create more tailored models,
which again presents a trade-off with regards to simplic-
ity.

5.5 Different datasets

A model built on only data from one type of tissue and
cancer appears to be unsuitable to predict protein levels
of datasets from different conditions, as can be seen in
table 1, which shows negative R2 values for every pos-
sible combination. However, when the model is trained
on both kinds of data, there is only a minor performance
loss compared to training and testing on a single dataset,
suggesting that a more general model is built in this case.
In fact, the performance drop after including data from
a different dataset is not as clear as it appears, as can be
seen by constructing a series of 95% confidence intervals
for the true mean difference between the BRCA model
and each combination model.

Dataset Confidence interval
BRCA+KIRC (-0.0191, 0.0444)
BRCA+PRAD (-0.0159, 0.0494)
BRCA+UCEC (-0.0173, 0.0475)
BRCA+HNSC (-0.0176, 0.0469)

Since the confidence intervals are neither fully neg-
ative nor positive, statistically speaking, it can not be
concluded whether the single dataset or a combination
yields a better performance.

Thus, the data suggests that predicting values from
a dataset that was not part of the training data will
not yield particularly useful results. However, one single
model can be used to successfully predict protein levels
from different datasets as long as both datasets were used
in the training of the model.

6 Conclusion
It is clear from the various experiments that support
vector regression using a radial basis function kernel is
the most promising technique examined in this article.
However, despite its different nature, linear regression
with prior feature selection through the Lasso does not
lag far behind the aforementioned approach.

Regardless of the technique, protein expressions were
by far the most useful features. Gene expressions do ap-
pear to have some predictive power, but, at least with
the chosen techniques, were not able to influence perfor-
mance in any meaningful way.

Datasets from different tissues and cancer types were
not directly compatible, but a model trained on (a part)
of both datasets is able to produce useful predictions.
A wider array of datasets from different tissues, disease
types, and perhaps even healthy patients is needed to
determine whether model performance deteriorates when
data from too many sources is used to build the model.

Further research could be directed at using other
available information such as microRNA to perform the
prediction and eventually to build models which do not
rely on other proteins’ expression levels.
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