
DKE Scheduling Project
Department of Data Science and Knowledge Engineering

Anton Bulat, Fatimah Mulan Ahmed, Fred Shen, Maxime Laschet

June 22, 2016

Abstract

The aim of this work is to compute an optimal schedule for the students
and teachers of the Department Data Science of Knowledge Engineering at
Maastricht University. The research and the mathematically modeling of a
solution take a central aspect of this project.
The work has split into two groups: The Integer Linear Programming and
the heuristics group.
This report will focus on the work of the heuristics group. It will explain
the conceptuation of the model including all constraints, the application of
Local search and some heuristics approaches and experiments to improve
feasible solutions.

1 Introduction

The modeling of a university course timetabling problem is a well known
problem. There exists many commercial applications on the market. The
fact that everyone applies some internal rules which are not implemented
in the available versions transforms the simple problem into a challenging
problem. For this project, the scheduling problem of the Department of
Data Science and Knowledge Engineering has been chosen to investigate.
The goal of the autonomously running application is to produce a feasi-
ble schedule for different students, lecturers, which follow or teach different
courses in different rooms during a given time. Several constraints are sup-
posed to fulfill that a course can be scheduled in a given time slot. Once the

1



DKE, Maastricht University Page 2 of 26

algorithm has found out all the different solutions, it exists the possibility
to improve the calculated result. After the enhancement step the schedule
will provide a smoother result which makes every involver more satisfied.

2 Problem Description

“Course timetabling as a multidimensional assignment problem in which
students, teachers (or faculty members) are assigned to courses, course sec-
tions or classes; events (individual meetings between students and teachers)
are assigned to classrooms and times.” [2]
The DKE scheduling problem corresponds exactly to this simple definition.
There are many courses given from one or more lecturers for a different set
of students. The University disposes a given number of rooms with different
capacities and equipment. All events should be scheduled between starting
date and ending date. Each day in one period is split into four time slots:

• 8:30-10:30

• 11:00-13:00

• 13:30-15:30

• 16:00-18:00

So each week has 20 feasible time slots to schedule events.
The feasible solution of the schedule is defined as a solution which sat-

isfies a list of rules, the hard constraints. The current scheduling problem
involves the following constraints:

• A student only can follow one event per time point

• A lecturer only can teach one event per time point

• Each year of students has some days where there are not available

• A lecturer can be not available at a given time slot

• Only one event is allowed to be assigned to a time slot in each room.

• The room capacity should be equal to or greater than the number of
students.

• The room assigned to the event should satisfy the features required by
the event. Like a certain number of computers.



DKE, Maastricht University Page 3 of 26

The feasible result can be improved by applying rules which are not
necessary but enhance the quality of the schedule, which are soft constraints:

• A lecturer should not have too many theoretical classes on one day

• Students should not have a single course on one day.

• Students should not have long break between events.

• Students should not have many changes in room locations per day.

• Events for one course is supposed to be divided equally within all
weeks.

• Equilibrium between theoretical and practical sessions of each course

• Some events have to be scheduled before other events

• Same courses in same rooms

The following sections explains how the problem has been modeled and
which algorithmic solution was applied to calculate the academic schedule
of the DKE.

3 ILP and Heuristics Group

The first analysis of the research project has been done with all students of
the project. In the second phase, the students were split into two groups.
One group is handling the problem with an Integer Linear Programming
solution and the other group with an heuristics approximation to the solu-
tion. The following of the report explains the research and results of the
heuristics approach.
The goal of the project also involves merging the results of both groups
at the end. The results which are calculated by the Integer Linear Pro-
gramming group is passed to the heuristics group and improved to achieve
the final output for the schedule. A parser needs to be designed because
both groups use different kinds of model structure and the data has to be
translated from one model to another.

4 Application Design

The work was started by collecting all the different variables which involves
the calculations of an academic schedule. Clearly, the data has to satisfy



DKE, Maastricht University Page 4 of 26

all the different specifications of the courses, lecturers, students, rooms of
the DKE. In the later phase the work will be merged with what is returned
from the ILP group. Java was chosen as programming language. Compared
with other programming languages, no significant differences exist for the
heuristics method. The ILP group uses Gurobi solver, which is compatible
with Java. [4]

The figures 4, 5 and 6 in the attachment show the UML class diagrams
of the designed Java class model.

The first approximation was done over the different data which involved
the calculations of the autonomous running application. Only after every de-
tail in the model was available, the algorithm was written. So the structure
was clear and it was possible that the procedure could handle all possible
cases.

The “Timetable” contains the central information of the schedule. The
starting date and ending date of the period are inputs for computing the
needed number of time slots. For each academic year the “Timetable” stores
a Hash Map of “Events”, which allows a faster access because the keys con-
tains the time slot number. Not all time slots contains an event and therefore
the algorithm have to iterate the whole array when it is stored in an array.
Each “Event” refers to a “Course”, a List of “Rooms” and a hard-constraint-
penalty for the event.
The “Course” dispose its characteristics like the internal id, the UM course
id, the course name, a List of “Lecturer” ids, a List of “Student” ids. Fur-
thermore, in both cases of ids list, the first element of the list is the principal
teacher or student of the course. The number of theoretical and practical
hours are saved as two integer numbers, additionally the course stores a
Boolean variable stating if a projector and a whiteboard are needed for this
course.

A List of the following classes is available in the application.

The “Student” properties includes an internal id, the name of the aca-
demic year, the number of students, a list of Days on which the students
are available. As a last element, a list of days on which the project can be
scheduled is stored. This field is explained in section 6.5 with more details.

The “Lecturer” contains an internal id, a name and an integer array of



DKE, Maastricht University Page 5 of 26

availability. The size of the array is equal to the number of time slots.

The “Room” consists of the id, the name of the building, the room num-
ber, the number of chairs, the number of computers and the characteristic
if it has equipment like a projector or screen and a whiteboard.

5 Algorithm

5.1 Local Search

“Local search is an iterative algorithm that moves from one solution S to
another S’ according to some neighborhood structure. “ [7].

The local search is used to improve the schedule from last year step by
step. Each event has a penalty value given by constraints in each time slot.
The algorithm aims to find a schedule with the lowest possible penalty for
all events assigned in the schedule. The process of the method is as follow:

• Start with an existing solution S. For example from the last year or
an solution parsed from the ILP-application

• Examine penalty value for solutions S’ in a neighborhood N(S) of S

• If the penalty value is minimized, which means improving the solution,
accept the result

• Move to a good solution
S′ ∈ N(S)

6 Application of the Core-algorithm

The algorithm runs for all academic years over all events to verify the fea-
sibility with the hard constraints.
Afterwards, the algorithm continues conducting movements for soft con-
straints to improve the feasible schedule by minimizing penalty values re-
turned by the soft constraints. In this case each soft constraint calculates
its own value of violation, for each possible position of each event. If it min-
imizes the weighted sum of all soft constraints, the movement is preserved.



DKE, Maastricht University Page 6 of 26

6.1 Hard Constraints

To check the feasibility of events on time slots, a hard constraints mapper is
designed to iterate over all hard constraints and give True/False as return.
Furthermore, it is necessary that every event satisfies all hard constraints
in order to be included into a feasible schedule. All hard constraints within
the algorithm is listed as below.
A more specific overview about the different constraints which are included
in a feasible schedule.

• The availability for the different students

– Bachelor year 1: Every weekday

– Bachelor year 2: Monday, Tuesday, Friday

– Bachelor year 3: Monday, Thursday, Friday

– Master OR year 1: Monday, Tuesday

– Master OR year 2: Every weekday

– Master AI year 1: Thursday, Friday

– Master AI year 2: Every weekday

• The lecturer availability is a property of the object and are read
through individually

• Room properties are verified in relation to the given course and related
number of students. Also the information of theoretical and practical
hours

• Room overlapping is verified by investigating current booked rooms,
for a given time slot

To carry out local change over an input schedule, a set of local movements
are designed. The algorithm starts iterating over movements on events and
verifies with hard constraints to generate a feasible schedule. Unlike the soft
constraint case, the application just attributes if the event can be scheduled
at the time slot or not. If all the hard constraints are violated, the algorithm
marks the event with a value “PROBLEM”. This marker allows user to see
whether all events are placed in a feasible time slot. If no hard constraint is
violated, it is marked as “GOOD”.
It is to mention that in the general case the input is a feasible schedule from
the last year or the feasible output of the ILP-application. If there are no
big differences between the courses and lecturer availability from the last



DKE, Maastricht University Page 7 of 26

to the current input, then the movements are not executed. If the input
solution is feasible, all events are checked, then it is marked as “GOOD”.
The application will continue with the soft constraints part.
In section 2 the hard constraints are explained already in detail. For each
case a Boolean verification function is called. It checks the individual prop-
erties of the rule in context to the given year and event in a specific time
slot. If one of them returns false, the event doesn’t satisfies all conditions
and is therefore not feasible.

6.2 Soft Constraints

Next to iterating over hard constraints, the feasible schedule will be im-
proved by iterating over soft constraints. Soft constraints will have more
relaxing criteria for validation and return integers as penalty values. The
goal is to minimize the total weighted sum of the soft constraints.
The algorithm 1 gives an overview over the procedure. Each provided con-
straint will be checked and sum up to a general penalty value. The weight
for each constraint was attributed in the testing phase. It allows to attribute
a higher or lower importance to different constraints. A formula is expressed
as below:

Minimize : ω(1) ∗ p(1) + ω(2) ∗ p(2) + ... + ω(n) ∗ p(n)

where
n

is the number of constraints,
ω(n)

is the weight assigned to each constraint and

p(n)

is the penalty value returned by each constraint.
The first part explains how to calculate or attribute the penalty value.

The section 6.4 explains which movements can be done to improve the sched-
ule. Lower penalty values indicates the improvements of the schedule.

6.2.1 Day Utilization

The first constraint subtracts a sub schedule for each day and for each
academic year. Together with checking whether each time slot is occupied



DKE, Maastricht University Page 8 of 26

Algorithm 1 Get weighted penalty value for all soft constraints

procedure Get weighted penalty value for all soft con-
straints

init :
counter← 0
numberOfSoftConstraints← softconstraints.size
penaltyValue← 0
top:
for counter = 0; counter < numberOfSoftConstraints; counter + +

do
constraintName← softconstraints.get(counter).getName()
constraintWeight← softconstraints.get(counter).getWeight()
penaltyValue = penaltyValue +

getPenaltyValueForSoftConstraint(constraintName) * constraintWeight
end for
penaltyValue

end procedure

or not, all situations of a day sub schedule can be generated. Moreover,
several levels of penalty values are decided for distinguishing all situations.
The testing criteria of the first soft constraint is shown below:

1. Only one time slot is occupied, which receive the highest penalty value
3.

2. Two time slots in the middle are empty, which means students will
experience long waiting time. A penalty value of 2 is given.

3. Situations where the gap is only one time slot also where four time
slots are occupied, then a penalty value of 1 is given.

4. Situations where two or three time slots are continuously occupied, a
penalty value of 0 is given.

By minimizing the penalty value returned for each period, the gaps be-
tween time slots can be reduced.

6.2.2 Equilibrium

For the second soft constraint, the aim is to allocate events as evenly as
possible among all weeks. The method is to record the frequency of oc-
currence of a selected course also the desired frequency of that course. A



DKE, Maastricht University Page 9 of 26

penalty value is given if a mismatch of these two frequencies are detected.
The algorithm minimizes the penalty value returned from the constraint.

6.2.3 Change Building

Similar as the first constraint, the third soft constraint also applies on sub
schedule under same conditions. Rather than checking about the sparsity of
the sub schedules, the frequency of changing lecture rooms among different
buildings is checked. For A a day sub schedule, once the next time slot is as-
signed to a lecture room in a different building, the penalty value is increased
by 1. And the penalty value is initiated with 0. After looping through each
period, the penalty value is minimized to ensure a low frequency of changing
rooms.

6.2.4 Full Lecture Day

The fourth soft constraint focuses on teacher availability. The whole list of
lecturer is looped through and for each lecturer, the availability per day is
checked. If a lecturer has more than three lectures per day, a penalty value 1
is given then for each day. By applying the process, the algorithm attempts
to avoid fours events in one day for a lecturer.

6.2.5 Theory before Practical

The last soft constraint checked the arrangement of theoretical and practical
courses of a selected course. For each selected course, the algorithm first
count for each week how many theoretical course and practical course are
assigned. And in total eight situation are included inside the algorithm.

1. only practical courses exist, penalty value 3 is given

2. only theoretical courses exist, penalty value 0 is given

3. when the first course of the week is theoretical and the amount of
theoretical course and practical courses equals to each other, penalty
value 0 is given

4. when the first course of the week is practical and the amount of theo-
retical course and practical courses equals to each other, penalty value
2 is given



DKE, Maastricht University Page 10 of 26

5. when the first course of the week is theoretical and the multiple of
theoretical course and practical courses equals to 2, penalty value 1 is
given

6. when the first course of the week is practical and the multiple of the-
oretical course and practical courses equals to 2, penalty value 2 is
given

7. when the first course of the week is theoretical and the multiple of
theoretical course and practical courses is larger than 2, penalty value
2 is given

8. when the first course of the week is practical and the multiple of the-
oretical course and practical courses is larger than 2, penalty value 3
is given

Depending on these checking conditions, a penalty value of each week is
computed and the accumulation is returned for the minimizing function.

Finally the algorithm profits from the fact that the input is already a
desired schedule. So practicals are already scheduled in practical rooms.
Same courses are scheduled each week in the same room and more or less
at the same time slot.
The experiments on the scheduling improvement have approved that these
good starting conditions helps significantly on the algorithm.

6.3 Movement for Hard Constraints

Several actions try to improve the feasibility of each event which has been
marked as not feasible at this time point. The order of the actions has
been decided by test and logically argumentation in relation to the soft
constraints. In the following cases the only goal is to find a time point where
the event can take place. It can be a good or worse moment in relation to
soft constraints.

6.3.1 Find New Room

To start with, the algorithm attempts to find an available room for a selected
event, by which it causes least change to the schedule. Before finding a new
room for a selected event, the lecturer availability is checked at the first
place. If the lecturer is available, a search for free rooms at the time slot
will continue by looping through the room list. Once an available room is



DKE, Maastricht University Page 11 of 26

found, a test for hard constraints is conducted. The movement is accepted
when no hard constraint is violated, otherwise the selected event is rolled
back to the original time slot.

6.3.2 Move to an Empty Time Slot

The second movement is to search for a new free time slot for a selected event.
The algorithm starts with an event on every Monday and then loops through
the corresponding week schedule to find an empty time slot. The Monday
has been chosen to keep directly an equilibrium of the entire schedule. If
the counter starts at the beginning, the schedule will have many events at
the beginning and few at the end, vice versa. So it moves the selected event
to a new time slot and update the availability of lecturer. Furthermore, a
test on hard constraints is conducted to validate whether the new movement
violate the hard constraints. The new movement is only kept when the hard
constraints test is passed, otherwise the movement of the selected event is
rolled back to the original time slot.

6.3.3 Move with an Existing Event

The third movement swaps two events to reduce the violation on hard con-
straints. Similar as the previous movement, the algorithm picks an event on
every Monday and loops through the corresponding week schedule to find
an event to swap. After swapping the time slots of two events and updating
the availability of lecturer, hard constraints test is applied.

6.3.4 Main Lecturer Availability

The last movement checks whether the main lecturer of a selected event is
available. In the situation where not all lecturers of a selected event are
available, the algorithm attempts to replace the list of lecturers with the
main lecturer. Before the replacement is carried out, the availability of the
main lecturer is verified. If the main lecturer is available, the replacement
is continued.

To sum up, the four movements above perform local changes on events
and produces a feasible schedule by validating with hard constraints. The
feasible schedule is further processed by conducting movements and mini-
mizing penalty value of soft constraints. The total penalty value is a linear
combination of penalty values returned from each soft constraint, where co-



DKE, Maastricht University Page 12 of 26

efficients are individual weights assigned to each soft constraint. The process
of movement with soft constraints is described in next part.

6.4 Movement for Soft Constraints

Three cases of movements are included in movements for soft constraints.

6.4.1 Move to an Empty Time Slot

The first case is similar to moving an event to an empty time slot as de-
scribed in the case of hard constraints with an adaption of checking soft
constraints. After moving an event and verified with hard constraint test,
the total penalty value of soft constraints is calculated and compared with
an initial penalty value. The goal is to minimize the total penalty value,
so the event is only moved when the calculated penalty value is lower than
the initial penalty value. On the other hand, if the event is not moved, the
algorithm continues with next movement.

6.4.2 Move with an Existing Event

The second case of movement for soft constraints is adapted from swapping
two events in the case of hard constraint movement. By verifying with hard
constraint after swapping two event, the total penalty value is calculated
and compared as described in the previous case. The swapping is carried
out only when the total penalty value is reduced. If the total penalty value
is not reduced, the algorithm continuous with the third case.

6.4.3 Find New Room

The third case of movement for soft constraints is to find a new room. If a
new room is available without violating hard constraints, the same check as
in previous cases is conducted to ensure the movement is done only when
the total penalty value is reduced.

6.5 Pre-processing

The Local search algorithm starts with an existing solution as mentioned.
This solution can be the schedule from last year. Even a manually adapted
version or the output from the ILP-Application can be taken as input. Before
the algorithm starts, it is always a good practice to verify the input. The
pre-processing focuses on two parts of the projects and the new or old courses
part.



DKE, Maastricht University Page 13 of 26

6.5.1 Project

The students from the bachelor years can follow either a project or a DKE@Work
program. In the constraint list of the bachelor years, it was already men-
tioned that two given days of the week have to be blocked for these students.
In consequence, several students work on these days in different companies,
while the remaining students should work on these days on their projects.
This means that a project meeting should be placed on a day which is
marked as not available for the courses. When the algorithm tries to verify
the hard constraints it indicates that it is not feasible on this day.
Therefore all project-events are verified in a pre-processing iteration. All
events are iterated for all years and are fixed if the algorithm has found a
feasible position. This placement implements the knowledge of a supplement
parameter, the project day for each year.
Since the project events are fixed, the main algorithm will not move them.

6.5.2 New or Old Course

The algorithm only moves events from one time slot to another time slot. So
what happens if there is a new course which is not in the solution from last
year? Furthermore, a course can have more or less events in the upcoming
year. The following section will explain the different pre-processing steps
such that the input contains the right data.

Non Existing Courses

Before the algorithm can start the movements it has to verify that there are
not new courses given in this period. It will check for all courses if there
are at least one occurrence in the corresponding year. This verification is
done by id comparison. If there is not, it will schedule the number of events
in the next free, available time slots. The number of events is defined in
the course class. So a new course can be added in future schedules without
having it in the feasible solution from the last year. In opposite to this case
is when a course can no longer be given. In this case all events are simply
removed from the schedule. The lecturer availability have to be updated.

Number of Events in the Given Solution

It is possible that the number of theoretical or practical events has changed
from one year to another year. The pre-processing function counts all events
for each course. If a course has too many occurrences it will delete the last



DKE, Maastricht University Page 14 of 26

events. If the schedule contains less events than indicated number for the
event, the application autonomously add an event for the course to an free,
feasible time slot.

6.5.3 Lecturer

The lecturer availability was first modeled with a Boolean array. The prob-
lem occurred by applying the hard constraint, which checks the lecturers’
availability of the given time point. Since the lecturer was teaching a course
in one year, his availability was false. So that he could not teach another
course at this moment. In this modeling there was no reference between
course and availability. The check of the hard constraints at the time point
for the event will not be satisfied because the teacher is not available at the
moment.
Furthermore there was no reference to a non-availability in case of non DKE
events. The lecturer can become available by moving the corresponding
DKE event to another time slot. So the availability sores a number corre-
sponding to year in which he teaches and a specific value for never-available.
Additionally in the pre-processing step the given availability is compared and
if needed modified to the given input schedule.

7 ILP Output as Input

The Integer Linear Programming group creates their own solution which
implements different model structure from what the heuristics group’s ap-
plication uses. The heuristics group is supposed to work with this solution
and improve it. To use the calculated data, ILP’s output is translated into
an input for heuristics application. A parser creates a JSON file based on
the data from the output. The JSON file has the same structure that is used
for the scheduling without any precast solution. The details of the parser
are discussed in the next section.

7.1 Parser Description

The output from the ILP-application is a text file which contains all the dif-
ferent events in different rows. One event consists of a course-id, lecturer-id
and a room-id, which is very similar to the input of the heuristic application.
Nevertheless there are some drawbacks. The internal used id numbers are



DKE, Maastricht University Page 15 of 26

not the same. So the id number for a room, lecturer, and course are dif-
ferent in the two models. The ILP-application knows only the time slots
from Monday to Friday, however, the heuristics also includes Saturday and
Sunday. What’s more, Virtual rooms, which means that a course in one
time slot uses more than one room is only inclusive in the ILP group. While
the same problem is solved with a list of rooms in the heuristic application.
The holidays and fixed events are hard coded by the ILP application, which
is a problem since the heuristics group creates these events and block the
corresponding time slots. Furthermore, no events can be fixed to a time slot
or read out in the ILP-application, which means that they cannot move.
Based on all the several special cases a parser was designed. The parser
distinguishes the known problems between the two applications. At the end
an input file in the JSON format is generated. The file can be imported by
the heuristic application and handled as a normal input.

8 Utilization of the Application

The application starts with reading in all the files which are in the “data/in-
put” folder. These files are JSON (JavaScript Object Notation) files. The
Java objects of the different classes are serialized in a specific format to
specific text files. The import and export uses functions of the Jackson [3]
library. This approach allows to store easily the plain old java objects to
a persistent format. The output of this year can be taken as input of next
year. Simply by moving the output files into the input folder.

The text files are readable for software engineers which are up to date
of the project’s structure. The normal end user will have difficulties to un-
derstand the structure. Therefore a simple user interface was built to show
how the application can be adapted over layer.

So the application has read in all the different variables over the persis-
tent files. Then the data is visualized in tables with tabs corresponding to
the category. The figure 2 shows the structure of the user interface. Here
the user has the possibility to create, read, update and delete the different
entries, which enables users to add a new course, update the availability of
a lecturer, modify the size of students of an academic year and last but not
least the possibility of manual configuration of the schedule figure 3.

All scheduled events from the existing solution are visualized in the table.



DKE, Maastricht University Page 16 of 26

Figure 1: Activity diagram



DKE, Maastricht University Page 17 of 26

Figure 2: User interface: Overview courses

The user has the possibility to fix one specific event, to move a specific event
to another time slot and to change a room of a selected event. The movement
and the attribution of a new room over the user interface is bounded with
the hard constraint verification, whenever it is possible (only for the user,
not for the algorithm) to move an already fixed event. The algorithm can
be started once the user is satisfied with the modifications. The table will
be updated with the new calculated data from the algorithm which applies
the hard and soft constraints. Until the proposed solution is not satisfied,
the user can apply his manual changes followed by executing the algorithm
or exporting the schedule.

Once this process is done the Application exports automatically the
schedule in three different formats. The first is the JSON file to be used
later as input, the second is the schedule for this period as HTML file,
which is possible to be included in a web page and be saved as PDF. The
last corresponds to the layout of the current version which knows the stu-
dents of the DKE. The translation from HTML to PDF has been done with
the iText library [5].
If the user is a software programmer or can read the structure of the JSON
files, then there is no difference between the graphical input and the text
file based input.



DKE, Maastricht University Page 18 of 26

Figure 3: User interface: Overview schedule

9 Performance of the Application

The number of iterations for the algorithm depends highly on the given in-
put. Either a lot of changes are applied or the most part remains the same.
In the best case it runs only once over all the events. In the general case,
for a given feasible solution, the application calculates about 5 seconds. If
the provided input is not feasible and a lot of changes are involved, the ap-
plication finish after 15 seconds.
Additionally, the following run-times estimates the worst case, however, the
possibility of achieving this case is really small. The experiments with differ-
ent inputs have shown that a solution could be found after a few steps. The
hard constraints check will be done like the most cases inO(year∗timeslots),
for iterating all time slots for all years.

10 Conclusion

Starting from a given schedule, the algorithm first verifies its feasibility. Af-
ter movements of the hard constraints, a feasible schedule is achieved. Next
a local search with soft constraints is applied to improve the returned so-
lution. Therefore, a feasible and improved schedule is created for the DKE
scheduling problem.

Furthermore, a graphical user interface allows to inspect the calculated



DKE, Maastricht University Page 19 of 26

solution. Freedom of manually changes and reiterating over the algorithm
was designed as features to satisfy user’s requirements.

11 Future Plan

For future plan, expanding the mathematical model is the first step. New
constraints can be modeled and added to the algorithm, as an enhancement
for the quality of schedule. Moreover, an investigation of the performance
of weights and penalty value is to be conducted. In details, different com-
binations of weights and penalty values will be examined and optimized
according to results. Merging between output of ILP group and input for
heuristics group is also part of the future plan. Last but not the least, a
function of detecting and fixing holidays automatically should be created.

References

[1] H. Arntzen and A. Løkketangen. A local search heuristic for a university
timetabling problem. nine, 1(T2):T45, 2003. [Online; accessed 19-June-
2016].

[2] M. W. Carter and G. Laporte. Recent developments in practical course
timetabling. In Burke, E., and Carter, M., eds., Practice and Theory of
Automated Timetabling II, 3–19. Springer-Verlag, 1998.

[3] Github. Jackson project home @github. https://github.com/
FasterXML/jackson. [Online; accessed 18-June-2016].

[4] Gurobi. Gurobi-java api overview. http://www.gurobi.com/
documentation/6.5/refman/java_api_overview.html. [On-
line; accessed 18-June-2016].

[5] iText. Superior pdf creation and conversion. http://itextpdf.com.
[Online; accessed 18-June-2016].

[6] T. Müller, K. Murray, and S. Schluttenhofer. University course
timetabling & student sectioning system. Space Management and Aca-
demic Scheduling, Purdue University, 2007. [Online; accessed 18-June-
2016].



DKE, Maastricht University Page 20 of 26

[7] K. Ponnalagu, R. S. Rajan, and B. Sengupta. Automatically generating
high quality soa design from business process maps based on specified
quality goals, Sept. 20 2010. US Patent App. 12/885,870; [Online; ac-
cessed 18-June-2016].

[8] O. Rossi-Doria, C. Blum, J. Knowles, M. Sampels, K. Socha, and
B. Paechter. A local search for the timetabling problem. In Proceed-
ings of the 4th International Conference on the Practice and Theory of
Automated Timetabling, PATAT, pages 124–127, 2002. [Online; accessed
19-June-2016].



DKE, Maastricht University Page 21 of 26

12 Appendix

UML Class Diagram

Figure 4: Class diagram: schedule (1)



DKE, Maastricht University Page 22 of 26

Figure 5: Class diagram: schedule (2)



DKE, Maastricht University Page 23 of 26

Figure 6: Class diagram: schedule (3)



DKE, Maastricht University Page 24 of 26

Figure 7: Class diagram: constraints



DKE, Maastricht University Page 25 of 26

A Hand Out of How to Use the Implementation

The project is furnished as an existing project in a Java work-space. The
structure is designed as model-view-controller. The data entities and the al-
gorithm are stored in the model. This functions are called by the controller
and the answer can be shown in a view, also handled by the controller. The
section ?? describes in detail the application work flow. The code is com-
mented and all functions have a logically name in context what they are
doing.
The utils package contains some helper functions like translations, enumer-
ations or import export features. The UML class diagrams of the different
entities are stored in the entity folder, so that every software developer can
have a quick model overview.
The algorithm class contains the core-algorithm. The main part is the “start-
TheTestForTheSchedule” function that verify all events in the schedule and
the “moveEvent” function which is called by the last function.

The Format of the Input and Output

The input format of all variables can be done by adding values in the different
JSON files in the data/input folder. This input corresponds to the entities of
java classes, serialized objects in a persistent JSON file. See as an example
for the input of Period 5, the “GenerateTestData” class. This class create
all variables as java objects and export its to the text file of the related
object.
For the scheduling algorithm the application read in this file in objects and
trade during the process only the Java object, not the file. As software
developer you are able to modify these objects during the run-time. At the
end the modified data is serialized to a new JSON file in the data/output
folder.
As supplement a HTML file which has the know layout of the DKE schedule
is exported after each iteration. A non modifiable copy is generated as PDF
file. So there exists an output for the machine, which will be used in a
next iteration by the application and a readable output for the end-user,
the students.

Documentation of How to Incorporate Improvements into the
Code

As indicated, the application is developed in the model-view-controller de-
sign. The controller handles the actions between the model and the view.



DKE, Maastricht University Page 26 of 26

The model is able to calculate or trade the data without the view. The
main part of the application is the Algorithm class, from which the data is
read in. The input data is verified and then the feasibility and improvement
steps are executed. To improve the feasibility, the modifications should be
done in the HardConstraint class, for a smoother schedule the calculations
and movements are done in the SoftConstraint class. To add parameters to
the data model, the entities can be found in the model.entity package. The
application works every time on the data which is stored in the Algorithm
class attributes. The data used is always a reference to the original data.
This is an important note for the hard constraint check. The checks are
done on the real data, not on duplicates given as parameter.

A list of Recommendations for Improving the Given Imple-
mentation

Handling of the special events can be improved. Actually the algorithm
works well for all known special cases. It is possible that the algorithm has
to be changed, if a new case is added in a later stage.
One of the special events are the holidays. In the current version they are
added manually and changes are only done independently of the different
years. So the possibility should be added in order to move a set of related
events to a new time point. Additionally to detect the holiday events from
a calendar automatically.
The graphical user interface was created to give the end-user a quick view
over the application. The main functionality are available over the interface.
In the application behind all scenarios are possible with the given structure,
so if something is missing it should be added to the view and bounded to
the code.


