
Criticality of Tasks within Project Management1

A.K. Peternella

June 20, 2016

Abstract
Project managers are charged with the respon-
sibility of managing all the tasks within a
project to ensure that the project is completed
within an agreed deadline, with a certain qual-
ity, and for an agreed price. To know how much
attention they need to invest in each task, man-
agers need a measure that can capture the fea-
ture of ‘criticality’ of the tasks of a specified
project. Criticality is defined as the importance
of managing the duration of a task.

Inspired by the pessimistic bankruptcy game
for the problem of cost sharing, this article ex-
plores the idea of using the combination of co-
operative game theory and the Shapley value as
a method for capturing the expected features
of criticality. Those features are: correlation
between task duration and duration of the en-
tire project, probability of being on ‘the critical
path’, relation to other tasks, and task depen-
dencies.

The research presented will show that pes-
simistic games in their purist forms only fur-
ther formalize the concept of cruciality, which
is the importance of managing the duration-
uncertainty of tasks. An adapted method is
created, which will be proven to capture the de-
sired features of criticality, and serve as proof
of concept.

1 Introduction
This article will focus on project management i.e. the
scheduling of (sets of) interrelated tasks. A project is
an organization of tasks intended to a specific objective.
‘Projects generally involve large, expensive, unique or
high risk undertaking which have to be completed by a
certain date, for a certain amount of money, with some
expected level of performance.’[4]

An example of this would be the process of mak-
ing paper. Starting from the cutting down of trees and

1This thesis was prepared in partial fulfillment of the require-
ments for the Degree of Bachelor of Science in Knowledge Engi-
neering, Maastricht University, supervisor: Jean Derks.

transporting the wood to the factory, to packaging and
distribution of the paper. All the tasks need to be man-
aged. Some tasks are necessary and some are optional.
Some tasks carry more risk of delay than others and some
have (many) other tasks depending on it. This naturally
leads to some tasks being more important than others
and need special attention regarding management. To
express this we would like to have some kind of feel,
a comparable measure, for the phenomenon of different
importance levels among tasks. This importance level
we will call the criticality of a task. The main focus of
this article will be on finding a method to define and
measure the feature of criticality of tasks within project
management.

There have been some attempts at defining the fea-
ture of criticality, but these attempts have only resulted
in the formalization of the feature of cruciality. ‘Cru-
ciality’ is defined as the importance of managing the
duration-uncertainty of an activity while ‘criticality’ is
defined to be the importance of managing the duration
of an activity [5].

To achieve this cooperative game theory techniques
will be incorporated where the influences between the
tasks are measured and cooperative game solutions will
be applied to measure criticality. The cooperative game
technique and solutions are provided within the coop-
erative game package in Matlab, which is the program
used for the implementation and testing of this concept.

The main goal is then to test how efficient this
approach is at measuring criticality. Looking at some
features that are considered relevant in the constitution
of the degree of importance of a task and see if the
developed measure reflects such features.

2 Modeling
In this section the focus is set on making a model for
the purpose of assessing the criticality level of the tasks
within the project. The model is then implemented
in Matlab. This program was chosen for its simplicity
with regard to implementing the model and for its
computational power. To the implemented model the
intended cooperative game techniques will be applied
and tested. More details of the cooperative game



A.K. Peternella

techniques will be discussed later in this section.

2.1 Project

‘A project can be defined as a set of activities with an es-
timated duration for which a precedence relation among
them is known.’ [2]

The first issue is deciding on a type of project to be
modeled. There are many different models that could be
used within project management. This article will focus
on the PERT model. A PERT model breaks a project
down into different tasks, which are linked based on their
dependencies of other tasks. From the connected tasks
a graph is formed. In PERT models the nodes of the
graph of a project are the different phases of the project,
whereas the edges of the graph are the tasks.

The straightforward thought of criticality in a
project, where all tasks must be completed, is that the
critical tasks are on the longest path (‘critical path’).
This is because the longest path is determinant of
the total duration of the project. All other tasks can
be completed in parallel to the ones on the longest
path without influencing the total duration. However,
PERT models have a stochastic structure implying that
(almost) any task can have some degree of criticality
[3]. Elmaghraby explains this in her paper by including
the fact that some, if not all, tasks can have some
delay occurring to them. The delay occurred can then
change the critical path by having a new chain of tasks
determine the total duration of the project. This means
that there isn’t one fixed set of tasks that is critical for
the management of the total duration of the project.
All the tasks within the project have some degree of
criticality, because, if delayed, they could potentially
also delay the total duration of the project.

2.2 Cruciality vs Criticality

With this incorporated notion of uncertainty we arrive
at the core of Williams’ [5] argument as to why pre-
vious attempts at defining the criticality of tasks have
not been successful. Williams makes clear that the long
established definition of criticality, which is ‘the prob-
ability of the task being on the critical path’, is not a
very useful definition. Williams found that this defini-
tion did not give the logical information expected by
project managers.

Emalghraby [3] agrees with this view and adds that
the index in many realistic circumstances go against
project managers’ expectations. In the case where there
is a project with two tasks of different duration, both
of which on the critical path (the only path), this mea-
sure would imply that both tasks are equally critical.
However, it is intuitively clear that the task with longer

duration is more critical because the total duration time
of the entire project is more dependent on it than on the
task with shorter duration.

Williams went on to coin the term ‘cruciality’ and de-
fined it as the correlation between a task duration and
the duration of the entire project. The difference be-
tween ‘cruciality’ and ‘criticality’, Williams makes clear,
is that ‘cruciality’ is the importance of managing the
duration-uncertainty of a task while ‘criticality’ is the
importance of managing the actual duration of a task.

Elmaghraby [3] also delved into this notion of cru-
ciality. She introduced the ‘cruciality index’ (CRI) as
an index giving the linear correlation between task du-
ration and total project duration. CRI showed some
advantages in reflecting the importance of tasks within
a project, suggesting a degree of dependency of the to-
tal project duration on the task durations. Also CRI
manages the stochastic nature of tasks in PERT models.
CRI however, as Elmaghraby points out, measures a lin-
ear dependency between task durations and the whole
project duration and this doesn’t always need to be the
case.

To achieve an accurate measure for criticality a
method is needed that not only considers the prob-
ability of a task being on the critical path, but also
considers the actual duration of the tasks in relation
to the duration of the entire project, as well as that of
all the other tasks in the project. Moreover the depen-
dencies among the tasks should be noticeable in the
criticality index. These features are recognizable when
using cooperative game theory concerning cost-/profit
allocation.

2.3 Cooperative game techniques

Cooperative games are used for the distribution of some
total value in a ‘fair’ way among the players of the game.
The ‘value’ can be anything measurable and divisible, for
example: cost, profit, time, etc. The players are the peo-
ple or things the value is to be shared over. A ‘fair’ dis-
tribution of the value in a cooperative game is one which
meets the requirements of efficiency, the null-player rule
and symmetry. A distribution is efficient when the sum
of the value of all the players equals the total value. The
null-player rule states that, for example in the profit dis-
tribution, a player that does not contribute anything to
the total profit cannot receive part of the profit distri-
bution. Similarly, a player, in a cost distribution game,
cannot bare any of the costs if it did not contribute to the
total delay. Finally, symmetry simply means that two
identical players should receive equal shares of the total
distribution. The specific type of cooperative game dealt
with in this article is a characteristic function game.

A characteristic function game G(N, v) consist of a

(p.2)



A.K. Peternella

set of players N and a function v that takes every non-
empty coalition of players (v : 2[N ]−1⇒ IR) and assigns
it a value. In figure 1 an example game is presented
for three people (A, B and C) taking a taxi together
from starting point S. The assumption is made that the
destinations of A and B are on the way to the destination
of C (no detours).

S v(S)
{A} 6
{B} 13
{C} 40
{A,B} 13
{A,C} 40
{B,C} 40
{A,B,C} 40

Figure 1: Example for a cost distribution game with 3
players with the table of contributions.

A, B and C need to pay 6, 13 and 40 respectively to
take a taxi alone to their respective destinations. In the
table in figure 1 the contributions of the coalitions are
shown. The contributions will be the key for calculating
the fair share of the cost for the taxi for each person
when taking the taxi together. This is done by applying
the Shapley value.

Shapley value

The Shapley value is used in a characteristic function
game to calculate the amount each player would pay (in
a cost game) in each permutation of an ordered set of
the player. The results are then averaged and we arrive
at the Shapley value. The function for the Shapley value
looks as follows:

φi(G) =
1

n!

∑
πεΠn

∆G
π (i) (1)

The way the Shapley value works is illustrated in
table 1. The first column (π) contains all the ordered
permutations of set {A,B,C}. In the first row, for
example, A would pay first, B second and C last. Using
the contributions illustrated in figure 1, the calculations
are made. Player A first looks at the the contribution of
the set containing only A, {A} = 6, and pays 6. Then
when player B will pay, it will look at the contribution
of the set containing A and B. {A,B} = 13, but
since player A already payed 6, player B will pay the

remaining 7. Similarly, when player C will pay, it sees
{A,B,C} = 40 and that 13 has already been payed by
A and B, so it pays the remaining 27. All the other
rows are then filled out in the same manner. The final
row φ contains the average cost for each player over all
the order permutations.

π A B C
(A,B,C) 6 7 27
(A,C,B) 6 0 34
(B,A,C) 0 13 27
(B,C,A) 0 13 27
(C,A,B) 0 0 40
(C,B,A) 0 0 40
φ 2 5.5 32.5

Table 1: Shapley value calculation

The concept of applying cooperative game theory to
a project, inspired by the pessimistic bankruptcy game
discussed by Branzei et al.[1], will be discussed in the
next section.

2.4 Expectations

As discussed before, to find out if the application of
cooperative game theory and the Shapley is useful for
measuring criticality of tasks, the results need to show
a number of features. The obvious one is the distinction
between criticality and cruciality. The intention is to
have the cooperative game and Shapley value be based
on the duration of the tasks. Looking at the results
found in the previous example given, it is clear that the
Shapley value applied to a cooperative game gives all the
players (which would be the tasks of a project) a value
in relation to its value (duration). However, some atten-
tion needs to paid to the stochastic nature of the PERT
model. Experiments need to be conducted to determine
the influence of uncertainty.

Another important feature the measure of criticality
needs to adhere to is that of dependencies among tasks.
Tasks that have multiple other tasks depending on
its on time completion are naturally expected to be
more critical. Any delay caused to such tasks would
propagate to the next tasks and maybe even trigger
more delays. The calculations for the contributions of
a characteristic function game are done based on sets.
Thus the values can be assigned/calculated based on the
paths of the project. Tasks that are on multiple paths
in the project will have more non-zero entries in the
table when calculating the Shapley value, and therefore
a higher value when averaged over all entries. The

(p.3)



A.K. Peternella

expectations as to whether cooperative game techniques
can capture this feature are therefore quite positive.

3 Experiments
To start the experimentation on whether cooperative
game techniques will capture the expected features of
criticality, an example project needs to be created based
on the model established in the previous section. Figure
2 and table 2 show the example project that will be used
throughout this section.

In the graph in figure 2 an example project can be
seen with 5 phases (A, B, C, D and E) and 6 activities. In
table 2 the minimum duration for each task can be read,
in the second column, as well as the maximum delay time
of each task, in the third column. This example graph
has been chosen because it seems simple, yet it contains
some interesting properties which will show to be helpful
for testing purposes.

Figure 2: Example project with 5 phases and 6 tasks
labeled.

Task Duration Possible delay
1 7 2
2 5 2
3 6 2
4 4 4
5 1 2
6 0 10

Table 2: Base case duration and delay of the tasks.

The actual duration (ai) of an activity i is calculated
as the base duration (bi) plus some random duration
within the possible delay window (pd). This is shown is
function 2. In function 3 the calculations for the ‘phase
arrival times’ (PAT) is shown. Those are the start times
for each of the phases of the project. The details of this
function will be explained later in this section. Lastly,

what function 4 simply says is that the total project
duration is equal to the arrival time of the last phase.

ai = bi + rand() ∗ pd (2)

for j=1 : m (repeated while ∃ pj that has been updated)

pj = max{pj, (pi−1 + apj−1,pj)} (3)

E = pm (4)

Branzei et al.[1] discuss in their paper the similarities
of the problem of cost allocation to the theory applied
in cases of company bankruptcy.

3.1 Pessimistic bankruptcy game

In their paper, Branzei et al, discuss project activities as
having a certain expected time for completion. Those are
the minimum times, which together with the graph of the
project constitute the expected start and end times for
each activity (bi and ei respectively). Of course things
do not always go as planned so they used actual ending
times (e∗) as well to deduce delays occurred. These are
then compared to the total delay of the project (D) to
evaluate how much any delay for each activity affects the
project, if at all.

From these parameters they set up two functions:

D = (E∗ − E)+ (5)

di = ((e∗i − b+i)+ − (e∗−i − bi)+)+ (6)

Function 5 simply states: the total delay of the
project is the actual ending time (E∗) minus the sched-
uled ending time (E). The + after the bracket simply
means that if the result of E∗ −E < 0 the total delay is
then 0.

Function 6, activity delay, is a bit trickier so it
will be explained in parts. (e∗i − b+i)+ is calculating
whether the current activity is finishing later than the
scheduled start time of its followers. If so, the value
will be positive, 0 otherwise. Similarly, (e∗−i − bi)+ is
calculating whether the previous activities finished later
than the scheduled start time of the current activity.
The difference of these two calculations ensures that
any delay caused by previous activities are not counted
as delay for the current activity. Again, if this value is
< 0 the activity delay is simply 0.

PROP/CER

Here the similarities to the bankruptcy problem arise. ‘A
bankruptcy problem is described by a pair (E, d) where
E is the estate and d = (di)iεN , where di as the claim of

(p.4)



A.K. Peternella

customer i, with 0 < E ≤
∑n
i=1 di. Here the problem is

how to divide the estate E among the claimants.’[1]
The proportional rule (PROP) is a method used

to calculate the proportional share of the total delay,
based on the individual activity delays. By looking at
function 7, this is done by normalizing all the delays

((
∑n
i=1 di)

−1
di), and then multiplying each with the to-

tal delay (D).

The constrained equal reduction rule (CER) works

in a slightly different manner (function 8). It basically

takes the difference between the sum of delays and the

total delay and dividing that by the number of activities

(((
∑n
i=1 di)−D) /n), calling this value β, and reducing

it from the delays (di − β). Once again, if this value

would be negative, the value is set to 0.

PROPi(D, d) =

(
n∑
i=1

di

)−1

diD, i = 1, ..., n.

(7)

CERi(D, d) = (di − β, 0)+, i = 1, ..., n. (8)

These similarities seem to show a good basis for the
calculation of criticality, sharing the total cost (delay
duration) among the activities that contribute to it.
However, note that if

∑n
i=1 di = D (meaning all delays

are sequential and on the critical path), PROP would
just return a value equal to the delays. Meaning all
other activities would not carry any value, which as
mentioned in section 2.2, is not what we expect from a
criticality measure.

Pessimistic game

A pessimistic game, as discussed by Branzei et al,[1] is
a different approach to the problem of sharing the de-
lay cost by means of coalitions of activities, instead of
individual activities.

c(D,d)(S) = min

{∑
iεS

di, D

}
for each coalition S ⊂ N.

(9)
The contributions corresponding to the delay problem
(D,d) are calculated according to function 9. The con-
tribution of a certain coalition S is

∑
iεS di. If that value

is greater than the total cost, D, the contribution is then
equal to D. the reason for this is that otherwise more
cost would be shared than actually has been induced to
the project. To these contributions the Shapley value
can be applied.

The fact that in a pessimistic game the cost is shared
based on the joint contributions of delay of set of activi-
ties gives hope for a better approximation to a criticality

measure. However, as mentioned in section 2.3, explain-
ing the Shapley value, the null-player criteria still holds
for activities with delay 0. So any activities without de-
lay would still have Shapley value 0 in the end. To tackle
this the next experiments have been conducted over the
example project (figure 2) where all tasks have some ran-
domized delay within their maximum delay window. For
each run the cooperative game is set up and the Shapley
values calculated. The process is repeated over 10000
runs and then the Shapley values for each task is aver-
aged over all runs.

To test if the results of the pessimistic game really
captures criticality, as suggested by Williams [5], the
measure needs to show some correlation of the task du-
ration and the total duration of the project. In the
graph in figure 3 the results are shown to the experi-
ment of changing the base duration (possible delay stays
the same) from 0− 20, with 1 unit steps, of activity 4.

Activity 4 was chosen specifically for its features.
First of all, it has low dependency, meaning there few
(1) tasks depending on it. Secondly, it does not lie
on the critical path (defining the total duration), so
there is some room for increase without immediately
gaining a lot of criticality. And lastly, it can and will
become part of the critical path within the testing range.

Results

As can be seen in the graph in figure 3, the results show
that the value has the tendency to stay constant as the
duration increases and the total project duration stays
the same. The first part of the graph is constant near
value 0, when the activity is not in the critical path. The
last part of the graph is also nearly constant around value
1.1 when the activity is nearly always in the critical path.
The interesting slant in the middle is simply the average
of the two extremities over the 10000 runs, sometimes it
falling on the critical path, sometimes not.

It seems that the pessimistic game fails to capture
criticality in two ways. Firstly, it fails to assign a criti-
cality value higher that 0 for activities that have duration
> 0. Secondly, it fails to give a correlation between an
activity duration and the total duration of the project.
The reason for this is believed to be because the base
for the calculations are the delays and not the actual
durations.

Looking at the graph in figure 4 where the same
test was performed with, instead of varying duration,
varying delay uncertainty, we get very different results.
There appears to be a strong correlation between the
delay uncertainty and the value received for the Shapley
value applied to the cooperative game.

(p.5)



A.K. Peternella

Figure 3: Results of experiment pessimistic game with
varying base durations.

Failure to define criticality

It is clear that the pessimistic delay game does not de-
fine criticality of tasks, nonetheless, the pessimistic delay
game shows some desired features. By making a mod-
ified version of the pessimistic delay game a better ap-
proximation could be achieved.

The previous experiment has shown that the
pessimistic delay game leans more toward defining
cruciality, instead of criticality. The pessimistic delay
game has shown a strong correlation between the delay
uncertainty and the value it receives from the Shapley
value calculations. Recalling Williams’ [5] statement,
cruciality is the importance of managing the duration
uncertainty (in this case delay). The modified version
needs to be based on the actual duration of the tasks.

3.2 New approach

The new approach that will be taken to this problem
will still be using cooperative games, to include the
feature of joint contribution, and the Shapley value, for
the feature of ’fair’ share assignment. However, now the
delay calculations will be disregarded and the actual
task durations will be incorporated straight away.

Application

Changing the basis for the cooperative game from delay
to actual duration (a) makes for a simplification of the
problem, considering the individual delay calculations
need not to be performed. The ’total value’ is now, of
course, simply the total actual duration (A), which can
be calculated with the same method for the calculation
of the total delay. The pessimistic game with this change

Figure 4: Results of experiment pessimistic game with
varying delay uncertainty.

looks now as follows:

c(A,a)(S) = min

{∑
iεS

ai, A

}
for each coalition S ⊂ N.

(10)
An experiment has been conducted with this set up using
the same parameters as when calculating the pessimistic
delay game (10000 runs, random delays assigned to each
activity in each run according to their delay window).
It is important to note that a seed has been used to en-
sure the random number generator (rng) used in Matlab
would be using the same ordered set of random numbers
for all different tests. A method that uses random num-
bers, performed twice with the same seed, will have the
same results. So two different method using the same
seed would really show the differences of the two meth-
ods in equal circumstances.

In figure 5 we can see the same varying base dura-
tion test as done in figure 3, but this time with all of
the tasks. (Note that each line on the graph represents
one test where the corresponding task has been assigned
varying duration, while the other tasks remain as stip-
ulated in the base case. Basically, six experiments have
been conducted and fused into one graph.) Similarly fig-
ure 6 shows the varying delay uncertainty test also done
with all six of the task.

As can be seen in figure 5 the method seems to have a
more logically desirable correlation between activity du-
ration and total duration time, with respect to the other
tasks. Although the lines travel a similar path it does
not mean the tasks have similar criticality value since
the actual value lies at the expected average base dura-
tion for each task (for example, task 5, the duration is
between 1 and 3, so the expected duration is 2). The

(p.6)



A.K. Peternella

Figure 5: Testing criticality based on task duration.

differences based on the graph only start to show up for
higher values. Figure 6 suggests that there still is some

Figure 6: Testing criticality based on task delay.

correlation of the delay uncertainty and the criticality
value. This is understandable considering the delay un-
certainty inevitably has a consequence for the actual du-
ration. Nonetheless, it is clear that the correlation is now
reduced as the graph shows no sudden steep increase in
the graph. The values have a steady, near linear, incline.

Also a bit more clear from this graph is the difference
of the tasks in criticality. The task criticality order is
almost completely preserved throughout.

Short coming

The modified pessimistic game has the features of cor-
relation of activity duration and total duration, and in

relation to the other task durations incorporated for the
calculation of the criticality value. Also the probabil-
ity of the task being on the critical path has been ac-
counted for through the cooperative game. The only
feature not yet accounted for is that of task dependen-
cies. The graph in figure 5 already hints to this as a big-
ger difference between the tasks criticality value would
be expected because of dependencies.

Through a simple analysis of a single coalition it can
be shown that dependency is not yet accounted for in
this modified pessimistic game. In figure 7 we can see
the example coalition S = {1, 2, 4, 5} (see also figure 2).
The minimum durations are used for simplicity.

In this coalition the sum of the durations {
∑
iεS ai) =

7 + 5 + 4 + 1 = 17. The actual duration A = 7 +
6 + 1 = 14 (critical path in the case of minimum du-
rations is {1, 3, 5}). That would mean that the corre-
sponding value for that coalition is: c(A,a)({1, 2, 4, 5}) =
min {17, 14} = 14. However, if the corresponding value
would be calculated in the same fashion as the total du-
ration, with the activities not part of the coalition having
value 0, the result would be A = 5 + 4 + 1 = 10 (critical
path of the coalition is {2, 4, 5}).

Figure 7: Example coalition with duration values along
the edges.

From this we can deduce that, for some coalitions
in the (modified) pessimistic game, more value is being
shared to activities, as the coalition contributions are
not being calculated in the most accurate way.

Adapted method

An adapted method needs to be created which calculates
the contributions of the coalitions in a more accurate
manner to better represent the dependencies among the
tasks. The set of equations 11, 12 and 13 establish the
approach taken in the adapted method.

Vector t, the ‘task coalition values’, hold the values
assigned to each task in a specific coalition, being equal
to the actual duration of the task if it is in the coalition,
and 0 otherwise. These values are then used to calculate
the phase arrival times (p).

(p.7)



A.K. Peternella

Function 12 is a repeated loop where at each iteration
updates the values for the start time of the phases of the
project. These are calculated as the maximum between
the value they already have assigned (pj) and the value
of the preceding phase summed with the task coalition
value of the task connecting that preceding phase and
the current one (pi−1 + tpj−1,pj). The calculations are
done for all m phases and then this function needs to be
repeated for as long as there is a phase in the project
for which its value has been updated. An updated phase
value could mean that that value still needs to be prop-
agated further through the graph.

Finally, the last equation simply states that the
‘coalition duration’ of set S is equal to the final arrival
time of phase m (assuming phase m is the last phase,
i.e. where the project is considered completed).

ti(S) =

{
ai, if iεS

0, otherwise
(11)

for j=1 : m (repeated while ∃ pj that has been updated)

pj(t(s)) = max{pj, (pi−1 + tpj−1,pj)} (12)

cd(S) = pm (13)

Figure 8 shows the experiment that will be performed
for testing how the adapted method compared to the
modified pessimistic game. Three scenarios are depicted
where task 6 has a different ending phase. The top one,
the same as in the example graph in figure 2, has 2 tasks
depending on task 6. In the middle graph the end phase
is changed to D and then only has the finishing task as a
depending task. In the bottom scenario, task 6 is linked
directly to the final phase, meaning there are no tasks
that depend on it.

Results

Table 3 shows the results to the dependency experiment.
Both methods have been run 10000 times with the three
different dependency scenarios using the same seed, for
the random number generator, for all 6 combinations.
The resulting criticality indexes have then been averaged
over the runs and then normalized.

The results show the differences between the two
methods very clearly. In all three scenarios, the mod-
ified pessimistic game gives nearly the same results for
all tasks. The change in dependencies shows no signif-
icant change in the criticality indexes of M1 (modified
pessimistic game). On the contrary, M2 (the adapted
method) shows change in the criticality indexes as ex-
pected when changing the ending phase of task 6.

Task 6 shows a very significant drop in criticality
when its number of depending tasks is reduced from 2 to
1 and when reduced from 1-0. The switch in scenarios is

Figure 8: Changing a tasks’ link to test criticality based
on dependency.

also accurately readable in the criticality indexes of the
other tasks. Task 1, for example, shows a steep increase,
as with the change in dependency from the first scenario
ensures task 1 has a much higher probability of being
on the critical path. Task 3 shows first a big decrease
as there are now fewer paths (coalitions) that provide it
with criticality. When task 6 changes from 1 to 0 de-
pending tasks, it looses some more criticality. These are
transferred, mainly, to the tasks on the most probable
critical path ({1, 3, 5}), hence the increase in criticality
of tasks 1 and 3.

Tasks
M 1 2 3 4 5 6
M1(2) .2357 .1745 .2057 .1723 .0587 .1531
M1(1) .2379 .1757 .2076 .1750 .0608 .1430
M1(0) .2381 .1758 .2078 .1751 .0609 .1423
M2(2) .1551 .2086 .2880 .0927 .0986 .1569
M2(1) .2541 .1779 .2236 .1248 .1170 .1027
M2(0) .2669 .1741 .2348 .1313 .1037 .0893

Table 3: Results of experiment showing the influence of
dependency on task 6, to its criticality value. ‘M1’ is
the modified pessimistic game and ‘M2’ is the adapted
method.

(p.8)



A.K. Peternella

4 Conclusion
As hoped, cooperative game theory, specifically the
Shapley value has indeed shown a power to capture the
features of criticality. The pessimistic bankruptcy game,
in the scope of cost sharing, had been a useful inspira-
tion for the application of cooperative games techniques
to deduce joint contributions to the duration of a project.
However, pessimistic games in their purist form have
only shown to formalize the concept of cruciality.

By modifying the pessimistic game, from using ac-
tivity delay to task durations, more features of critical-
ity have been captured. The modified pessimistic game
managed to provide the desired correlation between task
durations and the duration of the entire project and the
probability of a task being on the critical path.

The only apparent feature the modified pessimistic
game was lacking is that of dependencies of tasks. This
problem was tackled by making an adapted method
which better estimates coalition contributions. The
adapted method has shown to accurately simulate
the effects of dependencies of tasks. The manner in
which the adaptation had occurred, ensured that the
other features of criticality were preserved. This brings
as a conclusion that the adapted method captures all
the desired features, stipulated in section 2, of criticality.

Future Work

This article serves mainly as proof of concept. Further
research and analysis needs to be done on cases where
this concept might not hold, or for what values/value
differences the results might differ from what would be
expected.

Research should be conducted for methods that fur-
ther improve in more accurate estimations of the contri-
bution of coalitions to the total durations.

(p.9)



A.K. Peternella

References
[1] Branzei, Rodica, Ferrari, Giulio, Fragnelli, Vito,

and Tijs, Stef (2002). Two approaches to the
problem of sharing delay costs in joint projects.
Annals of Operational Research, Vol. 109, pp.
359–374.

[2] Castro, Javier, Daniel, Gmez, and Tejada, Juan
(2007). A project game for pert networks. Oper-
ations Research Letters 35, pp. 791–798.

[3] Elmaghraby, Salah E. (2000). On criticality and
sensitivity in activity networks. European Jour-
nal of Operational Research, Vol. 127, No. 2, pp.
220–238.

[4] Steiner, G.A. (1969). Top management planning
macmillan. Quoted on page 481 of Project Man-
agement Handbook, 2nd edition.

[5] Williams, Terry (2003). The contribution of
mathematical modelling to the practice of project
management. IMA J Management Math, Vol. 14,
No. 1, pp. 3–30.

(p.10)



A.K. Peternella

A Code for the adapted method

N=[1 2;1 3;2 4;3 4;4 5;3 5]'; % task graph
dur=[7 9; 5 7;6 8;4 8;1 3;0 10]'; %task min and max durations
num=2ˆ(length(N(1,:)))−1; %number of coalitions
n=size(N,2); % number of tasks/links
S=max(N(2,:)); % number of phases (last stage is finishing phase)
a=dur(1,:); % actual task durations (min durations as default)
temp=zeros(1,n); %

%if 0 Shapley matrix H(S,i)=p(s) if i in S, and −p(s+1) otherwise
c=1; for i=2:n, c=[c 1 c+1]; end % c(S) cardinality of coalition S
l=length(c); % number of non−empty coalitions
p=zeros(1,n); p(1)=1/n; for i=1:n−1, p(i+1)=p(i)*i/(n−i); end
H=zeros(l,n);
for i=1:n

for j=1:l
cj=c(j);
if bitget(j,i)

H(j,i)=p(cj);
else H(j,i)=−p(cj+1);
end

end
end

%constitution of actual durations
for i=1:n,

if rand>0 %probability of not having delay
a(i)=a(i)+rand*(dur(2,i)−dur(1,i));

end
end
a; % actual duration

v=zeros(1,num); %initializing coalition contribution vector
for T=1:num %running through all coalitions

temp=a;
for i=1:n

if bitget(T,i)==0
temp(i)=0;

end
end
A=zeros(1,S);
cnt=1;
while cnt

cnt=0;
for i=1:n % running through all activities

s=N(1,i); t=N(2,i);
if A(t)<temp(i)+A(s)

A(t)=temp(i)+A(s);
cnt=cnt+1;

end
end

end
v(T)=A(S);
end
Shapley=v*H % Shapley matrix H is computed beforehand

(p.11)


