
And the Winner is...
Solving Triomineering using Combinatorial Game Theory

Daniel Brüggemann, Mantas Gagelas, Maarten Weber, Bas Willemse

January 20, 2016

Abstract

Games without randomness and with perfect information normally
can only be solved for a specific game environment. Small changes
like changing the board size or modifying the pieces used by players
usually introduce new challenges for the implementation of the game
solver. A precise understanding of the specific game domain and its
properties is needed, and extending the domain to new areas might
help to improve this understanding and reveal new techniques for a
more efficient solver. We look at the combinatorial game Domineer-
ing, where one player places vertical and the other places horizontal
dominoes on a board, and the player who first cannot place a new
domino loses. We extend its rules by using not dominoes, but 3-tile-
pieces (Triomineering), and build a solver for this variant of the game.
The solver uses a combination of search heuristics and strategies from
the field of Combinatorial Game Theory, especially using the represen-
tation of a board state as a combinatorial game value. We explain how
to calculate these game values of subgames and how these can be used
to make the solver more efficient, meaning how to reduce the number
of game tree branches that need to be searched by the solver. The
developed results might allow a better insight into the general domain
of Domineering and how to solve it efficiently.

1



Contents

1 Introduction 4

2 Domineering and Triomineering 4

3 Methodology 6

3.1 Combinatorial Game Theory . . . . . . . . . . . . . . . . . . 9

3.2 CG Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Negamax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Transposition Tables . . . . . . . . . . . . . . . . . . . . . . . 13

4 Experiments 13

4.1 Experiment One: Domineering versus Triomineering . . . . . 13

4.2 Experiment Two: Additions to the Solver . . . . . . . . . . . 14

4.2.1 Move Ordering . . . . . . . . . . . . . . . . . . . . . . 14

4.2.2 Transposition Tables . . . . . . . . . . . . . . . . . . . 14

4.2.3 Symmetric Transposition Tables . . . . . . . . . . . . 14

4.2.4 All improvements combined . . . . . . . . . . . . . . . 14

5 Results 15

6 Discussion 17

6.1 Experiment One: Domineering versus Triomineering . . . . . 17

2



6.2 Experiment Two: Additions to the solver . . . . . . . . . . . 18

7 Conclusion 19

8 Future Work 19

9 Appendix A. System Specs 21

10 Appendix B. Experiment B Table 21

3



1 Introduction

Humans created games to entertain the mind and challenge their problem
solving skills for thousands of years. However, only with the up rise of com-
puter technology in the last decades, it became possible to create artificial
players who came close to and, in some cases, beat the best human competi-
tors. With vastly increasing computational power and increasing interest in
AI due to the rise of computer games, it became possible to not only find
good moves for a game, but even completely solving them [5].

Solvable games without randomness and with perfect information normally
can only be solved for a specific game environment. Small changes like in-
creasing the board size by one or modifying the pieces used by players usually
introduce new challenges which might be computationally intractable with
current technology.

Following this observation, the combinatorial game called Domineering is
regarded, that has been solved up to a board size of 10-by-10 tiles [4], and use
triominos instead of dominos to create a new game with unknown outcome
for all board sizes. The aim is to solve Triomineering up to a board size
as large as possible and compare the solver’s results with the results from
Domineering, with the expectation to gain further insight into the game’s
domain.

First, the rules of the original game and the extension to this version are
explained. This is then followed up by introducing the use of heuristic game
trees to search through the moves of a game. Afterwards, a look is taken at
the properties of combinatorial games and incorporating its strategies into
the search trees that are used to create an enhanced solver for Triomineering.
Finally, the results are summarized and an outlook for further research areas
in this game’s domain is presented.

2 Domineering and Triomineering

Domineering belongs to the class of combinatorial games. It is a sequential
2-player game, and contains no randomness. Each player has perfect infor-

4



Fig. 1: Domineering on 3-by-3 board. Vertical blocks three possible moves
of horizontal with his first move, gaining an advantage. Horizontal loses on
turn 4. First player to move wins on this board.

Fig. 2: Domineering on 3-by-2 board. It does not matter which player starts,
horizontal will always win.

mation about the game state, meaning there is no hidden information. The
board is rectangular, made up of equally spaced tiles and is of arbitrary size.

Domineering is a partisan game, meaning that each player has different
moves available. The player usually called the ”left player” or the ”vertical
player” can only place vertical dominos on the board, the ”right player” or
”horizontal player” can only place horizontal dominos. The first player not
able to place a domino on the board loses the game, making the other player
the winner. The vertical player always starts. As each domino reduces the
number of free tiles on the board and the number of tiles is finite, this is a
finite game guaranteed to end. Figures 1 and 2 show two examples of simple
Domineering games played on different board shapes.

5



These examples also indicate the four different outcome classes of Domineer-
ing; a board can be a first-player-win, a second-player-win, a vertical-player-
win or a horizontal-player-win. A draw is not possible - at some point, one
player will be out of moves and loses.

Domineering has already been solved up to a size of 10-by-10 [4]. Instead
of trying to solve an even bigger board size, in this project, a change to the
game rules is introduced; both players now use triominos, composed of three
tiles, which is why this game version is called /textitTriomineering. Even
though this seems like a minor difference, it changes the outcome of certain
board sizes. Figure 3 shows an example where the results of Domineering
and Triomineering are not equal. A result for Triomineering can therefore
not be derived with certainty from the Domineering results. This creates a
new game domain which could yield interesting new results and strategies
for the corresponding game solver. For the remainder of this paper, all game
examples will use the game version Triomineering.

3 Methodology

Looking at Figures 1, 2 and 3, one intuitively recognizes the best move
for each player, namely the one that takes the most moves away from the
opponent. On bigger boards however, a strategy to determine the optimal
move has to be developed.

The simplest strategy is to traverse through every possible combination of
moves the two players can make in Triomineering. These moves are usually
represented as nodes of a tree; the root node represents the start of the game,
and each leaf node represents the end with one of two outcomes (vertical or
horizontal wins). With each layer of the tree, the players alternate in placing
a triomino on the board.

In Figure 4, the game tree for a 4-by-4 board is shown. In all layers, there are
actually more move options, but these are removed to make a simpler tree
as they create the same game situations as already shown - this is further
elaborated in Section 3.1.

The game tree shows that a win for any of the two players is possible. If

6



Fig. 3: Comparison between Triomineering and Domineering on the same
board. While Triomineering is won on turn 4 by the first player to move,
Domineering is won on turn 9 by the second player.

vertical decides to make the left move in the first layer, horizontal will win
this game, because in the second layer it will always decide to make the
right move so that vertical loses. However, vertical has the opportunity to
choose the right move option in layer 1, thereby cutting off any possibility
for horizontal to win. The conclusion is that because vertical starts, it wins
on the 4-by-4 board. Therefore, in evaluating any game state, it is necessary
to distinguish between moves that can be made if the opponent doesn’t cut
them off, and moves that can not be prevented by the opponent.

To decide in a more mathematical fashion which move is the optimal one
for a player, a simple heuristic formula to generate a move’s value is used:

7



Fig. 4: Simplified game tree for a Triomineering game.

v(move) = δ(mp(move)−mo(move)) + δ(sp(move)− so(move))

Fig. 5: Evaluation function used in Negamax

v(move) is the evaluation value that the move m receives. m(move) is the
delta of the maximum number of moves possible before and after execution
of move m for the respective players if the opponent would not move at all.
s(move) is the number of safe moves for a player, meaning the moves that
the opponent can not prevent by placing a tile on its own.

The optimal move is the move with the highest value. By doing this, the need
to go through the whole game tree is removed, and it is possible to cut off

8



branches; this process is called pruning and is of great value when searching
game trees with large numbers of nodes. There are more techniques to prune
a bigger percentage of the game tree. Note however that these techniques
are generalized for all game trees and are not specific to Triomineering.
At a certain board size and thus game tree size, general approaches are not
sufficient anymore and we have to look at the specific properties of the game
we are trying to solve.

3.1 Combinatorial Game Theory

Combinatorial Game Theory, or CGT, was being used in different fields for
several decades, but only recently theorists started to incorporate its con-
cepts and techniques into search algorithms to make the search for optimal
game moves more efficient [2].

It is essential to understand the domain and the properties of Triomineering
to make its solving process more efficient - the more efficient our solver
becomes, the bigger is the board size we can solve with it in a reasonable
amount of calculation time. Many properties of Domineering still hold in
Triomineering.

The most important one of these properties is the independence of subgames.
Looking at Figure 6, the two placed tiles divide the board into two spaces
consisting of six and four tiles. Placing a tile in one of these can never
influence the other space. Thus, for our game tree, we define these spaces
as subgames and solve each of them individually. This vastly reduces the
number of nodes that have to be searched, because instead of adding the
moves of the subgames as options in the entire game tree, we look at them
separately.

Splitting the whole game into subgames if possible is useful, but it also makes
it necessary to change the layer system described before and always look at
both player’s move options in each layer. This might seem incorrect at first
sight - how is a player able to move multiple times in a row? It becomes
clear if we keep in mind that this is a subgame and the other player might
take his turn to make a move in another subgame, therefore allowing the
other player to move multiple times in this subgame.

9



Fig. 6: Dividing the board into two subgames, denoted by 1 and 2.

CGT also introduces its own value representation. For each game state
represented by a node in the game tree, we can calculate a CGT value that
is similar to the heuristic value we created in section 3, but is more refined. It
introduces different game value types like Numbers, Star, Up, Down, Switch
etc. whose elaboration would go beyond the scope of this paper. Still, an
important contribution to be gained from these value types is the distinction
between Hot Games and Cold Games, describing the subgames at a certain
game state.

A game is described as cold if it does not matter which player moves first
because the layout of the board defines a certain advantage for one player
independent of the moves available to the other one. Figure 7 shows a cold
game where vertical is in favor - even if horizontal moves first, vertical has a
”save” move. If vertical makes a move, it can block horizontal ’s move, which
is why it has an advantage here. Players do not want to play in cold games,
because ”save” moves can be done last, after all hot games are played.

Fig. 7: Example of a cold game with advantage for vertical

Hot games are games where the player who moves first gains an advantage.
Figure 8 depicts a hot game where a move from either of the players ”steals”

10



the opponent’s move. Clearly, each player wants to play in a hot game first
before moving to the cold games. [6, pp. 159]

Fig. 8: Example of a hot game - both players want to move first in this
game.

When all game states have a CGT game value assigned to them, the optimal
next move for a player is the one in the hottest game (the game with the
highest so-called temperature). Moves are chosen by their temperature, cre-
ating an order for the moves available in all subgames. Thereby, we are able
to use subgames to efficiently prune our search tree without risking making
a nonoptimal move.

3.2 CG Suite

To be able to quickly do calculations, and check if the solver that was created
makes moves correctly when working with Triomineering, a library called CG
Suite [1] was used.

3.3 Negamax

When applying CG Suite on the task of solving Triomineering it was noted
that as the board size increased the time it took to solve the game increased
at a rapid rate. To be able to solve larger boards it was clear that using
purely CG Suite would not suffice and as such Negamax was implemented to
aid CG Suite. This approach is based on the research done by Uiterwijk[3].

Negamax is a slightly altered version of Minimax. Minimax is an AI tech-
nique that, simplified, tries to minimize the opponent’s maximum move. It
is a tree-based search algorithm, that checks possible moves and tries to find

11



the best one. It originates in zero-sum game theory, and is popular for its
efficiency, ease to implement and heuristics.

Negamax functionally works the same as Minimax, but is easier code-wise.
Instead of having the layers switch between maximizing and minimizing,
the minimizing players’ evaluation scores are negated, and all layers are
maximized.

The pseudo code for the Negamax algorithm can be found in Algorithm 1.

In addition to using Negamax, Alpha-Beta pruning was implemented. Alpha-
Beta pruning allows for pruning of part of the tree mid-search, by keeping
track of both players’ best option, and pruning parts that are guaranteed to
be worse than this option[7].

When traversing through the tree, Alpha-Beta pruning will cut off any value
for which the maximizing player knows he can get a higher score, and any
value for which the minimizing player knows he can get a lower score. When
applied to a Negamax-tree, it will return the same tree, with the same values,
but with less explored nodes.

negamax(node, depth, alpha, beta, color)
if depth = 0 or node is a terminal node then

return color × the heuristic value of node
end
bestValue := -∞ ;
childNodes := GenerateMoves(node) childNode := OrderMoves(node) for
each child of node do

val := -negamax(child, depth - 1, -β, -α, -color)
α := max(α, val)
if β 6 α then

break;
end

end
Initial call for Player A’s root node:
rootNegamaxValue := negamax( rootNode, depth, −∞,+∞, 1)
Algorithm 1: Pseudocode Negamax with Alpha-Beta Pruning(Breuker
Dennis, 1998)

12



3.4 Transposition Tables

To reduce the time spent searching, and prune moves away, transposition
tables were implemented. Transposition tables work as follows: whenever a
move is made, the board state is converted to a unique hash or ID. Then, a
list of previous hashes is checked to see whether this board state has come
up before. If it has, then the value of this board is the same as that one
(and therefore the board is the exact same), and the information that has
already been gained on the other board can be used. If the hash is not in
the list yet, then the new hash is added to the list, and the solver continues
running as normally.

To further improve this, it is certain that mirrored board states (mirrored
in horizontal and/or vertical directions) are the exact same. Because of this
property, whenever a move is made, it is possible to check four different
hashes in the list of known boards, and add these to the list if they’re
unique and new. This further reduces the number of moves that have to be
investigated.

4 Experiments

Two experiments were designed to test the Solver. Firstly a test was made
to determine the effect of changing the piece size. Secondly, to speed up
the negamax certain additional techniques were used thus a test was made
to establish how effective they were. The specifications of the machine that
was used for the experiments are given in section 9.

4.1 Experiment One: Domineering versus Triomineering

The solver that was created for Triomineering can give results, determining
which player wins on which board, and how many nodes need to be explored
by the solver in order to get to this result. The goal of this experiment is
to firstly give results for the Triomineering game, and then compare these
to the results of domineering to see if there are similarities or patterns that
can be recognized.

13



4.2 Experiment Two: Additions to the Solver

This experiment shows the improvements that were made to the standard
Negamax solver. These improvements are: adding move ordering to the
solver; adding transposition tables to save the previously visited board states
in an effective manner; adding symmetric versions of the transposition ta-
bles; adding all of the previously mentioned improvements

4.2.1 Move Ordering

Move ordering is applied when going through the Negamax-tree. It ensures
that the best moves are explored first by looking at all the child-nodes and
ordering these based on the evaluation score explained in figure 3.

4.2.2 Transposition Tables

Transposition tables, as explained in section 3.4, allow pruning of moves.

4.2.3 Symmetric Transposition Tables

The symmetric property of the game can be used to add four different trans-
position tables per board state (as explained in section 3.4).

4.2.4 All improvements combined

This part adds all of the improvements together to see how big the difference
is compared to the normal version.

14



5 Results

The tables below show the winners for different board sizes. For every board
size, both players were tested as a starting player. The F means that the first
player to move won in both instances, the S means that the second player
to move won in both instances, the V means that regardless of starting
player, the vertical player won, and the H means that regardless of starting
player, the horizontal player won. The result obtained for the non-square
boards can be translated to the flipped version of that board, i.e. 3 × 6
gives a horizontal player win, while 6 × 3 would give a vertical player win.
Horizontal and vertical swap in this case, while the first and second player
wins stay the same (3× 5 and 5× 3 have the same results).

Board Size Result Nodes Board Size Result Nodes

3× 3 F 4 6× 6 F 738
3× 4 F 4 6× 7 V 1,659
3× 5 F 6 6× 8 V 2,161
3× 6 H 38 6× 9 F 25,253
3× 7 F 62 6× 10 V 106,629
3× 8 V 86 7× 7 F 14,753
3× 9 F 36 7× 8 V 34,313
3× 10 F 43 7× 9 H 23,050
4× 4 F 4 7× 10 H 338,348
4× 5 F 4 8× 8 S 682,867
4× 6 H 24 8× 9 H 30,664
4× 7 H 69 8× 10 H 375,244
4× 8 H 150 9× 9 F 948,169
4× 9 H 445 9× 10 F 5,411,465
4× 10 H 733
5× 5 F 4
5× 6 H 27
5× 7 H 44
5× 8 H 166
5× 9 H 355
5× 10 H 721

Table 1: Experiment One: Triomineering

15



Board Size Result Nodes Board Size Result Nodes

2x2 F 1 4x7 V 1,984
2x3 F 2 4x8 H 12,024
2x4 H 13 4x9 V 45,314
2x5 V 15 5x5 S 604
2x6 F 14 5x6 H 1,500
2x7 F 17 5x7 H 13,584
2x8 H 67 5x8 H 30,348
2x9 V 126 5x9 H 177,324
3x3 F 1 6x6 F 17,232
3x4 H 10 6x7 V 302,259
3x5 H 19 6x8 H 3,362,436
3x6 H 40 6x9 V 18,421,911
3x7 H 77 7x7 F 408,260
3x8 H 74 7x8 H 12,339,876
3x9 H 99 7x9 H 320,589,295
4x4 F 40 8x8 F 441,990,070
4x5 V 87 8x9 V 70,918,073,509
4x6 F 1,327

Table 2: Experiment One: Domineering[3]

16



Fig. 9: Experiment 2: Running Times of Different Configurations

6 Discussion

6.1 Experiment One: Domineering versus Triomineering

When comparing the two tables to each other, a lot of similarities can be
seen: the most likely players to win are either the first player to play, or the
horizontal player in most cases. Then, on square boards, in every instance
except for one (8× 8 and 5× 5 for Triomineering and Domineering respec-
tively), the first player wins. On those specific sizes, the second player wins.
It seems like the result from Domineering translates over here (for Dom-
ineering, the board width is 2.5 pieces wide, while for Triomineering, the
board width is 2.667 pieces wide). Aside from that, for most sizes, it seems

17



like the results from Domineering, when up-scaled, translate to the results
from Triomineering.
An interesting observation is that the nodes explored for Domineering scale
up very explosively on the larger sizes, which is something that was not mea-
sured as extremely in Triomineering. This can be explained by the number
of moves to be explored is a lot lower in Triomineering (an 8× 8 Domineer-
ing board translates to a 12 × 12 Triomineering board). Then, there are a
few board sizes in the Triomineering table where there is a low number of
nodes explored (8× 9 only has 30,664 explored nodes, while both 8× 8 and
8×10 need a lot more nodes). This is likely because of specific shapes being
formed, or because of symmetry in the transposition tables.

6.2 Experiment Two: Additions to the solver

When observing figure 9 it is clear which techniques helped the most and
which suffered the most as the board size increased. In appendix B a table
can be found that specifies the time taken for each run. Without any added
techniques the alpha-beta solver took 5.569 seconds to solve a 6 by 6 board.
With the addition of the transposition table this time was cut down to 0.737
seconds. With the addition of symmetry this fast time could be decreased
even further to 0.576 which is around a 20% speed up. Symmetry has the
impact it has due to all played pieces being ”identical” and thus many board
states are actually identical but are just flipped.
The speed up provided by the transposition tables seems impressive but
pales in comparison to the speed up provided by the move ordering technique
which reached a time of 0.239 seconds on a 6 by 6 board. As the size of the
game board increases the branching factor has a clear impact on the speed
of solving the game and thus being able to do the best move first will be
highly useful.
The final observation that should be stated is that none of these techniques
could solve an 7 by 7 board on their own in less then 5 minutes but when
combined they were able to solve a 9 by 9 board in 61 seconds.

18



7 Conclusion

This paper introduced the game domain of Triomineering and proposed a
combination of techniques to solve it, using search tree heuristics on one
side and CGT properties on the other. CGT values are more specific to the
game domain and thereby a powerful tool to create a more efficient game
solver for Triomineering.

The results of this paper contribute solver results to a game variation not
explored thoroughly yet. Extending the game domain of Domineering is
a valuable way of gaining new insight into and a different view on known
techniques and may help to find novel techniques to make solvers on this
domain more efficient.

8 Future Work

While combinatorial game values calculated by the Combinatorial Game
Suite were used to determine the correctness of the solver’s results and
were partly used in the solver’s search strategy, actually incorporating these
values for sub games in the search to increase the solver’s speed still needs
to be implemented. The challenge here is to combine the different solver
prunings with a way of adding the game values of different sub games that
is still proven to create correct results.

Different techniques were elaborated on. There are still more optimizations
possible, the most notable ones being endgame databases and replacement
schemes. Endgame databases can be used to compute the value of small
sub games beforehand that are repeated many times in the game tree to
avoid recalculating them every time they occur. In contrast to transposition
tables, which are built up from scratch every time a search is started, the
endgame values could be stored in an external file or database and be loaded
into the cache by the solver upon start of the program. Replacement schemes
are used to handle collisions, which can occur if two different boards have
the same hash values; different strategies have to be examined for that to
find the most efficient one.

19



References

[1] Combinatorial game suite. http://sourceforge.net/projects/

cgsuite/. A. Siegel.

[2] M. Barton. Incorporating combinatorial game theory into an alpha-
beta solver for the game of domineering. Master’s thesis, Maastricht
University, 2014.

[3] H.J. van den Herik D.M. Breuker, J.W.H.M. Uiterwijk. Solving 8 x 8
domineering. (230).

[4] G. B. Hinckley and N. Bullock. Domineering: Solving Large Combina-
torial Search Spaces. University of Alberta, 2002.

[5] H.J. Van den Herik J.W.H.M. Uiterwijk and L.V. Allis. A knowledge-
based approach to connect-four. the game is over: White to move wins!
Technical report, 1989.

[6] R. Nowakowski M. Albert and D. Wolfe. Lessons in play: an introduction
to combinatorial game theory. CRC Press, 2007.

[7] P. Norvig S. J. Russell. Artificial Intelligence: A Modern Approach (3rd
ed.). Pearson Education, 2010.

20



9 Appendix A. System Specs

All experiments were done on the following system:
Operating System: Ubuntu 14.04 64-bit
Ram: 7.6GB
Processor: Intel Core i7-3630qm CPU@2.4GHZ*8
Program: NetBeans 8.1

10 Appendix B. Experiment B Table

Area Alpha-Beta Transposition Tables Symmetry Mover Ordering All Techniques

9 0.004 0.004 0.002 0.004 0.004
16 0.006 0.004 0.005 0.005 0.003
25 0.055 0.032 0.023 0.012 0.005
36 5.569 0.737 0.576 0.239 0.053
49 * * * * 0.465
64 * * * * 14.395
81 * * * * 61.005

* implies run took longer then 5 minutes

Table 3: Experiment Two: Time Taken Per Area(Seconds)

21


