
Research and Development of a New Robot Soccer Platform

J. Boonen, M. Houbraken, O. Lehmacher, J. Robers, G. Theunissen

January 21, 2016

Abstract

The RoboCup Soccer League is an interna-
tional competition in which teams from all
over the world compete in order to develop au-
tonomous humanoid robot soccer players. The
Dutch Nao Team participates in the Standard
Platform League: a domain in the RoboCup
for which teams find the best software for a
standard robot, in this case the NAO robot.
This summer, the Dutch Nao Team has de-
cided to build a new platform for this software
development from scratch, based on ROS. This
research investigated whether this basis was
the right choice, and concluded that ROS is
indeed a good option to base a platform on.
The research then focused on battling some of
the numerous challenges that occurred when
combining ROS with the NAO robots for this
specific research domain.

1 Introduction
The RoboCup Soccer League is an international initia-
tive that aims to promote the fields of Robotics and
Artificial Intelligence and to improve already existing
technologies. Its official goal consists of achieving a soc-
cer team of fully autonomous humanoid robot players
that is able to win a game against the winner of the
most recent World Cup by 2050, while complying with
the official FIFA-rules [6]. Currently the RoboCup is
divided into several competition domains, one of which
is the Standard Platform League in which all teams use
identical robots and focus on proper software develop-
ment rather than robot mechanics. The robots used in
this League are NAOs, humanoid robots developed by
Aldebaran Robotics [6].

This research project focuses its research around the
following problem statement:

Find and research a new software platform that
can be used with the NAO robots in the

Standard Platform League

This problem statement can be subdivided in two re-
search questions:

1. What is the most appropriate platform for this ap-
plication?

2. What is needed additionally for this platform to
work with the NAO Robots?

The structure of this paper looks as follows. First,
some background knowledge will be provided on the
NAO robots and the history of the Dutch Nao Team.
Then, the two sections thereafter will aim to each an-
swer one of the research questions. Finally, a conclusion
will be drawn and the possible future work on this topic
will be presented.

2 Background
This section will give a short introduction on the Stan-
dard Platform League and the NAO robot. Further-
more, a context will be given around the Dutch Nao
Team and their previous experiences in the RoboCup
Standard Platform League.

2.1 The NAO Robot

The RoboCup Standard Platform League uses a stan-
dard robot that all teams must conform to. This makes
sure that in this League improvements are made on the
software development only, and no attention has to be
paid to improving the hardware of the robots. The
robot has to be able to operate fully autonomously, no
remote control by humans or other computers is allowed
during the game. The first robot the SPL used as its
standard robot, was the Sony AIBO [4] in 1999. At
that time, the League was still called the Sony Four-
Legged League and only a small number of teams were
invited to join. After Sony announced it would discon-
tinue the production of the AIBO in 2006, the League
searched for a new robot and considered the Aldebaran
Robotics humanoid NAO. Then in 2009 the League de-
cided that the NAO would be the new standard robot
and the name of the League was changed to the Stan-
dard Platform League.

J. Boonen, M. Houbraken, O. Lehmacher, J. Robers, G. Theunissen Research and Development of a New Robot Soccer Platform

2.2 The Dutch Nao Team
The Dutch Nao Team has been one of the compet-
ing teams in the RoboCup since 1998, and competes
in the Standard Platform League since 2004 [8]. At
that point, Python was their main programming lan-
guage until they switched to a specialised code base in
2013. This code base (then called NAOTH) was devel-
oped by the University of Amsterdam and specifically
designed for the Standard Platform League [9]. Due
to lack of documentation, it was decided to use the B-
Human framework instead during the soccer competi-
tions of 2014 and 2015. The B-Human framework is
developed by another competing team in the RoboCup
from the University of Bremen [10]. However, this sum-
mer the Dutch Nao Team decided to develop their own
framework, starting from scratch while developing it on
the basis of ROS (Robot Operating System). In order
to make the transition between the two platforms eas-
ier, it is intended to encapsulate some of the most recent
version of the B-Human motion model and use it in the
new framework. This is possible as it was done before
in the research conducted by the University of Chile
[1]. Since Maastricht University is currently part of the
DNT, this research may contribute to their development
of a new soccer platform.

3 Choice of Platform
When developing a framework to operate the NAO
robots from scratch, many different platforms are avail-
able. Some of these platforms were compared during
this research project, such as Choregraphe, NAOqi, B-
Human and ROS. These different options will be pre-
sented in the following paragraphs and their advantages
and disadvantages will be explained.

3.1 Choregraphe
First, Choregraphe is an easy to use platform that was
developed by Aldebaran itself as an accompanying tool
for the NAO robot. It uses an understandable graph-
ical interface that allows for pre-programmed modules
to be dragged and dropped into a larger structure that
is compatible with the robot. This interface is easy to
understand for a user with limited programming knowl-
edge. These modules can be created from scratch as
well, but in order to do that the user needs a compre-
hensive understanding of either Python or C++. It is
made to work with the NAO so an advantage is that it
is easy to start up and make the NAO do simple tasks.
However, it is a very simple platform that does not in-
clude a large amount of readily made modules. The
disadvantages of this platform are that the number of
modules that can be put together is limited, and there
are no specific modules available for playing soccer.

3.2 NAOqi
Aldebaran developed another framework for the NAO
robot, called NAOqi. It is the operating system that
runs on the NAOs and acts like a development kit in
which the user can program tasks in either Python or
C++. Since it is provided by Aldebaran, it is compat-
ible with the NAO robot and therefore easy to set up,
but each task needs to be programmed from scratch.

3.3 B-Human
B-Human is a soccer specific platform that was devel-
oped by the team representing the University of Bremen
[10]. It has been used by several other teams in the
Standard Platform League, amongst which is also the
Dutch Nao Team. This platform is ready to use, well
documented and has active support. However, using it
means being dependent on another team in the same
competition. On top of that, it is difficult to adapt or
optimize specific features in the platform without con-
sulting the B-Human team.

3.4 ROS
Finally, the Robot Operating System (ROS) is an open
source platform that can be used for a large amount
of applications. It contains a large set of ready-made
libraries, such as messaging, localization and mapping
modules. A ROS-version that is specifically developed
for the NAO robot is also available. The fact that the
platform is open source implies that a large commu-
nity is currently working on and improving it, so it
also has active support. In order to use ROS, the user
needs to have knowledge of C++ and run a version of
Linux (preferably Ubuntu). A drawback is that it has
a very steep learning curve, which makes it difficult to
start running ROS on a robot without prior knowledge.
However, since ROS currently is the standard operating
system for most robotics projects many users working
with the soccer platform will most likely already have
this background knowledge. If not, it will only be highly
useful for their future career to learn more about this
platform. Furthermore, when fully developed and bug-
fixed, it will be easy to implement and improve upon
different modules that are needed for the Standard Plat-
form League.

3.5 Comparison
In table 1, all these options are compared. Taking all
these factors into account, it can be concluded that both
Choregraphe and NAOqi would not be very suitable for
a soccer league platform. Expanding these frameworks
to the extent at which they would be useful for playing
soccer would most likely have to be done from scratch
and would be unnecessarily difficult. When compar-
ing the B-Human framework to the ROS framework,

(p.2)

Research and Development of a New Robot Soccer Platform J. Boonen, M. Houbraken, O. Lehmacher, J. Robers, G. Theunissen

Advantages Disadvantages

Choregraphe

- Easy to understand
- Simple drag & drop UI
- Easy start up
- Compatible with NAO
- Contains built-in simulator

- Number of modules is limited
- No specific modules for soccer
- Need knowledge of Python or C++ to develop own
modules

NAOqi - Easy start up
- Compatible with NAO

- Each task needs to be programmed from scratch
- Need knowledge of Python or C++ to develop own
tasks

B-Human
- Ready to use
- Well documented
- Active support

- Dependent on other teams in the League
- Difficult to understand
- Difficult to optimize features

ROS

- Open source
- Large range of applications
- Readily available useful libraries
- Large community
- Currently standard OS for robotics
applications

- Need knowledge of C++
- Need to run Ubuntu or other version of Linux
- Steep learning curve
- Difficult start up
- No compatibility with the NAO

Table 1: Shows the different options for the development of a new soccer platform and their advantages and disad-
vantages.

the advantages of ROS in the long term outweigh the
usability advantages of B-Human. Therefore, it can be
concluded that a framework based on ROS would be the
best choice for the development of a soccer league plat-
form. The Dutch Nao Team has come to the same con-
clusion independently of this research team, and there-
fore the decision is made to use ROS as a basis for the
new platform.

4 Development Progress
After deciding on the ROS platform, the development
process could be started. In this section the develop-
ment progress is discussed. First, a short explanation
is given on the architecture and workings of the ROS
platform. Then, it is discussed what is necessary to
get the platform running. After that, it is explained
what is required to play robot soccer using this plat-
form. To get the platform running some previous work
can be used. This previous work is discussed in the
second subsection. In the third subsection an overview
is given of what is needed in order to play soccer with
this platform. In the last two subsections the current
achievements are presented, and some difficulties that
were encountered in the process are summed up.

4.1 The ROS Platform
The ROS platform uses a structure consisting of a mas-
ter, which is in control, and a number of nodes. These
nodes can be anything, from small programs to a full
robot. The communication between nodes happens over
so-called topics. Nodes can publish messages on one or

multiple topics or they can subscribe to one or multiple
topics. If a node is subscribed to a certain topic, it re-
cieves all the messages that are published on this topic.
The master generally runs on a PC and the nodes can
either run on the same PC or on an external system or
both. A detailed overview of the ROS platform can be
found on the website [13].

4.2 Running ROS on the NAO Robot

A special version of ROS is available for the NAO robot
[11]. In principle, this ROS version is ready to use and
can be installed on a NAO robot using the available tu-
torials. Additionally, some teams that have competed
in the RoboCup in the past already used ROS as a basis
for their soccer platform, for example a team from Swe-
den [2] and Chile [1]. There are many tutorials available
online that explain the ROS platform and all of its fea-
tures. The use of these tutorials proved to be somewhat
limited however, as will be explained in the last section.
Because of the limited use of the available tutorials, the
installation of ROS on the NAO proves to be more dif-
ficult than expected. In addition, a development envi-
ronment has to be set up to allow for easy development
and compilation of custom C++ or Python code. This
code is ordered into packages which then can be run as
ROS nodes on the NAO robot. The installation of ROS
on the NAO robot is described in Appendix B. A tuto-
rial to set up a development environment can be found
in Appendix A.

(p.3)

J. Boonen, M. Houbraken, O. Lehmacher, J. Robers, G. Theunissen Research and Development of a New Robot Soccer Platform

4.3 Playing Soccer
The RoboCup rules dictate that limited communication
is allowed between robots. Therefore running only one
master on one NAO robot and having the other robots
connect to that master is not allowed. Similarly, run-
ning a master on an external PC is not allowed. Thus
an individual master has to be set up and run on each
NAO robot. These should only communicate when nec-
essary. The form of this communication can be chosen
freely (e.g. WiFi or speech). There has been some pre-
vious work on this issue and there are some solutions
available. One solution [3] makes use of a special ROS
package [12] to allow a network of ROS masters to com-
municate with each other. This package is however not
available for the ROS distribution used for the NAO.
Therefore, to use this solution, the package needs to be
ported somehow to work on the NAO robot. Another
solution [7] makes use of a package for WiFi commu-
nication. This package or a similar package allowing
WiFi communication should be available for the NAO
robots. Therefore this second solution seems to be the
best choice for solving the issue of needing multiple mas-
ters, however more research is necessary to confirm this.

To achieve actual soccer behavior in the NAO
robots, a lot of implementational work has to be done.
The work can be spread over a longer time period by
using an intermediate solution. In this intermediate so-
lution, parts of the B-Human platform [10], mentioned
in section 3, can be encapsulated and integrated into
the ROS framework. This can be seen as a transition
process where at each iteration, a part of the B-Human
platform that was encapsulated can be replaced by a
new ROS node. The encapsulation of parts of the B-
Human platform is an idea that is also proposed by the
Dutch Nao Team in their qualification document for the
RoboCup 2016 [9]. Furthermore, since winning a soccer
match in the RoboCup is fairly ambitious using a new
platform like ROS, it is best to focus more on the tech-
nical challenges of the RoboCup first. These technical
challenges focus on single tasks instead of a whole soc-
cer game. For example, one challenge could be on how
to take corner kicks.

4.4 Achievements
A ROS distribution is currently running on one of the
NAO robots. Specifically, the version that is installed
is an adapted version of ROS Indigo tailored for the use
on a NAO robot [11]. A ROS master can be started
on the NAO robot and the provided nodes and topics
can be accessed. Also a development environment has
been set up to allow development and compilation of
C++ or Python code. This development environment
makes use of a virtual machine with NAOqi installed.
The installation of the ROS platform on the virtual ma-

chine and on the physical NAO robot is practically the
same. The development and compilation of C++ code
has been tested and it is possible to run custom C++
code on the NAO robot in the form of a ROS node. So
far only basic behavior has been achieved since a lot
of time has been lost on dependency issues and other
difficulties which will be explained in the next section.

4.5 Difficulties
During the development process several difficulties were
encountered which caused delays. First of all, as men-
tioned before, there is an abundance of tutorials avail-
able on ROS for the NAO platform and for the ROS
platform in general. The problem with these tutorials
is that they are often incomplete and mostly outdated.
The tutorials are mostly written by community mem-
bers and can therefore be very specific to that user’s
system. Another problem is that the ROS distribution
for NAO is quite complicated. Most tutorials describe
how to run ROS on the NAO and controlling it via an
external PC (for example, through RVIZ [5]). The goal
in this project however is to run ROS completely and
independently on the NAO robot itself. Furthermore,
the ROS distribution for NAO does not seem to be un-
der active development. Most tutorials and forum posts
are a few years old and also some packages are based on
older ROS distributions. This causes issues with cer-
tain dependencies, which leads to a lot of work trying
to figure out which dependencies are missing and how
to install or bypass them. Additionally, the Linux dis-
tribution running on the NAO robot (Gentoo) is very
restrictive and uses its own package manager (Portage).
This complicates the problem of missing dependencies
even further, since some particular dependencies are not
available in Portage and thus have to be downloaded on
a different Linux distribution (e.g. Ubuntu) and then
copied to the NAO robot. One can understand that this
is not an ideal way of working. Finally, there is an is-
sue with the file system on the NAO robot. By default,
the Gentoo operating system tries to install everything
on the root folder of the NAO robot. Since this root
folder has only limited disk space, it quickly runs out
of space. When there is no more space left on the root
folder, it is not possible to install the necessary ROS
dependencies. It is possible to insert an SD-card into
the NAO robot, but for some reason this can not be
used to install system dependencies.

To summarize, the following difficulties were encoun-
tered during the development process:

• Outdated or incomplete tutorials

• Tutorials often specific to the author’s system con-
figuration

• Running a ROS master on the NAO is complicated

(p.4)

Research and Development of a New Robot Soccer Platform J. Boonen, M. Houbraken, O. Lehmacher, J. Robers, G. Theunissen

• ROS distribution for NAO does not seem to be un-
der active development

• Operating system on the NAO robot is restrictive
• Limited disk space on the NAO robot

5 Conclusion
This research project aims to solve the following prob-
lem statement: Find and research a new software plat-
form that can be used with the NAO robots in the Stan-
dard Platform League.

In theory, to base the soccer platform on a ROS
framework would be a well motivated choice. Chore-
graphe and NAOqi would not be very suitable, since
the process of making these frameworks useful for the
soccer application would be unnecessarily difficult. B-
Human has advantages, as mentioned in section 3, but
the dependency on another team in the League is un-
desirable. ROS has many useful properties, such as a
large backing up community, as well as readily available
libraries.

However, in practice, ROS proves to be difficult to
integrate with the NAO robot for this specific applica-
tion as explained in section 4. Many achievements were
accomplished, such as the installment of a ROS distri-
bution on the NAO robot, the setup of the development
environment and the ability to run custom C++ code
via ROS on the NAO. However, tutorials are mostly
outdated and many dependency problems occur, which
caused a lot of difficulties and hindered the development
progress. Therefore, ROS needs to be researched more
extensively. It needs to be well understood and properly
integrated with the NAO robot in order to be useful for
this application. Thus, a platform based on the ROS
framework might not be the best short term solution
since a lot more research is needed. However, this can
be bypassed by encapsulating useful parts of B-Human
and integrating them into the ROS framework.

6 Future Work
More experiments with the combination of ROS and
the NAO robot need to be done in order to get more in
depth knowledge of ROS. The tutorials that are avail-
able now need to be reviewed and updated since most
are outdated.

Furthermore, useful modules can temporarily be
taken and encapsulated from the B-Human platform
and used in the new ROS framework. This can act
as an intermediate solution until the framework for the
soccer league is completely redesigned, a process that
will most likely take a few years to be accomplished.

Issues like the multi-master problem explained in
section 4.3 need to be solved, and the knowledge should
be shared with the Dutch Nao Team.

References
[1] Forero, Leonardo Leottau, Yáñez, José Miguel,

and Solar, Javier Ruiz-del (2014). Integration of
the ROS framework in soccer robotics: the NAO
case. RoboCup 2013: Robot World Cup XVII,
pp. 664–671. Springer.

[2] Fredrik Heintz, Mattias Tiger Gustav Häger
Jon Dybecl Karl Homquist Tore Haglund
Michael Felsberg, Fredrik LöfgrenLinköping Hu-
manoids - Team Description.

[3] Hernádez Juan, Sergi and Herrero Cotarelo, Fer-
nando (2015). Technical report: Multi-master
ROS systems.

[4] Hu, Huosheng and Gu, Dongbing (2001). Reac-
tive behaviours and agent architecture for sony
legged robots to play football. Industrial Robot:
An International Journal, Vol. 28, No. 1, pp. 45–
54.

[5] Kam, Hyeong Ryeol, Lee, Sung-Ho, Park, Tae-
jung, and Kim, Chang-Hun (2015). Rviz:
a toolkit for real domain data visualization.
Telecommunication Systems, pp. 1–9.

[6] Kitano, Hiroaki, Asada, Minoru, Kuniyoshi, Ya-
suo, Noda, Itsuki, and Osawa, Eiichi (1997).
Robocup: The robot world cup initiative. Pro-
ceedings of the first international conference on
Autonomous agents, pp. 340–347, ACM.

[7] McEachern, Kevan (2012). Using Multi-
ple Masters to Preserve Robot Independence
and Reduce Network Latency in a ROS Sys-
tem. https://www.ri.cmu.edu/education/
McEachernRISSposter.pdf. Accessed: 15-01-
2016.

[8] Oomes, Stijn, Jonker, Pieter, Poel, Mannes,
Visser, Arnoud, and Wiering, Marco (2004). The
dutch aibo team 2004. Proceedings CD of the
8th RoboCup International Symposium.

[9] Kok, Mustafa Karaalioglu Caitlin Lagrand
Michiel van der Meer Jonathan Gerbscheid
Thomas Groot Patrick de, Sébastien Negrijn
and Visser, Arnoud (2015). Dutch Nao Team,
Team Qualification Document for RoboCup
2016 Leipzig, Germany.

[10] Röfer, Thomas, Laue, Tim, Burchardt, Armin,
Damrose, Erik, Müller, Judith, and Rieskamp,
Andrik (2008). B-human team description for
robocup 2008. in RoboCup 2008: Robot Soccer
World Cup XII Preproceedings, Citeseer.

[11] Aldeberan nao - package summary. http://
wiki.ros.org/nao. Accessed: 15-01-2016.

(p.5)

https://www.ri.cmu.edu/education/McEachernRISSposter.pdf
https://www.ri.cmu.edu/education/McEachernRISSposter.pdf
http://wiki.ros.org/nao
http://wiki.ros.org/nao

J. Boonen, M. Houbraken, O. Lehmacher, J. Robers, G. Theunissen Research and Development of a New Robot Soccer Platform

[12] Package summary of the multimaster_fkie
package. http://wiki.ros.org/multimaster_
fkie. Accessed: 15-01-2016.

[13] Ros. http://www.ros.org/. Accessed: 15-01-
2016.

(p.6)

http://wiki.ros.org/multimaster_fkie
http://wiki.ros.org/multimaster_fkie
http://www.ros.org/

Research and Development of a New Robot Soccer Platform J. Boonen, M. Houbraken, O. Lehmacher, J. Robers, G. Theunissen

Appendix
The appendix contains additional information about
how to set up ROS on either a virtual machine or a
real robot. The following steps are tested for NAOqi
version 2.1.4 and ROS Indigo. They may not work for
different versions of NAOqi or ROS due to changes, that
were made for either of these programs. Additionally,
Appendix C explains the cooperation within the project
group during this research project.

A Setting up a Development VM
The following section contains a guide through the nec-
essary steps, that need to be done in order to set up
a virtual machine, which can be used to program and
compile packages for the NAO.

A.1 Download and Import the VM
• Download the Image of the NAOqi VM from Alde-

baran Website (account required)

• Download and Install Virtual Box

• Import the downloaded file into the Virtual Box
(File >Import Appliance >downloaded file)

• Connect to the VM
ssh nao@localhost -p 2222
type yes
password: nao

A.2 Install Packages and Dependencies
for ROS

• su -c ’sed -i "s |#allow user nao to shutdown the
robot|nao ALL=(all) all\n&|" /etc/sudoers’

root password: root

• Download the bootstrap file
curl -k -s https://chili-

research.epfl.ch/ros4nao/bootstrap.sh | sh

• Install required packages
sudo emerge log4cxx netifaces pyyaml poco apr

apr-util
Note: may need to add –autounmask-write
Note: may need to call sudo etc-update

• Install ROS
robotpkgin install nao-robot

You need to call source ~./bash_profile

• Install some basic packages
robotpkgin install ros-robot ros-image-common

See robotpkgin for more packages

A.3 Setting up the Workspace
• Create folder for the workspace

mkdir -p /catkin_ws/src

• Initialize the catkin workspace
cd /catkin_ws/src
catkin_init_workspace

• Build the workspace
cd /catkin_ws
catkin_make

• Source the /devel folder
source ~/catkin_ws/devel/setup.bash

If the error Unable to find either executable ’empy’ or
Python module ’em’ occur than install the python empy
module with: sudo pip install empy

A.4 Creating and Building Packages
• Create the package folder

cd ~/catkin_ws/src
catkin_create_package <NAME> <DEPEN-

DENCIES>

• Create a source file
cd ~/catkin_ws/src/<PACKAGE_NAME>/src
touch [file].cpp

• Configure the CMakeList.txt
open the CMakeList.txt file under

src/<NAME>/
uncomment the following entries

add_executable(<node_name>
<path_to_src_file>)

add_dependencies(<node_name>
<src_file.cpp>)

target_link_libraries(<node_name>
${catkin_libraries})

• Build the package
cd ~/catkin_ws
catkin_make

• Sync the file to the robot
catkin_make install -

DCMAKE_INSTALL_PREFIX=/opt/openrobots
sudo rsyn -raz /opt/openrobots –no-perms -O

nao@<IP addr>:/opt/

A.5 Launch the Code on the NAO
Robot

• Start ros
roslaunch nao_bringup nao.launch

• Start your node (new terminal)
rosrun [package_name] [node_name]

(p.7)

J. Boonen, M. Houbraken, O. Lehmacher, J. Robers, G. Theunissen Research and Development of a New Robot Soccer Platform

If the error unable to contact my own server oc-
curs, export the ip of the NAO robot: export
ROS_IP=<ros_ip>. This might be needed to be done
for each new terminal.

B Installation of ROS on a Real
NAO

This section deals with installing ROS on a real NAO.
The following steps were tested with NAOqi 2.1.4, ROS
Indigo on a NAO V4. They might not work when using
other versions of ROS or NAOqi.

B.1 Flash the NAO
Flash the NAO in order to ensure, that there is enough
space left on the NAO robot. If the robot was recently
flashed or there is enough space left on the NAO, this
step can be omitted. To flash the NAO, please follow
the steps described below:

• Prepare the USB stick by formatting it

• Download the flasher tool from the Aldebaran web-
site

There are two different versions
Please download the tool according to your OS

• Download the Naoqi image from the Aldebaran
website

• Start the flasher tool and use it to copy the image
to the USB stick

• If prompted choose factory reset
This will remove everything from the nao

• Shutdown the NAO

• Put in the USB stick

• Press the chest button for at least five seconds
The eyes will turn blue

• Progress of reset will be shown by the circle of the
ears

B.2 Install ROS
In order to install ROS on the NAO follow the same
steps, that are required to install ROS on the develop-
ment VM (see section A.2).

C Cooperation
The project group met weekly on Wednesday in order
to work together on the project task. In the first two
periods there were weekly project meetings and in the
third period there were two project meetings each week.
These project meetings were held to inform the project
coordinator of the status of the project and to discuss
any issues.

C.1 Division of Tasks
The first two periods of the project consisted mainly of
researching the different platforms. This was a shared
task for the whole group. Furthermore, each group
member had some specific tasks as well, as can be seen
in table 2.

Tasks
Jeroen ROS development, research
Mara Report, research
Oliver ROS development, research
Jonas Contactperson, research, ROS development
Guy Research

Table 2: Task division

(p.8)

	Introduction
	Background
	The NAO Robot
	The Dutch Nao Team

	Choice of Platform
	Choregraphe
	NAOqi
	B-Human
	ROS
	Comparison

	Development Progress
	The ROS Platform
	Running ROS on the NAO Robot
	Playing Soccer
	Achievements
	Difficulties

	Conclusion
	Future Work
	Setting up a Development VM
	Download and Import the VM
	Install Packages and Dependencies for ROS
	 Setting up the Workspace
	Creating and Building Packages
	Launch the Code on the NAO Robot

	Installation of ROS on a Real NAO
	Flash the NAO
	Install ROS

	Cooperation
	Division of Tasks

