Playing Tic-tac-toe with the NAO humanoid robot

Renzo Poddighe

July 1, 2013

Abstract

This paper describes the challenges that have
to be tackled when playing a game of tic-tac-
toe with the NAO humanoid robot. The most
important aspects of tic-tac-toe for a robot are
solving the Inverse Kinematics problem, and
analyzing the game board using image process-
ing. It succeeded in drawing om the board us-
ing the FABRIK algorithm for moving the arm,
and Hough line and circle transform for recog-
nizing the board and the symbols.

1 Introduction

This paper covers the aspects involved in enabling a
NAO humanoid robot to physically play a game of Tic-
tac-toe against a human player. The main focus is on
coordinating the NAO’s arm movements, which concerns
solving the Inverse Kinematics problem, but also recog-
nizing the board using image processing.

Moving the arm may seem like a straightforward task,
but is in fact quite difficult to accomplish for a robot. A
human’s capability of interpreting its environment more
heuristically outperforms the robot’s generally more
mathematical approach in this case. The mathematical
description of the Inverse Kinematics problem is a non-
linear system of equations with possibly multiple solu-
tions. Traditional methods are computationally expen-
sive, because they rely on constructing and operating on
large and complex matrices. Furthermore, the NAO does
not possess that much processing power. An computa-
tionally cheap approach that comes up with solutions
more efficiently is therefore the preferred approach in
this case.

Recognizing the board is another example of task
which is obvious for a human because of the brain’s abil-
ity to interpret and match patterns, but a more difficult
task for a robot. Fortunately, image processing software
containing algorithms that are sufficient for this rela-
tively simple task is freely available. Playing Tic-tac-toe
is a well-known problem, and is easily solvable by a com-
puter. A basic minimax search algorithm is sufficient in
this research.

1.1 Research questions

The research questions this paper focuses on are:

1. How is the drawing of a circle and a cross in the
correct square of the game board coordinated?

2. Is the NAO capable of recognizing the figures on
the board and interpreting them in the context of
tic-tac-toe?

1.2 Structure

This section contains an overview of all the tasks that
are tackled in this paper, as well as the structure of this
paper and an overview of the terms used in this paper. In
Section 2, information about the hardware and software
is listed. Section 3 describes the preliminaries and identi-
fies relevant research challenges. Section 4 describes the
approaches used to enable the NAO to play tic-tac-toe.
The implementation of these approaches can be found
in Section 5. Finally, the conclusion about the research
and some suggestions for future research can be found
in Section 6.

1.3 Terminology
In this paper, the following terminology will be used.
e Kinematic chain: a series of links connected by
joints.
e Joint: a point in a kinematic chain rotatable along
one or multiple axes.
e Link: a rigid body (i.e. solid, not deformable)
within a kinematic chain.
e End effector: the final link in a kinematic chain.

e Root: a fixed point, the beginning of a kinematic
chain.

e Degree(s) of freedom (DOF): the number of in-
dependent parameters that define the configuration
of a kinematic chain.

2 Environment

This section describes the hardware components and the
technical specifications of the NAO. An overview of the
software that was used will be given as well.

2.1 Hardware

The NAO is a humanoid robot developed by the French
company Aldebaran Robotics, founded in 2005.[1]

TACTILE SENSORS
SPEAKERS (X2) AND r
EARLEDS 1

— ~— FRONT & REAR
MICROPHONES

INFRARED EMMITER/ CAMERAS [X2)

RECEIVER AND EYELEDS LATERAL
MICROPHONES (X2)
SHOULDER JOINT

HEAD JOINT

CHEST BUTTON SONARS (X4)

~ ELBOW JOINT
BATTERY

WRIST JOINT

TACTILE SENSORS

KNEE JOINT
ANKLE JOINT

BUMPERS (x2)

Figure 1: NAO joints and sensors.

All of the joints in Figure 1 can move independently
of each other. The technical specifications of the NAO
are listed in Table 1.

Technical Specifications

Version 3.2
Body type H25
Degrees of freedom 25
Height 573,2 mm
Weight 4.8 kg
Autonomy 60-90 min.

CPU x86 AMD GEODE 500MHz CPU
Memory 256 MB SDRAM / 2 GB flash memory
Cameras 2 x VGA@30fps

Connectivity Ethernet, Wi-Fi

Table 1: Technical Specifications.

The arm

The arm of the NAO is a kinematic chain consisting of
three joints and two links. Table 2 lists the joints in the
arm, and the axes around which they are able to rotate.
The z-axis is parallel to the shoulders of the NAO, the
y-axis points in front of the NAO and the z-axis is the
vertical axis. Note that the shoulder joint and the elbow
joint both have two degrees of freedom, whereas the hand
joint only has one.

Joint name Axes
Shoulder r-axis, z-axis
Elbow y-axis, z-axis

Hand y-axis

Table 2: List of joints and their rotation axes in the arm of
the NAO.

2.2 Software

The NAOqi SDK is a cross-platform, cross-language
programming framework in which all programs for the
NAOQOs are written. The framework allows creating new
modules intercommunicating with standard and/or cus-
tom modules, and loading these as programs onto the
NAO. It is cross-platform because it is possible to run it
on Windows, Mac or Linux. It is cross-language because
it supports a wide range of programming languages. It
is only possible to write local modules using C/C++
and Python. For remotely accessing and controlling the
NAOs, however, NAOqi also supports .NET, Java, Mat-
lab and Urbi. The NAOqi SDK version 1.14 was used in
this research.

e Programming language: C/C++. This was the
obvious choice to make, since C++ is described on
the Aldebaran website as the 'most complete frame-
work’, and it is the only language that allows the
writing of real-time code, making the software run
much faster on the NAO. Furthermore, when using
C++, there is no need for a wrapper for another
language in order to make OpenCV (the image pro-
cessing toolbox used for this research) work, since
this is also written in C++.

e Linear algebra: Eigen[5]. Eigen is a highly opti-
mized C++ template library used for linear algebra.
All operations involving matrices or vectors are done
using Eigen. Version 3.1.3 was used in this research.

¢ Building/Cross-compilation: qiBuild[2]. This
cross-platform compiling tool, based on CMake,
makes creating and building NAOqi projects easy by
managing dependencies between projects and sup-
porting cross-compilation (ability to build binary
files executable on a platform different from the
building platform).

e Image processing: Open Source Computer Vision
(OpenCV).[6] This is the image processing library
that is supported by the NAOqi SDK. Version 2.3.1
was used in this research, since this is the latest
version supported by the NAOqi SDK v1.14.

e Higher-level robot control: Choregraphe.
Choregraphe is a graphical tool developed by Alde-
baran Robotics that allows easy access to and con-
trol of the robot. From within Choregraphe, it is

possible to control individual joints or create a se-
quence of existing modules to be executed by the
robot.

3 Preliminaries

3.1 Forward Kinematics

Forward Kinematics can be described as the problem of
calculating the position of the end effector (or any other
joint) of a kinematic chain from the current joint angles
of that chain. In other words, Forward Kinematics is
the problem of mapping the joint space of a kinematic
chain to the Cartesian space. Unlike Inverse Kinemat-
ics, Forward Kinematics is straightforward in deriving
the equations, always has a solution, and can be solved
analytically.

The kinematics equations[8] are the equations in
which the position and orientation of the target joint
are described. These equations are a sequence of affine
transformations, a transformation in which the ratios of
distances between every pair of points are preserved. To
represent affine transformations, so-called homogeneous
coordinates must be used. This means describing an n-
vector as an (n + 1)-vector, by adding a 1. For example,
when applying it to the case of the NAO, a joint coor-
dinate in three dimensions (x,y, z) is represented by the
vector (x,y,z,1). This is necessary because it is now
possible to describe translations using matrix multipli-
cation, as shown in Equation 1:

~

< 5

(1)

O~ OO
— N ey

T
Y

22
1

—

|
o O O =
OO = O

The translation is described by the 4-by-4 matrix,
which is a transformation matrix containing the transla-
tion’s homogeneous coordinates:

Tr(t) = (2)

~ ok
<

SO O =

o o= O

o= o o
Y

where t is the vector (t;,ty,t.). This matrix can be in-
cluded in the kinematics equations to describe the trans-
lations along the links of the kinematic chain. The ro-
tations around the given joint angles are represented by
rotation matrices: matrices describing a rotation around
an axis with a certain angle 6. In three dimensions, there
are three rotation matrices, one for each axis:

1 0 0
R.(0) = |0 cosf —sind
|0 sin 6 cosf]
[cosf® 0 sind]
R, (0) = 0 1 0 (3)
| —sin 0 0 cos 0_
[cos® —sinh O]
R.(0) = [sinf cosf O
| 0 0 1]

To include these in the kinematics equations, they
have to be rewritten as homogeneous matrices. This is
done by adding a row of zeros and a column of zeros to
the matrix, and replacing the bottom-right entry with a
1:

(1 0 0 0

0 cosf —sinf O

R (0) = 0 sinf cosf® O
10 0 0 1]
[cosf® 0 sinf O]

0 1 0 0

Ry(0)=1_ sin@ 0 cosf O (4)

0 0 o0 1]
[cos® —sinf 0 O]

sinf cosf 0 O

R0)= 1" 0 10
0 0 0 1

Using the information about the joint axes in Table 2,
the final transformation matrix 7" can be constructed us-
ing the corresponding sequence of homogeneous rotation
and translation matrices, as shown in Equation 5:

T = Ry(61)R.(02)Tr(11) Ry (03) R-(04)Tr (L) (5)

l; is the translation along the first link of the chain /3
(represented by the homogeneous vector (0,11,0, 1)), and
l; is the translation along the second link. Equation 5
can be broken down into smaller pieces and solved se-
quentially, in order to calculate the coordinates of the
intermediate joints, as explained in Section 4.1.

3.2 Inverse Kinematics

Inverse Kinematics (IK) is the exact opposite of Forward
Kinematics: the problem of calculating the joint configu-
rations of a kinematic chain corresponding to the desired
position of the end effector, or in other words, mapping
the desired joint coordinate in Cartesian space back to
the corresponding configurations in the joint space[8].
Let 8 = 61,05, ...,0, be the n joint configurations
in the kinematic chain. Then let s be the end effector
position, which can be described as a function of the

joint configurations s = f(0), and t the target position.
The Inverse Kinematics problem is to find values for 6
such that s = ¢. Since not all points in Cartesian space
map to a joint configuration, there is no straightforward
inverse function f~!(¢) = 6 for Inverse Kinematics, as
opposed to Forward Kinematics, for which a completely
analytically derivable solution exists. Therefore, Inverse
Kinematics solvers rely on numerical approaches.

3.3 Tic-tac-toe

Tic-tac-toe is a game traditionally played with pencil
and paper, where two players, player X and player O,
take turns drawing either an X or an O on a 3-by-3 grid.
A player who draws three of the same marks in a horizon-
tal, vertical or diagonal row wins the game. The game is
a zero-sum game. When both players play with an opti-
mal strategy, the game will always result in a tie. From
a game theory perspective, this game is not very inter-
esting. However, since it can be drawn on a whiteboard,
is well interpretable by image processing techniques, and
the strategy is straightforward to implement, it is a well-
suited game for this research. The algorithm of choice
is the minimax algorithm|9], a search algorithm which
tries to minimize the maximum possible loss.

4 Algorithms

The algorithms that are relevant to this research are ex-
plained in this section. The algorithms involved in the
coordination of the arm (i.e. forward and inverse kine-
matics) are considered relevant.

4.1 Calculating the joint coordinates

As explained in Section 3.1, the position of the end ef-
fector in a kinematic chain can be calculated by multi-
plying a sequence of affine transformations. When doing
these transformations sequentially, the intermediate re-
sults contain the other joints in the chain.

Obviously, the root joint has coordinates (0,0, 0).
Calculating the coordinates of the next joint involves a
rotation along the z-axis with a given angle 61, a rotation
along the z-axis with a given angle 65, and a translation
along the y-axis of length l;, which is the length of the
first link. Thus, the kinematics equation of the second
coordinate is as follows:

T1 = Rx(gl)Rz(eg)TT(ll) (6)

The last column of the resulting matrix contains
the homogeneous coordinates of the second joint in the
chain. The first three columns contain its orientation.

To get from the intermediate joint to the end effector,
two calculations have to be made. The relative rotation
and translation of the second link has to be calculated.
Then, this has to be translated along the first link in

order to convert the relative transformation into an ab-
solute transformation.

Ty = Ry (03) R (02)Tr (1) (7)
T =T1T5

The matrix T' contains the homogeneous coordinates
of the end effector in the last column, and the orientation
of the joint in the other columns.

4.2 The FABRIK algorithm

FABRIK (short for Forward And Backward Reaching
Inverse Kinematics) is a novel heuristic method, devel-
oped by Aristidou and Lasenby|[3], that tackles the In-
verse Kinematics problem described in Section 3.2. Un-
like traditional methods, FABRIK does not make use
of calculations involving matrices or rotational angles.
Instead, the IK problem is solved by finding the joint
coordinates as being points on a line. These points are
iteratively adjusted one at a time, until the end effec-
tor has reached the target position, or the error is suffi-
ciently small. FABRIK starts at the end effector of the
chain and works forwards, adjusting each joint along the
way. Thereafter, it works backwards in the same way, in
order to complete a full iteration. Since the use of rota-
tional angles and matrices is avoided, the algorithm has
low computational cost, converges quickly, and does not
suffer from singularity problems. Furthermore, the algo-
rithm produces realistic human-like poses and is easily
implemented.

Algorithm 1 describes the FABRIK algorithm in
pseudo-code. In Figure 2, a visualization of the algo-
rithm is shown. The various steps of the algorithm, in-
dicated with the letters (a) through (f) in Figure 2, are
described in words below.

Since homogeneous coordinates are only used in For-
ward Kinematics, the n joint positions of the kinematic
chain can be represented by the triplets p, = (z;, ys, 2:)
for i = 1,2,...,n, where p; is the root joint and p,, the
end effector (a). The target position is named ¢ and
the initial root position is named b. The target posi-
tion is reachable if the distance between the root joint
and the target position, denoted as dist, is smaller than
or equal to the sum of the distances between the joints
di = |pj1 — py| for i = 1,2,...,n — 1. If the target is
reachable, the first stage of the algorithm starts. In this
stage, named ’forward reaching’, the joint positions are
estimated by positioning the end effector on the target
position ¢ (b). The new position of the n — 1*" joint,
pl._1, lies on the line I,_;, which passes through the
point p,,_; and the new end effector position p!,, and
has distance d,,—; from p/, (c¢). Subsequently, the new
joint position p/,_, can be calculated by taking the point
on the line I,,_; with distance d,,_» from p!, ;. The first
stage of the algorithm is completed when all new joint

positions have been calculated (d). The current esti-
mate is not a feasible one, though, since the position of
the root has changed. Therefore, a second stage of the
algorithm is necessary to achieve a solution. This stage,
named 'backward reaching’, is similar to the first stage
of the algorithm, only the operations are carried out the
other way around: from the root to the end effector.
The new root position pf is the initial root position b
(e). The next joint position pj is then determined by
taking the point on the line /;, that passes through the
points pY and ph, with distance d; from pf. This proce-
dure is repeated for all other joints, and a full iteration is
complete (f). The end effector is now closer to its target
position. The algorithm is repeated until the end effec-
tor has reached its target, or the distance to the target
is smaller than a user-defined threshold.

4.3 Calculating back to joint
coordinates

The FABRIK algorithm provides a solution to the in-
verse kinematics of the arm, by giving the Cartesian co-
ordinates of each joint relative to the root joint. How-
ever, the NAO needs to know the joint configurations
corresponding to these coordinates. A mapping from the
Cartesian coordinates to joint configurations is therefore
necessary in order to make the NAO move its arm.

Recall the three rotation matrices and the translation
matrix from Section 3.1:

(1 0 0 0
0 cosf# —sinf O
R (6) = 0 sinf® cosf O
10 0 0 1]
[cos® 0 sinf O]
0 1 0 0
Ry(®)=|_ sin@ 0 cosf 0
0 0 0 1
-) - ()
cosf) —sinf 0 O
sinf cosf 0 O
R.(6) = 0 0 1 0
| O 0 0 1]
[1 0 0 ¢,
|0 1 0 ¢y
r® =10 0 1
0 0 0
Assume that the FABRIK algo-
rithm outputs the three joint coordinates

(0,0,0,1), (z1,y1,21,1), (T2,y2,22,1) to be the so-
lution to the inverse kinematics problem for a target
position t = (x3,¥y2,22,1). Equation 9 describes the
forward kinematics equation for mapping from the first
two (currently unknown) rotations 6; and 6y to the
second joint coordinate p;:

Algorithm 1 The FABRIK algorithm.

Input: The joint positions p, for i = 1, ..., n, the target
position t and the distances between each joint d; =
|pi 1 —pi| fori=1,...,n—1

Output: The new joint positions p; for ¢ = 1,...,n.

% The distance between root and target
dist = |p; — t|
% Check whether the target is within reach
if dist >=dy +ds + ... + d,,_1 then
% The target is unreachable
fori=1,...n—1do
% Find the distance r; between the target t and
the joint position p;
r; = [t — py
)\i = di/ri
% Find the new joint positions p;
Pip1 = (L= N)p; + Ait
end for
else
% The target is reachable; thus, set b as the initial
position of the joint p,
b=p,
% Check whether the distance between the end effec-
tor p,, and the target t is greater than a tolerance
while dif4 > tol do
% STAGE 1: FORWARD REACHING
% Set the end effector p,, as target t
p, =t
fori=n-1, ..., 1do
% Find the distance r; between the new joint
position p;,, and the joint p;
ri = |Piy1 — Pl
% Find the new joint positions p;
pi = (1= X)pip1 + Aip;
end for
% STAGE 2: BACKWARD REACHING
% Set the root p, at its initial position
p=">
fori=1, ..., n-1do
% Find the distance r; between the new joint
position p; and the joint p;
i =d;[ri
% Find the new joint positions p;
Pir1 = (1= X)p; + \ipi
end for
difa = |p, —t|
end while
end if

ey ’
5Py

(f)

Figure 2: A visualization of one iteration of the FABRIK
algorithm.

p1 = R (01)R=(602)Tr(l1) (9)

= O O O

which simply means taking the last column of the re-
sulting transformation matrix. Because p; is known,
the joint angles can be derived from this equation. The
expressions for the coordinates of the second joint can
be found by rewriting Equation 9 as follows:

Tr1 = —ll sin(92)
y1 = lq cos(62) sin(6) (10)

z1 = 711 COS(OQ) sin(@l)

Since the second rotation (the one around the z-axis)
does not affect the z-coordinate itself, the following ex-
pression for the first rotation 63 can be derived:

6, — —arc;m(gcl) (11)
1

Now that 05 is known, the other rotation 6; can also
be derived:

— arcsin(zq)
11 cos(62)

When expressing the end effector coordinates in the
same manner (i.e. expressing the coordinates relative
to the root joint), the expressions are not that simple
anymore and the joint angles are not easily derivable
anymore. So, the end effector coordinates have to be
expressed relative to the second joint in the chain. Be-
cause the first joint angles are calculated, the orientation
and position of the second joint can be captured in the
following transformation matrix:

0, = (12)

T = Ry (00) Ra(02)Tr(l) (13)

The end effector can be expressed relative to the sec-
ond joint by multiplying its coordinates by the inverse
of T

py=T""p, (14)

Equation 15 describes the forward kinematics equa-
tion for mapping from the last two rotations (to be cal-
culated) 03 and 6, to the relative end effector coordinate

D5

P = Ry (03) R (04)Tr(l) (15)

— o O O

Which can be rewritten in the same manner as in
Equation 10, which yields the following expressions for
the end effector coordinates:

xh = —ly cos(03) sin(6y)
yh = la cos(6y) (16)
zbh = Iy sin(63) sin(fy)

Again, since the second rotation (the one around the
y-axis) does not affect the y-coordinate itself, the follow-
ing expression for the first rotation 64 can be derived:

b=~ arccos(yh) (17)
l2
after which the last rotation 63 can be derived as well:
— arcsin(z5)
P —— T 18
3 I sin(fy) (18)

4.4 Hough line transform

The Hough line transform[6] is an algorithm that can be
used to detect straight lines in an image. It is recom-
mended to pre-process the image (e.g. converting it to
a binary image) before applying the transform. Hough
line transform first creates a sinusoid for each point in
the image. This sinusoid represents the family of lines
that go through this point using the polar coordinate
system. A line equation can be written in polar coordi-
nates using Equation 19:

r=xcosf +ysind (19)

The family of lines going through a point (xg, yo) can
be found by substituting ¢ and yy in Equation 20:

r9 = Xo - coS O + o - sin 6 (20)

meaning that each pair ry, 0 represents each line that
passes by (zo, yo).

A simple example is provided in Figure 3. The four
white dots on the left are several points in the Cartesian
coordinate frame. They each have a corresponding sinu-
soid in the polar coordinate frame, shown on the right
side of the figure. The white dot on the right is the
intersection between these four sinusoids. As you can
see, that exact intersection corresponds to the line go-
ing right through all four points in the polar coordinate
frame. The formula of this line is then determined by a
line that comes from the origin (the center) of the image,
and is perpendicular to the line.

Figure 3: A visualization of the various sinusoids in the
Cartesian coordinate frame corresponding to the white dots
in the polar coordinate frame.

By applying Equation 20 to all points, (such that
r > 0and 0 < 0 < 27), we get a number of sinu-
soids equal to the number of points in the picture. If
the curves of two different points intersect in the plane
(0,r), that means that both points belong to the same
line. The result of this is that we can find straight lines
by looking at the intersections of all the drawn curves.
The more curves that intersect in one point, the more
points there are on the line represented by that inter-
section. A threshold can be set to define the minimal
number of intersections needed to detect a line. Hough
line transform keeps track of the intersection between
curves of every point in the image. If the number of in-
tersections is above some threshold, it declares it as a
line with parameters (6, r) of the intersection point.

The Hough line transform has two implementations.
The probabilistic version of the Hough line transform
is a more efficient implementation for the algorithm de-
scribed above. The output from the probabilistic Hough
line transform differs; The Standard Hough line trans-
form returns the lines in polar coordinates, whereas the
Probabilistic Hough line transform returns the start and
end point of each detected line in Cartesian coordinates.
In this research, the probabilistic Hough line transform
is used, because it is essential that the start and end
points of the lines are defined.

4.5 Hough circle transform

Hough circle transform|[7] works roughly the same as the
Hough line transform mentioned in Section 4.4. The dif-
ference is that an extra dimension has to be added. Re-
call from Section 4.4 that a line can be defined in polar
coordinates using the variables (r,6). To define a cir-
cle, however, three parameters have to be used: (z,y,),
where (z,y) is the center of the circle and r the radius.
This extra dimension in the definition of a circle means
far greater memory requirements and much slower speed
when using the same operations described in Section 4.4.
A method to avoid the majority of unnecessary votes,
called the Hough gradient method, is therefore used.
This method uses the local gradient as a guideline to
select candidate centers of the circle[4].

5 Implementation

In the previous sections, the solutions to all sub-
problems that have to be tackled have been proposed.
In this section, the way in which the above algorithms
are implemented to enable the NAO to actually play
tic-tac-toe is explained. It is assumed that the white-
board on which the game is drawn is clean, apart from
the game board itself. Furthermore, the 3-by-3 grid is
drawn symmetrically and the size is known.

Figure 4: A picture of a tic-tac-toe board before and after
line and circle detection. The detected lines and circles are
drawn on top of the original image.

5.1 Processing the board

There are several types of information that have to be
gathered from the board. Image processing is important
for analyzing the state of the game so that the next move
can be determined, and subsequently for determining the
position to which the arm has to move next.

Analyzing the state of the game

In order to determine the next move, the state of the
game has to be retrieved from the board. The game state
can be represented by an array of nine entries, each of
which is filled with a 0 if it is empty, a 1 if it contains a
cross and a 2 if it contains a circle. Before analyzing the
image, it is first preprocessed by a built-in OpenCV func-
tion inRange(). This function converts the image into
a binary image, replacing a pixel by a 1 if it lies in the
specified color range, and 0 otherwise. The algorithms
mentioned in Section 4, the Hough line and Hough cir-
cle transform, are then used to find all lines and circles
in the image. The image can be split up in 9 segments
using the minimum and maximum z- and y-coordinates

of the found lines. Then, for each found line, it can be
checked whether the line falls into one of the segments.
This is done by checking if the start and end coordinates
of the line do so. If they do, the corresponding array en-
try is filled with a 1. In the same manner, for each found
circle, it can be checked whether the circle falls into one
of the segments by checking if the center of the circle
does. If it does, the array entry is filled with a 2. When
the array matches the game state, it can be processed
by a minimax algorithm to determine the next move.

Calculating the coordinates

As explained in Section 4.2, FABRIK can be used to
make the end effector of the NAO’s arm move to a de-
sired position in Cartesian space. In order for the NAO
to be able to do this, however, the pixel coordinates first
have to be converted to Cartesian coordinates. Since
the size of the board is known, calculating the z- and y-
coordinates is simple. The magnification M of the image
can be found by:

-2 (21)

where X is the actual width of the board and z the
width of the projected board in pixels. The z- and y
coordinates can then be calculated as follows:

x =Mz

22
)= My (22

where 2’ and 3’ are the desired pixel coordinates the arm
needs to move to.

The z-coordinate equals the distance d to the board.
To know the relation between the distance of the board
and the pixel size of the image, for instance, the focal
length of the camera has to be calculated. This can be
done by placing the NAO at a known distance d from the
board, taking an image, and measuring the pixel width x
of the board. The focal length f can then be calculated
as follows:

d

where X is the actual width of the board. The distance
to the board d can now be calculated as follows:

_ f
d_XXE (24)

5.2 Drawing a cross

Once the coordinates of the target square are known,
moving the NAO’s arm is not difficult. In order for the
NAO to be able to draw, it needs to slightly press the pen
against the board. To do this, simply lower the stiffness
of the arm to make it more flexible, and set the target
slightly behind the board. The NAO starts its drawing

at the top left of the square. The first diagonal line can
now be drawn by making the arm move to a target at the
bottom right of the square. The pen then has to be lifted
from the board, by slightly adjusting the z-coordinate.
Finally, the NAO moves its arm to the top right, presses
the pen onto the board again, and then draws a similar
line to the bottom left. To make the lines more straight,
several intermediate targets can be set. So, a simple
trajectory can be created by simply specifying targets in
the direction the arm needs to move.

6 Conclusion

The proposed methods in this paper have dealt with
the challenging subproblems - solving Inverse Kinematics
and processing the game board - that arise when playing
tic-tac-toe with the NAO. Using image processing, the
NAO could analyze the game state, and make a decision
based on that. Executing the decision implies drawing
a cross on the board, which requires solving an inverse
kinematic problem. The new algorithm FABRIK has a
lot of advantages over traditional methods for solving an
inverse kinematic problem: it is very accurate, converges
quickly, and is well-behaved for every reachable point in
space. Using this algorithm, the NAO was able to let
its hand follow a trajectory, which results in drawing a
cross on the board.

Future research

There is still room for improvement. The NAO’s arm
has a very limited range. The program can be made
more flexible by increasing the space in which the NAO
can draw. This can be done by involving the rest of
the body in the drawing. For instance, walking along
the board to increase the horizontal range, or using its
knees to increase the vertical range. The NAO would
then be able to play on a bigger game board.

Another improvement could be to provide some kind
of feedback about the amount of pressure the NAO ap-
plies to the marker. If this can be kept constant, it can
result in smoother drawings and more straight lines.

References

1]
2]

(2013). Aldebaran Robotics.
http://www.aldebaran-robotics.com.

Aldebaran Robotics (2013).
qibuild 1.14 documentation.

http://www.aldebaran-robotics.com/documentation.

Aristidou, Andreas and Lasenby, Joan (2011).
Fabrik: A fast, iterative solver for the inverse
kinematics problem. Graphical Models.

Bradski, Gary and Kaehler, Adrian (2008).
Learning OpenCYV: Computer Vision with the
OpenCYV Library. O’Reilly Media.

(2013). Eigen. http://eigen.tuxfamily.org/.

OpenCV Development Team (2011).
Opencv 2.3.1 documentation.
http://docs.opencv.org/2.3/modules/refman.html.

OpenCV Development Team (2012). Hough circle
transform. http://docs.opencv.org.

Paul, Richard P. (1981). Robot Manipulators:
Mathematics, Programming, and Control. MIT
Press.

Russell, Stuart and Norvig, Peter (2009). Artifi-

cial Intelligence: A Modern Approach. Prentice
Hall, third edition.

