
A walk for the Nao

Remco Bras

July 4, 2011

Contents

1 Introduction 1

2 Trajectory Generation 3
2.1 Introduction . 3
2.2 Walk structure and parameters . 3
2.3 Generating the trajectory . 4
2.4 Handling special steps and tweaking the walk 8

3 Trajectory Execution 11
3.1 Introduction . 11
3.2 Preliminaries . 11
3.3 Inverse Kinematics . 22

4 Stability Measurement and Controller Performance 25
4.1 Introduction . 25
4.2 The measurement procedure . 26
4.3 Analyzing the measurement procedure 27
4.4 Analyzing parameter settings . 29
4.5 Controller performance . 38

5 Conclusions and future work 39

A Numerical evaluation of the LIPM equations 42

B Computing the quaternion corresponding to a rotation matrix 42

1 Introduction

Many papers on biped walking have been published. In some of these, researchers
describe an entire walking system. For instance, the paper by Hirai et al. [7] on
Honda’s P2 robot includes not only a description of its walking-related features and
systems but also a description of the robot hardware. Gouallier et al. [6] have
written a similar paper on the Nao robot.

In other papers, researchers have addressed specific aspects of a walking system.
We will consider three of these aspects. The first aspect, trajectory generation, is
the process of finding a trajectory that specifies how a robot should move while
walking. The second, trajectory execution, considers how a robot can be made to
execute a given trajectory. The third and final aspect we consider is stability mea-
surement, which considers how the stability or balance of a robot can be quantified
and measured.

1

In a number of papers, researchers have proposed methods to generate the tra-
jectory for a walking robot. Many of these methods use a variation of the following
simplified model. In this model, the robot is represented as an inverted pendulum.
The base of this pendulum, i.e. the point where it touches the ground, represents
the robot’s stationary foot. The other end of the pendulum, moving through the
air, represents the rest of the robot. In some applications of this idea, such as Kajita
et al’s Linear Inverted Pendulum Mode(LIPM)[8, 9], the base of the pendulum is
stationary. In others, such as Kajita et al.’s work on using preview control with
the LIPM[10] and Mitobe et al.’s work on zero-moment point-based control[11], the
position of the pendulum’s base is used as a control input to influence the motion
of the rest of the robot.

In order to make a robot execute a trajectory generated by one of the methods
we described above, a controller needs to move the robot’s motors correctly. On
some robots, such as the Nao, a user’s control system does not directly control the
motors, but specifies for each joint the angle it should move to. The hardware then
controls the motors in order to reach this given angle. In these cases, the control
system’s primary responsibility is to provide the hardware with the correct joint
angles. To do so, it needs to convert the trajectory specified in terms of Euclidean
positions to a trajectory specified in terms of joint angles. One method to do this is
to calculate for each position given by the trajectory the corresponding joint angles.
This process is called Inverse Kinematics. Analytical solutions to this problem are
possible only in special cases. These cases are described in textbooks on robotics
and a number of papers. General-purpose methods, such as those described by Buss
[3] are based on numerical optimization techniques.

A number of methods to measure the stability or balance of a robot have been
published. The most influential of these is the method using the zero-moment point,
as described by Vukobratović et al. [16]. In this method, one first finds the zero-
moment point. Once this point has been found, its position relative to the area of
support, the convex hull of the robot’s feet, indicates whether or not the robot is
stable, and if so, how stable it is. Many methods to measure stability are similar to
the method described above, but differ in how they define the zero-moment point.
Vukobratović et al. define this point as the point where the ground reaction force
on the robot’s foot would have to act to keep the robot’s foot stationary. Other
authors, such as Goswami [5], refer to this point as the FRI point. According
to these authors, the term “zero-moment point” is synonymous with “center of
pressure”, a name for the point where the ground reaction force actually acts. Yet
other researchers, such as Poskriakov [13] define the zero-moment point in terms of
static equilibrium of the entire robot. Defined this way, the zero-moment point is
similar to the ZRAM (zero rate of change of angular momentum) point defined by
Goswami [4].

In this paper, we consider how a walking system can be implemented on the
Nao. To do so, we will consider each of the three aspects we have described above
in turn. Thus, we will begin by considering how a trajectory for the Nao’s walking
motion may be generated. To do so, we will use the three-dimensional version of
the LIPM described by Kajita et al.[9]. Then, we will consider how this trajectory
may be executed. As we noted above, the Nao has internal controllers that move
the Nao’s joints to specified angles. Because of this, we will primarily be concerned
with Inverse Kinematics, using some of the methods given by Buss[3]. Finally, we
will consider how we can measure the stability of the walking motion we generate
and other aspects of the performance of our walking system. To do so, we will be
using the scheme described above, where we will use the center of pressure instead
of the zero-moment point as the center of pressure is easier to measure on the Nao.
We conclude this paper by briefly discussing the performance of our system and
reconsidering each of the three aspects we have introduced here.

2

2 Trajectory Generation

2.1 Introduction

Trajectory generation is finding a trajectory specifying how the robot should move.
The trajectory is a function over time that gives the positions in Cartesian space
of all independently controlled parts of the robot. For biped walking, the indepen-
dently controlled parts are the torso and the moving foot.

One can distinguish two phases in walking by considering the moving foot. When
the foot is at rest on the ground, the motion is in the double-support phase. When
the foot is moving through the air, the motion is in the single-support phase. One
can generate most of the trajectory for each phase without considering the other.
The only requirement is that the two trajectories together form a smooth function,
that is, that the combined function and its derivative are continuous.

To generate the trajectory for each phase, one needs a suitable model. For
the single-support phase, the literature provides many models. This work uses the
Linear Inverted Pendulum Mode (“LIPM”) of Kajita et al. [8, 9]. The LIPM is
based on an inverted pendulum. The robot’s non-moving foot is considered the
base of the pendulum, with the robot’s torso at the top. For the double-support
phase, this model would not apply, since we would have a pendulum with two bases.
Following Kajita et al., we move the robot’s torso with constant velocity during the
double-support phase.

The next subsection explains in more detail how the LIPM is applied to generate
steps.

2.2 Walk structure and parameters

Before using the LIPM, one must consider how a robot moves while walking. At
every moment, one of the robot’s feet is on the ground. This foot alternates with
each step. That is, one step is done with the left leg, then the next with the right leg
and so on. A natural boundary between steps is when this leg changes, that is, when
the leg that was previously supporting the robot leaves the ground. The double-
support phase, where the robot’s feet are both on the ground, can be assigned to any
step, as either leg could be viewed as supporting the robot. We use the convention
that the supporting leg is changed at the midpoint of the double-support phase.
Due to this convention, the robot’s torso always starts and ends each step exactly
in the middle between the legs. Thus, the step consists of first moving the torso
towards the support leg, then moving through the single-support phase and finally
moving the torso away from the support leg.

To determine how the robot should move in detail, we use a set of parameters
that define the robot’s trajectory. As previously mentioned, the robot’s torso starts
a step midway between the robot’s legs. Two parameters are given by the position
of the robot’s support leg at the start of a step. This position, (sx, sy), is taken in
a coordinate system where the initial position of the robot’s torso is at the origin,
the x-axis points in the direction of walking, and the y-axis points horizontally to
the left of the robot. These parameters govern the robot’s step length, that is, the
distance it travels in a given step. Since the torso starts and ends exactly between
the two legs and the support leg is initially sx in front of the torso, the other leg
must be sx in front of the torso when the step ends. Similarly, the support leg must
then be sx behind the torso. As such, the torso moves forward from 0 to 2sx, while
the moving leg moves from −sx to 3sx. The initial and final horizontal positions of
the torso are the same, both being zero. The same holds for the moving leg, with
a value of −sy.

While sx and sy govern step length, they do not influence how long a step takes.

3

The two parameters ts and td specify the time a step takes. Of these parameters,
ts is the time spent in the single-support phase, while td is the time spent in the
double-support phase. From these parameters and the fact that a step consists of
two double-support parts and one single-support part, it follows that from 0 to td

2
after starting the step, the robot is in double-support. From td

2 to td
2 + ts, it is in

single-support. Finally, from td
2 + ts to td + ts, it is in double-support. The step as

a whole takes ts + td.
The previously mentioned parameters govern motion in the (x,y)-plane and step

time. In the vertical (z-) direction, the LIPM moves the torso through a plane. Since
we assume that the ground is horizontal, we constrain this further to move the torso
through a horizontal plane. Hence, the z-coordinate of the torso is a constant, the
parameter zc. This is measured with 0 on the ground and positive z pointing up.
The height of the moving foot is not constant, but its maximum height is. This
maximum is given by the parameter zm, which is measured similarly to zc.

The parameters described in this subsection imply a set of constraints on the
generated motion. Before considering how a motion satisfying these constraints can
be generated, it is instructive to reiterate the constraints. The entire set of con-
straints is given below in 1. The position functions are given in a coordinate system
with the ground projection of the torso’s initial position at the origin, positive x
forward, positive y to the left and positive z upward. The subscript “t” refers to
the robot’s torso, the subscript “f” to the robot’s moving foot.

xt(0) = 0

xt(ts + td) = 2sx

xf (τ) = −sx for 0 ≤ τ ≤ td
2

xf (τ) = 3sx for ts +
td
2
≤ τ ≤ ts + td

yt(0) = yt(ts + td) = 0

yf (0) = yf (ts + td) = −sy
zt(τ) = zc

zf (τ) = 0 for 0 ≤ τ ≤ td
2

zf (τ) = 0 for ts +
td
2
≤ τ ≤ ts + td

max td
2 <τ<

td
2 +ts

{zf (τ)} = zm

(1)

2.3 Generating the trajectory

This subsection describes how a trajectory satisfying the constraints of the previous
subsection can be generated. The motion of the robot’s torso and of the robot’s
foot are considered in separate subsubsections. The torso motion is determined
from the LIPM’s differential equations, while the foot motion is generated by fitting
polynomials to the constraints.

2.3.1 Torso motion

Before considering the single-support phase, let us consider what we already know
about the torso motion. First, we have derived a set of constraints in the previous
subsection, which is given in the set of equations 1. Second, we know that the torso
moves with constant velocity in the double-support phase. We do not yet know the
value of this velocity. Hence, let us refer to the velocity of the torso during the first
double-support part as (αx, αy, 0). By considering the next step, we can find the

4

velocity of the torso during the final double-support part of the current step. In the
forward direction, the torso always moves with a non-negative velocity. Hence, we
know that the forward velocity of the torso at the start of the next step will have
the same sign, even if the supporting leg is different. Therefore, the forward velocity
during the final double-support part of this step must also be αx. Horizontally, the
torso must move towards the other leg at the start of the next step. Since this leg
is on the other side of the origin, the horizontal velocity at the end of the step must
be the negative of the horizontal velocity during the first double-support part, that
is, −αy.

Now that we have expressions for the velocity during the double-support phase,
we can derive the torso’s position at the moments when the motion switches from
the double-support phase to the single-support phase. This position is given by
(βx, βy, zc), where βx = αxtd

2 and βy =
αytd
2 . 1 The torso position at the end of the

single-support phase can be derived from the torso’s final position at the end of the
step and the velocities we derived previously for the final double-support part. In
the x-direction, since the torso ends the step at 2sx and moves with a velocity of αx
during the final double-support part, we find that the torso ends the single-support
phase at 2sx − βx. In the y-direction, we find the torso ends the single-support
phase at βy, from similar considerations.

The constraints derived in the previous two paragraphs, as well as those given in
the last subsection, are summarized below in equations 2 through 11. Notice that
the subscript “t” has been dropped, as we only consider the torso here. Also note
that these constraints, particularly equations 3, 4, 6, 8, 9 and 10, specify initial and
final position and velocity conditions for the single-support phase.

x(0) = 0 (2)

x(
td
2

) = βx =
αxtd

2
(3)

x(
td
2

+ ts) = 2sx − βx (4)

x(ts + td) = 2sx (5)

ẋ(τ) = αx for 0 ≤ τ ≤ td
2
∨ td

2
+ ts ≤ τ ≤ td + ts (6)

y(0) = y(td + ts) = 0 (7)

y(
td
2

) = y(
td
2

+ ts) = βy (8)

ẏ(τ) = αy for 0 ≤ τ ≤ td
2

(9)

ẏ(τ) = −αy for
td
2

+ ts ≤ τ ≤ td + ts (10)

z(τ) = zc (11)

As we now have initial and final conditions for the single-support phase, we can
describe the trajectory in this phase. We will first consider the differential equations
implied by the LIPM. Thereafter, we will show how the conditions we derived earlier
can be satisfied by the solution of these differential equations.

To derive the LIPM, Kajita et al. [9], use the dynamics of an inverted pendulum,
such as the one shown in Figure 1. The base of this pendulum, which is shown at
the origin, represents the stationary foot of the robot. The legs of the robot are
assumed to be massless and the remaining mass of the robot is concentrated at point
P . To simplify the dynamics, Kajita et al. constrain the point P to move through

1Recall that the torso moves with constant velocity during the double-support phase

5

Figure 1: An inverted pendulum, with its base at the origin and the top at p

x

z

y

zc
p

a plane. With the additional assumption that this plane is horizontal, that is, that
the height of the point P is a constant, the dynamics take the form of Equations 12
and 13. In these equations, g is the acceleration due to gravity and m is the mass of
the robot. The variables up and ur are derived from torques. We ignore up and ur
since their omission simplifies the equations and implies that the dynamic balance
of the model is never lost. We also modify the equations slightly by moving the
base of the LIPM’s inverted pendulum from the origin to (sx, sy, 0), as required by
the parameters we have discussed in the previous subsection. The equations then
reduce to equations 14 and 15.

ẍ =
g

zc
x+

1

mzc
up (12)

ÿ =
g

zc
y − 1

mzc
ur (13)

ẍ =
g

zc
(x− sx) (14)

ÿ =
g

zc
(y − sy) (15)

Equations 14 and 15 are identical modulo a substitution of variable names. This
implies that their solution will also take the same general form. The differences
between the two position functions will then be due to differences in the initial
and final conditions we have described previously. Since the general solution to the
equations 14 and 15 is identical, let us first consider this general solution. One can
verify using calculus that the solution p(t) to p̈ = g

zc
(p − sp), for t ≥ td

2 , is given
by equation 16, with Ap and Bp constant. The initial conditions for this equation
are again identical in both the x- and y-direction, being given by p(td2) = βp and
ṗ(td2) = αp. The solution for the constants Ap and Bp , given these conditions , is
given by equations 17 and 18.

p(t) = Ape
√

g
zc

(t− td
2) +Bpe

−
√

g
zc

(t− td
2) + sp (16)

Ap =
βp − sp + αp

√
zc
g

2
(17)

Bp =
βp − sp − αp

√
zc
g

2
(18)

To complete our considerations of the LIPM, we have to determine αp and βp
in both the x- and y-directions using the final conditions of equations 4,6,8 and

6

10. Before doing so, let us define γp(t) as e
√

g
zc

(t− td
2), so equation 16 simplifies

to equation 19. In the x-direction, the final condition of equation 4 then reads
Axγx(td2 + ts)+ Bx

γx(
td
2 +ts)

+sx = 2sx−βx. Solving for gamma, one obtains equation

20. Substituting the values given by equations 17 and 18 for Ax and Bx, one obtains
equation 21. The first solution clearly does not correspond to any real instant in
time, while the second is what we require. Solving for αx in the second solution,
one obtains equation 22. To complete the derivation, one can substitute this result
in βx = αxtd

2 to obtain 23. If one wishes, one can obtain equation 24 by substituting
23 back into 22. A similar procedure yields the solutions 25 and 26 for αy and βy.
One can verify that the function of equation 16, using the values of Ap, Bp, αp and
βp given in the other equations, satisfies all the initial and final conditions derived
previously.

p(t) = Apγp(t) +
Bp
γp(t)

+ sp (19)

γx(
td
2

+ ts) =
sx − βx ±

√
(sx − βx)2 − 4AxBx

2Ax
(20)

γx(
td
2

+ ts) = −1 ∨ γx(
td
2

+ ts) =
αx
√

zc
g + sx − βx

αx
√

zc
g − sx + βx

(21)

αx =
(sx − βx)(γx(td2 + ts) + 1)√

zc
g (γx(td2 + ts)− 1)

(22)

βx =
sxtd(γx(td2 + ts) + 1)

2
√

zc
g (γx(td2 + ts)− 1) + td(γx(td2 + ts) + 1)

(23)

αx =
2sx(γx(td2 + ts) + 1)

2
√

zg
g (γx(td2 + ts)− 1) + td(γx(td2 + ts) + 1)

(24)

αy =
2sy(γy(td2 + ts)− 1)

2
√

zc
g (γy(td2 + ts) + 1) + td(γy(td2 + ts)− 1)

(25)

βy =
sytd(γy(td2 + ts)− 1)

2
√

zc
g (γy(td2 + ts) + 1) + td(γy(td2 + ts)− 1)

(26)

Though the above discussion is sufficient to obtain an algebraic expression for the
position functions of the robot’s torso, these expressions were found to be unsuited
to numerical evaluation. In an appendix, we discuss these numerical problems and
how we avoided them. In the main text, we now continue with the motion of the
robot’s foot.

2.3.2 Foot motion

As we mentioned in the introduction, we generate the foot trajectory by fitting
polynomials to the constraints it should satisfy. These constraints, taken from
the set of equations 1 used earlier, are given by equations 27 through 31. The
constraints give initial and final positions for the foot motion in each direction.
The constraints also imply that the foot starts and ends at rest, that is, with zero
velocity. We will use the forward direction to illustrate how polynomials can be fit
to these constraints. The other directions will be left as an exercise to the reader,
though we will give solutions for the position functions.

7

x(τ) = −sx for 0 ≤ τ ≤ td
2

(27)

x(τ) = 3sx for ts +
td
2
≤ τ ≤ ts + td (28)

z(τ) = 0 for 0 ≤ τ ≤ td
2

(29)

z(τ) = 0 for ts +
td
2
≤ τ ≤ ts + td (30)

max td
2 <τ<

td
2 +ts

{z(τ)} = zm (31)

For the forward direction, we have two position constraints, given by 27 and
28, which each imply a velocity constraint. Since we have 4 constraints and each
constraint is a linear equation in the coefficients of our polynomial, we will use a
polynomial of the form x(t) = at3 + bt2 + ct + d, where t runs from 0 at the start
of the foot’s actual motion to ts at the end of that motion. This polynomial’s
derivative is clearly given by ẋ(t) = 3at2 +2bt+c. Filling in the constraints, we find
the system of equations 32 through 35. The equations 32 and 33 give a solution
for the coefficients c and d. The system then reduces to the two equations 34 and
35, which could be solved either numerically or analytically. Equation 36 gives the
analytical solution for the position function. Equations 37 and 38 were obtained
by applying a similar procedure to the horizontal and vertical constraints. For the
vertical direction, we used the additional constraint that the maximum required by
equation 31 occurs at t = ts

2 .

x(0) = d = −sx (32)

ẋ(0) = c = 0 (33)

x(ts) = at3s + bt2s + cts + d = 3sx (34)

ẋ(ts) = 3at2s + 2bts + c = 0 (35)

x(t) = −8sx
t3s
t3 +

12sx
t2s

t2 − sx (36)

y(t) = −sy (37)

z(t) =
16zm
t4s

t4 − 32zm
t3s

t3 +
16zm
t2s

t2 (38)

2.4 Handling special steps and tweaking the walk

In this subsection, we consider a number of minor changes to the trajectories de-
scribed earlier. First, we consider how the trajectories change if we require the
robot to start and end a sequence of steps with its feet next to each other. Thus,
the robot should start and end a series of steps in the pose B of Figure 2. Therefore,
in the first step, the robot moves from pose B to pose C. In the last step, it moves
from pose A to pose B. All the steps in between are ordinary steps, in which the
robot moves from pose A to pose C. Using Figure 2, we can find the initial and
final conditions for the first and last step. For historical reasons, these steps are
executed with no double-support phase, that is, td = 0. The constraints we find
from the figure and this assumption for the first step are given by Equations 39
through 42. Similarly, the constraints for the final step are given by Equations 43

8

Figure 2: The poses A, B and C

x

z

y

A B C

−sx sx 2sx 3sx
sy

−sy

through 46.

xt(0) = sx (39)

xt(ts) = 2sx (40)

xf (0) = sx (41)

xf (ts) = 3sx (42)

xt(0) = 0 (43)

xt(ts) = sx (44)

xf (0) = −sx (45)

xf (ts) = sx (46)

Starting with the torso motion, we notice that the trajectory yt we derived
earlier satisfies the constraints for both initial and final steps. For the trajectory xt,
we consider the trajectory we defined earlier for td = 0, as shown in Figure 3. We
notice that xt(

ts
2) = sx, and xt(ts) = 2sx. Therefore, the function xt,i(t) = xt(

t+ts
2)

satisfies the constraints of Equations 39 and 40. Similarly, the function xt,l(t) =
xt(

t
2) satisfies Equations 43 and 44. Thus, for an initial step, the torso trajectory

in the x-direction is given by xt,i, and for the last step, it is given by xt,l. The total
trajectory for the torso can then be generated by combining the entire horizontal
and vertical trajectory with the appropriate function defined above.

The foot motion can be generated using the same approach we used for the
original trajectory. The solutions thus derived are given in equations 47 and 48, for
the initial and final step respectively.

9

Figure 3: The x-coordinate of the torso in the LIPM, with td = 0.

x(t)

t

x

tsts
2

0
0

sx

2sx

10

xi(t) = −4sx
t3s
t3 +

6sx
t2s
t2 + sx (47)

xf (t) = −4sx
t3s
t3 +

6sx
t2s
t2 − sx (48)

Though we have now described how to generate reasonable sequences of a finite
number of steps, we found that the robot fell over while executing them. In order to
avoid this, we introduced an additional parameter yoff. To plan the torso motion,
we use s′y = sy + yoff instead of sy. Intuitively, this is equivalent to planning the
motion with respect to a support leg that is slightly further away. Before executing
the motion, we apply the translation y′t(τ) = yt(τ) + yoff to derive the coordinates
with respect to the usual coordinate frame. The effect of using non-zero yoff is that
the torso moves further towards the support leg. As we shall see later, this was
sufficient to keep the robot from falling.

3 Trajectory Execution

3.1 Introduction

In this section, we describe how the trajectories we have generated earlier can be
executed on the Nao. This execution is performed by an open-loop controller. The
controller runs every 20 milliseconds. Every time it runs, it queries the Nao to find
the current reference joint angles for the Nao’s controllers. Having done this, it uses
the LIPM to calculate a new reference position in Cartesian space. The controller
then applies inverse kinematics to this reference position, using the angles it found
earlier as an initial guess. The reference angles of the Nao’s controllers are then set
to the solution found by inverse kinematics.

In the remainder of this section, we consider a number of steps the controller
executes in more detail. First, we will recall a number of preliminaries and consider
how to use the LIPM to find reference positions for inverse kinematics. Second, we
consider the problem of inverse kinematics and how it can be solved. The subsection
on preliminaries was co-written by Daniel Mescheder.

3.2 Preliminaries

3.2.1 Kinematics

We now recall a number of concepts we will need to perform inverse kinematics.
First, we consider coordinate frames and homogeneous transformations between
them. Then, we apply these concepts to robotics, using them to derive the forward
kinematics. We conclude by considering Jacobians, which are used to find the
velocity of a robotic system.

Frames Consider the two coordinate frames A and B shown in Figure 4. Each
frame consists of three orthonormal axes, x, y and z, and an origin o. We denote the
coordinates of a given vector v in a frame F by vF . We now consider how, knowing
the coordinates in frame A of the unit vectors xB , yB , zB of frame B and the origin
oB of frame B, we can use vB to find vA. Notice that vB = (oBv)B = xBBv

B
x +yBBv

B
y +

zBBv
B
z . 2 Thus, (oBv)A = xABv

B
x + yABv

B
y + zABv

B
z =

[
xAB yAB zAB

] vBxvBy
vBz

 = RABvB ,

2Here, vBx denotes the x-coordinate of v in frame B, and vBy and vBz are defined similarly.

Furthermore, (ab)F denotes the vector from point a to point b, expressed in frame F .

11

Figure 4: The coordinate frames A (left) and B (right)

xA

yA

zA

oA oB

xB

yB

zB

where RAB =
[
xAB yAB zAB

]
. Using this equation and the fact that vA = (oAv)A, we

can derive Equation 49, given below. The matrix RAB that occurs in this equation
is called the rotation matrix from frame B to frame A.

vA = (oAv)A = (oAoB)A + (oBv)A = oAB +RABv
B (49)

If we transform vC to vB and then to vA using Equation 49, the expression
we find can become rather large, especially if many frames are involved. To avoid
this, we introduce the homogeneous coordinates of a vector in a given frame. These
coordinates are obtained by adding an additional 1 to the ordinary coordinates of
the vector. Using these homogeneous coordinates, we can rewrite Equation 49 to
Equation 50. The matrix TAB that appears in this equation is called the (homoge-
neous) transformation matrix from B to A. The composition of such transformation
matrices is equivalent to their matrix product, as indicated in Equation 51.[

vA

1

]
=

[
RAB oAB
0 1

] [
vB

1

]
= TAB

[
vB

1

]
(50)

TAC = TAB T
B
C (51)

Chains, end effectors and forward kinematics We now apply the concepts
of frames and transformations between them to robotic systems. For our purposes,
a robotic system is a series of joints connected to a static base, as shown in Figure
5. We will refer to such a system as a chain. Each joint in a chain is assumed to
move only by rotating around a particular axis, called its joint axis. We assign a
frame to each joint, whose z-axis points along this axis. The x-axis of the i-th frame
is taken to be a common normal of the z-axes of the i-th and (i + 1)-th frame.3

The y-axis is then determined by the additional assumption that each frame should
be right-handed, that is4, that x× y = z. An example of these frames is shown in
Figure 6.

Given two frames, we can now define 4 parameters, the Denavit-Hartenberg
(DH) parameters, that determine the transformation from one frame to the next.
These numbers, a, α, d and θ, have a geometrical interpretation, as shown in Figure
7. The number α is the rotation angle between zA and zB , along the axis xA. The
distance between these vectors along xA is named a. The third parameter, d, gives
the distance along zB between xA and xB . The final parameter, θ, is the rotation
angle over zB between xA and xB . With these parameters, we can calculate the
transformation matrix from the frame B to the frame A, using Equation 52. Of
the four DH-parameters, a, α and d are determined by the robot’s geometry. The

3A vector w is a common normal of u and v if w is orthogonal to both u and v
4x× y is the cross product of the vectors x and y

12

Figure 5: A robotic system. The base is indicated by the large semicircle and joints
are indicated by circles.

Figure 6: Joints and their associated frames. The direction of rotation of each joint
is indicated by an arc.

xA

zA

zB xB

Figure 7: The frames A and B and the DH-parameters of the transformation be-
tween them

zA

xA

yA

zB

xB

yB

a

α

d

θ

13

remaining parameter, θ, is a variable giving the position of a joint. Thus, the
transformation matrix as defined by Equation 52 can be viewed as a function from
the joint’s angle, that is, its parameter θ, to its transformation matrix.

TAB (θ) =

cos θ − sin θ 0 a

sin θ cosα cos θ cosα − sinα −d sinα
sin θ sinα cos θ sinα cosα d cosα

0 0 0 1

 (52)

Usually, we are not interested in the positions of indidivual joints in the chain,
but rather in the final joint of the chain. The final joint of a chain is commonly
called its end-effector. The transformation from the end-effector frame to the base
is called the forward kinematics of the chain. Using Equation 51, we can define
the forward kinematics for an n-joint chain as the matrix F defined in equation 53.
Notice that F is given as a function of q, the vector of joint angles of the chain.

F (q) = T 0
n =

n∏
i=1

T i−1i (qi) (53)

Though the forward kinematics completely specify the position and orientation
of a chain, they are somewhat redundant. In particular, the rotation matrix uses
9 parameters to encode orientation, while smaller representations using 3 or 4 pa-
rameters exist. An additional problem with the rotation matrix is that its time
derivative is not very convenient to work with. To solve both these problems, we
will represent orientations by quaternions, which require 4 parameters. For a rota-

tion about an axis v over an angle φ, the corresponding quaternion
[
r r0

]T 5 is
given below in Equation 54. [

r
r0

]
=

[
v sin(φ2)

cos(φ2)

]
(54)

Though Equation 54 allows us to find the quaternion corresponding to a given
rotation if we know the rotation axis and the rotation angle, it does not tell us how
to find the quaternion corresponding to a given rotation matrix. This calculation
is significantly more complex and is deferred to an appendix. We will not need the
opposite calculation, that is, finding a rotation matrix for a given quaternion. A
formula for this matrix can be found in Angeles’ textbook on robotics[2, Section
2.3.6].

Using quaternions as we have defined them above, we can define the position
of an end-effector as a seven-dimensional vector p(q). Since the forward kinematics
F is a transformation matrix, it has the form given in Equation 50. Thus, we can
extract the linear position of the end-effector by taking the first three elements of
the last column of F (q). We will denote this 3-element vector by o(q). The rotation
matrix R0

n consisting of the first 3 rows and first 3 columns of F (q) can then be
used to find the quaternion r(q) corresponding to the end-effector’s orientation, as
described in Appendix B. We can then define p(q) as the vector consisting of o(q)
and r(q), as given by Equation 55.

p(q) =

[
o(q)
r(q)

]
(55)

5The superscript T denotes the matrix transpose. Thus, a quaternion is a column vector of 4
elements.

14

Jacobians Previously, we showed how to calculate the position of an end-effector
given the joint angles of a chain. We will now consider how to calculate the linear
and angular velocity of the end-effector.6 To do so, let q̇ be the vector of time
derivatives of the chain’s joint angles. The linear and angular velocity of the end-
effector can be found using Equation 56.7 The matrix J(q) that appears in this
equation is called the Jacobian of the system.[

v
ω

]
= J(q)q̇ (56)

To compute the Jacobian, we shall use its explicit form, as discussed in the Stan-
ford introductory course in robotics [15, Lecture 7]. The essential idea of this form
is that each column of the Jacobian specifies the contribution of the corresponding
joint to the total linear and angular velocity. Using this idea, one can derive the
form given in Equation 578 , where Ji is the i-th column of J . Furthermore, pi is
the position of the end-effector relative to the origin of frame i and zi is the z-axis
of frame i.

Ji =

[
z0i × p0i
z0i

]
(57)

We can now compute the Jacobian of a robotic system and therefore its linear
and angular velocity. This is not yet sufficient for inverse kinematics, as we need
the matrix of partial derivatives of p(q) with respect to q. To find this matrix,
we need to transform the Jacobian to the matrix Jr(q) that satisfies Equation 58,
where ṙ is the time derivative of the quaternion corresponding to the end-effector’s
orientation. [

v
ṙ

]
= Jr(q)q̇ (58)

As shown by Angeles [2, Section 3.4.2], ṙ = H(r)ω, where H(r) is a matrix that
depends on the quaternion r. The formula for this matrix will be given later. First,
we define the cross product matrix (cpm) operator, which is used in this formula.
Given a vector v, the cross product matrix cpm(v) is the matrix such that for any
vector x, v×x = cpm(v)x. The formula for this matrix given by Angeles [2, Section
2.3.1] is given below as Equation 599 .

cpm(v) =

 0 −vz vy
vz 0 −vx
−vy vx 0

 (59)

Using this equation, we can give the formula for the matrix H(r). To write
this formula, we decompose the 4-element quaternion r into two parts, the vector
r consisting of the first 3 elements and the last element r0. With this notation, the
formula given by Angeles [2, Section 3.4.2] for H(r) is given below as Equation 60.10

We conclude this section with the formula for Jr(q) in terms of J(q). As mentioned
previously, Jr(q) is obtained from J(q) by means of a linear transformation, as given
in Equation 61.

6Despite its name, the angular velocity is not the derivative of orientation. As we shall see
below, the derivative of the quaternion encoding orientation and the angular velocity are related
by a linear transformation.

7v denotes the linear velocity of the end-effector. The angular velocity is denoted by ω.
8Here, the base frame is referred to as frame 0. The vector z0i × p0i is the cross-product of zi

and pi, when both vectors are expressed in the base frame.
9As before, vx is the x-coordinate of v and vy and vz are defined similarly.

10I3 denotes the 3 × 3 identity matrix.

15

Figure 8: The nao’s lower body

H(r) =
1

2

[
r0I3 − cpm(r)

rT

]
(60)

Jr(q) =

[
I3 0
0 H(r(q))

]
J(q) (61)

3.2.2 A model of the Nao

We will now apply the concepts we have previously reviewed to the Nao. In doing
so, we will show how to handle the simultaneous motion of the Nao’s torso and foot
relative to a stationary foot. We will also handle a number of peculiarities involved
in applying the Nao’s DH-parameter model. The first of these is that each chain
of the Nao has an additional base frame and an end-effector frame, specified by
constant transformation matrices. The second is that all of the Nao’s chains are
specified with the torso as the base. As we would like to use a foot as the base, we
will need to calculate the parameters and transformations for the chain from the
foot to the torso.

Before we define the position and velocity of the torso and foot moving simul-
taneously, we consider how to model the Nao’s lower body. The structure of this
lower body is drawn in Figure 8. The stationary foot that we take to be the base of
the system is shown on the left. In the middle, we have the torso, which is one of
the two end-effectors we wish to control. The other end-effector is the moving foot,
which is indicated on the right. The joints connecting the base to the torso and the
foot are indicated by circles.

Comparing Figure 8 to Figure 5, we notice that the Nao’s lower body is in some
sense a union of two chains. That is, the chain from the stationary foot to the torso
forms part of the larger chain from the stationary foot to the other foot. Letting q
be the vector of joint angles of the larger chain, we can calculate the positions of
both the torso and the moving foot relative to the base using q. We will consider
the combination of these two positions, stacked vertically, to be the position of the
Nao’s lower body, as shown below in Equation 62.11

p(q) =

[
pT (q)
pF (q)

]
(62)

Our next problem is how to define the Jacobian of the Nao’s lower body. As
before, we will define this Jacobian Jr(q) to be the matrix of first-order partial

derivatives of p(q) with respect to q, that is, Jr(q) = ∂p(q)
∂q . Since p(q) has the

structure shown in Equation 62, Jr(q) has a similar structure, shown in Equation
63. Here, the matrix JT,r(q) is the Jacobian of the torso with respect to all the joints
in the larger chain. Since the torso’s position depends on only a limited number of

11The subscript T refers to the torso, the subscript F to the moving foot.

16

these joints, the columns corresponding to the other joints should be set to zero.
Each of the Jacobians JT,r(q) and JF,r(q) can be found using the explicit form of
Equation 57.

Jr(q) =

[
JT,r(q)
JF,r(q)

]
(63)

There are four more practical issues that we encounter when we apply the above
to the Nao: Firstly, it is not necessarily the case that the reference frame of the
support foot coincides with the standard base frame. It is also possible that the
frame associated with the end of a chain (end effector frame) is different from the
last joint frame. Thus, there needs to be a technique to include this information
into both the forward kinematics and the Jacobian.

Secondly, the DH-parameters for the Nao can be found in the documentation
provided by Aldebaran [1]. However, the documentation lists the parameters of a
chain from the torso to the support foot. The model we presented above requires
a chain from the support foot to the torso. Hence, we need to compute the DH-
parameters of this chain using the parameters given in the documentation.

Thirdly, the model described earlier in this section requires a chain from the
support foot to the moving foot. Using the documentation and the calculation
procedure we described above, we can find a chain between the support foot and
the torso and a chain between the torso and the moving foot. We can then combine
these two chains to find the desired chain from the support foot to the moving foot.
To do so, we have to take into account the base- and end-transforms of each chain.

Finally, we have thus far assumed that all the joints of a chain can be moved
independently. This, however, is not the case for the legs of the Nao: The LHipYaw-
Pitch and the RHipYawPitch joints are controlled by the same physical motor which
means that their joint angles are always equal. This needs to be taken into account
during the construction of the Jacobian.

We will present two techniques to solve the problems described above. One is
to explicitly model the change of kinematics caused by each of them and to derive
additional transformations that can be applied to the model presented above. The
other technique relies on introducing special joints. Using these joints we need
to make only small changes to the calculation of the forward kinematics and the
Jacobian.

Base- and End Transforms As described above, there needs to be a way to
represent the fact that the base frame of a chain does not coincide with the first
joint frame and the end-effector-frame is not the same as the last joint frame.

This section will first describe the explicit approach. Let b be the new base
frame and T b0 as given below be the transformation between b and the standard base
frame. Let accordingly e denote the end-effector frame and Tne be the corresponding
transformation to the last joint frame.

T b0 =

[
Rb0 pb0
0 1

]
Tne =

[
Rne pne
0 1

]
The new forward kinematics including base- and end-transforms are then given

by the matrix Fbe (q) as specified below.

Fbe (q) = T b0 · F (q) · Tne (64)

To transform a velocity vector to a new base frame it suffices to apply the
rotation to the explicit form of the Jacobian (i.e. before the quaternion operator is

17

applied):

Jb =

[
Rb0 0
0 Rb0

]
· J (65)

If there is an additional end transform to the end effector, the following holds
for the velocity vector:

ve = vn + ωn × pne
ωe = ωn

This is equivalent to the following notation that uses the matrix form of the
cross product defined in Equation 59:12

[
ve
ωe

]
=

[
I3 − cpm(pne)
0 I3

] [
vn
ωn

]
(66)

Equation 66 only holds if vn and ωn are expressed in the same frame as pne .
Usually, however, we find that vn and ωn are expressed in the base frame, while pne
is located in frame n. We can use the rotation matrix (Rbn)T to first transform vn
and ωn to frame n. This ensures that the multiplication takes place in the right
frame before the result is transformed back to the base frame using the rotation
matrix Rbn. [

ve
ωe

]
=

[
I3 −Rbn cpm(pne)

(
Rbn
)T

0 I3

] [
vn
ωn

]
(67)

Premultiplying the Jacobian by the transformations shown in Equations 65 and
67 yields a new Jacobian matrix which takes into account both base- and end
transforms. Also taking into account the quaternion transform shown in Equation
60 leads to Equation 68 below.

Jbe(q) =

[
I3 0
0 H(r(q))

] [
I3 −Rbn cpm(pne)

(
Rbn
)T

0 I3

] [
Rb0 0
0 Rb0

]
J(q) (68)

The second way to approach this problem is to add static joints at the be-
ginning and end of the chain. Unlike regular joints, which are defined by their
DH-parameters, static joints are defined by given transformation matrices. Thus,
the transformation matrix of such a joint is a constant. With these joints, we can
represent the base- and end-transform as a static joint at the beginning and end of a
chain, respectively. The forward kinematics of the resulting chain can be calculated
using Equation 53, where T i−1i is equal to the given transformation matrix if joint
i is static. Similarly, we can use the explicit form of Equation 57 to calculate the
columns of the Jacobian corresponding to the non-static joints. In doing so, we take
into account the effect of the static joints’ transformations on the vectors p0i and
z0i . Since static joints do not represent a moving mechanism, their contribution to
the linear and angular velocity of a chain is zero. Thus, we do not add columns to
the Jacobian corresponding to the motion of these joints.

Reverse DH-Parameters This section presents a procedure which can be used
to invert the DH-parameters of a chain given in the Nao documentation.

Let xi and zi be the respective x and z axis of the i’th frame in the original
chain, counting from the hip. Furthermore, let x′i and z′i be the respective x and z

12Recall that I3 denotes the 3 × 3 identity matrix

18

Figure 9: Original and reversed frames for one chain of joints.

xi

x′n−1

zi

z′n+1−i zi+1

z′n−i

xi+1

x′n−1−i

zi+2

z′n−1−i
xi+2

axis of the i’th frame in the new chain, counting from the foot. Then we can define
the axes of the reversed frames to correspond to the original frames according to
the following rule which is depicted in Figure 9:

x′i = −x(n−i)
z′i = −z(n+1−i)

With this convention the new set of parameters a′i, α
′
i, θ
′
i and d′i can be deter-

mined in terms of the old parameters ai, αi, θi and di. For Equations 69 and 70 let
2 ≤ i ≤ n and for Equations 71 and 72 let 1 ≤ i ≤ n.

a′i = a(n+2−i) (69)

α′i = α(n+2−i) (70)

θ′i = θ(n+1−i) (71)

d′i = d(n+1−i) (72)

In accordance with the DH convention, a′1 and α′1 are set to zero. It remains
to find the reverse counterparts for x′n and x′0. When θi = 0 the DH convention
requires the angle between xi and xi+1 to be zero. Therefore the following is a
reasonable choice:

x′n = x′(n−1) = −x1
x′0 = x′1 = −xn−1

Whether static joints or explicit transforms are used to represent the base- and
end transforms, these transformations need to be reversed as well in the process
of reversing a chain. The resulting reverse base- and end-transforms are given by
Equations 74 and 73 respectively. In these equations, Rz(φ) and Rx(φ) denote a
rotation of φ radians around the z and x axes respectively.

(Tne)
′

= Rz (π)Rx (π)
(
T b0
)−1

(73)(
T b0
)′

= (Tne)
−1
Rz (π)Rx (π) (74)

Unfortunately, the DH parameters from the Nao documentation furthermore
define a1 6= 0 and α1 6= 0. Following the original DH convention, these values
should be a part of the base transform. Let Tx(d) denote the translation transform
of d units along the x-axis. Let furthermore T b0 be the old base-transform. Then

19

an equivalent formulation can be given by setting anew1 = αnew1 = 0 and using the
matrix (T b0)new derived below as a new base-transform:(

T b0
)new

= T b0Tx (α1)Rx (a1) (75)

Combined Chain for Nao-Legs The LIPM requires the control of the moving
foot from the support foot frame. For this reason it is necessary to define a chain
leading from the base frame to the desired end effector. Using the reversed chain
derived in section 3.2.2 this is mostly a concatenation of the inverse of the support
leg chain and the original chain of the moving leg.

However, one has to be careful with the DH-parameters of the HipYawPitch
joints: If the original chains used base- and end-transforms, the DH parameters
of the hip joint have to incorporate these transforms. One solution again is to
use static joints instead of explicit base- and end-transforms. Using this method
a simple concatenation is indeed sufficient. If explicit transforms are being used,
the changed parameters of the chain from the left to the right foot are given below.
Here, HipOffsetY is a constant defined in the documentation [1].

a7 = 0

α7 =
1

2
π

d6 =
√

2 ·HipOffsetY

θ6 = −1

2
π

d7 = −
√

2 ·HipOffsetY

θ7 =
1

2
π

The chain from the right foot to the left foot can be calculated using the tech-
nique derived in section 3.2.2.

Aliased Joints In regular robot control problems one normally assumes all joints
of a chain to be independent from one another. This, however, is not the case for the
Nao legs: The LHipYawPitch and the RLHipYawPitch joints are controlled by the
same physical motor which means that their associated θ values are always equal.

This does not have an impact on the forward kinematics, but the Jacobian
matrix has to be modified to represent this information. In the case of the chain
from the support foot to the moving foot θ6 = θ7, i.e.

v = J

θ1
...
θ6
θ6
...
θ12

Let J ′ be a new matrix which is nearly equal to J except that column 6 in J ′ is

the sum of column 6 and 7 in J and that column 7 is removed from J ′. From the
interpretation of matrix multiplication as a product sum the following holds:

20

v = J ′

θ1
...
θ6
θ8
...
θ12

A second way to approach this problem is to introduce alias joints. Conceptually,

an alias joint is like a regular joint, except that its joint variable coincides with the
joint variable of another joint. To clarify how this affects the calculations of the
forward kinematics and the Jacobian, suppose joint i is an alias joint and its joint
variable coincides with that of joint j. Then, to calculate the transformation matrix
T i−1i of joint i, we use Equation 52, filling in the parameters ai, αi and di of joint
i and the joint angle θk of joint j. With this transformation matrix, we can use
Equation 53 to calculate the forward kinematics in the usual way. When we calculate
the Jacobian, we calculate the column Ji as usual. However, instead of appending
this column to the Jacobian, we add it to the k-th column Jk corresponding to
joint j. Using alias joints, we can represent the fact that the LHipYawPitch and
RHipYawPitch joints share the same physical motor by making one of these joints
an alias joint whose joint variable coincides with that of the other.

3.2.3 Using the LIPM

To complete our preliminaries, we will now consider how to specify target positions
for inverse kinematics. In general, inverse kinematics attempts to solve the problem
of finding joint angles q such that p(q) takes on some desired value pd. Applying
this to the Nao, we will need to find a position pd of the form given by Equation
62, using the LIPM. In this equation, we see that the position consists of two sub-
positions, one for the torso and one for the foot. Each of these consists of a linear
portion and a portion specifying orientation. We will treat these linear and angular
portions separately.

First, we will find the linear positions we require. In principle, these positions
are the functions specified by the LIPM. The only problem is that the positions
obtained from the LIPM are given relative to a coordinate system where the torso’s
original position is at the origin. Since we wish to work relative to the stationary
support foot, we will need to add a translation to these positions. This translation
depends on the type of step we are executing. For initial steps, we find that the torso
and support foot start at the same x-coordinate, but the torso starts −sy to the left
of the support leg. In normal and final steps, the torso additionally starts sx behind
the support leg. From these considerations, we find that the translations δx and δy
are given by Equations 76 and 77. Our linear positions for inverse kinematics are
then found by applying the transformation given by Equations 78 and 79 to both
the foot and torso positions. In this transform, x′ is the position we require, while
x is the position given by the LIPM, and similarly for y.

δx =

{
0 for initial steps

−sx otherwise
(76)

δy = −sy (77)

x′(t) = x(t) + δx (78)

y′(t) = y(t) + δy (79)

Second, we now consider the orientation the torso and foot should have. Here,
the LIPM does not give us any information, and so we must use other considerations.

21

For simplicity, we will specify a constant orientation that should help us avoid
certain causes of instability. For example, we would like to keep the torso from
tipping forward, since that could cause the Nao to fall. Similarly, we wish to keep
the foot from hitting the ground at an angle, since this could also lead to falls. Both
of these problems can be avoided by keeping the torso vertical while holding the
foot horizontal. To implement this, we must specify the quaternions corresponding
to these orientations. Fortunately, the coordinate frames used on the Nao are such
that the orientations we require are the default orientations of both the foot and
the torso. Therefore, the quaternion we need corresponds to a rotation of 0 degrees,
and so is given by Equation 80.

rd =

0
0
0
1

 (80)

To summarize, if (xT (t), yT (t), zT (t)) and (xF (t), yF (t), zF (t)) are the positions
given by the LIPM for the torso and foot respectively at time t, the correspond-
ing reference position for inverse kinematics is given by Equation 81. Here, x′T (t)
is xT (t) transformed using Equation 78, and y′T (t), x′F (t) and y′F (t) are defined
similarly.

pd(t) =

x′T (t)
y′T (t)
zT (t)
rd

x′F (t)
y′F (t)
zF (t)
rd

(81)

3.3 Inverse Kinematics

We will now consider the problem of inverse kinematics and how it can be solved.
In this problem, we are given a reference position pd such as we have determined in
the previous section. We are asked to find joint angles q such that p(q) = pd, where
p(q) is the position of the Nao’s lower body for the angles q. We will consider three
methods that solve this problem, each of which is based on the Jacobian.

3.3.1 Newton-Raphson

Newton-Raphson is an iterative process. It starts from some initial guess q. If this
q is a solution of p(q) = pd, the process is complete. If it is not a solution, Newton-
Raphson calculates a step ∆q to a new guess q′. The process then continues with
q′ as our new initial guess. Since this process is not guaranteed to converge to a
solution, we require it to terminate after a set number of steps. If it terminates in
this way, we do not have a solution to our problem. A complete listing summarizing
the algorithm in pseudocode is given in algorithm 1.

It is instructive to look more closely at the update equation used by Newton-
Raphson, ∆qk = J+(pd − p(qk)). In this equation, pd is the position we are at-
tempting to reach, J is the Jacobian of the system and J+ is its Moore-Penrose
pseudoinverse. We will now derive this equation by considering a linear approxima-
tion to p(q). Such an approximation around qk is given by p(qk+∆q) = p(qk)+J∆q.
Setting this approximation equal to pd, we find pd = p(qk) + J∆q. From this equa-
tion, we can find ∆q by solving J∆q = pd − p(qk). Since J is in general not square

22

Algorithm 1 Newton-Raphson

Let q0 be an initial guess, k = 0
loop

if |p(qk)− pd| < ε then
Terminate with solution qk

else if k ≥ nmax then
Terminate without a solution

end if
Calculate the Jacobian J(qk)
Calculate ∆qk = J+(pd − p(qk))
Set qk+1 = qk + ∆qk
Set k = k + 1

end loop

or non-invertible, we use the Moore-Penrose pseudoinverse, arriving at the update
equation mentioned earlier.

The primary drawback of Newton-Raphson follows directly from the update
equation we have just derived. This drawback is that, if J has singular values close
to zero, the pseudo-inverse will have very large entries. The ∆q calculated from the
update equation will then be very large. In practice, this tends to lead to divergence.
Our next method, Levenberg-Marquardt, can deal with these singularities. Our
discussion of it will also provide another perspective on Newton-Raphson.

3.3.2 Levenberg-Marquardt

Like Newton-Raphson, it is an iterative process that begins with an initial guess q.
Levenberg-Marquardt also starts by checking if q is already a solution. If it is not,
the algorithm first calculates the gradient of the error function E(q) = |p(q)− pd|2.
If the gradient of the error is very small, the algorithm has converged and terminates
without a solution. In this case, q is a local minimum of the error function. If the
gradient is large enough, Levenberg-Marquardt calculates a step value ∆q. Unlike
Newton-Raphson, Levenberg-Marquardt verifies that q′ = q+∆q results in a smaller
error value before continuing with this new initial guess. If the guess indeed results
in a smaller error, we decrease our parameter µ by dividing it by the parameter
θ > 1. If the guess does not result in a smaller error, we continue with q′ = q and
multiply µ by θ. Since this process is not guaranteed to converge, we require it to
terminate after a fixed number of iterations, as we did for Newton-Raphson. The
process is summarized in Algorithm 2. 13

As with Newton-Raphson, we will derive Levenberg-Marquardt’s update equa-
tion. To do so, we will apply Newton’s method to minimize the error function
E(q) = |p(q)− pd|2. In other words, we minimize its second-order Taylor polyno-
mial around q, which is given by E(q + ∆q) = E(q) + ∇qE(q)T∆q + 1

2∆qTH∆q,
where H is the Hessian of E evaluated at q. The gradient of this expression with
respect to ∆q is H∆q+∇qE(q). Setting this gradient to zero in order to find an op-
timum, we find ∆q = −H−1∇qE(q). Next, we require expressions for the gradient
and Hessian of our error function E(q). One can verify that the gradient is given
by ∇qE(q) = 2JT (p(q)− pd), where J is the Jacobian of p(q). The Hessian is given
by H = 2(JTJ + S), where S is a linear combination of Hessians of the elements of
p(q) − pd. Assuming S ≈ 0, we find H = 2JTJ . Inserting this in the equation we
found earlier for ∆q gives ∆q = −(JTJ)−1JT (p(q) − pd). One problem with this
equation is that if the matrix J does not have full column rank, or equivalently, it

13In this algorithm and the remainder of this discussion, JT denotes the matrix transpose of J .

23

Algorithm 2 Levenberg-Marquardt

Let q0 be an initial guess, k = 0
loop

if |p(qk)− pd| < ε then
Terminate with solution qk

else if k ≥ nmax then
Terminate without a solution

end if
Calculate the Jacobian J(qk)
Calculate the gradient g = 2JT v
if |g| < εg then

Terminate with the local minimum qk
end if
Calculate ∆qk = −(JTJ + µI)JT v
if |p(qk + ∆qk)− pd| ≥ |p(qk)− pd| then

Set qk+1 = qk
Set µ = µ× θ

else
Set qk+1 = qk + ∆qk
Set µ = µ

θ
end if
Set k = k + 1

end loop

has some singular values equal to zero, JTJ is singular. To avoid this singularity,
we introduce a parameter µ, and replace JTJ by JTJ + µI.

Next, let us consider the parameter µ. If µ = 0, we can justify Levenberg-
Marquardt as an approximation of Newton’s method. Since J+ = (JTJ)−1JT if
and only if JTJ is invertible, one can also notice that Levenberg Marquardt is
equivalent to Newton-Raphson in this case. For very large values of µ, we find that
∆q ≈ − 1

µJ
T (p(q) − pd). Since the gradient of E(q) is given by 2JT (p(q) − pd),

this is a form of gradient descent. Since µ was assumed to be very large, the step
size for gradient descent would be very small. In between these two extremes,
Levenberg-Marquardt can be understood as a trade-off between minimizing error
and minimizing the length of ∆q, as described by Buss [3]. Note that Buss refers
to this algorithm as “Damped least squares”.

We can now understand the adaptive calculation of µ used by this version of
Levenberg-Marquardt. If an iteration does not reduce the error value, Levenberg-
Marquardt increases µ, putting more emphasis on making small steps and moving
towards gradient descent. Since gradient descent should be able to reduce the error
for small enough step sizes and reasonably well-behaved functions, the algorithm
will then eventually find a better guess. If an iteration reduces error directly, µ is
decreased, allowing the algorithm to make larger steps. Thus, if a series of iterations
continues to reduce error with every step, Levenberg-Marquardt can move quickly
towards a solution.

We have now considered Levenberg-Marquardt and Newton-Raphson, two meth-
ods strongly related to Newton’s method. Our final method will be gradient descent,
using the error function we used for Levenberg-Marquardt.

3.3.3 Gradient descent

We conclude our survey of methods with a variant of gradient descent using a con-
stant step size and smoothing using a momentum parameter. Like our previous

24

methods, this method iteratively improves an initial guess q. As in the other algo-
rithms, if q is already a solution, we are done. If q is not a solution, we calculate a
new step and continue from there. If the step we make is too small, we terminate
the algorithm with a local minimum. Since this method is also not guaranteed to
converge, we once again terminate it after a given number of iterations. The process
is summarized in algorithm 3.

Algorithm 3 Gradient descent

Let q0 be an initial guess, k = 0
loop

if |p(qk)− pd| < ε then
Terminate with solution qk

else if k ≥ nmax then
Terminate without a solution

end if
if k = 0 then

Set ∆q0 = −2αJT (p(q)− pd)
else

Set ∆qk = −2α(1− γ)JT (p(q)− pd) + γ∆qk−1
end if
if |∆qk| < ε then

Terminate with qk as a local minimum
end if
Set qk+1 = qk + ∆qk
Set k = k + 1

end loop

To calculate a new step, gradient descent moves along the negative of the
gradient of the error function E(q) = |p(q)− pd|2. As discussed in our deriva-
tion of Levenberg-Marquardt, this gradient is given by g = 2JT (p(q) − pd). We
can then take a step of size α along the negative of this gradient, giving ∆qn =
−2αJT (p(q) − pd). To damp out oscillations, we apply a smoothing filter to this
sequence, using the recurrence ∆qk+1 = (1− γ)∆qn + γ∆qk. The recurrence is ini-
tialized using ∆q0 = ∆qn. Combining these equations leads to the update function
given in algorithm 3.

The primary drawback of gradient descent is that it takes a large number of
iterations to converge. In our tests, this variant of the algorithm took too long to
converge for practical use, requiring far more iterations and far more computation
time than Levenberg-Marquardt or Newton-Raphson. Other variants of this basic
scheme may work better, such as the one described by Buss [3]. The scheme pro-
posed by Buss is similar to the approximate minimization performed by Levenberg-
Marquardt. Hence, we predict that Levenberg-Marquardt will still converge faster
than gradient descent using this minimization scheme.

4 Stability Measurement and Controller Perfor-
mance

4.1 Introduction

In this section, we consider the two kinds of experiments we performed. The first
kind attempts to quantify the stability of the Nao while walking for various settings
of the LIPM’s parameters. The second kind measures how well our controller is
satisfying its real-time requirements and tracking the trajectory the LIPM generates.

25

As mentioned, our first kind of experiment is concerned with quantifying the sta-
bility of the Nao. A number of measures of stability have been proposed. Generally,
stability is measured by considering the position of a certain point, such as the zero-
moment point or center of pressure, relative to the convex hull of the robot’s feet.
Information on many of these points can be found in references [13, 5, 4, 16, 14].

For our work, we require a point that is easy to measure on the Nao. Since the
Nao does not provide accelerations, we cannot calculate any points whose formulae
require the acceleration or angular acceleration of the robot. This requirement
excludes most of the calculation procedures given by Poskriakov [13]. The Nao
does, however, have force sensors on its feet. Using a formula given by Goswami [5],
we can use these sensors to calculate the center of pressure. The center of pressure
(CoP) is the point where the resultant force of the ground’s pressure field normal
to the ground acts[5]. We measure stability by considering the position of the CoP
relative to the convex hull of the robot’s feet. If the CoP is within this convex hull,
the area of support (AoS), the robot is stable. If the CoP is on the edge of the
AoS, the robot may be falling over. In both cases, the distance from the center of
pressure to the nearest edge of the AoS indicates how stable the robot is.

We begin the remainder of this section by considering how we can measure the
CoP and AoS on the Nao. Thereafter, we consider how a number of decisions and
approximations we make in the course of implementing this measurement affect the
results. Then, we apply this measurement to the walk we implemented, allowing
us to look at how the parameters of the LIPM influence the stability of the re-
sulting motion. We then conclude this section by taking a look at the controller’s
performance.

4.2 The measurement procedure

We now consider how we can measure the CoP, AoS and the distance from the CoP
to the nearest edge of the AoS in practice. To do so, we will first consider how we
can find the CoP and AoS separately. The resulting values can then be combined
to find the distance we require, which will tell us how stable the robot is.

To measure the CoP, we can use a formula given by Goswami [5]. As he indicates,
the CoP can be found as a weighted sum over the pressure forces exerted by the
ground on the robot’s feet. For the purposes of our measurement, we assume that
these pressure forces are exerted at the locations of the force sensors in the Nao’s
feet. Given the location xi of sensor i and the force Fi exerted there, we can find the
CoP using equation 82. The positions xi must all be given in the same reference
frame. By taking each position relative to the support foot, we ensure that the
positions of the force sensors in this foot are constant. The positions of the sensors
in the moving foot are known relative to the moving foot. Hence, we use the forward
kinematics of this foot relative to the support foot to transform these positions. The
procedure we have just described is summarized in algorithm 4.

xCoP =

∑
i xiFi∑
i Fi

(82)

Algorithm 4 Measuring the CoP

Measure the force Fi at each force sensor
Find the forward kinematics of the moving foot, T
Find xi for each sensor, transforming using T if the sensor is in the moving foot
Use equation 82 to compute the position xCoP of the CoP

Next, we will find the AoS. The AoS is formally defined as the convex hull of the

26

robot’s feet. The Nao’s feet have a non-polygonal shape that is somewhat difficult
to use directly. Instead, we approximate the convex hull of the actual feet by the
convex hull of the force sensor locations. Since the force sensors are located close to
the edge of the feet, this should be a reasonable approximation. This hull should be
taken over only those force sensors that are in contact with the ground. We consider
a force sensor in the moving foot to be on the ground if its vertical coordinate after
transformation is below a treshold zε. The force sensors in the support foot are
assumed to always be on the ground. Once the sensors that are on the ground have
been found, we can apply a standard 2D convex hull algorithm, such as the Graham
Scan (see, for instance [12]). This procedure is summarized in algorithm 5.

Algorithm 5 Measuring the AoS

Let Xg contain the positions of the force sensors in the support foot
For each force sensor i in the moving foot, if its transformed position x′i has a
z-coordinate below zε, add x′i to Xg

Use the Graham Scan to compute the AoS as the convex hull of the points in Xg.

Once we have applied algorithms 4 and 5 to find both the CoP and the AoS, we
can find the distance from the CoP to the nearest edge of the AoS. This distance,
which we call the stability margin, indicates how stable the Nao is. The margin
can be found using straightforward geometry, and so the calculation will not be
discussed in more detail here. In the following subsection, we consider a number of
potential issues with the measurement we discussed above.

4.3 Analyzing the measurement procedure

In this section, we consider the accuracy of the measurement of the previous section.
We consider the following three topics:

1. The measurement procedure we use assumes that a force sensor that is not
touching the ground will register zero force. In particular, if the moving foot
is moving through the air, all of its force sensors should give a value of zero.

2. To determine the AoS, we decided to use the position of a sensor to tell
whether or not it is on the ground. In principle, we could have also used the
sensor’s value.

3. As mentioned above, we use the position of a sensor to determine if it is on
the ground. This position can be calculated either from reference angles, i.e.
“Where the robot should be”, or sensor angles, i.e. “Where the robot is”.

Our first topic is the assumption that a sensor that is not in contact with the ground
will measure zero force. In practice, this assumption does not appear to hold, as
all of the Nao’s sensors give a small non-zero force when moving through the air.
In theory, the procedure of algorithm 4 would take these sensors into account with
non-zero weight. This would lead to an error in the CoP we calculate, moving
it towards the moving foot. This error should affect the stability margin as well.
This effect could either reduce or increase the margin, depending on where the real
center of pressure is located. We could avoid this error by explicitly testing if a
force sensor is on the ground or not. If it is not on the ground, we assign it a weight
of zero. Figure 10 shows the stability margin in a standardised walking situation,
with and without the change to the measurement we have just described. Overall,
the changed results indicate higher stability. These results are likely to be closer to
the truth than the original results, provided we can accurately determine whether
or not the force sensors are in contact with the ground.

27

Figure 10: Stability margin versus time, filtered and unfiltered

Our second topic is our decision to test whether a sensor is on the ground or not
by checking its position. An alternative would be to check the force measured by a
sensor. However, as we have just remarked, the Nao’s sensors give non-zero force
even when not on the ground, making such a procedure impractical. Given that we
must use the position of a sensor, particularly its vertical position, to determine if it
is on the ground, one issue remains. This issue is the selection of the treshold that
separates being “on the ground” from being “in the air”. In our work, we selected
a treshold value of 1 centimeter, which appears intuitively to be rather high. As
an alternative, we considered the value of 1 millimeter and compared the results.
This comparison is shown in figure 11. One can see a large spike at a time of 8
seconds in the results for 1 millimeter. This spike indicates a value of the stability
margin that is unusually large, making it rather implausible. One explanation for
this phenomenon is that the measured CoP is in fact far out of the measured AoS,
making this result erroneous. Given this potential error, we consider the treshold
of 1 centimeter to be the more reasonable choice.

In order to use the position of a force sensor to determine whether or not it is on
the ground, this position needs to be calculated. To do so, we calculate the forward
kinematics. The forward kinematics could be calculated using either the actual
joint angles of the Nao, as measured by the angle sensors, or the reference joint
angles computed by our controller. In theory, the reference angles are unaffected
by noise, while the sensor values could have significant measurement error. On the
other hand, the reference angles could be relatively far removed from the actual
joint angles if the overall tracking system has significant error. In figure 12 we have
graphed the stability margin while using the reference angles and while using the
sensors. Both measurements were performed during the same walking sequence.
We do not notice any “obvious” measurement artifacts in these results. As such, we
cannot tell from these results alone whether or not we should use the angle sensors.
Somewhat arbitrarily, we will use the reference angles for all the experiments we
describe in the remainder of this paper. We will also use a treshold for vertical
positions of 1 centimeter and filter out any force sensors known to not be on the
ground.

28

Figure 11: Stability margin versus time, tresholds 1 and 0.1 cm

4.4 Analyzing parameter settings

We will now consider how the various parameters of the LIPM influence the stability
of the resulting motion. We will begin these considerations by examining the ratio
between ts and td, that is, the time spent in the single- and double-support phases
of the walk. To do so, we keep the total time taken for each step constant, but vary
how it is divided over the two phases. The resulting stability margin is shown in
Figure 13.

With only a single-support phase (the line for 0 in the figure), we see that the
stability margin is low at the end of the first step and at the start of the final
step. In our tests, the Nao usually fell over at the start of the final step. With a
relatively short double-support phase, we see that the walk is generally stable. A
longer double-support phase also leads to similar stable results. We conclude that
the LIPM requires a double-support phase in order to be stable, but does not seem
to depend on the length of this phase.

The next aspect of our parameters we will examine is the total time taken per
step. In these experiments, we will keep td

ts
equal to 0.5, which appeared to be

stable in our previous tests. The results for various total times are shown in Figure
14. From this figure, it appears that the differences between the results are not
very large, especially between the settings of 11.25 seconds and 15 seconds. The
exceptions to this are the first and last step, where the setting of 9 seconds differs
significantly from the others. At the start of the last step, this setting seems to
lead to instability. Thus, it appears that 9 seconds may be slightly too low, but the
other two settings seem to lead to generally stable walks.

We continue by checking how the parameter sx influences stability. For various
settings of this parameter, we have plotted the stability margin versus time in
Figure 15. We see here that the setting of 4.5 centimeters appears to lead to
the lowest stability margin. Furthermore, we see that during a number of time
intervals, the setting of 3.5 centimeters leads to greater stability than the setting of
2.5 centimeters. However, the opposite happens in another time interval. Still, it
appears that overall, 3.5 centimeters is the most stable setting we have examined
here.

Next, we consider the parameter sy. We have chosen a number of settings for

29

Figure 12: Stability margin versus time, reference and sensor angles

this parameter and have plotted the resulting stability margin versus time in Figure
16. For this parameter, we see a clear difference between the three settings. The
least stable setting appears to be 6 centimeters, followed by 5.5 centimeters and
then 5 centimeters.

Our next parameter is yoff. For this parameter, we have attempted experiments
with values lower than 14 millimeters. Generally, the Nao would consistently fall
over during almost every step in these experiments. For this reason, we consider
offsets of 14, 15 and 16 millimeters, which do not lead to falls. The results of
these experiments are shown in Figure 17. Like with sy, we see clear differences
between settings. The least stable setting in this case is 14 millimeters, followed by
15 millimeters and then 16 millimeters.

Our second-to-last parameter is zc, the height of the torso. In this case, settings
larger than 31 centimeters lead to trajectories for which our inverse kinematics could
not find the corresponding joint angles. Whether this is due to the Nao’s inability
to reach these positions or our inverse kinematics is unknown. Values lower than
29 centimeters did, on the other hand, lead to trajectories our inverse kinematics
could find joint angles for. However, the resulting trajectories were rather difficult
for the Nao to execute, commonly leading to falls. Hence, we consider only values
between 29 and 31 centimeters. The results for these values are shown in Figure
18. In this case, it appears that the setting of 31 centimeters leads to a number
of unstable moments, with stability margins that are nearly zero. The other two
settings lead to very similar and generally stable results.

Our final parameter is zm, the maximum height of the moving foot. For this
parameter, we show the results for settings between 5 and 7.5 centimeters in Figure
19. In this figure, we see only small differences between the different settings. We
also see a few places where the stability margin temporarily becomes very low. In
these places, the setting of 7.5 centimeters leads to instability. Whether the other
settings also have this problem is difficult to see from the figure.

30

Figure 13: Stability margin versus time, for a number of ratios between td and ts

t(s)

m(m)

0 25 50
0

0.03

0.06

0.5
0

0.2

31

Figure 14: Stability margin versus normalized time, for a number of total times per
step.

t

m(m)

0 0.5 1
0

0.03

0.06

15s
11.25s
9s

32

Figure 15: Stability margin versus time for various settings of sx

t(s)

m(m)

0 25 50
0

0.03

0.06

3.5cm
4.5cm

2.5cm

33

Figure 16: Stability margin versus time for various settings of sy

t(s)

m(m)

0 25 50
0

0.03

0.06

5cm
6cm

5.5cm

34

Figure 17: Stability margin versus time for various settings of yoff

t(s)

m(m)

0 25 50
0

0.03

0.06

15mm
14mm

16mm

35

Figure 18: Stability margin versus time for various settings of zc

t(s)

m(m)

0 25 50
0

0.03

0.06

30cm
29cm

31cm

36

Figure 19: Stability margin versus time for various settings of zm

t(s)

m(m)

0 25 50
0

0.03

0.06

5cm
6.25cm

7.5cm

37

Figure 20: Time taken per iteration, Newton-Raphson and Levenberg-Marquardt

4.5 Controller performance

In this subsection, we consider two aspects of the controller’s performance. First,
we consider to what degree the controller works in real time. To make this precise,
we note that the Nao runs a number of processes, including our controller, in a
20-millisecond cycle. To allow processes other than our controller to take place,
the controller should take strictly less than 20-milliseconds. Second, we test how
well the controller executes the trajectory it computes using inverse kinematics. In
other words, we consider the difference between the angles measured by the Nao’s
sensors and the reference angles we provide.

As mentioned, we begin by considering the controller’s real-time performance.
To do so, we have measured the time taken for each iteration of the controller in a
standardized walk. Since the time our controller takes depends on which algorithm
is used for inverse kinematics, we have tested both Newton-Raphson and Levenberg-
Marquardt. In these tests, the controller is not performing any measurements of the
center of pressure. Thus, we quantify only how long the controller needs to calculate
the target position using the LIPM and perform inverse kinematics. The resulting
time taken per iteration is plotted versus iteration number in Figure 20. In this fig-
ure, we see that Levenberg-Marquardt is significantly faster than Newton-Raphson
in all iterations. With a number of exceptions, both algorithms are fast enough to
run in real-time in most iterations. Even in the exceptional cases where Newton-
Raphson is too slow, Levenberg-Marquardt is still fast enough. Thus, provided we
use Levenberg-Marquardt, our controller can satisfy its real-time requirements.

In addition to performing inverse kinematics and calculating the LIPM trajec-
tory, our controller performs a number of measurements. Ideally, it should be able
to perform these measurements within the same 20-millisecond cycle. To test this,
we consider the difference in time taken with and without measuring the stability
margin. For this test, we have used Levenberg-Marquardt and the same standard-
ized walking situation as above. The resulting time taken is shown in Figure 21.
In this figure, we see that measurement appears to take a relatively small constant
amount of time. Even with measurement, the controller can satisfy its real-time

38

Figure 21: Time taken per iteration, with and without measuring the stability
margin, using Levenberg-Marquardt

requirements even in exceptional cases.
We will now continue by considering how well the controller executes the trajec-

tory it generates. To do so, we have measured the difference between the reference
angles provided by the controller and the angles measured by the Nao’s sensors for
a number of joints in a standardized walking situation. Ideally, these differences,
also known as tracking errors, should be very small. Unfortunately, this does not
appear to be the case for our controller, as shown in Figure 22. In this figure, we
see that the tracking error of the moving foot’s ankle joint tends to be rather high.
As we see in Figure 23, the hip’s YawPitch joint has smaller, but still significant
tracking error. As our final example, we consider another hip joint in Figure 24. In
this figure, we see a tracking error much smaller than those of the other joints we’ve
considered. In our experience, the other joints tend to give similar results to these
examples. As such, we conclude that our controller suffers from significant tracking
error. One potential method to eliminate this error might be to change the speed
parameter passed to the Nao’s controllers. This speed value, ranging from 0 to 1,
allows one to indicate with which fraction of its total speed the joint should move.
In our tests, no value of this parameter resulted in significantly lower mean tracking
error across all joints. Hence, we suspect that a different solution is needed.

5 Conclusions and future work

To conclude our paper, we will consider each of the aspects of walking we considered
in the introduction and evaluate how well our system performs each of them. The
first of our aspects was trajectory generation, that is, how the Nao should move
while walking. Our approach here was to generate a trajectory where the linear
inverted pendulum mode of Kajita et al. [9, 8] defines the torso motion and the
foot motion is specified using polynomials. As our experiments in the previous
section show, the motion specified by this trajectory is stable for a reasonably wide
range of its parameters. Thus, we have succeeded in creating a trajectory for a

39

Figure 22: Tracking error versus time for the moving foot’s ankle

Figure 23: Tracking error versus time for the hip’s YawPitch joint

40

Figure 24: Tracking error versus time for a hip joint

stable walk. The primary limitation of this trajectory is that it is entirely specified
in advance, that is, that it does not depend on anything that occurs while the Nao is
walking. An interesting area for future research would be to see how we can modify
this trajectory while walking to deal with unstable motion, uneven floor surfaces
and other unexpected situations.

Our second aspect was trajectory execution. To do this, we used a number of
numerical techniques of inverse kinematics to transform the trajectory to a series of
joint angle vectors, which could then be passed to the Nao’s controllers. Our best
algorithm for inverse kinematics, Levenberg-Marquardt, is able to handle kinematic
singularities. Its primary limitation is that it does not take into account the lower
and upper bounds on the angles of the Nao’s joints, causing it to sometimes give
answers which the Nao cannot reach. On the other hand, as we have seen in the
previous section, it allows us to run our controller in less than 20 milliseconds,
thus allowing it to run in real time alongside other processes. As we have also
seen previously, this controller still suffers from significant tracking error. In future
research, we may be able to eliminate this error by changing the controller.

Our final aspect was measuring the stability of a robot while walking. To mea-
sure stability, we measured the center of pressure using the force sensors on the
Nao’s feet. We then computed the distance between the center of pressure and the
area of support. We called this distance the stability margin, as it allowed us to
quantify the stability of the Nao. As we have seen, this procedure allowed us to
measure the stability of the Nao in real time. A downside of this approach is that
we did not have any test data for which the correct value of the center of pressure
was known. As a result, we had to rely on isolating sources of error by reasoning
and experimentation. In future research, a method could be found to calculate the
center of pressure and related quantities on the Nao using formulae given in the
literature, allowing us to verify and improve our measurements.

41

A Numerical evaluation of the LIPM equations

We remarked in the main text that the solution to the LIPM equations given in
equation 16 was ill-suited to numerical evaluation. The most pressing problem
of this kind is that in a number of conditions, equation 17 for Ap will involve a
subtraction of nearly equal quantities, leading to catastrophic cancellation. The
noisy result for Ap will then be multiplied by a potentially rather large exponential,
which will lead to significant deviation from our analytical results.

To illustrate the cause of this problem and how we can avoid it, consider the
x-direction. Theoretically, numerical problems can occur if either ts is low and
td is high or vice-versa. We will consider the second case, where ts is high and

td is low. Then, equation 24 implies that αx ≈ sx
√

g
zc

. At the same time, we

find that βx ≈ 0, using equation 23. Substituting this in equation 17, we find

Ax ≈
0−sx+sx

√
g
zc

√
zc
g

2 = −sx+sx
2 . One can clearly see the catastrophic cancellation

of the nearly equal quantities −sx and αx
√

zc
g . To avoid this, one can substitute

the solutions for αx and βx given by equations 24 and 23 into equation 17. The
resulting expression after simplification does not suffer from this cancellation. The
same procedure should be applied in the y-direction, where these problems occur
under similar conditions.

With these modifications, the equations we gave earlier can be evaluated rea-
sonably. One can still find numerical problems due to cancellation in Bp if ts is low
but td is high, which primarily impact the early parts of steps. Another problem
one may still encounter is that the exponentials in equation 16 can overflow, which
can lead to nonsensical results.

B Computing the quaternion corresponding to a
rotation matrix

As mentioned in the main text, we have yet to consider how to find the quaternion r
corresponding to an arbitrary rotation matrix M . The method we give here works in
all cases, which makes it suitable for numerical use. The approach we take is to first
calculate the rotation axis v and the associated rotation angle φ. The quaternion
we’re looking for is then given by Equation 54.

First, we consider how to find v. As Angeles [2, Section 2.3] mentions, the axis
v is a unit eigenvector of M corresponding to eigenvalue 1.14 Thus, v can be found
by calculating the unit eigenvectors of M and selecting one corresponding to the
eigenvalue 1.

Calculating the rotation angle φ is more complex. To do this, we will use a
number of concepts and formulas from Angeles’ textbook [2, Section 2.3.4]. First,
we will recall the concepts of the trace tr(M) and axial vector vect(M) of M .
The trace is given by the sum of the diagonal elements of M . Thus, tr(M) =∑3
i=1Mii, where Mij is the element of M in the i-th row and j-th column. The

axial vector vect(M) is given by vect(M) = 1
2

M32 −M23

M13 −M31

M21 −M12

. For rotation matrices,

Angeles [2, Section 2.3.4] shows that tr(M) = 1 + 2 cosφ, and vect(M) = v sinφ.

Therefore, cosφ = tr(M)−1
2 , and sinφ = vect(M) · v.15 Then, we can find φ using

14Equivalently, Mv = v, and v has magnitude 1.
15a · b is the dot product of the vectors a and b, defined as

∑n
i=1 aibi

42

φ = atan2(sinφ, cosφ) = atan2
(

vect(M) · v, tr(M)−1
2

)
.16 As mentioned, we can

now compute the quaternion using Equation 54.

References

[1] Aldebaran Robotics (2009). Nao documentation.

[2] Angeles, Jorge (2007). Fundamentals of Robotic Mechanical Systems.
Springer Science+Business Media,LLC.

[3] Buss, Samuel R. (2009). Introduction to inverse kinematics with jacobian
transpose, pseudoinverse and damped least squares methods. http://math.
ucsd.edu/~sbuss/ResearchWeb/ikmethods/index.html Retrieved April
26th 2011.

[4] Goswami, Ambarish and Kallem, Vinutha (2004). Rate of change of angular
momentum and balance maintenance of biped robots. Proceedings of the
2004 IEEE International Conference on Robotics and Automation.

[5] Goswami, Ambarish (1999). Foot rotation indicator (FRI) point: a new gait
planning tool to evaluate postural stability of biped robots. Proceedings of
the 1999 IEEE International Conference on Robotics and Automation.

[6] Gouaillier, David, Hugel, Vincent, Blazevic, Pierre, Kilner, Chris, Monceaux,
Jérôme, Lafourcade, Paascal, Marnier, Brice, Serre, Julien, and Maisonnier,
Bruno (2008). The NAO humanoid: a combination of performance and
affordability. arXiv.org.

[7] Hirai, Kazuo, Hirose, Masato, Haikawa, Yuji, and Takenaka, Toru (1998).
The development of Honda humanoid robot. Proceedings of the 1998 IEEE
International Conference on Robotics & Automation.

[8] Kajita, Shuuji and Tani, Kazuo (1991). Study of dynamic biped locomotion
on rugged terrain - derivation and application of the linear inverted pen-
dulum mode -. Proceedings of the 1991 IEEE International Conference on
Robotics and Automation.

[9] Kajita, Shuuji, Kanehiro, Fumio, Kaneko, Kenji, Yokoi, Kazuhito, and
Hirukawa, Hirohisa (2001). The 3d linear inverted pendulum mode: A simple
modeling for a biped walking pattern generation. Proceedings of the 2001
IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10] Kajita, Shuuji, Kanehiro, Fumio, Kaneko, Kenji, Fujiwari, Kiyoshi, Harada,
Kensuke, Yokoi, Kazuhito, and Hirukawa, Hirohisa (2003). Biped walking
pattern generation by using preview control of zero-moment point. Proceed-
ings of the 2003 IEEE International Conference on Robotics and Automa-
tion.

[11] Mitobe, K., Capi, G., and Nasu, Y. (2000). Control of walking robots based
on manipulation of the zero moment point. Robotica, Vol. 18, pp. 651–657.

[12] O’Rourke, Joseph (1998). Computational Geometry in C. Cambridge Uni-
versity Press.

16The function atan2 is an analogue of the standard arctangent that takes into account the
quadrant in which its argument lies. It is available in the ISO C library.

43

[13] Poskriakov, Sergei (2006). Humanoid balance control: A comprehensive
review. M.Sc. thesis, University of Geneva, Faculty of Science, Computer
Science Dept.

[14] Sardain, Philippe and Bessonnet, Guy (2004). Forces acting on a biped robot.
center of pressure - zero moment point. IEEE Transactions on Systems, Man
and Cybernetics - Part A: Systems and Humans, Vol. 34.

[15] Stanford University (Winter 2007/2008). CS223A: Introduction to
robotics. http://see.stanford.edu/see/courseinfo.aspx?coll=

86cc8662-f6e4-43c3-a1be-b30d1d179743, retrieved April 25st 2011.

[16] Vukobratović, Miomir and Borovac, Branislav (2004). Zero-moment point
- thirty five years of its life. International Journal of Humanoid Robotics,
Vol. 1, pp. 157–173.

44

