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Abstract
This paper presents an object recogni-
tion algorithm for robot soccer which is
optimized to run on the Aldebaran Nao
robot. The aim is to recognize the ball
and the goals which have distinct col-
ors. Another objective is to keep CPU
utilization to a minimum since other rou-
tines will have to run simultaneously for
the robot to operate. Different methods
for image clustering and shape match-
ing are presented and compared. Ex-
periments showed that the graph based
image segmentation method is the most
efficient clustering method tested. For
shape matching a linear neural network
returned the best results.

1 Introduction
From the standpoint of object recognition, robot
soccer is a good example of a real life problem
which must be simplified for low CPU utilization.
The objective of this paper is to describe a multi-
stage algorithm that will allow recognition of the
relevant objects. Namely the orange ball, other
players and the goals. Goals are rectangular frames
with sky-blue and yellow color, as defined by the
RoboCup Technical Committee [2]. Other robots
in the game can either be located similarly to the
ball, since the round head covers of the robots also
have distinct colors, or by using the ultra sonic
sensors of the robots. Due to this observation this
paper focuses on recognition of the ball and goals.
In order to recognize objects in an image it needs a
low amount of noise, a representation of objects in
the scene and an algorithm to match objects. Fur-
thermore motion prediction is needed to increase

efficiency.
The following stages for processing are investi-
gated in this paper:

1. pre-process image to reduce noise,

2. cluster image to retrieve visible objects,

3. match retrieved objects with the desired ob-
jects,

4. predict motion of objects,

5. transform image coordinates to real life coor-
dinates.

The usage of computational resources is an essen-
tial issue in each of these steps since resources are
needed for other processes needed to operate the
robot. Since the light conditions in the game area
are not strictly defined (the only rule considering
light is that the only lights are above the game
area) the algorithm has to be resistant to different
light set-ups.

1.1 Color representation
Colors are represented by one byte value for each
color channel (red, green, blue). The brightness of
a color is defined as the square root of the sum of
squares:
V (r, g, b) =

√
r2 + g2 + b2

2 Preprocessing
The Nao robot uses two pinhole cameras with
each a maximum resolution of 640x480 to record
images. Inevitably the recorded images will have
a certain level of noise. In order to be able to
cluster the image data properly, the image needs
to be denoised. Since the clustering algorithm
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Figure 1: The Nao robot.

used is not very noise sensitive, a Gaussian filter
with a low smoothing factor σ = 0.5 is sufficient
to allow successful clustering (see Figure 2). A
Gaussian filter works by averaging the color values
of adjacent pixels in a certain area around each
pixel [1]. The higher the parameter σ is chosen
the bigger the area and the smoother the result (see
Figure 3). Gaussian filtering runs in linear time.
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Figure 2: Clustering performance depending on
smoothing factor.

3 Image Clustering
The most important step of the algorithm is to
segment the image data into clusters representing
the real objects visible in the scene. In order
to obtain those clusters the edges separating the
object must be found. There are different methods
to do so. The most common approach is the use of
an edge detection algorithm [3]. A more advanced

Figure 3: (a) input image. (b) output of the Gaus-
sian filter for σ = 0.8. (c) output of the Gaussian
filter for σ = 2.0.

approach is graph based image segmentation [4].

3.1 Methods based on edge detection
Edge detection is the analysis of an image in or-
der to find points or lines where the image data
significantly changes. The detected edges should
represent the outlines of objects in the scene. Ex-
periments with the following three algorithms have
been conducted: La Place, Sobel and the Canny
edge detector [3].
While the Sobel algorithm approximates the gradi-
ent of the image to find edges, the La Place algo-
rithm approximates the second derivative. Both al-
gorithms work by shifting 2 dimensional matrices
over all pixels in the image to determine a value for
the pixel covered by the center cell of the matrix
(see Figures 4 and 5).

The result is calculated by multiplying each
matrix value by the brightness value (defined in
Section 1.1) of the pixel it is covering and sum-
ming up the products. In case of the the La Place
algorithm the resulting values directly translate to
the intensity of the edge at the current position. In
case of Sobel on the other hand, where two matri-
ces are used, two values are returned for each hor-
izontal and vertical direction. A downside of these
algorithms is that the edges are not necessarily con-
nected.
The Canny edge detector follows a different ap-
proach to detect edges. It works similar to the So-
bel algorithm but also calculates the direction of
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an edge instead of just its directional components.
This makes it possible to follow edges through the
image and therefore create connected edges instead
of loose points. (see Figure 6)
All three algorithms result in a second image show-
ing only the calculated edges. In order to determine
the desired clusters for further processing the areas
enclosed by the edges need to be calculated. This
task is hard to realize with the La Place and So-
bel edge detectors since the resulting edges are not
necessarily connected. Therefore using a simple
flood filling algorithm is not sufficient. Although
the Canny algorithm tries to create connected out-
lines the parameters need to be tuned depending
on the light conditions in order to produce a us-
able result. For all of the edge detection methods
the connected areas in the resulting image need to
be calculated. This step is unfortunately O(n2) in
runtime, where n is the number of pixels.

Figure 4: La Place edge detector matrix.

Figure 5: Sobel edge detector matrices. Gx is the
horizontal and Gy the vertical component.

3.2 Graph based image segmentation
To reduce the runtime of the algorithm, graph
based image segmentation, another approach to
the problem, was analyzed. This algorithm is
based on representing the image as a graph, where
each node represents one segment (containing one
pixel at the beginning) where the edges represent
adjacency. Each edge has a weight w which is a
non-negative measure for the dissimilarity between
neighboring segments. To determine whether two

Figure 6: (a) input image. (b) output of the Sobel
algorithm. (c) output of the Canny edge detector.

nodes in the graph should be joined, the inner
difference of the pixels contained in one node is
compared to the difference to the second node.
The minimum internal difference MInt(C1, C2) is
calculated by obtaining the largest weight of the
minimum weight spanning tree over the pixels of
each segment and taking the minimum of those.

(v. May 12, 2010, p.3)



Max Bügler
Supervisor: Nico Roos

The algorithm consists of the following 5 steps:

The input is a graph G = (V,E), with n ver-
tices and m edges (initially a grid graph spanning
over all pixels). The output is a segmentation of V
into components S = (C1, ..., Cr).

1. Sort E into π = (o1, ..., om), by non-
decreasing edge weight.

2. Start with a segmentation S0 , where each ver-
tex vi is in its own component.

3. Repeat step 4 for q = 1, ...,m.

4. Construct Sq given Sq−1 as follows. Let vi
and vj denote the vertices connected by the
q-th edge in the ordering, i.e., oq = (vi, vj).
If vi and vj are in disjoint components of
Sq−1 and w(oq) is small compared to the in-
ternal difference of both those components,
then merge the two components otherwise do
nothing. More formally, let Ci

q−1 be the com-
ponent of Sq−1 containing vi and Cj

q−1 the
component containing vj . If Ci

q−1 ̸= Cj
q−1

and w(oq) ≤MInt(Ci
q−1, Cj

q−1) then Sq is
obtained from Sq−1 by merging Ci

q−1 and
Cj

q−1 . Otherwise Sq = Sq−1 .

5. Return S = Sm .

Although the algorithm only makes greedy de-
cisions the results satisfy global properties (see
Figure 7) and the runtime is nearly linear in num-
ber of pixels [4]. Scaling the MInt(Ci

q−1, Cj
q−1)

function causes the algorithm to create smaller or
bigger segments. Experiments showed that this can
be used to optimize the algorithm for the specifics
of the camera used and the size of the object to be
found. They do not need to be changed for different
light situations. This makes the algorithm attractive
for the task.

3.3 Conclusions
Although the common edge detectors Sobel, La
Place and Canny work in linear time and produce
good results, they have to be post processed in or-
der to find the connected areas in the image. Since
that extra step has quadratic runtime the second
approach using graph based image segmentation
proved to be faster doing the complete task in near
linear runtime. Moreover this algorithm is less
sensitive to noise in the image and far more consis-
tent given different lighting situations. Therefore it
was considered best for image clustering.

Figure 7: (a) input image. (b) segmented output
[4].

4 Shape Matching

To determine which of the segments in the image
represent the objects relevant to the game a shape
matching algorithm is needed. In case of robot
soccer the relevant objects are the ball and the
goals which only require a simple shape matching
algorithm.

4.1 Matching rectangular and oval
objects

The simplest approach that was examined uses
two functions, which measure ovality and rect-
angularity. To measure the ovality B(S) of a
segment S, the ratio of points inside a oval, defined
by the bounding rectangle (see Figure 8) of the
segment, is subtracted by the ratio of points
outside of that oval. Since the goal is no filled
rectangle but a frame (see Figure 8), the second
function R(S) has to subtract the ratio of points in-
side the frame from the ratio of points on the frame.

(v. May 12, 2010, p.4)
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InOval(P ) =


1, if P is inside

of the oval area,
−1, otherwise.

B(S) = 1
n

∑n
i=1 InOval(Si)

where n is the number of pixels in S and Si is
the ith pixel of the segment S.

InFrame(P ) =


1, if P is inside

of the frame area,
−1, otherwise.

R(S) = 1
n

∑n
i=1 InFrame(Si)

where n is the number of pixels in S and Si is
the ith pixel of the segment S.

Figure 8: Ball shape (left) and goal shape (right)

Experiments showed that this method is well
able to distinguish goal and ball from other objects
in the scene. To determine whether one of the
objects is currently visible the functions need to
be thresholded in some way. It turned out that
there are no fixed thresholds to be found. After
optimizing the settings to an specific environment
the method returned good results. Unfortunately
only small changes in the environment causes the
results to decrease strongly. This is caused by
the shaded lower half of the ball. The lower the
light intensity the higher the similarity between
the upper and lower area of the ball. This causes
the shape of the segment to change slightly. In
order to avoid that problem other methods of shape
matching have been investigated.

4.2 Polygon matching
Another approach to shape matching is polygon
matching, where the outline of objects is compared.
To be able to do so, the segments have to be con-
verted to polygons. This requires all the outline

pixels of the segment to be calculated. Unfortu-
nately this process is O(n2) in runtime, where n is
the number of pixels, and it is problematic for non
solid objects like a torus, where multiple outlines
exist. Furthermore the pixels in the outline need to
be sorted to create a continuous outline.
To compare the resulting polygons the turning an-
gle function [5] (see Figure 9) was used since it is
invariant to rotation and scale. It has a value for
each point of the polygon. Following the points
around the polygon the function changes at each
point by the change in angle at that point. It can
then be shifted for comparison to obtain invariance
to rotation. Although this approach returns good
and stable results, the low efficiency of the poly-
gon creation algorithm, especially when multiple
outlines are present, is strongly increasing process-
ing times.

Figure 9: (a) segment shape. (b) resulting turning
angle function.

4.3 Using neural networks for shape
matching

Since neural networks can be used to solve nearly
every classification problem they can also be used
in multiple ways to recognize the segments in the
image. First the results of the two functions defined
in section 4.1, the euclidean distance between de-
sired color and segment color and the segment size
have been used as input for a multi layer network.
This network was trained with three outputs, which
represent the ball and the two goals, to return 1 if an
object is represented by the segment data inputted
and 0 if not. The training was performed using back
propagation. This approach unfortunately showed

(v. May 12, 2010, p.5)
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the same problems as described in section 4.1.
As a second approach a linear neural network (Per-
ceptron) was trained getting a scaled representation
of the segment and its color difference as input. To
obtain the scaled representation the shape of the ob-
ject is projected on a two dimensional array of input
neurons with constant size (see Figure 10). During
experiments results varied depending on the num-
ber of input neurons used for the shape. Further
experiments showed that the average dimensions of
the object in the image data are best for the scaled
representation. So for objects of different sizes sep-
arate networks with different numbers of input neu-
rons should be used.

Figure 10: Linear neural network structure.

4.4 Conclusions
All the methods tested returned good results. Al-
though the polygon matching based on the turning
angle function is the only algorithm tested that is
totally invariant to rotation it needs the polygons in
the scene to be calculated. That unfortunately can
not be done in linear time. Since the ball is round
and the goals are stationary rotational invariance
is considered less important than avoiding an extra
step with quadratic complexity. Both the functions
described in section 4.1 and the neural network ap-
proach are successful in detecting the objects, but
the linear functions have to be thresholded in order
to determine whether an object is visible. A linear
neural network could be trained to solve the prob-
lem with very low error rates .
Figure 11 shows a comparison of the discussed
shape matching methods. The left part of the graph
shows the success rates of recognizing an object
when it is present, while the right part shows the
success rates of recognizing the absence of an ob-
ject rather than pointing to another object.

5 Improving Efficiency
Since the object recognition is only one of many
routines that will be executed on the robot, the goal
is to make it as efficient as possible. All the sub-
routines were already selected based on speed such
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Figure 11: Shape matching error rates.

that the algorithm runs in near linear time. In order
to improve it further two big improvements were
implemented. In order to compare the methods
and measure the improvement, a 3D scene was ren-
dered into a video of 15 seconds runtime. The per-
formance was measured by calculating the average
time needed to process one frame.

5.1 Dynamic programming
While the image segments are created by the graph
based image segmentation algorithm (section 3.2)
information like the central point and the average
color require very little computation. So instead
of calculating this information later on demand, by
iterating over the pixels in the segment, the sum of
the following properties of each of the contained
pixels is stored in each segment:

• red color value,

• blue color value,

• green color value,

• x position,

• y position.

These summations can be calculated dynamically
during the construction of the segments. The
average color and mean position for a segment can
later be calculated by dividing these numbers by
the number of pixels contained in the segment.
Also the extreme values are stored, namely min-
imum and maximum x and y values, to define
the dimensions of the segment. This reduced the
average runtime by 15% (see Figure 16).

5.2 Motion prediction and partial
image processing

In the case where the locations of all important
objects are known the area of the image to be
processed can be reduced. This could strongly

(v. May 12, 2010, p.6)
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reduce the processing time. In order to estimate an
object’s position two methods have been investi-
gated. The first method assumes the object to be
moving on a straight line. In order to estimate that
line two prior positions of the object need to be
known. The vector between these positions is now
assumed to be the change of position for the next
frame (see Figure 12).
The second method tested assumes objects may
follow a curved trajectory. Therefore the change
in the first derivative of the prior three positions of
the object is used to predict the next position (see
Figure 13).

Figure 12: Linear motion prediction. The dashed
triangle is the predicted movement.

Figure 13: Non-linear motion prediction. The
dashed triangle is the predicted movement.

Experiments showed equal results for both
methods (see Figure 14). This can be explained
by the little time between the frames and the there-
fore little movement. Since the non linear predic-
tion might still be useful for lower frame rates it
was kept in the algorithm as an option although by
default linear prediction is used.

The predicted positions of the objects are used
to reduce the part of the image to be processed.
Since the expected positions and the dimensions
of the objects are known an area can be calculated
which will contain all of the objects in the next
frame. This is only possible if all objects were
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Figure 14: Comparison of prediction methods.

visible in the previous frame. Since the prediction
is not always precise a safety area around the
minimal area is kept which is determined by
scaling up the dimensions of the objects by a fac-
tor of 1.5 when calculating the area (see Figure 15).

Figure 15: Partial image processing area. The dot-
ted rectangle is the area where objects are predicted
to be. The dashed rectangle is the safety area.

Although this method improved the speed
of the algorithm drastically, the improvement is
not constant. So partial image processing is only
applicable when all objects to be detected are
visible. In case of robot soccer that is usually
the enemy’s goal and the ball. If one of the
objects is out of sight the entire frame needs to
be processed in case the object appears somewhere.

(v. May 12, 2010, p.7)
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5.3 Conclusions
Both tested improvements were able to speed up
the algorithm by about 50% on the example scene
but only the 15% speed improvement caused by the
dynamic programming part is a constant improve-
ment (see Figure 16). The partial image processing
can only be used when all important objects have
been detected in the previous frames.
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Figure 16: Comparison of processing time with dif-
ferent improvements. (a) Reference - without im-
provement, (b) dynamic programming, (c) partial
image processing, (d) both improvements.

6 Nao implementation
In order to make the algorithm usable on the Nao
robot, it has been implemented in C++ and com-
piled for the Linux platform. An alternative would
have been to implement it in Python, which was
tested to be too slow for the complex algorithm.
Anyway the C++ code can be called from python
files which are mainly used to control the robot.
Images are captured from the cameras using the
NaoQi package which is provided by the robot.
Based on the specifications of the robot’s cameras
the obtained object coordinates need to be trans-
formed to coordinates representing the objects po-
sition in the real world (the game area).

6.1 Handling the two cameras
The Nao Robot is equipped with two cameras, one
on the forehead above the eyes and the other one
near its mouth (see Figure 17). Unfortunately it is
not possible to capture images from both cameras
simultaneously since only one camera input is
available. The switching between the cameras is
handled on hardware level and therefore causes
a certain delay. The number of switches should
therefore be minimized. In order to determine

from which camera to capture a set of simple rules
was defined:

• If the ball is detected on the top camera only
capture that camera.

• If the ball is detected on the bottom camera
only the bottom camera is captured until the
robot needs to aim for the goal. At this point
the top camera is captured to determine the lo-
cation of the goal.

• If the ball is not visible switch between cam-
eras at a certain rate until it gets visible.

These rules allow the algorithm to work with a min-
imum number of switches between the cameras.

Figure 17: Diagram of the two cameras and the
fields of view [6].

6.2 Coordinate transformation

Since robot soccer is played on a planar field
the transformation from the coordinates on the
camera images to real life coordinates is linear.
Furthermore the goal will always be located on the
top camera and only the x-coordinate is important
for aiming. In order to walk towards an object the
robot needs to keep it horizontally centered in the
camera image, given the robot is looking forward.
So the most important information for an objects
location is the horizontal deviation from the center.
Furthermore for being able to kick the ball, the
distance to the ball should be returned. Both
informations can be obtained by the following two
linear transformations:

(v. May 12, 2010, p.8)
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xr = ( xc
xmax
2

− 1)
x1+

yc
ymax

(x2−x1)

2

yr = y1 +
yc

ymax
(y2 − y1)

where

xc is the x coordinate of the object
in the camera image,

yc is the y coordinate of the object
in the camera image,

xmax is the width of the camera image,
ymax is the height of the camera image,
xr is the x coordinate of the object

relative to the robot,
yr is the y coordinate of the object

relative to the robot.

x1, x2, y1 and y2 are illustrated in Figure 18.

Figure 18: Diagram of the robot and its field of
view in top perspective.

These formulas transform the rectangle,
bounding the camera image, to the trapezoid field
of view on the planar game area (see Figure 18).
The parameters x1, x2, y1 and y2 need to be set
according to the active camera.

6.3 Capture resolution

Since the resolution of the captured images has a
huge influence on the processing time of frames it
has to be minimized. The cameras in the Nao robot
allow a maximum resolution of 640x480. For the
simple objects to be found experiments showed that
160x120 is the lowest resolution with sufficient re-
sults (see Figure 19).
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Figure 19: Comparison of results (left) and run-
times (right) with different capture resolutions. (a)
640x480 (b) 320x240 (c) 160x120 (d) 80x60

7 Conclusions
This paper described an efficient algorithm for
object recognition which is optimized for robot
soccer using the Aldebaran Nao robot. Several
methods for the needed steps were investigated
and the most effective ones were chosen. The
image data obtained from the robot’s cameras is
preprocessed with a weak Gaussian blur in order
to remove noise. This step has runtime complexity
O(n), where n is the number of pixels. To obtain
a representation of the objects visible in the image
data graph based image segmentation was chosen
to be most effective. It has been improved using
dynamic programming to precalculate values
needed for later steps. This step has runtime
complexity O(nlogn). Determining which of the
segments obtained are the relevant objects requires
a shape matching algorithm. Creating polygons
from the obtained segments gives the best results,
but required too much computational resources.
A linear neural network approach was chosen
because it balanced the quality of the results, and
the required computational resources.
Since the Nao Robot has two cameras, but can only
use one at a time, a set of rules has been defined
to switch between the cameras. Furthermore a
linear transformation from the cameras to the real
coordinates relative to the robot was described.
The robot’s cameras can capture in different
resolutions up to 640x480. Since the resolution
has huge influence on the runtime of the algorithm,
experiments were conducted to find the lowest
resolution required for sufficient results. This

(v. May 12, 2010, p.9)
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showed to be 160x120.
To run the algorithm on the Nao robot it was
implemented in C++ and compiled for Linux.
The resulting algorithm has runtime complexity
O(nlogn) where n is the number of pixels in
the image. Although this algorithm allows stable
recognition of the relevant objects robot soccer
remains a challenging task for both robots and
developers.

8 Future work
The algorithm is currently extended for more com-
plex tasks like recognizing cartoon characters and
locating license plates. Furthermore it is investi-
gated whether the clustering algorithm can be used
to create and cluster two dimensional Kohonen
maps. It would also be interesting to investigate
whether it can be applied to higher dimensional
data like a set of multiple frames. It is possible
that using different kinds of color representations,
like HSV, will improve the results when additional
objects need to be detected (like the corner poles or
other robots).
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