
Using Q-learning to Control Robot Goal Keeper Behaviour

Joscha-David Fossel

September 15, 2010

Abstract

In this paper we tackle the problem of robot goal
keeping on the Aldebaran Robotics' Nao. There-
fore we de�ne input and output available to the
Nao. We then present two approaches to create
goal keeper behaviour control. The �rst one is using
reinforcement learning (in particular Q-learning),
the second one is using hard-coded rules. For the
Q-learning based approach, we test two action poli-
cies, ε-Greedy and Softmax. The experiments re-
veal that Softmax is more suited for robot soc-
cer goal keeping than ε-Greedy. When testing the
Q-learning based approach against the hard-coded
one we were not able to discover an advantage of
Q-learning in terms of performance.

1 Introduction

In August 2007, Aldebaran Robotics' Nao [6] was
introduced as the robot used in the Robot Soccer
World Cup (Robocup) Standard Platform League,
an international robotics competition. In the Stan-
dard Platform League, a designated player of every
team (the goal keeper) has the duty of actively pre-
venting the opponent from scoring a goal. Further-
more, as in many real life sports, special rules apply
to the goal keeper position in case of Robocup: The
goal keeper is the only player allowed to stay within
the penalty area of its own team and furthermore
touch the ball with its arms and hands while beeing
in it's penalty area [ref].

This paper presents two approaches, learning and
nolearning, to create robot behaviour control for
operating the goal keeper. The learning approach
discussed in this paper is using Q-learning [11] to
evaluate which movement is appropriate depending
on the position the Nao is in. The nolearning ap-

proach is manually setting the behavioural rules for
the robot (hard-coded).

However, in order to employ either of those ap-
proaches, certain ways of perceiving (input) and
acting (output) in the enviroment the agent is in
are requiered. Input and ouput will be discussed
in Section 2. Afterwards, Section 3 presents the
learning, and Section 4 the nolearning approach.
Subsequently, experiments and results are given in
Section 5. Finally, this paper closes with drawing
conclusions on the presented approaches of control-
ling goal keeper behaviour in Section 6.

2 Interaction between Nao and

Enviroment

In this section the Naos ways to interact with it's
enviroment are speci�ed, namely:

• Input: Perception, which enables the Nao to
gather information about the enviroment.

• Output: Motions, which enable the Nao to
change the enviroment.

2.1 Input

To determine the position of the ball, the image
provided by the Naos camera is scanned for a blob,
whose RGB components match the ones of the ball.
If such a blob is found, the distance and angle be-
tween Nao and ball can be estimated depending on
which pixels are occupied by the blob.

Using distance and angle, the relative position of
the ball in dependency to the goal keeper's position
can be derived:

Xpos = ballDist ∗ cos(ballAngle) (1)

1



Y pos = ballDist ∗ sin(ballAngle) (2)

From taking taking the (X,Y)-position of the ball
two times at di�erent points in time (P1(X1, Y1);
P2(X2, Y2), see Figure 1) the direction and also the
speed of the ball can be derived. Additionally the
direction of the ball can be used to calculate the
(impact) point of intersection between the ball and
the ground line. Therefore the distance of the point
of impact to the goal keeper can be calculated, de-
termining if the ball will be in reach to save it.

ballSpeed =
√
4X2 +4Y 2 (3)

a = 4Y/4X (4)

impactPointY = a ∗X2 + Y2 (5)

Figure 1: Impact point calculation

2.2 Output

To enable the goal keeper to interact with the en-
viroment it is provided with the following set of
motions:

Strafe: Move sidewards without rotating.

Stand-still: Hold position.

Forward: Walk forwards.

Backward: Walk backwards.

Figure 2: Dive motion

Figure 3: Roll motion clearing the ball

Stand-up: Return to an erect position after
diving.

Dive: Jump either to the left or to the right,
resulting in the robot being horizontally on the
ground. See Figure 2.

Roll: Roll sidewards to remove the ball from
the penalty box. Requires the goal keeper to
lie on the ground. See Figure 3.

While this set of motions is quite basic, it allows the
goal keeper to pursue its task of preventing the op-
ponent from scoring a goal. Adding extra motions,
e.g. omni-directional walking [8], or a sophisticated
shooting motion would most likely increase the per-
formance, but are so complex that they need to be
treated seperately.

3 Machine learning

This section introduces a way of enabling the goal
keeper to learn what movements are appropriate

2



depending on the position it is in. Options how to
implement this are [7]:

• Supervised learning: Training data including
both inputs and desired outputs is required.
From that training data the learner learns a
function that should allow it to generalize from
the training data to unseen examples. An ex-
ample for supervised learning methods are Ar-
ti�cal Neural Networks [5].

• Unsupervised learning: The learner is only
provided with examples from the input space.
From that it seeks to determine how the data
is organized. Examples are data mining [2] or
Kohonen maps [4].

• Reinforcement learning [1]: Seeking to maxi-
mize the reward, the learner explores an en-
viroment and receives rewards or penalties.
However it can be unknown to the learner for
what action in particular it receives the reward
or penalty. An example for this principle is
chess, where the player knows the outcome of
the game, but not which moves in particular
were good or not.

We opt for reinforcement learning, because it does
not require correct input/output pairs and has a
focus on on-line performance.

To implement reinforcement learning, a Markov
Decision Process representing the domain of robot
soccer goalkeeping is presented in Subsection 3.1.
In Subsection 3.2, Q-learning, a reinforcement
learning technique we apply to the Markov Deci-
sion Process, is presented. Two action policies (ε-
Greedy and Softmax) are given in Subsection 3.3.

3.1 Markov Decision Process

The task of robot soccer goalkeeping can be trans-
lated into a Markov decision process, i.e. it satis�es
the Markov property [9]: The e�ects of an action
taken in a state depend only on that state and not
on the prior history.

The basic reinforcement learning model applied to
Markov Decision processes [1] consists of the fol-
lowing items:

• A set of possible world states S.

Figure 4: Playing �eld distributed into buckets

Figure 5: Robot soccer MDP

• A set of possible actions A.

• A real valued reward function R(s).

If S, A, R(s) are de�ned as follows, the Markov
property is ful�lled in robot soccer:

State s ∈ S of the world is de�ned by the position
the agent is in (e.g. lying on the �oor covering
the left side of the goal), and the position, speed
and impact point of the ball (see Subsection 2.1).
These continous valued properties are distributed
into buckets (see Figure 4) in order to gain a �nite
number of discrete states.

The sets of possible actionsA the agent can perform
are de�ned as the available motions discussed in
Subsection 2.2. See also Figure 5.

The reward function R(s) is de�ned depending on
the outcome of an attack. The rewards are set as
following:

• No goal, Nao lying on the ground: Reward 75.

• No goal, Nao in erect position: Reward 100.

3



• Goal: Penalty -10.

Those reward/penalty values contain the informa-
tion that preventing a goal by diving is less favor-
able (due to the limited mobility afterwards) than
preventing a goal without diving. Obviously not
preventing a goal at all is the least favorable course
of action, and therefore results in a penalty.

3.2 Q-learning

In 1989 Watkins[11] introduced a reinforcement
learning technique called Q-learning. It allows an
agent to optimize its performance through a system
of rewards and punishments without being super-
vised. By trial and error search the agent explores
which actions are suitable depending on the posi-
tion it is in. Q-learning enables the agent to opti-
mize not only immediate, but also delayed rewards.
To do so, Q-learning learns an action-value function
that approximates the utility of taking an action
in a certain position. This action-value function
is learned by exploring the state-space following a
certain action-policy (de�ned in Subsection 3.3).

We apply Q-learning to the Markov decision pro-
cess modeling robot soccer de�ned in Subsection
3.1.

To implement Q-learning we introduce the follow-
ing two matrices R and Q:

• The environment reward matrix R stores state
dependent rewards/penalties. If for example
the ball enters the goal a penalty of -10 is ap-
plied. See R(s) at Subsection 3.1.

• Matrix Q, initialized as a zero matrix, repre-
sents what the agent has learned so far. It con-
sist of the state the agent is in on the one axis,
and the actions it can perform on the other.

In the beginning the agent assumes that all actions
are equally good (Q matrix initialized as zero ma-
trix - the agent has no experience about what ac-
tions will yield reward). Therefore the agent selects
random actions and updates the Q matrix, depend-
ing on the reward (or punishment) that result from
its actions (see Formula 6). This procedure is re-
peated until the agent encounters a state where the
Q matrix is not zero. In that case it might chose
not to perform a random action, but act according

Algorithm 1 Q-learning Algorithm

1: Set parameter gamma , alpha , and R
2: Initialize matrix Q as zero matrix
3: For each episode:
4: Determine initial state
5: Do while not reach goal state
6: Select a according to action policy
7: Take action a, observe r, s'
8: Compute the new Q(s,a) with formula (6)]
9: s <- s'

10: End Do
11: End For

to its action policy (see Subsection 3.3). Contin-
uing this, the agent learns which actions will lead
to a maximization of rewards, so that it can act
appropriate in every position.

The associated algorithm is shown at Algorithm
1, where y is the so called discount factor with
0 ≤ y < 1. y near 0 will result in the agent con-
sidering only immediate rewards and y towards 1
in considering future rewards with greater weight.
Parameter α is the learning rate that determines
the importance of newly acquiered information. A
value of 0 for α prevents the agent from learning
anything, while a value of 1 makes the agent con-
sider only the newest information. The Transition
Rule [9] that approximates the Q-Values is shown
at Formula 6.

E(s, a) = ymaxa′ [Q(s′, a′)]−Q(s, a)

Q(s, a) = Q(s, a) + α [R(s, a) + E(s, a)] (6)

3.3 Action Policies

The process of selecting one action among all possi-
ble actions needs to be elucidated. So called action
policies de�ne what action is to be chosen in any
position encountered. These action policies de�ne
when to explore and when to exploit, i.e. when not
to select an action that is so far known to give the
highest reward, and instead explore if there might
be a strategy that gives even more reward.

Two common action policies are:

• ε-Greedy[9]: Most of the times the action with
the highest so far known reward will be se-
lected (greedy), but with a certain probabil-
ity ε, a uniformly distributed random action

4



is chosen instead in order to provide the pos-
sibility of exploration. Therefore if there are
in�nite runs the optimal policy will be discov-
ered since all possible actions are explored.

• Softmax[9]: The drawback of ε-Greedy is that
it is explored evenly among all actions, there-
fore the worst action has the same likelihood
of being selected as the second best. If dealing
with a problem where the worst possible action
is very bad this might be unwise. When explor-
ing, the Softmax policy di�ers from ε-Greedy
to that extent that it considers the actions es-
timated values and weights them accordingly,
linking probability of an action being chosen
for exploration to their value estimates:

W (s, a) =
eQ(s,a)/r∑n
b=1 e

Q(s,b)/r
(7)

The positive parameter r is the temperature
that determines the sensitivity of the relation
between weights and estimated values. With a
high temperature larger di�erences in the es-
timated values also cause high weight di�er-
ences, while a temperature of zero results in
same weights for every action independent of
their value estimates (ε-Greedy).

4 Hard-coded Behaviour

As an alternative to the in the previous section in-
troduced Q-learning based approach, this section
introduces a rather simple way of controlling the
goal keeper. Viz. manually de�ning how to behave
in certain situations, deduced from what seems rea-
sonable from a human point of view.

This approach is implemented by de�ning rules
that cover all relevant situations.

1. In the beginning it is determined if the goal
keeper needs to act. Therefore the estimated
impact point is taken into account. If that im-
pact point is outside of the goal plus a certain
safety threshold (to absorb inaccuracy from
perception) the goal keeper obviously does not
have to engage, and 1 is repeated. Else it will
execute 2.

2. If, on the other hand, the impact point is in-
side the goal area, the distance and speed of
the ball are used to decide whether the ball
will enter the penalty box, or not. In order to
determine if the ball is fast enough to hit the
goal instead of stopping in front of it, a thresh-
old can be de�ned - i.e. if the ball exceeds a
certain velocity v at a certain distance d the
goal keeper is required to act, if not the ball
will stop before reaching the goal. Identifying
v and d can be accomplished by trial and er-
ror. An alternative is using the second deriva-
tive to determine if the ball is fast enough -
however we were unable to obtain good results
using that approach. If the ball is predicted to
enter the penalty box, the goal keeper either
dives to the left or right according to the im-
pact point prediction, or holds its position in
case the ball is estimated to hit the centre of
the goal. Afterwards 3 will be executed. If the
ball is predicted to not enter the penalty box,
1 is repeated.

3. The goal keeper will hold its current position
(i.e. either lying on the ground or standing in
the centre of the goal) until the ball has en-
tered the penalty box. If that happens within
5 seconds 4 is executed. If 5 seconds pass and
the ball does not enter the penalty box 5 is
executed.

4. The goal keeper attempts to clear the ball by
either walking towards the ball and kicking it
(if in erect position), or by rolling towards the
ball, both resulting in the ball being removed
from the penalty area. Then it proceeds to 5.

5. If necessary the goal keeper will start the stand
up routine, move to the initial position and go
to 1 again.

Figure 6 shows the �owchart of this procedure.

5 Experiments

In this section we try to answer the following two
questions:

1. Which of the previously introduced action
policies, namely ε-Greedy and Softmax (see

5



Figure 6: Flowchart of hard-coded behaviour

Subsection 3.3), is better suited to solve the
problem of robot goalkeeping?

2. How does the Q-learning based approach per-
form compared to the hard-coded approach?

In order to answer these question we conduct a se-
ries of experiments described in Subsection 5.1. In
Subsection 5.2 the results of these experiments are
shown and discussed.

5.1 Set-up

All experiments are conducted on the Cyberbotics
Webots simulator [12] platform for several reasons:
It prevents hardware damage, it allows to by-pass
camera noise by using both the real position val-
ues provided by the simulator and also the noisy
data provided by the simulated camera, and most
importantly because it enables to do a high num-
ber of unsupervised test runs that would require
extensive time if done in reality.

In order to compare ε-Greedy and Softmax, the
agent is initialized with an empty Q-Matrix for
both action policies. Then 100 random shots to-
wards, but not necessarily on the goal are per-
formed (Each attack is one episode). For both ac-
tion policies the cumulated Q-Values and the num-
ber of errors (goals) are observed. The agent is
trained with the following parameters that were set
intuitively:

• γ = 0.5, the agent consideres both immediate
and future rewards.

• α = 0.5, the agent weights old and newly ac-
quiered information evenly.

• ε = 0.1, the agent eplores instread of exploiting
with a probability of 10%.

• r = 0.5, under Softmax, actions with a high
estimated value are more likely to be chosen.

To compare the Q-learning based with the hard-
coded approach, the agent is initially trained us-
ing the Softmax policy (same parameters as in the
previous experiment, 1000 episodes). Afterwards
400 evaluation episodes are conducted. The hard-
coded approach is also tested by carrying out 400
evaluation episodes, and afterwards the number of

6



Figure 7: Number of committed errors (goals),ε-
Greedy vs. Softmax

errors are compared. These two experiments are
conducted using the NAO camera and using the
real positions provided by the Webots simulator,
both for training the agent and when running the
tests.

In order to ensure comparableness Common Ran-
dom Numbers[3] are used so that the same random
shots are performed.

5.2 Results & Discussion

5.2.1 ε-Greedy vs. Softmax

Figure 7 shows the number of errors the agent com-
mitted on the one axis and the number of episodes
on the other. When following the ε-Greedy policy
the agent commits more errors than when using
Softmax.

This is a result of the possibility of making 'fatal
error' in the domain of robot soccer. If, for ex-
ample, the ball is aimed at the left corner of the
goal and still at a su�cient distance, both waiting
for the ball to come closer and then acting as well
as diving to the left corner is suitable. However,
if the agent dives right there is nothing it can do
anymore to gain a reward in that episode. As it
is more likely to commit such a 'fatal erros' using
theε-Greedy action policy, Softmax performs bet-
ter.

Figure 8 shows the cumulated Q-values for both
ε-Greedy and Softmax. The graph shows that un-
der the Softmax action policy higher cumulated Q-
Values are achieved. Therefore we may conclude

Figure 8: Cumulated Q-values, ε-Greedy vs. Soft-
max

that when using Softmax, ways to prevent a goal
are discovered more quickly.

5.2.2 Q-learning based vs. Hard-coded Ap-

proach

As can be seen in Figure 9, the Q-learning based
approach does not perform better than the hard-
coded approach. When trained with and using the
real values as input (Q-real) both perform equally
good.

There are several reasons for that. For once, while
Q-learning has been proven to converge[10] to the
optimal solution, the discretisation of the originally
continuous values that de�ne the state the agent is
in leads to loss of precision. In order to compensate
a large number of states may be introduced, though
that would increase the required training time in re-
turn because of the additional number of states. In
this implementation we used a rather low number
of buckets (12 buckets for the playing �eld, Fig-
ure 4). This might be a reason for the bad perfor-
mance of the Q-learning based approach, as it may
prevent it from handling camera noise su�ciently.
The experiment shows that the Q-learning based
approach is more a�ceted by camera noise than
the hard-coded approach. In contrast the hard-
coded behaviour was manually adjusted to reduce
the amount of �awed actions resulting from impre-
cise sensor readings. It is for example programmed
to dive even when the shot is (only due to impre-
cise sensor readings) calculated to slightly miss the
goal, while Q-learning has no possibility to deter-
mine if a shot is predicted to slightly or clearly miss

7



Figure 9: Q-learning based vs. Hard-coded Ap-
proach

the goal (due to the small number of buckets).

6 Conclusions & Future Re-

search

In this paper we proposed a Q-learning based and a
hard-coded approach to solve the problem of robot
soccer goal keeping. We furthermore tested two
action policies for the Q-learning based approach.
The experiments show that softmax is an adequate
action policy in this domain. The experiments fur-
thermore show that our Q-learning based approach
does not outperform out hard-coded rule based ap-
proach. However, the reason for that might be the
implementation that uses only a small number of
buckets the continous states are divided in. Also, a
learning based approach has the advantage that it
is able to adapt to changes, while the hard-coded
approach does not. If for example the basic image
recognition is improved the hard-coded approach
would need to be changed. In contrast, we expect
the Q-learning based approach to be able to cope
with new image recognition easily.

For future reseach we suggest improving the image
recognition, and also integrating more information
(about for example friendly and/or enemy agents)
into the input. By that the complexity of the prob-
lem increases, and hard-coded behaviour might be-
come unfeasible, necessitating another form of con-
trolling the agent, like Q-learning. Likewise the
number of buckets should be increased.

We presented a basic framework with decent perfor-

mance that o�ers possibilities for future improve-
ments. Therefore we may conclude that Q-learning
is a suitable approach to robot soccer goal keeping.

References

[1] Kaelbling, Leslie Pack, Littman, Michael,
and Moore, Andrew (1996). Reinforcement
learning: A survey. Journal of Arti�cial In-
telligence Research, Vol. 4, pp. 237�285.

[2] Kantardzic, Mehmed (2002). Data Min-

ing: Concepts, Models, Methods and Algo-

rithms. John Wiley & Sons, Inc., New York,
NY, USA.

[3] Kleijnen, Jack P. C. (1975). Antithetic
variates, common random numbers and op-
timal computer time allocation in simula-
tion. MANAGEMENT SCIENCE, Vol. 21,
No. 10, pp. 1176�1185.

[4] Kohonen, T., Schroeder, M. R., and Huang,
T. S. (eds.) (2001). Self-Organizing Maps.
Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

[5] Lawrence, Jeannette (1993). Introduction to
neural networks. California Scienti�c Soft-
ware, Nevada City, CA, USA.

[6] Robotics, AldebaranNao academics
datasheet.

[7] Sewell, Martin (2007). 1 introduction ma-
chine learning.

[8] Strom, Johannes, Slavov, George, and
Chown, EricOmnidirectional walking using
zmp and preview control for the nao hu-
manoid robot.

[9] Sutton, Richard S. and Barto, Andrew G.
(1998). Reinforcement Learning, An Intro-

duction. MIT Press.

[10] Watkins, Christopher J.C.H. and Dayan,
Peter (1992). Technical note: Q-learning,
machine learning.

8



[11] Watkins, Christopher J.C.H. (1989). Learn-
ing from delayed rewards. Ph.D. thesis, Uni-
versity of Cambridge, Psychology Depart-
ment.

[12] www.cyberbotics.com (2010). Webots refer-
ence manual.

9


