
Learning to Walk

A Self Optimizing Gait for the Nao

Daniel Mescheder

July 10, 2011

Abstract

In this paper, a self optimizing walk for the
Nao humanoid robot is presented. The ap-
proach uses Reinforcement Learning with the
Linear Inverted Pendulum Mode as an initial
bias. A controller based on a linear dynami-
cal system is derived as a means to calculate
the inverse kinematics which are needed for an
implementation of the Reinforcement Learning
trajectory. Furthermore, it is shown, how the
number of parameters to be learned can be re-
duced by applying a technique similar to Taylor
approximation.

1 Introduction

Biped walking is a natural skill for humans. Attempts
to let an artificial entity walk, however, have proven it to
be a challenge from an engineering perspective. Clearly,
biped walking constitutes a very flexible means of loco-
motion: Legged entities can generally maneuver easily in
rugged terrain. Another reason to study biped walking,
especially in relation with machine learning, is to find a
model that explains the human gait and can therefore
be used for physiological analysis.

In this research the Nao robot was used as a plat-
form. This humanoid, developed by Aldebaran robotics
is (amongst others) used in the RoboCup standard plat-
form league [6]. Several walks have been developed for
the Nao robot. Kulk and Welsh for instance presented
an improved version of the walk available on the Nao by
default in which they lowered the joint stiffness [7]. Yet,
the Nao’s effective mobility is still far from humanoid.

Kajita et al. derived the Linear Inverted Pendulum
Mode (LIPM), a model for biped walking based on the
assumption that the robot can be approximated by a
pointmass on a stick [8]. It was shown that the LIPM can
be implemented on the Nao [4]. Nevertheless, this model
is very simplistic and does not capture the complexity
of the real dynamics involved as it neglects friction and
other real world constraints.

Figure 1: The Nao humanoid. Source: Aldebaran [1]

This paper will discuss how the LIPM can serve as a
basis for a self optimizing gait based on Reinforcement
Learning (RL). The LIPM will be used as a starting
point. It will be especially pointed out how the high di-
mensionality of this problem can be approached and how
supervised learning can be used to transfer the LIPM to
a setting in which RL is applicable.

The next section will sketch the general structure of
our approach. It will be pointed out, which subproblems
have to be solved in order to arrive at a stable walk. Sec-
tion 2 provides the preliminaries which are necessary to
implement a self optimizing walk on the Nao. For this
purpose, the concept of forward- and inverse-kinematics
is introduced, and an overview of the LIPM model is
given. In the following section, Reinforcement Learning
is presented. Furthermore it is described, how gradient
descent can be used to overcome the curse of dimension-
ality using the example of an approximation technique
based on Taylor series. Section 3 shows how to translate
the LIPM to a Q-function which can be improved us-
ing RL. Experimental results are given in Section 4 and
finally the conclusion will be drawn in Section 5.
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1.1 Problem Analysis

To control the Nao in a walking pattern, there are sev-
eral steps involved. The Nao’s operating system runs in
a cycle of 20ms. In every such step, new joint positions
can be set. The Nao’s internal controller will then gen-
erate the necessary motor torques to reach the desired
position.

We want to describe the desired trajectory as a se-
quence of euclidean space positions, i.e. x, y and z co-
ordinates. Therefore a procedure is needed which calcu-
lates joint space positions from euclidean space coordi-
nates. This problem is referred to as inverse kinematics.
For most systems, there exists no analytical solution to
this problem. Depending on the structure of the robot
at hand, there might be no joint space configuration for
some euclidean space positions. Other systems in turn
are redundant such that there exists an infinite number
of joint configurations for the same euclidean space po-
sition.

Finally, a trajectory needs to be found which de-
scribes a stable walk. Ideally it should take into account
feedback from the robot’s sensors and to modify itself
such that it will get more stable over time. This is the
point were Reinforcement Learning comes in.

It is possible to describe and to learn a motion in
joint-space i.e. as a sequence of joint position vectors.
However, this has several disadvantages: Firstly, joint
space trajectories are difficult to interpret. Secondly,
joint chains are often redundant, thus a joint space tra-
jectory would have more dimensions and is thus more
difficult to handle by learning algorithms. Finally, it
is possible to create a model which allows us to analyti-
cally derive a trajectory in euclidean space as the seciton
about the LIPM will show.

2 Background
This section will provide the necessary background to
implement a walk on the Nao robot. First, we con-
sider coordinate frames and homogeneous transforma-
tions. Subsequently, we apply these concepts to robotics
and derive the forward-kinematics. It will be shown how
joint space velocities can be translated to euclidean space
velocities using Jacobians. It is then skteched how these
concepts can be used in a controller that translates eu-
clidean space coordinates to joint space coordinates. In
Section 2.4 the LIPM will be introduced and it is shown
how the above mentioned controller can be used to im-
plement it on the Nao.

2.1 Kinematics

This section will introduce the concept of forward- and
inverse-kinematics which is necessary for constructing a
controller which lets the Nao follow an euclidean space
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Figure 2: The coordinate frames A (left) and B (right)

trajectory. For more information about kinematics in
general, refer to Craig’s introduction to robotics [5].

Frames Consider the two coordinate frames A and B
shown in Figure 2. Each frame consists of three or-
thonormal axes, x, y and z, and an origin o. We denote
the coordinates of a given vector v in a frame F by vF .
We now consider how, knowing the coordinates in frame
A of the unit vectors xB , yB , zB of frame B and the ori-
gin oB of frame B, we can use vB to find vA. Notice that
vB = (oBv)B = xBBv

B
x +yBBv

B
y +zBBv

B
z where, vBx denotes

the x-coordinate of v in frame B, and vBy and vBz are de-

fined similarly. Furthermore, (ab)F denotes the vector
from point a to point b, expressed in frame F . Thus,

(oBv)A = xABv
B
x + yABv

B
y + zABv

B
z

=
[
xAB yAB zAB

] vBxvBy
vBz


= RABvB

where RAB =
[
xAB yAB zAB

]
. Using this equation and

the fact that vA = (oAv)A, we can derive Equation 1,
given below. The matrix RAB that occurs in this equation
is called the rotation matrix from frame B to frame A.

vA = (oAv)A

= (oAoB)A + (oBv)A (1)

= oAB +RABv
B

If we transform vC to vB and then to vA using Equa-
tion 1, the expression we find can become rather large,
especially if many frames are involved. To avoid this,
we introduce the homogeneous coordinates of a vector
in a given frame. These coordinates are obtained by
adding an additional 1 to the ordinary coordinates of
the vector. Using these homogeneous coordinates, we
can rewrite Equation 1 to Equation 2. The matrix TAB
that appears in this equation is called the (homogeneous)
transformation matrix from B to A. The composition of
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Figure 3: A robot arm. The base is indicated by the
large semicircle and joints are indicated by circles.
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Figure 4: Joints and their associated frames. The direc-
tion of rotation of each joint is indicated by an arc.

such transformation matrices is equivalent to their ma-
trix product, as indicated in Equation 3.

[
vA

1

]
=

[
RAB oAB
0 1

] [
vB

1

]
= TAB

[
vB

1

]
(2)

TAC = TAB T
B
C (3)

Chains, end effectors and forward kinematics
We now apply the concepts of frames and transforma-
tions between them to robot arms. For our purposes, a
robot arm is a series of joints connected to a static base,
as shown in Figure 3. This will also be referred to as a
chain. Each joint in a chain is assumed to move only by
rotating around a particular axis, called its joint axis.
We assign a frame to each joint, whose z-axis points
along the respective joint axis. The x-axis of the i-th
frame is taken to be a common normal of the z-axes of
the i-th and (i + 1)-th frame.1 The y-axis is then de-
termined by the additional assumption that each frame
should be right-handed, that is2, that x × y = z. An
example of these frames is shown in Figure 4.

Given two frames, we can now define 4 parameters
that determine the transformation from the (i − 1)-th

1A vector w is a common normal of u and v if w is orthogonal
to both u and v

2x× y is the cross product of the vectors x and y
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Figure 5: The frames i−1 and i and the DH-parameters
of the transformation between them

frame to the i-th frame. These numbers, ai, αi, di and
θi, have a geometrical interpretation, as shown in Fig-
ure 5. The parameter αi is the rotation angle between
zi−1 and zi, along the axis xi−1. The distance between
these vectors along xi−1 is named ai. The third param-
eter, di, gives the distance along zi between xi−1 and
xi. The final parameter, θi, is the rotation angle about
zi between xi−1 and xi. With these parameters, we can
calculate the transformation matrix from the frame i to
the frame i − 1, using Equation 4. Of the four DH-
parameters, ai, αi and di are determined by the robot’s
geometry. The remaining parameter, θi, is a variable
giving the position of the i’th joint. Thus, the transfor-
mation matrix as defined by Equation 4 can be viewed as
a function from the joint’s angle, that is, its parameter
θi, to its transformation matrix.

T i−1
i (θi) =

cos θi − sin θi 0 ai
sin θi cosαi cos θi cosαi − sinαi −di sinαi
sin θi sinαi cos θi sinαi cosαi di cosαi

0 0 0 1

 (4)

Usually, we are not interested in the positions of indi-
vidual joints in the chain, but rather in the final one. The
final joint of a chain is commonly called its end-effector.
The transformation from the end-effector frame to the
base is called the forward kinematics of the chain. Using
Equation 3, we can define the forward kinematics for an
n-joint chain as the matrix F defined in equation 5. F
is given as a function of q, the vector of joint angles of
the chain.

F (q) = T 0
n =

n∏
i=1

T i−1
i (qi) (5)

Though the forward kinematics completely specify
the position and orientation, this is a redundant rep-
resentation. In particular, the rotation matrix uses 9
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parameters to encode orientation, while smaller repre-
sentations using 3 or 4 parameters exist. A smaller rep-
resentation will lead to a better performance. Addition-
ally, in what follows it will become clear that we need a
representation whose time derivative can be easily found
from an angular velocity vector. To satisfy both these
requirements, we will represent orientations by quater-
nions, which require 4 parameters. For a rotation about
an axis v over an angle φ, the corresponding quaternion3[
r r0

]T
is given below in Equation 6.[

r
r0

]
=

[
v sin(φ2 )

cos(φ2 )

]
(6)

Though Equation 6 allows us to find the quaternion
corresponding to a given rotation if we know the rotation
axis and the rotation angle, it does not tell us how to find
the quaternion corresponding to a given rotation matrix.
For more information about this subject refer to [4]. We
will not need the opposite calculation, that is, finding
a rotation matrix for a given quaternion. A formula
for this matrix can be found in Angeles’ textbook on
robotics [2, Section 2.3.6].

Using quaternions as we have defined them above,
we can define the position of an end-effector as a seven-
dimensional vector p(q). Since the forward kinematics
F is a transformation matrix, it has the form given in
Equation 2. Thus, we can extract the linear position
of the end-effector by taking the first three elements of
the last column of F (q). We will denote this 3-element
vector by o(q). The rotation matrix R0

n consisting of
the first 3 rows and first 3 columns of F (q) can then
be used to find the quaternion r(q) corresponding to the
end-effector’s orientation. We can then define p(q) as the
vector consisting of o(q) and r(q), as given by Equation 7.

p(q) =

[
o(q)
r(q)

]
(7)

Jacobians Previously, we showed how to calculate the
position of an end-effector given the joint angles of a
chain. We will now consider how to calculate the linear
and angular velocity of the end-effector.4 To do so, let q̇
be the vector of time derivatives of the chain’s joint an-
gles. The linear and angular velocity of the end-effector
can be found using Equation 8.5 The matrix J(q) that
appears in this equation is called the Jacobian of the
system.

3The superscript T denotes the matrix transpose. Thus, a
quaternion is a column vector of 4 elements.

4Despite its name, the angular velocity is not the derivative of
orientation. As we shall see below, the derivative of the quater-
nion encoding orientation and the angular velocity are related by
a linear transformation.

5v denotes the linear velocity of the end-effector. The angular
velocity is denoted by ω.

[
v
ω

]
= J(q)q̇ (8)

To compute the Jacobian, we shall use its explicit
form, as discussed in the Stanford introductory course
in robotics [9, Lecture 7]. The essential idea of this form
is that each column of the Jacobian specifies the con-
tribution of the corresponding joint to the total linear
and angular velocity. Using this idea, one can derive the
form given in Equation 96 , where Ji is the i-th column
of J . Furthermore, pi is the position of the end-effector
relative to the origin of frame i and zi is the z-axis of
frame i.

Ji =

[
z0
i × p0

i

z0
i

]
(9)

We can now compute the Jacobian of a robot arm and
therefore its linear and angular velocity. This is not yet
sufficient for inverse kinematics. In what follows we need
the matrix of partial derivatives of p(q) with respect to q.
To find this matrix, we need to transform the Jacobian
to the matrix Jr(q) that satisfies Equation 10, where ṙ
is the time derivative of the quaternion corresponding to
the end-effector’s orientation.[

v
ṙ

]
= Jr(q)q̇ (10)

As shown by Angeles [2, Section 3.4.2], ṙ = H(r)ω,
whereH(r) is a matrix that depends on the quaternion r.
In order to derive the formula for H, we will first define
the cross product matrix (cpm) operator. Given a vector
v, the cross product matrix cpm(v) is the matrix such
that for any vector x, v×x = cpm(v)x. The formula for
this matrix given by Angeles [2, Section 2.3.1] is given
below as Equation 117 .

cpm(v) =

 0 −vz vy
vz 0 −vx
−vy vx 0

 (11)

Using this equation, we can give the formula for the
matrix H(r). To write this formula, we decompose the
4-element quaternion r into two parts, the vector r con-
sisting of the first 3 elements and the last element r0.
With this notation, the formula given by Angeles [2,
Section 3.4.2] for H(r) is given below as Equation 12
where I3 denotes the 3 × 3 identity matrix. We con-
clude this section with the formula for Jr(q) in terms of
J(q). As mentioned previously, Jr(q) is obtained from

6Here, the base frame is referred to as frame 0. The vector
z0i × p0i is the cross-product of zi and pi, when both vectors are
expressed in the base frame.

7As before, vx is the x-coordinate of v and vy and vz are defined
accordingly.
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Figure 6: The nao’s lower body

J(q) by means of a linear transformation, as given in
Equation 13.

H(r) =
1

2

[
r0I3 − cpm(r)

rT

]
(12)

Jr(q) =

[
I3 0
0 H(r(q))

]
J(q) (13)

2.2 A model of the Nao
We will now apply the concepts we have previously re-
viewed to the Nao. In doing so, we will show how to
handle the simultaneous motion of the Nao’s torso and
foot relative to a stationary foot. We will also handle
a number of peculiarities involved in applying the Nao’s
DH-parameter model. The first of these is that each
chain of the Nao has an additional base frame and an
end-effector frame, specified by constant transformation
matrices. The second is that all of the Nao’s chains are
specified with the torso as the base. As we would like
to use a foot as the base, we will need to calculate the
parameters and transformations for the chain from the
foot to the torso.

Before we define the position and velocity of the
torso and foot moving simultaneously, we consider how
to model the Nao’s lower body. The structure of this
lower body is drawn in Figure 6. The stationary foot
that we take to be the base of the system is shown on
the left. In the middle, we have the torso, which is one
of the two end-effectors we wish to control. The other
end-effector is the moving foot, which is indicated on the
right. The joints connecting the base to the torso and
the foot are indicated by circles.

Comparing Figure 6 to Figure 3, we notice that the
Nao’s lower body is in some sense a union of two chains.
That is, the chain from the stationary foot to the torso
forms part of the larger chain from the stationary foot to
the other foot. Letting q be the vector of joint angles of
the larger chain, we can calculate the positions of both
the torso and the moving foot relative to the base using q.
We will consider the combination of these two positions,
stacked vertically, to be the position of the Nao’s lower
body. This is shown in Equation 14 where the subscript
T refers to the torso and the subscript F to the moving
foot.

p(q) =

[
pT (q)
pF (q)

]
(14)

Our next problem is how to define the Jacobian of the
Nao’s lower body. As before, we will define this Jacobian
Jr(q) to be the matrix of first-order partial derivatives of

p(q) with respect to q, that is, Jr(q) = ∂p(q)
∂q . Since p(q)

has the structure shown in Equation 14, Jr(q) has a sim-
ilar structure, shown in Equation 15. Here, the matrix
JT,r(q) is the Jacobian of the torso with respect to all
the joints in the larger chain. Since the torso’s position
depends on only a limited number of these joints, the
columns corresponding to the other joints should be set
to zero. Each of the Jacobians JT,r(q) and JF,r(q) can
be found using the explicit form of Equation 9.

Jr(q) =

[
JT,r(q)
JF,r(q)

]
(15)

There are four more practical issues that we en-
counter when we apply the above to the Nao: Firstly,
it is not necessarily the case that the reference frame of
the support foot coincides with the standard base frame.
It is also possible that the frame associated with the end
of a chain (end effector frame) is different from the last
joint frame. Thus, there needs to be a technique to in-
clude this information into both the forward kinematics
and the Jacobian.

Secondly, the DH-parameters for the Nao can be
found in the documentation provided by Aldebaran [1].
However, the documentation lists the parameters of a
chain from the torso to the support foot. The model we
presented in this section requires a chain from the sup-
port foot to the torso. Hence, we need to compute the
DH-parameters of this chain using the parameters given
in the documentation.

Thirdly, the model described earlier in this section re-
quires a chain from the support foot to the moving foot.
Using the documentation [1] and the inversion procedure
mentioned above, we can find a chain between the sup-
port foot and the torso and a chain between the torso
and the moving foot. We can then combine these two
chains to find the desired chain from the support foot to
the moving foot. To do so, we have to take into account
individual base- and end-transforms.

Finally, we have thus far assumed that all the joints
of a chain can be moved independently. This, however,
is not the case for the Nao’s legs: The LHipYawPitch
and the RHipYawPitch joints are controlled by the same
physical motor which means that their joint angles are
always equal. This needs to be taken into account during
the construction of the Jacobian.

We will present two equivalent techniques to solve
the problems described above. One is to explicitly model

(v. July 10, 2011, p.5)
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the change of kinematics caused by each of them and to
derive additional transformations that can be applied to
the model presented above. The other technique relies on
introducing special joints. Using these joints we need to
make only small changes to the calculation of the forward
kinematics and the Jacobian.

Base- and End Transforms As described above,
there needs to be a way to represent the fact that the
base frame of a chain does not coincide with the first
joint frame and the end-effector-frame is not the same
as the last joint frame.

This section will first describe the explicit approach.
Let b be the new base frame and T b0 as given below
be the transformation between b and the standard base
frame. Let accordingly e denote the end-effector frame
and Tne be the corresponding transformation to the last
joint frame.

T b0 =

[
Rb0 pb0
0 1

]
Tne =

[
Rne pne
0 1

]
The new forward kinematics including base- and end-

transforms are then given by the matrix Fbe (q) as spec-
ified below.

Fbe (q) = T b0 · F (q) · Tne (16)

To transform a velocity vector to a new base frame it
suffices to apply the rotation to the explicit form of the
Jacobian (i.e. before the quaternion operator is applied):

Jb =

[
Rb0 0
0 Rb0

]
· J (17)

If there is an additional end transform to the end
effector, the following holds for the velocity vector:

ve = vn + ωn × pne
ωe = ωn

This is equivalent to the following notation that uses
the matrix form of the cross product defined in Equation
11:8

[
ve
ωe

]
=

[
I3 − cpm(pne )
0 I3

] [
vn
ωn

]
(18)

Equation 18 only holds if vn and ωn are expressed
in the same frame as pne . Usually, however, we find that
vn and ωn are expressed in the base frame, while pne
is located in frame n. We can use the rotation matrix
(Rbn)T to first transform vn and ωn to frame n. This

8Recall that I3 denotes the 3 × 3 identity matrix

xi

x′n−1

zi

z′n+1−i zi+1

z′n−i

xi+1

x′n−1−i

zi+2

z′n−1−i
xi+2

Figure 7: Original and reversed frames for one chain of
joints.

ensures that the multiplication takes place in the right
frame before the result is transformed back to the base
frame using the rotation matrix Rbn.

[
ve
ωe

]
=

[
I3 −Rbn cpm(pne )

(
Rbn
)T

0 I3

] [
vn
ωn

]
(19)

Premultiplying the Jacobian by the transformations
shown in Equations 17 and 19 yields a new Jacobian ma-
trix which takes into account both base- and end trans-
forms. Also taking into account the quaternion trans-
form shown in Equation 12 leads to Equation 20 below.

Jbe(q) =

[
Rb0 −Rbn cpm(pne )Rn0
0 H(r(q))Rb0

]
J(q) (20)

The second way to approach this problem is to add
static joints at the beginning and end of the chain.
Unlike regular joints, which are defined by their DH-
parameters, static joints are defined by given transfor-
mation matrices. Thus, the transformation matrix of
such a joint is a constant. With these joints, we can
represent the base- and end-transform as a static joint
at the beginning and end of a chain, respectively. The
forward kinematics of the resulting chain can be calcu-
lated using Equation 5, where T i−1

i is equal to the given
transformation matrix if joint i is static. Similarly, we
can use the explicit form of Equation 9 to calculate the
columns of the Jacobian corresponding to the non-static
joints. In doing so, we take into account the effect of the
static joints’ transformations on the vectors p0

i and z0
i .

Since static joints do not represent a moving mechanism,
their contribution to the linear and angular velocity of
a chain is zero. Thus, we do not add columns to the
Jacobian corresponding to the motion of these joints.

Reverse DH-Parameters This section presents a
procedure which can be used to invert the DH-
parameters of a chain given in the Nao documentation.

Let xi and zi be the respective x and z axis of the
i’th frame in the original chain, counting from the hip.

(v. July 10, 2011, p.6)



Daniel Mescheder

Furthermore, let x′i and z′i be the respective x and z
axis of the i’th frame in the new chain, counting from
the foot. Then we can define the axes of the reversed
frames to correspond to the original frames according to
the following rule which is depicted in Figure 7:

x′i = −x(n−i)

z′i = −z(n+1−i)

With this convention the new set of parameters a′i,
α′i, θ

′
i and d′i can be determined in terms of the old pa-

rameters ai, αi, θi and di. For Equations 21 and 22 let
2 ≤ i ≤ n and for Equations 23 and 24 let 1 ≤ i ≤ n.

a′i = a(n+2−i) (21)

α′i = α(n+2−i) (22)

θ′i = θ(n+1−i) (23)

d′i = d(n+1−i) (24)

In accordance with the DH convention, a′1 and α′1 are
set to zero. It remains to find the reverse counterparts
for x′n and x′0. When θi = 0 the DH convention requires
the angle between xi and xi+1 to be zero. Therefore the
following is a reasonable choice:

x′n = x′(n−1) = −x1

x′0 = x′1 = −xn−1

Whether static joints or explicit transforms are used
to represent the base- and end transforms, these trans-
formations need to be reversed as well in the process of
reversing a chain:

(Tne )
′

= Rz (π)Rx (π) (Tne )
−1

(25)(
T b0
)′

=
(
T b0
)−1

Rz (π)Rx (π) (26)

Unfortunately, the DH parameters from the Nao doc-
umentation furthermore define a1 6= 0 and α1 6= 0. Fol-
lowing the original DH convention, these values should
be a part of the base transform. Let Tx(d) denote the
translation transform of d units along the x-axis and
Rx(φ) be the rotation of φ around the x-axis. Let fur-
thermore T b0 be the old base-transform. Then an equiv-
alent formulation can be given by setting anew1 = 0,
αnew1 = 0 and using the matrix (T b0 )new derived below
as a new base-transform:

(
T b0
)new

= T b0Tx (α1)Rx (a1) (27)

Combined Chain for Nao-Legs For walking the
control of the moving foot from the support foot frame is
required. For this reason it is necessary to define a chain
leading from the base frame to the desired end effector.
Using the reversed chain derived in section 2.2 this is
mostly a concatenation of the inverse of the support leg
chain and the original chain of the moving leg.

However, one has to be careful with the DH-
parameters of the HipYawPitch joints: If the original
chains used base- and end-transforms, the DH param-
eters of the hip joint have to incorporate these trans-
forms. One solution again is to use static joints instead
of explicit base- and end-transforms. Using this method
a simple concatenation is indeed sufficient. If explicit
transforms are being used, the changed parameters of
the chain from the left to the right foot are given below
where HipOffsetY is defined in the documentation [1].

a7 = 0

α7 =
1

2
π

d6 =
√

2 ·HipOffsetY

θ6 = −1

2
π

d7 = −
√

2 ·HipOffsetY

θ7 =
1

2
π

The chain from the right foot to the left foot can
be calculated using the chain reversal technique derived
above.

Aliased Joints In regular robot control problems one
normally assumes all joints of a chain to be independent
from one another. This, however, is not the case for the
Nao legs: The LHipYawPitch and the RLHipYawPitch
joints are controlled by the same physical motor which
means that their associated θ values are always equal.

This does not have any impact on the forward kine-
matics, but the Jacobian matrix has to be modified to
represent this information. In the case of the chain from
the support foot to the moving foot θ6 = θ7, i.e.

v = J


θ1

...
θ6

θ6

...
θ12


Let J ′ be a new matrix which is nearly equal to J

except that column 6 in J ′ is the sum of column 6 and
7 in J and that column 7 is removed from J ′. From the
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interpretation of matrix multiplication as a product sum
the following holds:

v = J ′


θ1

...
θ6

θ8

...
θ12


A second way to approach this problem is to intro-

duce alias joints. Conceptually, an alias joint is like a
regular joint, except that its joint variable coincides with
the joint variable of another joint. To clarify how this af-
fects the calculations of the forward kinematics and the
Jacobian, suppose joint i is an alias joint and its joint
variable coincides with that of joint j. Then, to calculate
the transformation matrix T i−1

i of joint i, we use Equa-
tion 4, filling in the parameters ai, αi and di of joint
i and the joint angle θk of joint j. With this transfor-
mation matrix, we can use Equation 5 to calculate the
forward kinematics in the usual way. When we calcu-
late the Jacobian, we calculate the column Ji as usual.
However, instead of appending this column to the Jaco-
bian, we add it to the k-th column Jk corresponding to
joint j. Using alias joints, we can represent the fact that
the LHipYawPitch and RHipYawPitch joints share the
same physical motor by making one of these joints an
alias joint whose joint variable coincides with that of the
other.

Deriving all the particularities of the Nao kinematics
was cumbersome. Nevertheless, it gives us the tools we
need to construct an inverse kinematics controller which
will be presented in the next section.

2.3 Inverse Kinematics

In this section, the concepts presented above will be used
to derive the inverse kinematics. Inverse kinematics at-
tempt to solve the problem of finding joint angles q such
that p(q) takes on some desired value pd.

One straight forward method arises from the inter-
pretation of the jacobian as a mapping of velocities from
Joint space to euclidean space (Equation 10). Let A†

denote the pseudo-inverse of A. Then

q̇ = J†r (q)

[
v
ṙ

]
(28)

gives us a joint space velocity corresponding to the eu-
clidean space velocity. If we assume that the inverse
kinematics function p was linear with respect to time
and that the system is controlled in discrete time steps
of δt, then moving by a displacement of δx within a time
step corresponds to moving by δq in joint space where

u Σ J-1 Robot WL1

re
fe

re
n
ce

 u

d
x

n
ew

 x

Σ

L2 1/z

-

Figure 8: Controller for inverse kinematics. The two
gains L1 and L2 have to be chosen such that the poles
of the complete system lie within the unit circle in or-
der to make the actual output trajectory converge to the
reference trajectory u. The J−1 subsystem denotes the
approximation of Equation 29. The output of the phys-
ical robot (yellow) is a vector of joint angles. W is the
forward kinematics; the output of the red box is thus the
euclidean space position of the controlled robot arm.

δq is calculated as shown in Equation 29:

δq ≈ J†r (q)
δx

δt
(29)

In practice, the system is not linear. Equation 29
rather constitutes a first order Taylor approximation. If
we wish to use this approximation for reliable trajectory
tracking, a control system as shown in Figure 8 can be
constructed to compensate for the error [12]. This con-
troller takes the reference trajectory as its input. The
current error is calculated as the difference between the
reference trajectory and the position of the mechanical
system. This error is then split into two parts, one is
fed into a proportional gain subsystem L1, one is fed
into the delayed subsystem L2. These two signals are
summed and used as input to the approximation shown
in Equation 29. The result of the J−1 block is an ap-
proximation of δq which is then used in the mechanical
system (yellow) to control the joints. The output of the
mechanical system will be the new joint positions. Using
the forward kinematics presented in Section 2.1 (denoted
by the W -block in Figure 8) this is translated to a new
euclidean space position which in turn serves as the feed-
back to the controller.

Results from control theory show that the error of
a discrete time system like the one shown in Figure 8
converges to zero if the poles of the system lie within
the unit cycle of the complex plane [12]. The poles of a
system are the eigenvalues of the corresponding system
matrix.

In what follows, we will derive the system matrix
of the system in Figure 8 and find its eigenvalues as
a function of L1 and L2. Then it is shown for which
values of L1 and L2 the system becomes stable. For this
purpose we will analyze the individual subsystems and
use them to calculate the overall system matrix.
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The delay subsystem (denoted by 1
z in Figure 8) can

be described in state-space form as shown below. Equa-
tion 30 shows the structure of the state vector, Equa-
tion 31 is the state update rule and Equation 32 de-
scribes the output of the delay-subsystem where s(i),
y(i) and u(i) denote the state, the output and the input,
respectively, at time step i. The value n is the num-
ber of dimensions of the position vector. If for example
a position vector as derived in Section 2.2 is used, this
amounts to n = 14.

s (i) =

(
δxi
δxi−1

)
(30)

s (i+ 1) =

[
In 0
In 0

]
s (i) +

[
In
0

]
u (i) (31)

y (i) =
[

0 In
]
s(i) (32)

This boils down to storing the current state and using
it as the output in the next step. The constant gain is
given by Equation 33 below:

y (i) = L2u (i) (33)

Thus the combination of delay and constant gain L2 is
given by:

s (i+ 1) =

[
In 0
In 0

]
s (i) +

[
L2

0

]
u (i) (34)

y (i) =
[

0 In
]
s(i) (35)

The output of the delay needs to be added to the
constant gain L1. The resulting Equation 36 is thus the
state update rule of the controller and dx(i) in Equa-
tion 37 describes the controller output at time step i.

s (i+ 1) =

[
In 0
In 0

]
s (i) +

[
L2

0

]
u (i) (36)

dx (i) =
[

0 In
]
s (i) + L1u (i) (37)

At the beginning of this section we presented the as-
sumption that the system consisting of inverse Jacobian
and robot behave linearly with respect to time. Formally
this means that we assume that the system behaves ac-
cording to Equations 38 and 39. Here, the state consists
of nothing but the current euclidean space position.

s (i+ 1) = Ins (i) + Indx (i) (38)

x(i) = Ins (i) (39)

Combining the description of the controller (Equa-
tions 36 and 37) with the description of the plant (38
and 39), the following forward system is found with x(i)
denoting the system output (i.e. the robots euclidean
space position) at time i:

s (i) =

 δxi
δxi−1

xi

 (40)

s (i+ 1) =

 In 0 0
In 0 0
0 In In

 s (i) +

 L2

0
L1

u (i) (41)

x (i) =
[

0 0 In
]
s (i) (42)

This can be interpreted as follows: In the state given
in Equation 40 we store the new displacement (with a
gain), the previous displacement and the absolute posi-
tion. The absolute position is calculated by adding the
current absolute position to the delayed displacement to
the input with a proportional gain.

Now that the forward system is known, the feedback
can be taken into account. As there is no gain involved
in the feedback, we get the following result:

s (i+ 1) =

 In 0 −L2

In 0 0
0 In In − L1

 s (i) +

 L2

0
L1

u (i)

(43)

x (i) =
[

0 0 In
]
s (i) (44)

Equation 43 is the state update rule for the overall
system, including feedback. This is all we need to know
to derive a controller by pole setting as we will show in
the next section.

Setting Poles Setting the poles of this system
amounts to choosing L1 and L2 such that the eigen-
values of the state-update matrix are the desired pole
locations. For simplicity it is assumed that both L1 and
L2 are diagonal matrices. The symbols l1j and l2j will
be used to refer to the j-th entry on the diagonal of L1

and L2 respectively. Setting the eigenvalues of the state-
update matrix means to chose values for λ and to solve
the following equation for L1and L2:λIn −

 In 0 −L2

In 0 0
0 In In − L1

x = 0

det

 (λ− 1) In 0 L2

−In λIn 0
0 −In (λ− 1) In + L1

 = 0

det

 M1,1 0 M1,3

M2,1 M2,2 0
0 M3,2 M3,3

 = 0

First of all, we require that λ 6= 0 and λ 6= 1. This
ensures that the inverse matrices of M1,1 and M2,2 exist
and a Gaussian elimination can thus be performed:
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det

 M1,1 0 M1,3

M2,1 M2,2 0
0 M3,2 M3,3

 = 0

⇔detL · detU = 0

where

L =

 M1,1 0 0
0 M2,2 0
0 0 M3,3 +M3,2M

−1
2,2M2,1M

−1
1,1M1,3


U =

 In 0 M−1
1,1M1,3

0 In −M−1
2,2M2,1M

−1
1,1M1,3

0 0 In


The determinant of an upper triangular matrix is just

the product of its diagonal entries. Therefore detU = 1
and it remains to solve detL = 0 for L2 and L1. L is
a diagonal block matrix. Therefore we can reduce the
equation to:

detM1,1M2,2 det
(
M3,3 +M3,2M

−1
2,2M2,1M

−1
1,1M1,3

)
= 0

Recall that λ 6= 1 and λ 6= 0. That means that
detM1,1 6= 0 and detM2,2 6= 0. It thus remains to solve
the following:

det
(
M3,3 +M3,2M

−1
2,2M2,1M

−1
1,1M1,3

)
= 0

⇔det

(
(λ− 1) I3 + L1 +

1

λ (λ− 1)
L2

)
= 0

⇔
n−1∏
j=0

(
λ3
j − 2λ2

j + λj + l1jλ
2
j − l1jλj + l2j

)
= 0 (45)

Thus we can chose n poles by setting the diagonal entries
of L1 as shown in Equation 46 and the diagonal entries
of L2 as shown in Equation 47.

l1j = a (46)

l2j = −λ3
j + (2− a)λ2

j + (a− 1)λj (47)

The variable a in Equation 46 is a not quite arbi-
trary: The values for l1j and l2j have to be real, i.e.
imagpart (l2i) = 0. Let λj = x + yi then this require-
ment can be reduced as follows.

y3 +
(
−3x2 + (4− 2a)x+ a− 1

)
y = 0

⇔a =
y2 − 3x2 + 4x− 1

2x− 1
(48)

In conclusion, if we want to place a pole at λj = x+ y · i,
we choose:

l1j =
y2 − 3x2 + 4x− 1

2x− 1

l2j =
(y4 + (2x2 − 2x+ 1)y2 + x4 − 2x3 + x2)

(2x− 1)

x

y

Figure 9: The range in which the pole of the control sys-
tem can be chosen is the intersection of the two circles.

As the third order polynomial in Equation 45 has
three (complex) roots, we get two more poles automati-
cally every time we set one. As for optimal control, all
of them have to lie within the unit circle, these poles im-
pose further constraints on the choice of λj . Equations
49 and 50 below give the two additional poles we get for
each λj :

λ′j = x− i · y (49)

λ′′j = − (y2 + x2 − 2x+ 1)

(2x− 1)
(50)

λ′j clearly is the complex conjugate of λj , thus if λj
is within the unit circle, clearly so is λ′j . λ

′′
j is located on

the real axis - we are interested in the extra constraint it
poses unto x and y. Firstly, consider the upper bound:

−y2 − x2 + 2x− 1

2x− 1
< 1

⇔
√
y2 + x2 > 0

This simply means, that the radius should be greater
than 0 - a constraint that already has been established
before by demanding λj 6= 0. Now, consider the lower
bound:

−y2 − x2 + 2x− 1

2x− 1
< 1

⇔y2 + (x− 2)2 < 2

In summary, this means that the feasible region in
which we can choose λj is the intersection between the
two circles described by Equations 51 and 52 respec-
tively. This is depicted in Figure 9.

x2 + y2 < 1 (51)

(x− 2)
2

+ y2 < 2 (52)

This equips us with a controller that approximately
solves the inverse kinematics in each step. Related
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research showed that inverse kinematics based on a
Newton-Raphson or Levenberg-Marquardt procedure
yields a better tracking and in the case of the latter a
better resistance against kinematic singularities at the
expense of a higher computational complexity [4].

The inverse kinematics can be used to make the Nao
follow an euclidean space trajectory. An open question
remains, how such a trajectory must look like to form a
stable walking pattern. The LIPM presented in the next
section is an attempt to analytically answer this question
using a simplified model of a biped robot.

2.4 The LIPM

In the previous section, we have derived a method that
computes the joint angles for the Nao lower body to make
the system follow an euclidean space input trajectory.

The remaining task is to define such an input trajec-
tory. Kajita et al. proposed a set of differential equation
based on the model of an inverted pendulum whose solu-
tion is a walking trajectory. In a related research those
differential equations were solved to functions of time [4]
(See the corresponding report for further details on the
LIPM). Furthermore, a foot trajectory was derived as a
polynomial satisfying a set of position constraints.

The position vector generated by the LIPM at each
time step therefore consists of two sub-positions, one for
the torso and one for the foot. Each of these encompasses
a three dimensional position in euclidean space and a
four dimensional quaternion for orientation. In what fol-
lows, this will be referred to as the LIPM-trajectory.

Even though it has been shown, that the LIPM can
be used on the Nao to make the robot walk, it is most
likely not optimal as the model of a point mass on a stick
neglects a lot of real world constraints as for example fric-
tion. The subsequent section will present Reinforcement
Learning, a technique which can be used to optimize a
trajectory with respect to a set of learning goals. The
aim will be to eventually apply RL to a model based
on a LIPM-trajectory in order to derive a better suited
walking trajectory.

2.5 Reinforcement Learning

Reinforcement Learning (RL) is a means for achieving
optimal control in Markov Decision Processes (MDPs).
An MDP consists of a finite set of states S, a set of input
actions A and a transition function δ : S× A× S→ [0, 1]
which maps from a state and an input action to a
probability distribution over all states. In particular,
δ(s0, a, s1) is the probability of transferring to state s1

given that the current state is s0 and a was the input
to the system. Such a system is said to be markov if
it has the property that this transfer probability only
depends on the current state and the current input and

is independent from what has happened before. Typi-
cally in RL we consider MDPs with a reward function
r : S × A → R which maps every state/action pair to a
reward value that describes the utility of performing a
particular action in a particular state.

A strategy π in such a MDP is a function S → A
which associates every state with an action. Generally,
the aim is to find a strategy π? which maximizes the
expected reward in a given MDP.

There are multiple ways to interpret the problem of
walking as a MDP. Most of these interpretations are con-
ceptually difficult as they require infinite state spaces or
violate the markov property. The easiest interpretation
is to assume time as a state and let the euclidean space
movement during the next time step be the action. As
we will see below, this interpretation has the particu-
lar advantage that it is easy to translate the LIPM into
this framework. Furthermore, it is minimalistic which
reduces the number of parameters which have to be
learned. However, taking time as state clearly violates
the markov property: Whether or not the robot falls
over at a point in time t depends on what has happened
in the past. A way to overcome this is to use the cur-
rent position as a state. This can strictly speaking still
not guarantee that the markov property holds, as a robot
still might or might not fall in one and the same position,
depending on its current velocity. This can be compen-
sated by adding the velocity to the state. This shows,
that by adding more higher derivatives of the position to
the state makes the system more and more markov. At
the same time it will also increase the parameter space
and make it more difficult to learn.

No matter which interpretation of the walking prob-
lem is assumed: The common denominator is the strat-
egy π which is a description of a trajectory in euclidean
space. We will now introduce techniques that can be
used to optimize π.

Q-Learning A popular RL algorithm is Q-Learning
[13, 10]. Q-learning seeks to approximate the utility of
every pure action in each state. It uses the concept of
temporal differences between the last best estimate of a
state/action pair and a the new information.

Let α denote the learning rate, γ the discount factor
and rt be the reward observed in the t-th step. then the
following is called the Q-learning update rule for a state
s and an action a:

Qt+1 (s, a)←Qt (s, a) (53)

+α
(
rt + γmax

a′
Qt (s, a′)−Qt (s, a)

)
We shall write Qπ to denote the Q-function of a strat-

egy π. The aim is to learn Q?, the Q-function corre-
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sponding to the optimal strategy π?. Generally, once Q?

is known it is easy to construct π?.

Regular Q-learning can be very inefficient in some
learning scenarios. Consider the case in which a decision
taken in a state s at time t results in a very negative
reward which does not occur before time t+ 1000. Then
regular Q-learning needs at least 1000 learning episodes
before this reward has any impact on the Q-values of
s. Monte Carlo (MC) techniques are a variant of RL
in which complete episodes following a state/action pair
(s, a) are sampled and Q(s, a) is updated with the actual
reward observed during such a sample rather than with
the current temporal difference. By using MC sampling
in the above example, the negative reward that was ob-
served after 1000 steps would influence the Q-function
estimate immediately. At the same time, it discards
valuable information about neighboring states which has
already been gathered. Temporal difference learning in
turn bases on exactly this information and will be more
efficient if such reusable data is available.

Eligibility Traces Eligibility traces are a technique to
improve the behavior of RL by providing a compromise
between temporal difference based RL such as Q-learning
and MC sampling9.

The idea is to keep a record of how “eligible” or re-
sponsible a state is for the observed effect. The algorithm
is parametrized by a new variable λ which controls the
“decay” of eligibility traces. For high values of λ, the
algorithm will exhibit a behavior similar to Monte Carlo
methods [10, Chapter 7]. In contrast to MC sampling,
it will perform online updating instead of waiting for
the end of an episode. For low values of λ, the behav-
ior resembles the temporal difference updates of typical
Q-learning.

A practical implementation typically involves a vec-
tor et each entry of which contains a value reflecting the
eligibility of a state/action pair (s, a) at time t, denoted
et(s, a). If an action at is performed in a state st, then
et+1 is updated by

et+1(s, a) =

{
γλet(s, a) + 1 if (s, a) = (st, at)

γλet(s, a) otherwise
(54)

After that, instead of updating just Q(st, at), the Q-
value for all pairs (s, a) is updated proportionally to their
eligibility:

Qt+1 (s, a)←Qt (s, a) + αet+1(s, a)

·
(
rt + γmax

a′
Qt (st, a

′)−Qt (st, at)
)

9Refer to [10, Chapter 7] for details.

The concept of eligibility traces equips us with a
means to apply RL efficiently in domains where the im-
plications of an action become apparent very late. At
the same time, in contrast to pure MC learning, we
reuse previously gathered information from neighboring
states. It is expected that this improves the efficiency
of learning in the domain of walking trajectories where
an undesirable displacement in the beginning can lead to
a latter instability. Yet, also with eligibility traces, the
trajectory generation problem is a difficult one due to
its high dimensionality. The next section will highlight
this problem and present a possible solution based on
gradient descent.

The Curse of Dimensionality Robot control and
trajectory generation are hard to model as a MDP. In
most interpretations of the problem, we will face a con-
tinuous action- and state-space. Consider the case in
which the current euclidean space position of the sys-
tem is assumed as its state and the euclidean space dis-
placements are the actions. Assume furthermore that
we follow the convention of the LIPM trajectory to keep
both moving foot and torso upright all the time and the
torso’s z coordinate will be kept constant. This leaves
us with a state- and action-space consisting of 5 variable
dimensions.

One solution to approach the continuity of these di-
mensions is to discretize them into chunks of width h
each, i.e. each dimension is discretized into 1

h discrete
intervals. That however means, that the Q-function ta-

ble will consist of
(

1
h

)5
entries. Even for large values of h

that yield a very coarse discretization, this will lead to a
large parameter space which is unfeasible for Reinforce-
ment Learning. If we decide to add more information to
the state space, it will get even worse as the size of the
parameter vector will then grow exponentially.

Nevertheless, there are more techniques different
from discretization which can be used as an approxima-
tion technique. We can introduce a function Q̃π(s, a,Θ)
that will replace the standard lookup table commonly
applied to store the quality function for a given strategy
π. This function is parametrized by a finite parameter
vector Θ. The goal is to find a parameter vector Θ? for
which the error E defined in equation 55 is minimal10.

E =
(
Qπ(s, a)− Q̃π(s, a,Θ?)

)2

(55)

Note that discretization is a special case of this ap-
proach in which Θ contains the entries of the lookup
table. If there exists a gradient of Q̃π with respect to Θ,
which we will denote by ∇ΘQ̃

π, then this parameter vec-
tor can be improved according to the gradient descent

10See [10, Chapter 8] for details.
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update rule Θt+1 = Θt − 1
2α∇E(s,Θt) where α is the

learning rate and E is the error defined in Equation 55.
Thus

Θt+1 = Θt+α(Qπ(st, at)−Q̃π(st, at,Θt))∇ΘQ̃(st, at,Θt)

Of course, generally we do not know Qπ(st, at) but
we can replace it with the estimate rt+maxa Q̃(st+1, a);
just as it is done in a Q-learning update.

If a linear gradient is used, then on-policy temporal
difference learning is guaranteed to converge [11]. Un-
fortunately, this is not the case for Q-learning. In fact it
has been shown to diverge for certain examples.

Let (s, a) be a point to consider. A linear approxima-
tion can be created by mapping this pair into a feature
space such that a linear combination of these features
corresponds to the approximate Q-value at (s, a). This
means we need a function

φ : S× A→ Rm

where m depends on the desired feature space. This
function φ should have the following properties:

• The approximation bias must be low meaning that
it must be possible to approximate a large class of
functions to ensure that the optimum is learnable.

• The feature space should not be too large as other-
wise the curse of dimensionality occurs.

• It must be computationally efficient to determine
argmaxa φ(s, a) for any given s.

• Additionally, we want φ to well approximate the
LIPM.

Clearly these requirements are not independent: The
more functions φ can approximate, the larger the feature
space is expected to get.

Taylor-Approximation The approach used in this
paper is to discretize the action space and to use a
polynomial to approximate the Q-value with respect
to the state variable s. Thanks to the discritization,
argmaxa φ(s, a) can easily be found.

Consider the generalized Taylor series for n-
dimensional functions. Taylor’s theorem states, that by
choosing d high enough, every sufficiently differentiable
function can be approximated arbitrarily accurately by
Equation 56 given the correct weights Θv. This in turn is
a linear combination of the product terms. Those terms
can thus be seen as the new features corresponding to
each state and the weights Θv are determined by gradi-

ent descent.

Q (s,Θ) =
∑
v∈V

Θv

ns∏
i=0

svii (56)

V =

{
v

∣∣∣∣∣ |v| = ns ∧
∑
x∈v

x ≤ d

}
(57)

For both the gradient descent performed in Section
3 and the Reinforcement Learning procedure used for
online optimization, the gradient of Q(s, a) with respect
to the parameter vector Θ is needed.

Let an n-composition11 of a number b be a tuple of
n non-negative integers whose sum equals b. Then, the
set V shown in Equation 57 denotes the set of all ns
compositions of all numbers smaller or equal to d. These
compositions v ∈ V are used to form the exponents of
the polynomial constructed in Equation 56. A parameter
Θv is associated with each composition v.

Furthermore, in Equation 58 we define the set of dis-
cretization ranges as all the intervals [x, x+ h] of length
h between a minimum x and a maximum x such that x
is divisible by h.

D = {[x, x+ h] | x ≥ x, x+ h ≤ x, x = yh} (58)

Algorithm 1 Q-learning update with Taylor approx-
imation and eligibility traces. s is the state we were
before performing action a. s′ is the state we land in af-
ter having performed action a. r is the reward observed
after having performed a in s. Θ is the parameter vector
and e is the vector of eligibility factors.

1: function update-q(s, s′, a, r,Θ, e)
2: a? ← argmaxa′ Q(s′, a′,Θ)
3: δ ← r + γQ(s′, a?,Θ)−Q(s, a,Θ)
4: e ← γλe+∇ΘQ(s, a,Θ)
5: Θ ← Θ + αδe
6: return Θ, e

This equips us with all we need to construct the en-
tire Q-function (Equation 59). The new parameter vec-
tor Θ has size |D× V| and we will refer to its entries
by Θd,v. The notation Θd shall refer to the subvector
of Θ which contains all the entries associated with the
parameter d. Equation 60 is the partial derivative of
this Q-function with respect to a parameter Θx,v. The
gradient ∇ΘQ(s, a,Θ) is the vector of all those partial
derivatives.

11Note that this is not quite equal to the notion of a composition
used in number theory: We adapted this idea to suit our needs.

(v. July 10, 2011, p.13)



Daniel Mescheder

Q(s, a,Θ) =

{
Q (s,Θx) if ∃x ∈ D : a ∈ x
0 otherwise

(59)

∂Q(s, a,Θ)

∂Θx,v
=

{∏ns

i=0 s
vi
i if a ∈ x

0 otherwise
(60)

Inserting the functions Q and ∇ΘQ into Algorithm 1
yields the final Q-function update rule. In the next sec-
tion, we will be explain how the same techniques can
be applied to gradient descent supervised learning. This
will enable us begin Reinforcement Learning with a bi-
ased Q-function.

3 Learning the LIPM
No matter what interpretation of the world we use to
model it as a MDP, it is generally not realistic to learn
a walk from scratch. We suggest using the LIPM as an
initial bias for RL. Below we will present a technique
to achieve this using the interpretation of time as state.
The aim is to derive a Q-function such that the greedy
strategy according to this function is to follow the LIPM
trajectory. This means that for every state s, the max-
imum argmaxaQ(s, a) must be the action which would
have been executed in state s if we followed the LIPM
trajectory. In what follows L(t) shall denote the position
that the robot should assume at time t according to the
LIPM.

If time is used as the state, this requirement can
be satisfied easily: We will generate a large sample om
points, such that for each point

1. a random time t within the duration of a step is
chosen

2. a? = L(t)− L(t− 20ms) is calculated

3. a random action a with in the range of feasible ac-
tions is generated

4. the reward of a in t is calculated as r = −c · |a− a?|2
for some constant c

This procedure ensures, that within a state the op-
timal action always gets the value 0 whilst all the other
actions receive negative values. The sample shown above
can be used for supervised learning by stochastic gradi-
ent descent [3]: For each point (t, a, r), the parameter
vector is updated

Θ← Θ + α (r −Q(t, a,Θ))∇ΘQ(t, a,Θ)

where the functions Q and ∇ΘQ are the ones we de-
rived in Section 2.5 for the Reinforcement Learning up-
date. This process is then repeated until convergence is
achieved. Figure 10 shows an example how the resulting
Q-function looks like at state t = 0.

Figure 10: The Q-function for s = 0.

4 Experiments and Results
In the preceding sections, all the techniques required for
implementing a self optimizing walk have been assem-
bled: A controller, which allows us to solve the inverse
kinematics on the Nao, a Reinforcement Learning algo-
rithm to optimize a trajectory and a technique to cast
the LIPM trajectory into a form that can be used by Q-
learning. This section will present the results of several
experiments that have been conducted in order to assess
the performance of the proposed techniques on each of
these subproblems.

Controller First, we will assess the performance of
the controller presented in Section 2.3. This measure-
ment was done using the Webots simulator12 which pro-
vides a model of the Nao robot. The trajectory fed into
the system is a LIPM based trajectory with a steptime
ts = 3 and a foot offset of sx = 0.05, sy = 0.05. The
torso z-position was set to z = 0.25 and the maximal
z-displacement of the foot was set to zm = 0.02.

Figure shows the trajectory of the Nao together with
the respective reference prescribed by the LIPM. The
overall tracking seems to be fine except for the point be-
tween two steps where a significant deviation from the
reference trajectory can be observed. The tracking error
plotted in Figure confirms this impression. Furthermore,
in this graph, multiple pole settings are compared with
each other. The results confirm the theoretical predic-
tions from Section 2.3 as the system indeed turns out to
be stable if the poles are chosen in the predicted range.

The peaks in the tracking error can be explained by
the fact that the LIPM is not continuous between two
steps whilst the controller relies on the assumption that
the system does not change rapidly between two subse-
quent states. Possibly, this problem can be solved by
manually adjusting the state vector between two steps.

12http://www.cyberbotics.com/overview
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(a) displacement of torso along the x-axis

(b) displacement of torso along the y-axis

(c) displacement of foot along the x-axis

Figure 11: Reference trajectories and the result of ap-
plying the linear controller to various body parts of the
Nao.

Figure 12: Tracking error for various pole settings.

Figure 13: Comparison of feature space sizes for different
parameter settings. The feature space size was measured
as the number of parameters in the vector Θ.

Learning the LIPM with Gradient Descent In
Section 3 we devised a procedure for creating a Q-
function which reflects the LIPM trajectory. How-
ever, it could not be shown theoretically, which hyper-
parameters are necessary to achieve a good representa-
tion of the LIPM at minimal size of the state space. For
the purpose of this project, only the x and y movement
of the torso has been taken into account. Yet, for the
foot-displacement or the joint motion, the learning would
work accordingly.

In Figure 14 the resulting LIPM based body trajec-
tory for different parameter settings is compared to the
original LIPM trajectory which uses a single support
time ts = 4s, a double support time td = 3s and a foot
offset of sx = 0.035, sy = 0.2. The torso z-position was
set to z = 0.3 and the maximal z-displacement of the
foot was set to zm = 0.05. Figure 10 shows an exem-
plary slice of the resulting Q-function at state t = 0.

A curious result is, that a coarse discretization as the
one used in Figure 14c seems to yield better results than
attempts with a finer granularity. One possible explana-
tion is, that the feature space of finer discretizations is so
big that convergence only takes place very slowly. This
would mean that Figures 14b and 14d are actually not
fully converged. This suspicion is supported by Figure
13 which compares the feature space size of the various
parameter settings tested in Figure 14. At the same time
it is apparent, that the trajectory in Figure 14c does not
capture the smoothness of the LIPM trajectory. Figure
14b was superior in capturing the movement along the
X-axis due to the finer discretization.

Reinforcement Learning The RL procedure pre-
sented in section 2.5 was applied on the Q-function de-
rived above with h = 0.0001 and d = 10. The robot’s
initial trajectory was hence the one shown in Figure 14b.
For testing purposes, the state feedback only consisted in
a negative reward of -100 for falling over. The trajectory
resulting from the learning is shown in Figure 15. It is
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(a) Original

(b) h = 0.0001, d = 10

(c) h = 0.0005, d = 10

(d) h = 0.0001, d = 5

Figure 14: The original LIPM and the result of gradient
descent with different parameters compared. The pa-
rameter h is the size of one discretized window, d is the
degree of the polynomial used for the Taylor approxima-
tion.

Figure 15: Trajectory learned by RL.

clearly visible, that the displacement of the body along
the y axis is wider than in the original LIPM. In fact the
resulting trajectory does not at all look like a walk. Yet,
it does satisfy the only criterion imposed which was not
to fall.

5 Conclusion and Discussion
This paper investigated an approach on biped robot
walking based on solving three subproblems. The first
one is the control of the lower body of the Nao robot in
euclidean space including inverse kinematics. The sec-
ond step is generation of a euclidean space trajectory
in a representation which can be improved by learning
algorithms. The final step is to use feedback from the
environment to actually improve the trajectory.

We were able to give a detailed analysis of the me-
chanics involved in the control of the Nao’s lower body
and derived a Jacobian which can be used to control
multiple overlapping chains at once. A technique which
is not restricted to the Nao robot. It was furthermore
shown that the control system devised in Section 2.3 can
efficiently track a LIPM based trajectory. Unfortunately,
the controller needs to be improved concerning its behav-
ior between two subsequent steps. Furthermore, Remco
Bras tested the Levenberg-Marquardt method on the
Nao which provides a significantly better tracking per-
formance and less problems with kinematic singularities
at the expense of slightly higher computational complex-
ity [4]. It might be fruitful to investigate the possibility
of a hybrid solution between Levenberg-Marquardt and
a linear controller as presented in this paper to achieve
a better tradeoff between computational complexity and
tracking quality.

We presented a technique based on Taylor approxi-
mation that is able to learn the characteristics of a LIPM
trajectory with a comparably low state-space. However,
it must be noted, that the Taylor approach is just one
approximation technique amongst many. It would be
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interesting to see, how well the LIPM can be approxi-
mated if for instance a Neural Network is applied instead.
Also, it was thus far necessary to use a discretization ap-
proach to approximate the action space because of the
need to efficiently calculate argmaxaQ(s, a). With tech-
niques like non-linear programming, however, there are
tools available that allow performing such a calculation
in more sophisticated functions. This will allow us to
use a more powerful class of approximation schemes in
action-space. It is likely that such an approach will lead
to smaller action-spaces and therefore to more efficient
learning.

We implemented a proof of concept walk based on
the Reinforcement Learning procedure. For simplicity
we assumed the state to be time and the only feedback
to be a negative reward when the Nao falls over. It
turned out, that the procedure was indeed able to modify
the walk to something that successfully avoided falling
over, however, the result did not at all look like a gait
anymore. Two improvements have been proposed which
are beyond the scope of this project: First of all the
Q-learning procedure was set up such that we can use
multidimensional states. It should therefore not be diffi-
cult to use the current position of the Nao’s lower body
as its state instead of time. This will make the represen-
tation “more markov” and we would expect a better RL
performance. At the same time, we should use a more
sophisticated feedback. A possible extension would be
to use the distance of the center of pressure from the
edges of the support area as a measure of stability.

Despite these shortcomings, the technique presented
above provides a viable basis for implementing walking
schemes like the LIPM on the Nao and adding feedback
to optimize this trajectory online.
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