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Abstract

In robot soccer, various techniques of artificial
intelligence have to be applied to develop a de-
cently performing autonomous player. This pa-
per gives an introduction into Reinforcement
Learning and describes the design and imple-
mentation of two techniques - SARSA and Q-
Learning - used to train the Aldebaran NAO-
robot to shoot the ball. As action selection
policies ε-greedy, ε-soft and softmax are used
and different learning parameters are tested.
In particular, constant and decreasing learn-
ing rates are compared. The experiments show
that Q-Learning in combination with softmax
outperforms given good parameter settings and
and a constant learning rate. Furthermore,
SARSA yields inferior performance and in gen-
eral, higher values for the learning rate and dis-
count values gave better rewards.

1 Introduction
Most of us know that computer programs, also named
agents, outperform humans in controlled environments
like a chess game. However, developing fully au-
tonomously acting robots in real life situation is a very
challenging task. The robots have to adapt to the dy-
namically changing environment and select actions under
uncertainty, since not all input can be determined and
many unknown states will arise.

Therefore, a popular challenge for researchers is the
annual RoboCup competition [8], where various different
sized robots compete on a soccer field. Robot soccer is
a very interesting field of computer science and artificial
intelligence, since it is a real time game with lots of sen-
sor input. On the one hand, the environment is already
very complex, but on the other hand, there are clear
rules which make the environment structured and con-
trollable. Additionally, high-level behaviour – teamplay
and strategy – are as important as low-level behaviour –
walking, running and shooting – in order to determine a
good soccer player.

A well known statement by the RoboCup is that hu-
manoid robots will beat the human world champion by
2050 [8]. However, the robots and programs are still
very limited up to today. In 2004, a new league in
the RoboCup was introduced, the Standard Platform
League, where each competitor works with the same
robots – the Sony Aibo. Since 2008, it was succeeded
by the humanoid Aldebaran NAO robot (Nao) [1] with
21 degrees of freedom in the RoboCup edition and 25
in the academics edition. Hence, the focus lies on the
software development instead of the hardware and it is

possible to compare algorithms for playing, since they
are running on the same hardware.

The research of this paper focusses on the shoot
movement of the Nao. Several Reinforcement Learning
techniques are explained, and later on used to train the
Nao to shoot the ball. As learning and testing environ-
ment, the Cyberbotics Webots robot simulation software
is used, since it provides a controllable environment and
saves lots of resources while testing.

The main research questions are:

• What is Reinforcement Learning?

• How can it be applied for creating movements on
the Nao?

• Which algorithm works best for creating a decent
shoot-movement?

The rest of this article is structured as follows: Sec-
tion 2 introduces the Reinforcement Learning domain,
Section 3 presents the learning algorithms and gives an
overview about the action selection policies used. Sec-
tion 4 discusses the implementation on the Nao and Sec-
tion 5 and 6 present the conducted experiments and the
discussion of the obtained results. Section 7 and 8 close
with conclusions and an outlook on future work.

2 What is Reinforcement
Learning?

Reinforcement Learning is a variant of machine learn-
ing, were a computer program (agent), is learning its
behaviour only based on a system of reward and punish-
ment. The concept is useful to model difficult tasks were
it is easier to define the aim of the task instead of know-
ing how it is done exactly. The method of Reinforcement
Learning is imitating a way how a human being would
learn certain behaviours. We interact with our environ-
ment by performing actions and afterwards, the effects
can be observed. This idea of ”cause and effect” is used
through our entire life for building up the knowledge of
our world.

2.1 Markov Decision Process

The Reinforcement Learning problem for agents can be
formulated as a Markov Decision process with discrete
time, finite states and finite actions, that is defined as
follows [7]:

• Finite set of possible actions a ∈ A and states s ∈ S
• Initial state: s0 ∈ S
• Transition function: T : S×A→ R(S), where R(S)

is a probability distribution over S

• Reward function R : S ×A→ R
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The task for the agent can now be translated into certain
steps:

• Observe the current state s

• Determine next action a based on a certain action
selection policy π : S → A

• Perform the selected action

• Observe the reward gained from this action

• Save information about this state / action pair

To evaluate a state, the agent has to know the utility of
the current state. This is explained in the next section.

2.2 Utility Functions and Utility
Estimation

A utility function estimates the utility of a given state s
under policy π. The utility of a state equals its own
reward plus the expected utility of its successor states,
when following policy π [10], as shown in Equation 1. In
other words, it tells the agent how profitable it is, to be
in this state.

Uπ(s) = E[
∞∑
t=0

γtR(st)|π, s0 = s] (1)

This includes a discount factor γ ∈ [0, 1] that controls
the agent’s desire to needs to achieve the goal quickly.
A low γ value leads to a setting where the goal is tried
to be reached as fast as possible, since the reward gets
less with every step taken.

The utility functions are commonly not known for all
states. Otherwise direct utility estimation could be used,
which will not be explained here [10]. Hence, the utility
values have to be estimated, since they are crucial to be
able to accurately choose an action that maximises the
total reward. As one solution for the estimation, the so-
called temporal difference learning can be used. It takes
the already observed transitions to update the values of
the observed states:

Uπt+1(s)← Uπt (s) + α(R(s) + γUπt (s′)− Uπt (s)) (2)

where α ∈ [0, 1] is the learning rate parameter and t
the current time step. This learning rate should be a
decreasing function in order to let Uπ(s) converge to the
correct value. In this way, an estimate of the final reward
is calculated at each state and the state-action value is
updated on every step t on the way. This method is often
called ”bootstrapping”, since it uses itself to update the
utility values.

2.3 Policy Learning
In general, there are two ways to learn the estimated
utility values, namely on-policy and off-policy methods.
The on-policy methods use the action selection policy

to make decisions. The utility functions are updated
using the results from executing actions determined by
an action selection policy [11].

Off-Policy methods use different policies for estimat-
ing the utility function and for the actual behaviour.
The algorithms use hypothetical actions to update the
utility functions. This is in contrast to on-policy meth-
ods which update value functions based strictly on ex-
perience. What this means is off-policy algorithms can
separate exploration from control, which on-policy algo-
rithms cannot. In other words, an agent trained using an
off-policy method may end up learning behaviour that it
did not necessarily exhibit during the learning phase [11].

The next section introduces one algorithm for each
type, used for training the Nao.

3 How to use Q-values for
learning?

A Q-value is the expected utility when starting at s and
taking action a and following policy π afterwards. There-
fore, the following equation holds:

Uπ(s) = max
a

Q(s, a) (3)

If the transition model is known, it is easily possible to
correctly calculate all exact Q-values:

Q(s, a) = R(s) + γ
∑
s′

T (s, a, s′) max
a′

Q(s′, a′) (4)

However, most of the time, the transition model is not
known and therefore, these values have to be estimated.

3.1 Q-Learning

A famous method of Q-Learning was proposed by
Watkins [12] in 1989. It iteratively approximates the
Q values by an estimation function Q̂:

Q̂(s, a) = Q̂(s, a) + α(R(s) + γmax
a′

Q̂(s′, a′)− Q̂(s, a))

(5)
where α is the learning rate, which can be a constant or
a decreasing function depending on visits of each state
and γ is the discount value. This method is an example
of an off-policy learning algorithm. It only uses the
current estimation Q̂ and the observation of the current
state’s reward (R(s)) to update the Q-values. A big
advantage is that the transition function and reward
function do not need to be known in advance. For
this reason, it is called a model-free method [10]. Al-
gorithm 1 shows the implementation used for this paper.
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Algorithm 1 Q-Learning
1: Initialize Q(s,a)
2: for all episodes do
3: reset state s
4: while s not terminal do
5: Choose a from S using policy π
6: take action a
7: observe reward R(s) and following state s′

8: Q(s, a)← Q(s, a)+α(R(s)+γmaxa′ Q(s′, a′)−
Q(s, a))

9: end while
10: end for

3.2 SARSA
Another algorithm that can be used to approximate the
Q-values is called SARSA [11]. This names has its origin
in the parameters used in the update function:

Q̂(s, a) = Q̂(s, a) + α(R(s) + γQ̂(s′, a′)− Q̂(s, a)) (6)

where s, a, r, s′ and a′ are current state, current action
determined by policy π, current reward, following state
and following action using policy π respectively. As in
Q-Learning the other parameters α and γ describe the
learning rate and discount value respectively. As can
be seen, due to this update function, it is an on-polcy
algorithm. The Q-values are updated using the following
action based on the used action selection policy instead
of only on the Q-values as in the previous algorithm. Al-
gorithm 2 shows the implementation used for this paper.

Algorithm 2 SARSA
1: Initialize Q(s,a)
2: for all episodes do
3: reset state s
4: Choose a from S using policy π
5: while s not terminal do
6: take action a
7: observe reward R(s) and following state s′

8: get action a′ from s′ using policy π
9: Q(s, a)← Q(s, a)+α(R(s)+γQ(s′, a′)−Q(s, a))

10: s← s′ and a← a′

11: end while
12: end for

It completely depends on the task, which learning
algorithms performs better. Furthermore, the parame-
ters have to be selected carefully, since they have major
influences on the performances of the algorithms.

3.3 Action selection policies
There exist several policies to decide which action should
be taken next. Each one has to provide a good balance

between exploration of the unknown and exploitation
of the already learnt. Otherwise, if some decent action
was found before, this will be chosen again and again,
despite there may exist a better one. Therefore, these
policies are usually ”soft”, meaning that every possible
action has a non zero probability of being taken. Three
common action selection policies are [11]:
• ε-greedy: The action with the highest estimated re-

ward is chosen most of the time, therefore it is called
greedy. With a small and decreasing probability ε, a
random action will be performed, in order to provide
the exploration in the beginning. These random ac-
tions are selected uniformly and independent of the
utility estimations. Since ε is decreasing to zero in
the limit, this policy becomes a static greedy policy
without any exploration. Therefore, the decrease
has to be set carefully.

• ε-soft: It is very similar to ε-greedy, however with-
out the decrease in ε. The best action is selected
with probability 1 - ε + ε

|A| and the rest of the time
a random action is chosen uniformly with proba-
bility ε

|A| . Hence, if it is running for infinite time,
it ensures that the optimal actions are discovered,
since each action will be tried out an infinite number
of times.

• softmax: One possible drawback of ε-greedy and ε-
soft is that they select the exploration actions uni-
formly. Therefore, the worst possible action will
be selected with the same probability as the second
best. The softmax policy uses a Gibbs function to
overcome this problem. Each action gets weighted,
according to their action-value estimate at the cur-
rent state(Q(s, a)):

P (s, a) =
eQ(s,a)/τ∑
b e
Q(s,b)/τ

(7)

were τ is the temperature. This function provides
a probability density function, which can be used
to select the actions based on their weight. A high
temperature leads to higher probabilities of taking
worse actions. This approach is favourable, when
the worst actions should not be taken with a high
probability.

Again, there is no general rule, which of these policies
lead to the best result. Each task is different in how the
policy influences the learning. Therefore, all possibilities
should be tried out.

4 Reinforcement Learning on
the Nao

The Nao is a humanoid robot produced by Aldebaran
Robotics. As said in the introduction, it is the successor
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Figure 1: The Nao academic edition with its 25 degrees
of freedom and the movement reference [1]. For a larger
version see appendix Figure 11.

of the Sony Aibo in the Standard Platform League of
the RoboCup [9]. The academic edition has 25 degrees
of freedom, whereas the RoboCup edition only has 21 [1],
since the wrist- and hand-joints are fixed. For this paper
it does not make any difference, since it focusses on the
shoot movement and the hands do not provide any more
stability during the shot. Figure 1 shows the Nao with
its 25 joints and directions in which they can be turned.
In the appendix Figure 12 shows an overview of all the
joints and their movement range in degrees.

For using Reinforcement Learning on the Nao, it is
necessary to represent the states and actions and the
reward function in a way, such that each state and action
can be uniquely identified. Likewise, the reward function
needs to give a good feedback for the algorithm, if the
current state is feasible or should rather be avoided.

4.1 How to represent the states and the
actions?

Each joint is divided into a discrete number of positions,
where each state is then represented by the current joint
positions and the current time step starting from the
point were the predefined movement stops. This is done
by dividing the total range of each controlled joint into
n discrete equal length buckets that are then labeled
from 0 to n − 1. The current state is then calculated
by checking for each joint in which bucket the current
position is in and the current time step.

Each actions is then defined as a change of one step
of the current joint position in either direction. Where
multiple joints can be manipulated at the same time.
Specifically, this means that the length of one bucket
of the joint to be moved is determined, and this value
is then added to or subtracted from the current joint’s
position. Additionally, this facilitates the detection of
an not supported move, since if the joint is currently in

Figure 2: The setup in the simulation software Webots.
Ball at position (0, 0), Nao at (0.153, -0.049).

state 0, it cannot move further back, or in state n− 1 it
cannot move further up.

4.2 How to limit the states and actions?

The problems at hand are the many degrees of free-
dom and the continuous joint positions, since they lead
to infinitely many states. Even when discretizing the
joint values, the number of states rise exponentially for
each additional joint. Therefore, it was chosen to focus
only on the shooting leg, which has six joints. How-
ever, the RHipYawPitch joint is directly coupled with
the LHipYawPitch, so it was chosen not to use this joint,
too.

Furthermore, the actions were limited to manipulate
two joints at most at the same time. Since each joint can
be manipulated in two directions, there are 5∗4∗2∗2 = 80
possible actions already with five joints.

4.3 The reward function

At the beginning, a very sparse reward function was
used, giving only punishment for falling over and rewards
if shooting a goal. This turned out not to be a sufficient
way, since even after a two hour training run of the al-
gorithms, no decent movement could be accomplished.
Therefore, more rewards were introduced.

A further reward was introduced for the speed and
the direction of the shot. Naturally, a straight shot with
a high speed got a higher reward than a diagonal shot.
Furthermore, a better model for the stability of the robot
was implemented. In the beginning, only by reading out
the acceleration values of the Nao, which are provided in
each direction, it was determined if the robot has fallen
over or not. However, this measure said nothing about
the stability of the previous states, since it only can dis-
tinguish between standing and lying on the ground. Af-
terwards, an approximation of the Zero Moment Point
(ZMP) was introduced to provide a better model for the
stability.
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Figure 3: Results of the training with SARSA with pa-
rameters α = 0.9 and γ = 0.9 for the different action
selection policies

Zero Moment Point
The ZMP is the point were the at the ground were the
total inertia force equals zero. This is the point on the
ground below the center of masses (CoM). The concept
of ZMPs is commonly used for controlling the walking
of a humanoid robot, which can be compared to the
well-known problem of balancing an inverted pendulum,
where most of the mass is located at the top of the pen-
dulum. This translates to the Nao, since the CoM is lo-
cated at the torso and only the two legs are supposed to
support and move the Nao, while keeping it from falling.
The concept of the ZMP assumes that the CoM moves
a long a plane at constant height (zh), called the con-
straint plane [5]. An easy way to calculate the current
position of the ZMP is [4]:

zmpx = xp −
zh
g
∗ ẍp (8)

zmpy = yp −
zh
g
∗ ÿp (9)

where xp and yp the projection on the floor of the posi-
tion of the CoM are. ẍp and ÿp are the accelerations in x-
and y-direction respectively, g is the gravitational con-
stant and zh is the height of the constraint plane. With
the ZMP and the inverted pendulum model, a support
polygon can be determined, which is the region of the
ZMP where the robot does not fall over. If the ZMP is
outside this support polygon, it is very likely that the
pendulum or in this case the Nao cannot be saved from
falling over. This region can be approximated by exper-
iments. From the Equations 8 and 9 follows, that the
height of the constraint plane only is a linear scaling fac-
tor. Hence, for the approximation of a balance region,
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Figure 4: Results of the training with Q-Learning with
parameters α = 0.9 and γ = 0.9 for the different action
selection policies

it does not play a role. For simplicity, only a support
rectangle was created by experiment and it was assumed
that the projection of the CoM on the ground is at (0, 0)
if the Nao is standing upright. Furthermore, the differ-
ences of the acceleration senor’s values of the Nao at two
consecutive time steps can directly be used as ẍp and ÿp
in order to calculate an approximation of the position of
the ZMP.

The reward for each state was then added with a pos-
itive value, depending on how far the current ZMP was
inside this support rectangle or a high negative value, if
it was outside it, since these states should be avoided to
keep the Nao in a stable position.

4.4 Motivation for the use of the
Webots Simulator

For Reinforcement Learning it is crucial to be able to
reproduce certain states, for instance the starting state.
Furthermore, many learning episodes have to be accom-
plished in order to get good results.

On the one hand, there is the usage of the real Nao,
which would provide realistic experiments. Likewise, the
understanding of the real mechanics would be supported.
However, the Nao’s hardware is very fragile and it is
very time consuming to perform all the tests in realtime.
The robot and the ball always have to be reset to the
starting position. Furthermore, there is the possibility
that the algorithm work in theory, but only hardware
failures prevent it from performing correctly.

Therefore, it was chosen to use the Cyberbotics We-
bots robot simulation [3] software together with the
robotstadium [13] package. This combination provides
an accurate soccer simulation environment used by many
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Figure 5: Results of the training with SARSA with pa-
rameters α = 0.9 and γ = 0.5 for the different action
selection policies

people, e.g. in [5], [4] and [2]. There it is possible to
reset the robot and the ball to specific positions by a
supervising program. Additionally, the correct ball po-
sition can be read out, which comes handy, since the
image processing was not a part of this research. An-
other advantage is the possibility to run the simulation
faster than realtime, which made it possible to use more
training episodes for the algorithms. Some other impor-
tant issues to consider are that the Nao will always work
in the simulation, since it cannot break or have hardware
issues.

The only drawbacks are that the simulation environ-
ment is probably to idealistic without too much noise and
that the used software cannot be transferred directly to
the real Nao.

5 Experiments
The Webots software package provides a predefined
shoot movement. The first part of it was used as starting
movement, since it nicely balances the Nao on the right
foot and then performs the shoot movement with the left
leg. Afterwards, values for the joints of the shooting leg
were blanked out from the movement and controlled by
the Reinforcement Learning algorithm.

For each episode of the experiments the ball was reset
to the (0, 0) position, which is the center point of the
field. For the positioning of the Nao, a hill climbing was
set up to determine on which position the provided shoot
movement got the best reward. As a result, the Nao was
positioned at (0.153, -0.049) with respect to the ball.
The setup in Webots is shown in Figure 2. The different
settings used for the training were:
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Figure 6: Results of the training with Q-Learning with
parameters α = 0.9 and γ = 0.5 for the different action
selection policies

• Learning algorithm used (SARSA or Q-Learning)

• Action selection policy used:

– softmax with τ = 1
– ε-greedy with ε0 = 0.1 and decreasing by 0.5%

after each episode
– ε-soft with ε = 0.1

• Learning parameters (α and γ), all combinations of
the values 0.5 and 0.9

• Constant α or a function of α decreasing over time
with each visit of a state(α(s, visits) = αvisits0 )

Each setting was run three times independently for 400
episodes. After each episode, the Nao’s and the ball’s
position were reset to the values mentioned above. The
resulting rewards for each setting were recorded and the
mean across the three runs was plotted with a moving
average window of 30. Furthermore, using Welch’s pro-
cedure, a 90% confidence interval for the mean reward
of each trial is calculated. The length of the warmup
period was determined by inspection of the graphs [6].

6 Results

Table 1 gives a complete overview with the results of all
the test runs, where the estimated mean intervals of the
reward is calculated. As can be seen, when comparing
Figure 3 and Figure 4, softmax outperforms all other ac-
tion selection policies, when using α = 0.9 and γ = 0.9,
especially, when using a constant learning rate. Addi-
tionally, it can be noticed that ε-soft and ε-greedy per-
form very similarly. For instance, in Q-Learning, there is
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Figure 7: Results of the training with SARSA with pa-
rameters α = 0.5 and γ = 0.9 for the different action
selection policies

hardly any difference, when using a decreasing α. Fur-
thermore, Q-Learning outperforms SARSA with these
settings.

When decreasing the discount factor γ to 0.5, the
overall performance decreases, as seen in Figure 5 and
Figure 6. There again, softmax is performing best, when
using constant α. However, with SARSA using ε-soft
and ε-greedy with a decreasing α resulted in the best
rewards. Again, the general trends of ε-soft and ε-greedy
were similar for both learning techniques.

The next experiment conducted was with a decreased
α value to 0.5. Figure 7 and Figure 8 present the results
for this session with γ = 0.9 and Figure 9 and Figure 10
with γ = 0.5. Most remarkably is the fact that now
softmax performed worst with decreasing learning rate,
along with ε-soft and ε-greedy, which scored significantly
more with a constant learning rate. With SARSA all
possibilities perform quite similarly, except for the com-
bination softmax with constant α, which outperformed
for both settings. On the other hand, Q-Learning shows
observable differences for a decreasing α. Here, with
γ = 0.9, ε-greedy gives the best settings, whereas ε-soft
resulted in the best rewards for γ = 0.5. When com-
paring the simulations with α = 0.9 and α = 0.5, it can
be seen that in general, the higher value for the learning
rate led to better results.

To sum up, Table 1 shows as first result that Q Learn-
ing outperformed SARSA in almost every case. This can
be explained due to the fact that Q-Learning is a off-
policy learning algorithm. Therefore, it is more explo-
ration invariant. In this case, most explorations would
most probably lead to the robot falling over and thus, to
worse rewards.
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Figure 8: Results of the training with Q-Learning with
parameters α = 0.5 and γ = 0.9 for the different action
selection policies

A second result was that the higher learning rate pro-
vided better results. This is probably due to the high
number of states and actions. The system was not close
to converge after 400 episodes. Only a small percent-
age of possibilities was tried out, hence a higher learning
rate provided the chance that when a decent move was
found, it was repeated the next few times, since it had a
major effect on the Q-values.

Additionally, it was found that a constant learning
rate provided better results than a decreasing one. Fur-
thermore, with α = 0.5 the difference between the con-
stant alpha and the decreasing was even more significant.
This should be obvious when looking at the decreasing
function that was αvisits0 . Therefore, the decrease with
α = 0.5 was a lot faster than with α = 0.9. This fact, in
combination with the fact that a higher α in general led
to better results, explains this significant difference.

Likewise, softmax performed the worst when using
the decreasing function of α. This is due to the fact that
softmax really depends on the Q-values. It performs
very good as soon as a few decent movements are found
and changed the Q-values such that the best movements
get selected with a very high probability. But with a
low learning rate, the impact of a good trial is not that
high. Hence, the probabilities do not change that much
and the actions leading to the robot falling over or not
hitting the ball properly are chosen almost as much as
the better ones.

The last result was that a higher value for γ per-
formed better. This is due to the representation of the
rewards in the experiments. Mostly, the rewards were
given in the end, for instance if the ball went into the
goal could only be determined after the shot has been
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Figure 9: Results of the training with SARSA with pa-
rameters α = 0.5 and γ = 0.5 for the different action
selection policies

performed. Additionally, since the robot was already
standing stable on one leg. Thus, the falling over hap-
pened most of the time at the very end of the movement,
when the robot has not yet learned that it is feasible to
put its leg back on the ground.

All in all, the best settings in these experiments were
Q-Learning with softmax and α = 0.9 (const.) and γ =
0.9. The obtained shoot movement was very similar to
the predefined. However, the predefined shoot movement
had less strength since it only came close to the penalty
box, whereas the learned movement shot into the goal.

7 Conclusion
In this paper, two different Reinforcement Learning tech-
niques – SARSA and Q-Learning – were introduced and
used to train the Nao to shoot the ball. Three differ-
ent action selection policies are compared with different
settings.

To conclude, it can be said that it is feasible to
use Reinforcement Learning on the Nao for training the
shoot movement. However, the settings have to be cho-
sen with great care and several limitation have to be
taken into account. For instance, the high number of
joints and the possibility to set them to continuous val-
ues are some problems at hand. Limiting those to some
discretized buckets and only controlling a low number
of joints provided some decent results. Nevertheless, in
order to uses this approach a predefined movement has
to be provided, and due to the exponential increase in
states for each additional joint, the controlled joints have
to be selected carefully.

Furthermore, each episode takes a lot of time, which
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Figure 10: Results of the training with Q-Learning with
parameters α = 0.5 and γ = 0.5 for the different action
selection policies

means that only comparably few states can be explored.
This experiment had roughly five million possible states,
of which not all could be reached. However, already 400
learning episodes took around an hour in real time. Of
course, with the simulator it was possible to speed the
simulation up to four times real time speed, but nev-
ertheless, for validation each training set had to be re-
peated several times.

Regarding the learning parameters, experiments
showed that a high learning rate α and a discount value
γ close to 1 led to the best results. Although in theory
only a decreasing learning rate is proven to converge, it
is not feasible for this setup. There are too many states,
which have to be explored and too many actions that
can be taken. Most rewards were allocated in the end of
the movements, which explains that the higher discount
value gave better results.

8 Further Outlook
This section will proposes some ideas that could be re-
searched in the future. At first, the Zero Moment Point
(ZMP) model can be used as a feedback loop in order
to stabilize the Nao after the shot. For instance, from
the time when the sensor in the shooting leg notices the
ball hit, the movement gets adapted in order to bring
the ZMP back to the center.

Additionally, it can be tested if a better shooting
movement can be performed, when allowing the ZMP to
be outside the support polygon. This is the way a human
would shoot the ball, but it would need to control a lot
more joints.

Another improvement to the current method could
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be done by reducing the states to only those ones that
can be achieved consecutively. Since it is only possible
to move a joint gradually, not all states can be achieved
by the actions. Hence, the state-space could be reduced
immensely, when finding a suitable way to only represent
the achievable states.

A different approach could be to use Multi Agent
Learning methods where each joint is represented as one
agent and only agents close to each other have an effect
on their behaviour. This is promising, since it reduces
the number of dependencies and in this way more joints
could be controlled at the same time. The agents then
try to collaborate to achieve the same goal, e.g. shoot
the ball straight.

One last idea is to model the values of the joints over
time by using Neural Networks. These networks can then
be varied with Gaussian Noise and tested if the varied
functions perform better than the old ones. These varia-
tions can be improved gradually by using Reinforcement
Learning.
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A Estimated means

Algorithm Action Selection Policy α γ α decr. α const.

Q-Learning ε-soft 0.9 0.9 (255.04, 258.30) (456.11, 461.87)
Q-Learning ε-greedy 0.9 0.9 (268.70, 271.12) (311.85, 317.87)
Q-Learning softmax 0.9 0.9 (406.51, 410.01) (635.95, 644.31))

SARSA ε-soft 0.9 0.9 (297.94, 304.10) (310.81, 316.13))
SARSA ε-greedy 0.9 0.9 (260.10, 266.86) (265.20, 270.61))
SARSA softmax 0.9 0.9 (357.32, 358.96) (589.07, 603.02))

Q-Learning ε-soft 0.9 0.5 (256.53, 259.01) (331.81, 346.00)
Q-Learning ε-greedy 0.9 0.5 (242.23, 245.54) (285.39, 293.98))
Q-Learning softmax 0.9 0.5 (344.67, 346.99) (414.62, 438.33)

SARSA ε-soft 0.9 0.5 (373.90, 379.38) (296.72, 301.77)
SARSA ε-greedy 0.9 0.5 (327.79, 331.45) (241.90, 247.39))
SARSA softmax 0.9 0.5 (282.10, 287.316) (347.96, 353.84)

Q-Learning ε-soft 0.5 0.9 (288.01, 291.68) (413.06, 420.35)
Q-Learning ε-greedy 0.5 0.9 (202.09, 206.97) (416.24, 425.35))
Q-Learning softmax 0.5 0.9 (104.78, 108.01) (455.23, 460.70)

SARSA ε-soft 0.5 0.9 (291.42, 296.53) (313.91, 320.75)
SARSA ε-greedy 0.5 0.9 (274.17, 276.73) (291.39, 294.74))
SARSA softmax 0.5 0.9 (225.11, 229.33) (567.90, 587.41))

Q-Learning ε-soft 0.5 0.5 (178.91, 182.27) (375.36, 380.66)
Q-Learning ε-greedy 0.5 0.5 (262.11, 265.06) (318.98, 324.26)
Q-Learning softmax 0.5 0.5 (126.56, 131.49) (422.81, 432.76)

SARSA ε-soft 0.5 0.5 (247.90, 250.44) (298.63, 307.42)
SARSA ε-greedy 0.5 0.5 (264.75, 267.66) (300.74, 307.30)
SARSA softmax 0.5 0.5 (206.07, 210.91) (362.22, 372.59)

Table 1: 90% confidence intervals of the estimated mean of the reward of the two algorithms in combination with all
action selection policies and different α- and γ-values.
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B The Nao

Figure 11: The Nao and its 25 degrees of freedom.
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Figure 12: The motion range for each joint of the Nao.
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