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Abstract

In this paper, two alternative methods to the
Inverse Kinematics problem are compared to
traditional methods regarding computation
time, accuracy, and convergence rate. The
test domain is the arm of the NAO humanoid
robot. It shows that FABRIK, a heuristic
iterative approximation algorithm that treats
joint coordinates as being points on a line,
outperforms the two traditional methods,
which are both based on the Jacobian inverse
technique, on all aspects. A neural network, a
machine learning architecture which simulates
the interconnections between the brain, vastly
outperforms all algorithms regarding compu-
tation time, but lacks accuracy.

Keywords: Robot kinematics, machine learn-
ing.

1 Introduction
The Inverse Kinematics (IK) problem is a non-linear
optimization problem which tries to optimize the
position of the end effector of a robot’s kinematic
chain with respect to a certain target position, by
manipulating the intermediate joint configurations in
the chain[9]. These joint configurations have to be
calculated in a backwards manner from the Cartesian
coordinates. Since not all points in Cartesian space map
to a joint configuration, there is not always a solution.
It is very exceptional for a kinematic chain to have a
complete analytically derivable solution. Therefore,
Inverse Kinematics solvers rely on numerical approaches.

1.1 Traditional methods
The most commonly used method is using the inverse
of the Jacobian matrix, a matrix of first-order partial
derivatives of the joint system, to make a linear approx-
imation of the non-linear function that describes the
Inverse Kinematics. Since the Jacobian is not always

nonsingular, the inverse can be approximated by a
number of methods[5], each of which has its drawbacks.
The transpose of the Jacobian is proven to be a good
replacement for the inverse[14]. However, the joint
configurations are often unpredictable and many itera-
tions are needed for convergence. The Moore-Penrose
pseudoinverse of the Jacobian is a better estimate,
but often performs poorly because of instability for
configurations near singularities. The Damped Least
Squares (DLS) method avoids the use of pseudoinverses
and provides a more stable solution near singularities.
A damping constant has to be chosen carefully: a larger
constant makes the algorithm more numerically stable,
but also lowers the convergence rate. Pseudoinverse
DLS attempts to overcome this problem by applying
Singular Value Decomposition. Pseudo-inverse DLS
performs similar to regular DLS away from singularities,
and smooths out the performance of regular DLS near
singularities. Selectively Damped Least Squares (SDLS)
is an extension of Pseudoinverse DLS that also takes into
account the relative positions of the end effector and the
target position when choosing the damping constraint,
resulting in fewer iterations needed for convergence, but
a slower performance time. A general problem with all
these methods is applying constraints, which is not at all
straightforward to do using any Jacobian method. The
existing methods do not guarantee optimal solutions
and slow down performance times[7][13]. When coping
with computational limitations on a robot, it is therefore
appealing to search for effective alternatives that have
low on-line computational cost and are robust against
singularities. In this paper, two alternative approaches
are proposed and compared on several criteria, such
as speed and precision. The standard algorithm the
two techniques are measured against uses the Jacobian
inverse, estimated by the Moore-Penrose pseudoinverse.

1.2 Alternatives

In this paper, two alternatives are proposed.

FABRIK[3] (short for Forward And Backward



Reaching Inverse Kinematics) is a heuristic iterative
method that tries to solve the IK problem by treating
the joint coordinates as being points on a line. It
uses the previously calculated positions of the joints to
find the updates in a forward and backward iterative
manner. The algorithm has low computational cost
and converges quickly. Furthermore, FABRIK does not
suffer from singularity problems, since the use of matrix
inverses is completely avoided.

A neural network is a supervised learning method
that is inspired by the interconnections between the neu-
rons in the brain[12]. It consists of small computational
units, called artificial neurons, that receive signals from
other neurons, produce a signal from that, and pass it on
to the next neurons. The goal of the neural network is to
process the input signal so that it fits the output signal
by training it. The network is fed training examples and
adjusts its weights on the connections between the neu-
rons to minimize the error on a specified output signal.
Neural networks allow for non-linear function approxi-
mation and are therefore natural candidates for tackling
a problem such as Inverse Kinematics.

1.3 Problem Statement

The problem statement for this research is as follows:

What are good and efficient alternatives for solving
the Inverse Kinematics problem, compared to the tradi-
tional approaches?

1.4 Research Questions

The problem statement is accompanied by the following
research questions:

• What test criteria are relevant for determining the
better algorithm?

• Are the differences gathered from the experiments
statistically significant?

• Is it possible to draw a general conclusion on which
algorithm is better, based on the found results?

2 Environment
The robot that is used in this paper is the NAO hu-
manoid robot, developed by the French company Alde-
baran Robotics, founded in 2005.[1] A full list of tech-
nical specifications can be found in Appendix A. In this
section, an overview of the software that was used will
be listed.

2.1 Software

The NAOqi SDK is a cross-platform, cross-language
programming framework in which all programs for the

NAOs are written. The framework allows creating new
modules intercommunicating with standard and/or cus-
tom modules, and loading these as programs onto the
NAO. It is cross-platform because it is possible to run it
on Windows, Mac or Linux. It is cross-language because
it supports a wide range of programming languages. It
is only possible to write local modules using C/C++
and Python. For remotely accessing and controlling the
NAOs, however, NAOqi also supports .NET, Java, Mat-
lab and Urbi. The NAOqi SDK version 1.14 was used in
this research.

• Programming language: C/C++. This was the
obvious choice to make, since C++ is described on
the Aldebaran website as the ’most complete frame-
work’, and it is the only language that allows the
writing of real-time code, making the software run
much faster on the NAO.

• Linear algebra: Eigen[6]. Eigen is a highly
optimized C++ template library used for lin-
ear algebra. Mapping to and from joint coordi-
nates/configurations makes use of matrix-vector op-
erations, for which Eigen is used. Version 3.1.3 was
used in this research.

• Neural networks: Encog[10]. Encog is an open
source machine learning framework that focuses on
neural networks. It contains classes used to cre-
ate neural networks, to process and analyze data
for these networks, and to train them using vari-
ous training algorithms. A GUI workbench, pro-
grammed in Java, is available to design and train
neural networks. Furthermore, there are libraries
available for Java, .Net and C/C++.

• Building/Cross-compilation: qiBuild[2]. This
cross-platform compiling tool, based on CMake,
makes creating and building NAOqi projects easy by
managing dependencies between projects and sup-
porting cross-compilation (ability to build binary
files executable on a platform different from the
building platform).

• Higher-level robot control: Choregraphe.
Choregraphe is a graphical tool developed by Alde-
baran Robotics that allows easy access to and con-
trol of the robot. From within Choregraphe, it is
possible to control individual joints or create a se-
quence of existing modules to be executed by the
robot.

3 Preliminaries
The background knowledge about the matter that is pre-
sented in this paper is provided in this section. The
topics that are explained are Forward Kinematics and

2



Inverse Kinematics. Since Forward Kinematics is ana-
lytically solvable, its solution will be explained in this
section. Only a short description of the much harder
to solve Inverse Kinematics problem is given, since the
remainder of the paper is devoted to its solutions.

3.1 Forward Kinematics

Forward Kinematics can be described as the problem of
calculating the position of the end effector (or any other
joint) of a kinematic chain from the current joint angles
of that chain. In other words, Forward Kinematics is the
problem of mapping the joint space of a kinematic chain
to the Cartesian space. Unlike Inverse Kinematics,
Forward Kinematics is straightforward in deriving the
equations, always has a solution, and can be solved
analytically.

The kinematics equations[9] are the equations in
which the position and orientation of the target joint
are described. These equations are a sequence of affine
transformations, a transformation in which the ratios of
distances between every pair of points are preserved. To
represent affine transformations, so-called homogeneous
coordinates must be used. This means describing an n-
vector as an (n+ 1)-vector, by adding a 1. For example,
when applying it to the case of the NAO, a joint coor-
dinate in three dimensions (x, y, z) is represented by the
vector (x, y, z, 1). This is necessary because it is now
possible to describe translations using matrix multipli-
cation, as shown in Equation 1:

x′

y′

z′

1

 =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1



x
y
z
1

 (1)

The translation is described by the 4-by-4 matrix,
which is a transformation matrix containing the transla-
tion’s homogeneous coordinates:

Tr(t) =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 (2)

where t is the vector (tx, ty, tz). This matrix can be
included in the kinematics equations to describe the
translations along the links of the kinematic chain.

The rotations around the given joint angles are rep-
resented by rotation matrices: matrices describing a ro-
tation around an axis with a certain angle θ. In three
dimensions, there are three rotation matrices, one for
each axis:

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


(3)

To include these in the kinematics equations, they
have to be rewritten as homogeneous matrices. This is
done by adding a row of zeros and a column of zeros to
the matrix, and replacing the bottom-right entry with a
1:

Rx(θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1



Ry(θ) =


cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1



Rz(θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1



(4)

Using the information about the joint axes in Table 4,
the final transformation matrix T can be constructed us-
ing the corresponding sequence of homogeneous rotation
and translation matrices, as shown in Equation 5:

T = Rx(θ1)Rz(θ2)Tr(l1)Ry(θ3)Rz(θ4)Tr(l2) (5)

l1 is the translation along the first link of the chain l1
(represented by the homogeneous vector (0, l1, 0, 1)), and
l2 is the translation along the second link. Equation 5
can be broken down into smaller pieces and solved se-
quentially, in order to calculate the coordinates of the
intermediate joints, as explained in Section 5.1.

3.2 Inverse Kinematics

Inverse Kinematics (IK) is the exact opposite of For-
ward Kinematics: the problem of calculating the joint
configurations of a kinematic chain corresponding to the
desired position of the end effector, or in other words,
mapping the desired joint coordinate in Cartesian space
back to the corresponding configurations in the joint
space[9].
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Let θ = θ1, θ2, ..., θn be the n joint configurations
in the kinematic chain. Then let s be the end effector
position, which can be described as a function of the
joint configurations s = f(θ), and t the target position.
The Inverse Kinematics problem is to find values for θ
such that s = t. Since not all points in Cartesian space
map to a joint configuration, there is no straightforward
inverse function f−1(t) = θ for Inverse Kinematics, as
opposed to Forward Kinematics, for which a completely
analytically derivable solution exists. Therefore, Inverse
Kinematics solvers rely on numerical approaches.

4 The Jacobian inverse
technique

The Jacobian inverse technique is a solution to the In-
verse Kinematics problem that linearly approximates the
inverse function f−1(t) using the Jacobian matrix[9].
The Jacobian is a function of the θ values:

J(θ)ij = (
δfi(θj)

δθj
)ij (6)

In the case of a single end effector, i = 1, so J will
be a 1-by-n matrix for n values of θ, whose entries are
vectors in R3. An alternative representation is a 3-by-n
matrix, one row for each coordinate. The matrix entries
can be approximated as follows:

(
δfi(θj)

δθj
)ij ≈ (

fi(θj + ε)− fi(θj)
ε

)ij (7)

for some small number ε. Since the entries in the Jaco-
bian are first partial derivatives of the joint system, the
relative movement of the end effector ∆s can be esti-
mated as

∆s ≈ J∆θ (8)

Recall that the Inverse Kinematics problem is about
finding the right joint configurations corresponding to a
certain target position. In terms of the Jacobian, the IK
problem can therefore be rewritten as:

∆θ = J−1∆s (9)

Unfortunately, the Jacobian is not always invertible.
There are various ways to approximate the Jacobian in-
verse. It is possible to take the transpose instead, which
is proven to be a good approximation when scaled by
some small scalar α[5]. Another technique is taking the
Moore-Penrose pseudoinverse, which is defined for all m-
by-n matrices[4]. This is a better approximation, and
generally converges to a solution more quickly. The Ja-
cobian pseudoinverse, denoted by J†, can be calculated
using one of the two following equations, depending on
the number of rows and columns:

J† = JT (JJT )−1 if m < n

J† = (JTJ)−1JT if m > n
(10)

which can be used to approximate the joint configura-
tions:

∆θ = J†∆s (11)

When J is full row rank, (JJT ) and (JTJ) are
guaranteed to be invertible. A general formula for the
pseudoinverse for J not of full row rank can be found
in [4]. Equation 11 can be applied iteratively until the
error drops down to a certain threshold. The algorithm
is easily implemented and is computationally fast. The
big downside is its instability for configurations near
singularities.

The Jacobian transpose as well as the Jacobian
pseudo-inverse method are used in this paper for
comparison purposes. These are natural choices for
baseline algorithms, since the Jacobian inverse methods
have been the standard in solving Inverse Kinematics
for a very long time[9].

5 FABRIK
This section covers the way the FABRIK algorithm
works. In addition, the algorithm used to calculate the
joint coordinates is described, as well as the algorithm
to calculate back from the joint coordinates found by
FABRIK to the joint coordinates.

5.1 Calculating the joint coordinates
As explained in Section 3.1, the position of the end ef-
fector in a kinematic chain can be calculated by multi-
plying a sequence of affine transformations. When doing
these transformations sequentially, the intermediate re-
sults contain the other joints in the chain.

Obviously, the root joint has coordinates (0, 0, 0).
Calculating the coordinates of the next joint involves a
rotation along the z-axis with a given angle θ1, a rotation
along the x-axis with a given angle θ2, and a translation
along the y-axis of length l1, which is the length of the
first link. Thus, the kinematics equation of the second
coordinate is as follows:

T1 = Rx(θ1)Rz(θ2)Tr(l1) (12)

The last column of the resulting matrix contains
the homogeneous coordinates of the second joint in the
chain. The first three columns contain its orientation.

To get from the intermediate joint to the end effector,
two calculations have to be made. The relative rotation
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and translation of the second link has to be calculated.
Then, this has to be translated along the first link in
order to convert the relative transformation into an ab-
solute transformation.

T2 = Ry(θ3)Rz(θ4)Tr(l2)

T = T1T2
(13)

The matrix T contains the homogeneous coordinates
of the end effector in the last column, and the orientation
of the joint in the other columns.

5.2 The FABRIK algorithm
FABRIK (short for Forward And Backward Reaching
Inverse Kinematics) is a novel heuristic method, de-
veloped by Aristidou and Lasenby[3], that tackles the
Inverse Kinematics problem described in Section 3.2.
Unlike traditional methods, FABRIK does not make use
of calculations involving matrices or rotational angles.
Instead, the IK problem is solved by finding the joint
coordinates as being points on a line. These points are
iteratively adjusted one at a time, until the end effector
has reached the target position, or the error is suffi-
ciently small. FABRIK starts at the end effector of the
chain and works forwards, adjusting each joint along the
way. Thereafter, it works backwards in the same way,
in order to complete a full iteration. Since the use of
rotational angles and matrices is avoided, the algorithm
has low computational cost, converges quickly, and does
not suffer from singularity problems. Furthermore, the
algorithm produces realistic human-like poses and is
easily implemented.

Algorithm 1 describes the FABRIK algorithm in
pseudo-code. In Figure 1, a visualization of the algo-
rithm is shown. The various steps of the algorithm,
indicated with the letters (a) through (f) in Figure 1,
are described in words below.

Since homogeneous coordinates are only used in For-
ward Kinematics, the n joint positions of the kinematic
chain can be represented by the triplets pi = (xi, yi, zi)
for i = 1, 2, ..., n, where p1 is the root joint and pn the
end effector (a). The target position is named t and
the initial root position is named b. The target posi-
tion is reachable if the distance between the root joint
and the target position, denoted as dist, is smaller than
or equal to the sum of the distances between the joints
di = |pi+1 − pi| for i = 1, 2, ..., n − 1. If the target is
reachable, the first stage of the algorithm starts. In this
stage, named ’forward reaching’, the joint positions are
estimated by positioning the end effector on the target
position t (b). The new position of the n − 1th joint,
p′n−1, lies on the line ln−1, which passes through the
point pn−1 and the new end effector position p′n, and

has distance dn−1 from p′n (c). Subsequently, the new
joint position p′n−2 can be calculated by taking the point
on the line ln−1 with distance dn−2 from p′n−1. The first
stage of the algorithm is completed when all new joint
positions have been calculated (d). The current esti-
mate is not a feasible one, though, since the position of
the root has changed. Therefore, a second stage of the
algorithm is necessary to achieve a solution. This stage,
named ’backward reaching’, is similar to the first stage
of the algorithm, only the operations are carried out the
other way around: from the root to the end effector.
The new root position p′′1 is the initial root position b
(e). The next joint position p′′2 is then determined by
taking the point on the line l1, that passes through the
points p′′1 and p′2, with distance d1 from p′′1 . This proce-
dure is repeated for all other joints, and a full iteration is
complete (f). The end effector is now closer to its target
position. The algorithm is repeated until the end effec-
tor has reached its target, or the distance to the target
is smaller than a user-defined threshold.

5.3 Calculating back to joint
coordinates

The FABRIK algorithm provides a solution to the
inverse kinematics of the arm, by giving the Cartesian
coordinates of each joint relative to the root joint. How-
ever, the NAO needs to know the joint configurations
corresponding to these coordinates. A mapping from
the Cartesian coordinates to joint configurations is
therefore necessary in order to make the NAO move its
arm.

Recall the three rotation matrices and the translation
matrix from Section 3.1:

Rx(θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1



Ry(θ) =


cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1



Rz(θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1



Tr(t) =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1



(14)

Assume that the FABRIK algo-
rithm outputs the three joint coordinates
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Algorithm 1 The FABRIK algorithm.

Input: The joint positions pi for i = 1, ..., n, the target
position t and the distances between each joint di =
|pi+1 − pi| for i = 1, ..., n− 1.

Output: The new joint positions pi for i = 1, ..., n.
% The distance between root and target
dist = |p1 − t|
% Check whether the target is within reach
if dist >= d1 + d2 + ...+ dn−1 then

% The target is unreachable
for i = 1, ..., n− 1 do

% Find the distance ri between the target t and
the joint position pi
ri = |t− pi|
λi = di/ri
% Find the new joint positions pi
pi+1 = (1− λi)pi + λit

end for
else

% The target is reachable; thus, set b as the initial
position of the joint p1
b = p1
% Check whether the distance between the end effec-
tor pn and the target t is greater than a tolerance
difA = |pn − t|
while difA > tol do

% STAGE 1: FORWARD REACHING
% Set the end effector pn as target t
pn = t
for i = n-1, ..., 1 do

% Find the distance ri between the new joint
position pi+1 and the joint pi
ri = |pi+1 − pi|
λi = di/ri
% Find the new joint positions pi
pi = (1− λi)pi+1 + λipi

end for
% STAGE 2: BACKWARD REACHING
% Set the root p1 at its initial position
p1 = b
for i = 1, ..., n-1 do

% Find the distance ri between the new joint
position pi and the joint pi+1

λi = di/ri
% Find the new joint positions pi
pi+1 = (1− λi)pi + λipi+1

end for
difA = |pn − t|

end while
end if

Figure 1: A visualization of one iteration of the FABRIK
algorithm.

(0, 0, 0, 1), (x1, y1, z1, 1), (x2, y2, z2, 1) to be the so-
lution to the inverse kinematics problem for a target
position t = (x2, y2, z2, 1). Equation 15 describes the
forward kinematics equation for mapping from the first
two (currently unknown) rotations θ1 and θ2 to the
second joint coordinate p1:

p1 = Rx(θ1)Rz(θ2)Tr(l1)


0
0
0
1

 (15)
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which simply means taking the last column of the re-
sulting transformation matrix. Because p1 is known,
the joint angles can be derived from this equation. The
expressions for the coordinates of the second joint can
be found by rewriting Equation 15 as follows:

x1 = −l1 sin(θ2)

y1 = l1 cos(θ2) sin(θ1)

z1 = −l1 cos(θ2) sin(θ1)

(16)

Since the second rotation (the one around the x-axis)
does not affect the x-coordinate itself, the following ex-
pression for the first rotation θ2 can be derived:

θ2 =
− arcsin(x1)

l1
(17)

Now that θ2 is known, the other rotation θ1 can also
be derived:

θ1 =
− arcsin(z1)

l1 cos(θ2)
(18)

When expressing the end effector coordinates in the
same manner (i.e. expressing the coordinates relative
to the root joint), the expressions are not that simple
anymore and the joint angles are not easily derivable
anymore. So, the end effector coordinates have to be
expressed relative to the second joint in the chain. Be-
cause the first joint angles are calculated, the orientation
and position of the second joint can be captured in the
following transformation matrix:

T = Rx(θ1)Rz(θ2)Tr(l1) (19)

The end effector can be expressed relative to the sec-
ond joint by multiplying its coordinates by the inverse
of T :

p′2 = T−1p2 (20)

Equation 21 describes the forward kinematics equa-
tion for mapping from the last two rotations (to be cal-
culated) θ3 and θ4 to the relative end effector coordinate
p′2:

p′2 = Ry(θ3)Rz(θ4)Tr(l2)


0
0
0
1

 (21)

Which can be rewritten in the same manner as in
Equation 16, which yields the following expressions for
the end effector coordinates:

x′2 = −l2 cos(θ3) sin(θ4)

y′2 = l2 cos(θ4)

z′2 = l2 sin(θ3) sin(θ4)

(22)

Again, since the second rotation (the one around the
y-axis) does not affect the y-coordinate itself, the follow-
ing expression for the first rotation θ4 can be derived:

θ4 =
− arccos(y′2)

l2
(23)

after which the last rotation θ3 can be derived as well:

θ3 =
− arcsin(z′2)

l2 sin(θ4)
(24)

6 Neural networks
A neural network[12] is a computational architecture
used in the field of machine learning, inspired by the
highly interconnected structure of the brain, aiming to
benefit from its beneficial properties such as parallelism,
generalization, fault tolerance, and adaptivity. It is a
learning method that learns a mapping from input to
output by being fed training examples and minimizing
the error between the network’s output and the desired
output using a learning algorithm. Such a mapping
is called a neural network model. A neural network is
composed of artificial neurons: highly interconnected
processing elements working in parallel to solve a
specific problem. An artificial neuron’s architecture is
modeled after the structure of a natural neuron. It
has a number of weighted signals coming from other
neurons, the weights of which have to be determined
by training. The sum of the weighted signals is then
processed by an activation function, which specifies the
output signal from given inputs according to a certain
function. This function can be a discrete function such
as the step function (1 if there is a signal, 0 if not), or
a continuous function, which is a sigmoid (”S-shaped”)
function most of the time.

A neural network has a layered structure. The
number of layers in a neural network is at least two:
the input layer and the output layer. Linear functions
can be learned using only these two layers. However,
like Inverse Kinematics, most applications of neural
networks are trying to solve nonlinear problems. One
or more extra layers or hidden layers have to be added
to the network for it to be able to solve these. They
are called hidden layers because its inner workings are
a black box process (i.e. it is not clearly interpretable
what goes on). Choosing the right number of hidden
layers and the number of neurons inside these layers is
an important part of structuring a neural network and,
among other things, depends on the number of input
and output neurons, the complexity of the function, the
amount of training data, the amount of noise in the
training data, and so on.
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Figure 2: A simple feedforward neural network with one
hidden layer.

Typically, neurons in the same layer are not con-
nected to each other or themselves, and there are no
cycles, so that data flows in one direction: from the in-
put node to the output node. This type of network is
called a feedforward neural network, and is pictured in
Figure 2.

6.1 Training a neural network

As said earlier, neural networks learn from experience.
A neural network is trained if the error between the
network’s output and the desired output is minimized.
The weights of the neural network are the variables
that have to be adjusted in order to change the output
signal. This is done by a learning algorithm, the most
widely used one being the backpropagation algorithm[12].

Backpropagation tries to find the minimum of the
error function by following using gradient descent : it
minimizes the function by taking steps towards the
negative gradient of the error function. Therefore,
in order to be able to use backpropagation, the error
function has to be differentiable. This is achieved by
choosing a continuous activation function, since the
network function is a composition of these activation
functions and is therefore by definition also continuous.
This makes the error function with respect to the
network weights continuous as well.

The advantage of backpropagation is that it is
straightforward to understand and implement. How-
ever, convergence of the algorithm is not guaranteed
and is typically very slow. It may also converge
to a local minimum instead of a global minimum.
To overcome these problems, an adaptive gradient
search-based method has been developed. Resilient
backpropagation[11] does only take into account the
sign of the gradient and not the magnitude, and scales
it by a weight-specific update value. This allows for

faster convergence speed and provides more robustness
against local minima (although they may still occur).

The design choices of the neural network used in this
paper are the number of input and output nodes, the
number of hidden layers and nodes, the activation func-
tion, and the learning algorithm used to train the neural
networks. The network consists of three input nodes,
one for each target coordinate, and four output nodes,
one for each of the joint configurations that have to be
adjusted. If the function you are trying to fit is linear,
there is no need for a hidden layer at all. Since Inverse
Kinematics is a non-linear optimization problem, this is
not the case. In practice, one or two layers is sufficient
to approximate any function, if there are enough hidden
nodes in the layers. By trial and error, one layer has
shown to be best suited for this problem, since adding
an extra layer only increases training time and does not
decrease the error (which is not odd, since the function
that is being approximated is still fairly simple for a
kinematic chain with only two joints). The number of
hidden nodes in the layer is 40. This has been deter-
mined experimentally as described in Section 7. The
training algorithm of choice is the RPROP algorithm as
described in [11], since this proposed modification of the
backpropagation algorithm has shown to be a great im-
provement in the training speed. The activation function
has to be a continuous function, since RPROP relies on
the fact that the error function has to be differentiable.
Again, by trial and error, the function of choice is the
sigmoid activation function.

7 Experiments

Several experiments have been performed on the tradi-
tional algorithms and their alternatives, the results of
which will be listed in this section. All four algorithms
are compared to each other regarding computation time.
The Jacobian transpose, Jacobian pseudoinverse and
FABRIK are compared to each other regarding number
of iterations, and change in computation time when
decreasing the error tolerance. The neural network
experiments regarding the choice of the number of
hidden nodes in the layer are listed as well.

Table 1 shows the experimental results of the four al-
gorithms regarding computation time, the average num-
ber of iterations and the standard deviation of the num-
ber of iterations. The methods are evaluated using a
dataset consisting of 10,000 uniformly distributed ran-
dom samples from the set of reachable target positions.
This set was generated by applying Forward Kinemat-
ics to all possible combinations of allowed joint angles.
For the neural network, the dataset was enlarged to
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10,000,000 samples, in order to minimize the overhead
computation costs due to its low computation time. The
results were found using an error tolerance of 0.1. There
are no results for the number of iterations for the neu-
ral network, since the neural network is not an iterative
method and computes the outputs instantly. The per-
centage of unsolved instances from the Jacobian pseu-
doinverse method is due to the unstable behaviour near
singularities. If a joint configuration is close to a sin-
gularity, the pseudoinverse method will lead to large
changes in joint angles, even for small movement of the
target position[5].

Algorithm Time (ms) µ iterations σ iterations

FABRIK 0.78 7.26 7.38

J. pseudoinverse 2.21 9.99 10.02

J. transpose 27.65 141.8 176.4

Neural network 0.002771 n/a n/a

Table 1: Comparing the algorithms regarding computation
time, the average number of iterations and its standard de-
viation.

Figure 3 shows the results of increasing the error tol-
erance for the three iterative algorithms. The Jacobian
transpose method clearly performs worse for a lower er-
ror tolerance, whereas the Jacobian pseudoinverse shows
only a slight increase in computation time and FABRIK
remains constant. FABRIK was the only algorithm that
yielded results when the error tolerance was set to zero,
taking the same computation time as it needed for other
error tolerances. Figure 3 does not include the neural
network, since it is not an iterative method and the er-
ror is not a variable that can be set but a given number
measured from the output.

Table 2 shows the error corresponding to the number
of nodes used in the neural network. All networks were
trained until the error rates did not decrease anymore.
Again, the neural networks was were trained on a train-
ing set with 10,000 uniformly distributed random sam-
ples from the set of reachable target positions, and their
corresponding joint configurations. The entries were nor-
malized so that their values lie between 0 and 1. The
trained networks were tested on a validation set of iden-
tical size to avoid overfitting. Since the error rate does
not decrease any more when more than 40 nodes are
added to the network, this is the number of nodes that
was used. An error of 2.38% for a kinematic chain of
length 21.87 centimeters corresponds to a maximum er-
ror of 0.52 centimeters at the end effector.
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Figure 3: Comparing the change in computation time when
decreasing the error tolerance.

# of hidden nodes Training error Validation error

5 2.70% 2.73%

10 2.70% 2.71%

15 2.37% 2.41%

20 2.37% 2.40%

30 2.37% 2.40%

40 2.35% 2.38%

50 2.35% 2.38%

75 2.35% 2.38%

100 2.35% 2.38%

Table 2: Experimentally determining the number of nodes
in the hidden layer.

8 Conclusion

FABRIK outperforms the Jacobian transpose method
as well as the Jacobian pseudoinverse method in terms
of calculation time and number of iterations. Fur-
thermore, it is the only algorithm that could always
yield results with the error tolerance set to zero,
and is well-behaved near singularities. The Jacobian
pseudoinverse performs slightly slower than FABRIK,
but is still decent. However, it does not always yield a
solution near singularities, or when the error tolerance
is set to zero. The Jacobian transpose method does
not suffer from singularity problems, but its compu-
tation time explodes when the error tolerance is reduced.

If, however, computation time is of the highest
priority, and precision is secondary, neural networks
might be a more suitable approach. It greatly out-
performs all the other methods regarding speed, but
is the least accurate method of all, with a possible
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error of 2.38%. This translates to 0.52 centimeters on
the NAO, but when scaled to bigger applications, this
might be a more significant number. Therefore, this
neural network is suited for applications which require
a fast response time and do not need to be that accurate.

It is safe to say that FABRIK is a better alternative
to the Jacobian pseudo-inverse method and the Jacobian
transpose method when applied to the NAO humanoid
robot, since it performs better, is more accurate, and
converges more quickly. Moreover, it does not suffer from
singularity problems and is therefore a well-behaved ap-
proximation in each possible case. A general conclusion
about FABRIK and neural networks, however, cannot
be drawn from this paper. The two alternatives have
not been compared to all existing techniques that are
worth comparing. Also, the test domain only concerned
the arm from the NAO humanoid robot, which is a kine-
matic chain consisting of only two joints. The perfor-
mance of the techniques to bigger kinematic chains with
more joints have to be evaluated, in order to fully com-
pare these two alternatives to the traditional approaches.

8.1 Future research
There are some aspects that this paper did not address.
For instance: a follow-up research comparing FABRIK
to other traditional methods such as DLS/SDLS as
described in Section 1.1, or techniques that were not
discussed in this paper such as Cyclic Coordinate
Descent (CCD)[13], would be necessary to determine if
FABRIK really is the superior algorithm. Furthermore,
FABRIK should be compared to kinematic chains with
more than two joints to see if it scales as well as the
traditional algorithms.

Regarding neural networks, architectures different
from feedforward neural networks might be interesting
to look into. For instance, Elman networks have shown
to be good candidate architectures for solving Inverse
Kinematics[8]. The same paper describes a different
learning method, which uses a genetic algorithm instead
of a gradient-based learning method, which seems to
work well with Elman networks.
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Appendices
Hardware

Figure 4: NAO joints and sensors.

All of the joints in Figure 4 can move independently
of each other. The technical specifications of the NAO
are listed in Table 3.

Technical Specifications
Version 3.2

Body type H25

Degrees of freedom 25

Height 573,2 mm

Weight 4,8 kg

Autonomy 60-90 min.

CPU x86 AMD GEODE 500MHz CPU

Memory 256 MB SDRAM / 2 GB flash memory

Cameras 2 x VGA@30fps

Connectivity Ethernet, Wi-Fi

Table 3: Technical Specifications.

The arm of the NAO is a kinematic chain consisting
of three joints and two links. The length of the arm is
21.87 centimeters. Table 4 lists the joints in the arm,
and the axes around which they are able to rotate. The
x-axis is parallel to the shoulders of the NAO, the y-axis
points in front of the NAO and the z-axis is the vertical
axis. Note that the shoulder joint and the elbow joint
both have two degrees of freedom, whereas the hand joint
only has one.

Joint name Axes
Shoulder x-axis, z-axis
Elbow y-axis, z-axis
Hand y-axis

Table 4: List of joints and their rotation axes in the arm of
the NAO.
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