Monte Carlo Tree Search for Simultaneous Move Games

Marc Lanctot

Joint work with Mark Winands, Viliam Lisý, Christopher Wittlinger, Mandy Tak

1 Department of Knowledge Engineering, Maastricht University
2 Dept. of Computer Science and Engineering, FEE, Czech Technical University in Prague

December 2nd, 2013
Talk Overview

- Introduction and Background
 - Monte Carlo Search is Everywhere
 - Monte Carlo Tree Search (MCTS)
 - Consistency in Tree Search

- Simultaneous Move Games and MCTS

- Experiments and Results

- Conclusion and Future work
Talk Overview

- Introduction and Background
 - Monte Carlo Search is Everywhere
 - Monte Carlo Tree Search (MCTS)
 - Consistency in Tree Search

- Simultaneous Move Games and MCTS

- Experiments and Results

- Conclusion and Future work

 → incl. some new stuff, too!
Monte Carlo Search is Everywhere

Coulom ’06, Kocsis & Szepesvári ’06, Chaslot et al.’07, Gelly et al.’07, Winands & Björnsson ’08, more..

\[p(x_0) = a_0 + x_0(a_1 + x_0(a_2 + \cdots + x_0(a_n - 1 + b_0 x_0) \cdots)) \]
\[= a_0 + x_0(a_1 + x_0(a_2 + \cdots + x_0(b_n - 1) \cdots)) \]
\[; \]
\[= a_0 + x_0(b_n) \]
\[= b_0. \]

Kuipers et al.’12

Van Eyck ’13, Zhu ’13

Lavalle & Kuffner ’01, Perez et al.’11

Cazenave ’05, Van den Broek ’09, Silver & Veness ’10, Ponsen et al.’11, Cowling et al.’12, Amato et al.’13

Couetoux et al.’11
Monte Carlo Tree Search: Overview

The selection function is applied recursively until a leaf node is reached. One or more nodes are created. One simulated game is played. The result of this game is backpropagated in the tree. Repeated X times.

(Coulom ’06), (Kocsis & Szepesvári ’06), (Chaslot et al.’07), (Browne et al.’12)
Monte Carlo Tree Search (MCTS) Example

```
3 −2 0 1 4 −1 −3 1 2 0 −1 5 3 2 −3 0
```

- visits = 2
- rsum = 2

- visits = 1
- rsum = 1

- visits = 4
- rsum = 3

- visits = 1
- rsum = 2

Max
Min
Max
Min
Monte Carlo Tree Search (MCTS) Example

visits = 1
rsum = 1

visits = 2
rsum = 2

visits = 1
rsum = 1

visits = 1
rsum = −1

visits = 2
rsum = 1

visits = 5
rsum = 2

Max

Min

Max

Min

3 −2 1 0 4 −1 −3 1 2 0 −1 5 3 2 −3 0
Monte Carlo Tree Search (MCTS) Example
Monte Carlo Tree Search (MCTS) Example
Monte Carlo Tree Search (MCTS) Example

visits = 8
rsum = 0

visits = 3
rsum = 1

visits = 1
rsum = 1

visits = 1
rsum = −1

visits = 1
rsum = −1

visits = 1
rsum = −1

visits = 4
rsum = −2

visits = 2
rsum = −1

visits = 1
rsum = 2

visits = 1
rsum = −1

visits = 1
rsum = −1

visits = 1
rsum = −1

visits = 3
rsum = 1

visits = 8
rsum = 0

Max

Max

Max

Min

Min

Min
Bandit-Based Selection

To select a node, employ bandit algorithms (i.e. UCB (Auer et al.’02)).
Bandit-Based Selection

To select a node, employ bandit algorithms (i.e. UCB (Auer et al.’02)).

\Rightarrow UCT algorithm (Kocsis & Szepesvári ’06).
Algorithm $A(s, t)$ computes strategy $\sigma(s)$ at state s after t time units.
Algorithm $A(s, t)$ computes strategy $\sigma(s)$ at state s after t time units.

In two-player zero-sum games, for every state s, \exists Nash equilibrium (optimal) strategy $\sigma^*(s)$.
Algorithm $A(s, t)$ computes strategy $\sigma(s)$ at state s after t time units.

In two-player zero-sum games, for every state s, \exists Nash equilibrium (optimal) strategy $\sigma^*(s)$.

Definition (Weak/Asymptotic Consistency)
A search algorithm is (weakly) consistent if $\forall s, \lim_{t \to \infty} A(s, t) = \sigma^*(s)$.

Computation (search) time...
Consistency in MCTS

Is MCTS consistent?

- Yes, in sequential MP perfect information, using max n (Sturtevant et al. '08)

MCTS-Solver

- Converges faster
- Increases play strength

See: (Winands et al. ’08, Baier ’13, Nijssen ’13, more..)
Consistency in MCTS

Is MCTs consistent?

- Yes!
Is MCTS consistent?

- Yes!

 → in sequential 2P games with perfect information, using UCT
Consistency in MCTS

Is MCTS consistent?

- Yes!
 → in sequential 2P games with perfect information, using UCT

- > 2 players?
 Yes, in seq. MP perfect information, using max" (Sturtevant et. al. ’08)
Is MCTS consistent?

- Yes!
 → *in sequential 2P games with perfect information, using UCT*

- > 2 players?
 Yes, in seq. MP perfect information, using max” (Sturtevant et. al. ’08)

- MCTS-Solver
 ▶ converges faster
 ▶ increases play strength
 ▶ See: (Winands et al.’08, Baier ’13, Nijssen ’13, more..)

Many optimizations that work better than plain UCT in practice!
Simultaneous Move Games

Each player takes a single action (simultaneously) and game over!
Multiple Stages: Goofspiel

- $(13!)^3 \approx 2.41 \cdot 10^{29}$ unique sequences
- Backward induction, proposed (Ross 1971)
- Solved (Rhoads & Bartholdi 2012)
Let $\sigma_{col} = (r, p, s)$. Maximize V such that $r, p, s \geq 0$ and

\[
\begin{align*}
\frac{1}{2}r + s & \geq V \\
r + \frac{1}{2}p & \geq V \\
p + \frac{1}{2}s & \geq V \\
r + p + s & = 0
\end{align*}
\]
Multi-stage: Simultaneous Move Games
Backward Induction

1 0 0 1 3 4 1 2 1 1 0 0

1 0 0 1 3 4 1 2 1 1 0 0

13 / 35
Backward Induction
Backward Induction
Simultaneous Move Minimax

Extension to classic game-tree search: “SM-Minimax”:

- Depth-first search, as before
- Values sent back up are solutions to LPs
- Finite depth? → Evaluation function
- Weakly consistent

Recent work:

- Simultaneous Move $\alpha\beta$ (SMAB), (Saffidine et al.’12)
- Move Pruning in Serialized $\alpha\beta$, (Bosansky et al.’13)
Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:
Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:

- Selection policy chooses a joint action \((a_{row}, a_{col})\)
Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:
- Selection policy chooses a joint action \((a_{\text{row}}, a_{\text{col}})\)
- Payoff matrices contain (changing) estimates
Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:

- Selection policy chooses a joint action \((a_{\text{row}}, a_{\text{col}})\)
- Payoff matrices contain (changing) estimates
- Regret minimization in unknown matrix games:

 \[\text{Stochastic Bandits (UCB)} \rightarrow \text{“Adversarial” Bandits (Exp3, RM)} \]
Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:

- Selection policy chooses a joint action \((a_{row}, a_{col})\)
- Payoff matrices contain (changing) estimates
- Regret minimization in unknown matrix games:

 Stochastic Bandits (UCB) → “Adversarial” Bandits (Exp3, RM)

- Consistency?
Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:
- Selection policy chooses a joint action \((a_{row}, a_{col})\)
- Payoff matrices contain (changing) estimates
- Regret minimization in unknown matrix games:
 - *Stochastic Bandits (UCB) → “Adversarial” Bandits (Exp3, RM)*
- Consistency?

Previous work:
- Backward induction (Ross 1971, Buro ’03)
- Sequential UCT (Several 2008 - 2011)
- Decoupled UCT (DUCT) (Finnsson et. al. ’08, Perick et. al. ’11)
 - Provably inconsistent (Shafiei et. al. ’09)
- Pruning in SM-MCTS (Finnsson ’12)
- Exp3 at each stage (Auger ’11, Teytaud & Flory ’11)
 - Both: empirical evidence of consistency
Our SM-MCTS Variants

So far, we have looked at:

- Decoupled UCT
- Sequential UCT
- UCB1-Tuned (Sequential and Decoupled)
- Exp3 (Auer et al.’95)
- Regret Matching (RM) (Hart & Mas-Colell ’00)
- Online Outcome Sampling (OOS)
- ϵ-minmax

in several domains ...
Sequential UCT

Model the game as a sequential game.

Then apply usual UCT for selection.
Decoupled UCT (DUCT)

Each player i keeps their own reward estimates and visits for $a_i \in A_i(s)$

Use UCB for selection. When done simulations:

- **DUCT(max)**: choose $\arg\max_{a \in A(s)} X_a / v_a$
- **DUCT(mix)**: choose a with prob $v_a / \sum_{b \in A_i(s)} v_b$
In (Shafiei et al. ’09),

- DUCT(mix) converges to \(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \) in R, P, S
- In biased R, P, S:

\[
\begin{array}{ccc}
R & 0.5 & 0.25 & 1 \\
P & 0.75 & 0.5 & 0.45 \\
S & 0 & 0.55 & 0.5 \\
\end{array}
\]

- DUCT converges to a cycle
- However, strategy is not a Nash eq.

- Similar no-convergence in Kuhn Poker (Ponsen et al. ’11)
Each player i keeps their own reward estimates for $a_i \in A_i(s)$

Let $p(a) = \exp(X_a) / \sum_{b \in A_i(s)} \exp(X_b)$

- Selection: sample a using $\hat{p}(a) = \gamma / |A_i(s)| + (1 - \gamma)p(a)$
- Obtain reward r from below, update $X_a \leftarrow X_a + r / \hat{p}(a)$
- After sims, choose according to empirical freq. of samples
Regret Matching (RM)

Each player i keeps their own **cumulative regret** for $a_i \in A_i(s)$

Define $x^+ = \max(0, x)$, and $p(a) = r_a^+ / \sum_{b \in A_i(s)} r_b^+$

- Selection: sample a using $\hat{p}(a) = \gamma / |A_i(s)| + (1 - \gamma)p(a)$
- Obtain reward r, accumulate regret for not playing $b \neq a$,
- Add current strategies $p(b)$ to average strategy table s_b for each b.
- After simulations, choose by normalizing s_a for $a \in A_i(s)$.

![Diagram](image-url)
ϵ-minmax

After many simulations, we have an approximation for each $X_{a_1a_2}$.

- Construct and solve LP to get mixed $\sigma_1(s), \sigma_2(s)$.
- Then, each player selects $a_i \sim \epsilon \cdot \text{Unif}(A_i(s)) + (1 - \epsilon) \cdot \sigma_i(s)$
- MCTS version of MinimaxQ (Littman ’98)
Online Outcome Sampling (OOS)

- Counterfactual regret minimization (Zinkevich et al. '08)

 ▶ Approaches Nash eq. in imperfect information setting
 ▶ Intended for offline use
 ▶ Used to compute Poker strategies

Monte Carlo CFR

→ MCTS version of outcome sampling MCCFR

Use regret matching over sampled counterfactual regrets

Converges to Nash equilibrium over time!
Online Outcome Sampling (OOS)

- Counterfactual regret minimization (Zinkevich et al. '08)
 - Approaches Nash eq. in imperfect information setting
 - Intended for offline use
 - Used to compute Poker strategies
Online Outcome Sampling (OOS)

- **Counterfactual regret minimization** (Zinkevich et al. '08)
 - Approaches Nash eq. in imperfect information setting
 - Intended for offline use
 - Used to compute Poker strategies

- **Monte Carlo CFR** (Lanctot et al. '09)
Online Outcome Sampling (OOS)

- Counterfactual regret minimization (Zinkevich et al. '08)
 - Approaches Nash eq. in imperfect information setting
 - Intended for offline use
 - Used to compute Poker strategies
- Monte Carlo CFR (Lanctot et al. '09)
- Online Outcome Sampling
 → MCTS version of outcome sampling MCCFR
Online Outcome Sampling (OOS)

- Counterfactual regret minimization (Zinkevich et al. '08)
 - Approaches Nash eq. in imperfect information setting
 - Intended for offline use
 - Used to compute Poker strategies

- Monte Carlo CFR (Lanctot et al. '09)

- Online Outcome Sampling
 - MCTS version of outcome sampling MCCFR

- Use regret matching over sampled counterfactual regrets
Online Outcome Sampling (OOS)

- Counterfactual regret minimization (Zinkevich et al. '08)
 - Approaches Nash eq. in imperfect information setting
 - Intended for offline use
 - Used to compute Poker strategies

- Monte Carlo CFR (Lanctot et al. '09)

- Online Outcome Sampling
 - MCTS version of outcome sampling MCCFR

- Use regret matching over sampled counterfactual regrets

Converges to Nash equilibrium over time!
Win/Loss Goofspiel(13) Performance

<table>
<thead>
<tr>
<th>P1 \ P2</th>
<th>RND</th>
<th>DUCT(max)</th>
<th>DUCT(mix)</th>
<th>Exp3</th>
<th>OOS</th>
<th>OOS+</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUCT(max)</td>
<td>76.0</td>
<td>78.3</td>
<td>57.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUCT(mix)</td>
<td>78.3</td>
<td>57.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp3</td>
<td></td>
<td></td>
<td></td>
<td>80.0</td>
<td>55.8</td>
<td>48.4</td>
</tr>
<tr>
<td>OOS</td>
<td></td>
<td></td>
<td></td>
<td>73.1</td>
<td>55.3</td>
<td>43.8</td>
</tr>
<tr>
<td>OOS+</td>
<td></td>
<td></td>
<td></td>
<td>77.7</td>
<td>67.0</td>
<td>53.3</td>
</tr>
<tr>
<td>RM</td>
<td></td>
<td></td>
<td></td>
<td>80.9</td>
<td>63.3</td>
<td>53.2</td>
</tr>
</tbody>
</table>

Number refers to % win rate of row player type.
Point Difference Goofspiel(11) Exploitability

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Mean E_{x_2}</th>
<th>Mean E_{x_4}</th>
<th>Mean simulations per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUCT(max)</td>
<td>7.43 ± 0.15</td>
<td>12.87 ± 0.13</td>
<td>124127 ± 286</td>
</tr>
<tr>
<td>DUCT(mix)</td>
<td>5.10 ± 0.05</td>
<td>7.96 ± 0.02</td>
<td>124227 ± 286</td>
</tr>
<tr>
<td>Exp3</td>
<td>5.77 ± 0.10</td>
<td>10.12 ± 0.08</td>
<td>125165 ± 61</td>
</tr>
<tr>
<td>OOS</td>
<td>4.02 ± 0.06</td>
<td>7.92 ± 0.04</td>
<td>186962 ± 361</td>
</tr>
<tr>
<td>OOS+</td>
<td>5.59 ± 0.09</td>
<td>9.30 ± 0.08</td>
<td>85940 ± 200</td>
</tr>
<tr>
<td>RM</td>
<td>5.56 ± 0.10</td>
<td>9.36 ± 0.07</td>
<td>138284 ± 249</td>
</tr>
</tbody>
</table>

- Lower E_{x_d} = closer to Nash eq.
WL-Goof(4) and PD-Goof(4) Full Exploitability

- **Mean Exploitability in WL-Goof(4)**
 - X-axis: Time
 - Y-axis: Distance to Nash eq. (lower = closer)
 - Legend: DUCT, Exp3, OOS+, RM

- **Mean Exploitability in PD-Goof(4)**
 - X-axis: Time
 - Y-axis: Distance to Nash eq. (lower = closer)
 - Legend: DUCT, Exp3, OOS+, RM

- x-axis is time, y-axis is distance to Nash eq. (lower = closer)
New Results I: Tron

(Lanctot et al.'13). Based on Bachelor thesis of Christopher Wittlinger.

Try to survive and block opponent in a maze.
New Results I: Tron

Three boards below, plus empty board.

Heuristic knowledge in playouts (space estimation + predictive expansion strategies; see also Bachelor thesis of Niek Den Teuling.)
New Results I: Tron

<table>
<thead>
<tr>
<th>Variant</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUCB1T(max)</td>
<td>65%</td>
<td>62%</td>
<td>62%</td>
<td>59%</td>
<td>62.32 ± 0.56%</td>
</tr>
<tr>
<td>DUCB1T(mix)</td>
<td>56%</td>
<td>57%</td>
<td>53%</td>
<td>53%</td>
<td>54.82 ± 0.61%</td>
</tr>
<tr>
<td>UCB1T</td>
<td>58%</td>
<td>57%</td>
<td>49%</td>
<td>54%</td>
<td>54.32 ± 0.55%</td>
</tr>
<tr>
<td>RM</td>
<td>56%</td>
<td>52%</td>
<td>51%</td>
<td>53%</td>
<td>53.13 ± 0.62%</td>
</tr>
<tr>
<td>UCT</td>
<td>47%</td>
<td>54%</td>
<td>55%</td>
<td>49%</td>
<td>51.39 ± 0.55%</td>
</tr>
<tr>
<td>DUCT(max)</td>
<td>43%</td>
<td>54%</td>
<td>49%</td>
<td>50%</td>
<td>49.05 ± 0.61%</td>
</tr>
<tr>
<td>DUCT(mix)</td>
<td>39%</td>
<td>40%</td>
<td>43%</td>
<td>36%</td>
<td>39.51 ± 0.64%</td>
</tr>
<tr>
<td>Exp3</td>
<td>35%</td>
<td>24%</td>
<td>38%</td>
<td>45%</td>
<td>35.47 ± 0.61%</td>
</tr>
</tbody>
</table>

- Percentage is a win rate
- Results of the different variants played against each other
- ± refers to 95% confidence intervals.
(Lisý et al.’13) shows that:

- *Any* regret-minimizing alg. leads to weak consistency in SM-MCTS
- Must back-propagate the means for guarantee
- Worst-case analysis of Exp3 and RM on random games
Preliminary Results I

Win percentages of ϵ-minmax in Goofspiel:

<table>
<thead>
<tr>
<th>vs.</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUCT(max)</td>
<td>75.70 %</td>
</tr>
<tr>
<td>DUCT(mix)</td>
<td>48.60 %</td>
</tr>
<tr>
<td>Exp3</td>
<td>78.50 %</td>
</tr>
<tr>
<td>OOS</td>
<td>31.05 %</td>
</tr>
<tr>
<td>OOS$^+$</td>
<td>55.75 %</td>
</tr>
<tr>
<td>RM</td>
<td>47.55 %</td>
</tr>
</tbody>
</table>

- All are roughly ± 3.0 for 95% c.i.
- Must solve LP only so often
- Must decay ϵ
- Seems more sensitive to parameters
In Tron, run RM with purification: if probability < 0.2, flush it to 0 and renormalize.

<table>
<thead>
<tr>
<th></th>
<th>RM</th>
<th>RM + purification</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs. DUCB1T(max)</td>
<td>31.52 %</td>
<td>35.07 %</td>
</tr>
<tr>
<td>vs. DUCT(max)</td>
<td>68.48 %</td>
<td>50.30 %</td>
</tr>
</tbody>
</table>

- RM(purification) wins 54.44% againsts RM
- All are roughly ±2.0 for 95% c.i.
Preliminary Results III: Oshi-Zumo

Solved in (Buro ’03). All results are versus DUCT(max)

<table>
<thead>
<tr>
<th></th>
<th>OZ [50,3,1]</th>
<th>OZ [15,3,1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUCT(mix)</td>
<td>16.60 %</td>
<td>36.30 %</td>
</tr>
<tr>
<td>Exp3</td>
<td>31.10 %</td>
<td>44.95 %</td>
</tr>
<tr>
<td>OOS</td>
<td>11.40 %</td>
<td>25.50 %</td>
</tr>
<tr>
<td>OOS⁺</td>
<td>23.85 %</td>
<td>42.40 %</td>
</tr>
<tr>
<td>RM</td>
<td>41.80 %</td>
<td>58.60 %</td>
</tr>
</tbody>
</table>

All are roughly ±2.5 for 95% c.i.
Conclusions

In Goofspiel:
- Regret matching and OOS$^+$ perform best in Goofspiel
- DUCT(max) performs worst overall
- DUCT(mix) surprisingly good
- OOS converges to Nash in the limit

In Tron:
- DUCB1T(max) is the clear best
Conclusions

In Goofspiel:
- Regret matching and OOS^+ perform best in Goofspiel
- DUCT(max) performs worst overall
- DUCT(mix) surprisingly good
- OOS converges to Nash in the limit

In Tron:
- DUCB1T(max) is the clear best

Future work:
- Apply in general game-playing (with Mandy Tak)
- Adaptive algorithms
- Compare to SM-MCTS move pruning (Finnsson ’12)
- Compare to SMAB (Saffidine et al. 2012)
- Compare to Serialized Alpha-Beta (Bosansky et al. 2013)
- Extend to fully imperfect information setting