Monte Carlo Tree Search for Simultaneous Move Games

Marc Lanctot¹

Joint work with Mark Winands¹, Viliam Lisý², Christopher Wittlinger¹, Mandy Tak¹

¹ Department of Knowledge Engineering, Maastricht University ² Dept. of Computer Science and Engineering, FEE, Czech Technical University in Prague

December 2nd, 2013

Talk Overview

- Introduction and Background
 - Monte Carlo Search is Everywhere
 - Monte Carlo Tree Search (MCTS)
 - Consistency in Tree Search
- Simultaneous Move Games and MCTS
- Experiments and Results
- Conclusion and Future work

Talk Overview

- Introduction and Background
 - Monte Carlo Search is Everywhere
 - Monte Carlo Tree Search (MCTS)
 - Consistency in Tree Search
- Simultaneous Move Games and MCTS
- Experiments and Results
- Conclusion and Future work

 \rightarrow incl. some new stuff, too!

Monte Carlo Search is Everywhere

Coulom '06, Kocsis & Szepesvári '06, Chaslot et al.'07, Gelly et al.'07, Winands & Björnsson '08, more..

$$\begin{split} p(x_0) &= a_0 + x_0(a_1 + x_0(a_2 + \dots + x_0(a_{n-1} + b_n x_0) \dots)) \\ &= a_0 + x_0(a_1 + x_0(a_2 + \dots + x_0(b_{n-1}) \dots)) \\ &\vdots \\ &= a_0 + x_0(b_1) \\ &= b_0. \end{split}$$

Van Eyck '13, Zhu '13

Lavalle & Kuffner '01, Perez et al.'11

-

Silver & Veness '10, Ponsen et al.'11,

Cowling et al.'12, Amato et al.'13

Couetoux et al.'11

Monte Carlo Tree Search: Overview

(Coulom '06), (Kocsis & Szepesvári '06), (Chaslot et al.'07), (Browne et al.'12)

Bandit-Based Selection

To select a node, employ bandit algorithms (i.e. UCB (Auer et al.'02)).

Bandit-Based Selection

To select a node, employ bandit algorithms (i.e. UCB (Auer et al.'02)).

 \Rightarrow UCT algorithm (Kocsis & Szepesvári '06).

Consistency in Game Tree Search

Algorithm A(s, t) computes strategy $\sigma(s)$ at state *s* after *t* time units.

Consistency in Game Tree Search

Algorithm A(s, t) computes strategy $\sigma(s)$ at state *s* after *t* time units.

In two-player zero-sum games, for every state s, \exists Nash equilibrium (optimal) strategy $\sigma^*(s)$.

Consistency in Game Tree Search

Algorithm A(s, t) computes strategy $\sigma(s)$ at state *s* after *t* time units.

In two-player zero-sum games, for every state s, \exists Nash equilibrium (optimal) strategy $\sigma^*(s)$.

Definition (Weak/Asymptotic Consistency)

A search algorithm is *(weakly) consistent* if $\forall s$, $\lim_{t\to\infty} A(s,t) = \sigma^*(s)$.

Is MCTS consistent?

Is MCTS consistent?

Yes!

Is MCTS consistent?

• Yes!

 \rightarrow in sequential 2P games with perfect information, using UCT

Is MCTS consistent?

- Yes!
 - \rightarrow in sequential 2P games with perfect information, using UCT
- > 2 players?

Yes, in seq. MP perfect information, using maxⁿ (Sturtevant et. al. '08)

Is MCTS consistent?

- Yes!
 - \rightarrow in sequential 2P games with perfect information, using UCT
- > 2 players?

Yes, in seq. MP perfect information, using maxⁿ (Sturtevant et. al. '08)

- MCTS-Solver
 - converges faster
 - increases play strength
 - See: (Winands et al.'08, Baier '13, Nijssen '13, more..)

Many optimizations that work better than plain UCT in practice!

Simultaneous Move Games

Each player takes a single action (simultaneously) and game over!

Multiple Stages: Goofspiel

- $(13!)^3 \approx 2.41 \cdot 10^{29}$ unique sequences
- Backward induction, proposed (Ross 1971)
- Solved (Rhoads & Bartholdi 2012)

Single Stage: Matrix Game

	r	р	S
R	0.5	0	1
Р	1	0.5	0
S	0	1	0.5

Let $\sigma_{col} = (r, p, s)$. Maximize V such that $r, p, s \ge 0$ and

Multi-stage: Simultaneous Move Games

Backward Induction

Backward Induction

Backward Induction

Simultaneous Move Minimax

Extension to classic game-tree search: "SM-Minimax":

- Depth-first search, as before
- Values sent back up are solutions to LPs
- Finite depth? \rightarrow Evaluation function
- Weakly consistent

Recent work:

- Simultaneous Move $\alpha\beta$ (SMAB), (Saffidine et al.'12)
- Move Pruning in Serialized $\alpha\beta$, (Bosansky et al.'13)

Extension to MCTS: "SM-MCTS":

Extension to MCTS: "SM-MCTS":

• Selection policy chooses a joint action (a_{row}, a_{col})

Extension to MCTS: "SM-MCTS":

- Selection policy chooses a joint action (a_{row}, a_{col})
- Payoff matrices contain (changing) estimates

Extension to MCTS: "SM-MCTS":

- Selection policy chooses a joint action (a_{row}, a_{col})
- Payoff matrices contain (changing) estimates
- Regret minimization in unknown matrix games: Stochastic Bandits (UCB) → "Adversarial" Bandits (Exp3, RM)

Extension to MCTS: "SM-MCTS":

- Selection policy chooses a joint action (a_{row}, a_{col})
- Payoff matrices contain (changing) estimates
- Regret minimization in unknown matrix games: Stochastic Bandits (UCB) → "Adversarial" Bandits (Exp3, RM)

• Consistency?

Extension to MCTS: "SM-MCTS":

- Selection policy chooses a joint action (*a_{row}*, *a_{col}*)
- Payoff matrices contain (changing) estimates
- Regret minimization in unknown matrix games: Stochastic Bandits (UCB) → "Adversarial" Bandits (Exp3, RM)
- Consistency?

Previous work:

- Backward induction (Ross 1971, Buro '03)
- Sequential UCT (Several 2008 2011)
- Decoupled UCT (DUCT) (Finnsson et. al. '08, Perick et. al. '11)
 - Provably inconsistent (Shafiei et. al. '09)
- Pruning in SM-MCTS (Finnsson '12)
- Exp3 at each stage (Auger '11, Teytaud & Flory '11)
 - Both: empirical evidence of consitency

Our SM-MCTS Variants

So far, we have looked at:

- Decoupled UCT
- Sequential UCT
- UCB1-Tuned (Sequential and Decoupled)
- Exp3 (Auer et al.'95)
- Regret Matching (RM) (Hart & Mas-Colell '00)
- Online Outcome Sampling (OOS)
- *e*-minmax

in several domains ...

Sequential UCT

Model the game as a sequential game.

Then apply usual UCT for selection.

Decoupled UCT (DUCT)

Each player *i* keeps their own reward estimates and visits for $a_i \in A_i(s)$

Use UCB for selection. When done simulations:

- DUCT(max): choose $\operatorname{argmax}_{a \in \mathcal{A}(s)} X_a / v_a$
- DUCT(mix): choose *a* with prob $v_a / \sum_{b \in A_i(s)} v_b$

DUCT Consistency?

In (Shafiei et al. '09),

- DUCT(mix) converges to $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ in R, P, S
- In biased R, P, S:

	r	р	S
R	0.5	0.25	1
Р	0.75	0.5	0.45
s	0	0.55	0.5

- DUCT converges to a cycle
- However, strategy is not a Nash eq.
- Similar no-convergence in Kuhn Poker (Ponsen et al. '11)

Each player *i* keeps their own reward estimates for $a_i \in A_i(s)$

Let
$$p(a) = \exp(X_a) / \sum_{b \in \mathcal{A}_i(s)} \exp(X_b)$$

- Selection: sample *a* using $\hat{p}(a) = \gamma/|\mathcal{A}_i(s)| + (1 \gamma)p(a)$
- Obtain reward *r* from below, update $X_a \leftarrow X_a + r/\hat{p}(a)$
- After sims, choose according to empirical freq. of samples

Regret Matching (RM)

Each player *i* keeps their own **cumulative regret** for $a_i \in A_i(s)$

Define $x^+ = \max(0, x)$, and $p(a) = r_a^+ / \sum_{b \in \mathcal{A}_i(s)} r_b^+$

- Selection: sample *a* using $\hat{p}(a) = \gamma/|\mathcal{A}_i(s)| + (1 \gamma)p(a)$
- Obtain reward r, accumulate regret for not playing $b \neq a$,
- Add current strategies p(b) to average strategy table s_b for each b.
- After simulations, choose by normalizing s_a for $a \in A_i(s)$.

ϵ -minmax

After many simulations, we have an approximation for each $X_{a_1a_2}$.

- Construct and solve LP to get mixed $\sigma_1(s), \sigma_2(s)$.
- Then, each player selects $a_i \sim \epsilon \cdot \text{Unif}(\mathcal{A}_i(s)) + (1 \epsilon) \cdot \sigma_i(s)$
- MCTS version of MinimaxQ (Littman '98)

• Counterfactual regret minimization (Zinkevich et al. '08)

- Counterfactual regret minimization (Zinkevich et al. '08)
 - Approaches Nash eq. in imperfect information setting
 - Intended for offline use
 - Used to compute Poker strategies

- Counterfactual regret minimization (Zinkevich et al. '08)
 - Approaches Nash eq. in imperfect information setting
 - Intended for offline use
 - Used to compute Poker strategies
- Monte Carlo CFR (Lanctot et al. '09)

- Counterfactual regret minimization (Zinkevich et al. '08)
 - Approaches Nash eq. in imperfect information setting
 - Intended for offline use
 - Used to compute Poker strategies
- Monte Carlo CFR (Lanctot et al. '09)
- Online Outcome Sampling
 - \rightarrow MCTS version of outcome sampling MCCFR

- Counterfactual regret minimization (Zinkevich et al. '08)
 - Approaches Nash eq. in imperfect information setting
 - Intended for offline use
 - Used to compute Poker strategies
- Monte Carlo CFR (Lanctot et al. '09)
- Online Outcome Sampling
 - \rightarrow MCTS version of outcome sampling MCCFR
- Use regret matching over sampled counterfactual regrets

- Counterfactual regret minimization (Zinkevich et al. '08)
 - Approaches Nash eq. in imperfect information setting
 - Intended for offline use
 - Used to compute Poker strategies
- Monte Carlo CFR (Lanctot et al. '09)
- Online Outcome Sampling
 - \rightarrow MCTS version of outcome sampling MCCFR
- Use regret matching over sampled counterfactual regrets
- Converges to Nash equilibrium over time!

Win/Loss Goofspiel(13) Performance

$P1 \setminus P2$	RND	DUCT(max)	DUCT(mix)	Exp3	OOS	OOS^+
DUCT(max)	76.0					
DUCT(mix)	78.3	57.5				
Exp3	80.0	55.8	48.4			
OOS	73.1	55.3	43.8	47.0		
OOS ⁺	77.7	67.0	53.3	60.0	57.1	
RM	80.9	63.3	53.2	57.2	58.3	50.4

• Number refers to % win rate of row player type.

Point Difference Goofspiel(11) Exploitability

Algorithm	Mean <i>Ex</i> ₂	Mean <i>Ex</i> ₄	Mean simulations per second
DUCT(max)	$\textbf{7.43} \pm \textbf{0.15}$	12.87 ± 0.13	124127 ± 286
DUCT(mix)	$\textbf{5.10} \pm \textbf{0.05}$	$\textbf{7.96} \pm \textbf{0.02}$	124227 ± 286
Exp3	$\textbf{5.77} \pm \textbf{0.10}$	10.12 ± 0.08	125165 ± 61
OOS	$\textbf{4.02} \pm \textbf{0.06}$	$\textbf{7.92} \pm \textbf{0.04}$	186962 ± 361
OOS+	$\textbf{5.59} \pm \textbf{0.09}$	$\textbf{9.30}\pm\textbf{0.08}$	85940 ± 200
RM	5.56 ± 0.10	9.36 ± 0.07	138284 ± 249

• Lower Ex_d = closer to Nash eq.

WL-Goof(4) and PD-Goof(4) Full Exploitability

x-axis is time, y-axis is distance to Nash eq. (lower = closer)

New Results I: Tron

(Lanctot et al.'13). Based on Bachelor thesis of Christopher Wittlinger.

Try to survive and block opponent in a maze.

New Results I: Tron

Three boards below, plus empty board.

Heuristic knowledge in playouts (space estimation + predictive expansion strategies; see also Bachelor thesis of Niek Den Teuling.)

New Results I: Tron

Variant	a	b	С	d	Total
DUCB1T(max)	65%	62%	62%	59%	$62.32\pm0.56\%$
DUCB1T(mix)	56%	57%	53%	53%	$54.82\pm0.61\%$
UCB1T	58%	57%	49%	54%	$54.32\pm0.55\%$
RM	56%	52%	51%	53%	$53.13\pm0.62\%$
UCT	47%	54%	55%	49%	$51.39\pm0.55\%$
DUCT(max)	43%	54%	49%	50%	$49.05 \pm 0.61\%$
DUCT(mix)	39%	40%	43%	36%	$39.51 \pm 0.64\%$
Exp3	35%	24%	38%	45%	$35.47 \pm 0.61\%$

- Percentage is a win rate
- Results of the different variants played against each other
- \pm refers to 95% confidence intervals.

New Results II: Consistency Guarantees

(Lisý et al.'13) shows that:

- Any regret-minimizing alg. leads to weak consistency in SM-MCTS
- Must back-propagate the means for guarantee
- Worst-case analysis of Exp3 and RM on random games

Preliminary Results I

Win percentages of ϵ -minmax in Goofspiel:

vs. DUCT(max)	75.70 %
vs. DUCT(mix)	48.60 %
vs. Exp3	78.50 %
vs. OOS	31.05 %
vs. OOS+	55.75 %
vs. RM	47.55 %

- All are roughly ± 3.0 for 95% c.i.
- Must solve LP only so often
- Must decay ϵ
- Seems more sensitive to parameters

Preliminary Results II

In Tron, run RM with purification: if probability < 0.2, flush it to 0 and renormalize.

	RM	RM + purification
vs. DUCB1T(max)	31.52 %	35.07 %
vs. DUCT(max)	68.48 %	50.30 %

- RM(purification) wins 54.44% againsts RM
- All are roughly ± 2.0 for 95% c.i.

Preliminary Results III: Oshi-Zumo

Solved in (Buro '03). All results are versus DUCT(max)

	OZ [50,3,1]	OZ [15,3,1]
DUCT(mix)	16.60 %	36.30 %
Exp3	31.10 %	44.95 %
OOS	11.40 %	25.50 %
OOS ⁺	23.85 %	42.40 %
RM	41.80 %	58.60 %

• All are roughly ± 2.5 for 95% c.i.

Conclusions

In Goofspiel:

- Regret matching and OOS⁺ perform best in Goofspiel
- DUCT(max) performs worst overall
- DUCT(mix) surprisingly good
- OOS converges to Nash in the limit

In Tron:

• DUCB1T(max) is the clear best

Conclusions

In Goofspiel:

- Regret matching and OOS⁺ perform best in Goofspiel
- DUCT(max) performs worst overall
- DUCT(mix) surprisingly good
- OOS converges to Nash in the limit

In Tron:

• DUCB1T(max) is the clear best

Future work:

- Apply in general game-playing (with Mandy Tak)
- Adaptive algorithms
- Compare to SM-MCTS move pruning (Finnsson '12)
- Compare to SMAB (Saffidine et al. 2012)
- Compare to Serialized Alpha-Beta (Bosansky et al. 2013)
- Extend to fully imperfect information setting

Questions?

Network and Strategic Optimisation (NSO) Group project.dke.maastrichtuniversity.nl/nso/

This work is partially funded by the Netherlands Organisation for Scientific Research (NWO).

