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Monte Carlo Search is Everywhere

Coulom ’06, Kocsis & Szepesvári ’06, Van Eyck ’13, Zhu ’13 Lavalle & Kuffner ’01, Perez et al.’11

Chaslot et al.’07, Gelly et al.’07,

Winands & Björnsson ’08, more..

Kuipers et al.’12 Cazenave ’05, Van den Broek ’09, Couetoux et al.’11

Silver & Veness ’10, Ponsen et al.’11,

Cowling et al.’12, Amato et al.’13
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Monte Carlo Tree Search: Overview

Selection Expension Simulation Backpropagation

The selection function is applied
recursively until a leaf node is

reached

One or more nodes
are created

The result of this game is
backpropagated in the tree

One simulated
game is played

Selection Expansion Simulation Backpropagation

The selection function is
applied recursively until

a leaf node is reached

One or more nodes
are created

The result of this game is
backpropagated in the tree

One simulated
game is played

           Repeated X times

(Coulom ’06), (Kocsis & Szepesvári ’06), (Chaslot et al.’07), (Browne et al.’12)
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Monte Carlo Tree Search (MCTS) Example
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5 / 35



Monte Carlo Tree Search (MCTS) Example

Max

Min

Min

Max

3 −2 01 4 −1 −3 1 2 0 −1 5 3 2 −3 0

visits = 1

rsum = −1

5 / 35



Monte Carlo Tree Search (MCTS) Example

Max

Min

Min

Max

3 −2 01 4 −1 −3 1 2 0 −1 5 3 2 −3 0

visits = 1

rsum = 1

visits = 2

rsum = 0

5 / 35



Monte Carlo Tree Search (MCTS) Example

Max

Min

Min

Max

3 −2 01 4 −1 −3 1 2 0 −1 5 3 2 −3 0

visits = 1

rsum = 1 rsum = 2

visits = 1

visits = 3

rsum = 2

5 / 35



Monte Carlo Tree Search (MCTS) Example

Max

Min

Min

Max

3 −2 01 4 −1 −3 1 2 0 −1 5 3 2 −3 0

rsum = 2

visits = 1

visits = 1

rsum = 1

visits = 2

rsum = 2

visits = 4

rsum = 3

5 / 35



Monte Carlo Tree Search (MCTS) Example

Max

Min

Min

Max

3 −2 01 4 −1 −3 1 2 0 −1 5 3 2 −3 0

visits = 1

rsum = 1

visits = 2

rsum = 2

visits = 1
rsum = −1

visits = 2

visits = 5
rsum = 2

rsum = 1

5 / 35



Monte Carlo Tree Search (MCTS) Example

Max

Min

Min

Max

3 −2 01 4 −1 −3 1 2 0 −1 5 3 2 −3 0

visits = 1

rsum = 1

visits = 2

rsum = 2

visits = 1
rsum = −1

visits = 1
rsum = −3

visits = 3

visits = 6
rsum = −1

rsum = −2

5 / 35



Monte Carlo Tree Search (MCTS) Example

Max

Min

Min

Max

3 −2 01 4 −1 −3 1 2 0 −1 5 3 2 −3 0

visits = 1

rsum = 1

visits = 2

rsum = 2

visits = 1
rsum = −1

rsum = 2

visits = 1

visits = 2
rsum = −1

visits = 4

visits = 7
rsum = 1

rsum = 0

5 / 35



Monte Carlo Tree Search (MCTS) Example

Max

Min

Min

Max

3 −2 01 4 −1 −3 1 2 0 −1 5 3 2 −3 0

visits = 1

rsum = 1
visits = 1
rsum = −1

rsum = 2

visits = 1

visits = 2
rsum = −1

rsum = −2
visits = 4

visits = 1

rsum = −1

visits = 3

rsum = 1

visits = 8
rsum = 0

5 / 35



Bandit-Based Selection

To select a node, employ bandit algorithms (i.e. UCB (Auer et al.’02)).
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Bandit-Based Selection

To select a node, employ bandit algorithms (i.e. UCB (Auer et al.’02)).

rsum =  500

visits = 200 visits = 150

rsum = 300
visits = 1200

rsum = 3600

⇒ UCT algorithm (Kocsis & Szepesvári ’06).
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Consistency in Game Tree Search

Algorithm A(s, t) computes strategy σ(s) at state s after t time units.

t seconds
computation

start
Computation(search) time...

output

strategy
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Consistency in Game Tree Search

Algorithm A(s, t) computes strategy σ(s) at state s after t time units.

t seconds
computation

start
Computation(search) time...

output

strategy

In two-player zero-sum games, for every state s, ∃ Nash equilibrium
(optimal) strategy σ∗(s).

Definition (Weak/Asymptotic Consistency)
A search algortihm is (weakly) consistent if ∀s, limt→∞ A(s, t) = σ∗(s).
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Consistency in MCTS

Is MCTS consistent?

> 2 players?
Yes, in seq. MP perfect information, using maxn (Sturtevant et. al. ’08)

MCTS-Solver

I converges faster
I increases play strength
I See: (Winands et al.’08, Baier ’13, Nijssen ’13, more..)
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Consistency in MCTS

Is MCTS consistent?

Yes!
→ in sequential 2P games with perfect information, using UCT

> 2 players?
Yes, in seq. MP perfect information, using maxn (Sturtevant et. al. ’08)

MCTS-Solver
I converges faster
I increases play strength
I See: (Winands et al.’08, Baier ’13, Nijssen ’13, more..)

Many optimizations that work better than plain UCT in practice!
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Simultaneous Move Games

Each player takes a single action (simultaneously) and game over!
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Multiple Stages: Goofspiel

(13!)3 ≈ 2.41 · 1029 unique sequences
Backward induction, proposed (Ross 1971)

Solved (Rhoads & Bartholdi 2012)
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Single Stage: Matrix Game

R

S

P

r p s

0.5

0.5

0.5

0

0

0

1

1

1

Let σcol = (r, p, s). Maximize V such that r, p, s ≥ 0 and

1
2 r + s ≥ V
r + 1

2 p ≥ V
p + 1

2 s ≥ V
r + p + s = 0
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Multi-stage: Simultaneous Move Games

.   .   .

12 / 35



Backward Induction

.   .   .

1 0 0 1 3 4 1 2 1 1 0 0
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Backward Induction

.   .   .
1 0

0 1

3 4

1 2

1 1

0 0

13 / 35



Backward Induction

.   .   .
1 0

0 1

3 4

1 2

1 1

0 0

.5

1

3

13 / 35



Simultaneous Move Minimax

Extension to classic game-tree search: “SM-Minimax”:
Depth-first search, as before
Values sent back up are solutions to LPs
Finite depth? → Evaluation function
Weakly consistent

Recent work:
Simultaneous Move αβ (SMAB), (Saffidine et al.’12)

Move Pruning in Serialized αβ, (Bosansky et al.’13)

14 / 35



Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:

Selection policy chooses a joint action (arow, acol)

Payoff matrices contain (changing) estimates
Regret minimization in unknown matrix games:

Stochastic Bandits (UCB)→ “Adversarial” Bandits (Exp3, RM)
Consistency?
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Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:
Selection policy chooses a joint action (arow, acol)

Payoff matrices contain (changing) estimates
Regret minimization in unknown matrix games:

Stochastic Bandits (UCB)→ “Adversarial” Bandits (Exp3, RM)
Consistency?

Previous work:
Backward induction (Ross 1971, Buro ’03)

Sequential UCT (Several 2008 - 2011)

Decoupled UCT (DUCT) (Finnsson et. al. ’08, Perick et. al. ’11)
I Provably inconsistent (Shafiei et. al. ’09)

Pruning in SM-MCTS (Finnsson ’12)

Exp3 at each stage (Auger ’11, Teytaud & Flory ’11)
I Both: empirical evidence of consitency
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Our SM-MCTS Variants

So far, we have looked at:

Decoupled UCT
Sequential UCT
UCB1-Tuned (Sequential and Decoupled)
Exp3 (Auer et al.’95)

Regret Matching (RM) (Hart & Mas-Colell ’00)

Online Outcome Sampling (OOS)
ε-minmax

in several domains ...
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Sequential UCT

Model the game as a sequential game.

a b c

1

2

3

. . .

b
a

c

1
1 1

2 2 23
3 3

Then apply usual UCT for selection.
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Decoupled UCT (DUCT)

Each player i keeps their own reward estimates and visits for ai ∈ Ai(s)

a b c

1

2

3

. . .

Player 1

Player 2

1

2

3

a

b

c

X

X

X

X

X

X

v

v

v

v

v

v

1

1

2

2

3

3

a
a

b

b

c

c

Use UCB for selection. When done simulations:
DUCT(max): choose argmaxa∈A(s) Xa/va

DUCT(mix): choose a with prob va/
∑

b∈Ai(s) vb
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DUCT Consistency?

In (Shafiei et al. ’09),

DUCT(mix) converges to (1
3 ,

1
3 ,

1
3) in R, P, S

In biased R, P, S:

R

S

P

r p s

0.5

0.5

0.50

10.25

0.75

0.55

0.45

I DUCT converges to a cycle
I However, strategy is not a Nash eq.

Similar no-convergence in Kuhn Poker (Ponsen et al. ’11)
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Exp3

Each player i keeps their own reward estimates for ai ∈ Ai(s)

a b c

1

2

3

. . .

Player 1

Player 2

1

2

3

a

b

c

X1

X
2

X
3

Xa

Xb

cX

Let p(a) = exp(Xa)/
∑

b∈Ai(s) exp(Xb)

Selection: sample a using p̂(a) = γ/|Ai(s)|+ (1− γ)p(a)
Obtain reward r from below, update Xa ← Xa + r/p̂(a)
After sims, choose according to empirical freq. of samples
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Regret Matching (RM)

Each player i keeps their own cumulative regret for ai ∈ Ai(s)

a b c

1

2

3

. . .

Player 1

Player 2

1

2

3

a

b

c

1r
s

s2

r
1

2

r
s3
3

r
sa
a

r
s
b

b

r
sc
c

Define x+ = max(0, x), and p(a) = r+a /
∑

b∈Ai(s) r+b
Selection: sample a using p̂(a) = γ/|Ai(s)|+ (1− γ)p(a)
Obtain reward r, accumulate regret for not playing b 6= a,
Add current strategies p(b) to average strategy table sb for each b.
After simulations, choose by normalizing sa for a ∈ Ai(s).
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ε-minmax

After many simulations, we have an approximation for each Xa1a2 .

a b c

1

2

3

X

X

X

X

X

X X

X

X
1a

2a

3a

1b

2b

3b

1c

2c

3c

Construct and solve LP to get mixed σ1(s), σ2(s).
Then, each player selects ai ∼ ε · Unif(Ai(s)) + (1− ε) · σi(s)

MCTS version of MinimaxQ (Littman ’98)
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Online Outcome Sampling (OOS)

Counterfactual regret minimization (Zinkevich et al. ’08)

I Approaches Nash eq. in imperfect information setting
I Intended for offline use
I Used to compute Poker strategies

Monte Carlo CFR (Lanctot et al. ’09)

Online Outcome Sampling
→ MCTS version of outcome sampling MCCFR
Use regret matching over sampled counterfactual regrets
Converges to Nash equilibrium over time!
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Counterfactual regret minimization (Zinkevich et al. ’08)

I Approaches Nash eq. in imperfect information setting
I Intended for offline use
I Used to compute Poker strategies

Monte Carlo CFR (Lanctot et al. ’09)
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Win/Loss Goofspiel(13) Performance

P1 \ P2 RND DUCT(max) DUCT(mix) Exp3 OOS OOS+

DUCT(max) 76.0
DUCT(mix) 78.3 57.5

Exp3 80.0 55.8 48.4
OOS 73.1 55.3 43.8 47.0

OOS+ 77.7 67.0 53.3 60.0 57.1
RM 80.9 63.3 53.2 57.2 58.3 50.4

Number refers to % win rate of row player type.
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Point Difference Goofspiel(11) Exploitability

Algorithm Mean Ex2 Mean Ex4 Mean simulations per second
DUCT(max) 7.43 ± 0.15 12.87 ± 0.13 124127 ± 286
DUCT(mix) 5.10 ± 0.05 7.96 ± 0.02 124227 ± 286

Exp3 5.77 ± 0.10 10.12 ± 0.08 125165 ± 61
OOS 4.02 ± 0.06 7.92 ± 0.04 186962 ± 361

OOS+ 5.59 ± 0.09 9.30 ± 0.08 85940 ± 200
RM 5.56 ± 0.10 9.36 ± 0.07 138284 ± 249

Lower Exd = closer to Nash eq.
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WL-Goof(4) and PD-Goof(4) Full Exploitability

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
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Iteration/1000

Mean Exploitability in PD-Goof(4)

DUCT
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x-axis is time, y-axis is distance to Nash eq. (lower = closer)
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New Results I: Tron

(Lanctot et al.’13). Based on Bachelor thesis of Christopher Wittlinger.

Try to survive and block opponent in a maze.
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New Results I: Tron

Three boards below, plus empty board.

Heuristic knowledge in playouts (space estimation + predictive
expansion strategies; see also Bachelor thesis of Niek Den Teuling.)
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New Results I: Tron

Variant a b c d Total
DUCB1T(max) 65% 62% 62% 59% 62.32 ± 0.56%
DUCB1T(mix) 56% 57% 53% 53% 54.82 ± 0.61%

UCB1T 58% 57% 49% 54% 54.32 ± 0.55%
RM 56% 52% 51% 53% 53.13 ± 0.62%
UCT 47% 54% 55% 49% 51.39 ± 0.55%

DUCT(max) 43% 54% 49% 50% 49.05 ± 0.61%
DUCT(mix) 39% 40% 43% 36% 39.51 ± 0.64%

Exp3 35% 24% 38% 45% 35.47 ± 0.61%

Percentage is a win rate
Results of the different variants played against each other
± refers to 95% confidence intervals.
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New Results II: Consistency Guarantees

(Lisý et al.’13) shows that:

Any regret-minimizing alg. leads to weak consistency in
SM-MCTS
Must back-propagate the means for guarantee
Worst-case analysis of Exp3 and RM on random games
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Preliminary Results I

Win percentages of ε-minmax in Goofspiel:

vs. DUCT(max) 75.70 %
vs. DUCT(mix) 48.60 %

vs. Exp3 78.50 %
vs. OOS 31.05 %

vs. OOS+ 55.75 %
vs. RM 47.55 %

All are roughly ±3.0 for 95% c.i.
Must solve LP only so often
Must decay ε
Seems more sensitive to parameters
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Preliminary Results II

In Tron, run RM with purification: if probability < 0.2, flush it to 0 and
renormalize.

RM RM + purification
vs. DUCB1T(max) 31.52 % 35.07 %

vs. DUCT(max) 68.48 % 50.30 %

RM(purification) wins 54.44% againsts RM
All are roughly ±2.0 for 95% c.i.
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Preliminary Results III: Oshi-Zumo

Solved in (Buro ’03). All results are versus DUCT(max)

OZ [50,3,1] OZ [15,3,1]
DUCT(mix) 16.60 % 36.30 %

Exp3 31.10 % 44.95 %
OOS 11.40 % 25.50 %

OOS+ 23.85 % 42.40 %
RM 41.80 % 58.60 %

All are roughly ±2.5 for 95% c.i.
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Conclusions

In Goofspiel:
Regret matching and OOS+ perform best in Goofspiel
DUCT(max) performs worst overall
DUCT(mix) surprisingly good
OOS converges to Nash in the limit

In Tron:
DUCB1T(max) is the clear best
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Conclusions

In Goofspiel:
Regret matching and OOS+ perform best in Goofspiel
DUCT(max) performs worst overall
DUCT(mix) surprisingly good
OOS converges to Nash in the limit

In Tron:
DUCB1T(max) is the clear best

Future work:
Apply in general game-playing (with Mandy Tak)
Adaptive algorithms
Compare to SM-MCTS move pruning (Finnsson ’12)

Compare to SMAB (Saffidine et al. 2012)

Compare to Serialized Alpha-Beta (Bosansky et al. 2013)

Extend to fully imperfect information setting
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Questions?

marc.lanctot@maastrichtuniversity.nl
mlanctot.info

Network and Strategic Optimisation (NSO) Group
project.dke.maastrichtuniversity.nl/nso/

This work is partially funded by the Netherlands Organisation for Scientific Research (NWO).
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