Monte Carlo Tree Search for
Simultaneous Move Games

Marc Lanctot!

Joint work with Mark Winands', Viliam Lisy2, Christopher Wittlinger', Mandy Tak’

' Department of Knowledge Engineering, Maastricht University
2 Dept. of Computer Science and Engineering, FEE, Czech Technical University in Prague

December 2nd, 2013

Talk Overview

@ Introduction and Background

» Monte Carlo Search is Everywhere
» Monte Carlo Tree Search (MCTS)
» Consistency in Tree Search

@ Simultaneous Move Games and MCTS
@ Experiments and Results

@ Conclusion and Future work

35

Talk Overview

@ Introduction and Background

» Monte Carlo Search is Everywhere
» Monte Carlo Tree Search (MCTS)
» Consistency in Tree Search

@ Simultaneous Move Games and MCTS
@ Experiments and Results
@ Conclusion and Future work

— incl. some new stuff, too!

35

Monte Carlo Search is Everywhere

Coulom 06, Kocsis & Szepesvari ‘06,
Chaslot et al.’07, Gelly et al.'07,

Winands & Bjoérnsson 08, more..

P(0) = ao + zo(ar + To(az + - -~ + To(@n—1 + bato) - --))
= ag + o(ar + To(az + - - + To(bu_v) - -))

= ag +zo(b1)
= bo.

Kuipers et al."12

Van Eyck 13, Zhu '13 Lavalle & Kuffner '01, Perez et al.’11

ey

Cazenave ‘05, Van den Broek 09, Couetoux et al.’11
Silver & Veness '10, Ponsen et al.’11,

Cowling et al."12, Amato et al.’13

3/35

Monte Carlo Tree Search: Overview

Repeated X times

t{ Selection ——{ Expansion ——{ Simulation —{ Backpropagation J

The selection function is
applied recursively until
aleaf node isreached

One or more nodes
are created

One simulated
gameis played

Theresult of thisgameis
backpropagated in the tree

(Coulom ’06), (Kocsis & Szepesvari '06), (Chaslot et al.’07), (Browne et al.’12)

4/35

Monte Carlo Tree Search (MCTS) Example

Max

5/35

Monte Carlo Tree Search (MCTS) Example

visits = 1
rsum = —1
< Max

5/35

Monte Carlo Tree Search (MCTS) Example

visits = 2
rsum =0 Max

5/35

Monte Carlo Tree Search (MCTS) Example

visits =3
rsum =2 Max

visits = |
rsum =2

5/35

Monte Carlo Tree Search (MCTS) Example

visits = 4
rsum =3 Max

visits = 2 visits = |
rsum =2

5/35

Monte Carlo Tree Search (MCTS) Example

visits =5

rsum = 2 Max
visits = 2 visits =2
rsum = 2 rsum = | Min
visits = 1 ..
visits = 1 Max

rsum = |
rsum = -1

5/35

Monte Carlo Tree Search (MCTS) Example

visits = 6
rsum = —1

Max

visits =3
rsum = -2 Min

visits = 2
rsum = 2

visits = 1 visits = 1
) rsum = -3 Max

rsum = |

visits = 1
rsum = -1

5/35

Monte Carlo Tree Search (MCTS) Example

visits =7
rsum = |

Max

visits =4
rsum =0 Min

visits = 2
rsum = 2

visits =2
rsum = —1 Max

visits = 1
rsum = |

visits = 1
rsum = -1

visits = 1
rsum = 2

5/35

Monte Carlo Tree Search (MCTS) Example

visits = 8
rsum = 0

Max

visits =4
rsum = -2 Min

visits =3
rsum = |

visits = 1 visits =2
rsum = —| Max

rsum = —1

visits = 1 ..
rsum = 1 visits = 1

rsum = —1

visits = 1
rsum = 2

5/35

Bandit-Based Selection

To select a node, employ bandit algorithms (i.e. UCB (Auer et al.02)).

6/35

Bandit-Based Selection
To select a node, employ bandit algorithms (i.e. UCB (Auer et al.02)).

visits = 1200
rsum = 3600

visits = 200 visits = 150
rsum = 500 rsum = 300
1 \ ! \
/ \ / \
\

= UCT algorithm (Kocsis & Szepesvari '06).

Consistency in Game Tree Search

Algorithm A(s, t) computes strategy o(s) at state s after ¢ time units.

Computation(search) time...
output
strategy

start
}» ———————————————————— tseconds --------------------

computation

Consistency in Game Tree Search

Algorithm A(s, t) computes strategy o(s) at state s after ¢ time units.

Computation(search) time...
output
strategy

start
}» ———————————————————— tseconds --------------------

computation

In two-player zero-sum games, for every state s, 3 Nash equilibrium
(optimal) strategy o*(s).

Consistency in Game Tree Search

Algorithm A(s, t) computes strategy o(s) at state s after ¢ time units.

Computation(search) time...
output

start d
}“ 77777777777777777 tseconds - --------oommmm oo strategy

computation

In two-player zero-sum games, for every state s, 3 Nash equilibrium
(optimal) strategy o*(s).

Definition (Weak/Asymptotic Consistency)
A search algortihm is (weakly) consistent if Vs, lim;_, o, A(s, 1) = o*(s).

Consistency in MCTS

Is MCTS consistent?

Consistency in MCTS

Is MCTS consistent?

@ Yes!

Consistency in MCTS

Is MCTS consistent?

@ Yes!
— in sequential 2P games with perfect information, using UCT

Consistency in MCTS

Is MCTS consistent?

@ Yes!
— in sequential 2P games with perfect information, using UCT

@ > 2 players?
Yes, in seq. MP perfect information, using max” (Sturtevant et. al. '08)

35

Consistency in MCTS

Is MCTS consistent?

@ Yes!
— in sequential 2P games with perfect information, using UCT

@ > 2 players?
Yes, in seq. MP perfect information, using max” (Sturtevant et. al. '08)

@ MCTS-Solver

» converges faster
» increases play strength
» See: (Winands et al.’ 08, Baier 13, Nijssen *13, more..)

Many optimizations that work better than plain UCT in practice!

Simultaneous Move Games

Scissors

hea% .

& ‘Paper
beats rock

Each player takes a single action (simultaneously) and game over!

Rock

beats scissors

9/35

Multiple Stages: Goofspiel

penny peachpit Wins the Card
penny peachpit johnnyapple15

5 5
5 5
S S

Forfeit

Score: 8 Score: 1

@ (131)3 ~2.41 - 10%° unique sequences
@ Backward induction, proposed (Ross 1971)
@ Solved (Rhoads & Bartholdi 2012)

10/35

Single Stage: Matrix Game

R[{0S5] 0 1
P 1 |05 0
S0 1 105

Let .o = (r,p,s). Maximize V such that r,p,s > 0 and

r
r—l—%p

p
r + p

DN —

+

+
+

N

2S

N

IV IV IV
o< <<

11/35

Multi-stage: Simultaneous Move Games

12/35

Backward Induction

10 0 134 12 11 00

13/35

Backward Induction

13/35

Backward Induction

13/35

Simultaneous Move Minimax

Extension to classic game-tree search: “SM-Minimax”:
@ Depth-first search, as before
@ Values sent back up are solutions to LPs
@ Finite depth? — Evaluation function
@ Weakly consistent

Recent work:
@ Simultaneous Move a3 (SMAB), (Saffidine et al.'12)
@ Move Pruning in Serialized «3, (Bosansky et al.'13)

14/35

Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:

15/35

Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:
@ Selection policy chooses a joint action (aew, dcor)

15/35

Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:
@ Selection policy chooses a joint action (aew, dcor)
@ Payoff matrices contain (changing) estimates

15/35

Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:
@ Selection policy chooses a joint action (aew, dcor)
@ Payoff matrices contain (changing) estimates
@ Regret minimization in unknown matrix games:

Stochastic Bandits (UCB) — “Adversarial” Bandits (Exp3, RM)

15/35

Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:
@ Selection policy chooses a joint action (aew, dcor)
@ Payoff matrices contain (changing) estimates
@ Regret minimization in unknown matrix games:

Stochastic Bandits (UCB) — “Adversarial” Bandits (Exp3, RM)

@ Consistency?

15/35

Simultaneous Move MCTS

Extension to MCTS: “SM-MCTS”:
@ Selection policy chooses a joint action (@, dcor)
@ Payoff matrices contain (changing) estimates
@ Regret minimization in unknown matrix games:
Stochastic Bandits (UCB) — “Adversarial” Bandits (Exp3, RM)
@ Consistency?

Previous work:
@ Backward induction (Ross 1971, Buro '03)
@ Sequential UCT (Several 2008 - 2011)
@ Decoupled UCT (DUCT) (Finnsson et. al. '08, Perick et. al. "11)
» Provably inconsistent (Shafiei et. al. '09)
@ Pruning in SM-MCTS (Finnsson '12)
@ Exp3 at each stage (Auger 11, Teytaud & Flory '11)

» Both: empirical evidence of consitency
15/35

Our SM-MCTS Variants

So far, we have looked at:

@ Decoupled UCT

@ Sequential UCT

UCB1-Tuned (Sequential and Decoupled)
() Exp3 (Auer et al.’95)

@ Regret Matching (RM) (Hart & Mas-Colell '00)
@ Online Outcome Sampling (OOS)

@ c-minmax

in several domains ...

16/35

Sequential UCT

Model the game as a sequential game.

Then apply usual UCT for selection.

17/35

Decoupled UCT (DUCT)

Each player i keeps their own reward estimates and visits for a; € A;(s)

Player 1

Use UCB for selection. When done simulations:
@ DUCT(max): choose argmax ¢ 4(,) Xa/Va

@ DUCT(mix): choose a with prob va/ 3_,c 4,5) Vo

18/35

DUCT Consistency?

In (Shafiei et al. '09),

@ DUCT(mix) converges to (3,1,4) inR, P, S
@ Inbiased R, P, S:

R|051]0.25] 1

P10.75] 0.5 |0.45

S| 0]0.55/0.5

» DUCT converges to a cycle
» However, strategy is not a Nash eq.

@ Similar no-convergence in Kuhn Poker (Ponsen et al. '11)

19/35

Exp3

Each player i keeps their own reward estimates for a; € A;(s)

Player 1
1] Xy

Let p(a) = exp(Xa)/ Xope.a,(s) €XP(Xp)
@ Selection: sample a using p(a) = v/|Ai(s)| + (1 — v)p(a)
@ Obtain reward r from below, update X, < X, + r/p(a)
@ After sims, choose according to empirical freq. of samples

20/35

Regret Matching (RM)

Each player i keeps their own cumulative regret for a; € A;(s)

Player 1
I

S1

r
1 B

I3
3| 83

Player 2

Iy
al ¢

)
Sp
Te
S,

Define x™ = max(0,x), and p(a) = r}/ 2 obeAi(s) rr
@ Selection: sample a using p(a) = /| Ai(s)| + (1 — v)p(a)
@ Obtain reward r, accumulate regret for not playing b # a,
@ Add current strategies p(b) to average strategy table s, for each b.

@ After simulations, choose by normalizing s, for a € A(s).
21/35

e-minmax

After many simulations, we have an approximation for each X, -

@ Construct and solve LP to get mixed o (s), o2(s).
@ Then, each player selects a; ~ € - Unif(A;(s)) + (1 — €) - oi(s)
@ MCTS version of MinimaxQ (Littman '98)

22/35

Online Outcome Sampling (OOS)

@ Counterfactual regret minimization (Zinkevich et al. '08)

23/35

Online Outcome Sampling (OOS)

@ Counterfactual regret minimization (Zinkevich et al. '08)

» Approaches Nash eq. in imperfect information setting
» Intended for offline use
» Used to compute Poker strategies

23/35

Online Outcome Sampling (OOS)

@ Counterfactual regret minimization (Zinkevich et al. '08)

» Approaches Nash eq. in imperfect information setting
» Intended for offline use
» Used to compute Poker strategies

@ Monte Carlo CFR (Lanctot et al. '09)

23/35

Online Outcome Sampling (OOS)

@ Counterfactual regret minimization (Zinkevich et al. '08)

» Approaches Nash eq. in imperfect information setting
» Intended for offline use
» Used to compute Poker strategies

@ Monte Carlo CFR (Lanctot et al. '09)

@ Online Outcome Sampling
— MCTS version of outcome sampling MCCFR

23/35

Online Outcome Sampling (OOS)

@ Counterfactual regret minimization (Zinkevich et al. '08)

» Approaches Nash eq. in imperfect information setting
» Intended for offline use
» Used to compute Poker strategies

@ Monte Carlo CFR (Lanctot et al. '09)

@ Online Outcome Sampling
— MCTS version of outcome sampling MCCFR

@ Use regret matching over sampled counterfactual regrets

23/35

Online Outcome Sampling (OOS)

@ Counterfactual regret minimization (Zinkevich et al. '08)

» Approaches Nash eq. in imperfect information setting
» Intended for offline use
» Used to compute Poker strategies

@ Monte Carlo CFR (Lanctot et al. '09)

@ Online Outcome Sampling
— MCTS version of outcome sampling MCCFR

@ Use regret matching over sampled counterfactual regrets
@ Converges to Nash equilibrium over time!

23/35

Win/Loss Goofspiel(13) Performance

P1\ P2 |[RND DUCT(max) DUCT(mix) Exp3 OOS OOS*
DUCT(max)| 76.0
DUCT(mix) | 78.3 57.5
Exp3 |80.0 55.8 48.4
00S |[731 55.3 438 470
00S+ |777 670 533 60.0 57.1
RM [80.9 63.3 532 572 58.3 50.4

@ Number refers to % win rate of row player type.

24/35

Point Difference Goofspiel(11) Exploitability

Algorithm Mean Ex, Mean Ex, |Mean simulations per second
DUCT(max) |7.43 + 0.15|12.87 + 0.13 124127 4+ 286
DUCT(mix) {5.10 & 0.05| 7.96 £ 0.02 124227 + 286

Exp3 5.77 £0.10/10.12 4+ 0.08 125165 =+ 61

00S 4.02 +0.06| 7.92 + 0.04 186962 + 361

OO0S+ 5.59 £+ 0.09| 9.30 &+ 0.08 85940 + 200
RM 5.56 +0.10| 9.36 + 0.07 138284 + 249

@ Lower Ex, = closer to Nash eq.

25/35

WL-Goof(4) and PD-Goof(4) Full Exploitability

Mean Exploitability in WL-Goof(4)

2
3
S
S
o
x
i
0
0 10 20 30 40 50 60 70 80 90 100
Iteration/1000
Mean Exploitability in PD-Goof(4)
=
3
S
S
o
x
i

0
0 10 20 30 40 50 60 70 80 90 100
Iteration/1000

@ Xx-axis is time, y-axis is distance to Nash eq. (lower = closer)

26/35

New Resulis |: Tron

(Lanctot et al'13). Based on Bachelor thesis of Christopher Wittlinger.

Try to survive and block opponent in a maze.

27/35

New Resulis |: Tron

Three boards below, plus empty board.

O

a

Heuristic knowledge in playouts (space estimation + predictive
expansion strategies; see also Bachelor thesis of Niek Den Teuling.)

28/35

New Resulis |: Tron

Variant a b c d Total
DUCB1T(max) || 65% | 62% | 62% | 59% | 62.32 &+ 0.56%
DUCB1T(mix) 56% | 57% | 53% | 53% | 54.82 4+ 0.61%

UCB1T 58% | 57% | 49% | 54% | 54.32 4 0.55%

RM 56% | 52% | 51% | 53% | 53.13 + 0.62%
UCT 47% | 54% | 55% | 49% | 51.39 + 0.55%
DUCT(max) 43% | 54% | 49% | 50% | 49.05 + 0.61%
DUCT(mix) 39% | 40% | 43% | 36% | 39.51 + 0.64%
Exp3 35% | 24% | 38% | 45% | 35.47 £ 0.61%

@ Percentage is a win rate
@ Results of the different variants played against each other
@ + refers to 95% confidence intervals.

29/35

New Results II: Consistency Guarantees

(Lisy et al."13) Shows that:

@ Any regret-minimizing alg. leads to weak consistency in
SM-MCTS

@ Must back-propagate the means for guarantee
@ Worst-case analysis of Exp3 and RM on random games

30/35

Preliminary Results |

Win percentages of e-minmax in Goofspiel:

vs. DUCT(max)
vs. DUCT(mix)
vs. Exp3
vs. OOS
vs. OOS™
vs. RM

75.70 %
48.60 %
78.50 %
31.05 %
55.75 %
47.55 %

@ All are roughly +3.0 for 95% c.i.
@ Must solve LP only so often
@ Must decay ¢

@ Seems more sensitive to parameters

31/35

Preliminary Results Il

In Tron, run RM with purification: if probability < 0.2, flush it to 0 and

renormalize.

RM RM + purification
vs. DUCB1T(max) | 31.52 % 35.07 %
vs. DUCT(max) | 68.48 % 50.30 %

@ RM(purification) wins 54.44% againsts RM
@ All are roughly +2.0 for 95% c.i.

32/35

Preliminary Results lll: Oshi-Zumo

50

50/0000@0O0O00

[50,4,%]-Oshi-Zumo starting position - code (50,50, 0)

16 00000@O00)| 18

Position after move (4,2) ~ code (46,48, 1)

Solved in (Buro '03). All results are versus DUCT(max)

0Z[50,3,1] | OZ [15,3,1]
DUCT(mix) | 16.60 % 36.30 %

Exp3 31.10 % 44.95 %
00S 11.40 % 25.50 %
00Ss™* 23.85 % 42.40 %

RM 41.80 % 58.60 %

@ All are roughly +2.5 for 95% c.i.

33/35

Conclusions

In Goofspiel:
@ Regret matching and OOS™ perform best in Goofspiel
@ DUCT(max) performs worst overall
@ DUCT(mix) surprisingly good
@ OOS converges to Nash in the limit
In Tron:
@ DUCB1T(max) is the clear best

34/35

Conclusions

In Goofspiel:
@ Regret matching and OOS™ perform best in Goofspiel
@ DUCT(max) performs worst overall
@ DUCT(mix) surprisingly good
@ OOS converges to Nash in the limit
In Tron:
@ DUCB1T(max) is the clear best

Future work:
@ Apply in general game-playing (with Mandy Tak)
@ Adaptive algorithms
@ Compare to SM-MCTS move pruning (Finnsson '12)
@ Compare to SMAB (saffidine et al. 2012)
@ Compare to Serialized Alpha-Beta (Bosansky et al. 2013)

@ Extend to fully imperfect information setting
34/35

Questions?

marc.lanctot@maastrichtuniversity.nl
mlanctot.info

Network and Strategic Optimisation (NSO) Group

project.dke.maastrichtuniversity.nl/nso/

This work is partially funded by the Netherlands Organisation for Scientific Research (NWO).

Netherlands Organisation for Scientific Research

35/35

mlanctot.info
project.dke.maastrichtuniversity.nl/nso/

