Simulation Search Control in General Game Playing

Yngvi Björnsson

Reykjavik University

Maastricht, May 2011

GGP Research Group at RU

- Work described here is done by the GGP research group at RU
 - Yngvi Björnsson, Associate Professor
 - Hilmar Finnsson, PhD student
 - Stefán Freyr Guðmundsson, PhD student
 - Stephan Schiffel, Post-doc

3

Introduction

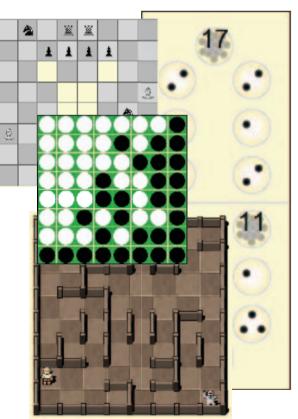
- General Game Playing (GGP)
- CADIA Player
- Search Control Schemes
 - Selection Phase
 - UCT / RAVE
 - MA / ST / Knowledge Bias
 - Playout Phase
 - MAST / TO-MAST / PAST / FAST
 - Combined schemes
- Empirical Results
 - Game Properties

Conclusions

Maastricht, May 2011

General Game-Playing (GGP)

- Play a wide variety of games
 - *n*-player games ($n \ge 1$)
 - Adversary, co-operative
 - Some limitations:
 - Deterministic and perfect-information
- Game rules described using
 - GDL (Game Description Lang.)
 - Logic based (Prolog-like)



Game Description Language (GDL)

- Predicate used to describe the current state:
 - (cell 1 1 blank)
 (cell 1 2 X)
 - ... (cell 3 5 O) (control xplayer)
- Implication rules use to describe:
 - Possible moves (legal)
 - How the new state looks like after a move is made (next)
 - If a state is terminal (terminal)
 - Outcome of a game (goal)

Also, special keywords for listing roles etc.

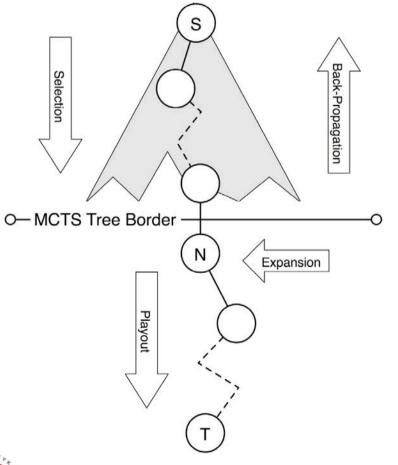
GDL Example for Legal Moves in TicTacToe

- (<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y blank)) (true (control ?w)))
- (<= (legal xplayer noop) (true (control oplayer)))
- (<= (legal oplayer noop) (true (control xplayer)))

CADIA Player

- General Game-Playing Agent
 - (CADIA is the name of RU's AI lab)
 - GGP competition
 - 1st place 2007 and 2008.
 - 6th place in 2009
 - 3rd place in 2010
- Technique:
 - MCTS based
 - Before CadiaPlayer GGP players were pre-dominantly knowledge-based alpha-beta players
 - Now, most players use MCTS

MCTS in CADIA Player



Selection

- UCT / RAVE
- (+tie-breaking)
- Selection enhancements
- Expansion
 - Add one node per simulation
- Back-propagation
 - Averaging
 - Learning / updating
- Playout
 - Using knowledge learned online 9

Search-Control in CADIA Player

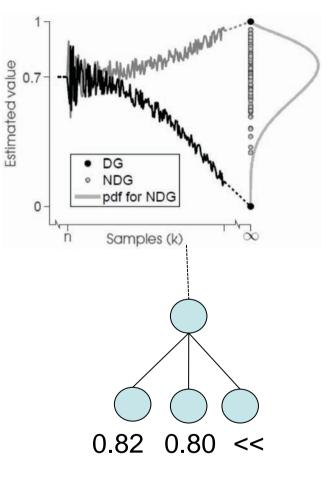
- Selection Phase
 - UCT
 - RAVE
 - Deterministic Discrete Outcome Games
 - Moving Average (MA) / Sufficiency Threshold (ST)
 - Knowledge Bias
- Playout Phase
 - MAST (2008)
 - TO-MAST (2009)
 - PAST (2009)
 - FAST (2010)

Deterministic Discrete Outcome Games

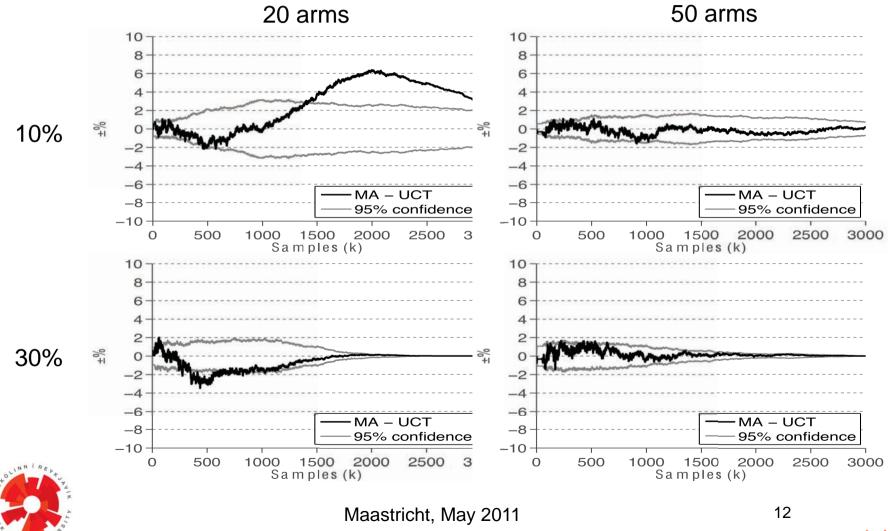
- UCT rooted in *n*-arm bandit exploration
- Can we do "better" if we know the game we are playing is
 - Deterministic / Discrete outcome
- Two possible problematic scenarios
 - Values can change drastically once wins/ losses are found, that information propagates slowly. = MA
 - Effort distinguishing between two likely "winning moves". = ST
- Ran simulations using *n*-arm bandits

Each arm random walk to outcomes 0 or 1

Maastricht, May 2011

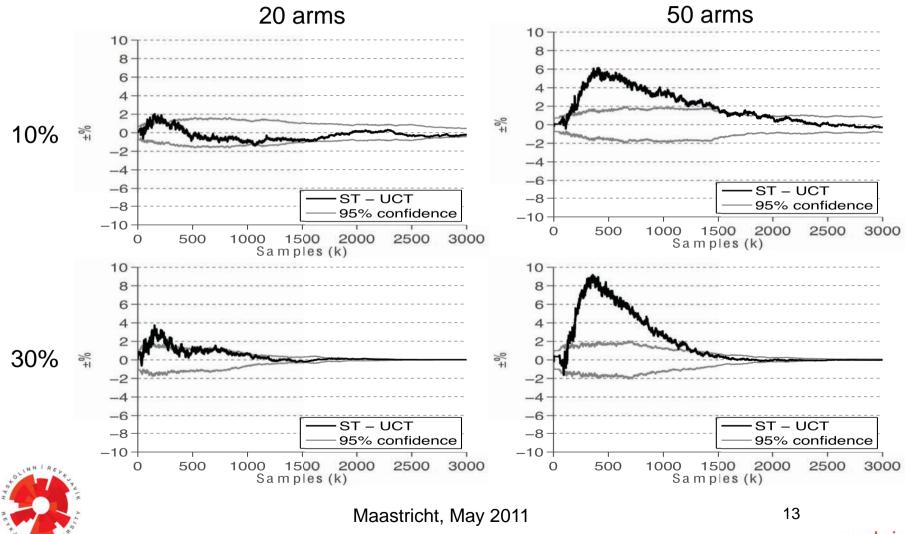


Moving Average (MA)

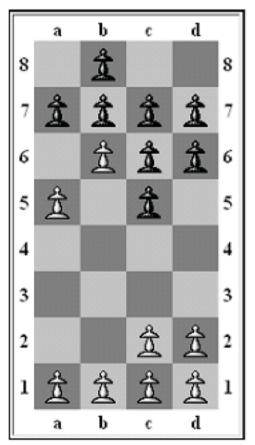


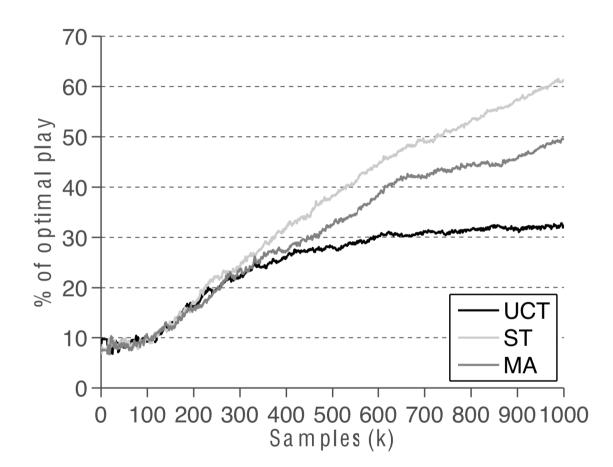
www.hr.is

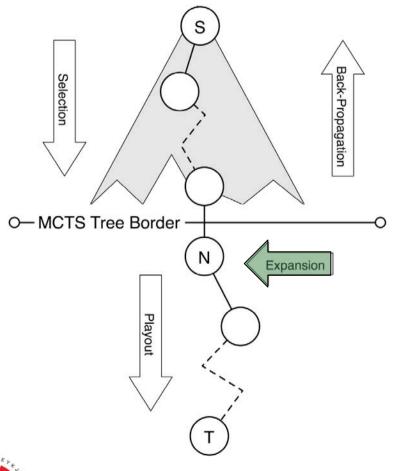
Sufficiency Threshold (ST)



www.hr.is







Knowledge Bias

- FluxPlayer heuristics used to "evaluate" newly expanded nodes.
- Gives initial estimates for little explored nodes (a.la. Progressive Bias)

Search-Control Playouts

- Framework
 - Gibbs measure
- Schemes in the playout phase
 - MAST (2008)
 - TO-MAST (2009)
 - PAST (2009)
 - FAST (2010)
- Combined schemes
 - RAVE/MAST (2009)
 - RAVE/FAST (2010)

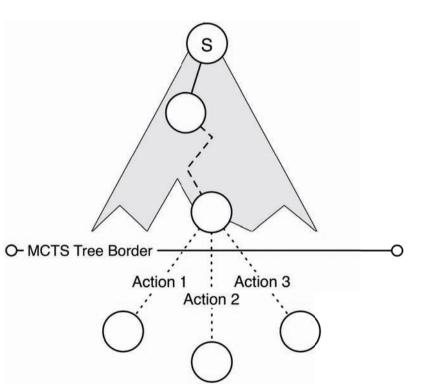
Search Control Framework

- Move selection is biased in the playout phase.
 - Assume that $Q_h(a)$ is a measure of a move's quality.
 - We then use Gibbs measure to choose a move with a probability:

$$\mathcal{P}(a) = \frac{e^{\mathcal{Q}_h(a)/\tau}}{\sum_{b=1}^n e^{\mathcal{Q}_h(b)/\tau}}$$

- The tau parameter can be used to adjust how greedy the selection is towards the best moves
 - Stretch or flatten the distribution

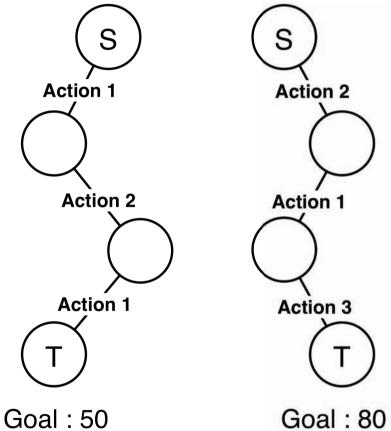
Search Control Scheme



- Used
 - in the playout phase
 - Fringe of the MCTS tree to choose between unexplored moves.

$$\mathcal{P}(a) = \frac{e^{\mathcal{Q}_h(a)/\tau}}{\sum_{b=1}^n e^{\mathcal{Q}_h(b)/\tau}}$$

Move Average Sampling Technique (MAST)



Action	Samples	Q(a)
Action 1	3	60
Action 2	2	65
Action 3	1	80

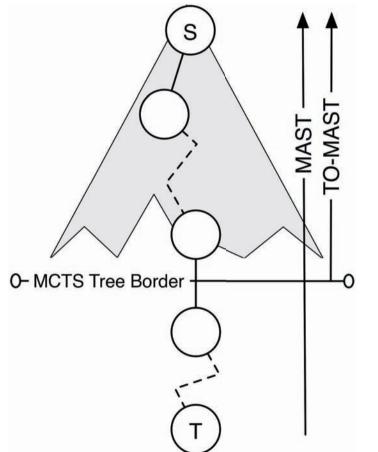
With $\tau = 10$:

P(Action	1)	=	9.9%
P(Action	2)	=	16.4%
P(Action	3)	=	73.6%

UNNIREYAUTZ

Maastricht, May 2011

Tree Only MAST (TO-MAST)



- Same as MAST, but
 - Only update Q when in the MCTS tree
- Samples
 - Fewer samples
 - More relevant, better quality (?)
- Generalization
 - Generalization more local (to early part of playoffs)

PREDICATE AVERAGE SAMPLING TECHN. (PAST)

- Look at actions in correlation with state predicates
 - Finer granularity of generalization
 - Possible to detect if an action is good in a given context
 - E.g. place a piece on a3 is good only if opponents piece on a2
- Keep statistic:

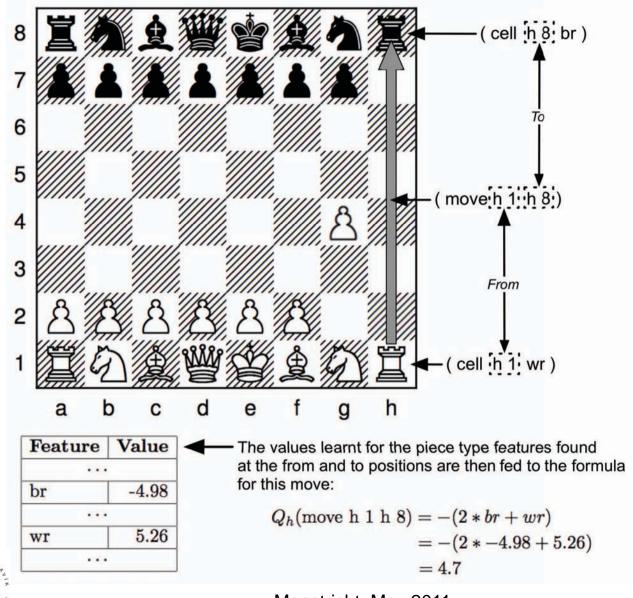
Action /Pred	Predicate 1	Predicate 2	Predicate 3
Action 1	Q(p,a) = 60	Q(p,a) = 50	Q(p,a) = 65
Action 2	Q(p,a) = 80	Q(p,a) = 65	Q(p,a) = 50
Action 3	Q(p,a) = 80	Q(p,a) = 0	Q(p,a) = 80
	Maastricht, May 20	11	21

www.hr.is

- Action selection:
 - Map into our Q(a) based framework.
- For every action *a* available in state
 - Q(a) is the maximum Q(p, a) over predicates p in the current state
 - High variance valued ignored (too few samples).
- Notes:
 - Using maximum value works for us significantly better than averaging values.

FEATURES TO ACTION SAMPLING TECHN. (FAST)

- Use template matching to identify common board game features. We currently detect:
 - Pieces of different types (piece based)
 - Board locations (location based)
- Use reinforcement learning, TD(λ), to learn the relative importance of detected features
 - Learns after each simulation episode during game play.
 - Learning kicks in once stable "enough"

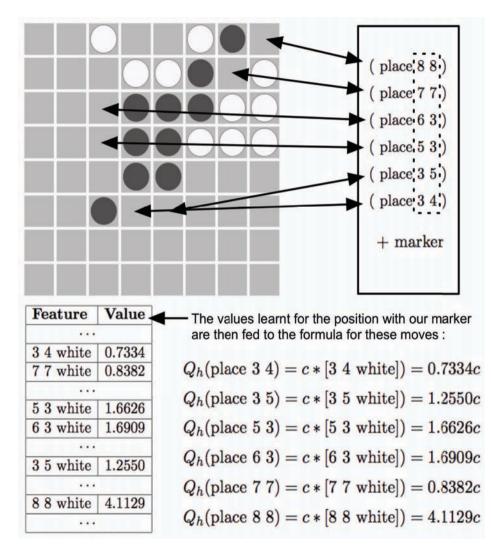


Maastricht, May 2011

24

www.hr.is

FAST



EMPIRICAL EVALUATION

- Hardware
 - Linux based 8-processor Intel® Xeon® 2.66 GHz CPU
 - 4GB of RAM
 - Each program uses single thread
- Both *start* and *play* clocks are 10 seconds
- Four different games used as a test-bed
 - All turn-taking 2-player zero-sum games
- Each data-point based on
 - 300 games (except last table, is 200 games)

INDIVIDUAL SCHEMES

Table: Tournament against the MCTS agent.

Game	MAST win %	TO-MAST win %	PAST win %
Breakth.	90.00 (± 3.40)	85.33 (± 4.01)	85.00 (± 4.05)
Checkers	56.00 (± 5.37)	82.17 (± 4.15)	57.50 (± 5.36)
Othello	60.83 (± 5.46)	50.17 (± 5.56)	67.50 (± 5.24)
Skirmish	41.33 (± 5.18)	48.00 (± 5.29)	42.33 (± 5.16)

Game	RAVE win %	FAST win %
Breakthr.	63.33 (± 5.46)	81.67 (± 4.39)
Checkers	82.00 (± 4.08)	50.33 (± 5.36)
Othello	70.17 (± 5.11)	70.83 (± 5.10)
Skirmish	46.33 (± 5.30)	96.33 (± 1.86)

All schemes offer genuine improvements.

INDIVIDUAL SCHEMES

• MAST used in the 2008 winning agent. Baseline for the later improvements:

Game	TO-MAST win %	PAST win %	RAVE win %	FAST win %
Breakthr.	52.33 (± 5.66)	45.67 (± 5.65)	20.33 (± 4.56)	39.67 (± 5.55)
Checkers	82.00 (± 4.18)	55.83 (± 5.35)	78.17 (± 4.36)	46.17 (± 5.33)
Othello	40.67 (± 5.47)	49.17 (± 5.60)	58.17 (± 5.49)	56.83 (± 5.55)
Skirmish	56.00 (± 5.31)	43.33 (± 5.26)	59.83 (± 5.15)	97.00 (± 1.70)

• Notes:

- PAST not very effective (fewer number of simulations)
- TO-MAST particularly effective in Checkers (harmful for Othello)
- RAVE effective in many games, but harmful in others.

- FAST particularly effective for Skirmish (chess-like game)

COMBINED SCHEMES

- RAVE used in the selection phase, whereas MAST/ FAST used in the playout phase.
- Table: Tournament with MAST against RAVE/MAST and RAVE/FAST.

Game	RM win %	RF win %
Breakthrough	50.50 (± 6.95)	38.50 (± 6.76)
Checkers	83.50 (± 4.87)	74.00 (± 5.81)
Othello	73.75 (± 6.01)	66.00 (± 6.43)
Skirmish	53.00 (± 6.47)	97.00 (± 2.04)

- RAVE/MAST does significantly better in both Checkers and Othello.
- RAVE/FAST does significantly better in Othello.

GAME PROPERTIES AND MCTS PERFORMANCE

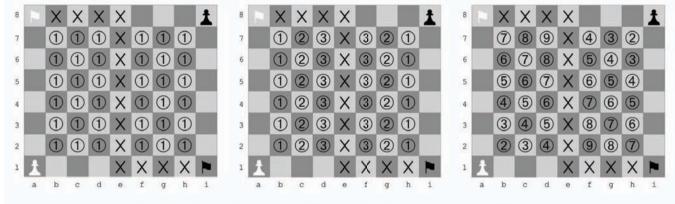


Figure 1: (a)Penalties Game (b)Shock Step Game (c)Punishment Game

- Tree Depth vs. Width
 - Difficult to generalize
- Progression
 - Surprisingly low ratio of "good simulations" required
 - Difficulty in games where had to "commit to a strategy"
- Optimistic Moves
 - Big problem

SUMMARY AND FUTURE WORK

- Summary
 - Learning of search-control in the playout phase is very important for MCTS based GGP agents
 - Because no a priori knowledge can be incorporated.
 - Difficult to come up with schemes that are robust across a wide range of games
 - Combining schemes is helpful
- Future work
 - Online detection of scheme's applicability as well as of more gamespecific properties
 - Understanding better how different game properties affect MCTS
 - Combined MCTS / alphabeta approaches are needed in GGP

