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CIG’18 Preface

Preface

These Proceedings contain the papers presented at the 2018 IEEE Conference on Computational
Intelligence and Games (CIG’18) held in Maastricht, the Netherlands, over 14–17 August 2018.

The annual Computational Intelligence and Games (CIG) conference series brings together
leading researchers and practitioners from academia and industry, to discuss recent advances
in the field and explore future research directions, and is one of the premier international con-
ferences in this exciting and expanding field. Earlier CIG conferences took place in Colchester
(UK), Reno (USA), Honolulu (Hawaii), Perth (Australia), Milan (Italy), Copenhagen (Den-
mark), Seoul (South Korea), Granada (Spain), Niagara Falls (Canada), Dortmund (Germany),
Tainan (Taiwan), Santorini (Greece) and New York (USA).

For this 14th edition of the conference, we received a total of 110 papers from 36 countries.
All papers were peer reviewed by at least three domain experts, and 51/110 were accepted for
oral presentation (acceptance rate 46.3̇6̇%). A further 18 papers were accepted as posters. The
program includes five vision papers, seven competition papers and one demo paper.

These proceedings would not have been possible without the help of many individuals. In
particular, we would like to thank the authors and the Programme Committee members for
their help. Finally, the editors recognise the generous sponsors for this event: MaTHiSiS, NWO,
SWOL and the city of Maastricht.

1 July 2018
Maastricht,
The Netherlands

Cameron Browne
Mark Winands

Jialin Liu
Mike Preuss
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Jacek Mańdziuk Warsaw University of Technology
Wookhee Min North Carolina State University
Antonio Mora University of Granada
Bradford Mott North Carolina State University
Hector Munoz-Avila Lehigh University
Phivos Mylonas National Technical University of Athens
Andy Nealen New York University
Mark Nelson Falmouth University
James Niehaus Charles River Analytics
Benjamin Nye University of Southern California
Santiago Ontanon Drexel University
Diego Perez Liebana Queen Mary University of London
Ana Maria Pinuela Marcos Independent
Andrew Pomazanskyi Nurogames GmbH
Mike Preuss WWU Muenster
William Raffe University of Technology, Sydney
Robert Reynolds Wayne State University
Sebastian Risi IT University of Copenhagen
Ma Mercedes Rodrigo Ateneo de Manila University
Elizabeth Rowe TERC
Jonathan Rowe North Carolina State University
Guenter Rudolph TU Dortmund University
Thomas Runarsson University of Iceland
Owen Sacco Institute of Digital Games, University of Malta
Yago Saez University Carlos III of Madrid
Christoph Salge University of Hertfordshire
Spyridon Samothrakis University of Essex
Björn Schuller University of Augsburg / Imperial College London
Moshe Sipper Ben-Gurion University of the Negev
Chiara F. Sironi Maastricht University
Adam M. Smith University of California Santa Cruz
Sam Snodgrass Northeastern University
Gerasimos Spanakis Maastricht University
Pieter Spronck Tilburg University
Anastasios Tefas Aristotle University of Thessaloniki
Fabien Teytaud Laboratoire LISIC, Université du Littoral Cote d’Opale
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Abstract—The General Video Game AI competitions have been
the testing ground for several techniques for game-playing, such
as evolutionary computation techniques, tree search algorithms,
hyper-heuristic-based or knowledge-based algorithms. So far the
metrics used to evaluate the performance of agents have been win
ratio, game score and length of games. In this paper we provide a
wider set of metrics and a comparison method for evaluating and
comparing agents. The metrics and the comparison method give
shallow introspection into the agent’s decision-making process
and they can be applied to any agent regardless of its algorithmic
nature. In this work, the metrics and the comparison method
are used to measure the impact of the terms that compose a
tree policy of an MCTS-based agent, comparing with several
baseline agents. The results clearly show how promising such
general approach is and how it can be useful to understand the
behaviour of an AI agent, in particular, how the comparison
with baseline agents can help understanding the shape of the
agent decision landscape. The presented metrics and comparison
method represent a step toward to more descriptive ways of
logging and analysing agent’s behaviours.

Index Terms—artificial general intelligence, general video game
play, game-playing agent analysis, game metrics

I. INTRODUCTION

General video game playing (GVGP) and General game
playing (GGP) aim at designing AI agents that are able to play
more than one (video) game successfully alone without human
intervention. One of the early stage challenges is to define
a common framework that allows the implementation and
testing of such agents on multiples games. For this purpose,
the General Video Game AI (GVGAI) framework [1] and
General Game Playing framework [2], [3] have been devel-
oped. Competitions using the GVGAI and GGP frameworks
have significantly promoted the development of a variety of
AI methods for game-playing. Examples include tree search
algorithms, evolutionary computation, hyper-heuristic, hybrid
algorithms, and combinations of them. GVGP is more chal-
lenging due to the possibly stochastic nature of the games
to be played and the short decision time. Five competition
tracks have been designed based on the GVGAI framework for
specific research purposes. The planning and learning tracks
focus on designing an agent that is capable of playing several
unknown games respectively with or without the forward
model to simulate future game states. The level and rule
generation tracks have the objective of designing AI programs
that are capable of creating levels or rules based on a game

specification. Despite the fact that the initial purpose of
developing GVGAI framework was to facilitate the research on
GVGP, GVGAI and its game-playing agents have also been
used in other application rather than just competitive GGP.
For instance, the GVGAI level generation track has used the
GVGAI game playing agents to evaluated the automatically
generated game levels. Relative algorithm performance [4]
has been used to understand how several agents perform in
the same level. Although, no introspection into the agent
behaviour or decision-making process was used so far.

The main purpose of this paper is to give a general set of
metrics that can be gathered and logged during the agent’s
decision-making process to understand its in-game behaviour.
These are meant to be generic, shallow and flexible enough to
be applied to any kind of agent regardless of its algorithmic
nature. Moreover we are also providing a generic methodology
to analyse and compare game-playing agents in order to get
an insight on how the decision-making process is carried out.
This method will be later addressed as comparison method.

Both the metrics and the comparison method will be useful
in several applications. It can be used for level generation:
knowing the behaviour of an agent and what attracts it in
the game-states space means that it can be used to measure
how a specific level design suits a certain play-style there-
fore pushing the design to suit the agent in a recommender
system fashion [5]. From a long term perspective, this can
be helpful to understand a human player’s behaviour and
then personalise a level or a game to meet this player’s
taste or playing style. Solving the dual problem is useful as
well, in the process of looking for an agent that can play
well a certain level design, disposing of reliable metrics to
analyse the agent behaviour could significantly speed up the
search. Additionally, by analysing the collected metrics, it’s
possible to find out if a rule or an area of the game world is
obsolete. This can be also applied generally to the purpose
of understanding game-playing algorithms, it’s well known
that there are black-box machine learning techniques that
offer no introspection in their reasoning process, thus being
able of comparing in a shallow manner, the decision-making
process of different agents can help shed some light into their
nature. A typical example is a neural network that given some
input features outputs the action probability vector. With the
proposed metrics and methodology it would be possible to
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make estimate its behaviour without actually looking at the
agent playing the game and extracting behavioural information
by hand.

The rest of this paper is structured as follows. In Section II,
we provide a background on the GVGAI framework focusing
in particular on the game-playing agents, three examples of
how agent performance metrics have been used so far in
scenarios other than pure game-play and an overview of
MCTS-based agents. Then, we propose a comparison method,
a set of metrics and an analysis procedure in Section III.
Experiments using these metrics are described in Section IV
and the results are discussed in Section V to demonstrate how
they provide a deeper understanding on the agent’s behaviour
and decision-making. Last, we draw final considerations and
list possible future work in Section VI.

II. BACKGROUND

A. General Video Game AI framework

The General Video Game AI (GVGAI) framework [1] has
been used for organising GVGP competitions at several inter-
national conferences on games or evolutionary computation,
for research and education in worldwide institutions. The main
GVGAI framework is implemented using Java and Python. A
Python-style Video Game Description Language (VGDL) [6],
[7] is developed to make it possible to create and add new
games to the framework easily. The framework enables several
tracks with different research purposes. The objective of the
single-player [8] and two-player planning [9] tracks is to
design an AI agent that is able to play several different video
games respectively alone or with another agent. With access
to the current game state and the forward model of the game,
a planning agent is required to return a legal action in a
limited time. Thus, it can simulate games to evaluate an action
or a sequence of actions and get the possible future game
state(s). However, in the learning track, no forward model is
given, a learning agent needs to learn in an trial-and-error way.
There are two other tracks based on the GVGAI framework
which focus more on game design: the rule generation [10]
and the level generation [11]. In the rule generation track,
a competition entry (generator) is required to generate game
rules (interactions and game termination conditions) given a
game level as input, while in the level generation track, an
entry is asked to generate a level for a certain game. The rule
generator or level generator should be able to generate rules
or levels for any game given a specified search space.

B. Monte Carlo Tree Search-based agents

Monte-Carlo Tree Search (MCTS) has been the state-of-
the-algorithm in game playing [12]. The goal of MCTS is
to approximate the value of the actions/moves that may be
taken from the current game state. MCTS builds iteratively
a search tree using Monte Carlo sampling in the decision
space and the selection of the node (action) to expand is
based on the outcome of previous samplings and on a Tree
Policy. A classic Tree Policy is the Upper Confidence Bound
(UCB) [13]. The UCB is one of the classic multi-armed bandit

algorithms which aims at balancing between exploiting the
best-so-far arm and exploring more the least pulled arms. Each
arm has an unknown reward distribution. In the game-playing
case, each arm models a legal action from the game state
(thus a node in the tree), a reward can be the game score, a
win or lose of a game, or a designed heuristic. The UCB
Tree Policy selects to play the action (node) a∗ such that
a∗ = arg maxa∈A x̄a +

√
α lnn
na

, where A denotes the set
of legal actions at the game state, n and na refers to the total
number of plays and the number of times that the action a has
been played (visited), α is called exploration factor.

The GVGAI framework provides several sample controllers
for each of the tracks. For instance, the sampleMCTS is a
vanilla implementation of MCTS for single-player games, but
performs finely on most of the games. M. Nelson [14] tests
the sampleMCTS on more than sixty GVGAI games, using
different amounts of time budget for planning at every game
tick, and observes that this implementation of MCTS is able to
reduce the loss rate given longer planning time. More advanced
variants of MCTS have been designed for playing a particular
game (e.g., the game of Go [15], [16]), for general video
game playing (e.g., [8], [17]) or general game playing (e.g.,
[18]). Recently, Bravi et al. [19] custom various heuristics
particularly for some GVGAI games, and Sironi et al. [20]
design several Self-Adaptive MCTS variants which use hyper-
parameter optimisation methods to tune on-line the exploration
factor and maximal roll-out depth during the game playing.

C. Agent performance evaluation

Evaluating the performance of an agent is sometimes a very
complex task depending on how the concept of performance
is defined. In the GVGAI planning and learning competitions,
an agent is evaluated based on the the amount of games it
wins over a fixed number of trials, the average score that it
gets and the average duration of the games. Sironi et al. [20]
evaluate the quality of their designed agents using a heuristic
which combines the score obtained eventually giving an extra
bonus or penalty depending on whether the agent could reach
a winning state or a losing state, respectively. The GVGAI
framework has also been used for purposes other than the ones
laid out by the competition tracks. Bontrager et al. [21] cluster
some GVGAI single-player and two-player games using game
features and agent performance extracted using the playing
data by the single-player and two-player planning competition
entries, respectively. In particular, the performance of an agent,
represented by win ratio in [21], is used to cluster the games
in four groups: games easy to win, hard games, games that
MCTS agent can play well and games that can be won by a
specific set of agents. The idea behind that work is interesting
although the clustering results in three small sized groups and
a very large one. This suggests that using more introspective
metrics could help clustering the games more finely.

GVGAI has also been used as test bed for evolving MCTS
tree policies (in the form of a mathematical formula for
decision making) for specific games [19]. [19] consists in
evolving Tree Policies (formulae) using Genetic Programming,
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the fitness evaluation is based on the performance of an MCTS
agent which uses the specific tree policy. Once again, the infor-
mations logged and used from the playthrough by the fitness
function were a combination of win ratio, average score and
average game-play time, in terms of the number of game ticks.
Unfortunately no measurement was made about the robustness
of the agent’s decision-making process of which could have
been embedded in the fitness function to possibly enhance
the evolutionary process. In the recent Dagstuhl seminar on
AI-Driven Game Design, game researchers have envisioned a
set of features to be logged during game-play, divided into
four main groups: direct logging features, general indirect
features, agent-based features and interpreted features [22]. A
preliminary example of how such features can be extracted and
logged in the GVGAI framework has also been provided [22].
Among the direct logging features, we can find some kind of
game information that don’t need any sort of interpretation,
few examples are: game duration, actions log, game outcome
and score. Instead, these features are listed in the general
indirect features which require some degree of interpretation
or analysis of the game state such as the entropy of the
actions, the game world and the game state space. The agent-
based features gather information about the agent(s) taking
part to the game, for example about the agent surroundings, the
exploration of the game-state space or the convention between
different agents. Finally, the interpreted features are based on
metrics already defined in previous works such as drama and
outcome uncertainty [23] or skill depth [24].

III. METHODS

This section first introduces a set of metrics that can
potentially be extracted from any kind of agent regardless of
its algorithmic nature, aiming at giving an introspection of the
decision-making process of a game-playing agent in a shallow
and general manner (Section III-A). Then we present a method
to compare the decisions of two distinct game-playing agents
under identical conditions using the metrics introduced previ-
ously. As described in [25] the decision-making comparison
can be done at growing levels of abstraction: action, tactic or
strategic level. Our proposed method compares the decision-
making at the action level. Later, we design a scenario in
which the metrics and the comparison method are used to
analyse the behaviour of instances of an MCTS-agent using
different tree policies comparing them to agents with other
algorithmic natures. Finally we describe the agents used in
the experiments.

In this paper, the following notations are used. A
playthrough refers to a complete play of a game from be-
ginning to end. The set of available actions is denoted as A
being N = |A|, ai refers to the ith action in A. A budget
or simulation budget is either the amount of forward-model
calls the agent can make at every game tick to decide the next
action to play or the CPU-time that the agent can take. The
fixed budget is later addressed as B.

A. Metrics

The metrics presented in this paper are based on two simple
and fairly generic assumptions: (1) for each game tick the
agent considers each available action ai for ni times; (2)
for each game tick the agent assigns a value v(ai) to each
available action. In this scenario the agents are designed to
operate on a fixed budget B in terms of real time or number
of forward model calls, which allows for a fair comparison
making the measurements comparable between each other.

Due to the stochastic nature of an agent or a game, it is
sometimes necessary to make multiple playthroughs for eval-
uation. The game id, level id, outcome (specifically, win/loss,
score, total game ticks) and available actions at every game
tick are logged for each playthrough. Additionally, for each
game tick in the playthrough, the agent is going to provide
the following set of metrics:
• a∗: the recommended action to be played next;
• p: probability vector where pi represents the probability

of considering ai during the decision-making process;
• v: vector of values vi ∈ R where vi is the value of playing
ai from the current game state, v∗ is the highest value
which implies it being associated with a∗. Whenever the
agent doesn’t actually have such information about the
quality of ai then vi should be NaN;

• b: represents the ratio of the budget consumed over the
fixed available budget B, b ∈ [0, 1] where 0 and 1
respectively mean that either no budget or the whole
B was used by the agent;

• conv: convergence, as the budget is being used is likely
for the current a∗ to fluctuate, conv is the ratio of budget
used over B when a∗ is stable. It means that any budget
used after conv hasn’t changed the recommended action.
conv ∈ [0, b].

It is notable that most of the agents developed for the
GVGAI try to consume as much budget as possible, however
this is not necessarily a good trait of the agent, being able
to log the amount of budget used and distinguish between
a budget-saver and a budget-waster can give an interesting
insight on the decision-making process especially on the
confidence of the agent. Since this set of metrics tries to be as
generic as possible, we shouldn’t limit the metrics because of
the current agent implementations. The vectors p and v can be
inspected to portray the agent preference over A. The vector
p can also be used during the debug phase of designing an
agent to see whether it actually ever considers all the available
action.

Generally different agents reward actions differently, there-
fore it is not possible to make a priori assumptions on the
range or the distribution over values. Although the values in v
allow at the very least to rank the actions and moreover to get
informations about their boundaries and distributions (guaran-
teed a reasonable amount of data) a posteriori. Furthermore, it
is possible to follow the oscillation of such values through the
game-play highlighting critical portions of it. For example,
when the vi are similar (not very far apart from each other

3



considering the value bounds logged) and generally high then
we can argue that the agent evaluates all actions as good ones.
On the contrary if the values are generally low, the agent is
probably struggling in a bad game scenario.

B. Comparison method

Comparing the decisions made by different agents is not
a trivial matter especially when their algorithmic nature can
be very different. The optimal set-up under which we can
compare their behaviour is when they are provided the same
problem or scenario under exactly same conditions. This
is sometimes called pairing. We propose the following ex-
perimental set-up: a meta-agent, called Shadowing Agent,
instantiates two agents: the main agent, and the shadow agent.
For each game tick the Shadowing Agent behaves as a proxy
and feeds the current game state to each of the agents which
will provide the next action to perform as if it was a normal
GVGAI game-play execution. Both these agents have a limited
budget. Once both main and shadow agent behaviours are
simulated, the Shadowing Agent takes care of logging the
metrics described previously from both agents and then returns
to the framework the action chosen by the main agent. In
this way the actual avatar behaviour in the game simulated is
consistent with the main agent and the final outcome represents
its performance. In the next sections we are going to use the
superscripts m and s for a metric respectively relative to the
main agent or the shadow agent. A typical scenario would
be comparing how very radically different agents such as:
a Random agent, a Monte-Carlo Search agent, a One-Step
Look Ahead agent and an MCTS-based agent. Under this
scenario, comparing each single coupling of agents will result
in producing a matrix of comparisons. All the informations
on how the agents extract the metrics described previously
are detailed in Section IV-B.

C. Analysis Method

We are going to analyse these agents’ behaviours in few
games, for each game we are going to run all the possible
couplings of main agent and shadow agent, for each couple
we are going to run Np playthroughs and, finally, for each
playthrough we are going to save the current metrics for both
main and shadow agents. It’s worth remembering that each
playthrough has its own length, thus playthrough i will have
length li. This means that in order to analyse and compare be-
haviours we need a well structured methodology to slice data
appropriately. Our proposed method is represented in Figure 1.
The first level of comparison is done at the action level, we can
measure two things: Agreement Percentage AP , percentage of
times the agents agreed on the best action averaged across the
several playthroughs; and Decision Similarity DS, the average
symmetric Kullback-Leibler divergence of the two probability
vectors pm and ps. When AP is close to 100% or DS ∼ 0 we
have two agents with similar behaviours, at this point we can
step to the next level of comparison: Convergence, we compare
convm and convs to see if there is a faster converging agent;
and Value Estimation, this level of comparison is thorny, in

fact each agent has its own function for evaluating a possible
action, for this step we recommend using these values to rank
the actions using them as preference evaluation. Convergence
can highlight both the ambiguity of the surrounding game
states or the inability of the agent to recognise important
features. If the agents have a similar conv values we can then
take a look at the Efficiency. This value represents the average
amount of budget used by the agent.

To summarise, once two agents with similar AP or DS are
found, the next comparison levels highlight the potential
preference toward the fastest converging and most budget-
saver one.

Pure
Agreement

Decision
Similarity

Value
Estimation Convergence

E�ciency

a1* = a2*

a1* ? a2*

conv1 ~ conv2

b1 ? b2

conv1 ? conv2

KL(p1 , p2)~0

v1 ? v2

KL(p1 , p2) ? 0

Fig. 1: The decision graph to compare agents’ behaviours.

IV. EXPERIMENTAL SET-UP

In this section, we show how a typical experiment could
be run using the metrics and methods introduced previously.
Each experiment is run over the following games in order to
have diverse scenarios that can highlight different behaviours:
• Aliens: a game loosely modelled on the Atari 2600’s

Space Invaders, the agent on the bottom of the screen
has to shoot the incoming alien spaceships from above
avoiding their blasts;

• Brainman: the objective of the game is for the player
to reach the exit, the player can collect diamonds to get
points and push keys into doors to open them;

• Camel Race: the player, controlling a camel, has to reach
the finish line before the other camels whose behaviour
is part of the design of the game;

• Racebet: in the game there are few camels racing toward
the finish line, each has a unique colour, in order to win
the game the agent has to position the avatar on the camel
with a specific colour;
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• Zenpuzzle: the level has two different types of floor tiles,
one that can be always stepped on and a special type that
can be stepped on no more than once. The agent has to
step on all the special tiles in order to win the game.

Further details on the games and the framework can be found
at www.gvgai.net . The budget given to the agents is a certain
number of forward-model calls which is different than the real
time constraints used in the GVGAI competitions. We made
this decision in order to get more robust data across different
games, in fact the number of forward model calls that can be
executed in the 40 ms can drastically vary changing the game,
sometimes from hundreds to thousands.

This experiment consists in running the comparisons be-
tween the MCTS-based agents that use all possible prunings
h′ ∈ H as tree policy generated from h (cf. (1), variables
summarised in Table I), and the following agents: Random,
One-Step Look Ahead, and Monte-Carlo Search.

h = min(DMOV ) ·min(DNPC) +
|max(R)|∑
DNPC

(1)

In this work, each pair of agents is tested over 20 playthroughs

TABLE I: Variables used in the heuristic (cf. (1)).

Notation Description
max(R) Highest reward among the simulations that visit current node

min(DMOV ) Minimum distance from a movable sprite

min(DNPC) Minimum distance from an NPC

sum(DNPC) Sum of all the distances from NPCs

of the first level of each game, all the agents were given a
budget of 700 forward-model calls. The budget was decided
looking at the average number of forward-model calls done
in all the GVGAI games by the Genetic Programming MCTS
(GPMCTS) agent with a time budget of 40 ms, same as in the
competitions. The GPMCTS agent is an MCTS agent with
customisable Tree Policy as described in [19].

A. Comparison method for MCTS-based agents

MCTS-based agents can be tuned and enhanced in many
different ways, a wide set of hyper-parameters can be con-
figured differently, one of the most crucial components is the
tree policy. The method we propose gradually prunes the tree
policy heuristic in order to isolate bits of (1). Evaluating the
similarity of two tree policies is a rather complex task, it can
be roughly done by analysing the difference between their
values given a point in their search domain. This approach is
not optimal, supposing we want to analyse two functions f
and g where g = f + 10, their values will never be the same
but when applied to the MCTS scenario they would perform
exactly the same. Actually, what matters is not the exact value
of the function but the way that two points in the domain
are ordered according to their evaluations. In short, being D
the domain of the functions f and g and p1, p2 ∈ D what
matters is that both the following conditions f(p1) ≥ f(p2)
and g(p1) ≥ g(p2) hold true. The objective is to understand

how each term in (1) used in the tree policy of an MCTS
agent impacts the behaviour of the whole agent. Given h,
thus (1) used as tree policy, let H be the set of all possible
prunings (therefore functions) of the expression tree associated
to h. This method applies the metrics and the comparison
method introduced previously and it consists in running all
possible couples (Am, As) ∈ AG × AG where the agent Am
is the main agent and As is the shadow agent, the set AG
contains one instance of MCTS-based agent for each tree
policy in H and the following agents: Random, One-Step
Look Ahead, Monte-Carlo Search. In this way it is possible to
get a meaningful evaluation of how different equations might
result in suggesting the same action, or not, for all the possible
comparisons of the equations in H but also how they compare
to the other reference agents.

B. Agents

In this section, we give the specifications of the agents
used and the way they link each metric to their algorith-
mic implementation. These agents are going to be used in
the experiments and they can be used as examples of how
algorithmic informations can be interpreted and manipulated
to get the metrics described previously. Most agents use
SimpleStateHeuristic which evaluates a game state according
to the win/lose state, the distance from portals and the number
of NPCs. It rewards best winning states with no NPCs and
where the position of the player is closest to a portal. None
of the agents was chosen for its performance, the point of
using these agents is that theoretically they can represent very
different play styles: completely stochastic, very short-sighted,
randomly long-sighted, generally short-sighted.

1) Random: The random agent has a very straightforward
implementation: given the set of available actions, it picks an
action uniformly at random.
• p: since the action is picked uniformly pi = 1/|A|;
• v: each vi is set to NaN;
• b = 0, since no budget is consumed to return a random

action;
• conv is always 0 for the same reason of b.
2) One-Step Look Ahead: The agent makes a simulation for

each of the possible actions, and evaluates the resulted game
state using the SimpleStateHeuristic defined by the GVGAI
framework. The action with the highest values is going to be
picked as a∗.
• p: pi = 1/|A| since each action is picked once;
• v: each vi corresponds to the evaluation given by the

SimpleStateHeuristic initialized with current game state
and compared to the game state reached via action ai;

• b is always |A|sb ;
• conv varies and corresponds to the budget ratio when the

best action is simulated.
3) Monte-Carlo Search: The Monte-Carlo Search agent

performs a Monte-Carlo sampling of the action-sequence
space following 2 constraints: the sequence is not longer than
10 and only the last action can bring to a termination state.
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• p: considering ni as the number of times action ai was
picked as first action and N =

∑|A|
i=0 ni then pi = ni

N ;
• v: each vi is the average evaluation by the

SimpleStateHeuristic initialized with the current game
state compared to each last game state reached by every
action sequence started from ai;

• b is always 1, since the agent keeps simulating until the
end of the budget;

• conv corresponds to the ratio of budget used at the
moment the action with the highest vi last changed.

4) MCTS-based: The MCTS-based is an implementation
of MCTS with uniformly random roll-outs to a maximum
depth of 10. The tree policy used can be specified when the
agent is initialised, therefore the reader should not suppose
UCB1 as the tree policy, whereas the heuristic used to evaluate
game states is a combination of the score plus an eventual
bonus/penalty for a win/lose state.
• p: considering ni as the number of visits for ai at the root

node of the search tree and N as the number of visits at
the root node then pi = ni

N ;
• v: each vi is the heuristic value associated to ai at the

root node;
• b = 1, since the agent keeps simulating until the budget

is used up;
• conv corresponds to the ratio of budget used when the

action with the highest vi last changed in the root node.

V. EXPERIMENTS

TABLE II: Agents used in experiments and their ids.

Id Agent

0 MCTS + 1∑
DNPC

1 MCTS + |max(R)|
2 MCTS + |max(R)|∑

DNPC

3 MCTS + min(DNPC)

4 MCTS + min(DNPC) + 1∑
DNPC

5 MCTS + min(DNPC) + |max(R)|
6 MCTS + min(DNPC) +

|max(R)|∑
DNPC

7 MCTS + min(DMOV )

8 MCTS + min(DMOV ) + 1∑
DNPC

9 MCTS + min(DMOV ) + |max(R)|
10 MCTS + min(DMOV ) +

|max(R)|∑
DNPC

11 MCTS + min(DMOV ) ·min(DNPC)

12 MCTS + min(DMOV ) ·min(DNPC) + 1∑
DNPC

13 MCTS + min(DMOV ) ·min(DNPC) + |max(R)|
14 MCTS + min(DMOV ) ·min(DNPC) +

|max(R)|∑
DNPC

15 One-Step Look Ahead

16 Random

17 Monte-Carlo Search

Table II summarises the agents used in the experiments
and the ids assigned to them. Multiples MCTS agents using
different tree policies have been tested. Figure 2 illustrates an
example of agreement percentage AP and another of decision
similarity DS between the main agent and the shadow agent
on two tested games. An important fact to remember when

looking at Figure 2a is that the probability of two random
agents agreeing on the same action is 1

|A| . Therefore, when
looking at the AP we should take into account and analyse
what deviates from 1

|A| . The game Aliens is the only game
where the agent has three available actions, the rest of the
game is played with four available actions. The bottom-right
to top-left diagonal in the matrix represents the AP that
the agent has with itself, this particular comparison has a
intrinsic meaning: it shows the coherence of the decision-
making process, the higher the agreement the more consistent
is the agent. This feature can be highlighted even more clearly
looking at the DS where the complete action probability
vectors are compared.

This isn’t necessarily always good feature especially in
competitive scenarios where a mixed strategy could be ad-
vantageous, but it’s a measure of how the search process is
consistent with its final decision. Picturing the action-sequence
fitness landscape, a high AP implies that the agent shapes it
in a very precise and sharp definition being able to identify
consistently a path through it. In the scenarios where a lot
of navigation of the level is necessary, there might be several
way to reach the same end goal, this will result in the agent
having a lower self-agreement.

The KL-Divergence measure adopted for DS hilights how
distinct are the decision making processes of each agent. Using
this approach we would then expect much stronger agreement
along the leading diagonals of all the comparison matrices as
Figure 2b. Conversely, we would also expect a much clearer
distinction between agents with genuinely distinct policies.

Aliens. The game Aliens is generally easy to play, the
Random agent can achieve a win rate of 27%, and the MCTS
alternatives achieve win rates varied from 44% to 100%. So
there are clearly some terms of the equation used in tree policy
which matter more than others. The best performing agent is
the agent 0 with a perfect win rate, which uses a very basic
policy and chooses the action that maximises the highest value
found, it’s a greedy agent. An interesting pattern is observed
in Figure 2a: the agents 0, 8 and 12 all share the same term

1∑
DNPC

alone or together with min(DMOV ) it gives stability
to the decisions taken. This is even clearer looking at the
DS value which are respectively 0, 0.067 and 0.07 . Agent
12, the one with the best combination of AP and win rate, is
driven by a rather peculiar policy: the first term maximises the
combined minimal distance from NPCs (aliens) and movable
objects (bullets), the second term minimises the sum of the
distances from NPCs. This translates into a very clear and
neat game-playing strategy: stay away from bullets and kill the
aliens (being the fastest way to reduce

∑
DNPC). This agent

is not only very strong with a 93% win rate, but also extremely
fast in finding its preferred action with an average conv= 0.26.
Even the win rate of agent 15 is not one of the best ones, the
b metric highlights how an agent as 11 is intrinsically flawed.
In fact, even if agent 11 constantly consumes all the budget at
its disposal (b = 1) it gets a win rate of just 44% whilst agent
15 with a b < 0.006 is able to get a 69% win rate.

Brainman. This game is usually very hard for the AIs, the
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Fig. 2: Results of two comparison scenarios between all the agents in Table II. In Figure 2a we have the comparison using the
Pure Agreement method, the values from dark blue to light blue represent the agreement percentage (the lighter the higher).
Instead in Figure 2b light blue represents very diverging action probability vectors while the darkest blue is for the case those
are identical. The vertical and the horizontal dimensions of the matrix represent the main and shadow agent, respectively, in
the comparison process. The main agent’s win percentage is specified between square brackets in its label on the vertical axis.

best one from the batch has a win rate of 31%. Looking at
the data we have noticed a high concentration of AP around
50% for all combination of agents from 7 to 10, this is even
clearer looking at the DS data which is consistently below
0.2. When the policy contains the term min(DMOV ) alone,
the agent is more consistent in moving far away from moving
objects. Unfortunately that is exactly a behaviour that will
never allow the agent to win, in fact, the key to open the door
with the goal is the only movable object in the game.

Camelrace. The best way to play Camelrace is easy to
understand: keep moving right until reaching the finish line.
Looking into the comparison matrix AP for this game, we’ve
noticed how there’s a big portion of it (agents from 3 to 14)
where the agents consistently agree most of the time (most
values over 80%). What is interesting to highlight is how only
that clustering with an AP= 100 (agents 8 and 7) can hit a
win rate of 100% which is further highlighted by DS that is
0. This is due to the fact that even just few wrong actions
can backfire dramatically. In fact in the game there’s an NPC
going straight right thus wasting few actions means risking to
be overcome by it and lose the race, therefore coherence is
extremely important.

Racebet2. The AP values for this game are harder to read,
the avatar can move only in a very restricted cross-shaped
area and its interaction with the game elements is completely
useless until the end of the playthrough when the result of
the race is obvious to the agent. This is clearly expressed
by the average convergence value during the play for agent
10 shown in Figure 3. Agent 10 can not make up his mind
consuming all the budget before settling for a∗ (conv = 1), it
keeps happening until the very end of the game when it has

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

time

co
nv

Agent 10

Fig. 3: The average conv in the game Racebet2 for the agent
10 throughout the plays. It shows how the agent doesn’t clearly
have a preference over the actions until the end of the game
when the value drastically drops.

a drastic drop of conv meaning that the agent is now able to
swiftly decide the preferred action. Potentially, an agent could
stand still for most of the game and move just on the last few
frames of the game. This overall irrelevance of most actions
during the game is exemplified by an almost completely flat
value of AP for most agent couples around 25%.

Zenpuzzle. This is a pure puzzle game where to win the
game is not sufficient following the rewards. The AP values
are completely flat, in this case the pure agreement doesn’t
provide any valuable information. However, as we can see
in Figure 2b, the KL-divergence is more expressive to catch
decision making differences and we can notice that generally
being less consistent with itself can eventually take to perform
the crucial right action to fill the whole puzzle. This is a perfect
scenario to show a limit of AP , there are several agents to
win a game every four but without comparing the full action
probability vector we couldn’t have shown this crucial detail.
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VI. CONCLUSION AND FUTURE WORK

We have presented a set of metrics that can be used to
log the decision-making process of a game-playing agent
using the General Video Game AI framework. Together with
these metrics, we also introduced a methodology to compare
agents under the same exact conditions, both are applicable
to any agent regardless of their actual implementation and the
game they are meant to play. The experimental results have
demonstrated how combining such methods and metrics make
it possible to have a better understanding on the decision-
making process of the agents. In several occasions we have
seen how the measuring the agreement between a simple and
not necessarily well-performing agent and the target agent, can
shed some light on the implicit intentions of the latter. Such
approach holds the potential for developing a set of agents with
a specific well-known behaviour that can be used to analyse,
using the comparison method introduced, another agent’s
playthrough. They could be used as an array of shadow agents,
instead of a single one, and measure during the same play if
and how much the behaviour of the main agent resembles that
of the shadow agents. Progressively pruning the original Tree
Policy we have seen how it was possible to decompose it
in simple characteristic behaviours with extremely compact
formulae: fleeing a type of objects, maximising the score,
killing NPCs. Recognising them has been proven helpful to
then understand the behaviour of more complex formulae
whose behaviour is not possible to be expected a-priori.

Measuring the conv has shown how it is possible to go
beyond the sometimes-too-sterile win rate and to use both
metrics to distinguish between more and less efficient agents.
The game Zenpuzzle has clearly shown that the current
set of metrics is not sufficient. The implementation of the
Shadowing Agent and the single agents compatible with it
will be released as open source code after the publication of
this paper, together with the full set of comparison matrices,
at www.github.com/ivanbravi/ShadowingAgentForGVGAI . In
future work the metrics can be extended to represent additional
information about the game states explored by the agent, such
as the average events triggered, average counter for each game
element just to name few as examples, but also more features
from the sets envisioned in [22].
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Video Game Rule Generation,” in 2017 IEEE Conference on Computa-
tional Intelligence and Games (CIG). IEEE, 2017.

[12] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
survey of Monte Carlo tree search methods,” Computational Intelligence
and AI in Games, IEEE Transactions on, vol. 4, no. 1, pp. 1–43, 2012.

[13] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[14] M. J. Nelson, “Investigating vanilla MCTS scaling on the GVG-AI game
corpus,” in Proceedings of the 2016 IEEE Conference on Computational
Intelligence and Games, 2016.

[15] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[16] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of Go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[17] D. J. Soemers, C. F. Sironi, T. Schuster, and M. H. Winands, “En-
hancements for real-time monte-carlo tree search in general video game
playing,” in Computational Intelligence and Games (CIG), 2016 IEEE
Conference on. IEEE, 2016, pp. 1–8.
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Abstract—Deck building is a crucial component in playing
Collectible Card Games (CCGs). The goal of deck building is
to choose a fixed-sized subset of cards from a large card pool, so
that they work well together in-game against specific opponents.
Existing methods either lack flexibility to adapt to different
opponents or require large computational resources, still making
them unsuitable for any real-time or large-scale application.
We propose a new deck recommendation system, named Q-
DeckRec, which learns a deck search policy during a training
phase and uses it to solve deck building problem instances.
Our experimental results demonstrate Q-DeckRec requires less
computational resources to build winning-effective decks after a
training phase compared to several baseline methods.

Index Terms—deck recommendation, Q-learning, collectible
card game

I. INTRODUCTION

Collectible Card Games (CCGs) have been popular since
the 90s, evidenced by the large player base of these kinds of
games. For instance, Magic: the Gathering has more than 20
million players globally [1], while an online free-to-play CCG
Hearthstone (Blizzard Inc.) reached a record of 40 million
registered accounts in 2016 [2].

A CCG typically has hundreds to thousands of different
cards, each of which supports specific in-game rules and
effects. When playing CCGs, before each match, every player
is asked to build a deck comprising of a subset of all available
cards. While in game, each player takes turns to draw cards
from their respective deck and place them on the game board
to fare (e.g., attack, counter-attack, cast spell, etc.) against their
opponent cards.

In general, there is no single deck which can universally
win against all other decks because CCGs often design cards
with sophisticated synergistic and oppositional relationships.
For example, in Hearthstone, there are two distinguished types
of decks that counter each other in different phases of a match.
An Aggro deck, taking an aggressive approach, is built with
cards capable of dealing damage to the opponents as quickly as

possible. In contrast, a control deck is the opposite archetype
with cards which can survive long enough to triumph in the
late game through powerful but expensive cards or complex
combos.

The goal of deck building is to identify a set of cards which
suits the player’s own play style and effectively counters either
an individual opponent or a group of opponents with specific
play styles and decks. As deck building is regarded as a crucial
part of game play, there exist many online forums and websites
for players to discuss, analyze and test deck building strategies
(e.g., [3], [4]).

A deck recommendation system for the purpose of deck
building can benefit players and game developers in several
ways. First, it can ease choices made by players in deck build-
ing. Players may also learn new strategies of deck building and
practice their skills based on recommended decks. Second,
such a system can be useful to increase player’s engagement,
by controlling match outcomes to keep players interested
[5], [6]. Deploying a deck recommendation system in certain
modes (e.g., a practice mode) could help re-engage players
who are frustrated with the difficulty of building effective
decks. Last, from a game developer’s perspective, a deck
recommendation system is also useful for debugging games.
For example, balancing the power of cards is an important
topic in CCGs [7] or similar games [8]. The game developer
can use a deck recommendation system to check whether
certain combinations of cards are powerful or weak.

As a deck is a combination of cards, deck building can be
formulated as a combinatorial optimization problem (COP),
which relates to finding an optimal solution (the most winning-
effective deck) in a finite search space of all possible decks.
Deck building has a large and complex solution space. For
example, the number of all possible decks in our experiment
setting, which selects 15 out of 312 cards, is 1.4× 1025.

Previous works for deck building are mainly search algo-
rithms, falling into two categories: heuristic searches and meta-

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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heuristic searches [9]. Heuristic search methods decide which
cards to include based on domain heuristics such as popularity
and in-game resource curve [10]–[12]. However, heuristic
methods require in-depth human knowledge and lack flexibil-
ity to adapt to different opponents. Another category is meta-
heuristic search, referring to high-level, problem-independent,
approximate search strategies for tackling optimization prob-
lems [9]. An example is to use a Genetic Algorithm (GA) [13]
to evolve decks towards higher winning-effectiveness through
repeated modifications and selections [14], [15]. Although
metaheuristic search algorithms do not require human knowl-
edge to guide searches, they require a large computational
cost for each deck building problem instance because: (1) the
search process requires a number of evaluations of candidate
solutions; (2) the evaluation of a candidate solution’s quality
is computationally expensive, as this requires a large number
of simulated matches with complicated in-game rules.

An alternative view of solving the deck building problem
is to treat it as a sequential decision making problem [16].
Intuitively, a deck can be built by starting in some initial
card configuration (i.e., state) and applying deck modification
operators (such as adding, removing, or replacing an existing
card) to move to new states. The goal is to end at a final
state where the deck yields a high winning chance of winning
against the opponent’s deck. The key challenge is to decide
which operator to apply in each state. If a search policy
(i.e., the mapping between states and operator choices) can
be learned beforehand and simply followed while solving
future problem instances, less computational resources will
be needed compared to other methods requiring evaluating
candidate solutions such as metaheuristic search. Such an idea
is rooted in the paradigm of Reinforcement Learning (RL)
algorithms concerned with learning a policy to maximize long-
term rewards. In fact, leveraging RL to learn search policies for
optimization problems has already been investigated in other
domains, e.g., [17]–[19] but is novel for CCG deck building.

In this paper, we propose a deck recommendation sys-
tem named Q-DeckRec whose goal is to efficiently identify
winning-effective decks against specific opponents. We first
model the deck building problem as solving a COP by
sequential decision making, then learn a search policy by
leveraging an RL algorithm on a set of “training” problem
instances. The key idea is to generalize a search policy in
order to find winning-effective decks and find them quickly
for future problem instances. Thus, Q-DeckRec is suitable to
deploy for large-scale or real-time application, e.g., an online
CCG’s backend to recommend winning-effective decks to a
population of online players, a deck analysis website to serve
hundreds of online visitors’ deck building requests, or large-
scale deck balancing tests.

The contributions of the paper are:
1) we formulate the deck build problem as a combinatorial

optimization problem (COP);
2) we propose Q-DeckRec, an algorithm which learns a

search policy for solving deck building problem in-
stances quickly;

3) we conduct experiments to demonstrate Q-DeckRec’s
suitability for large-scale or real-time application. The
results show that after a training phase Q-DeckRec is
able to build highly winning-effective decks within 9.63
seconds of CPU time, which is not achievable by other
methods.

The paper is structured as follows. Section II provides the
general overview of related work. Section III describes the
details of problem formulation and the proposed algorithm.
Section IV and Section V describe the details of our experi-
ments and the results, respectively. Section VI discusses our
limitations and future work. Section VII concludes the study.

II. RELATED WORK

A. Collectible Card Game Overview

Although in-game rules may vary to some extent, we focus
on those CCGs similar to Hearthstone because its pattern is
common and the simulator we use for our experiments is also
based on it.

Each match is one-vs-one and turn-based. Each player starts
with an amount of health and the goal is to destroy the
opponent’s health first. Each player is asked to construct a deck
of a fixed number of cards before the actual match. During
a player’s turn, he plays the cards drawn from his own deck
as per their rules and limited by his resource. Cards can be
mainly categorized as spells and minions. Spells are played,
creating an effect on the battlefield, and then are discarded.
Minions, on the other hand, stay in play, and can be used to
attack the enemy or other minions. There usually exist several
deck archetypes in a CCG and no single deck can triumph
over others universally (see the example of Aggro and Control
decks in Section I).

Although a player cannot know what cards constitute the
deck of his opponent before the match, he could make pre-
dictions of opponent decks and propose his deck in advance
to reflect his winning philosophies. In other deck building
applications, such as recommending decks in a practice mode
and deck balancing tests, opponent decks can also be assumed
to be known at the time of deck building.

B. Combinatorial Optimization

An optimization problem consists of an objective function
and a set of problem instances. Each problem instance is
defined by a set of variables and a set of constraints among
those variables. A candidate solution to a problem instance is
an assignment of values to the variables. A feasible solution
is a candidate solution that satisfies the set of constraints. An
optimal solution is a feasible solution that maximizes value of
the objective function. A combinatorial optimization problem
(COP) such as the traveling salesperson problem (TSP) is
an optimization problem whose problem instances have finite
numbers of candidate solutions. For many COPs, the number
of candidate solutions is too large to exhaust in order to
identify an optimal solution.
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It is not new to approximately solve COPs through various
meta-heuristics, i.e., high-level, problem-independent, approx-
imate search strategies [9]. In Genetic Algorithms (GA) [13],
candidate solutions evolve towards better feasible solutions
iteratively with mutation and crossover operators. In each
generation, the fitness value of every candidate solution is
evaluated; the fitness value is usually the value of the objective
function in the optimization problem being solved. The more
fit candidate solutions are stochastically selected and modi-
fied to form a new generation. Another genre is called the
Cross-Entropy (CE) method [20]. The central idea is that the
probability of locating an optimal solution using naive random
search is a rare-event probability. CE can be used to obtain a
new sampling distribution so that the rare-event is more likely
to occur. Sampling from the new distribution will result in
near-optimal solutions.

All the metaheuristic algorithms introduced so far are non-
learning search algorithms with one inherent disadvantage:
each time a new problem instance arises they require a number
of objective function evalutions until a sufficiently high-
quality feasible solution is found. Indeed, the search process
is independent between different problem instances and does
not generalize a search policy which could be simply followed
without objective function evaluations. If objective function
evaluation is computationally expensive, non-learning search
algorithms would be inefficient to solve multiple problem
instances of the same COP.

Naturally, researchers are motivated to design algorithms
to learn search policies for solving optimization problem
instances [17], [19], [21], [22]. These algorithms lie in a
broader term known as “meta-learning” [23]–[25] or “learning
to learn” [26]. The learning of search policies relies on viewing
the optimization process as conducting sequential decision
making [16] by an optimizer agent. The optimizer agent starts
in some initial state and consecutively applies operators to
move to new states. The goal is to end at a final state
where a high-quality feasible solution can be extracted. We
call the mapping between states and operator choices as the
search policy. If we additionally define a transition function
and a reward function, we can formulate the optimization
process as a Markov Decision Process (MDP) [27]. The opti-
mal policy that maximizes long-term rewards can be learned
or approximated by leveraging reinforcement learning (RL)
algorithms [28]. The key is to properly design the MDP,
especially the reward function, such that the learned policy
can guide the optimizer agent quickly towards high-quality
feasible solutions. For example, Zhang and Dietterich applied
an RL algorithm TD(λ) to obtain the search policy for solving
NASA space shuttle scheduling problem instances [17]. Their
results show that the learned search policy is more effective in
the ratio of solution quality vs. CPU time than the best known
non-learning search algorithm on test problem instances. Bello
et. al show that a search policy parameterized as a special
structure of neural network can be trained and used to solve
unseen instances of TSP [19]. In Section III, we will show
that under certain assumptions, a deck building problem can

be formulated as a COP and a search policy learned by RL
on “training” problem instances will quickly guide building
winning-effective decks on future problem instances.

Besides metaheuristic and RL algorithms, problem-
dependent heuristics can be used to search solutions when
COPs have exploitable characteristics. However, designing
heuristics is a labor intensive job. Researchers have also
attempted to use supervised learning models to learn the
mapping from problem instances to optimal solutions (e.g.,
[29]). Optimal or approximated optimal solutions need to be
calculated by some solver in advance in order to provide
training supervised signals. One difficulty is to design special
model architectures to cope with discrete nature and con-
straints of COPs. For instance, in the TSP, the outputs should
be constrained to sequences with no duplicated cities [29].

C. Deck Building

Ideas proposed for deck building mainly fall into two
categories: heuristics and metaheuristic searches. First, some
heuristic methods decide which cards to include based on
the popularity of cards from historical data [10], [11]. The
underlying intuition is that popularly favored cards are very
likely to be strong ones. Stiegler et al. propose a utility system
to search deck with more types of game-specific heuristics
besides card popularity, including mana curve, strategic pa-
rameters, cost effectiveness and card synergies [12]. However,
all heuristic methods require intensive human knowledge,
lack flexibility to adapt to different opponent decks, and are
not easy to transfer to other games intelligently. As far as
we know, Genetic Algorithm (GA) [13] has been the only
metaheuristic search algorithm for deck building [14], [15].
In their works, the fitness value is the average win rate of
a candidate deck against a group of opponent decks while
AI bots are used as a proxy for human play. However, we
note in their results that a single run of GA for a particular
deck building problem instance took hours or days to reach a
winning-effective deck [14], [15]. This is because each fitness
evaluation requires obtaining a win rate based on a number
of simulated matches. The complicated in-game rules also
make the simulation computationally expensive. Therefore,
non-learning search algorithms like GA are not practical for
any large-scale or real-time deck recommendation task.

III. METHODOLOGIES

In this section we will formally describe how the deck
building problem can be cast as a COP. We will then proceed
to presenting our proposed solution, Q-DeckRec, which solves
the deck building problem from a sequential decision making
perspective. In this paper, we focus on building winning-
effective decks against specific individual opponents. We will
leave the discussion about building decks against a group of
opponents in Section VII.

A. Problem Formulation

Deck building can be formulated as a combinatorial opti-
mization problem (COP). Suppose the goal is to build decks
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as a subset of size D among a total of N cards with N > D
(usually N is several times larger than D). A deck can be
represented as a binary vector of length N , x ∈ ZN2 , whose
components of 1’s correspond to the cards included in the
deck and 0’s otherwise. Since a deck has a fixed size of cards,
we have ‖x‖1 = D. We use xp and xo to differentiate the
deck of the player and his opponent. We use Ap and Ao to
capture the play styles of the player and his opponent. Ap
and Ao are play style-specific simulators that decide which
cards to issue given a game instance, henceforth referred to as
the AI proxies (artificial intelligence) of respective play styles.
The evaluation function f(·) is defined as f(xp;xo,Ap,Ao),
which returns the winning probability of the player using xp
against the opponent using xo, with their play styles following
Ap and Ao respectively. The objective function of the deck
building problem is formulated as:

argmax
xp

f(xp;xo,Ap,Ao)

subject to xp ∈ ZN2 ,xo ∈ ZN2 ,
‖xp‖1 = ‖xo‖1 = D

(1)

the solution of which is denoted as x∗p.
Note that f(·) is a black-box function. We do not have the

closed-form expression of f(·), but can approximate its value
by simulating Ap and Ao playing against each other for a
number of matches. In practice, a sufficient number of matches
need to be simulated to get stable win rate estimation. Since
the simulation needs to apply numerous rules of the game on
each move, this is a computationally demanding operation.
Each evaluation of f(·) was found to take non-negligible time
in the order of seconds on a very powerful server machine
(see Section IV). Therefore, the brute-force approach is almost
infeasible to apply, as it needs evaluate an exponential number
of xp configurations, i.e.,

(
N
D

)
= N !/D!/(N−D)! = O(ND).

For example, in our experimental setting where N = 312, D =
15, it would need to exhaust around 1.4× 1025 possibilities.

After examining potential usage scenarios, we find one as-
sumption that could be made and exploited. Although different
problem instances may use different Ap and Ao, we assume
that Ap and Ao come from a pool of AI proxies pre-trained by
a deck recommendation system. For example, each AI proxy
from the pool represents a specific play style archetype such
as “aggressive” or “conservative”. Under this assumption, each
problem instance consists of xo which may vary, and Ap and
Ao which have been available. Therefore, there might exist
deck building patterns which can be generalized. For example,
if certain Ap is good at using Card A to counter certain Ao,
then Card A tends to appear in the optimal solution of many
problem instances with the two AI proxies as the input.

In the rest of the paper, we will assume we deal with deck
building problem instances of Eqn. 1 under a specific pair of
Ap and Ao. All the methodologies will be invariant for other
pairs of AI proxies.

B. Q-DeckRec

We propose to delegate the problem of generalizing deck
building patterns as a problem of generalizing a search policy
in a Markov Decision Process (MDP) [27] environment, where
an agent naviagates in the state space to search for the most
winning-effective deck.

In the MDP, a state s ∈ S consists of a unique feasible solu-
tion xp, together with xo and a step counter t as complement
information, i.e., s = {xp,xo, t}. An action a ∈ A is defined
as a card replacement to modify the current deck xp. An action
replaces exactly one card in the deck xp with another card not
included currently. One special action is to keep the current
deck as unmodified. Given the actions we define, the transi-
tions between states T : S ×A → S are always deterministic.
One state applied by an action will transit to only one next
state, reflecting the corresponding card modification, denoted
as {x(t)

p ,xo, t}, a→ {x(t+1)
p ,xo, t+1}. The deck search starts

from a random initial state s0 = {x(0)
p ,xo, 0} and is limited

to take exact D actions in one episode. We denote the states
within one episode as s0, s1, · · · , sD. We limit the length of
the horizon to be D because at most we need to replace all
the cards in x

(0)
p to reach the optimal deck x∗p.

The problem remains as how to design the reward function
R : S × A → R. In the MDP, the optimal policy is the
one which maximizes a defined long-term reward criterion.
The key is to properly design the reward function and long-
term reward criterion, such that the optimal policy is indeed
the desired search policy which can lead to winning-effective
decks from any state.

The long-term reward criterion defines the goal of reinforce-
ment learning. It should encourage the optimal policy to search
in the direction of winning-effective decks. We propose the
following long-term reward criterion for each episode:

R =

D−1∑

t=0

rt, (2)

where rt is the reward function over each transition. Specif-
ically, we define rt as the win rate between the opponent
deck and the modified deck after step t with exponential
amplification:

rt = exp(b · f(x(t+1)
p ;xo,Ap,Ao)), (3)

where b is a positive constant to adjust the extent of
amplification. We choose this reward function over rt =

f(x
(t+1)
p ;xo,Ap,Ao) in order to amplify the difference

between strong and weak decks. Although the goal of
deck building is to land on sD = {x(D)

p ,xo, D} with
f(x

(D)
p ;xo,Ap,Ao) as high as possible, the cumulative sum

of win rates provides more reward signals along the search
than merely optimizing R = rD. This shape of reward has
also been used in previous optimization problems based on
sequential decision making [22], [30]. Since we model each
episode with finite horizons, we ignore the conventional re-
ward discount factor γ in the definition of R, which is a
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mathematical trick to help the convergence of RL learning
in MDPs with infinite horizons.

The optimal policy can be obtained by always selecting the
action with the highest optimal state-action value at each state:

π∗(s) = argmax
a

Q∗(s, a), s = s0, · · · , sD−1, (4)

where Q∗(s, a) is defined as the best state-action value func-
tion among all possible policies:

Qπ(s, a) = E[
D∑

i=t

ri|st = s, at = a, π] (5)

Q∗(s, a) = max
π

Qπ(s, a) (6)

The intuition behind Q∗(s, a) is that it measures how promis-
ing applying the modification on the current deck would lead
to the most winning effective deck. Following π∗(s) would
generate a series of modifications that faithfully build the
optimal deck.

We propose to use a Reinforcement Learning (RL) algo-
rithm, Q-Learning [31], to learn Q∗(s, a) iteratively through
observation tuples (s, a, r, s′). The simplest implementation of
Q-Learning is a look-up table and a learning rate 0 < α ≤ 1,
with the update rule as:

Q̂(s, a) = (1− α)Q̂(s, a) + α(r +max
a′

Q̂(s′, a′)) (7)

Theory implies that if each action is tried in each state
an infinite number of times and the magnitude of α meets
certain criteria, then Q̂ converges to Q∗ [32]. However, our
problem has a huge state space hence it is not possible to
maintain a look-up table for all combinations of states and
actions. Instead, we resort to Multi-Layer Perceptron (MLP)
with parameters θ as a function approximator: Qθ(s, a) learns
to approximate the mapping of the feature representation
of the state-action pair, F(s, a), to the optimal state-action
value, Q∗(s, a). More specifically, we use an MLP architecture
with one input layer, one hidden layer and one output layer.
Without requiring any prior domain knowledge, we simply let
F(s, a) = s′. Therefore, the input layer takes as input a state
representation s′, which has 2 ·N + 1 dimensions. The output
layer outputs a real value representing the predicted Q∗(s, a).
The exact specifications can be seen in Section IV. The update
rule of θ is in a gradient descent fashion towards reducing so-
called TD-error δ:

δ := r +max
a′

Qθ(s
′, a′)−Qθ(s, a) (8)

θ ← θ + α · δ · ∇Qθ(s, a) (9)

To learn θ, we need to collect observation tuples (s, a, r, s′)
through solving ”training” problem instances. Solving a train-
ing problem instance is to let Q-DeckRec take actions D
times based on the current Qθ(s, a) function in an episode.
In order to generalize Qθ(s, a) to various states, we initialize

both xo and x
(0)
p in s0 randomly at the beginning of each

episode. An ε-greedy policy is used during the training, with
ε slowly decreasing as the learning proceeds. The policy has
ε probability to choose non-optimal actions in the hope to
escape any local optimum and discover better policies. Also,
we use prioritized experience replay [33] to improve sample
efficiency. Past experiences will be weighted according to the
absolute value of δ. High TD-error associated experiences will
be more likely to be sampled for MLP parameter learning.

The training phase of Q-DeckRec can be summarized as
follows. At the beginning of each training episode, both xo
and x

(0)
p are randomly generated. Q-DeckRec decides how to

“navigate” through states by ε-greedy policy and Qθ(s, a) in
D steps. All the D transitions are stored into the prioritized ex-
perience replay pool. Following that, m previous observation
tuples (s, a, r, s′) are sampled from the prioritized experience
replay as a learning batch for updating θ as described in
Eqn. 8 and 9. The loop continues after a new training episode
is initiated. The training will be terminated after a time limit
is reached.

After training, Qθ(s, a) will become fixed. When solving a
future problem instance, Q-DeckRec can start from s0 with a
random x

(0)
p and follows π∗ as in Eqn. 4 in D steps. No call of

f(·) will be needed during the search. As a comparison, non-
learning search algorithms such as Genetic Algorithm require
calling f(·) multiple times in order to evaluate fitness values
for each problem instance [14], [15], while calling f(·) would
take computational resources much heavier than calculating
Qθ(s, a). Therefore, Q-DeckRec has its superior suitability for
large-scale or real-time application.

IV. EXPERIMENT SETUP

To verify our method and compare with other methods, we
test on an open-sourced CCG simulator MetaStone1, which is
based on the popular online digital CCG Hearthstone (Blizzard
Entertainment, Inc.). All experiments run on a powerful server
with Intel E5 2680 CPU’s @ 2.40 GHz (56 logical CPU
cores). Parallelization is implemented in three places: (1) linear
algebra operations used in the MLP in Q-DeckRec; (2) match
simulations evenly spread on all cores when evaluating f(·);
(3) random deck sampling from a baseline based on Monte
Carlo simulations (introduced later). Each call of f(·) returns
a win rate based on 300 simulated matches, which on average
takes 5 seconds and has around 5% standard deviation in the
win rate evaluation.

We make a few decisions in setting up our experiments.
We expect the experiment results can generalize under other
settings. First, we use the same AI proxy to represent both
Ap and Ao. The AI proxy is provided by the simulator and
is called GreedyOptimizeMove. It decides the best action by
evaluating each action’s consequence according to a heuristic.
We do not use other AI proxies based on tree search methods
because they take much longer per match. Second, we assume
both players are from a specific in-game character class called

1https://github.com/demilich1/metastone
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Warriors. The total number of available cards to Warriors is
312. Third, while in the real game certain cards can have at
most one copy and all other cards can have at most two copies
in the deck, we impose that every included card has two copies.
This reduces our search space size for the test purpose and
also follows the postulation that having two copies for every
card makes the deck performance more reliable [14]. As a
result, although the deck size is 30, the number of cards to be
selected is 15. In summary, we have N = 312, D = 15 when
optimizing Eqn. 1.

We set up Q-DeckRec as follows. The underlying MLP
has one hidden layer and one output layer. The hidden layer
consists of 1000 rectified linear units (ReLU). The output
layer is a single unit which outputs a weighted sum from the
activation values of the hidden layer. ε in the ε-greedy policy
starts at 1 and decreases 0.0005 per training episode until it
reaches 0.2. The size of a learning batch, m, is set at 64.
For the prioritized experience replay [33], the exponent α is
set at 0.6, the exponent β is linearly annealed from β0 = 0
to 1 with step 1e−5. The capacity of the experience pool is
100K. The constant b in the reward function is set as 10.
All the hyperparameters are chosen empirically without fine-
tuning due to large computational resources required.

We compare Q-DeckRec with a Genetic Algorithm (GA),
the method used in previous works for deck building [14],
[15]. We implement GA with an open source library DEAP2.
An individual is a candidate deck xp. The fitness value is
f(xp;xo,Ap,Ao). The mutation and crossover functions are
customized to maintain the validity of individuals, similarly to
what was adopted in [15]. Specifically, mutation is swapping
one card in the deck with one not in the deck and crossover
randomly exchanges cards not overlapped by the two decks.
The population size of each generation is 10, with the mutation
probability and the crossover probability both set as 0.2.
Individual selection is based on a commonly used selection
mechanism called tournament of size 3.

We also design an ad-hoc baseline which, like Q-DeckRec,
requires a learning phase and does not require calling f(·)
for solving future problem instances. The baseline conducts
Monte Carlo (MC) simulations using a win rate predictor f̂(·)
to locate a solution. We first train a supervised learning model
to approximate f(·). The training data are randomly generated
pairs of decks represented as binary vectors. The labels are
the evaluated win rates based on f(·). We choose to train an
MLP with the same architecture as in Q-DeckRec. Given the
same input, f̂(·) would output faster than f(·) because the
former does not need a real match simulation. When solving
a future problem instance with opponent deck xo, we run MC
simulations according to:

argmax
xp∈Xp

f̂(xp,xo;Ap,Ao), (10)

where Xp is a set of randomly generated decks. We denote the
size of Xp as X . A larger X means more thorough sampling.

2https://github.com/DEAP/deap

In the experiments, we do not include any heuristic search
method because we focus on algorithmic deck recommenda-
tion systems requiring minimal human knowledge involved.
Besides GA, we do not include other metaheuristic search
methods; similarly to GA, they all require calling the win rate
evaluation function f(·) a number of times while solving each
problem instance. We do not include supervised learning mod-
els which directly learns the mapping from problem instances
to optimal solutions because this requires designing a specific
model architecture to cope with the characteristics of the
deck recommendation problem (e.g., outputs are constrained
to contain K cards), which has not been studied before and
requires non-trivial extra works.

Different wall time (i.e., real elapsed time) limits are
imposed as the termination condition for both Q-DeckRec
training and one run of GA. In this way, we can compare how
long Q-DeckRec training and a GA run would take to reach
similar performances. Wall time limits are chosen empirically
based on observations in preliminary experiments and our
limited computational resources. For GA, we try wall time
limits as 10, 15, 20 and 25 minutes because performances
often plateau after 20 minutes (as evidenced in the result
section). Since we do not have the optimal solutions for test
problem instances, we reference the solutions from 25-minute
GA searches as approximated ground truths. For Q-DeckRec
training, we test one, two and three days as the wall time
limit. As will be shown in the result section, Q-DeckRec after
three-day training can already reach the same optimality level
as GA with 25 minute search. For the MC-simulation method,
we use a training data set collected in three days and test
X = 67, 670, 6.7K, 67K, 670K and 6700K. Note that 67K is
around the same number Q-DeckRec calls its learned function
approximator Qθ(s, a) for solving a test problem instance3

whereas higher values of X than 6700K would require too
large computational resources to be practical for large-scale
or real-time application.

In the rest of the paper, we will denote an algorithm as a
specific approach (GA, Q-DeckRec, or MC) plus an associ-
ated parameter. For example, GA20min and MC670K are two
algorithms. So are Q-DeckRec1day and Q-DeckRec2days.

We generate 20 test problem instances for evaluating all
algorithms. In our preliminary experiments where test problem
instances are randomly generated, we often find GA only
needs less than 100 calls of f(·) to identify decks with
100% win rate. This is because randomly generated xo barely
has any effective card synergy and can be easily beaten by
a mediocre deck. In real-world applications, we believe it
is more demanding to build winning-effective decks against
competitive decks rather than random decks. In order to
generate competitive opponent decks as test problem instances,
we adopt a sequential manner as follows. We sample a deck
x from the outputs of all algorithms for the last test problem

3As in Eqn. 4, each optimal action is decided after calculating the state-
action values of all possible actions ((N −D) ·D+ 1) and we need to take
D actions per episode. When N = 312 and D = 15, the total number of
state-action value evaluations is 66840.
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TABLE I
RESULTS OF GENETIC ALGORITHM APPROACH

Search Time
Wall Time / CPU Time Func. Calls Win Rate

10 min / 6.2 hr 110 0.61
15 min / 9.3 hr 189 0.86
20 min / 12.8 hr 267 0.93
25 min / 15.9 hr 315 0.94

TABLE II
RESULTS OF Q-DECKREC

Training
Wall Time

Search Time
Wall / CPU Time Func. Calls Win Rate

1 day 20K 0.64
2 days 0.38 sec / 9.63 sec 41K 0.88
3 days 62K 0.93

instance, where the sampling distribution is weighted by
f(x;xo,Ap,Ao). We then use x as the input xo for the next
problem instance. The first test problem instance is obtained
after 10 preliminary runs.

For a problem instance and an algorithm, the win rate of
the returned xp vs. the input xo is considered as the result
performance. We run each algorithm on each test problem
instance 10 times. Each run is associated with a random seed,
which controls the initialization of x

(0)
p in s0 in Q-DeckRec,

and the randomness in evolution behaviors in GA. Then, we
use the median of the 10 runs as the performance for the
algorithm on the problem instance. To measure the significance
of the differences for each pair of algorithms, we also conduct
a two-tailed paired Welch’s t-tests with a confidence level 0.01
over all test instances. The null hypothesis is that the mean
difference between the paired algorithms’ win rates is zero.

In order to give a complete view of resource usage, we
record both wall time and CPU time each algorithm takes to
solve a test problem instance.

V. RESULTS AND DISCUSSION

The performances of the three kinds of methods are reported
in Table I, II and III. All the reported numbers are the
mean results over the 20 test problem instances. As stated,
the result for each test problem instance is the median of
10 runs. Also, we find that all pairwise comparisons on the
win rate are significant, except: (1) GA20min vs. GA25min

(2) Q-DeckRec3days vs. GA20min (3) Q-DeckRec3days vs.
GA25min.

TABLE III
PERFORMANCES OF MC SIMULATION APPROACH

X (Number of Samples) Search Time
Wall Time / CPU Time Win Rate

67 0.01 sec / 0.18 sec 0.48
670 0.03 sec / 0.91 sec 0.64
6.7K 0.05 sec / 2.16 sec 0.75
67K 0.45 sec / 8.45 sec 0.84
670K 4.90 sec / 97.60 sec 0.82
6700K 36.06 sec / 1031.81 sec 0.77

First, we observe that the performances of GA and Q-
DeckRec improve as the wall time limits increase in our test
ranges. This meets our expectation because approximate COP
solvers are supposed to get better solutions if using more
computational resources. However, longer wall time limits
than 20 minutes bring diminishing improvement in GA as we
find there is no significant difference in the average win rate
between GA20min and GA25min.

From Table I, we observe that GA calls the win rate
evaluation function an increasing number of times as the wall
time limit increases. As we stated, the win rate evaluation is
computationally expensive involving simulating 300 matches.
Therefore, all GA algorithms require high CPU time in the
order of hours.

As shown in Table II, Q-DeckRec can solve deck building
problem instances with as little computational cost as 9.63
seconds in CPU time. Meanwhile, Q-DeckRec after 3-day
training can build decks as winning-effective as GA25min

does, as evidenced by the non-significant difference between
Q-DeckRec3days vs. GA25min. Therefore, from the CPU time
perspective, Q-DeckRec is much efficient than GA (9.63 sec
� 15.9 hr) to solve a new problem instance because the
computationally heavy match simulations have been ”moved”
to the training phase. This proves the merit of Q-DeckRec
being a suitable deck recommendation system for large-scale
or real-time application.

The number of function calls is 62K during the training of
Q-DeckRec3days. This means there are 62K state transitions
generated from roughly 4K (≈ 62K/15) training episodes.
Even if each of the 62K state transitions is unique, they
still involve a tiny fraction of total states in our formulated
state space. (The number of total states is the number of
possible opponent decks times the number of possible player
decks:

(
N
D

)
×
(
N
D

)
≈ 1.97 ∗ 1050.) This shows that the MLP-

based architecture is a well-chosen function approximator for
generalizing state-action values.

For the MC-simulation method, we first report Mean
Squared Error (MSE) and R2 of the learned supervised learn-
ing model. We evaluate them using a standard 10-fold cross
validation. On training data, MSE = 0.005 and R2 = 0.86.
On testing data, MSE = 0.008 and R2 = 0.79. To our
surprise, from Table III, we find that the win rate does not
monotonously increase as X increases. The performance peaks
at 0.84, which is significantly lower than Q-DeckRec3days.
While debugging the method, we observe that the predicted
win rate (the outcome of Eqn. 10) monotonously increases
as X increases. We suspect that since the supervised learning
model cannot perfectly predict the real win rate, deck samples
inevitably contain outlier decks with spuriously high predicted
win rates. These outlier decks ”trick” the MC-simulation
method to select them unfortunately. The results show that the
approach of building winning-effective decks in a sequential
way as in Q-DeckRec is more robust.
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VI. LIMITATIONS AND FUTURE WORKS

In order to help human players, Q-DeckRec relies on AI
proxies which can accurately model players’ play styles. The
current used AI proxy is only based on a greedy heuristic
rather than trained on human play traces. Training human-
like AI proxies and integrating them to Q-DeckRec will be an
important direction in our future works.

We can also improve sample efficiency in Q-DeckRec.
Currently, a training episode starts with a random s0 =

{x(0)
p ,xo, 0}. Were it generated from a card distribution

learned from real matches, Q-DeckRec can focus on exploring
in a smaller state space.

Next, as online CCGs often release patches to introduce new
cards and modify existing cards’ in-game effects, we would
like to investigate how Q-DeckRec can transfer and update its
knowledge without totally re-training the model [34].

Lastly, if the problem is extended to recommend winning-
effective decks against a group of opponent decks {xoi}ki=1,
there remains a question of how to design the feature repre-
sentation of state-action pairs. Naive feature representations
for the opponent deck group could be simply concatenating
{xoi}ki=1. However this creates a large feature space which
may not be efficient for learning. A more advanced feature
representation may represent the opponent deck group in a
continuous vector space, similar to word-embedding tech-
niques from Natural Language Processing (NLP) [35]. We
intend to investigate all of these in the future.

VII. CONCLUSIONS

In this paper, we propose a deck recommendation system
named Q-DeckRec, which is able to solve deck building
problem instances in large-scale and real-time after a period of
training and requires minimal domain knowledge. We design
experiments that demonstrate the advantages.
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Abstract—Designing game rulesets is an important part of
automated game design, and often serves as a foundation for
all other parts of the game, from levels to visuals. Popular
ways of understanding game rulesets include using AI agents
to play the game, which can be unreliable and computationally
expensive, or restricting the design space to a set of known
good game concepts, which can limit innovation and creativity.
In this paper we detail how ANGELINA, an automated game
designer, uses an abductive analysis of game rulesets to rapidly
cull its design space. We show how abduction can be used to
provide an understanding of possible paths through a ruleset,
reduce unplayable or undesirable rulesets without testing, and
can also help discover dynamic heuristics for a game that can
guide subsequent tasks like level design.

Index Terms—automated game design, procedural content
generation, constraint inference

I. INTRODUCTION

Automated game design is a growing field of games research
that builds on existing work in generative software, computa-
tional creativity, and general game playing. It centers around
the development of software that can design complete games,
either autonomously or co-creatively with the involvement
of other people. Designing a complete game might include
performing tasks such as inventing game mechanics; designing
levels or game worlds, composing music or designing sound
effects; creating visual assets or an artistic direction; or many
other tasks depending on the kind of game being designed,
and the kind of system being developed.

Many automated game design systems focus on rules-
driven, objective-based games, where the player is presented
with an objective to complete while navigating specific chal-
lenges [1]. Classic arcade games like Space Invaders, Pac-Man
or Frogger fit into this model. These games require a clear
set of rules, with win and loss conditions, and normally also
require levels or starting layouts that pose specific challenge
scenarios for the player. Although these rulesets are usually
deterministic, they often have complex dynamics (in the sense
of [2]) and their own unique set of requirements for what their
levels should contain or challenge the player to do. Combined
with the multiplicatively large state spaces for game rulesets
and level designs, this makes automatically evaluating game
designs very difficult.

Common solutions to this problem include the use of
playouts, where an AI agent plays a game and its playtrace

data is analysed to measure certain things about a game – for
example, the complexity of a puzzle solution, or what score an
averagely-performing agent could achieve before losing. How-
ever, playouts are computationally expensive, especially if they
are used to play game designs that have obvious deficiencies
in their design. Other systems use simple analytical techniques
to assess game designs: for example, searching for simple
rule patterns that imply an unplayable game, such as directly
contradictory rules. Although this approach is effective, its use
is currently restricted to very basic inferences.

In this paper we describe how we use abductive reasoning
to analyse generated game rulesets, and how the resulting
analysis helps us remove larger quantities of bad rulesets,
without resorting to more prescriptive generation techniques.
We also show that this abductive analysis of rulesets can reveal
intuitions about a game design, which can be used to constrain
level generation. We also posit how this abductive analysis
might be used to incorporate subjective design constraints into
automated game design.

The remainder of this paper is organised as follows: in
Background we discuss existing approaches to solving the
ruleset generation problem, and introduce the current version
of the ANGELINA automated game design system; in Static
Ruleset Analysis we describe the process of analysing game
rulesets to extract possible routes through the game’s logic;
in Level Constraint Inference we extend this work to show
how it can derive information that can be used to constrain
the level design process; in Design Space Analysis we provide
experimental results showing the impact these techniques have
on the design space; in Discussion and Future Work we
comment on the applicability of this technique to other kinds
of game, and future work in the area; finally, in Conclusions,
we summarise our work.

II. BACKGROUND – RELATED WORK

Automated game designers are tasked with exploring a vast
state space of possible game designs. Each generative subtask
– designing levels, designing game rules, designing objectives
and so forth – is itself a vast possibility space, and when
considered together these spaces exponentially expand and
become tightly coupled to one another – a small change to
a ruleset might render an entire set of levels unplayable or

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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trivial. There are three broad approaches in existing automated
game design work towards solving this problem.

The first approach is to leverage existing knowledge about
good game design to restrict the search problem. Often this
consists of building a smaller design space populated by
components of existing games, and combining them in ways
that preserve playability. Nelson and Mateas’ work in [3] uses
a ‘stock set of concrete game mechanics’ to build minigames.
Meanwhile, The Game-O-Matic uses ‘micro-rhetorics’ which
describe game components, and combines them using recipes
which ensure the safety of the resulting game design [4]. This
results in good-quality games that are reliably playable. This
approach has some downsides: it is harder to discover new or
surprising game designs this way, for example, as it relies
on remixing to succeed. The Game-O-Matic also eschews
complex level design in exchange for a simpler arrangement of
shapes on the screen, which slightly reduces the complexity of
the design task. Nevertheless, the Game-O-Matic demonstrates
the strength of the micro-rhetoric approach, and is one of the
most accomplished automated game design systems to date.
We employed a similar approach in ANGELINA5, which used
a catalogue of known game mechanics to ensure it always
produced playable rulesets.

Another common approach is to use genre-specific knowl-
edge to focus a system on one particular type of game. In
some sense, every automated game design system uses this
technique, since no system to date has been truly general and
cross-genre. However, systems like Data Adventures [5] or
Puzzle Dice [6] focus on a very specific game structure, and
as such are able to work in a reduced design space, by knowing
in advance what mechanics a game might have, or being able
to define objective functions for search algorithms in advance.
We employed this approach in ANGELINA3 to narrow our
design focus on Metroidvania-style games, enabling us to
define more specific objective functions for the design of levels
in games the system made.

Finally, many automated game design systems use playouts
to evaluate the games they design. Playouts involve using AI
agents to play the game as a player might, and analysing the
results of those playouts to infer properties about the game.
Togelius and Schmidhuber use playouts to assess how hard a
game is to learn, and from that infer how ‘fun’ the game
might be as a result [7], while Khalifa et al use playouts
to assess ruleset coverage and score achievement [8]. We
have employed playouts in all versions of ANGELINA –
ANGELINA1, for example, used multiple playouts per game
with different settings for each playout agent, to try and
simulate more and less risk averse players.

III. BACKGROUND – ANGELINA

ANGELINA is an automated game design project that has
been in development in some form or another since 2011.
The latest version of the software is developed in Unity, and
currently focuses on two-dimensional, grid-based, turn-based
game design. The software is designed to be run as an always-
on system that is continuously developing games or discov-

ering design knowledge. We call this continuous automated
game design [9]. ANGELINA moves between distinct design
tasks, like creating game logic or designing levels, and updates
a central project file for each game it works on as tasks are
completed. In this paper we focus primarily on the design of
rules and levels in ANGELINA.

ANGELINA describes games using a domain specific lan-
guage similar in structure to VGDL [10] or PuzzleScript [11].
Game descriptions are written in JSON, and broken down
into several sections that describe different parts of the game.
Figure 1 shows a template for a game, with some parts cut
for length, which we will describe in stages below.

The first few lines of a game description are called the
preamble and contain basic information about the game,
including its name, the filename it is saved under, as well as
basic artistic settings like the user interface colour scheme and
background music. Most of these settings are optional but give
the system scope to express a tone or theme through aesthetic
choices. After the preamble is the pieces list, which defines
a set of types of game object used in this game. Each piece
can be instantiated one or more times in a game, and may
be animate or inanimate, but these details are defined later in
the game description. A piece’s definition includes a name, by
which it is referred to in the rules, as well as information on
how to draw the object on-screen.

Most importantly for this paper, the rules section describes
the game’s core logic. It contains two lists: one containing the
main game logic, which is executed at every game step; and
one set of end conditions which describe ways the game can
end, as well as the nature of each ending (such as a win, or
a loss). A rule is comprised of two parts: a trigger, which
is a condition that decides whether or not the rule activates;
and one or more events which are executed in order when
the trigger condition is met. We use a special syntax to allow
events to reference objects ‘in scope’ of the rule: $n references
the nth object mentioned in the rule so far. For example, in
the rule:

"trigger": "OVERLAP enemy player",
"events": ["DESTROY $2"]

The term $2 refers to the second object in the trigger,
player. Thus, this rule says that when an enemy piece
overlaps a player piece, the player piece is destroyed.

Finally, the levels section defines the spaces the player
explores as part of the game, which is empty at the point of
ruleset design. Currently, ANGELINA designs games which
present a traditional sequence of levels to the player one after
another. Levels are defined here in the order they are played in,
and can either be loaded from another file or included as raw
data. In the example in Figure 1, the level shown is written as
raw data, with each number in the grid corresponding to an
index into the pieces list defined earlier in the game description
(this list being 1-indexed as opposed to the more traditional
0-indexing, since we use 0 to represent empty space).
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"gamename": "Before Venturing Forth",
"filename": "before_venturing",
"music": "ominous",
"color_accent": [0.4, 0.56, 0.31],
"pieces" : [
{
"name": "player",
"sprite": "fighter",
},
//...cut for length

],
"rules" : [
{
"trigger": "OVERLAP player enemy",
"events": ["DESTROY $2"]
},
{
"trigger": "OVERLAP any wall",
"events": ["PUSHBACK $1"]
},
{
"trigger": "OVERLAP enemy player",
"events": ["DESTROY $2"]
},
{
"trigger": "PLAYER_ARROW_KEY",
"events": ["RELMOVEALL player $1", "ENDTURN"]
},

{
"trigger": "ENDTURN",
"events": ["DO_AI_HUNT enemy player"]

}
//...cut for length

],
"endconditions" : [

{
"outcome": "1",
"triggers": ["ALL_COVERING player goal"],

},
{
"outcome": "-1",
"triggers": ["COUNTPIECE player 0"],

}
],
"levels" : [
{"type": "raw",
"width": "5",
"height": "5",
"data":

[0,4,4,0,3,
1,0,0,0,2,
0,0,0,0,0,
1,0,0,0,0,
0,0,4,0,3]

},] //cut for length

Fig. 1. An abridged game description file from ANGELINA.

IV. STATIC RULESET ANALYSIS

ANGELINA’s design process is broken down into distinct
tasks which compartmentalise a certain creative act, like
designing a level or testing difficulty. Game logic is currently
designed in the ruleset sketching task, which aims to produce
a set of rules which can support a game. It does not have
to guarantee the ruleset will produce an exciting or interesting
experience, as part of this is reliant on level design. Rather, the
objective here is to identify a ruleset with the most potential,
and without obvious shortcomings.

In this section we describe a process of static analysis that
we use to grade and filter randomly generated rulesets, using
abductive reasoning to work backwards from goal states to
find paths through the design space that are initiated by player
action. We show that this can identify valid solutions (and
routes to failure) for a game, and even provide additional
design information that can impact future phases of the game
design process.

A. Simple Inspection

Before ANGELINA performs abductive analysis, it first
applies a simple surface-level filtering to the ruleset being
considered, similar to approaches we have used in past ver-
sions of the software. This involves searching for a priori
logical consistencies, such as a ruleset that contains two
ending conditions with the same trigger, but opposite win/loss
outcomes. This example is inconsistent because, in the design
space we wish to consider, the player should not be able to win
and lose a game in the same time step. This simple filtering
has been used in many previous versions of ANGELINA as

well – in our evaluation we compare this approach in isolation
to full action chain generation.s

B. Action Chain Generation

The main analysis phase uses abduction to find paths
through the game’s design space. The result of this analysis is
a series of action chains. An action chain is a sequence, A, of
actions, a1, ...an, which transform a starting game state into
a state which triggers an end condition. Note that these are
not sequences of concrete game actions, like a solution to a
puzzle or the kind of sequence of game moves that an MCTS
agent might produce. Instead, each step in the action chain
describes a type of game event, a set of one or more possible
actions. For example, an event chain for an adventure game
might be:

• Press arrow keys to move player
• Move player over key to collect it
• Move player over door to unlock it
This chain of events doesn’t describe where the key or

door is in relation to the player, or how much movement is
required to get there, or whether other obstacles (like enemies)
will be encountered along the way. It doesn’t mention these
because these can only be known by looking at a ruleset
in the context of a particular level. In the absence of any
levels, what this action chain expresses is that there is some
logical sequence of actions that change the abstract state of
the game from a starting state into an end state. It expresses
a weak endorsement that this ruleset should yield solvable
level designs. Below, we describe the algorithmic process for
generating a set of action chains for a particular end condition.

19



When analysing a ruleset, ANGELINA will generate a set of
action chains for every end condition in the ruleset.

C. Outline of Algorithm

ANGELINA begins by creating a new empty action chain,
and adding a single action to it: the trigger of the end condition
it is solving for. It then adds this action chain to an empty list
of action chains called the open list – this contains every action
chain that is neither complete nor abandoned. The process
of generating action chains terminates when the open list is
empty: that is, every action chain derived from the original end
condition has either completed successfully, or been removed
and ended in failure.

ANGELINA picks the first chain in the open list, and
examines the last trigger in the chain. If this trigger is a player-
initiated action, then the chain is considered to be complete,
and it is added to a list of action chains called the complete
list, and ANGELINA proceeds to the next chain in the open
list. If this trigger is not player-initiated, then it becomes the
current goal – ANGELINA must now find all possible ways
to extend this chain by finding things that cause the goal to
trigger.

To do this, ANGELINA uses a lookup table that maps
triggers to enabling rules. For a given trigger, this table lists all
rules which could, in some circumstance or other, activate the
trigger. For example, the trigger COUNTEQUAL X Y activates
when the number of objects of type X is equal to the integer
value Y. It can be caused by the rules SPAWN X, which could
increase the number from a value less than Y towards Y, or
DESTROY X, which could decrease the active count from
some value greater than Y towards Y.

For each enabling rule, ANGELINA binds the variables in
the rule to the specific piece types defined in the goal trigger.
For example, if our goal trigger is COUNTEQUAL cake 2,
we search the lookup table for the unbound form of the
rule, COUNTEQUAL X Y. When we find the enabling rules
DESTROY X and SPAWN X, we rebind X back to cake
from the example rule, to derive the two bound rules:
DESTROY cake and SPAWN cake. We call these bound
rules subgoals.

For each subgoal, ANGELINA now searches the game
ruleset for any rule which contains the subgoal in its body.
Every matching rule represents one possible way the goal
trigger can be activated, and thus represents one possible
way to extend the action chain. Since there may be multiple
subgoals, and each subgoal may match multiple rules, we can’t
simply extend the current action chain we are working with.
Instead, when ANGELINA finds a rule containing a subgoal,
it duplicates the current action chain it is considering, adds
the matched rule’s trigger to the end of the action chain, and
adds this new chain to the open list. When this new chain
is later considered by the algorithm, this newly-added trigger
will become the new goal it attempts to expand.

ANGELINA creates duplicate action chains for each rule
it finds that triggers a subgoal. When it has done this for all
of the subgoals, or if no subgoals are found, it removes the

current action chain from the open list and discards it (since
it has now either been replaced with one or more duplicates
of itself that extend the chain, or found no possible extensions
and is thus not a usable action chain.

D. Interpreting Action Chains

ANGELINA creates action chains for every end condition
when analysing a ruleset. It can use both the contents and
quantity of discovered chains to analyse a ruleset and decide
whether it should be kept or discarded. The current version of
ANGELINA requires a game to have at least one action chain
which leads to a win condition, and one action chain which
leads to a loss condition, although this is not a requirement
of games in general (for example, a puzzle game like A Good
Snowman Is Hard To Build [12] does not have a loss condition
in a traditional sense).

We don’t require all end conditions to be reachable, as long
as the game can be both won and lost. This approach suits the
current version of ANGELINA, but it does have implications
for other approaches to automated game design, and future
versions of this system. For example, the automatic generation
of tutorials or help text is often based on an analysis of the
game’s ruleset. If game logic is expressed in the rules which
are not used in completing the game, or if there are objectives
which cannot be achieved, this might produce confusion in
automatically generated help text, unless such a system also
used action chains to analyse a ruleset in advance.

Another detail that may not be applicable to all systems is
the requirement that all actions chains start with player action.
In ANGELINA’s current game engine play is turn-based and
game logic is applied at regular intervals when a turn is ended.
We have built the system with the assumption that a turn only
ends when the player takes some kind of action. In a real-time
game the game’s logic is executed regardless of player input;
taking action in Pac-Man is not required for the ghosts to hunt
down and kill the player. Thus, for other game systems action
chains may not have to start with player input, and may have
secondary termination conditions (such as NPC behaviours).

V. LEVEL CONSTRAINT INFERENCE FROM ACTION
CHAINS

In the previous section we described how action chains
can provide insight into whether a ruleset supports valid play
leading to end conditions. One of the strengths of the use
of action chains is that they are agnostic to the content of
the game itself. They assume nothing about the content of the
levels, instead the technique looks for any possible permutation
of game events that might lead to a particular end condition.
However, while developing this system we realised that the
action chains themselves contain contextual information that
can be repurposed later in the design process, because they
point to specific ways in which the game can be completed.
This information not only helps us filter out rulesets – it can
also be used to constrain the level design space and thus make
that process more efficient as well.
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By way of example: consider a (trivially simple) game with
one end condition: the player wins if there is exactly one
cake object in the game world. There are two rules: if the
player presses an arrow key, they move a person object in the
direction they press; and if a person object overlaps a cake,
they destroy it. By describing the rules in plain English, the
reader may have already deduced that the only valid levels
for this game are ones where there are two or more cakes
in the world at the beginning of the game – if there is one
cake the player automatically wins, and if there are no cakes
then the player cannot win, because no rule allows for us to
create cakes. This constraint on the game’s level design is
intuitive and obvious, and it would be helpful to find a way
for ANGELINA to infer this automatically.

To do this, we annotate action chains as they are generated,
with constraint information that applies to that action chain
only. To return to an earlier example, consider the goal trigger
COUNTEQUAL X Y. This trigger has two enabling rules:
SPAWN X and DESTROY X. In the action chain generation
phase we consider both as equally valid routes through the
game space, but in reality there are hidden requirements on
these routes being valid: SPAWN X can only bring about
COUNTEQUAL X Y if the number of X currently in the game
is less than Y, and mutatis mutandae for DESTROY X. We
attach these conditions to every enabling rule in the lookup
table. These relationships are written by hand, and while this is
not time consuming, it is a clear point of human involvement
in the system. We aim to investigate automating this in the
future.

Whenever ANGELINA extends an action chain using an
enabling rule, it also adds any attached conditions to the action
chain as well. Thus, every action chain also includes a list
of constraints which must apply to a level in order for the
action chain to be valid. These constraints do not affect the
ruleset generation phase (currently – we discuss this later, in
section VII) but they are used to constrain the generation
of levels. Prior to the use of level constraints, ANGELINA
would generate levels randomly, and then use an evolutionary
system with playouts to search the level design space. Now,
ANGELINA can reduce the size of the level design space
before and during evolution. In the cake example above,
ANGELINA can understand that there must be at least two
cakes in each level design, and can filter its initial population,
as well as the results of crossover or mutation, to ensure these
constraints are upheld.

VI. DESIGN SPACE ANALYSIS

In the previous sections we explained that action chains help
to filter and reduce the search space for both ruleset design and
level design. To assess the impact our approach has on on the
design spaces in question, we performed some experiments,
which we describe here. As a preface to the results we give, it
is worth noting that automated game design systems are highly
bespoke in nature: in terms of the types of game they aim to
generate; in terms of the engine they use to develop games in;
in terms of the algorithms they use to generate game content

and the representation they choose for each part of the game.
The results we provide here are unique to ANGELINA in that
sense, but we believe the scale of the results speaks to the
impact of our technique, and suggests it is widely applicable
to other automated game design systems.

A. Ruleset Design Space Reduction

Our first experiment aimed to assess what proportion of the
generative ruleset space is filtered out by using action chains.
We sampled 50,000 random rulesets generated by ANGELINA
with no filtering, and then evaluated each ruleset against the
simple filters described in section IV-A, and then again using
the action chains described in section IV-B. Using simple
filters removes 9.6% of the rulesets sampled, while using
action chains and selecting only games which support at least
one winning and one losing action chain removes 99.5% of
the ruleset samples, a tenfold increase.

This state space reduction speaks for itself, but we can
also consider it in terms of time cost also. Evaluating 50,000
rulesets with our static analysis approach took 17.3 seconds
on a 2017 MacBook Pro, which filtered out over 49,500
bad rulesets without evaluating them through level design or
playtesting. To contrast this, we sampled ten exploratory level
design processes from ANGELINA (exploratory level design
is currently its next phase after ruleset design, to evaluate
a ruleset by attempting to design levels for it). On average,
designing a single level for a ruleset took 4 minutes and 24
seconds. Being able to rapidly cull not just unplayable rulesets,
but rulesets without proper direction or goals, saves us huge
amounts of time by focusing the next phase of game design
on more promising rulesets.

Removing 99.5% of rulesets may sound drastic, and may
lead the reader to wonder whether the remaining rulesets are
quite similar or repetitive, but in fact the remaining 0.5% is
still a huge design space with a wide spectrum of good and
bad games in. A common approach to content generation for
games is to restrict the design language or source corpus in
such a way that most of the resulting possibility space is high-
quality, but derivative of the source material (for example,
an earlier version of ANGELINA remixed handwritten rules
in such a way that there were no unplayable combinations).
Here we take the opposite approach, by giving ANGELINA a
generic, high-level, parameterised design language with a vast
possibility space. The advantage here is that there are many
games in this space that have never been conceived of by
us, and some that have never been conceived of by any game
designer. But the tradeoff is a much lower ratio of good to bad
games. Removing 99.5% of these rulesets is simply the first
step towards tackling this problem, but the remaining 0.5%
still requires a lot of filtering and observation, and will only
continue to grow as we expand ANGELINA’s design language
in the future.

B. Level Design Space Reduction

In section V we described how action chains could also
identify constraints for the level design process. To understand
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Fig. 2. A graph showing the highest fitness of the population throughout
the evolutionary design of a level, sampled across 10 different level design
sessions for 10 different games.

how impactful these constraints are, we assessed what propor-
tion of the level design space these constraints typically filter
out. Because every game has different constraints, we used
ANGELINA to generate ten game rulesets, and then generated
50,000 levels for each game, with no constraints applied. On
average, the constraints filtered out 76% of the sampled levels
(ranging from 67.6% to 89.7%). By relaxing our constraints on
the level generation to only require they satisfy the constraints
for winning the game (for example, a tutorial level which has
no lose condition) this still filters out 71% of the sampled
levels on average (ranging from 55.3% to 89.7%). The range
of results is derived from from how varied each ruleset is –
some games may have rulesets with very specific requirements,
whereas other games may rely more on the arrangement of
pieces rather than their specific quantity.

ANGELINA uses an evolutionary system to design levels
for its games, and an MCTS player to playtest levels. The
evolutionary system uses Currently the system uses a simple
objective function based on the length of the shortest solution
path found by the MCTS player. This by no means relates to
level or game quality in general, but we have found it to be a
good initial guideline towards finding average-quality puzzle
levels. We leave the question of fitness function selection for
level design to a future paper. We apply level constraints both
during the generation of the initial random population, and
during the evolutionary process when levels are regenerated
or crossed over. To assess what impact this has on the fitness
and convergence of the evolutionary system, we ran some
additional experiments in which ANGELINA designed a level
for the same both with and without constraints.

For these experiments, we took ten game rulesets gener-
ated by ANGELINA, and generated levels for each under
three different conditions: fully constrained, where constraints
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Fig. 3. A graph showing average population fitness throughout the evolution-
ary design of a level, sampled across 10 different level design sessions for 10
different games.

were applied to the initial population and during evolution;
partially constrained, where constraints were applied only at
the initial population generation; and unconstrained, where no
constraints were applied at all. We measured both the highest
fitness at each generation, and the average fitness of the whole
population, and averaged the results for each across the ten
different level design sessions. The evolutionary setup for the
experiment was the same as a normal exploratory level design
task in ANGELINA: a population of 12 levels, run for 5
generations, with a 5% mutation rate and elitism.

C. Results Analysis

First, we discuss Figure 2 which shows the average fitness
of the whole population at each generation. We can see
that both partial and full constraints initially outperform the
unconstrained evolution, which is to be expected since they
both start with better-filtered populations. However, in later
generations the fully constrained system vastly outperforms
both partial and unconstrained runs. We can clearly see that the
repeated use of level constraints ensures a minimum baseline
of quality in the crossover and mutation operators, which
contributes to growth in the average fitness over time. By
contrast, the partially constrained system tends towards the
same performance as the unconstrained system, since over
time it is allowing levels into its population that potentially
violate the basic playability constraints.

Figure 3 shows the highest fitness scores for the three
experimental setups at each generation. We can see that both
partial and full constraint usage outperforms unconstrained
level evolution initially, but the partial constraints then slump
as it is unable to improve itself as rapidly as the fully-
constrained system. We can see that later generations do see
an increase in fitness, but much later than the fully-constrained
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system and with a lower end fitness. We can also see evidence
of the fitness plateauing for the fully constrained system
around a solution length of 17, which we discuss below. Both
graphs show that constraining the generation of levels in the
mutation, crossover and insertion of an evolutionary system
lead to higher-quality populations over time.

In the later generations of Figure 3 we see a plateau in
the fully constrained system. This is not a hard ceiling –
fitnesses as high as 26 have been recorded for a 4x4 grid
level design – but extremely high fitnesses tend to be less
reliable and more prone to collapse on repeated playouts. High
fitnesses can either be because the MCTS system has truly
found a stable, long solution; or because the MCTS playout
wasn’t able to properly solve the level and found a very long,
imperfect solution. In the latter case, given more iterations
or deeper rollouts the MCTS solver may find a drastically
shorter solution, and this can even happen on repeated MCTS
playouts with the same settings, since our playouts are not
seeded or retained across generations. This means that the
plateau represents a soft limit, beyond which it is hard to find
reliably longer puzzle solutions for a 4x4 grid.

Solution length works well as a metric for ANGELINA at
the current time, but its unpredictability at extremely high and
low values means that in the future we hope to replace it with
a more complex system that allows ANGELINA to create and
select its own fitness metrics for level and game design. For
now, however, solution length acts as a good guideline and
has led to the creation of several games which were well-
received by players – the version of ANGELINA described
in this paper recently designed games live at EGX Rezzed, a
major games expo in the UK, and had its games played by
thousands of expo attendees. We’re confident in using it as
a guideline for level design for now, and believe these fitness
graphs help demonstrate the effectiveness of design constraints
on producing higher-quality levels.

VII. DISCUSSION AND FUTURE WORK

The work described in this paper represents our first steps
towards rapidly culling design spaces using automated rea-
soning techniques. There are several aspects to this work that
bear discussion in its current state, and in addition we have
identified areas of future work we intend to explore.

A. Identifying Complex Contradictions

Earlier in the paper we described a simple example game
where the player controls a hungry character who eats cakes by
moving into them. The act of eating cakes might be expressed
as the following rule:

"trigger": "OVERLAP player cake",
"events": [
"DESTROY $2",

]

In the example earlier in the paper, the game is won when
a single cake is remaining in the world. An action chain for
this game can be derived as follows:

• Press arrow keys to move player
• Move player over cakes to destroy them
• Win when one cake remains

In addition, this generates a constraint that there must
initially be two or more cakes in any given level. However,
now suppose we adjust the rule for cake destruction as follows:

"trigger": "OVERLAP player cake",
"events": [
"DESTROY $2",
"SPAWN cake"

]

Now, when the player destroys a cake, another cake ran-
domly spawns elsewhere in the game. We can easily intuit
here that this game is no longer winnable: the only action in
the game that reduces the number of cakes also increases it,
meaning it can never be reduced or increased towards another
target value. However, our current method of action chain
generation doesn’t take this into account. There are many
other examples of subtle contradictions that are hard to detect:
for example, a loss condition which is satisfied before a win
condition (consider the cake-eating game, except we lose if
there are exactly two cakes remaining).

We have plans to solve this problem by extending the level
design constraints system that is already in place. This will
allow us to express more complex constraints that can be
carried up the action chain that allow us to capture notions like
the fact that this action chain should result in a net decrease of
the quantity of a certain object type. We are also considering
exploring more formal approaches to analysing these rulesets
(see Automated Reasoning, below).

B. Intuiting Design Knowledge

Throughout the development of ANGELINA we have con-
sulted with game designers as well as taken part in the practice
of game design ourselves. One of the interesting phenomena
associated with game design is the sense of intuition developed
by game designers that allows them to view the rules of a
game, in the absence of playable content such as a level or
puzzle, and infer properties the game has or simple affordances
the game’s ruleset offers. Designers use this when prototyping
games, when considering extensions to games or trying to
rebalance or fix design problems, and also use it to evaluate
games designed by others.

The inferred level constraints constructed from event chains
represent a very basic form of intuition about a game. They
don’t represent precise knowledge gained from playtesting, nor
do they represent a priori knowledge about game design in
general: they represent a way for an automated game designer
to rapidly gain simple guiding principles about a particular
game. In this paper we’ve already shown that these have
value as a way of reducing the complexity of search tasks in
automated game design, but from a Computational Creativity
perspective this may be an impactful way for the system to
demonstrate understanding and insight in game design.
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We are interested in pursuing these ideas further, and seeing
what other kinds of intuition-like knowledge can be gleaned
from analysing rulesets prior to engaging in level design.
Designers can often hypothesise about the impact of a change
on a ruleset, or sketch out what affordances a particular
rule might have. While this arguably involves some kind of
rapid mental simulation, as well as an accumulated history
of thousands of hours of playing and experiencing different
kinds of game, it is nevertheless a fascinating skill that would
be hugely beneficial to automated game designers. Not least
because it speeds up the prototyping phase of game design,
and reduces the need to exhaustively playtest ideas, but also
because it provides new opportunities to frame and describe
the design process to others, which is a crucial idea that
underpins a lot of work in Computational Creativity [13].
Conveying intuition and hypotheses to people as a motivation
for work could have a huge impact on the perception of
automated game designers – not just by audiences of players,
but also by people within the games industry who might be
working with such software one day as co-creators [14].

C. Automated Reasoning

Our analysis process currently relies on structures such as
lookup tables to bridge the semantic gap between language’s
keywords (like DESTROY) and their underlying meanings
(reducing the quantity of something). ANGELINA’s domain
specific design language was created with readability in mind,
ease of authoring, and ease of automatic modification – we
didn’t anticipate the need to have the language formally
analysed, and so this process is not always straightforward
and reasoning about more complex properties of a game gets
increasingly difficult.

In the future we are considering building a model of
ANGELINA’s game engine that would allow ANGELINA to
formally specify its games and then reason about their prop-
erties. Thus instead of looking up the fact that DESTROY X
reduces the number of X objects in the world, it could reason
about the actual impact that keyword has on a concrete model
of a game, and use such a model to resolve complex conflicts
within a ruleset or identify deeper constraints implied by the
game. Work by Martens [15] and Smith [16] show different
approaches to applying logical representation to game systems,
which we plan to take as inspiration.

VIII. CONCLUSIONS

In this paper we describe how applying abductive logic to
game rulesets can greatly reduce the size of a game design
space, by filtering out rulesets that have design deficiencies,
as well as providing insights into the game ruleset that can
constrain the space of possible level designs. We showed that
by applying action chain filtering to ANGELINA, our auto-
mated game design system, we were able to cull over 99.5%
of the total ruleset possibility space, and 75% of the average
total level design possibility space. This enables ANGELINA
to work with much less game design knowledge supplied a
priori in terms of game templates, and instead work through

a large possibility space to identify interesting valid games,
and design levels that demonstrate a better understanding of
the ruleset in question.

Automated game design is a major challenge for game
AI research, identified as one of the frontier problems in
the field by a recent panorama paper [17]. The field has
many challenges, but chief among these is the multiplicatively
vast design space that results in combining generative tasks
like level design or ruleset design. Developing new ways
to cut down the size of these possibility spaces, in order
to analyse more deeply the promising subsections of these
spaces, will help the field advance further and hopefully impact
neighbouring research efforts in general game playing and
generative systems.
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Abstract—We propose the concept of intelligent middle-level
game control, which lies on a continuum of control abstraction
levels between the following two dual opposites: 1) high-level
control that translates player’s simple commands into complex
actions (such as pressing Space key for jumping), and 2) low-
level control which simulates real-life complexities by directly
manipulating, e.g., joint rotations of the character as it is done
in the runner game QWOP. We posit that various novel control
abstractions can be explored using recent advances in movement
intelligence of game characters. We demonstrate this through
design and evaluation of a novel 2-player martial arts game
prototype. In this game, each player guides a simulated humanoid
character by clicking and dragging body parts. This defines the
cost function for an online continuous control algorithm that
executes the requested movement. Our control algorithm uses
Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
in a rolling horizon manner with custom population seeding
techniques. Our playtesting data indicates that intelligent middle-
level control results in producing novel and innovative gameplay
without frustrating interface complexities.

Index Terms—game control, physically-based simulation,
multi-agent systems, online optimization, continuous control

I. INTRODUCTION

Game control in present video games can be divided into
high-level and low-level control [1]. In high-level control, the
player is able to trigger actions such as punch or kick with
a simple keypress. In contrast, there are low-level control
approaches where the player directly manipulates the game
system simulation. For example, using this approach in a
martial arts game could mean that the player has to determine
the torques applied to each joint of the character’s body to
produce a punch. The fighting game Toribash [2] and the
runner game QWOP [3] are two of the games that have
successfully used this kind of low-level control.

Low-level control allows maximal expressiveness, diver-
sity/complexity, and control in game animations; it can also
remove the cost of animation production in game projects.
However, it usually makes the character control extremely dif-
ficult since it requires the player to manipulate several degrees
of freedom with high precision, often under time pressure. On
the other hand, games with high-level control usually come
with a set of pre-defined smooth and natural animations. The
downside is that the animations are costly to produce, and they
do not allow for interesting novel movements to emerge [1].

In this paper, we propose intelligent middle-level game
control by combining usability and flexibility of high-level

and low-level controls, respectively. Using this approach, the
player’s commands are more abstract and simple than low-
level control, but more detailed and expressive than high-level
control. To make this possible, we utilize recent movement
artificial intelligence (AI) techniques for physically-simulated
characters. To clarify this definition, consider the martial arts
game example again. Suppose the player can produce the
command ”use your left hand to push the opponent’s right
hand away” by left-clicking on the opponent’s right hand.
Then, the game automatically computes and then applies
the required torques for producing the requested animation,
adapting to the current physical state of the characters. In other
words, player commands cause the animations to be generated
on the fly and no pre-recorded animations are used. The main
advantages of intelligent middle-level control are as follows:

1) The synthesized movements are novel and emergent
similar to low-level control, but the player can focus
on more strategic planning instead of micro-managing
the simulation.

2) The complexity of a simulated human body’s dynamics
can create interesting challenges [1]. Both novelty and
complexity are desirable from the point of view of
inducing a feeling of curious interest in the player [4].

3) Since movement is not limited to pre-defined anima-
tions, more expressive and precise game controls can be
designed and implemented.

Middle-level control has been explored before in a few
games such as Octodad [5] and the original PC version of
Rag Doll Kung Fu [6], albeit with less control intelligence.
The games typically use some form of inverse kinematics
which limits the behaviors that can be created. We demonstrate
that intelligent middle-level control with online trajectory
optimization allows realistic handling of physical constraints
such as joint limits and non-penetration of colliding bodies.

We believe that intelligent middle-level control has the
potential for introducing various novel gameplay. To support
this claim, we developed a novel 2-player martial arts game
prototype in which the players are able to control their
physically-based humanoid characters through giving middle-
level commands. We also developed an online continuous
control trajectory optimization algorithm that computes the
simulation control parameters needed to produce the requested
movements. Screenshots of the game are shown in Fig. 1
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(a) Task = Null (b) Task = Punch in head using right hand (c) Task = Move right hand to specified position

Fig. 1: Screenshots of our 2-player martial arts game prototype with 3 different tasks. The left character is controlled by the
local player.

and a gameplay video is available online1. We evaluated this
prototype by running a user study with 12 participants (6
human-vs-human pairs). The players reported that the interface
enabled them to use various martial arts strategies, and that
low-level controller was able to produce their commands with
high precision.

The rest of the paper is organized as follows: A brief
overview of literature is given in Section II. Section III
explains the details of intelligent middle-level control and our
martial arts game prototype. Section IV describes the details
and results of the user study that was run for evaluating
intelligent middle-level control in our game. Finally, Section
V gives conclusions and Section VI analyzes the limitations
and future lines of research in this work.

II. RELATED WORKS

In this section, we first give an overview of recent methods
for synthesis and control of physically-based character anima-
tion, followed by game control interface research relevant to
this work.

A. Character Movement Synthesis

Traditional animation technology has limited movement
expressiveness and emergence, except for simple low-level
simulation control (e.g., Toribash [2] and QWOP [3]). How-
ever, this is changing due to deep reinforcement learning and
novel real-time movement optimization methods, which can
endow game characters with expressive movement intelligence
not limited to pre-defined animations. We refer the reader to
[7] for a thorough introduction to character animation and
physically-based simulation along with a survey on common
techniques.

Simulation-Based Methods: In physical environments, be-
havior of objects and their interactions is usually difficult to
model and predict. One of the most common approaches for
character control in these environments is to use simulation-
based methods. The basic idea behind these methods is simple:
generate a number of action sequences, evaluate them using
forward simulation and computing some cost function, and

1https://youtu.be/rnsSWY7HZJA

finally, choose the action sequence that minimizes the cost
function.

If the simulation has differentiable dynamics, one can use
dynamic programming version of gradient-based optimization
[8] to control a variety of systems ranging from an inverted
pendulum to a full humanoid. With black-box simulation, simi-
lar results were obtained by Sequential Monte Carlo sampling
of control trajectories encoded as cubic splines [9]. Instead
of a spline parameterization, Control Particle Belief Propaga-
tion (C-PBP) uses a Markov Random Field factorization for
both sampling and smoothing trajectories [10]. Rajamäki and
Hämäläinen [11] have recently shown that adding supervised
learning on top of Monte Carlo tree search (MCTS) methods
[12] can yield both robust control and low movement noise.

Several simulation-based methods have been developed us-
ing evolutionary computation. A recent study has used graph
search along with Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [13] to develop an offline controller for
solving humanoid wall climbing problems [14]. It has been
shown that CMA-ES can be used in a rolling horizon manner
in single-agent control problems with continuous states and
actions [15] and 2-player games with discrete actions [16].
Another study has shown that performance of rolling horizon
evolutionary algorithms can be improved significantly using
simple population seeding techniques [17]. We are investi-
gating this approach in the context of a more complex 2-
player simulation with continuous actions and complex contact
dynamics.

Reinforcement Learning: Reinforcement learning (RL) is a
field of machine learning that studies how an agent should
take actions in an environment in order to maximize rewards.
In the past few years, RL has received a lot more attention
due to remarkable results of Deep Reinforcement Learning
(DRL) in Atari games [18] and the game of Go [19], [20].
These advances have inspired several breakthroughs in RL for
continuous control. Mixture of actor-critic experts (MACE)
accelerates learning by developing separate pairs of actors and
critics such that each pair learns some part of the movement
[21]. Schulman et al. [22] introduced a method called Trust
Region Policy Optimization (TRPO) that uses a surrogate ob-
jective function and is able to learn several complex tasks such
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as swimming and walking. Another method called Proximal
Policy Optimization (PPO) has managed to outperform TRPO
by clipping the surrogate objective function [23]. The most
important limitation of DRL methods is that they need a lot
of simulation data and training time to learn. This can be a
problem especially when iterating the reward function design.

Data-Driven Methods: Studies have shown that data-driven
methods can be effective for generating robust and smooth
movements. One of the studies has shown that kinematic
controllers can be constructed by learning a low-dimensional
space from motion capture data and interpolating in that space
[24]. Motion matching is a similar kinematic method that
uses a dataset of pre-recorded animations and in each frame
finds the closest pose to the character’s current pose such that
desired future movement is produced [25]. Holden et al. [26]
use convolutional autoencoders on a large motion capture data
set to re-produce and interpolate recorded motions. Another
study breaks control problem into short time fragments (0.1s
in length), and learns a linear feedback control strategy for
each fragment [27]. A more recent method, called DeepLoco,
uses a combination of high-level and low-level controllers
and is able to produce stable gaits given some reference
motions [28]. Phase-functioned neural network is a recent
neural network architecture that uses cyclic functions for
computing the weights and is trained using a large dataset of
pre-recorded animations [29]. Although data-driven methods
are able to produce high-quality movements, it can be difficult
to obtain the training data, and the resulting movement is
limited by the data.

B. Game Control Interface

There is a lot of research on alternative input devices and
interfaces, e.g., for controlling games with body movements
[30]–[32]. On the other hand, some studies have proposed
using traditional input devices but novel input-avatar mappings
[1], [33].

A recent study has used predictive simulation for developing
6 novel game prototypes using low-level control of physically-
based simulated characters [1]. Our work is close to this work
as we solve the same problem of enabling expressive control of
fully physically-simulated characters without excessive control
difficulty. They propose predictive visualizations as the solu-
tion, whereas we explore the possibility of offloading some
complexity onto the movement optimizer.

It can be argued that middle-level control is not an entirely
new concept. For example, games like Octodad [5], and the
original PC version of Rag Doll Kung Fu [6] have used
inverse kinematics style control. Compared to Toribash [2]
and QWOP [3], they provide the player with a slightly higher-
level interface of directly controlling hand and feet locations
instead of joint rotations. Our contribution is in demonstrating
how modern physically-based optimization methods for online
continuous control provide novel tools for exploring game
control interfaces and abstractions.

III. METHOD

In this section we describe our 2-player martial arts game
prototype demonstrating the intelligent middle-level control
concept. At Section III-A, the details of reference model are
explained. Then, at Section III-B we explain the design of
intelligent middle-level control in our martial arts game pro-
totype. At Section III-C, the structure of low-level controller
is introduced. Finally, the network architecture of our martial
arts game is explained in Section III-D. The values of all
parameters introduced in this section are reported at Appendix.

A. Character Model

Characters in this game are upper-body humanoid characters
with 16 actuated degrees of freedom (DOF) as shown in Fig.
2. Each character has 9 bones that are connected using 3-
DOF ball-and-socket or 1-DOF hinge joints. We use Open
Dynamics Engine (ODE) [34] for physics simulations.

Fig. 2: Upper-body character model in its reference martial
arts pose.

B. Novel Middle-Level Control for Martial Arts Games

The overall schema of our control system is shown in Fig. 3.
In each frame, the current task of the character is determined
and then a low-level controller plans a sequence of actions
in order to complete the task. Then, the first action in the
sequence is executed and the simulation goes to the next
frame. This form of online optimization, i.e., 1) finding a
multi-step solution, 2) applying the initial step of the solution,
and 3) moving/rolling the horizon forward, is called the rolling
horizon control (also known as receding horizon control) [35].
Note that the character is not necessarily given a new task in
each frame in which case the task from previous frame is
considered as the current task.

Tasks: Characters can have 2 main tasks: 1) Move hand
to a specific position, and 2) Punch opponent either in the
head or in the chest. The Move task is enabled using mouse
drag in which case the desired position is determined based
on hand’s current position and mouse drag direction. A single
click on opponent’s head or chest enables the Punch task for
those parts. Both tasks can be executed using either hands
depending on the clicked mouse button (i.e., the left click for
the left hand and the right click for the right hand). There is
also a dummy Null task defined for specifying a character with
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Fig. 3: Core loop in intelligent middle-level control.

no tasks. Character’s task is set to Null if 1) current task is
completed, or 2) time spent on task has passed some threshold
τMax Task.

Heads-Up Display (HUD) for tasks: The current task of
character is indicated using a simple color coding as follows:
1) when the character is given a punching command, the
operating hand and punching target are highlighted using green
color, 2) when a successful punch is executed, the punching
target will become red, and 3) when a moving command is
set for one of the hands, a yellow line connects the current
position of the hand to its desired position.

Additional input keys: Each player can use W/S keys to
move his/her character on a horizontal line. We added this
ability because in martial arts it is very important for the
characters to adjust distance to their opponent. Finally, each
player can rotate the camera around his/her character using
A/D keys.

C. Low-Level Controller

In each frame, we need a low-level controller for achieving
the character’s current task. To this end, we developed an
online simulation-based algorithm for physically-based contin-
uous control. This algorithm uses CMA-ES in a rolling horizon
manner along with custom population seeding techniques
and outputs the best found action sequence up to a fixed
horizon τHorizon. CMA-ES is a common evolutionary algorithm
that assumes a multi-variate Gaussian distribution as the
underlying data distribution. In each iteration of CMA-ES, a
new population is generated using some assumed distribution.
Then, after evaluating the fitness of each individual, CMA-ES
updates mean and covariance matrix of Gaussian distribution
by selecting a subset of population with highest fitness values
[13]. Population seeding means that in each iteration of CMA-
ES, some proportion of the population is generated using
external distributions. To the best of our knowledge, this is the
first time that CMA-ES is used in a rolling horizon manner for
online control of 3D physically-based simulated characters.

We first tried using the combined tree search and supervised
learning approach of Rajamäki and Hämäläinen [11], but
found that it had difficulties generating extreme dynamic
movements such as punches. We then tried our present ap-
proach, as the combination of CMA-ES and a spline param-
eterization was successfully utilized in the dynamic climbing

movement synthesis of Naderi et al. [14]. They however use
CMA-ES for offline optimization instead of in online rolling
horizon manner.

Overall Search Method: In each frame, we run CMA-ES
update nCMA-ES Updates times. In each update, a population of
size nPopulation Size is generated using mean and covariance of
CMA-ES and 2 seeding techniques. Then the fitness value
of each population member is computed and the CMA-ES
updates its mean and covariance. After repeating this process
nCMA-ES Updates times, first action in the best found action
sequence is returned as the character’s next action.

Spline Parameterization: We parameterize each action se-
quence using a cubic spline of nSpline Points = 3 control
points. This reduces the problem dimension significantly since
we do not need to optimize each individual action in the
sequence. Plus, interpolation between control points enforces
coordination between body joints which results in smooth
movements. We also optimize the time variable of each control
point; so each spline is defined using 3 × (16 + 1) = 51
parameters.

Population Seeding Techniques: In each CMA-ES update,
a fixed number of splines are generated using a multi-variate
Gaussian distribution. The standard deviation of this distribu-
tion is σPose and the mean is determined based on the following
2 seeding techniques: 1) nLast Best splines are generated by
using the best spline found in the last frame as the mean.
Note that at first CMA-ES update of each frame, we need to
shift the last best spline by one frame so it becomes valid in
the current frame. 2) nDefault Pose splines are generated by using
the default martial arts pose shown in Fig. 2 as the mean.

Fitness Computation: All action splines are evaluated in
parallel using forward simulation up until some horizon τHorizon

by assuming time step of ∆t = 1/30 seconds and computing
the reward (negative cost) in each time step. At the end of
forward simulation, the fitness value of each action spline is
equal to the average fitness value of all visited states during
its simulation. The fitness value of a state s is computed by
summing over the negation of 3 cost components as follows
(the goal is to maximize the fitness):

Fitness (s) = − (CostPose (s) + CostMove (s) + CostPunch (s))
(1)

where values of cost components CostX (s) are computed as
follows:

1) CostPose (s): Cost of pose deviation is computed by
finding the angle between current rotation of each bone
(qbcurrent) and its desired rotation (qbdesired) as shown in
the reference martial arts pose in Fig. 2. The cost is
computed as:

CostPose (s) =
∑

b

(
6
(
qbcurrent, q

b
desired

)

σPose

)2

(2)

where σPose is used for indicating how much difference
in rotation can be tolerated for each bone.
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2) CostMove (s): Cost of moving hand h is simply defined
using the distance between current position phcurrent and
desired position phdesired of the hand as follows:

CostMove (s) =

(‖phcurrent − phdesired‖2
σMove

)2

(3)

where σMove is used for tuning the amount of tolerance
for difference between current and desired positions.

3) CostPunch (s): Punching is the most complicated cost
component in our work. In a good punch, the hand
touches the target with highest possible speed. Then
the hand should get back to its relaxed position quickly
so the character’s guard is not down for a long time.
In order to favor these movements, punching cost is
computed as follows:

CostPunch (s) =

1punch not happened? ·
(‖vhcurrent − vhdesired‖2

σHand Velocity

)2

−

1punch happened now? · PunchPower
(
vhcurrent

)
+

1punch happened before? ·
(‖phcurrent − phdesired‖2

σHand Relax Position

)2

(4)

where 1A is the indicator function and is equal to 1
if the condition A is true, and 0 otherwise. Current
and desired velocity of hand are denoted by vhcurrent and
vhdesired, respectively. Similarly, phcurrent and phdesired denote
current and desired position of the hand, respectively.
Similar to previous cost components, σHand Velocity and
σHand Relax Position determine the amount of tolerance for
difference between current and desired values of the
hand velocity and position, respectively. The function
call PunchPower

(
vhcurrent

)
maps current velocity of the

hand h to a number in the range [1000, 3000].

D. Network Architecture

One of the challenges for developing this prototype was
how to design the network architecture. A critical limitation
of previous multi-agent studies is that they mostly use compet-
itive self-play RL, which is very slow and unreliable to train.
We decided to run optimization in an interleaved manner to
double our computing power. Our architecture is shown in
Fig. 4. In this architecture, both the server and client do their
own simulations in parallel by running the low-level controller
on their devices. Then each player sends its next action to
its opponent device for final simulation. Due to floating-point
computation errors, the simulations on different devices are
very likely to deviate. For solving this issue, server sends
world state and score values to the client after its simulation
is done and the client will then synchronize itself with the
server.

Another important concern in this part was how partial
information is handled. Each agent stores opponent’s last
action spline. Then, when evaluating new candidate splines,

Fig. 4: Network architecture and interactions between server
and client.

opponent’s spline is simulated up until a fixed horizon
τOpponent Horizon that is smaller than planning horizon, i.e.,
τOpponent Horizon < τHorizon. We did this because it is similar
to real life where each character can anticipate movements of
other characters by some error.

IV. EVALUATIONS

A. Experimental Setup

We ran a user study involving 12 participants to assess the
potentials of intelligent middle-level control in our martial arts
game prototype. The participants had varying proficiency in
video games and martial arts. Screenshots of our 2-player
game are shown in Fig. 1 (each player controls the left
character on his/her display).

Scoring: Each successful punch is rewarded with 1 to 10
points depending on its impact. The winner is the first player
who gets 100 points.

Slow motion modes: The game was run in slow motion so
that players have enough time for planning their movements.
We hypothesized that our middle-level control interface could
create a strategic ”body chess” experience instead of a fast-
paced action game. However, the camera rotates in real-time
speed so the players are able to quickly adjust their point of
view to see possible openings for attacks. Since we were not
sure what is the right tempo for this game, we tested 3 different
slow motion modes in this study. The chosen speeds for slow
motion were 0.12x, 0.16x, and 0.2x. In order to find the best
slow motion mode, each pair of players played one match
with each slow-motion setting, with ordering of the settings
counterbalanced between pairs. For the 6 pairs, each possible
ordering was tested once.

Goals of User Study: The participants were asked to com-
plete a questionnaire about the most important strengths and
weaknesses of the interface. Since there are no games similar
to this interface, it was not feasible to conduct a comparative
quantitative evaluation. Thus, we designed the questionnaire
using open-ended and qualitative questions on the following
themes, with the goal of informing future work by both us and
other designers and researchers:

1) What kind of combat techniques does the game allow
the players to do?
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2) Does the game allow novel gameplay behavior to
emerge?

3) How much precision does the low-level controller have
in executing players’ commands?

4) Which slow motion mode is most suitable for achieving
fun gameplay involving high-quality martial arts move-
ments?

5) How can this martial arts interface be improved?

B. Results

Now we report the results obtained from 12 participants in
our user study. Empty answers and answers that were irrelevant
to the asked questions, are not included.

Slow Motion Mode: Slow motion modes of 0.12x, 0.16x,
and 0.2x were chosen by 1, 4, and 7 people, respectively. The
reported reasons are as follows:

1) The version with 0.12x speed does not produce fighting
experience as the punches do not seem to be effective.

2) In the slowest mode (0.12x), it is difficult to anticipate
the movements with good precision.

3) In two faster versions (0.16x and 0.2x), it is easier to
control the character and react to opponent’s moves.

4) The version with 0.2x speed is chosen by most of the
participants because it produces the feeling of action
more than other versions.

Our initial belief was that slower versions are easier to work
with as they allow more time for planning and anticipation
of movements. However, the results suggest that fast-paced
gameplay may be more important for martial arts games.

Strategies: The main strategies reported by participants are
as follows (some participants used more than one strategy):

1) Staying close and attacking aggressively (5 participants).
2) Using one hand for blocking and the other one for

punching (4 participants).
3) Waiting for opponent to attack and then going for the

punch (2 participants).
4) Looking for an open side and punching from that side

(1 participant).
5) Getting hands through the defense of opponent (1 par-

ticipant).
The variety of reported strategies and the gameplay videos

suggest that middle-level control provides a good testbed for
supporting different styles of gameplay.

Movement Precision: 8 participants reported that character
executes the commands with high precision. Other 4 partici-
pants stated that controlling character in slow motion mode is
difficult. This suggests that the control algorithm, despite its
flaws, is doing a good job in synthesizing dynamic movements,
but the control interface was not optimal for all participants.

Best Part: The participants were asked to name the best
part of their experience while working with the interface. The
answers are as follows:

1) Changing the color of body parts when punching (3
participants).

2) ”I like the idea of controlling both hands very much”.

3) ”The way that the hand and body part lit up when
punching”.

4) ”The distance between characters can be adjusted in a
good way”.

5) ”Seeing the game from the top”.
6) ”Fun to play against a friend”.
7) ”When it comes to punching, the character was quite

creative”.
8) ”Different camera angles, realistic approach”.
9) ”Seeing nice landed punches”.

10) ”Nice to win”.
Worst Part: The participants have reported the followings

as the worst parts of the interface:
1) Moving arms using mouse drag (3 participants).
2) ”Nothing was strikingly bad; but I had some trouble rec-

ollecting the right/left-click-equals-right/left-hand rule.
At times, I found myself just clicking whatever clicked”.

3) ”It felt like the camera was so close to the body that you
almost would like it to be first-person, and especially
the camera angle above the head felt like it was from
so much above it was not fun to use”.

4) ”Estimating of the time that it takes to hit”.
5) ”When trying to sweep the hands of the opponent away,

it wasn’t that responsive or intuitive to use”.
6) ”Both parties just end up punching each other, the game

is over very quickly, and is not that fun”.
7) ”Unexpected rise of points in opponent’s points when in

close fight”.
Suggestions for Improvement: The participants also made

the following suggestions for improving the game:
1) Adding game-like visual and audio effects (7 partici-

pants).
2) ”I think it would be cool if you could somehow with

mouse make your punches’ curves. Maybe dragging the
mouse to show the desired curve movement for the hits”.

3) ”Moving the entire body could be possible”.
4) ”Moving hands by clicking and not dragging would make

it easier to adjust hand positions”.
5) ”Allowing to crouch which makes it easier to block

punches”.
6) ”Allowing to hit arms to incapacitate the other player

from blocking punches using them”.

V. CONCLUSIONS

We have proposed the concept of intelligent middle-level
game control, demonstrated and evaluated through a novel
game prototype followed by a user study. This type of game
control allows the player to produce novel gameplay through
commands that are executed using a low-level controller
without using any pre-recorded animations. In our 2-player
martial arts game, each player controls a physically-based
simulated character by giving commands such as ”punch in
the chest using the left hand”. Then a low-level controller
executes the commands using a real-time control algorithm.
Our online continuous control algorithm uses rolling horizon
CMA-ES along with custom population seeding techniques.
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We evaluated this prototype by running a user study involv-
ing 12 participants. The results show that the interface allows
players to come up with various strategies for fighting. The
participants have also reported that low-level controller is able
to execute the commands with high precision. The users had
some difficulties in mastering some of the mechanics such as
camera movement and the Move task. However, we believe
that the interface has potential for further research and novel
game experiences.

VI. LIMITATIONS AND FUTURE WORK

Full-Body Humanoid Characters: Our control algorithm is
not currently robust enough to handle full-body humanoid
characters in multi-agent environments. We have tested the
algorithm successfully in locomotion tasks and single-agent
settings. However, heavy perturbations make maintaining bal-
ance a very complicated problem. Since using legs is very
important in martial arts, enabling this framework to work with
full-body humanoid characters is a crucial direction for future
work. Full-body characters should also provide enough realism
to make the system useful for cognitive, strategic practicing
of real martial arts, which we intend to investigate in future
user studies.

Interface Design: Some reported that they prefer to see
the movements in normal speed after they have given a
command. However, most of the participants have stated that
this character control system is fun and interesting. We are
investigating possible ways for improving this interface.

Machine Learning: Currently our control algorithm does
not apply any kind of machine learning for stabilizing move-
ments. We have already got promising results by adding neural
networks on top of our control algorithm in single-agent
settings. Our tests show that adding machine learning can
be a good approach for reducing sampling budget. Therefore,
we believe that using machine learning is one of the low-
hanging fruits of this work. On the other hand, being able
to function without learning helps as it enables fast iteration
when designing and testing the interface design.

Other Game Genres: In this work we evaluated intelligent
middle-level control only in the context of martial arts games.
A reasonable extension to this work is to apply this idea
to other games in the sports genre where the quality of
movements is important.
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APPENDIX

Table I shows the details of all important hyperparameters
used in this study.
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Abstract—We present an approach to learn and deploy human-
like playtesting in computer games based on deep learning from
player data. We are able to learn and predict the most “human”
action in a given position through supervised learning on a
convolutional neural network. Furthermore, we show how we can
use the learned network to predict key metrics of new content
— most notably the difficulty of levels. Our player data and
empirical data come from Candy Crush Saga (CCS) and Candy
Crush Soda Saga (CCSS). However, the method is general and
well suited for many games, in particular where content creation
is sequential. CCS and CCSS are non-deterministic match-3
puzzle games with multiple game modes spread over a few
thousand levels, providing a diverse testbed for this technique.
Compared to Monte Carlo Tree Search (MCTS) we show that this
approach increases correlation with average level difficulty, giving
more accurate predictions as well as requiring only a fraction of
the computation time.

Index Terms—deep learning, convolutional neural network,
agent simulation, playtesting, Monte-Carlo tree search

I. INTRODUCTION

Within the recent years, game developers have increasingly
adopted a free-to-play business model for their games. This
is especially true for mobile games (see e.g. [1], [2]). In the
free-to-play business model, the core game is available free of
charge and revenue is created through the sales of additional
products and services such as additional content or in-game
items. Therefore, game producers tend to continuously add
content to the game to keep their users engaged and to be
able to continuously monetize on a game title. For this to
work out, it is important that the new content lives up to the
quality expectations of the players.

The difficulty of a game has a considerable impact on
a user’s perceived quality. Denisova et al. [3] argue that
challenge is the most important player experience. In trying
to create the desired experience with regards to the difficulty,
game designers estimate the players’ skill and set game
parameters accordingly. Mobile game companies usually have
sophisticated tracking techniques in place to monitor how
users interact with their games. This way, measures that reflect
the difficulty of the game can be monitored once content has
been released to players.

However, if new content would be released directly to
players of the game, those would potentially be exposed to
content that does not live up to their quality expectations and
might abandon the game as a consequence. Therefore, game
designers usually let new content be playtested and tune the
parameters in an iterative manner based on data obtained from
those tests before releasing the new content to players [4], [5].

Playtesting can be carried out by human test players that are
given access to the new content before it is released. However,
human playtesting comes at the disadvantages of introducing
latency and costs in the development process. Game designers
need to wait for the results from the test players before they
can continue with the next iteration of their development
process. Additionally, results from test players might not lead
to appropriate conclusions about the general player population
as the populations’ skill levels can differ.

In an attempt to tackle these disadvantages several ap-
proaches for automatic playtesting have been proposed [6]–
[9]. Isaksen et al. simulate playing levels using a simple
heuristic and then analyze the level design using survival
analysis. Zook et al. use Active Learning to automatically
tune game parameters to achieve a target value in human
player performance. Poromaa, similarly to Isaksen, proposes
an approach, where the playtest is carried out using a Monte-
Carlo Tree Search (MCTS) algorithm to simulate game play.
Silva et al. evaluate a competitive board game by letting
general (MCTS and A*) and custom AI agents play against
each other.

The methods above, however, do not consider data that can
be gathered from content that has been released earlier, when
simulating game play. We hypothesize, that taking this data
into account could lead to a game play simulation closer to
human play, and therefore to better estimates of the difficulty
of new content. More specifically, we built a prediction model
that predicts moves from a given game state. This model
is trained on moves that were executed by players on the
previously released content. Once trained, the model acts as
a policy, suggesting which move to execute given a game
state, for an agent simulating game play. The state-of-the-art
methods for predicting a move from a given state are based on
Convolutional Neural Networks (CNN) [10]–[12]. CNN is a
specific type of Neural Networks (NN) that is very well suited
for data that comes in a grid-like structure [13]. Since the data
of the problem at hand has a grid-like structure and is similar
to data used in state-of-the-art research, CNN appear to be the
most promising approach for the task at hand. Therefore, we
rely on this approach for this research.

In our investigation, the player data is the essential part.
Hence, we have to limit our research and empirical results to
the games from where we can gather the required data, Candy
Crush Saga (CCS) and Candy Crush Soda Saga (CCSS). It
remains to be tested on other types of games. However, the
approach only requires a state representation which can be

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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processed by a CNN, a discrete actions space and a substantial
amount of play data. The same method was used in AlphaGo
[11] and the success of agents based on reinforcement learning
in Atari games [14] with a similar state-action setup suggests
that we can do the same for many other types of games.
Interestingly, in the Atari games, the main input is the pixels
of the screen so the grid-like structure can even apply to
pixels. In several games, the action space can be very large,
although discrete. Preprocessing of the action space might be
needed without necessarily reducing the quality of the agent.
For example, in bubble shooter games, e.g. Bubble Witch 3
Saga, Panda Pop, one might shrink the action space to 180
1◦ angles or define actions from possible destinations on the
board. In linker games where the order of the links does not
necessarily matter, e.g. Blossom Blast Saga, the combination
of linked squares can grow exponentially with the length of
the link where most combinations result in the same effect on
the game and could, therefore, be defined as the same action.
Bubble shooters and linker games are two types of games
where we think our approach could do very well as well as
clicker games, e.g. Toy Blast, Toon Blast, to mention three
very popular casual game types.

In our case, the difficulty of levels is the key metric. In
practice, a human-like agent can give us many more metrics
from the gameplay, e.g. score distribution and a distribution
of the number of moves needed to succeed. Moreover, it can
become a vital part of the Quality Assurance (QA) workflow,
being able to explore the relevant game space to a much larger
extent than humans or random agents.

Currently, we train the agent on all the gameplay we gather.
Consequently, the agent learns by averaging over all the
players’ policies. The policy of different players can be quite
different and the result of an average policy does not have to
represent the average result of different policies. The results
suggest that there is, nevertheless, significant knowledge to
be gained from the average policy. With player modeling
or "personas" [15]–[17] we could learn policies for different
clusters of players and build agents for each cluster that better
predict the different policies.

A. Casual Games Genre and Match-3 Games

Casual games are a big part of the gaming industry and
the genre has been growing very fast with gaming moving
increasingly to mobile devices. For casual games on mobile
devices it is common that the content generation is sequential,
i.e. new content/levels are added to the game as the players
progress. The frequency of new content can vary from every
few months up to once a week. One of the biggest game types
in the casual game genre is match-3 puzzle games with a few
hundred million monthly active users [18].

CCS and CCSS are two versions of a match-3 game.
They have a 2D board of tiles which may be left empty or
filled with different items (regular and special candies) and
blockers (e.g. chocolate and locked candy). A legal action is
a vertical/horizontal swap of two adjacent game items that
results in a vertical/horizontal match of at least 3 items of

the same type or that are special candies. When included in
a match, special candies remove more items from the board
than just the candies that are part of the match. The empty
tiles are then filled by items dropping down from above. If
there are no items above an empty tile it is filled with a new
random item. The diversity of this game is further enriched
by different game modes, e.g. score level and timed level and
behaviours of special items.

B. Contributions and Paper Organization

This paper presents an approach to estimate level difficulty
in games by simulating a gameplay policy CNN learned from
human gameplay. Our main contributions are:
• a deep CNN architecture for training agents that can play

the games at hand like human players;
• a generic framework for estimating the level difficulty of

games using agent simulations and binomial regression;
• extensive experimental evaluations that validate the effec-

tiveness of our framework on match-3 games and imply
practical suggestions for implementation.

In the upcoming sections, we start with related work and
continue to present our proposed approach followed by thor-
ough experimental evaluations and finally, conclusions are
drawn in section VI after a short discussion about future work.

II. RELATED WORK

Playtesting in games is used to understand the player expe-
rience and can have different perspectives, difficulty balancing
and crash testing being two common examples. Player experi-
ence can be measured with various metrics [3], [19], [20]. In
our context, the main focus is on playtesting as balancing the
difficulty of content. To automate agent playtesting, diversified
heuristic-based approaches were adopted to construct game-
play agents (e.g. [7], [21], [22]). Agents based on Monte-Carlo
Tree Search, as have been proposed in [8], [23], [24], are
generic and need little game-specific knowledge. Silva et al.
[9] argued that game-specific agents usually outperform both
standard MCTS and A* agents. Complying with that belief,
some attempts in customizing agent heuristics began to emerge
and the representative literature of that category include [25],
[26], to name a few. Despite the success of hand-crafted agents
on one specific game, its performance is non-transitive to other
games [27] — different agents perform best in different games,
which imposes difficulties when seeking to create agents
effortlessly for multiple games. One of the straightforward
(but inefficient) solutions is the ensemble method, so authors
of [28] investigated the relative performance of 7 algorithms
to formulate their approach of general game evaluation and
[29] show that there is no "one-fits-all" AI-algorithm available
yet in General Video Game Playing. Taken further broadly,
this problem calls for a more generic form of an intelligent
agent that is capable of learning the salient features embodied
in different games by analyzing human-play patterns and/or
directly interacting with game engines.

Although, training agents from move patterns (e.g. [30])
has been seen for over a decade, the recent advances of deep
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learning techniques have moved the methodologies of this
kind beyond manual feature engineering, towards a setting of
end-to-end supervised learning from raw game-play data. For
instance, Runarsson [31] directly approximated a policy for
Othello game using binary classification. The works of [10]
and [12] reported their CNN-based approaches achieving a
prediction accuracy of 44.4% and 42% respectively on a Go
dataset; Silver et al. [11] (AlphaGo) managed to improve the
prediction accuracy to 55.7%.

In a more recent paper Silver at al. [32] managed to create
an agent that could outperform any previously best artificial
and human Go player in the game of Go. They proposed
a novel method of Reinforcement Learning (RL) coined Al-
phaGo Zero, that was using progressive self-play without the
aid of any human knowledge. In the field of multi-agent
collaboration, Peng et al. [33] introduced a bidirectionally
coordinated network with a vectorized extension of actor-
critic formulation, which managed to learn several effective
coordination strategies in StarCraft1. The goal of the last two
approaches, however, differs from our goal in that they try
to outperform, not simulate, human players. This can lead to
move patterns that are different from even those of the best
human players.

Fig. 1. An example game board of CCS encoded as 102-channel 2D input.

III. APPROACH

Our approach suggests using an agent to simulate human
gameplay, creating a metric of interest. Then we relate the
values of that metric observed during the simulation with the
values of the same metric observed by actual, human players.
As mentioned above, the metric of interest in this paper is the
difficulty measured as the average success rate.

Intuitively, the more similar the strategy of the agent is to
that of human players, the more should values observed during
the simulation relate to the values observed from real human
players. We, therefore, suggest training a CNN on human
player data from previous levels to act as policy for an agent
to play new, previously unseen levels.

We benchmark this approach against an approach using
MCTS [34]. MCTS agents are well suited where the game
environment is diverse and difficult to predict. For example,
they are the state-of-the-art in General Game Playing (GGP)
[35] and were a key component for the improvement of Go
programs (e.g. [11], [32], [34], [36], [37]). They are search
based as the agent simulates possible future states with self-
play, building an asynchronous game tree in memory in the

1A game published by Blizzard™: https://starcraft.com

process, until it reaches the end of the search time and chooses
an action to perform [30]. Our previous non-human playtesting
was done with MCTS agents [8].

A. CNN agent

A CNN-based agent sends the state to a policy network
which gives back a probability vector over possible actions. It
can be used to play greedily in each position picking the action
with the highest probability in each state. Thus, playing much
faster than the MCTS agent. The training of the network is
done with supervised learning from player data from previous
levels. Therefore, the policy network learns the most common
action taken by the players in similar states.

CNNs are well suited for capturing structural correlations
from data in grid-like topology [13], [38] which is often the
structure of a game board, especially in casual games and
match-3 games. Hence, we use a customized CNN (Fig. 2a)
as our agent, which predicts the next move greedily using the
current game state (i.e. board layout) as input. In this section,
CCS is used as an exemplary match-3 game facilitating the
explanation of the CNN agent.

B. Representation of Input and Output

The game board state, as the input of CNN, is represented
as a 9×9 grid with 102 binary feature planes as demonstrated
in Fig. 1. When 0-padded and stacked together, those feature
planes form a 102-channel 2D input to the network. There are
4 types of input channels:

1) 80 item channels — “1” for existence of the correspond-
ing item, “0” otherwise.

2) 20 objective channel — all “1”s when the corresponding
objective (e.g. creating n striped candies) is still unful-
filled, or all “0”s.

3) 1 legal-move channel — “1” for tile that is part of a
legal move, “0” otherwise.

4) 1 bias channel — a plane with “1” for every tile to allow
learning a spatial bias of game board. Can be thought
of as a heat map of moves.

Since the moves (output of the network) are horizontal/vertical
swaps of 2 items, they are encoded as a scalar by enumerating
the inner edges of the game grid (Fig. 2b), resulting in 144
possible moves.

C. Network Architecture

The architecture is selected as a result of the prestudy using
both the play data from MCTS-agents and human-play data
[39]. The architecture we chose consists of 11 convolutional
layers. We found that a 3× 3 kernel operating in stride 1
performs well for all convolutional layers. As less complex
models are favored during deployment due to faster inference
and training time, we empirically discovered that using only
35 filters for the first 11 convolutional layers is sufficient to
maintain a relatively high accuracy. To obtain move predictions
from previous convolutional layers, we followed [41]: the
last convolutional layer uses exactly 144 filters (to match
the numbers of possible moves) that are fed into a Global
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Fig. 2. Illustration of (a) the network architecture with the specification of each layer, and (b) the encoding of moves. Figures are adapted from [39], [40].

Average Pooling (GAP) layer (generating 144 scalars) right
before the softmax function. It is also worth mentioning that
adding the classic Fully-Connected (FC) layers with dropout
regularization [38], [42] performed inferior to GAP. Despite
the common application of Rectified Linear Unit (ReLU)
activation function in many prominent CNN architectures (e.g.
[10]–[12], [38], [42]), we opted to use the Exponential Linear
Unit (ELU) function [43] instead, because it improved the
validation accuracy by about 2.5%. In addition, we also ex-
perimented with batch normalization [44] and residual network
[45] but neither managed to provide better generalization
capability.

D. Prediction Models

The strength of an agent lies in its prediction ability, i.e.
how accurately it can predict the difficulty of new content
— a new level. To compare our agents, we must, therefore,
build prediction models based on historical data and compare
the prediction performance on new content. We measure the
difficulty as the success rate, calculated as the ratio between
the total number of successes and the total number of attempts.
For CCS and CCSS we use data from 800 levels to build the
prediction model. Then we predict the difficulty of succeeding
200 levels that have not been revealed to the training of the
CNN policy network. Gathering the data for the MCTS at-
tempts was the limiting factor where time allowed for running
on 1,000 levels. We try to build the best possible prediction
model for each agent. The results are therefore inevitably
subject to human choices in the prediction modeling. However,
we do not think this biases the comparison. The prediction
models are based on binomial regression using level type
features and the agents success rates as inputs. The model
type and input features should not favor the CNN agents over
the MCTS agent.

We use three different measures to compare the predictive
power: 1) mean absolute error (MAE) between the estimated
success rate and the actual success rate, 2) the percentage of
test points lying outside the 95% prediction bands, and 3)
standard deviation (STDDEV) of random effects. Measuring
from the perspective of generalization capability, we are in

favour of predictions for new levels with as little error or bias
as possible. The anticipated prediction error can be expressed
through the STDDEV of random effects and MAE and the
bias is indicated by the percentage of points outside of the
95% prediction bands.

E. Binomial Regression

Prior to building a statistical model that expresses the
players’ success rate ρplayer using agent success rate ρagent, we
observe that they do not need to linearly map to each other.
For the following reasons:

• The agent and players performance depends in a different
way on the game mode and features present on the board

• Players show higher success rate in the presence of game
features requiring deeper strategic thinking

• The agent is much less random than players. It is because
(a) the agent is a single player while human-players
belong to a large group of millions of individuals playing
with different skills and strategies; (b) agents follow their
own policy to the point and that leads to highly correlated
results.

• The average success rate observed for players is limited
in its value. The same does not hold for a single player
or a single agent. The observed relationship between the
agent and players cannot hold for levels where the agent
needs much more attempts to succeed than the average
observed for the population

• We have observed that the agents and players exhibit
different sensitivity to increased difficulty. The difference
does not need to be linear.

In addition to limitations explained above, the model chosen
needs to support rate values — ranging from 0 (when the
agent fails on all attempts) to 1 (when the agent succeeds
on all attempts) and the prediction, including the prediction
uncertainty, needs to stay within this range of values. For that
reason, we model the relationship ρplayer ∼ ρagent with binomial
regression.

To account for the difference in difficulty in the presence
of different board elements we add features available on the
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board as covariates so that the model becomes:

logit(ρplayer,i) = β0+β1 ·f(ρagent,i)+
∑

j

βj ·x<i>
j + εi , (1)

where f denotes a transformation of ρagent,i making it linear in
logit scale; i is the index of observations; x<i>

j denotes the j-
th feature for the i-th observation; and ε is the error term.
The data we model is aggregated per level, i.e. each data
point is represented by the average success rate for players
and the average success rate obtained for the agents. The
problem with this approach is that binomial regression imposes
a certain limit on uncertainty. The expected variance of the
observed success rate is formulated as Var(ρ) = ρ(1 − ρ)/n,
where n represents the number of attempts. For both ends of
the success rate range (i.e. ρ = 0 or ρ = 1), the expected
variance is 0 and for the middle point (i.e. ρ = 0.5) it takes
its maximum value and becomes 0.25/n. The dispersion of
data collected exceeds the limits imposed by the binomial
model. This phenomenon is known as overdispersion [46] and
if not taken into account it causes problems with inference.
In particular it leads to underestimation of the uncertainty
around the estimated parameters and as a consequence to
biased predictions.

The common strategies to account for overdispersion in-
clude adding new features and transforming the existing fea-
tures, neither of which solves our problem since we know that
the overdispersion is caused by the agent behavior which tends
to be self-correlated. In statistical literature, such a situation
is described as clustered measurements [46]. In our case, a
cluster is a game level for which we observe an average
success rate. Such data is assumed to be affected by two
random processes: (a) within-cluster randomness (uncertainty
of the measurement of ρ for a single game level) that is already
captured by the term ε in equation (1); and (b) between-cluster
randomness (uncertainty resulting from data being correlated),
which we model by introducing term κ to (1) and hence obtain
the improved model:

logit(ρplayer,i)=β0+β1·f(ρagent,i)+
∑

j

βj ·x<i>
j +εi+κi , (2)

where both random terms are expected to be normally dis-
tributed around zero. This kind of model belongs to a family
of generalized linear mixed models. Here, κi is a random
effect and all other features are fixed effects. The model
estimates all parameters (i.e. β0, β1 and βj) together with
the variance of κ. The prediction of our model has two parts:
the deterministic part expressed by the logit model and the
random part expressed by κ. Since there is no closed-form
solution for obtaining prediction bands resulting from (2), we
obtain them instead by simulation and bootstrapping. The final
result of the modeling is shown in Fig. 4 and Table II.

Binomial regression with random effects describes the data
well but it is also possible to model the same data — log-
transformed, with linear regression. The drawback with linear
regression is that it lacks interpretation when the prediction
goes over 1 or below 0. Also, because the relationship cannot

be assumed to be strictly linear, as explained at the beginning
of this point, the variance of the model is higher than the
variance estimated with binomial regression.
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Fig. 3. Three flow charts describing the overview of our proposed approach.

IV. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the proposed approach on the
games at hand. We compare MCTS results to the CNN results
for CCS and additionally show prediction accuracy for CCSS.
We did not build an MCTS agent for CCSS as this is a non-
trivial and time-consuming task in a live game on a game
engine not optimized for simulating agents. Thus, such a
comparison to MCTS for CCSS is not possible. Therefore, we
describe the details of the setup for the CNN agent in CCS and
show results for CCSS where they apply. The overall approach
for both games is identical.

A. Briefs of Human-Player Datasets

The data required to train the human-like agents is gathered
via tracking the state-action pairs (samples) from approxi-
mately 1% of players, selected at random, during about 2
weeks. By the time when we collected the data, there were
about 2,400 levels released in CCS. For training the CNN
agents, we use 5,500 state-action pairs per level for the level
range of 1 to 2,150, obtaining a dataset with nearly 1.2× 107

samples. The data set is split into 3 subsets: training set (4,500
samples per level), validation set (500 samples per level), and
test set (500 samples per level).

B. Evaluation Procedures and Settings

The experiment design is illustrated in Fig. 3. Prior to the
recent few applications of deep learning in developing intelli-
gent game agents (e.g. [11], [12], [32]), MCTS variants (e.g.
[8], [25]–[27]) served as one of the mainstream approaches for
simulating gameplay (as discussed in section II) and MCTS
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TABLE I
THE SELECTION OF NETWORK ARCHITECTURES AND HYPER-PARAMETERS

Network
Architecture

Searched
Hyper-parameters

Validation
Accuracy (%)

12Conv+ELU+GAP a α, BS 32.35
12Conv+ReLU+FC+Dropout b α, BS, p 25.72
12Conv+ReLU+GAP c α, BS 28.59
20ResBlocks+ELU+GAP d α, BS 30.01
Random Policy * N/A 16.67
a The selected network architecture (Fig. 2a) that achieved the best validation accuracy

(indicated in bold).
b A network consisting of 12 convolutional layers with ReLU activation functions,

followed by 2 dropout regularized FC layers.
c Same as a except that ReLU is used in all convolutional layers.
d The convolutional layers used in a were replaced by 20 residual blocks of two

convolutional operations and a shortcut connection around these two.
* Baseline: an entirely random policy for choosing game moves.

still plays a key role in many of the recent deep learning
applications. Therefore we use Poromaa’s implementation of
MCTS [8] as a benchmark agent in our experiments. The
implementation considers partial objective fulfillment when a
roll-out does not lead to a win, instead of just binary values
(win or loss). The MCTS agent is much more time consuming
than the CNN agent. We want to understand how well the CNN
agent does compared to the MCTS agent. The MCTS agent
runs with 100 attempts on each level to get an estimate of
ρMCTS,i but at the same time it runs 200 self-play simulations
before taking a decision about which move to make for each
position. In our comparison we run the CNN agent with 100
attempts and also with 1,000 attempts as a proxy for what
could be more than 100,000 attempts if we want to compare
the total number of simulations2.

Training one version of our CNN model takes about 24
hours on a single machine with 6 CPUs and one Nvidia
Tesla K80 GPU. Game-play simulations are executed using
32 CPUs in parallel. All computational resources are allocated
on demand from a cloud service provider. The selected net-
work architecture (Fig. 2a: 12Conv+ELU+GAP) is a result
of the pre-study on data (state-action pairs) generated from
game-play by MCTS agents. We experimentally evaluated
4 different network architectures, each of which requires a
hyper-parameter search of learning rate (α), batch size (BS),
and dropout keep probability (p). The values used when
conducting a hyper-parameter grid search are respectively
α ∈ {5×10−5, 1×10−4, 5×10−4}, BS ∈ {27, 28, 29}, and
p ∈ {0.4, 0.5, 0.6}. We report the best validation accuracy
achieved by different network architectures in Table I. We
found that a learning rate of 5×10−4 and a batch size of
29 lead to the best results.

C. The Training Performance of CNN-based Agents

From this section, we will base our analysis on the best per-
forming architecture (i.e. 12Conv+ELU+GAP) in the previous
section. Agents using that network architecture are trained with
the data obtained by tracking human-players. The validation

2MCTS: 100 attempts, ∼ 30 moves per attempt, 200 simulations per move

and test accuracy reached around 47% for CCS and 48% for
CCSS. Comparing the validation accuracies we notice that
CNN agents trained on real human-player data performed
almost 50% better than the ones trained on data produced by
MCTS agents. We tried to improve the accuracy by adding
complexity to the model in form of more filters per layer
as well as adding a layer of linear combination after GAP;
but none of those added components made any significant
improvement to the network’s performance.

D. The Performance of Simulating Game Play

We can now use the trained CNN agent as a policy
evaluating all actions a ∈ A given a state s, where A is
the set of actions. The action with the highest probability
maxa∈A P (a|s) is then executed by the agent. The MCTS
agents use 200 simulations to make one move in one state.
This number proved in [8] to produce good results using a
tolerable amount of time. Selecting and executing an action
leads to a new state s′ with a new set of possible actions
A′. The available actions are then again evaluated by the
respective agents. This loop of executing an action given a
state is continued until a terminal state is reached (either
fulfillment of the objective or out of moves).

E. Comparing Predictions

The predicted values for the 200 test levels and the associ-
ated prediction bands are shown in Fig. 4. The graphs compare
prediction accuracy for the CNN agents and the MCTS agent.
The CNN agents played both CCS and CCSS while the MCTS
agent played only CCS. Additionally, it also shows the impact
of the number of attempts on the prediction. For the CNN
agents the prediction is based on 100 or 1,000 attempts and
for the MCTS agent prediction is based on 100 attempts.

Table II summarizes the models. We see that MAE is lower
for CCS than CCSS and that both CNN with 100 attempts and
1000 attempts has a lower MAE than MCTS. The prediction
band is also much wider for MCTS indicating that the CNN
agent is a stronger predictor. It is interesting to see that for the
MCTS agent the ratio of prediction outside the 95% prediction
band is close to the expected 5% and the out-of-band ratio
is much higher for CNN. This is partly due to the wider
prediction band for MCTS but it also suggests that the MCTS
is quite robust to the evolution of the game. Note that the game
is evolving with every new level, sometimes introducing new
elements which the CNN has not trained on. Therefore, the
CNN must be retrained when new elements are introduced to
the game for optimal prediction performance but that was not
done here. MCTS and any model predicting player difficulty
measures would need to retrain their prediction model for new
game elements but additionally, the CNN agents need new
tracked data to update the policy.

V. FUTURE WORK

The policy that the CNN agent is learning is the aver-
age policy of all the players. It would improve difficulty
predictions if we could learn different policies representing
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Fig. 4. The success rate obtained by different agents plotted against the success rate of human-players. Note, the values have been transformed. The scale is
the same in all plots. The actual success rates for players are considered as sensitive information and therefore removed from the plot. The grey shaded areas
indicates the 95% prediction band. The graphs provide visual overview of the model prediction performances. The uncertainty band is narrower for the CNN
agents and thus the prediction for players’ prediction performance is captured better.

TABLE II
OVERALL ESTIMATION PERFORMANCE OF 2 GAMES: CCS AND CCSS

Agent Att/Lvl Game MAE out-band ratio STDDEV
MCTS 100 CCS 5.4% 4% 53%
CNN 1,000 CCS 4.0% 11% 35%
CNN 100 CCS 4.9% 24% 33%
CNN 1,000 CCSS 5.7% 17% 38%
CNN 100 CCSS 6.6% 23% 35%

different kind of players. Creating player "personas" based
on different policies to represent clusters of similar players
has the potential to greatly increase the understanding of
levels. With different "personas" we could measure how often
different policies agree and how certain the move predictions
are. Possibly indicating the different experiences players have,
e.g. if a level needs a high level of strategy or not. It could also
improve the prediction to play non-deterministically with the
CNN policy, with probabilities given by the CNN prediction
output or ε-greedy. The architecture and hyper-parameters of
the CNN can likely be improved which would be interesting
to investigate further, especially with more data. Practically, it
is important to measure other key metrics which can be done
in a very similar way as the difficulty. We have already done
this for score distribution and move distribution in CCS, CCSS
and other games. For Procedural Content Generation (PCG)
[47], the proposed agent can be a critical ingredient in the
generation loop. For example, providing a fitness function for
an evolutionary algorithm in a search-based approach [48].
Finally, we have indirectly been using the CNN agent for
Quality Assurance. Playing with an agent which visits tens of
thousands of the most relevant states in a level’s state space has
proven valuable and could prove to be an interesting research
on its own.

VI. CONCLUSIONS AND PERSPECTIVES

Inspired by the recent advancement of deep learning tech-
niques, mostly in the domain of computer vision, we proposed

a framework for estimating level difficulty of match-3 games,
the core of which is essentially a CNN-based agent trained on
human-player data. However, the method is general and well
suited for many games, in particular where content creation is
sequential. The predictive power of our approach outperformed
the state-of-the-art MCTS-based agents by a large margin on
prediction accuracy and execution efficiency.

In CCS we can now estimate the difficulty of a new level
in less than a minute and can easily scale the solution at
a low cost. This compares to the previous 7 days needed
with human playtesting on each new episode of 15 levels.
This completely changes the level design process where level
designers have now more freedom to iterate on the design and
focus more on innovation and creativity than before. Internally,
we have also tried this approach on a game in development
using rather limited playtest data. Nevertheless, we were able
to train a decent agent, albeit much noisier than in CCS and
CCSS, which has helped a lot with the iterative process of
game development. Since we ran the experiments presented
in this paper we have used the CNN agent for more than a
year, for more than 1,000 new levels in CCS. The prediction
accuracy has been stable and when new game features have
been presented it has been easy to retrain the agent to learn
the new feature and continue predicting the difficulty.
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Abstract—Social dilemmas arise whenever individuals must
choose between their own self-interests or the welfare of a
group. Economic games such as Public Goods Games (PGG)
provide a framework for studying human behavior in social
dilemmas. Cooperators put their self-interests aside for the group
benefit while defectors free ride by putting their self-interests
first. Punishment has been shown to be an effective mechanism
for countering free riding in both model-based and human
PGG experiments. But researchers always assume, since this
punishment is costly to the punisher, it must be altruistic. In this
study we show costly punishment in a PGG has nothing to do
with altruism. Replicator dynamics are used to evolve strategies
in a PGG. Our results show even a minority of punishers can
improve cooperation levels in a population if the cooperators
who punish are trustworthy. Finally, we argue punishment as a
strategy in social dilemmas is never altruistic.

Index Terms—altruism, costly punishment, public goods
games, social dilemma

I. INTRODUCTION

Cooperation is pervasive throughout nature but how it orig-
inates or why it persists is not fully understood. In the animal
world cooperation is largely restricted to kin whereas in human
populations non-kin cooperation is frequently observed in
social dilemmas. Social dilemmas arise whenever individuals
must decide whether to act in their own self-interest or in
the best interest of a group. All social dilemmas have two
conflicting properties [1]: (1) the group benefits more from
mutual cooperation than mutual defection, and (2) individuals
can always do better by defecting regardless of what others
might do. Temptation to defect is strong so most social
dilemmas end with everyone defecting.

Many social dilemmas involve the management of public
goods. A public good is anything that requires contributions
to create it and everyone benefits from its existence whether
or not they contributed. Continued contributions are necessary
to sustain the public good. Contributions can take many forms
including time, effort or money. For example, taxes fund
national defense and everyone benefits from it whether or
not they pay taxes. Charities, such as the Salvation Army,
depend on volunteers and donations of money or goods that
can be resold; the charity then provides services to anyone in
need whether or not they contributed. Other examples include
public broadcasting, public land usage (parks, hiking trails,

etc.) and pollution control. The fundamental question is what
is the incentive to contribute anything if individuals can still
benefit without contributing?

Economic games such as the public goods game (PGG),
which is an N -player version of a prisoner’s dilemma game,
has been widely used to help get some answers. During each
round of a PGG players simultaneously choose whether to co-
operate by contributing money to a public fund while defectors
contribute nothing. The fund is then increased and distributed
equally among all players regardless of whether or not they
contributed. Cooperators must subtract their contribution so
defectors always do better. If cooperation and defection are
the only strategies, and there is no opportunity to punish free
riders, then the inevitable outcome is mutual defection. Of
course if everyone defects then there are no contributions, the
fund has no money and everyone loses (a Nash equilibrium).
PGGs have been used in both computer simulations and human
experiments to help gain insight into how cooperation in a
population might evolve over time [2], [3], [4], [5] .

Several ideas have been posited on how cooperation evolves
in populations [6], although some of them such as indirect
reciprocity or kin selection don’t provide proximate explana-
tions when the interactions are repeated or if participants aren’t
related. Punishment has been shown to promote cooperation
in PGGs although not always. The idea behind punishment
is by imposing a penalty on free riders (defectors), such as
a fine, will convince them that cooperation will be more
beneficial. Usually this punishment is considered altruistic—
i.e., it is costly to the punisher and no future material gain
from imposing the punishment is expected [7].

In this paper we study altruistic punishment in a PGG in
depth. Our results show that if the punishment is sufficiently
high enough, then cooperators can successively saturate the
population. In particular, we show punishment can be effective
even if punishers are in the minority. However, this punishment
does require punishers to be trustworthy which means if they
initially commit to punish, they will continue to punish until
all defectors are purged.

We also argue that, even though punishment can be an
effective deterrent against defection, it may actually not be
altruistic at all. Consequently, the way punishment is imple-
mented in existing models and human experiments may be
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unrealistic which can make finding proximate explanations for
cooperation more difficult.

The paper is organized as follows. Section II describes
our model with simulation results presented in Section III.
Section IV provides an explanation on the nature of effective
punishment and makes the case why altruistic punishment may
not exist in human populations.

II. THE PGG MODEL

N > 2 players participate in a finite but unknown number
of rounds of a PGG. Each round consists of two phases: a
contribution phase and a punishment phase. In the contribution
phase m ≤ N players choose to cooperate by contributing an
amount c to a public fund while the remaining players defect
and contribute nothing. An external benefactor then multiplies
the fund by an amount r where 1 < r < N and this increased
fund is equally distributed amongst the N players. Thus each
player receives an amount rmc/N . Defectors are free riders
who exploit cooperators because cooperators must subtract
their contribution c; defectors always get a higher return.

In the punishment phase n ≤ m cooperators punish the
defectors by imposing a penalty β on them. This penalty is
subtracted from the defector’s return and is intended to make
free riding less profitable. Punishment is costly because there
is a cost γ for imposing this punishment. The payoff π in each
round to an individual xi is thus

π(xi) =





rmc/N − c cooperator who doesn’t punish
rmc/N − c− γ cooperator who does punish
rmc/N − β defector

(1)
Each cooperator imposes β/n of the penalty. The punishment
cost γ is fixed regardless of the punishment levied. (Of course
β = 0 if n=0.)

Discrete replicator equations are used to predict how strate-
gies evolve in the population. Let kji denote the number of
players who choose strategy i ∈ {C,D} at iteration j. Then
the frequency of strategy i is pji = ki/N . At iteration j + 1
the frequency becomes

pj+1
i = pji

(
fi
f̄

)
(2)

where fi is the fitness of strategy i and f̄ is the average
population fitness. If the quantity in parenthesis is greater than
1.0 then strategy i increases in the next iteration; decreases
if the quantity is less than 1.0 and doesn’t change if the
quantity equals 1.0. Here we assume the payoffs given in
Eq. (1) equates to fitness. The cooperator fitness value used is
the payoff of cooperators who do not punish. (This issue will
be discussed in detail in Section IV.) Plotting pjC shows how
cooperation levels change over time.

Multiplying both sides of Eq. (2) by N yields the equivalent
expression

kj+1
i = kji

(
fi
f̄

)
(3)

The quantity in parenthesis on the right hand side must be
be quantized to make sure only integer values for kj+1

i are
produced. The quantization method described below is one
we have used previously [8]. The algorithm below returns k′i
which is the new integer value of ki in the next iteration.

1) Compute

k′i =
⌊
Npi + 1

2

⌋
, N ′ =

∑
i

k′i

2) Let d = N ′−N . If d = 0, then go to step 4. Otherwise,
compute the errors δi = k′i −Npi.

3) If d > 0, decrement the d k′i’s with the largest δi values.
If d < 0, increment the |d| k′i’s with the smallest δi
values.

4) Return [k′1 k′2] and exit.

III. RESULTS

All simulations are run with N = 40 players. During the
first phase of each round cooperators (C) contribute an amount
c = 1 to a common fund which is then multiplied by a factor
r = 3 and split evenly among all N players. The initial
population contains m = 30 (75%) C players. Figure 1 shows
the results for various punishments under replicator dynamics.
When β = 0.0 there is no punishment (blue plot) which
makes the population quickly evolve to an all-D state. The C
strategy becomes dominant whenever β > 1.25. Consequently,
when β = 1.3 (red plot) the punishment is enough to get the
population to evolve to an all-C state. At an intermediate value
of β = 0.9 (yellow plot) the punishment is insufficient to make
defectors switch strategies. This shows that punishment values
not sufficiently high enough only delay the undesirable mutual
defection population state.

The second experiment is designed to see if a minority of
cooperators can reverse the trend towards mutual defection. All
C players agree that they will not punish during the second
phase of each round. However, should the frequency of coop-
erators drop below 50% then they will all punish the defectors
during the second phase. The amount of punishment inflicted
by each of the m remaining cooperators is β = (0.1+1.25)/m
which gives a penalty slightly above the 1.25 minimum. Figure
2 show that with a sufficiently high enough penalty it is
possible to recover and achieve an all-C population.

But this raises an interesting question. The reversal depicted
in Figure 2 presumes all C players are trustworthy. That is, if
they initially agree to punish, then they continue to punish until
all D players are purged. Punishment is costly so any C player
who punishes pays a cost γ which is subtracted from his return.
Players may be tempted to stop punishing if it looks like the
population is evolving towards an all-C state. Untrustworthy
players still cooperate; they just stop punishing to avoid paying
the additional cost γ.

To test the effect of untrustworthy players we allowed
n players to stop punishing once the cooperator frequency
reached 80%. Figure 3 indicates a small number of untrustwor-
thy players can be tolerated (about 10%). However, at higher
levels the cooperation frequency starts dropping and the rate
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Fig. 1.

Fig. 2.

of decrease depends on how many untrustworthy players are
present.

IV. DISCUSSION

The simulation results show punishment can be an ef-
fective deterrent to defection, even when cooperators are in
the minority, so long as that punishment is high enough.
Insufficient punishment makes no sense because it merely
delays the inevitable all-D case. (See Figure 1.) By Eq. (1)
cooperator net returns will be higher than defector net returns
if β > c. It is not necessary for the penalty to be more than
c + γ (the total costs paid by a cooperator who punishes).

The objective is to make cooperation more attractive than
defection—not cooperation with punishment more attractive.
Moreover, cooperators who punish agreed to do so prior to
playing the first round. Defectors did not participate in those
discussions and therefore should not be expected (or required)
to become punishers.

In model-based investigations the normal practice is to set
r, c, β and γ and then run the simulation to see how the
cooperator frequencies changes [9], [10], [11]. Choosing β a
priori—at least in real-world social dilemmas—is unrealistic.
As shown in Figure 1 picking punishment levels too low
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Fig. 3.

accomplishes nothing except delaying the inevitable all-D
state. Cooperators thus have two choices: either punish to try
and stop further defection or accept the inevitable outcome of
mutual defection. For example, consider commercial fisherman
operating in the Tasman Sea. Cooperators limit their catch
to keep the fish population viable while defectors maximize
their profit by taking as many fish as possible. Cooperator
fisherman can either impose punishment to stop the over-
fishing or resign themselves to seeing the fish population go
extinct. Punishment levels therefore must be set based on the
number of available punishers currently in the population or
it will not be effective.

Conventional wisdom is the origin of altruistic punishment
is complicated and warrants further investigation. Why would
some individuals be willing to bear a cost for punishing when
others might be the beneficiaries of lower defection levels?
Fehr and Gächter [12] believe such punishment constitutes a
second order public good. The decision to punish is actually
quite simple in real-world situations: either punish to stop
defection or accept the consequences of mutual defection. Hu-
man experiments designed to investigate altruistic punishment
typically have players compete for only 6–10 rounds [12].
This means previously conducted human experiments probably
have not been formulated appropriately to study altruistic
punishment because they were not run long enough to evolve
towards an all-D state. It would be interesting to see if
players would be more inclined to punish as the all-D state is
approached.

Fehr and Fischbacher [7] listed two components of altruistic
punishment: (1) punishers may not necessarily receive any fu-
ture material gain, and (2) the punishment is costly. There are
problems with both of these being attributed to altruistic pun-
ishment, at least in the context of economic social dilemmas.
Any belief that the first component is necessary for punishment
to be altruistic is at best naive. Punishers intentionally punish;
they expect their punishment will convince defectors to stop
defecting. All participants know a priori the more cooperators

in the population, the higher the return for both cooperators
who punish and those that don’t. Consequently, punishers
do anticipate future higher returns because they expect the
punishment will be effective.

In our simulations the punishment cost γ played no role
in determining how the cooperation frequency changes. The
rationale behind this approach comes from the motivation to
punish. Human experiments suggest punishers punish defec-
tors because they have little tolerance for what is perceived
to be unfair behavior. For example, Fehr and Gächter [12]
found negative emotions—specifically anger—being a prime
motivator to punish. Seip et. al [13] put it more forcefully
“...anger provides the fuel by which people are willing to
spend costly personal resources to ensure that defectors get
their due”. If negative emotions, rather than altruism, are the
reason why individuals decide to punish then any associated
costs become irrelevant and may even be ignored.

Conventional wisdom believes punishment in economic so-
cial dilemmas is altruistic. In our view that belief is incorrect.
Punishment does exist in human interactions but it is not
altruistic. Researchers in both human experiments and model-
based studies claim the punishment is altruistic because it is
costly. In other words, punishers are willing to pay a personal
cost for the benefit of the group. But cost doesn’t really
matter whenever anger is the motivation behind a free rider’s
punishment. Moreover, this cost may very well have have
nothing to do with the group interests but more with self-
interest—which is the complete opposite of altruism. Every
defector who switches to a cooperator benefits the group
including the punisher. Long-term interests can (and often
do) override short-term interests. The punisher more likely is
willing to bear the cost of punishment because the alternative
results in disastrous personal financial outcomes for himself.

In the end it doesn’t matter if the desire to punish is
motivated by anger against free riders or economic survival,
the punishment cost becomes irrelevant. Punishment is not
altruistic if the punisher doesn’t care about the cost or if his
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own financial prosperity takes precedence over the welfare of
the group.

V. FUTURE WORK

Our results show that effective punishment depends on
punishers being trustworthy. That is, players who are willing
to punish remain true to their word and do not decide to
stop punishing. There is a temptation to stop punishing if
it appears punishment is increasing cooperation levels. The
idea of having a dilemma within a dilemma is intriguing.
This concept is known as a “nested social dilemma”. To
our knowledge nested social dilemmas have not been studied
in N -player environments. There is an opportunity to look
at the PGG and the N -Player trust game we did studied
previously [14] and to combine them together. Specifically, the
question is whether altruistic punishment could be a measure
of one type of trust. This will the focus of our future work.
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Abstract—In this paper, we propose a Monte-Carlo Tree Search
(MCTS) fighting game AI capable of dynamic difficulty adjust-
ment while maintaining believable behaviors. This work targets
beginner-level and intermediate-level players. In order to improve
players’ skill while at the same time entertaining them, AIs are
needed that can evenly fight against their opponent beginner and
intermediate players, and such AIs are called dynamic difficulty
adjustment (DDA) AIs. In addition, in order not to impair the
players’ playing motivation due to the AI’s unnatural actions
such as intentionally taking damage with no resistance, DDA
methods considering restraint of its unnatural actions are needed.
In this paper, for an MCTS-based AI previously proposed by the
authors’ group, we introduce a new evaluation term on action
believability, to the AIs evaluation function, that focuses on the
amount of damage to the opponent. In addition, we introduce a
parameter that dynamically changes its value according to the
current game situation in order to balance this new term with
the existing one, focusing on adjusting the AI’s skill equal to
that of the player, in the evaluation function. Our results from
the conducted experiment using FightingICE, a fighting game
platform used in a game AI competition at CIG since 2014, show
that the proposed DDA-AI can dynamically adjust its strength
to its opponent human players, especially intermediate players,
while restraining its unnatural actions throughout the game.

Index Terms—Monte-Carlo tree search, dynamic difficulty
adjustment, fighting game AI, believable, FightingICE

I. INTRODUCTION

Fighting games are real-time games in which a character
controlled by a human player or a game AI has to defeat their
opponent using various attacks and evasion. In this work, AI
is defined as a computer program that controls a character
in a game. There are two types of matches in fighting games:
Player VS Player (PvP), where two human players fight against
each other, and Player VS Computer (PvC), where a human

player fights against an AI-controlled character. An AI in PvC
usually acts as the opponent for the human player who plays
alone, sometimes as a sparring partner. In this work, we focus
on PvC and target beginner and intermediate human players
in fighting games.

One of the main features of beginner and intermediate
players is that they do not fully know the game information
such as character operations, available actions and fighting
styles or tactics. They are often defeated by players who fully
know about the game and by AIs that are too strong compared
with them. This may cause beginner and intermediate players
to lose the motivation to play the game, in the middle of
improvement of their skill, and quit it. To prevent this, AIs are
needed that can entertain beginner and intermediate players,
while such players are still improving their playing skills.

Previously, the authors’ group proposed a Monte-Carlo Tree
Search (MCTS) fighting game AI called “Entertaining AI”
(eAI) [1] whose goal is to entertain human players. This AI
can evenly fight against its opponent players by dynamically
adjusting its strength according to their playing skill, called
dynamic difficulty adjustment (DDA). Namely, eAI will con-
duct an action according to the current game situation: when
eAI is losing, it will conduct a strong action, otherwise, eAI
will conduct a weak action. From the experimental results, eAI
could entertain its opponent human players by evenly fighting
against them. However, we observed that eAI often conducted
unnatural actions such as repeating no-hit attacks and repeating
step back even though the distance between the characters is
far away. In order not to impair players’ playing motivation
due to AIs’ unnatural actions such as those by eAI mentioned
above, DDA methods able to restrain its unnatural actions are

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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Fig. 1. Game flow [4]

Fig. 2. Game flow in fighting games

needed [2].
In this paper, we propose an MCTS fighting game AI

capable of dynamic difficulty adjustment while maintaining
believable behaviors. This work targets beginner-level and
intermediate-level players. We use eAI as a based AI and we
introduce a new evaluation term on action believability, to the
AI’s evaluation function, that focuses on the amount of damage
to the opponent. In addition, we introduce a parameter that
dynamically changes its value according to the current game
situation in order to balance this new term with the existing
term in the evaluation function. We verify the performance
of our proposed DDA-AI by a subjective experiment using
FightingICE, a fighting game platform used in a game AI
competition at CIG since 2014 [3].

II. GAME FLOW

Chen [4] mentioned the required elements by which players
can enjoy playing games and how to design games to satisfy
players using game flow (Fig. 1). In Fig. 1, the x-axis
represents players’ skill of the game and the y-axis represents
the game difficulty. This figure indicates that players can enjoy
playing the game if their skill and the game difficulty fall
in “FLOW ZONE”. That is, adjusting the game difficulty
according to players’ skill is needed. This can be said not
only for game design, but also game AIs.

Fig. 3. An overview of MCTS

Ikeda and Viennot [2] mentioned the required elements
according to which players can enjoy playing games and how
to design them in terms of AIs in Go. They said using the
aforementioned game flow that AIs are needed that can adjust
their strength according to the opponent players’ skill to evenly
fight against or lose with a little difference in winning ratio.
Fig. 2 shows the game flow applied to fighting game AIs by
us with reference to the aforementioned work by Ikeda and
Viennot. In Fig. 2, players cannot enjoy playing the game if
the opponent AI crushes them (a) or loses with no resistance
at all (b). Additionally, performing clearly unnatural actions
only to balance the game (c) also impairs players’ enjoyment.
AIs should evenly fight against its opponent without unnatural
actions (d), and finally, AIs might lose to its opponent with a
little difference (e), or win if the opponent made some mistakes
(f). That is, DDA-AIs capable of restraining its unnatural
actions are needed.

III. EXISTING METHODS FOR MCTS-BASED DDA

In this section, we describe two DDA-AIs using MCTS.
These AIs are used for comparison with our proposed AI.

A. Entertaining AI

Entertaining AI (eAI) was an MCTS-based DDA-AI pro-
posed by our group [1]. This DDA method combines MCTS,
Roulette Selection, and Rule-Based. In this section, we mainly
explain MCTS, but we point out here that Roulette Selection,
where the frequency of each action actually played by the
opponent human player is used in simulation of his/her actions,
is deployed in all of the AIs evaluated in this work. For more
details about the other methods, please see Ishihara et al. [5].

Fig. 3 shows an overview of MCTS applied to fighting
games. This MCTS is based on an open loop approach [6].
In this figure, the root node has the current game information
which consists of both characters’ Hit-Points (HPs), energies,
positions, ongoing actions and the remaining time of the game.
Each node except the root node represents an action. In this
MCTS, an action spans from its input to its end, at which the
next action becomes executable. An edge simply represents the
connection between a parent node and its child node. When
a parent node’s action has finished, the next action will be
one of its child nodes. In summary, the game tree using this
MCTS represents the execution order of the AI’s actions.
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eAI repeats the four steps in Fig. 3 within a time budget of
Tmax. After the time budget is depleted, eAI selects the most
visited direct child node (action) from the root node as the
next action. The rest of this subsection explains each step of
MCTS.

1) Selection: The child nodes with the highest Upper
Confidence Bounds (UCB1) value [7] are selected from the
root node until a leaf node is reached. The formula of UCB1
is:

UCB1i = Xi + C

√
2 lnN

Ni
, (1)

where Ni is the number of times node (action) i was visited,
N is the sum of Ni for node i and its sibling nodes and C is
a constant. Xi is the average evaluation of node i represented
by the following formula:

Xi =
1

Ni

Ni∑

j=1

evalj , (2)

where evalj is the reward value gained in the jth simulation
and is defined as:

evalj = 1− tanh

∣∣afterHPmy
j − afterHP opp

j

∣∣
Scale

, (3)

where afterHPmy
j and afterHP opp

j stand for HP of the AI
and the opponent after the jth simulation, respectively, and
Scale is a constant. As the HP difference between the AI and
the opponent after the simulation is closer to 0, evalj will
obtain an evaluation value closer to 1. Thereby, strong actions
are highly evaluated when the AI is losing; otherwise, weak
actions.

eAI selects the nodes with the highest UCB1′i value (using
Xi value normalized by using formula (4)) from the root node
until a leaf node is reached.

X
′
i =

Xi −Xmin

Xmax −Xmin

(4)

In this formula, Xmax, Xmin stand for the maximum and
minimum Xi in all nodes at the same tree depth.

2) Expansion: After a leaf node is reached in the Selection
part, if the number of times the leaf node is explored exceeds
a threshold Nmax and the depth of the tree is lower than a
threshold Dmax, all possible child nodes are created at once
from the leaf node.

3) Simulation: A simulation is carried out for Tsim sec-
onds, sequentially using all actions in the path from the root
node to the current leaf node for the AI, and actions selected
by Roulette Selection (see [5]) for the opponent. If the number
of actions of the AI or the opponent used in the simulation is
less than a given number, five in our previous work, randomly
selected actions will be used after all actions of the AI or
the opponent have been conducted. The variable evalj is then
calculated using formula (2).

4) Backpropagation: evalj obtained from the simulation
part is backpropagated from the leaf node to the root node.
The UCB1 value of each node along the path is updated as
well.

B. True Proactive Outcome-Sensitive Action Selection
True Proactive Outcome-Sensitive Action Selection

(TPOSAS) is one of the MCTS-based DDA-AIs with
believability proposed by Demediuk et al. [8]. TPOSAS
also uses the same UCB1 formula (1). However, TPOSAS
evaluates nodes using the following formula:

node.score = − (|hs| − Ih)+ , (5)

where hs is the HP difference between the AI and the oppo-
nent, Ih defines the interval within which all HP differences
can be neglected, and (·)+ indicates the ramp function, i.e.,
a function behaving like the identity function for positive
numbers and returning 0 for negative numbers.

In this formula, the evaluations of all actions having hs less
than Ih will be 0; otherwise, will be negative. Therefore, all
nodes (actions) with hs less than Ih are more visited. Because
there exist multiple actions that have the highest evaluation
value of zero, unnatural behaviors like repeating the same
action can be avoided.

In our experiment, Ih is set to 10% of the maximum player
health as in the work by Demediuk et al. [8].

C. Problems
As we mentioned in Section I, eAI could entertain its

opponent human players by evenly fighting against them.
However, we could observe that eAI often conducted unnatural
actions such as repeating no-hit attacks and repeating step back
even though the distance between both characters is far away,
especially in the game situation where the HP difference is
around zero. In that situation, the evaluations of actions which
do not give damage to the opponent and at the same time
receive no damage such as moving actions will be higher than
other actions. From this, one can readily see that eAI tends to
select such unnatural actions in the above situation.

Demediuk et al. conducted the experiments where TPOSAS
fought against human players and other AIs that were submit-
ted to the Fighting Game AI Competition (FTGAIC)1 to verify
the method’s effectiveness. From these experimental results,
TPOSAS could dynamically adjust its strength according to
its opponents’ skill. However, although they mentioned about
its believability, the authors did not quantitatively evaluate this
factor. Also, they only used the HP difference at the end of the
game as the evaluation criterion of DDA, and did not evaluate
whether the AI can dynamically adjust its strength throughout
the game.

IV. PROPOSED METHOD

In this section, we define what is believability in fighting
games and explain our new DDA method considering fighting-
game believable behaviors.

1http://www.ice.ci.ritsumei.ac.jp/∼ftgaic/index.htm
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A. Definition of Believable Behaviors in Fighting Games
As mentioned in Section I, the main purpose of fighting

games is to defeat the opponent using various attacks and
evasion. For that purpose, in this work, believable behaviors
are defined as the aggressive behaviors aimed to defeat the
opponent such as hitting attacks to the opponent properly.
Conversely, unnatural behaviors are defined as those behaviors
contrary to the main purpose mentioned above such as no-
hit attacks (described in Section III-C), although it could be
argued that such non-aggressive actions are also performed to a
certain extent by some human players to taunt their opponents.

B. Evaluation Function with Believability
The new evaluation function taking into account believabil-

ity is defined as follows:

evalj = (1− α)Bj + αEj , (6)

where Ej is for difficulty adjustment defined using the same
formula as formula (3). Bj about the AI’s aggressiveness
(believability) represented by the following formula:

Bj = tanh
beforeHP opp

j − afterHP opp
j

Scale
, (7)

where beforeHP opp
j and afterHP opp

j stand for HP of the
opponent before and after the jth simulation, respectively,
and Scale is a constant. If the AI gives a high amount of
damage to the opponent, Bj will obtain a high evaluation
value. Therefore, this term makes the evaluations of aggressive
actions aimed at defeating the opponent higher than non-
aggressive ones.

The coefficient α in formula (6) is dynamically determined
by formula (8) based on the current game situation:

α =
tanh

(
beforeHPmy

j −beforeHP opp
j

Scale

)
+ 1

2
, (8)

where beforeHPmy
j and beforeHP opp

j stand for HP of the AI
and the opponent, respectively, before the jth simulation, and
Scale is a constant. The more the AI is winning against the
opponent, the closer α reaches 1. Conversely, the more the
AI is losing against the opponent, α becomes closer to 0.
Therefore, this coefficient makes it easier for the AI to select
actions suitable for difficulty adjustment (Ej) when the AI is
winning and select those increasing its aggressiveness (Bj)
when the AI is losing. Also, when the HP difference is zero
which means the AI is evenly fighting against the opponent,
α becomes 0.5. In that situation, the AI selects actions that
maintain both difficulty and believability.

In summary, the mechanism of our proposed method is
making the AI select actions by considering not only how to
adjust its difficulty toward the opponent’s skill but also always
how to defeat it.

V. EXPERIMENTS

In this section, we describe the conducted experiments to
verify the performance of our proposed DDA-AI (Believable
Entertaining AI: BEAI).

Fig. 4. Screen shot of FightingICE

TABLE I
PARAMETERS USED IN THE EXPERIMENTS

Notation Meaning Value
C Balancing parameter 0.42

Nmax Threshold of the number of visits 7
Dmax Threshold of the tree depth 3
Tsim The number of simulations 60 frames
Tmax Execution time of MCTS 16.5 ms
Scale Scaling parameter 30

A. FightingICE

FightingICE (Fig. 4) is a real-time 2D fighting game
platform used in a game AI competition (FTGAIC) at CIG
since 2014 [3]. This game has all main elements of fighting
games. In addition, it does not use a ROM emulator and has
been originally developed from scratch and publicly made
available for research purpose (see [10-14] for other recent
publications using this platform), so there are no legal issues
to be concerned. In FightingICE, one game consists of three
60-second rounds and one frame is set to 1/60 seconds. Each
AI has to decide and input an action in one frame. Each
character’s initial HP is set to HPmax, and it will decrease
when the character is hit. After 60 seconds or either character’s
HP is 0, the game will proceed to the next round, and each
character’s HP will be reset to HPmax. The character with the
larger remaining HP at the end of the round is the winner.

In our experiments, the value of HPmax is set at 400
according to the rule of Standard Track of FTGAIC.

B. Parameters

The parameters used in our experiments are shown in
Table I. These parameters were set empirically through pre-
experiments.

C. Methods

We conducted subjective experiments to verify whether
BEAI can adjust its strength according to the opponents’
skill while maintaining its believability. We used 38 subjects
(average age: 23.4± 2.2) in our experiments. Before starting
our experiments, we conducted an informed consent session
about our experiments, and subjects’ consents were obtained
with their signature in a separate informed consent form. In
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addition, we used eAI and TPOSAS for comparison. Our
experiments were conducted for two days; the first day is to
measure each subject’s skill of fighting games (Exp. 1) while
the second day is to have them individually fight against eAI,
TPOSAS and BEAI (Exp. 2). The content of Exp. 1 and Exp.
2 is given below.

1) Measurement of fighting games’ skill (Exp. 1):
The procedure of Exp. 1 is as follows:

1) Explain the experiments and how to operate the charac-
ter in FightingICE.

2) Ask each participant to fight against a non-action-AI for
five minutes as practice.

3) Ask each participant to fight against an MCTS-Based
high-performance AI (MctsAi) for one game.

4) Ask each participant to answer a questionnaire.
5) Repeat Steps 3 and 4 two times.

At Step 3, we used a sample AI of FTGAIC proposed by
Yoshida et al. [9]. The questionnaire used at Step 4 is shown
in Table II. This questionnaire was made with reference
to previous studies [15] and [16]. We asked the subjects
to evaluate each question in a 5-Likert scale (1: Strongly
Disagree, 2: Disagree, 3: Neither, 4: Agree, 5: Strongly Agree).
The evaluation of each factor is the average of the evaluation
values of all questions (two in our case) belonging to each
factor.

After finishing Exp. 1, we divided all subjects into three
groups (G1, G2 and G3). We then confirmed that there is no
significant difference between three groups in terms of both the
average HP difference against the MctsAi and the evaluation
value of the Challenge factor, using a Kruskal-Wallis test.

2) Fighting against eAI, TPOSAS and BEAI (Exp. 2):
The procedure of Exp. 2 is as follows:

1) Explain the experiments and how to operate the charac-
ter in FightingICE.

2) Ask each participant to fight against a non-action-AI for
five minutes as practice.

3) Ask each participant to fight against an AI for one game.
4) Ask each participant to answer a questionnaire.
5) Repeat Step 3 and 4 for all AIs

The questionnaire used in this experiment is the same as
the one in Exp. 1, rather than rank-based questionnaires [17]
where participants are asked to compare the play session they
have just finished with the former one. This is because in
our case the time window between the two consecutive play
sessions is up to 3 minutes – one game – by which participants
might not be able to make precise comparison. The fighting
order of each AI was determined according to the Latin-square
method as follows:

• G1 eAI→TPOSAS→BEAI
• G2 TPOSAS→BEAI→eAI
• G3 BEAI→eAI→TPOSAS

In Exp. 2, we evaluated each AI’s performance using a
metric called Average HP Difference Throughout the Game
(AHDTG), described in Section VI-D, and the evaluation

TABLE II
CONTENT OF QUESTIONNAIRE

Dimension Index Content

Positive Affect 1 I felt it content
2 I felt it enjoyable

Challenge 3 I felt it challenged
4 I felt it stimulated

Believability 5 The opponent’s attack skills were believable
6 The opponent’s dodging skills were believable

TABLE III
SUBJECT GROUPING IN TERMS OF FIGHTING GAME SKILL

Name Average Median # of people
Expert 3± 38 4 11

Intermediate −151± 29 -159 12
Beginner −225± 25 -221 15

values of three factors in the questionnaire. Video clips show-
ing typical gameplay by participants against these AIs are
available1.

D. Average HP Difference Throughout the Game

AHDTG is introduced by the authors to evaluate how the AI
can dynamically adjust its difficulty according to the opponent
throughout the game, defined by the following formula:

AHDTG =

∑Ftotal

i=1 |HPmy
i −HP opp

i |
Ftotal

, (9)

where HPmy
i and HP opp

i stand for HP of the AI and the
opponent at the frame i, respectively, and Ftotal stands for
the total number of frames in this round. If the AI evenly
fight against the opponent throughout the round, the value of
AHDTG becomes small. This indicates that the smaller the
value of AHDTG is, the more the AI can dynamically adjust
its difficulty according to the opponent’s skill throughout the
round.

VI. RESULTS AND DISCUSSIONS

In this section, we show the experimental results and our
discussions in terms of AHDTG and each factor of the
questionnaire. Note that the symbols ∗ and ∗∗ used in figures
and tables in this section represent a significant difference at
5% and 1%, respectively.

A. Subject grouping

From the result of Exp. 1, we divided subjects into three
groups –Expert, Intermediate and Beginner– based on the

1http://www.ice.ci.ritsumei.ac.jp/˜ruck/dda-cig2018.htm

TABLE IV
RESULTS OF A FRIEDMAN TEST ON AHDTG IN EACH GROUP

Name p-value
Expert .078

Intermediate .017∗

Beginner .006∗∗

50



TABLE V
RESULTS OF A FRIEDMAN TEST ON POSITIVE AFFECT IN EACH GROUP

Name p-value
Expert .658

Intermediate .084
Beginner .723

average HP difference at the end of the game against the
MctsAi, using the k-means method with k = 3. Table III shows
the result of subject grouping. In Table III, the column Average
represents the aforementioned average HP difference and the
standard deviation of subjects belonging to each group, each
playing three games.

B. AHDTG

Fig. 5 shows the average AHDTGs against eAI, TPOSAS
and BEAI in each group. In Fig. 5, the x-axis represents the
group names, the y-axis represents the value of AHDTG, and
the error bars represent standard deviations of AHDTG for
the three AIs in each group. We can see that BEAI obtains
less AHDTG than eAI and TPOSAS against Intermediate and
Beginner. According to our analysis of the gameplay, BEAI
tends to behave aggressively especially in the game situation
where the HP difference is around zero, due to the new
evaluation term about its aggressiveness, compared with other
two AIs. Therefore, one can consider that compared to eAI
which tends to behave strangely like intentionally filling up
the HP difference after the value becomes too large (AI losing
too much), BEAI could evenly fight against the opponent like
a seesaw game shown in Fig. 2 (d).

However, BEAI obtains more AHDTG than eAI and
TPOSAS against Expert. According to our observation, some
players in Expert adopted a fighting style like “counter-attack”
by which they appropriately hit their attacks to the opponent
against the opponent’s conducted actions. We could often see
that these players hit their strong attacks such as the ultimate
attack to BEAI when it stepped forward in order to shorten
the distance; in other words, they exploited BEAI’s aggressive
behaviors against the AI. For this reason, BEAI couldn’t adjust

Fig. 5. Average AHDTGs against eAI, TPOSAS and BEAI, in each group

Fig. 6. Average evaluations of Positive Affect toward gameplay against eAI,
TPOSAS and BEAI, in each group

Fig. 7. Average evaluations of Challenge toward gameplay against eAI,
TPOSAS and BEAI, in each group

its strength against expert players compared with the other two
AIs.

Table IV shows the results of a Friedman test on AHDTG
in each group. There are significant differences at 5% and
1% between the three AIs in Intermediate and Beginner,
respectively. From these results, we can conclude that BEAI
could dynamically adjust its difficulty against intermediate and
beginner players throughout the game compared to the existing
DDA methods.

C. Positive Affect

Fig. 6 shows the average evaluations of Positive Affect
toward gameplay against eAI, TPOSAS and BEAI, in each
group. In Fig. 6, the x-axis represents the group names,
the y-axis represents the evaluation value (1: Boring ∼ 5:
Enjoyable) of Positive Affect, and the error bar represents the
standard deviation of it in each group. We can see that BEAI
obtains higher evaluation values than eAI and TPOSAS against
Expert and Beginner. However, it obtains a lower evaluation
value than eAI against Intermediate. From our analysis, we
could observe that BEAI often forced players to fight in
the close range compared to the other two AIs. Subjects
belonging to Intermediate fought against their opponent AIs
using various actions and strategies, similar to those players in
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TABLE VI
RESULTS OF A FRIEDMAN TEST ON CHALLENGE IN EACH GROUP

Name p-value
Expert .187

Intermediate .024∗

Beginner .840

TABLE VII
RESULTS OF A FRIEDMAN TEST ON BELIEVABILITY IN EACH GROUP

Name p-value
Expert .886

Intermediate .042∗

Beginner .420

Expert. However, since their skill is not that high, compared
to Expert, they couldn’t fight the way they wanted because of
the BEAI’s aggressive behavior compared to eAI, which led
to the decrease in affect evaluation toward gameplay against
BEAI. Although having this issue, BEAI obtains more than
3.75 points in all groups. Thus, we can still say that the
subjects evaluated fighting against BEAI favorably.

Table V shows the results of a Friedman test on Positive Af-
fect in each group. There is no significant difference between
the three AIs in all groups. From these results, although there
is no significant difference, we can conclude that BEAI could
entertain expert and beginner players more than the existing
DDA methods.

D. Challenge

Fig. 7 shows the average evaluations of Challenge toward
gameplay against eAI, TPOSAS and BEAI, in each group.
In Fig. 7, the x-axis represents the group names, the y-axis
represents the evaluation value (1: Too weak ∼ 3: Good
difficulty ∼ 5: Too strong; note that 3 is the best) of Challenge,
and the error bar represents standard deviation for each AI in
each group. We can see that BEAI obtains higher evaluation
values than eAI and TPOSAS against Expert and Intermediate.
However, BEAI obtains lower evaluation than the other two
AIs against Beginner. From our analysis, we could observe
that subjects belonging to Beginner often used simple strate-
gies such as stepping forward and punching or kicking. As
BEAI behaves aggressively, there were many situations where
subjects and BEAI gave damage to each other in close ranges.
Thus, they evaluated BEAI to be too strong due to these
situations, compared to the other two AIs.

Table VI shows the results of a Friedman test on Challenge
in each group. There is a significant difference at 5% between
the three AIs in Intermediate. From these results, we can
conclude that BEAI could adjust its difficulty against expert
and intermediate players in a way that they felt the opponent
AI’s difficulty was suitable for them.

E. Believability

Fig. 8 shows the average evaluations of Believability toward
gameplay against eAI, TPOSAS and BEAI, in each group.
In Fig. 8, the x-axis represents the group names, the y-axis

Fig. 8. Average evaluations of Believability toward gameplay against eAI,
TPOSAS and BEAI, in each group

represents the evaluation value (1: Unnatural ∼ 5: Believable)
of Believability, and the error bar represents the standard devi-
ation for each AI in each group. We can see that BEAI obtains
higher evaluation than eAI and TPOSAS against Intermediate.
From our analysis, we could observe that BEAI conducted less
unnatural actions as mentioned in Section III-C, especially the
game situations where the HP difference is around zero. Thus,
our proposed evaluation function could dynamically adjust
the AI’s difficulty while restraining its unnatural actions, and
improve the evaluation value of Believability evaluated by
intermediate players.

Table VII shows the results of a Friedman test on Believ-
ability in each group. There is a significant difference at 5%
between the three AIs in Intermediate. From these results,
we can conclude that BEAI could adjust its difficulty while
restraining its unnatural actions against intermediate players.

VII. CONCLUSIONS AND FUTURE WORK

In order to improve players’ skill while at the same time
entertaining them, AIs are needed that can evenly fight against
their opponent beginner and intermediate players; such AIs are
called DDA-AIs. In addition, in order not to impair the players’
playing motivation due to the AI’s unnatural actions, DDA
methods that can restrain their unnatural actions are needed.
In this paper, we proposed an MCTS fighting game AI capable
of DDA while maintaining its believable behaviors, targeting
beginner-level and intermediate-level players. We used eAI
proposed previously by our group [1] as a based AI (eAI)
and introduced a new evaluation term on action believability,
to the AI’s evaluation function, that focuses on increasing the
amount of damage to the opponent. In addition, we introduced
a parameter that dynamically changes its value according to
the current game situation in order to balance this new term
with the existing term in the evaluation function.

From our experimental results, our proposed DDA-AI
showed the best performance in terms of average HP difference
throughout the game (AHDTG), Challenge and Believability
against intermediate players, and AHDTG against beginner
players. As a result, we conclude that our proposed DDA-AI
could dynamically adjust its strength to its opponent human
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players’ skill, especially intermediate players, while restrain-
ing its unnatural actions throughout the game. The proposed
evaluation function (6) has a potential to be applied to MCTS-
based AIs in other games to maintain the aggressiveness
while shrinking the performance gap with the opponent human
player, in particular when the AI is winning.

However, although our proposed DDA-AI was evaluated
favorably by intermediate and beginner players, it could not
significantly improve the evaluation value of Positive Affect,
compared to eAI. For future work, we plan to develop a
new mechanism for entertaining players while keeping its
believability. It might also be interesting to combine the
proposed DDA-AI with a mechanism that directly emulates
human players [18]. In addition, we will also develop much
stronger AIs as based AIs for new DDA-AIs that can adapt to
expert players.
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Abstract—In this paper, we propose a method for implementing
a game AI with a persona using Monte-Carlo Tree Search
(MCTS). Video games are now a powerful entertainment media
not just for players but spectators as well. Since each spectator
has personal preferences, customized spectator-specific gameplay
is arguably a promising option to increase the entertainment
value of video games streaming. In this paper, we focus on
personas, which represent playstyles in the game, in particular
fighting games. In order to create an AI player (character) with
a given persona, we use a recently developed variant of MCTS
called Puppet-Master MCTS, which controls all characters in
the game, and introduce a new evaluation function, which makes
each character take their actions according to the given persona,
and roulette selection-based simulation to this MCTS. The results
of a conducted experiment using FightingICE, a fighting game
platform used in a game AI competition at CIG since 2014, show
that the proposed method can make both characters successfully
behave according to given personas, which were identified by
participants – spectators – in the experiment.

Index Terms—Monte-Carlo tree search, persona, play style,
fighting game AI, FightingICE

I. INTRODUCTION

In recent years, more than 100 million spectators watch
gameplay videos (GPV) every month using streaming plat-
forms such as Twitch and YouTube. This phenomenon sug-
gests video games are a powerful entertainment media not just
for players but spectators as well. Spectators can be divided
into three groups. “Let’s Play” (LP) is one of them where
spectators enjoy watching GPVs streamed by live stream-
ers [1]. Such spectators often look for GPVs that entertain
themselves by judging GPVs according to not only how well
the players play them but also how entertaining those GPVs
are. As a result, it is desirable that game streamers must
be able to generate customized spectator-specific GPVs that
match their spectators’ preferences. Due to a wide variety of

spectators’ preferences, it is, however, challenging for stream-
ers to provide such GPVs. Recently, Thawonmas and Harada
proposed a novel concept of called procedural play generation
(PPG) [2]. Their goal is to generate GPVs automatically and
recommend those GPVs to spectators according to their prefer-
ences. To realize this concept, one needs artificial intelligence
(AI) methods for automatically generating GPVs with various
contents and recommender systems for recommending GPVs
to spectators according to their preferences. In this paper, we
cope with the AI part.

In particular, we propose a method that can automati-
cally generate various GPVs using Monte-Carlo Tree Search
(MCTS) [3], [4]. We target fighting games, one of the game
genres whose GPVs are often streamed by streamers and
adopted as competitions in eSports. In addition, we focus on
playstyles in fighting games; such styles are called personas
[5]. In order to generate GPVs where each AI player (char-
acter) has a specific persona, we adopt a recently proposed
MCTS called Puppet-Master MCTS (PM-MCTS) [6] that
controls all characters in the game as a base method and
introduce a new evaluation function that is based on the
distance between both characters and their actions. We also
introduce roulette selection to the simulation part in PM-
MCTS to improve the simulation accuracy. We verify whether
our proposed method can generate GPVs where the characters
have personas by a subjective experiment using FightingICE,
a fighting game platform used in a game AI competition at
CIG since 2014 [7].

II. RELATED WORK

A. Persona

According to Tychsen and Canossa [5], persona in the game
context is the playstyle of a player. They analyzed playstyles

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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of various game players, and those playstyles were used for
testing game designs. Following this definition of persona,
Holmgård et al. [8] proposed a method for implementing
AIs that behave according to specified personas using MCTS.
They classified five personas in “MiniDungeons 2”, which
is a turn-based rogue-like game. They also introduced an
evaluation function for each persona to MCTS to make the
AI behave according to the given persona. From their exper-
imental results, they showed that their proposed AIs could
play “MiniDungeons 2” according to the specified personas in
terms of the AIs’ action frequcies and differences in decision
making. However, they did not quantitatively verify whether
spectators could subjectively recognize and identify the AIs’
personas.

B. Puppet-Master MCTS

PM-MCTS is a variant of MCTS, proposed by Ito et al. [6],
that controls all characters in the game using only a single
game tree. An open loop approach [9] is adopted in PM-
MCTS. Figure 1 shows an overview of PM-MCTS applied to
a two-player fighting game, such as FightingICE. In this tree,
according to the open loop approach, each node represents an
action choice for either of the character (circle: P1; square:
P2) that can execute a new action. PM-MCTS builds such a
tree starting from an initial state, defined by information such
as the Hit-Point (HP), energy, coordinates, and action of each
character and the game remaining time. Each edge represents
the ongoing execution of two actions: one just started from the
parent node and the other started earlier by the other character.
Note that the branching factor at a given node in PM-MCTS
is the number of actions of the respective character, not the
combination of all possible actions from all characters. In
addition, it is more straight-forward and efficient to build the
opponent models for PM-MCTS than for multiple MCTs, one
for each character.

PM-MCTS comprises five steps: selection, expansion, sim-
ulation, backpropagation, and decision making, the first four
of which are the usual steps in MCTS algorithms. These five
steps are described individually in the following subsections.

1) Selection: Nodes are selected from the root node until a
leaf node is reached according to the given selection criterion.
In our work, we use Upper Confidence Bounds (UCB1)
value [10], which is widely used in this step of MCTS, defined
by the following formula:

UCB1pli = X
pl

i + C

√
2 lnN

Ni
, (1)

where Ni is the number of times node (action) i was visited,
N is the sum of Ni for node i and its sibling nodes, and
C is a constant. X

pl

i defined in formula (2) is the average
evaluation value of node i from the perspective of character
pl, the one who can start executing an action at this node. It
is worth reminding that every node of the tree contains the
UCB1 values from the perspective of both characters, as well
as a counter on how many times the node has been visited.

When the AI selects a child node, it uses the UCB1 value of
the character who can start the next action at its parent node.

X
pl

i =
1

Ni

Ni∑

j=1

Evalplj , (2)

where Evalplj is the reward value gained in the jth simulation
from the perspective of character pl.

In this work, the AI selects the nodes with the highest
UCB1 value from the root node until a leaf node is reached.

2) Expansion: After a leaf node is reached in the Selection
step, if the number of times the leaf node has been explored
exceeds a threshold Nmax and the depth of the tree is lower
than a threshold Dmax, all possible child nodes are created
at once from the leaf node. If the root node is the only node
in the tree, PM-MCTS creates all of its child nodes, ignoring
above conditions. Each newly created child node represents
the game state when either of the characters can start a new
action after the character at the parent node has finished its
action. Note that if both characters can start their action at a
leaf node of interest, PM-MCTS creates child nodes for P1
first, and when this situation happens again it creates child
nodes for P2, and this alternation is continued.

3) Simulation: A simulation is carried out for Tsim sec-
onds, sequentially using all actions of both characters in the
path from the root node to the current leaf node. If Tsim has
not passed yet after those actions have been executed, a rollout
will be carried out until Tsim runs out using randomly selected
actions; in other words, Tsim limits the rollout depth in this
case. Each character’s Evalj is then calculated using formula
(2).

4) Backpropagation: Each character’s Evalj obtained in
the Simulation step is backpropagated from the leaf node
to the root node. Each character’s UCB1 value at each node
along the path is updated as well.

5) Decision Making: PM-MCTS repeats the above four
steps until the character who will be executing an action at
the root node becomes available to do so ,i.e., the character’s
previous action has finished. The AI then chooses the char-
acter’s action according to a given recommendation policy. In
this work, it selects the edge (action) connected to the direct
child node that has the highest X

pl

i from the root node as the
next action. That child node will be used as the next root node
and its sibling nodes will be pruned. This step is explicitly
described here and shown in Fig. 1 to emphasize the reuse of
tree structures, as often done in the open-loop approach.

III. PERSONAS IN FIGHTING GAMES

In this section, we give the definition of personas in fighting
games. In this work, we define two fighting-game personas,
i.e., RushDown and Zoning, and individually assign them a set
of actions. Both action sets do not overlap and are fixed during
gameplay. The details of them are described in the following
subsections.
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Fig. 1: An overview of PM-MCTS for a two-player game

A. RushDown

RushDown is a playstyle in fighting games where the player
prefers to fight in close ranges. The behavioral tendency of
RushDown is that the player often uses moving actions such as
step forward to approach the opponent and close-range attacks
such as punch or kick. In FightingICE, described in Section V,
the actions shown in Table I are defined as actions belonging
to RushDown.

B. Zoning

Zoning is a playstyle in fighting games where the player
prefers to fight while keeping a certain distance with the
opponent. The behavioral tendency of Zoning is that the player
often uses moving actions such as back step to move away
from the opponent, and long-range attacks such as fire-ball
shoots. In FightingICE, the actions shown in Table II are
defined as actions belonging to Zoning.

IV. PROPOSED METHOD

In this section, we describe the proposed method for au-
tomatically generating GPVs where each character behaves
according to the given persona. PM-MCTS is used as a
base method, but we introduce a new evaluation function
and roulette selection-based simulation. The details of our
proposed method are given in the following subsections.

A. Evaluation function

The proposed evaluation function for character pl in the jth
simulation is defined as follows:

Evalplj = ePersonaplj × eHP pl
j , (3)

where ePersonaplj is the evaluation value regarding how much
the character’s persona could be realized at a node of interest
and is defined as

ePersonaplj =
actplPersonaj

+ distplPersonaj

3
(4)

TABLE I: All actions belonging to RushDown

Skill name Skill content Damage
STAND A Simple punch 5
STAND B Simple kick 10
CROUCH A Crouch punch 5
CROUCH B Crouch kick 10
STAND D DB BA Jumping punch 10
STAND D DB BB Sliding kick 20
FORWARD WALK Walk forward 0
DASH Dash forward 0

TABLE II: All actions belonging to Zoning
Skill name Skill content Damage
STAND D DF FA Shoot projectile forward 10
STAND D DF FB Shoot strong projectile forward 40
THROW A Throw the opponent 10
THROW B Strongly throw the opponent 20
BACK STEP Step back 0
BACK JUMP Jump backward 0
FOR JUMP Jump forward 0

In the above formula, actplPersonaj
is the term that evaluates

whether character pl conducts an action belonging to the
given persona, Persona ∈ {RushDown,Zoning}, in this
simulation and is defined as

actplPersonaj
=

{
1 (belongs to Persona)
−1 (otherwise)

(5)

If the character conducts an action belonging to Persona, it
will obtain a positive evaluation; otherwise, a negative one.

The term distplPersonaj
considers the distance between both

characters. In our work, according to our experience and
preliminary experiments, we define distplPersonaj

when the
persona of character pl is RushDown (formula (6)) and Zoning
(formula (7)), respectively, as follows:
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distplRushDownj
=

{
2 (distance < 130)
2− (distancewidth × 4) (otherwise)

(6)

distplzoningj =




−2 (distance < 240)
2 (240 ≤ distance < 450)
2− (distancewidth × 4) (otherwise)

(7)

In formulas (6) and (7), distance represents the distance
between the characters, and width is the number of pixels
indicating the width of the game screen. When a character
is within the distance range suitable for realization of the
given persona, the highest evaluation value is obtained. In our
work, we define the distance that a short-range attack hits
the opponent as a suitable distance for RushDown while the
distance that a long-range attack hits the opponent and that
a character can avoid the opponent’s close-range attacks as a
suitable distance for Zoning.

In addition, in formula (3), eHP pl
j is the term that evaluates

how much the HP of the opponent of character pl has
decreased and is defined as follows:

eHP pl
j = oppHProot − oppHProllout (6)

where oppHProot and oppHProllout stand for the HP of the
opponent at the root node and after the rollout, respectively. If
character pl gives a high amount of damage to the opponent,
eHP will have a high value. The main role of this term is
to keep the believability of character pl: if there was only
ePersona in our evaluation function, for example, a character
might conduct unnatural actions such as repeating punch or
dash only to realize RushDown, its persona.

The proposed evaluation function makes the character select
actions by considering not only how to realize its persona but
also always how to defeat the opponent, which is the main
purpose of players in fighting games.

B. Roulette selection applied to rollout

The original PM-MCTS uses randomly selected actions for
both characters in the rollout. However, if this was adopted in
our work, actions not appropriate for each character’s persona
might be conducted. This may cause inaccurate evaluation of
all nodes in the current path if the random-based rollout is still
used.

In order to solve this issue, we introduce roulette selection,
where the actions belonging to the persona of a character of
interest have higher weights, to the rollout. The algorithm of
roulette selection is shown in Algorithm 1. As the variables
in this algorithm, actionList is a list containing all actions,
actF it is an array containing all actions’ fitness values, dart is
a threshold, and totalF it is a sum of all actions’ fitness values
in actF it. The function initialize() initializes the fitness values
of all actions passed to it as the argument actionList. In our

Algorithm 1 Algorithm of roulette selection

// initializes all actions’ fitness values
actF it← initialize(actionList)
dart← random(0,1)
wheel← actF it[0]/totalF it
count← 0
while dart > wheel do

count← count+ 1
wheel← wheel + actF it[count]/totalF it

end while
//Returns the action selected by roulette selection
return ActionList.get(count)

Algorithm 2 Algorithm of the proposed method

state← getNowState() //Gets the current game state
root← Initialize(state) //Initializes the root node
while !isGameEnd do

activeP layer ← root.activeP layer
//Runs PM-MCTS until activeP layer can execute its
next action
bestAct← TreeSearch(root, state, activeP layer)
runAction(bestAct, activeP layer)
root← nextRoot(root, bestAct) //Changes the root node
state← getNowState() //Gets the current game state

end while

work, the fitness value of each action is set to 3 if it belongs to
the action set defined in the persona of a character of interest;
otherwise, 1, not 0 in order to allow actions not belonging to
this persona but with a strong damage value to be also chosen.

This mechanism makes a character of interest use actions
that belong to its persona in a rollout more and hence increases
the accuracy of the simulation.

C. Algorithm of the proposed method

Algorithm 2 shows the algorithm of the proposed method.
As the variables in this algorithm, state represents the cur-
rent game state, root is the root node, activeP layer is
the character who will be executing the next action in the
game, and bestAct is the selected action by PM-MCTS.
The function getNowState() is for obtaining the current game
state, initialize() is for initializing a node passed to it as the
argument, TreeSearch() is for running PM-MCTS, runAction()
is for conducting an action passed to it as the argument, and
nextRoot() is for changing the root node.

V. EXPERIMENT

In this section, we describe the conducted experiment to
verify the performance of the proposed method (P-AI).

A. FightingICE

FightingICE (Fig. 2) is a real-time 2D fighting game plat-
form used in a game AI competition (FTGAIC)1 at CIG since

1http://www.ice.ci.ritsumei.ac.jp/˜ftgaic/
https://github.com/TeamFightingICE/FightingICE
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Fig. 2: Screenshot of FightingICE

2014 [7] and for research [6, 11-23]. Because FightingICE has
been originally developed from scratch without using a ROM
emulator and publicly made available, there are no legal issues
to be concerned. In FightingICE, one game consists of three
60-second rounds, and one frame lasts 1/60 seconds. Each
character has to decide and input an action in one frame.
The HP for both characters is initially set to HPmax and
it decreases when the corresponding character is hit. When
the play is conducted for 60 seconds or either of the two
characters’ HP becomes 0, the game will proceed to the next
round unless the current round is the 3rd one, after which
each character’s HP will be reset to HPmax. The character
with the larger remaining HP at the end of a round is the
round’s winner. In our experiment, the value of HPmax is set
to 400 according to the rule of Standard Track of FTGAIC.

One of the limitations, from our work’s perspective, of
FightingICE used in FTGAIC is that each character must be
individually controlled. To remove this limitation, we modified
some functions in FightingICE so that PPM-MCTS can control
both characters. Another limitation is that the characters can
only obtain each time a game state delayed by 15 frames (0.25
s), taking into account the delay of human perception. How-
ever, since our work is focused on the generation of GPVs,
not on the development of a character for fighting against
another AI opponent or a human opponent in competitions,
we also removed the delay from the FightingICE platform in
our experiment.

B. AIs and parameters in use

In the experiment, we compared the proposed AI (P-AI)
and another MCTS-based AI (M-AI) that controls only one
character [18] using the same evaluation function and roulette
selection described in Section IV. The parameters used in
both AIs are shown in Table III. These parameters were set
empirically through pre-experiments.

C. Details

Our experiment consists of 35 participants (average age:
22.8± 2.6).

TABLE III: Parameters used in the experiment

Notation Meaning Value
C Balancing parameter 0.025

Nmax Threshold of the number of visits 10
Dmax Threshold of the tree depth 10
Tsim Simulation-time budget 60 frames
width Width of the game screen 960 pixels

TABLE IV: Persona of each character in a fight

P1 P2
RushDown RushDown
Zoning Zoning
RushDown Zoning
Zoning RushDown

1) Generation of GPVs: A 60-second GPV for each com-
bination of two personas shown in Table IV was generated by
each AI, leading to eight GPVs2 in total. For generation of
GPVs, the P-AI controlled both characters. However, since an
M-AI can control only one character, two M-AIs (2M-AIs),
each assigned a persona accordingly, were used to generate a
GPV; at the simulation step, the opponent’s actions are selected
by roulette selection using its persona.

2) Procedure: The procedure of our experiment is as fol-
lows:

1) Explain the concept of each of the two personas,
RushDown and Zoning, and show sample GPVs to a
participant.

2) Ask each participant to watch one of the generated
GPVs.

3) Ask each participant to choose the persona for P1
and that for P2, among “RushDown”, “Zoning”, and
“Other”.

4) Repeat Steps 2) and 3) for all generated GPVs.
Note that at Step 2), a GPV was displayed in random order.

VI. RESULTS AND DISCUSSIONS

In this section, we show the experimental results and our
discussions in terms of whether the participants were able to
identify each character’s persona in GPVs. The summarization
tables of the correctly answering participants and incorrectly
answering participants for both characters (a), P1 (b), and
P2 (c) in each GPV are shown in Tables V–IX, in a 2×2
contingency table style often used in the McNemar’s test
conducted below. In these tables, P, M, T, F, and S are P-AI,
2M-AIs, the number of participants who correctly answered,
the number of people who incorrectly answered, and the sum
of numbers in the corresponding row or column, respectively.
Note that in each table (a), we counted the number of partici-
pants who correctly answered the personas of both characters
as T; otherwise, F. We describe the result of each persona
combination in the following subsections.

A. RushDown vs RushDown

Table V shows the summarization of the numbers of correct
participants and incorrect participants for the RushDown vs

2http://www.ice.ci.ritsumei.ac.jp/˜ruck/personaGPVs-cig2018.htm
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RushDown GPVs generated by P-AI and 2M-AIs. In Ta-
bles Va and Vb, we can see that the participants could correctly
answer the personas of both P1&P2 and P1 alone in the
GPV generated by P-AI (33/35 or 94.3% in both cases) more
than those in the one generated by 2M-AIs (P1&P2: 17/35 or
48.6%, P1: 18/35 or 51.4%). From the results of McNemar’s
tests, there are significant differences at 1% between P-AI and
2M-AIs in both cases. However, from Table Vc, both AIs
obtain a high accuracy. From our observation, P2, controlled
by either P-AI or 2M-AIs, aggressively shortened the distance
between the characters even than P1 in the GPV generated
by P-AI. Due to this behavior, P2’s persona was judged as
RushDown by most of the participants.

B. Zoning vs Zoning
Table VI shows the summarization of the numbers of

correct participants and incorrect participants for the Zoning
vs Zoning GPVs generated by P-AI and 2M-AIs. We can see
that the participants could correctly answer the personas in
the GPV generated by P-AI (P1&P2: 16/35 or 45.7%, P1:
31/35 or 88.6%, and P2: 20/35 or 57.1%) more than those
in the one generated by 2M-AIs (P1&P2: 1/35 or 2.9%, P1:
4/35 or 11.4%, and P2: 12/35 or 34.3%). From the results
of McNemar’s tests, there are significant differences at 1%
between P-AI and 2M-AIs for P1&P2 and P1, and at 10% for
P2. However, there are fewer people who correctly answered
both characters’ personas than those who did not. This is due
to the specification of attacks belonging to Zoning. All of the
attacks in Zoning given in Table II need energy to conduct
them, and this makes zoning characters select moving actions
such as a jump forward. In addition, when both characters
approach each other due to such moving actions, they often
conduct actions that give damage to their opponent according
to the term eHP in formula (6). Due to these behaviors, both
characters’ personas were judged as RushDown by a number
of participants, especially in the GPV generated by 2M-AIs.

C. RushDown vs Zoning
Table VIII shows the numbers of correct participants and

incorrect participants for the RushDown vs Zoning GPVs
generated by P-AI and 2M-AIs. From these tables, we can
see that the participants could correctly answer the personas
in the GPV generated by P-AI more than those in the one
generated by 2M-AIs for all cases, especially P1&P2 and P2.
From the results of McNemar’s tests, there are significant
differences at 1% between P-AI and 2M-AIs for the three
cases. This is because each M-AI individually decides actions
according to its own evaluation function, without considering
the opponent’s next action, which is different from P-AI. This
often caused mismatched fighting such as approaching each
other, which looks like RushDown vs RushDown. Due to these
behaviors, many participants answered wrong personas in the
GPV generated by 2M-AIs.

D. Zoning vs RushDown
Table IX shows the summarization of the numbers of

correct participants and incorrect participants for the Zoning vs

TABLE V: The numbers of correct participants and incorrect
participants for the RushDown vs RushDown GPVs generated
by P-AI and 2M-AIs

(a) P1 & P2

HHHHP
M T F S

T 17 16 33
F 0 2 2
S 17 18 35

(b) P1

HHHHP
M T F S

T 18 15 33
F 0 2 2
S 18 17 35

(c) P2

HHHHP
M T F S

T 33 1 34
F 1 0 1
S 34 1 35

TABLE VI: The numbers of correct participants and incorrect
participants for the Zoning vs Zoning GPVs generated by P-AI
and 2M-AIs

(a) P1 & P2
HHHHP

M T F S

T 1 15 16
F 0 19 19
S 1 34 35

(b) P1
HHHHP

M T F S

T 4 27 31
F 0 4 4
S 4 31 35

(c) P2
HHHHP

M T F S

T 7 13 20
F 5 10 15
S 12 23 35

RushDown GPVs generated by P-AI and 2M-AIs. In Tables Xa
and Xb, we can see that the participants could correctly answer
the personas of P1&P2 and P1 in the GPV generated by
P-AI (P1&P2: 22/35 or 62.9%, P1: 31/35 or 88.6%) more
than those in the one generated by 2M-AIs (P1&P2: 1/35
or 2.9%, P1: 2/35 or 5.7%). From the results of McNemar’s
tests, there is a significant difference at 1% between P-AI and
2M-AIs for each of the aforementioned two cases. However,
from Table Xc, there are fewer correct participants for P2’s
persona in the GPV generated by P-AI than that by 2M-AIs,
with a significant difference at 10%. From our observation,
in the GPV generated by P-AI, P2 sometimes used projectile
attacks belonging to Zoning. This is because such attacks, if
used, can give more damage than simple close-range attacks
belonging to RushDown, causing the term eHP for P-AI to
obtain a much higher evaluation value than ePersona and
hence making rushdown characters behave like Zoning rather
than RushDown.

E. Summary of the results

In summary, we can conclude that the participants could
better identify both characters’ personas in the GPVs generated
by P-AI than those in the GPVs generated by 2M-AIs. As
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TABLE VIII: The numbers of correct participants and incor-
rect participants for the RushDown vs Zoning GPVs generated
by P-AI and 2M-AIs

(a) P1 & P2

HHHHP
M T F S

T 4 28 32
F 1 2 3
S 5 30 35

(b) P1

HHHHP
M T F S

T 20 12 32
F 1 2 3
S 21 14 35

(c) P2

HHHHP
M T F S

T 8 25 33
F 1 1 2
S 9 26 35

TABLE IX: The numbers of correct participants and incorrect
participants for the Zoning vs RushDown GPVs generated by
P-AI and 2M-AIs

(a) P1 & P2
HHHHP

M T F S

T 1 21 22
F 0 13 13
S 1 34 35

(b) P1
HHHHP

M T F S

T 2 29 31
F 0 4 4
S 2 33 35

(c) P2
HHHHP

M T F S

T 21 3 24
F 10 1 11
S 31 4 35

mentioned earlier, P-AI controls both characters based on the
information on their future actions. Due to this mechanism,
P-AI can select the next action for each character that well
expresses its persona.

VII. CONCLUSIONS AND FUTURE WORK

Video games are now an attractive entertainment media not
just for players but also spectators. To provide customized
spectator-specific GPVs that match various kinds of spectators’
preferences, AIs that can automatically generate GPVs with
a variety of contents are needed. In this paper, we focused
on personas, which represent playstyles, in fighting games. In
order to generate GVPs where each character plays according
to a given persona, we adopted a recently developed variant
of MCTS called Puppet-Master MCTS, which controls all
characters in the game, and introduced a new evaluation
function and roulette selection-based simulation to this MCTS.

The results of the conducted experiment confirmed that the
proposed AI can make both characters successfully behave
according to their personas, which were identified by the
participants or spectators in the experiment. However, the pro-
posed AI still has an issue when controlling characters having
the persona of Zoning. For future work, we plan to develop

new evaluation functions and mechanisms to realize given
personas more accurately. In addition, we plan to introduce
more personas besides RushDown and Zoning for generating a
higher variety of GPVs. It might also be interesting to consider
believability [23] and human-play emulation [24] aspects or
to analyze generated gameplay with action metrics recently
proposed by Zook and Riedl [25]. We also plan to verify
whether GPVs generated by our proposed AI can entertain
spectators through extensive user studies.
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Abstract—The question of whether the correct algorithm is
used for the problem at hand usually comes at the end of
execution, when the algorithm’s ability to solve the problem (or
not) can be verified. But what if this question could be answered
in advance, with enough notice to make changes in the approach
in order for it to be more successful? This paper proposes a
general agent performance prediction system, tested in real time
within the context of the General Video Game AI framework.
It is solely based on agent features, therefore removing potential
human bias produced by game-based features observed in known
games. Three different models can be queried while playing the
game to determine whether the agent will win or lose, based on
the current game state: early, mid and late game feature models.
The models are trained on 80 games in the framework and tested
on 20 new games, for 14 variations of 3 different methods. Results
are positive, indicating that there is great scope for predicting
the outcome of any given game.

Index Terms—general video game playing, rolling horizon
evolution, monte carlo tree search, win prediction

I. INTRODUCTION

Many researchers have approached the problem of General
Video Game Playing in the last years, partly encouraged by the
proliferation of benchmarks like the General Video Game AI
(GVGAI; [1]) framework, the Arcade Learning Environment
(ALE; [2]) and others. In the different studies, authors employ
either a single or a combination of techniques in order to tackle
this complex problem, in which an agent must be able to play
any within a collection of games. Known examples are Mnih et
al. [3] work on the Atari framework or the several times winner
of the GVGAI competition, YOLOBOT [4], respectively.

A recent survey in the uses of GVGAI for research and
education [5] highlights a commonality on multiple studies:
not only most approaches rarely surpass 25% of victories
across the set of games tested (with just some approaches
reaching 50% in particular games and settings), but also the
victory count is accumulated in specific games. Some games
in the framework are too hard for any of the GVGAI agents
developed so far, and it remains an open question as to whether
they are too hard for a general approach.

This is something that may be expected a priori, but as
D. Ashlock et al. [6] suggest in their work, a hyper-heuristic
approach or a portfolio of agents should be able to overcome
this problem. However, finding the right approach for the right
game, especially if that game is unknown, is a hard challenge.

Several previous studies suggest clustering games using
game features or performance of agents on them [6], [7], [8].
In general, this clustering can be used to select which agent,

from a collection of different techniques, should be used to
play the game at stake. This is a reasonable approach, but little
thought has been put so far into analysing if the algorithm
should be changed once the game has already started. The
technique used in a particular game may need to be discarded
in favour of another one, either because the choice was wrong
in the first place, or because the game conditions have changed.

In fact, it is common for a human who is playing a game
to have a certain intuition about how well are they doing mid
way through it. A player in Space Invaders can see, before
losing the game, that the presence of too many aliens close
to the ground is a bad sign. Having most pellets still to be
eaten in Pac-Man with no power pills left in the level can also
be an indication of the likely (negative) outcome of the game.
Our interest is to see if it is possible to give this ability to a
general agent, allowing the possibility of changing technique
before it is too late in the game.

The use of game features, however, poses an additional
problem: including the number of pills or aliens as features is a
very specific approach. In fact, even considering GVGAI terms
(as presence of Non-Player Characters, portals, resources, etc.)
is not general enough. This does not only tailor the methods
to GVGAI (which may be hard to avoid when working with
a specific framework), but also to the games the algorithm
designer has seen in the past. Other features, however, can be
more resilient to this bias, such as agent-based features [9]:
decisiveness of action selection, speed of convergence to a
recommendation or analysis of the fitness landscape.

The work presented in this paper explores the idea of
designing a game outcome predictor. In particular, we propose
building predictors that only focus on agent-based features, in
order not to bias the prediction towards already seen games.
The question this paper tries to answer is if it is possible to
train a model solely on agent experiences, so it is able to
estimate the probability of victory at the current state for any
game within the GVGAI framework.

II. RELATED WORK

There is extensive literature on extracting various AI game-
play measures. Traditionally, these methods are predominantly
used in the area of Procedural Content Generation in order to
assess the quality of a level or game created automatically.

Liapis et al. [10] create models of player types called
“procedural personas”, which then they use to automatically
generate levels of a roguelike puzzle game. For this purpose,

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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they identify several features that the evolved agents will focus
on: the number of monsters they kill, the number of treasures
collected or reaching the exit of the level. Using these different
personas to automatically play-test levels, the authors are able
to generate interesting levels which highlight agent strengths.

Some researchers focus more on the area of human-
computer interaction and how measures extracted from game-
play can be used in predicting various aspects characterizing
automatically generated games (engagement, frustration and
challenge in [11]; or human enjoyment when playing against
different ghost teams in the game Ms Pac-Man [12]). The
content and game-play features highlighted by Shaker et
al. [11] in the platformer game Super Mario Bros are directly
applicable to AI game-play as well as humans: number of
enemies, number and width of gaps in the level, enemies
placement, boxes, power-ups and events triggered during play.

Isaksen et al. [13] define several metrics characterising dice
games: win bias (the difference between the probabilities of
player A winning a dice battle and player A losing the battle),
tie percentage (the probability of a tie in a given battle) and
closeness (how much the result of the battle centered around
a tie). Volz et al. [14] evaluate how close the game ended
as well in the card game Top Trumps with the objective of
automatically balancing the game.

However, the features explored by these authors are game-
specific and applying these methods to other domains is
not straightforward. When designing games, Browne and
Maire [15] looked at 57 different criteria in judging an evolved
game split into 3 categories, intrinsic, viability and quality. The
authors use general game-playing agents to test their games,
which are written in the Ludi Game Description Language.
Most of the quality features analysed are resultant from AI
game-play, such as depth, drama, decisiveness or uncertainty.
Some of these metrics, where possible to translate to single-
player games, were adapted for our study.

Several works move away from the area of PCG and
instead focus on extracting measures of player behaviour to
specifically tune game-playing agents or perform a deeper
performance analysis than the typical win rate investigation.
Khalifa et al. [16] used features from human game-play data
to tune a human-like Monte Carlo Tree Search (MCTS) player.
Their features mostly focused on actions, such as action
repetition, change frequency or pauses, with an additional map
exploration metric. The authors applied the features extracted
from human data to tune a Monte Carlo Tree Search agent on
3 different games in the General Video Game AI framework
(GVGAI), with mixed results.

More general measures for better analysis are depicted by
Volz et al. in [9]. Their prototype implementing the measures
for live game-playing agent analysis also uses the GVGAI
framework, allowing for a general application of the method
on several different games. Some of these metrics, such as
decisiveness or action entropy, were included in this study,
excluding multi-player or comparison metrics.

Some researchers use such metrics for machine learning
tasks. For example, Bontrager et al. [7] cluster the games in the

GVGAI framework based on the performance of several agents
submitted to the corresponding competition. In this case, the
performance of an agent is simply characterized by the win
rate, which is shown to differ between the players. The authors
signify that some agents possess skills useful in certain tasks,
while other agents lack or make up for them in different ways.

Mendes et al. [8] used this conclusion to construct a hyper-
heuristic agent. The authors extracted several game features
(number and type of NPCs, resources available, map dimen-
sions and number and types of other sprites) and used a
classification method to determine which AI agents, selected
from a subset of GVGAI competition entries, achieve highest
win rates when specific game features or combination of
features are present in a new game tested. The algorithm then
decides which agent to query for a solution depending on the
recommendation of the classifier (a Support Vector Machine
and a Decision Tree). The agent selected will play the entire
game with no changes.

A similar approach was employed by Horn et al. in [17] for
AI hybrid evaluation (excluding the hyper-heuristic construc-
tion step). They propose a game difficulty estimation scheme
based on game features (NPC types, puzzle elements, pathfind-
ing requirements or traps). These are arguably more open to
human bias, as each metric is evaluated manually. Although
the game difficulty features identified do not correspond to
agent win rates, the authors carry out an analysis which gives
a deeper insight into reasons for agent performance levels.

These works are, however, based on game features as
defined by human knowledge on the existing data set. This
paper proposes a game win predictor based solely on agent
experiences, aiming to remove potential human bias resultant
from designing features seen on known games.

III. BACKGROUND

A. General Video Game AI

The domain chosen for this study is the General Video
Game AI (GVGAI) framework [18], which allows for general
video-game playing agent testing on a wide range of different
games. The diversity in game features, difficulty and different
agent performance is showcased in the previous section, which
highlights it as an appropriate environment for general agent
testing. As opposed to other frameworks focused on the area
of General (Video) Game Playing, GVGAI does not make
the game ruleset available to the AI agents. Instead, the
information given contains the current game state with the
sprites present in the level, the avatar the agent is controlling,
the action set available, the history of events up until that
game tick and the current game score. Additionally, in the
planning tracks, agents have access to a non-deterministic
Forward Model (FM), which they may use to simulate possible
future states. All information is offered to the agents through
Java objects. All games in the framework are real-time, giving
1 second initialization time and 40 milliseconds decision time
at every game tick. There are 100 single-player grid-physics
games available in the framework as of March 2018, all of
which are used in this study for a large scale experiment.
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B. Game-playing agents

This section describes the 3 methods that the game-playing
agents used in this study are based on.

1) Random Search (RS): This agent uniformly samples at
random action sequences of length L within the allocated
budget and chooses for play the first action in the best solution
found. In order to evaluate a sequence, the FM is used to
simulate through the actions, in turn, until the end of the game
or the end of the sequence is reached. The value of the final
state is computed using a heuristic (see Equation 1, where H+

is a large positive integer number and H− is a large negative
integer number), this becoming the value of the solution.

f = score +

{
H+, if loss

H−, if win
(1)

2) Rolling Horizon Evolutionary Algorithm (RHEA): This
agent is one of the promising methods in the domain of
General Video Game Playing, as showcased in [19]. In its
vanilla form, it randomly initializes a population of size P with
individuals of length L, which it then evolves over several gen-
erations by applying various evolutionary techniques, such as
uniform crossover and uniform 1-bit mutation. One individual
represents a sequence of actions, which is evaluated similarly
to the RS procedure: the FM model is used to simulate through
the sequence of actions and the final state is evaluated with the
same heuristic described in Equation 1. The first action of the
best individual found at the end of the evolution is selected.

Previous work is used to select the agents employed in
this study, the best of each being chosen. As a result, vanilla
RHEA [20], EA-MCTS [21] and EA-Shift [19] form the subset
of RHEA variations. EA-MCTS employs a different seeding
method, using the solution provided by a Monte Carlo Tree
Search agent (awarded half the thinking budget) to generate its
initial population. EA-Shift focuses on Monte Carlo roll-outs
added at the end of individual evaluation, as well as a shift
buffer applied for population management (the population is
not discarded and reinitialized at every game tick, but instead
shifted to the left and new random actions are added at the
end of each individual). Additionally, we add EA-All for
completeness, which combines EA-Shift with EA-MCTS.

3) Monte Carlo Tree Search (MCTS): This agent is the
most dominant method in GVGAI, many competitors choosing
it as the basis for their entry. A comprehensive survey of
MCTS techniques can be found in [22]. MCTS builds an
asymmetric tree to make its choices, relying on statistics
gathered from several simulated play-throughs. Each iteration
that adds to the tree statistics begins by navigating down
the tree using the tree policy (Upper Confidence Bound for
Trees with an exploration constant of

√
2 for the agents used

in this study, aiming to balance between exploration and
exploitation). When it finds a node not yet fully expanded,
a new child of this node is added to the tree, by selecting
a new action to play from this game state. A Monte Carlo
simulation (or roll-out) is run from the newly added child until
the end of the game or a depth L is reached. The final state

is evaluated with the same heuristic from Equation 1 and the
value is backed up the tree, updating all nodes visited during
this iteration. In our implementation, the nodes only store
statistics and not the actual game states, the FM being used
to simulate through the tree at every step. W is the number
of iterations used for analysis. The most visited action at the
end of the process is selected for play.

C. Classification

Due to the high variety of the games in the GVGAI frame-
work and the low overall performance of the general agents
(most games remain too difficult to be solved), as highlighted
in the literature review, the F1-Score (see Equation 2) will be
reported as to the quality of the classifiers employed in this
study. It represents the harmonic average between precision
and recall, 1 signifying the best value and 0 the worst.

F1 = 2 · precision · recall
precision+ recall

(2)

This is meant to be a better measure of classifier quality than
accuracy when there is an imbalance in data (in this case, a
majority of games resulting in a loss, see Table I) [23].

IV. DATA SET

To obtain the set of agents used to generate the data
set, 3 roll-out values L were tested for RS (10, 30, 90);
2 parameter sets were tested for all 4 RHEA variations
(P=2,L=8 and P=10,L=14); 3 parameter sets were tested
for MCTS (W=2,L=8; W=10,L=10 and W=10,L=14). Every
experimental setup makes use of the same number of FM calls.

All 14 algorithm variations described previously were run
on all 100 games publicly available in the GVGAI Framework,
20 times on each of the 5 levels, being given a budget of 900
FM calls. Each run produced 2 log files, recording information
about the agent inner processing, as well as its actions played
and game scores, at every game step, in addition to the final
game results (win/loss, final score and number of game ticks).

Data set and processing scripts are publicly available1. On
each game, Formula-12 points are awarded attending to a
ranking determined by win rate. The first 10 ranked entries
receive 25 points, second 18, then 15, 12, 10, 8, 6, 4, 2, 1 and
0 for the 11th and below positions. Points across games are
summed up for an overall ranking, shown in Table I.

A list of all the features extracted can be found below.
Features φ2, φ8, φ9, φ10, φ11 and φ12 compute averages from
the beginning of the game up until the current tick t. Features
φ5, φ6, φ11 and φ12 rely on the FM. Only agent features were
used in this study, with the exception of the game score:

φ1 Current game score
φ2 Convergence: Iteration number when the algorithm
found the final solution recommended during one tick. A
low value indicates quick and almost random decisions.
φ3 Positive rewards: Count of positive scoring events.
φ4 Negative rewards: Count of negative scoring events.

1https://github.com/rdgain/ExperimentData/tree/GeneralWinPred-CIG-18
2Not to be mistaken with F1 accuracy measure for classifiers.
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# Algorithm Points Avg. Wins
1 10-14-EA-Shift 1225 26.02 (2.11)
2 10-RS 898 24.33 (2.13)
3 2-8-EA-All 888 23.95 (1.98)
4 30-RS 885 22.49 (2.02)
5 2-8-EA-Shift 866 24.54 (2.00)
6 14-MCTS 780 24.29 (1.74)
7 10-14-EA-All 695 22.66 (2.02)
8 10-14-RHEA 664 23.23 (2.08)
9 10-MCTS 652 24.01 (1.65)
10 2-8-EA-MCTS 621 23.98 (1.73)
11 10-14-EA-MCTS 618 23.99 (1.80)
12 8-MCTS 594 23.42 (1.61)
13 90-RS 457 16.31 (1.67)
14 2-8-RHEA 257 18.33 (1.77)

TABLE I: GVGAI-style Formula-1 point ranking of all meth-
ods. Type and configuration (roll-out length L if one value,
population size P and roll-out length L if two values) are
reported, followed by the sum of Formula-1 points across 20
games and the average win rate.

φ5 Success: The slope of a line over all the win counts.
Win count increases when any solution sees the end of the
game with a win, at any point during search. A high value
indicates the increase in discovery of winning states.
φ6 Danger: The slope of a line over all the loss counts.
Loss count increases when any solution sees the end of
the game with a loss, at any point during search. A high
value indicates the increase in discovery of losing states.
φ7 Improvement: The slope of a line resultant from all
best fitness values plotted over game tick. A high value
indicates good fitness improvement.
φ8 Decisiveness: Shannon entropy (SE) over the number
of times each of the possible actions was recommended (it
was the first action of a solution in the final population
or analysis window). In all cases of distribution-based
features, a high value suggests actions of similar value;
the opposite shows some to be dominating.
φ9 Options exploration: SE over the number of times
each of the possible actions was explored (it was the first
action of a solution at any time during search). A low
value shows an imbalance in actions explored.
φ10 Fitness distribution: SE over fitness per action.
φ11 Success distribution: SE over win count per action.
φ12 Danger distribution: SE over loss count per action.

The full feature file (processing all games and algorithms for
global classifiers) took approximately 2.5 hours to generate,
from 26GB of raw metrics data split over 281.4k files (Dell
Windows 10 PC, 3.4 GHz, Intel Core i7, 16GB RAM, 4 cores).

Figure 1 shows the pairwise correlation between the features
extracted (using the Pearson correlation coefficient), in a
comparison between the early (first 30% of game ticks) and
late (last 30% of game ticks) phases of the games. Differences
are small, but they do exist. An aspect worth highlighting is the
higher correlations in the bottom right corner in the late game
phase versus the early game phase (i.e. the success distribution
appears to increase correlation with all other features).

Fig. 1: Feature correlation early game (left, 0-30% of all
games) and late game (right, 70-100% of all games)

Another interesting positive correlation that only appears
in the late game phase is that between the sense of danger
and the convergence, suggesting agents take longer to settle
on their final decision when surrounded by possible losses.
The case of one action appearing to be dominating leads to a
persistent negative correlation between convergence and fitness
distribution. This suggests that agents are unlikely to change
their decision if one action is deemed significantly better than
the rest and try a less promising move.

V. PREDICTIVE MODELS

For the purpose of these experiments, all data sets were
randomly split 80/20 in training/test subsets. This study aims
to build several classifier models from agent features extracted,
which would predict a win or a loss during play of a new game.
We also show that the system is robust enough to handle new
agents with significantly different play styles as well.

It takes approximately 10 seconds to process a full feature
file and split the data into train and test, another 10 seconds to
train a global model on a full feature file (or 1 minute if cross
validation is used). Predicting the outcome of 28000 instances
takes approximately 1 minute, the equivalent of 2.26ms per
instance. As the data used in this study is publicly available,
adapting the methods to different problems or agents would
only involve extracting the relevant features from the newly
introduced agents or problems.

A. Baseline

The baseline model all our classifiers are compared against
is a simple rule based predictor incorporating human knowl-
edge. In classic arcade games and most GVGAI games,
gaining score is a good thing and often means the player is on
the right path to winning if they increase their score. This idea
is implemented as described in Equation 3, which compares
the count of positive scoring events recorded to the count of
negative events. This classifier’s performance on the test set
is shown in Table II, where it can be observed that it reaches
an F1-Score of only 0.59 despite a high precision (0.70). This
model will be referred to as Rg in the rest of this paper.

ŷ =

{
win if φ3 > φ4

lose otherwise
(3)
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Precision Recall F1-Score Support
Loss 0.83 0.52 0.64 20500
Win 0.35 0.70 0.46 7500
Avg / Total 0.70 0.57 0.59 28000

TABLE II: Global rule based classifier report. Global model
tested on all game ticks of all instances in the test set.

Precision Recall F1-Score Support
Loss 1.00 0.99 0.99 20500
Win 0.97 0.99 0.98 7500
Avg / Total 0.99 0.99 0.99 28000

TABLE III: Global AdaBoost classifier report. Global model
tested on all game ticks of all instances in the test set.

φ1 0.24 φ2 0.04 φ3 0.08 φ4 0.06
φ5 0.2 φ6 0.1 φ7 0.12 φ8 0
φ9 0.06 φ10 0.02 φ11 0.02 φ12 0.06

TABLE IV: Feature importances extracted from global model.
φx represents a feature and its associated importance.

B. Classifier selection - global model

Seven classifiers (with default hyper-parameters if not speci-
fied) were trained and tested for proof of concept and classifier
analysis. These are K-Nearest Neighbors (5 neighbours), Deci-
sion Tree (5 max depth), Random Forest (5 max depth, 10 es-
timators), Multi-layer perceptron (learning rate 1), AdaBoost-
SAMME [24], Naive Bayes and Dummy (simple rule decision
making, very poor general performance to be used as another
possible baseline). All classifiers use the implementation in
the Scikit-Learn Python 2.7.14 library [25].

Cross-validation with 10 folds was used during training
to assess performance, the classifiers obtaining 0.95, 1.00,
0.98, 0.96, 1.00, 0.95 and 0.66 accuracy during validation,
respectively. Both AdaBoost and the Decision Tree classifier
achieved high accuracy values during validation and test (0.99,
see Table III for its performance measures) and were deemed
equal. Either could be used, but AdaBoost was selected as the
main classifier for the rest of the experiments presented.

Feature importances according to AdaBoost can be seen in
Table IV. It appears that the game score is most important
in distinguishing wins and losses, unsurprisingly, but it is
followed close behind by the number of wins seen by the
agents, the improvement in fitness and the sense of danger.
The decisiveness of the agents is considered to have no impact
in deciding the outcome of a game.

C. Model training

All games were split into logical phases for predictions at
various points in the games: early game (0− 30%), mid game
(30−70%) and late game (70−100%). Multiple models were
then trained for each of the phases, using agent features based
on metrics logged only in the ticks corresponding to each
interval. 3 different models resulted, referred to as Eg , Mg

and Lg , respectively, in the rest of this paper.
The performance of the models was analysed by testing

each on the 20 new games, on their corresponding interval

of game ticks. During training with 10-fold cross-validation,
they achieve 0.80, 0.82 and 0.99 accuracy, respectively. During
test on the new games, they report accuracies of 0.73, 0.80
and 0.99 (0.70, 0.80 and 0.99 F1-Scores), respectively. These
results are satisfactory and allow for further exploration.

VI. LIVE PLAY RESULTS

For the experiments in this paper, we simulated live play by
extracting agent features from the log files for a range of ticks
(T = {100 ·a : ∀ a ∈ [1, 20] : a ∈ N}), all from the beginning
of the game until the current tick tested t ∈ T . Gameplay
from all 14 algorithms on the 20 test games (20 plays on each
of the 5 levels) was used to compute the final results. Each
model was tested on each of the feature files, being asked to
predict the game outcome every 100 ticks.

Simulated live play results can be observed in Figure 4. The
simple rule based model achieves a high performance in some
of the games and it proves better than the trained predictive
models (i.e. “Aliens”, “Defem”, “Chopper”, “Eggomania”). As
these are games with plenty of scoring events, it is unsurprising
that the simple logic of Rg works in these cases. However,
there are games where the trained models achieve much better
predictions (“Ghost Buster”, “Colour Escape” or “Frogs”). The
reward gain is not linear in these games, meaning the player
need not necessarily be phased by a temporary decrease in
score, or too optimistic as a result of score gains.

It is interesting to observe that the trained models do not
follow the expected curves (Eg being better in the early game
phase and then decreasing, Mg showing a spike in the middle
of the game and Lg offering good predictions only towards the
end of the game). Instead, the early game model appears to
have a generally low performance compared to the rest, which
can be explained by the limited information available for this
particular model. The late game model seems particularly
strong in games with very low win rate (“Fireman”, for
example, in which both Eg and Mg are predicting wins, yet
the overall win rate remains at 0% for this game).

It is most interesting to observe the games with close to
50% win rate, “Defem” and “Ghost Buster”. High F1-Score
values here indicate that the predictors are able to correctly
judge both wins and losses equally. And indeed, in both games,
the trained models achieve F1-Scores of over 0.8 only half
way through the game. Model Mg appears to excel in these
situations, meaning that it can recommend the game outcome
and possibly the better approach to be used.

It is important to highlight at this point the importance of
this great result: the predictor is able to foresee with high
reliability, after only a fourth of the game has been played,
if the agent is going to win or lose the game. In this case,
games that are either won or lost with the same probability
as a coin flip. And these are truly general models: trained
in different games, using only agent experience features. This
shows a great scope for the system’s use within hyper-heuristic
methods, as some of the algorithms tested in this study do
win at “Defem” and “Ghost Buster”. Devising a procedure
that determines which is that better method and switches to
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Early-P Mid-P Late-P Total-M
Eg 0.22 (0.72) 0.42 (0.74) 0.49 (0.76) 0.38 (0.74)
Mg 0.29 (0.72) 0.57 (0.79) 0.71 (0.83) 0.53 (0.78)
Lg 0.01 (0.73) 0.05 (0.74) 0.22 (0.76) 0.09 (0.74)
Rg 0.42 (0.67) 0.47 (0.61) 0.46 (0.58) 0.45 (0.62)

Total-P 0.24 (0.71) 0.38 (0.72) 0.47 (0.73)

TABLE V: F1-Scores each model per game phase over all
games, accuracy in brackets. Each row is a model, each
column is a game phase. Highlighted in bold is the best model
on each game phase, as well as overall best phase and model.

it when the prediction is a loss is scope for future work, but
having a system that indicates if a change should be made is
the first step in that direction.

All predictive models were further analysed as to their
average quality considering all games. To this extent, table V
summarises F1-scores for all models on the different game
phases identified. The models are the same as discussed in
Section V-C, and they are tested in the same previous test
setting, with features extracted from the beginning of the game
until the current tick which falls at the half point in each game
phase (15%, 50% or 85% of the game ticks).

The results indicate the rule-based model to be giving
consistent average performance throughout the game phases,
being the best in the early phase with an F1-score of 0.42.
In the Mid and Late game phases, model Mg is the best,
achieving a 0.57 and 0.71 F1-score, respectively. Overall, the
best model is Mg with an F1-score average of 0.53.

It is not surprising that the Mg model is the best in its
respective game phase, and it is expected that the prediction
quality is generally lower in the Early game phase, when there
is less information available and it is harder to judge if the
agent’s performance is good enough or not. A significant result
extracted from the summarised data is that model Mg achieves
high (if not the best) F1-scores across all game phases,
indicating that the system can identify with high confidence
whether the agent is performing well or not and leaving open
the possibility of switching approaches appropriately.

VII. CONCLUSION

This paper presents work in extracting agent features from
AI gameplay in a generic setting, using the General Video
Game AI framework (GVGAI). Game-specific features are
specifically excluded in order to avoid potential bias intro-
duced by human knowledge of already known games. 14 total
variations of Rolling Horizon Evolutionary Algorithm, Monte
Carlo Tree Search and Random Search are used to generate
data on 100 games, playing 20 times each of the 5 levels. Three
different models corresponding to early, middle (mid) and late
game phases are trained on 80 randomly selected games and
tested on the remaining 20 through live play simulation and
repeated predictions every 100 game ticks.

The results obtained indicate that models are able to cor-
rectly predict in most cases the outcome of the game with
sufficient time before the end of the game to make appropriate
changes in the method employed. Throughout all experiments,

it is apparent that some models have better predictions in
specific games than others. Additionally, the mid-game phase
model proved to have the best overall performance, achieving
an F1-Score of 0.53 (0.78 accuracy) across all test games and
game phases. It is also the strongest model in the individual
mid and late phases, being bested in the early game phase only
by the simple rule predictor implemented (which incorporates
the human knowledge that gaining score leads to a win).

Regarding next steps, a hyper-heuristic agent will be built,
able to switch between algorithms appropriately while playing
the game, based on the predictions given by our system. The
task can be split into two: identifying which features need
improvement and which method leads to the desired behaviour.
A prediction explanatory system could be responsible for the
first part of this task and first steps towards this system are
presented in Figure 2, which uses the LIME system3. The
example provided is an explanation of the prediction of each
model at game tick 300 in “Frogs” level 0, when played by
2-8-RHEA. There is an obvious difference between features
and a clear signaling of which features currently indicate a
loss. Therefore, a hyper-heuristic method could make use of
this analysis to correct the loss indications.

Additionally, new methods could be introduced to the
system in order to create stronger models, able to adapt to
any style of play. The current system is robust enough to
handle testing on new algorithms: Figure 3 shows predictions
trained with data generated only by RHEA and RS variants,
but tested live with an MCTS controller playing the game. If
this is compared to Figure 4s, it can be seen that all models
are able to maintain a similar shape and still accurately predict
the outcome half way through the game.

Lastly, more features could be integrated to better describe
player experience, such as empowerment [26], spatial entropy
or characterization of agent surroundings [9].
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Abstract—Building evaluation functions for chess variants is
a challenging goal. At this time, only AlphaZero succeeded
with millions of self-play records produced by using thousands
of tensor processing units (TPUs), which are not available for
most researchers. This paper presents the challenge of training
evaluation functions on the basis of deep convolutional neural
networks using decent data and computing resources, where
regularization is crucial as complex models trained with limited
data are more prone to overfitting. We present a novel training
scheme by introducing a uniformity regularization (UR) network.
In the proposed approach, a value network and a discriminator
network share common convolutional layers and both networks
are trained simultaneously. Loss functions for them are based on
the difference between the score of a random move and that of
an experts’ move as a comparison training method. The value
network is expected to give precise scores for all positions, while
the discriminator makes qualitative evaluations for move pairs,
and acts as a regularizer that penalizes differences in evaluation
results to ensure all samples are uniformly discriminated. Due
to the existence of shared layers, such regularization is beneficial
for improving the overall accuracy of the value network. Ex-
perimental results for chess and shogi demonstrate the proposed
method surpassed the standard L2 regularization method, and
successfully helped obtain decently accurate value networks.

Index Terms—neural networks, joint training, regularization,
computer chess

I. INTRODUCTION

Chess is one of the most popular and classic intellectual
games in the world. Along with its variants, chess has been the
subject of focus for researchers for a long time. The match in
which world chess champion Garry Kasparov was defeated by
the chess-playing machine Deep Blue [1] is treated as a great
milestone in the development history of computer science and
artificial intelligence.

For modern chess programs, a game tree search algorithm
and an evaluation function are two critical components. The
search algorithm is for simulating the game process and
determining the best moves, while the evaluation function is
responsible for assessing the advantage of a given position
when it appears as a node on the game tree. Generally, high-
accuracy evaluation functions provide more reliable search
results with less occurrences of mistaken decisions. Automated
construction of evaluation functions without hand-crafted fea-
tures has been one of the most challenging research goals.

Silver et al. [2] introduced AlphaZero, which could obtain
accurate evaluation functions with deep convolutional neural
networks (DCNNs) for chess and shogi (Japanese chess)
via reinforcement learning, without giving preset domain
knowledge. Although the results including playing strength
were promising, its learning involved millions of self-play
records produced by using thousands of tensor processing
units (TPUs), which are not available for most researchers.
Therefore, there is still the open question of how accurate
evaluation functions can be obtained in a limited amount of
data as well as with reasonable computational resources.

The purpose of this paper is to provide a training scheme to-
ward achieving that goal with a novel regularization technique
designed for DCNN-based value networks. With the proposed
solution, relatively large value networks based on 32-layer
residual convolutional layers were successfully trained with
only two graphics processing units (GPUs) within two days
without overfitting. This paper has two main contributions.
The first is a new joint training scheme in which a value
network and an assistant discriminator network share their
weights in convolutional layers. Both networks are trained with
the same data simultaneously. The other is a carefully crafted
regularization term (acts as a regularizer) added to the overall
objective function, which regulates the output of the newly
introduced discriminator network and ensure that all samples
are uniformly discriminated. Through shared convolutional
layers, the effects of such regularization can be propagated
to the main parts of the value network.

Through experiments in chess and shogi, the proposed
uniformity regularization network was proven that it can be
applied in conjunction with multiple objective functions of
value networks and bring considerable improvements to them
and can work much better than L2 regularization [3] when
training data are relatively sufficient. Also, within limited
training time, value networks trained by the proposed method
reached the frontier level of predicting expert moves.

II. RELATED WORK

A. Learning of Evaluation Functions in Games

Silver et al. demonstrated via AlphaGo Zero and AlphaZero
that accurate DCNN-based value networks could be trained
in Go, chess, and shogi by very large-scale reinforcement
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learning [2], [4]. Their work has been considered remarkable
in that only a minimal amount of domain knowledge was given
and no hand-crafted features were used. In their work, value
networks output the winning probability of a given position,
which are equivalent to evaluation functions in traditional
studies.

In this paper, we attempt to further show the effectiveness
of DCNNs for value networks without using hand-crafted
features on the basis of Silver et al.’s work. However, we do
not adopt reinforcement learning due to resource limitations.
Instead, we focus on how well we can train value networks
given a set of game records.

There have been many studies on how to improve evalu-
ation functions by using game records. In AlphaZero, value
networks are trained to predict the winner of self-play games.
Note that the winner of self-play games is equivalent to a
Monte-Carlo return of episodes in reinforcement learning.
Similarly, Buro successfully trained Logistello’s evaluation
function in Othello to predict the final score (the difference
of disks) of a given position [5].

Temporal difference learning is also a major approach
in reinforcement learning, as well as Monte-Carlo control
methods. It learns evaluation functions by minimizing the
differences between the score of current state and those of sub-
sequent states. TD-LEAF(λ) is a variant of temporal difference
learning applied to chess [6]. Giraffe [7] adopted TD-LEAF(λ)
for training of its evaluation functions in chess implemented
with neural networks. We compared our networks with Giraffe
in experiments.

Another teaching signal is a move played. Comparison
training [8] is a classic method to train a network to choose the
best option among a set of alternatives. A discretized version
of the comparison training was adopted to tune a subset of the
weights in Deep Blue [9]. Minimax tree optimization (MMTO)
method was developed based on comparison training to learn
the heuristic evaluation function of search programs [10].
MMTO successfully tuned the full set of weights in the
evaluation function of Bonanza, a famous shogi program that
achieved first place at the World Computer Shogi Champi-
onship in 2006 and 2013. For maximizing the move decisions
to agree with human experts, Bonanza applied a numerical
iterative method to determine local minima for a specialized
objective function, and more than 40 million parameters were
adjusted. In this paper, we adopt a loss function based on
comparison training as the objective to minimize in the training
of value networks for evaluation functions.

DeepChess [11] also adopted neural networks for chess.
Their model is a multi-layer perceptron network which takes
two positions as the input and outputs that which is better.
They also developed a modified αβ search algorithm. How-
ever, it is different from typical value networks in other studies
that assign a scalar value for a given position.

To the best of our knowledge, only AlphaZero and our work
successfully trained evaluation functions in DCNNs, without
hand-crafted features, for chess variants.

B. Stabilization of Training and Regularization

Despite deep neural networks are powerful function em-
ulators, the training of such large models involves many
issues have to be resolved including exploding gradient and
overfitting problems.

The terms of “value network” and “policy network” used
in this paper originated from AlphaGo [12]. A value network
is trained to predict the winner of a position, and a policy
network is trained to predict an expert move in supervised
learning or self-play move in reinforcement learning. In the
subsequent work of AlphaGo, AlphaGo Zero [4] adopted an
integrated network with two sub-networks (value and policy)
sharing convolution layers. It was reported that the joint
training of the integrated network is effective to avoid the
overfitting problem.

Note that a policy network for chess and shogi would be
much more complex than that for Go — Although the average
number of legal moves per position in Go is larger than that
in chess or shogi, the total number of possible legal moves
in all legal positions is much larger in chess or shogi than
that in Go. The policy output is required to be able to present
all the legal moves, which is the reason why the output layer
of AlphaZero is so large in chess or shogi [2]. In order to
avoid this problem, we designed a joint training scheme with
a simple discrimination network instead of a policy network.

As well as the combined value and policy networks in
AlphaGo Zero [4], other researchers also reported that multi-
task learning should be beneficial for jointly-trained single
tasks. L. Kaiser et al. [13] demonstrated that joint training
largely helped tasks with less data learn from other tasks, while
critical parts of their work included a multi-modal architecture
in which as many parameters as possible are shared and the
use of computational blocks from different domains together.
Z. Zhang et al. [14] optimized facial landmark detection for
a tasks-constrained deep model, together with heterogeneous
but subtly correlated tasks. Their task-constrained learning
succeeded in outperforming existing methods and reducing
model complexity.

Typical standard regularization methods that have been
widely applied may include sparsity-based L1 regularization,
weight decay-based L2 regularization, and dropout techniques
for neural networks. The L2 regularization [3] improves gen-
eralization by choosing smaller network parameters to solve
learning problems. With appropriate configurations, it usually
performs better than other methods in practice, and thus has
been adopted by many computer chess and shogi programs,
including AlphaZero [2] and Bonanza [10]. Dropout [15] is
also effective in the training of deep neural networks to prevent
overfitting by randomly disabling neurons during training.
However, larger networks require more extra training time.

As a representative of the standard methods, we conducted
comparative experiments between the L2 and uniformity reg-
ularization in this paper. The results suggest that the proposed
method is more effective in specific applications.
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Fig. 1. Network Structure and Data Flow Chart

III. TRAINING WITH UNIFORMITY REGULARIZER

This section describes our training scheme including the
structures and objective functions of our new regularization
network and the value network we used in experiments. The
network structure and main data flow are shown in Figure 1.

As described in the introduction, the main objective of this
paper is to train a value network that evaluates the advantage of
a given game position. We assumed that convolutional layers
are effective in building evaluation functions for a target game,
as in [4]. We also assume that game records are given as
training data, as in an iteration in reinforcement learning [2]
or supervised learning [10].

A. Network Structure

We propose to train a value network with a uniformity
regularizer, which introduces two modifications to the standard
training method: (1) to train jointly with a discrimination
network, and (2) to minimize the uniformity regularizer’s loss.
The joint training with a discriminator network is designed to
promote the training of the value network through the shared
convolution layers. Both networks are trained simultaneously
and share a common feature extractor so that feature repre-
sentation ability is enhanced while the time consumption for
training does not significantly increase. The uniformity regu-
larizer’s loss is built upon the discrimination network, which
aims to reduce the overfitting problem for both networks.

The value network V (s) outputs a scalar float score for the
input position s, with no activation function by default. Larger
scores suggest the first player is in a dominant position, while
smaller scores suggest the second player is more likely to
win in that position. We believe that this definition of a value
network is general enough for a wide number of applications.
We demonstrate how the proposed method consistently works

with various kinds of loss functions for training of value
networks in experiments.

The discriminator network D(s, s′) is trained to predict the
certainty that a move played in two successive positions s and
s′ is played by an expert. So it takes two positions as its input.
The output is assumed to be [−1, 1], where 1 (−1) means most
(least) certain. Unlike the value network that predicts winning
probability quantitatively, the discriminator classifies moves
qualitatively.

This discriminator is incorporated from the design of
style transfer generative adversarial networks (STGANs) [16],
where it is used to judge if the move between two successive
positions is in accordance with specific top players’ styles
and to influence another independent value network through a
common loss function. Although the discriminator itself has
the same functionality in both our method and STGANs, but
training goals and loss functions are completely different.

The uniformity regularization (UR) network is the jointly
trained discriminator with a specially designed regularization
function, which ensures all samples are discriminated as
uniformly as possible, and enable the network to correctly
evaluate a majority of positions rather than specializing on
a few high-frequency but unimportant samples. Although the
function is applied to the discriminator, it can also influence
the value network through the shared convolutional layers.

B. Loss Functions for Uniformity Regularizer

When game records are available for training data, we can
sample and pre-processe them to make every instance in the
training dataset contains a quadruple ⟨x, y, r, p⟩, where x is a
game position randomly selected from the game records and
y, r are the subsequent positions after a recorded move (e.g.,
an expert move in supervised training) and a random but legal
move respectively. p represents the player to move at the turn
of position x. p = 1 and −1 for the first and the second player,
respectively.

1) Overall: The value and the discriminator networks are
trained simultaneously by using an integrated objective func-
tion JAll(θ):

JAll(θ) = JV(θ) + JD(θ) + JUR(θ) (1)

where JV(θ), JD(θ) and JUR(θ) are the loss functions for the
value network, the discriminator network, and the uniformity
regularizer, respectively.

2) Discriminator: The discriminator loss is defined as the
difference between the certainty of the move played in a real
game record y and that of a random move r at position x:

JD(θ) =
1

n

n∑

i=1

[D(⟨xi, yi⟩) − D(⟨xi, ri⟩)) − 2]2 (2)

where θ refers to the parameters of the joint neural networks, n
is the batch size of training data, and ⟨xi, yi, ri⟩ represents the
ith instance in that batch. The same notations are used in the
following equations. The minimization of Eq. (2) encourages
D(⟨xi, yi⟩) to be 1 and D(⟨xi, ri⟩)) to be −1.
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3) Uniformity Regularizer: The loss function of the unifor-
mity regularizer is defined by the difference in the discrimi-
nator losses among samples:

JUR(θ) =
1

m

m∑

i=1

[(D(⟨xi, yi⟩) − D(⟨xm+i, ym+i⟩))2 +

(D(⟨xi, ri⟩) − D(⟨xm+i, rm+i⟩))2]
(3)

where m = n/2 is the half of the batch size.
Since all instances in training batches have been randomly

shuffled in advance, Eq. (3) is equivalent to measure and
minimize the difference between the discriminated results of
two randomly sampled positive (negative) samples, which is
beneficial for reducing the variance of discriminated results,
as well as maintaining the consistency of extracted features.

It should be noted that the value network is required to
be as precise as possible to determine the best move from
many legal moves and/or to predict the win/loss probability for
a given position. Therefore, applying the same regularization
on the value network does not provide any improvement and
may even weaken its accuracy. Conversely, the discriminator
only outputs qualitative judgments, not sensitive to specific
numbers. Thus, it is more suitable for the proposed qualitative
regularization.

4) Objective Functions of Value Networks and Implemen-
tation: Various objective functions and training methods have
been proposed for the training of value networks. To examine
the effectiveness and applicability of the proposed regulariza-
tion, three objective functions are selected:

JSigmoid(θ) =
1

n

n∑

i=1

σ(pi(V (ri) − V (yi))) (4)

JSTGANs(θ) = − 1

n

n∑

i=1

[ log(σ(V (xi) − V (yi))) +

log(σ(V (yi) − V (xi))) +

log(σ(pi(V (yi) − V (ri)))) ]

(5)

JSquares(θ) =
1

n

n∑

i=1

[ (V (xi) − V (yi))
2 +

(V (yi) − V (ri) − 1)2 ]

(6)

where σ(x) = 1/(1 + exp (−x)) is the sigmoid function, and
pi represents the player to move in the ith instance.

Equation (4) is based on the objective function in the
training of the evaluation function of the shogi program Bo-
nanza [10], which won first place at the World Computer Shogi
Championship in 2006 and 2013. This function encourages
that the value of the position after an expert move V (yi) should
be better than that after a random move V (ri). The similar
loss function is used in comparison training in chess [9].
Equation (5) originates from the chess program Deep Pink [17]
and was modified by the authors of STGANs [16]. This
function encourages that the value of the position after an
expert move V (yi) should be better than that after a random
move V (ri), and be similar to that of the original position
V (xi). Equation (6) was adopted in our previous study [18]

inspired by least squares generative adversarial networks (LS-
GANs) [19]. This function shares the same purpose as in
Eq. (5) but represents it in a least squares manner.

Moreover, we believe that our uniformity regularizer will
successfully work with other loss functions including TD(λ)
as in [6] and Monte-Carlo returns (win/loss results) as in [2].
We chose the above three functions here so as to discuss the
effectiveness with respect to a limited amount of game records.

C. Data Flow and Representation

For the implementation of the input and convolution layers,
we basically followed the design of AlphaZero [2]. Initially, a
chess position is represented as a 13-channel image of 8 × 8
pixels, corresponding to 12 piece types and the player to move.
Similarly, a shogi position is composed of 43 channels of 9×9
pixels, corresponding to 42 piece types and the current player,
including 14 channels for prisoner pieces.

The feature extractor is a residual convolutional net-
work [20] composed of 16 standard residual blocks. There
are 128, 192, 256 and 384 filters in the 1st, 2nd, 3rd and 4th
four blocks successively. It accepts a game position as input
and outputs a 384-dimensional flatten vector as extracted high-
level features (i.e. FV(s), s ∈ [x, y, r] in Figure 1). The fea-
tures are then input into the fully connected layers of the value
network and the discriminator network respectively. All hidden
layers are activated by rectified linear unit functions [21].

For the discrimination network, a 768-dimensional vector
concatenated by two feature vectors yielded by the convolution
layers for two positions is given as the input into its last fully
connected layer, and output as a float number constrained in
[−1, 1] by a hyperbolic function tanh(x).

Following the previous work in STGANs [16], we do not
constrain the range of output values for our value networks.

IV. EXPERIMENTS

To demonstrate how the proposed method contributes to
yielding accurate value networks for evaluation functions,
comparative experiments were conducted, including the ro-
bustness of our method with respect to objective functions,
comparison with the L2 regularization, and performances tests
on different sizes of training data. The main experiments were
conducted with chess, but results for shogi are also shown.

A. Dataset and Configurations

We prepared a dataset containing 783,129 games down-
loaded from the computer chess database CCRL 40/40 (http:
//www.computerchess.org.uk/ccrl/4040, acquired on January
14, 2018) and 868,161 games from the computer shogi
server Floodgate (http://wdoor.c.u-tokyo.ac.jp/shogi/index-e.
html, acquired on December 31, 2017). 85% of the data
were used for training, and the remaining 15% were for
testing. Only moves made by the winner were adopted in
the training and test datasets. All positions in the datasets
were randomly shuffled in advance. Although a considerable
amount of data was acquired, it is much less than that for
AlphaZero [2], in which 44 million training games for chess
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TABLE I
PREDICTION ACCURACY OF TRAINED NETWORKS FOR CHESS

Model 1-1 Acc. Top-1 Acc. Speed∗

Sigmoid (V+D+UR) 91.78% 40.32% 16.60

Sigmoid (V+D) 91.40% 39.25% 16.70

Sigmoid (V)∗∗ − − 18.76

Squares (V+D+UR) 91.09% 38.27% 16.67

Squares (V+D) 90.92% 37.72% 16.63

Squares (V) 90.10% 35.87% 16.71

STGANs (V+D+UR) 90.69% 37.26% 16.36

STGANs (V+D) 90.39% 36.36% 16.43

STGANs (V) 88.95% 33.49% 16.90
∗ Unit: Training positions per second.
∗∗ The model collapsed due to gradient exploding.
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Fig. 2. Top-1 Accuracy of Trained Networks in Chess

and 24 million games for shogi were involved. In this context,
applying appropriate regularization techniques is of significant
importance.

By default, models were trained in 4 processes on a single
machine with two NVIDIA 1080Ti GPUs. A stochastic gradi-
ent descent optimizer with a momentum rate of 0.9 were used.
The learning rate starts from 0.001 and decays every 10 000
steps with a base of 0.99. The batch size n was set as 128.
The weights in neural networks were randomly initialized by
normal distribution with mean zero and variance one.

B. Robustness in Objective Functions of Value Networks

To demonstrate that the proposed method could coopera-
tively work with various loss functions, three models Model ∈
[STGANs, Sigmoid, Squares] introduced in section III-B4
were trained, with the following conditions:

• Model(V) is a plain value network with the objective
JModel, adopted as a baseline model in experiments.
Neither a discriminator nor regularization is applied.

• Model(V+D) consists of the above value network and a
discriminator (i.e. to minimize JAll(θ) = JV(θ)+JD(θ)).
No regularization is applied.

TABLE II
CHANGES AFTER APPLYING REGULARIZATION METHODS

Regularizer 1-1 Acc. Top-1 Acc. Norm
No Regularizer ∗ 91.40% 39.25% 88.56

Uniformity Reg’r ∗∗ +0.38% +1.07% +0.01

L2 (λ = 10−7) +0.11% +0.06% −0.01

L2 (λ = 10−6) +0.10% +0.26% +0.01

L2 (λ = 10−5) +0.05% +0.22% −0.01

L2 (λ = 10−4) +0.09% +0.25% +0.02

L2 (λ = 10−3) +0.15% +0.40% +0.05

L2 (λ = 10−2) +0.07% +0.18% +0.05

L2 (λ = 10−1) +0.06% +0.17% +0.02

L2 (λ = 100) +0.08% +0.26% +0.03

L2 (λ = 101) +0.02% +0.14% −0.01

L2 (λ = 102) +0.15% +0.38% +0.02

L2 (λ = 103) +0.08% +0.12% +0.00
∗ Sigmoid (V+D), the baseline model.
∗∗ Sigmoid (V+D+UR), the proposed model.
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Fig. 3. Top-1 Accuracy Improved by L2 and Uniformity Regularization

• Model(V+D+UR) consists of the above networks and
trained with the uniformity regularization (i.e., JAll(θ) =
JV(θ) + JD(θ) + JUR(θ) is minimized).

For evaluating the performance of a model, the following
two metrics are used in this paper.

• 1-1 accuracy: For two given positions y, r after an expert
move and a random move respectively, the output of a
value network is correct if V (y) > V (r) when p = 1 or
V (y) < V (r) when p = −1.

• Top-k accuracy: For a given position x and its subse-
quent position y after an expert move, the output of a
value network is correct if V (y) is one of the k highest
scores among all subsequent positions of x when p = 1,
or one of the k lowest scores when p = −1.

We trained 9 value networks with 300 million positions that
were randomly sampled from over 700, 000 games in total,
and show their accuracies on the test dataset in Table I and
Figure 2. The test accuracies shown in figures are averages in
the last 300 minutes during the training process.

It can be found that both the proposed joint training and
the uniformity regularizer are effective and compatible with all
the 3 objective functions. On average, the top-1 accuracy of a
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Fig. 4. Top-1 Accuracy on Complete and Reduced Datasets

plain model is improved by 2.36% after the joint training, and
a further 0.84% after the uniformity regularization is applied.

The data amount and update frequency at each step is the
same for all configurations, thus the accuracy improvement
between Model(V) and Model(V+D) mainly comes from
structural changes (i.e., joint training with shared convolution
layers). It is consistent with previous work in [8] and [10]
that models with Eq. (4) performed better than the others. The
Sigmoid objective function in Eq. (4) should be beneficial
for reducing vanishing gradient problems in DCNNs, and cor-
respondingly, it may also cause exploding gradient problems
when high learning rates are applied. Sigmoid(V) collapses
with the default network structure and learning rate, while
the introduction of the discriminator in Sigmoid(V+D)
successfully prevents any severe exploding gradient problem
in the model.

According to the results, the joint training of multiple tasks
should be considered as capable of enhancing the represen-
tation ability of the feature extractor, having a significant
regularization effect on it. The models with the uniformity
regularization performed better than those with ordinary joint
training.

The training speed of each model is listed in the last column
of Table I. For the objective function JV(θ) whose complexity
is equal to or greater than JD(θ) and JUR(θ), the joint training
and the uniformity regularization do not increase time costs
significantly.

C. Comparison with L2 Regularization

The uniformity regularization served as a substantial en-
hancement to the joint training. We further compared the
effectiveness of the uniformity regularization with that of the
L2 regularization, which is a simple and effective method, with
a wide range of applications.

Formally, a cost function with a L2 regularization term is
defined as:

J(ω) = J0(ω) +
1

2
λ

∑

i

ω2
i (7)
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Fig. 5. Top-1 Accuracy in Chess and Shogi

where ω refers to the weight vector of network parameters,
J0(ω) is the original objective, the added last term is the norm
of θ, and λ is a parameter determining how strongly large
weights are penalized.

Although the best model does not always have the minimum
norm of its weight vector, it is a common practice to incor-
porate a L1 and/or a L2 regularizer(s) in the training of large
networks as [2] and in comparison training as [10]. Therefore,
we investigated here whether our jointly trained network can
work consistently with the standard L2 regularization, and how
different the effects of the L2 and the uniformity regularizers
are. We do not argue if the L2 regularization is appropriate
for our loss function or training method in all circumstances,
as the answer depends on actual data and network structures.

To determine the best configuration for the L2 regularizer,
11 models were tested in total with λ values ranging from
10−7 to 103. Since JSigmoid(θ) achieves the highest accuracy
in previous tests, Sigmoid (V+D) was adopted as the
baseline model for comparing regularizers. The changes of
test accuracy and global norms for all parameters are listed in
Table II and Figure 3.

After 300 million positions were trained, the L2 regu-
larization obtained its highest top-1 accuracy of 39.65% at
λ = 10−3. However, there is still a significant difference
between the L2 and the uniformity regularization methods.

The goal of the L2 regularization is to improve the training
results by lowering the norm of weight vectors, while a lower
norm does not always result in a better performance. We
observed that the total dimension of all parameters in our net-
work is more than 19 million, and the average weight of each
dimension was already very close to 0 after training, which
suggests there was no enough space to improve performance
by directly constraining the parameter norm. To the contrary,
the uniformity regularizer mainly emphasizes the correctness
of the qualitative relationship among discriminated results,
instead of adjusting weights blindly or brutally. Therefore,
both regularization and acceleration can be achieved simul-
taneously.

We observed that the accuracy difference in the training
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TABLE III
PUBLISHED PREDICTION ACCURACY OF RELATED WORK

Accuracy Proposed
Chess

Giraffe
Chess

Proposed
Shogi

Bonanza
Shogi

1-1 92.12% − 97.34% −
Top-1 41.54% 45.73% 47.81% 37%

Top-2 60.96% 61.68% 66.93% −
Top-3 72.14% 69.59% 76.83% −
Top-4 79.38% 74.77% 82.85% −
Top-5 84.34% 78.48% 86.81% −
Top-6 87.93% 83.86% 89.58% −
Top-7 90.57% 85.63% 91.58% −
Top-8 92.59% 87.49% 93.08% −
Top-9 94.13% 88.84% 94.21% −
Top-10 95.53% 90.38% 95.11% −

and test data were usually within 0.4% for all configurations
of Sigmoid (V+D) and Sigmoid (V+D+UR). Therefore,
the performance improved by the uniformity regularizer can
be explained not only by the prevention of overfitting to a
part of training samples but also by a better understanding to
covered relationships among them.

D. Performance on Reduced Dataset

To understand the properties of the proposed method and
validate its performance on different data scales, a quar-
ter of the training games were randomly selected from the
complete chess dataset. We then trained Sigmoid (V+D)
and Sigmoid (V+D+UR) and observed their training curves
by using the smaller dataset while keeping the test dataset
unchanged.

Test results are shown in Figure 4. Within 300 million
training positions, Sigmoid (V+D+UR) with a quarter of
data performed better than Sigmoid (V+D) and achieved a
relatively high top-1 accuracy of 39.97%. However, the differ-
ence between Sigmoid (V+D) and Sigmoid (V+D+UR)
decreases when the training dataset shrinks. The major cause
of this phenomenon is the diversity of training data. The
networks are fed the same number of positions in both con-
figurations. However, when the total number of game records
decreases, the average number of positions sampled from
the same game increases. Since the uniformity regularization
function JUR(θ) relies on the instances existing in the training
dataset, the generalization ability of the uniformity regularizer
could be affected if available independent patterns in dataset
are reduced.

Existing standard regularization methods including the L2

regularization are mainly applied by constraining the weights
of the network parameter directly, while the uniformity regu-
larization influences the parameter by using training data as a
medium. Due to this property, the performance of the proposed
method may be restricted when samples are limited, while it
is also promising to bring substantial improvement to value
networks when data are relatively sufficient.

TABLE IV
PREDICTION ACCURACY FOR THE SAME CHESS DATASET

Accuracy Proposed
Chess

Giraffe
Chess

Stockfish
Chess

1-1 91.60% − −
Top-1 39.28% 32.89% 34.24%

Top-2 58.69% 49.51% 51.47%

Top-3 70.03% 59.61% 62.21%

Top-4 77.48% 66.78% 69.59%

Top-5 82.69% 72.06% 75.14%

Top-6 86.52% 76.26% 79.41%

Top-7 89.37% 79.63% 82.77%

Top-8 91.61% 82.52% 85.54%

Top-9 93.34% 85.03% 87.89%

Top-10 94.71% 87.19% 89.82%

E. Application to Shogi

To examine the application scope of the proposed method,
value networks for shogi were trained in the same manner as
the models for chess.

Experimental results are plotted in Figure 5. At the time
that 300 million positions were trained, the accuracy of the
uniformity regularization over the baseline improved by 1.70%
for shogi, which is even larger than that by 1.09% for chess.
This is attributed to two reasons:

• Value networks in shogi require more complex feature
maps than those in chess, being more prone to overfitting
and requiring the application of appropriate regularization
methods.

• Shogi has larger state and decision spaces, as the amount
of training instances generated per game is about 1.69
times more than chess, which is beneficial for alleviating
data sparsity and boosting the effects of the uniformity
regularization.

F. Comparison with Related Work

To acquire more stable performance data, we measured the
proposed value networks Sigmoid (V+D+UR) in chess and
shogi, respectively, after 600 million training positions (twice
that of the above experiments) were trained.

Table III shows the prediction accuracy of our network,
and those of Giraffe [7] and Bonanza [10] that are referenced
from their official publications. It should be noted that these
networks were trained with different positions and the accu-
racies were also measured separately upon irrelevant datasets.
Two kinds of neural networks were trained for Giraffe: one
for its evaluation function and the other works as a policy
network. We wanted to compare the evaluation network of
Giraffe with our value network, however, only the data of
its policy network were available. Nonetheless, these data
are still important references, which basically reflect the best
performance that the networks can reach on their preferred
test datasets. The top-1 accuracy of the proposed shogi value
network largely surpassed the linear model with quiescence
search of Bonanza by about 11%. Despite the top-1 and top-2
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accuracies of the proposed chess value network were lower
than those of Giraffe, all its data below the top-3 accuracy
were higher than Giraffe.

In addition to comparing the published performance data,
we also evaluated available models with our dataset. We col-
lected extra 20, 740 game records from CCRL 40/40, released
within the period from January 15 to March 15, 2018. 4, 163
games played by top-level programs with ratings higher than
3, 200 were selected to form the new test dataset. Only moves
made by the winner were included in the dataset.

We tested the performances with the new dataset for the pro-
posed chess model, Giraffe with network parameters officially
released on September 8, 2015 [22], and the most advanced
open source chess program Stockfish 9 [23]. We only focused
on the evaluation scores generated by Giraffe and Stockfish,
while the influence of search algorithms were intentionally
excluded from the experiments. The measured accuracies are
shown in Table IV. The proposed model achieved the highest
prediction accuracies on the uniform dataset against the others.

Note that this does not indicate that our value network
is better than Stockfish in terms of playing strength, as the
execution speed of our network is much slower than the
ordinary methods of other neural networks. Therefore, it
should be noted that Stockfish places more importance on
search efficiency. We also conducted an experimental game
between our network and Stockfish (without search). The game
started from the initial position and ended in a draw. For
acquiring thorough assessment results, one of our future work
is to test the networks through the games with fair and various
opening positions from published databases.

Generally, although a completely fair comparison is diffi-
cult, the above experimental results are sufficient to prove
that our value networks trained with the uniformity regularizer
reached a meaningful level in move prediction for chess and
shogi.

V. CONCLUSION

In this paper, we presented a novel uniformity regularization
network, as well as a newly designed joint training scheme
for building high-accuracy evaluation functions for chess and
shogi. Through regularization applied to the shared convolu-
tional feature extractor, the prediction accuracy of the value
network in evaluation functions can be significantly improved.
Experimental results demonstrated that the proposed regular-
ization is capable to outperform the standard L2 regularization
method, and enable the value network to reach a decent level
in predicting moves.

The applications of DCNNs and multi-task joint training
have yet to be widely introduced into the research fields of
chess variants and other board games. We believe the training
scheme and experimental data can be provided as a useful
reference for follow-up studies.
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Abstract—We deal with the problem of learning game rules
by observing the play, the study initiated by Björnsson for the
class of Simplified Boardgames, describing a rich family of chess-
like games. In this paper we restate the problem in terms of
regular language inference and improve Björnsson’s algorithm
combining applications of existing DFA learning algorithms with
our domain-specific approach. We present the results of tests
on a number of games, including human-made and artificially
generated ones.

Index Terms—general game playing, regular language infer-
ence, simplified boardgames, deterministic finite automata

I. INTRODUCTION

The aim of General Game Playing (GGP) [1] is to develop
a system that can play a variety of games with previously
unknown rules. Unlike standard AI game playing, where
designing an agent requires special knowledge about the game,
in GGP the key is to create a universal algorithm performing
well in various situations and environments. After the launch
of the annual International General Game Playing Competition
(IGGPC) in 2005 [2], [3], many new languages have been
developed to describe certain classes of games [4], [5], [6], [7]
and other competitions have been proposed [8]. Identified as
a new Grand Challenge of Artificial Intelligence, GGP consists
of many research challenges requiring combining a number
of domains, such as knowledge representation, searching,
planning, reasoning, and machine learning [9].

In [4], Björnsson has proposed a new scenario, where the
game rules should be learned by observing others play, rather
than obtained from a given description. This partially coincides
with the rules of GVG-AI competition [8], where a prepared
reasoner (java object allowing state manipulation) is given in-
stead of the raw game rules. Björnsson’s approach concentrates
on learning deterministic finite automata (DFA) which are used
to encode learned rules in a class of games introduced by the
author and called Simplified Boardgames. The proposed class
is substantially narrower than GGP systems mentioned before,
yet more general and concise than previous such approaches
[10], [11]. As the DFA representation favors the efficiency of
game state manipulation, possibilities of implementing such
mechanism to support GGP players have been considered.

In this paper, we deal with the problem of learning
game rules by observing. We continue the study initiated
by Björnsson in [4] for the class of Simplified Boardgames,

focusing on efficient learning of the observed boardgame
moves. First, we consider applications of existing DFA learn-
ing algorithms for the task of learning piece movements from
the set of game records and restate the problem in terms of
Regular Language Inference [12]. Secondly, we propose our
domain-specific algorithms to ensure better efficiency and a
higher chance of obtaining a correct approximation of the
actual DFA, assuming incompleteness of given training data.
We test all presented approaches combining various learning
algorithms with different procedures checking DFA consis-
tency in a number of games, both human-made and artificially
generated. Following Björnsson’s approach we consider two
types of training data: GGP-like, where for every position all
legal moves are listed, and human-play-like, providing more
sparse data where only the move actually made by a player
has been recorded.

The paper is organized as follows. Section II provides the
necessary background for the class of Simplified Boardgames,
learning by observing, and Regular Language Inference. In
Section III, we formally state the problem and analyze selected
existing approaches from the theoretical point of view. In
Section IV, we introduce new consistency checking proce-
dures, and in Section V we present our new algorithm learning
piece’s moves by observing. Finally, Section VI presents the
results of experiments evaluating the performance of all the
considered approaches.

II. PRELIMINARIES

In this section we introduce domains relevant to our study,
providing necessary algorithms and terminology.

Let Σ∗ be the set of all possible words over the alphabet Σ.
For DFA A = 〈Q, Σ, δ, q0, F 〉, where Q is the set of states, q0

is the initial state, F ⊆ Q is the set of accepting states, and
δ : Q×Σ→ Q the transition function (which, in our study, is
usually a partial function), by L(A) we denote the language
accepted by A.

A. Simplified Boardgames

Simplified Boardgames is the class of fairy chess-like games
introduced by Björnsson in [4]. The language describes turn-
based, two-player, zero-sum chess-like games on a rectangular
board with piece movements described by regular languages
and independent on the move history. It was slightly extended

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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in [13], and used as a comparison class for assessing the level
of Stanford’s GGP programs.

Here we follow the class formalization from [14] to pro-
vide a shortened necessary introduction. The game is played
between the two players, black and white, on a rectangular
board of size width×height. White player is always the first
to move. Although it may be asymmetric, the initial position
is given from the perspective of the white player, i.e. forward
means “up” for white, and “down” for black.

During a single turn, the player has to make a move using
one of his pieces. Making a move is done by choosing the
piece and changing its position according to the specified
movement rule for this piece. At any time, at most one piece
can occupy a square, so finishing the move on a square con-
taining a piece (regardless of the owner) results in removing
it (capturing). No piece addition is possible. After performing
a move, the player gives control to the opponent.

For a given piece, the set of its legal moves is defined as
the set of words described by a regular expression over an
alphabet Σ containing triplets (∆x, ∆y, on), where ∆x and
∆y are relative column/row distances, and on ∈ {e, p, w}
describes the content of the destination square: e indicates an
empty square, p a square occupied by an opponent piece, and
w a square occupied by an own piece. A positive ∆y means
forward, which is a subjective direction and differs in meaning
depending on the player.

Consider a piece and a word w ∈ Σ∗ that belongs to the
language described by the regular expression in the move-
ment rule for this piece. Let w = a1a2 . . . ak, where each
ai = (∆xi, ∆yi, oni), and suppose that the piece stands on a
square 〈x, y〉. Then, w describes a move of the piece, which is
applicable in the current board position if and only if, for every
i such that 1 ≤ i ≤ k, the content condition oni is fulfilled
by the content of the square 〈x+

∑i
j=1 ∆xj , y +

∑i
j=1 ∆yj〉.

The move of w changes the position of the piece piece from
〈x, y〉 to 〈x+

∑k
i=1 ∆xi, y +

∑k
i=1 ∆yi〉. An example of how

move rules work is shown in Figure 1.

8 rZkZ0Z0s
7 o0Zna0o0
6 0ZbZ0Z0o
5 ZpZnZpZ0
4 0ZPO0Z0Z
3 Z0ZQZNA0
2 0O0Z0OPO
1 S0Z0Z0J0

a b c d e f g h

Fig. 1. A chess example. Two legal moves for the queen on d3 are shown.
The capture to f5 is codified by the word (1, 1, e)(1, 1, p), while move to a3
is encoded by (−1, 0, e)(−1, 0, e)(−1, 0, e). The move to f3 is illegal, as in
the language of queen’s moves no move can end on a square containing own’s
piece. The d5 − f6 knight move is a direct jump codified by the one-letter
word (2, 1, e).

B. Learning by Observing

The initial purpose of introducing Simplified Boardgames
was to study capabilities of learning game rules, given records
of previously played games [4]. As terminal conditions were
deliberately kept simple, the proper task comes to learning the
languages of piece movements. This extends the directions of
the GGP research, beforehand focused mainly on learning how
to play a given game.

Two types of training data were proposed: a real-world
single move known scenario – where the observer sees only
the performed move, and a GGP-like all legal moves known
scenario – where for every position all possible legal moves
are visible. The latter case reflects the situation when we
want to learn rules of the game given only the reasoner able
to compute moves, advance game position, and detect the
terminal states. Such novel, entirely simulation-based approach
to general playing is used for General Video Game Playing
Competition.

In [4], the algorithm for learning a DFA consistent with
the observed game positions has been presented. To improve
learning rate, some additional assumptions were made, al-
lowing unseen moves to be accepted as correct if certain
conditions were met. An extended approach, using slightly
modified Simplified Boardgames domain, has been recently
presented in [15]. The language has been modified to support
basic piece addition and deletion. The process of learning was
performed using the LOCM acquisition system [16], [17],
which is an inductive reasoning system that learns planning
domain models from action traces.

Other approaches described in the literature are mainly
logic-based. In [18], chess variant rules described as first-
order logic programs are learned using positive and negative
examples, background knowledge, and the theory revision.
The system that learns board-based games through the video
demonstration using logic and descriptive complexity is pre-
sented in [19]. Alternatively, an interaction based approach to
learn rules of simple boardgames from the dialogue with a
human user is described in [20].

C. Regular Language Inference

Regular Language Inference is the problem of finite au-
tomata identification using labeled samples: given a disjoint
sets of words S+ containing words belonging to the target
language L, and S− containing words that do not belong to
L, we ask what the size of the minimal DFA consistent with
these sets is [12]. Gold ([21]) has proven that this problem
is NP-hard, and Pitt and Warmuth ([22]) showed that given
labeled samples corresponding to automata with n states, there
is no polynomial algorithm that guarantees output DFA with
at most n(1−ǫ) log log(n) states for any ǫ > 0.

The problem may be efficiently solved by polynomial
algorithms if sets S+, S− fulfill additional restrictions, i.e.
they are somehow representative. The first algorithm, known as
TB/Gold was introduced by Trakhtenbrot and Barzdin in 1973
[23], and rediscovered by Gold five years later [21]. In 1992,
RPNI (Regular Positive and Negative Inference) algorithm was
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proposed independently by Oncina and Garcia [24], and Lang
[25]. It guarantees that the obtained DFA is consistent, and is
equivalent to the target DFA if S+, S− contains the so-called
characteristic set. Both theoretical analysis and experiments
support the thesis that the results obtained by RPNI are
better, and it converges faster than TB/Gold algorithm [26].
The pseudocode and detailed description of RPNI algorithm
are provided in Section III-C. Several modifications of RPNI
have been studied, e.g. incremental version [27], with faster
convergence for some languages subfamilies [28], and suitable
for PAC learning [29].

III. BOARDGAME RULES INFERENCE

We are dealing with the situation where an agent observes
a number of plays between some players and, by observing,
it should learn the rules of this game. Assuming we restrict
possible games to the class of Simplified Boardgames, where
the main challenge consists of discovering the rules of piece
movements, the problem can be stated as a specific variant of
the Regular Language Inference.

On the one hand, this gives us a possibility to take advantage
of well-known generally applicable algorithms. On the other
hand, as the learning domain is narrow and characterized by
certain properties, it should be possible to create more effective
domain-specific learning algorithms.

A. Problem Statement and Model

Let Σ∗ be the set of moves for a given Simplified
Boardgame, i.e. it contains words over the alphabet of
(∆x, ∆y, on) triplets. Given data obtained by observing
movements of a piece p, there exist the partition of Σ∗ into
the following languages: the language S+ of observed legal
moves, the language S− of known illegal moves, the language
S0 containing all words that are impossible to perform from
any square on the board, and S? containing all the other words.
So, if w ∈ S?, then it is theoretically possible that w belongs
to Lp (the language of legal movements of p), yet there is no
evidence in the data that it is legal or not.

Let us consider learning scenarios proposed in [4]. In the
single move known scenario the S− set is always empty, and
S? may be non-empty. In the all legal moves known scenario
S− is not empty, yet we can still have words in S?.

To meet the reality of Simplified Boardgames, the afore-
mentioned languages have to satisfy the following properties.
Languages S+, S− and S? are finite and closed on taking
substrings, i.e. for any w ∈ S+∪S−∪S? every substring of w
also belongs to S+∪S−∪S?. Language S0 is infinite, and such
that for all w ∈ S0 and a ∈ Σ, we have aw ∈ S0 ∧ wa ∈ S0.
Also, there exist a procedure O : Σ∗ → {T, F} which, for
given w, decide in time Θ(|w|) if w ∈ S0. (We can iterate
through the word summing relative distances and checking if
the board size was exceeded.)

To approximate the size of all substring-closed sets we
present the following observation. We use standard |S| nota-
tion to denote the cardinality of the set S, and ||S|| to denote
the sum of the lengths of words in S.

Observation 1. Given board of size n × n, and S = S+ ∪
S− ∪ S?. We have that:

2

n2−1∑

k=1

3k (n2 − 1)!

(n2 − 1− k)!
≤ |S| ≤ n2

n2−1∑

k=1

3k (n2 − 1)!

(n2 − 1− k)!
,

which estimates the total number of moves that can be made
on such a board.

Notice that in the case of standard chess-like games, the
number of legal moves (which is a superset of S+) is very
small compared to the left-hand side of (1). This causes that
explicit occurrence search in S− or S? is highly inefficient in
comparison to checking set membership via O function.

For a given piece p, let A be a DFA approximating Lp based
on given observations. It is required that S+ ⊆ L(A) and
L(A) ∩ S− = ∅. However, there is some freedom concerning
relations between L(A) and the remaining sets. Whether
L(A) ∩ S0 will be empty or not, in practice do not influence
the results generated by A. During the move generation phase,
movements that are impossible to be made on the current board
position are simply excluded.

The question whether L(A) could contain some words (and
which one) from S? depends on the chosen policy. It is safe
to assume that every unobserved move is treated as illegal.
This ensures that the player based on A will never produce
a move that could cause e.g. an instant loss. On the other
hand, admitting some words from S? allows to simplify the
language definition and minimize produced DFA. Moreover,
without extending the set of accepted words, it is impossible
to obtain the optimal automaton given data containing only
partial knowledge about Lp.

B. Björnsson’s Algorithm

First, we make some observations concerning the algorithm
for learning piece rules proposed by Björnsson in [4]. Because
of lack of the space, we have to refer the reader to [4] for
details. We describe only a general structure of this algorithm.

Two main parts of the algorithm are the automaton learning
and the consistency checking. The automaton learning ([4,
Algorithm 2]) begins with constructing for a given piece
a Prefix Tree Acceptor (PTA) from the training data. The
whole procedure is based on the priority queue, containing
candidates for the smallest consistent DFA. The maximal
number of iterations of the main while loop is limited by the
MaxExpansions constant. In each step, the smallest DFA is
taken from the queue, and it is compared against the smallest
DFA obtained so far. We iterate through the pairs of states,
which are then merged (collapsed) forming a new automaton.
There is a constant K that prevents considering the states
which are too distant from each other.

The resulting automaton is the subject of the consistency
checking procedure ([4, Algorithm 1])1. An accepted definition

1In [4], the algorithm immediately returns True if the first of the con-
sidered positions fulfills the desired property. The line 8 of the algorithm
containing ”return movesDFA ⊆ pos.moves(sq)” should be rewritten to
”if (movesDFA ⊃ pos.moves(sq)) then return False end if”.
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of consistency with the training data is that DFA should
generate all moves known to be legal, and no moves known to
be illegal. It is checked straightforwardly in the all legal moves
known scenario. To handle the single move known scenario
additional assumptions have been made. An unobserved move
is accepted if it was observed for some other piece or certain
essential parts of this move were observed.

If the automaton passes the consistency test it is inserted
into the priority queue. Since the merging procedure can return
a non-deterministic automaton, an additional determinization
procedure is used. The theoretical time complexity of the
algorithm is exponential. More precisely, we have

Observation 2. Let S+ be the language accepted by the
piece’s prefix tree acceptor pt, and C(k, td) the complexity
of consistency checking the given training data td and a DFA
with k states. Then, assuming that the MaxExpansions and
K parameters are constant, the complexity of LearnDFA(pt,td)
may be bounded by

O(||S+||(2||S+|| + C(||S+||, td))).

The part 2||S+|| is the worst case rarely achieved in practice.
The dominant part is the consistency checking, which requires
browsing through all the observed positions, generating move-
ments, and performing subset checking operations.

An important observation is that in some situations, DFA’s
returned by [4, Algorithm 2] generate illegal moves. For
example, consider the limited rider piece that moves in one
direction for a given limited distance. Examples of such pieces,
like Short Rook or Cloud Eagle can be found in various fairy-
chess games [30]. Let D be a training data in the all legal
moves scenario, such that for a limited rider Q all its legal
moves were observed (they belong to S+), but any extension
of its movements (i.e. one-step longer rides) are in S?. We
have the following.

Theorem 1. If Q is a limited rider in a game G, and D a
training data described above, then the DFA returned by the
[4, Algorithm 2] generates illegal moves.

Theorem 2. Consider single move known scenario and a
game G containing a limited rider Q and another piece R
with unlimited ride, i.e. satisfying {aj

i , a
j−1
i bi} ⊆ LR∪S0 for

all j > 0. Let training data D be such that all the moves of
the form aj

i and aj−1
i bi are observed for the piece R. Then,

the DFA returned by [4, Algorithm 2] generates illegal moves.

(Proofs of these results are presented in [31]). The practical
consequence of Theorem 2 is that given any limited rider piece
occurring next to a similar not limited rider (e.g. Short Rook
and Rook, Lion Dog and Queen) the learned rules of these
figures can be indistinguishable.

The problem addressed in Theorems 1 and 2 lies mainly in
the construction of the provided training data, which is hard to
detect and handle on the algorithm’s side. However, by careful
designing of learning and checking procedures, we should be
able to guarantee more safety, and more intuitive restrictions

on the produced DFA. We will present approaches that try to
fix the problem from two sides.

First, we establish dependencies between actually discov-
ered legal moves and hypothesis concerning additional moves
from S?. By that, we add additional safeguard and can
restrict consistency checking to discard ,,highly improbable”
candidates even if they are consistent with the given data.
Secondly, we force consistency checking function to check
only those automata we strongly believe they may be good,
by using a proper automata learning algorithm, based on more
sophisticated heuristic strategy of merging states.

C. RPNI

An alternative solution is to use one of the existing poly-
nomial algorithms for identification DFA’s from samples, e.g.
Gold [21] or RPNI [24]. Due to its better performance ([26]),
we have chosen RPNI as our test algorithm for boardgame
move learning.

The arguments of this algorithm are the set of positive
samples S+ and the set of negative samples S−. Initially, a
prefix tree acceptor based on S+ is constructed. The algorithm
searches for a pair of states, such that after merging these
states the automaton does not accept any word from S−. The
states are chosen so that one of them is a root of a subtree
of the original PTA. The merging procedure disconnects
this subtree, merges the states, and then folds the subtree
into the constructed DFA so that the resulting DFA remains
deterministic. The complexity of the procedure is linear in the
size of the folded subtree. For the detailed description, the
reader is referred to [12, Section 12.4].

Given the sets of positive samples S+ and negative sam-
ples S−, the time complexity of RPNI is O((||S+|| +
||S−||)||S+||2). However, considering the application to Sim-
plified Boardgames and the estimation given in Observation
1, this complexity is unpractical. For this reason, we have to
modify consistency checking part of the algorithm from simple
iteration through S− set to some more complex function (e.g.
the one used in Björnsson’s algorithm). Then we have

Observation 3. Let S+ be the language accepted by the
piece’s prefix tree acceptor pt, and C(k, td) the complexity
of consistency check given training data td and DFA with k
states. Then, the complexity of RPNI algorithm is

O((||S+||+ C(||S+||, td))||S+||2).

The algorithm remains polynomial in the size of the initial
prefix tree acceptor, yet again the dominant part depends on the
construction of the consistency checking procedure. For that
reason, in the next section, we propose alternative procedures
focused on efficiency.

IV. EFFICIENT CONSISTENCY CHECKING

Our definition of consistency is that a language has to
contain all positive samples (S+) and reject the negative ones
(S−). In the case of boardgame movements learning, there are
many interpretations of what the negative sample is. If we are
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able to observe all legal moves in any position, every unlisted
move fitting within board has to be considered as negative. All
the other moves that have not been rejected, can be labeled in
any way.

This is the same problem (of fitting into an unknown target
language) like in the standard language inference problem, yet
here we know the set S0 that does not matter at all. Also, we
should be able to predict correct and incorrect moves basing
on our boardgame related intuition.

A. Fast Consistency Check

Assume the scenario when our priority is to ensure our
algorithm learns only correct moves, i.e. we treat S? in the
same way as S−. We are looking for the language L such that

S+ ⊆ L and L ∩ (S− ∪ S?) = ∅, (1)

and the minimal DFA representing L has the smallest number
of states.

For the given prefix tree acceptor T defining S+ and
DFA A approximating L, the optimal procedure checking the
consistency of A is described as Algorithm 1. Starting with
the initial state of A, and the root of T , we traverse through
A, simultaneously matching visited states with the states in T .
The algorithm returns False if there is a mismatch in the state
acceptance within the T or there is an accepting state outside
T but within the board.

Algorithm 1 FastCheck(A = 〈Q, Σ, δ, q0, F 〉, x ∈ Q,
T =〈Q′, Σ, δ′, q′

0, F
′〉, x′ ∈ Q′, w ∈ Σ∗)

1: for all a ∈ Σ do
2: if ∃y, y′. δ(x, a) = y ∧ δ′(x′, a) = y′ then
3: if F (y) 6= F ′(y′) then return False end if
4: if ¬FastCheck(A, y, T , y′, wa) then
5: return False
6: end if
7: end if
8: if O(wa) then continue end if
9: if F (δ(x, a)) then return False end if

10: if ¬FastCheck(A, δ(x, a), T , null, wa) then
11: return False
12: end if
13: end for
14: return True

Let as notice, that in the case of Simplified Boardgames,
complexity of the O function is additive, i.e. given w1, w2

and intermediate result of O(w1), the value of O(w1 + w2)
can be computed in time O(|w2|). The conclusion is that the
check in line 7 can be done in O(1). So the runtime of the
algorithm is linear in ||L(A)∩ (S+∪S?)||, which is the upper
bound for the worst case complexity from Observation 1.

B. Fractional Acceptance Consistency Check

Another reasonable assumption is that if a DFA representing
a language of piece movements is small and does not contra-
dict given data, then with a high probability it is correct. This

may not be entirely true when taking into account artificially
generated rules, yet in the vast majority, fairy chess pieces can
be represented by automata with a simple construction.

Basing on that, and assuming that we have ,,big enough”
training data, we can easily extend FastCheck algorithm to
allow some fraction of moves from S?. For our Fraction-
alCheckα algorithm we assume that if it produces language
L, then at most (1−α)|L\S0| generated words belong to S?.

The consequence of this assumption is that if Lp is the
language of legal moves and S+ observed valid moves then,
given |S+|

|Lp| ≥ α, the consistency check will allow optimal DFA
despite acceptance of moves from S?. On the other hand, if the
sample is small and |S+|

|Lp| < α, the optimal automata will be
rejected, as the evidence supporting its correctness are judged
as too weak.

The procedure of FractionalCheckα can be described by
comparing with FastCheck as follows. Instead of returning
False in case of finding an accepted move from S?, the
algorithm has to track the number of such moves. If their
number exceeds an established threshold, then the function
has to return False, at best finishing immediately, e.g. using
the exception mechanism. In the all legal moves scenario,
the additional consistency check with S− is necessary. This
requires browsing through all the observed positions and
subset checking between observed and DFA-generated moves
(which is equivalent to [4, Algorithm 1], lines 7–8).

V. SPINE COMPACTION ALGORITHM

Both RPNI and Björnsson’s LearnDFA algorithms are in
fact general purpose methods, i.e. they do not benefit in any
way from the fact that they are applied to learning boardgame
piece rules. We would like to present our approach that, in
contrast, is entirely based on the assumption that it has to
learn rules of the chess-like piece. The goal of this algorithm
is fast learning of probable piece movements by performing
only specialized state merges and thus minimizing the number
of required consistency checks.

The main idea uses the observation that piece PTA’s usually
have a form of multiple spines with similar subtrees attached
(see Figure 2 to examine a rook-like piece example). Actual
cases may be more complicated (e.g. spine’s cycle period
greater than one), yet the idea remains similar, also in the
cases such as Checkers man piece.

Formally, given a (partial function based) DFA A and a
word w ∈ Σ∗, we define a w-spine as a path in A starting in
some state q and going along the longest prefix v of w∗ that
determines a valid path in A. In such a case w is called the
vertebra of the spine, |w| its period, and |v| its length. Each
spine is encoded in the triple (vertebra, initial state, length)
(see Figure 3). We are not interested in spines where |v| < |w|,
and discard them as not proper.

The main procedure (Algorithm 2) consists of two crucial
parts. The first one is responsible for finding all spines in a
given prefix tree automata. The other one analyzes the obtained
spines in proper order and finds the pairs of states being
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candidates to merge. First, we describe both these procedures
and then present a detailed description of the outline algorithm.
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Fig. 2. An example of a chess-like piece sliding only forward. On the top the
prefix tree acceptor, on the bottom the optimal DFA for this piece (assuming
board of height 5).

A. Spines Selection and Pairs Selection

Given a prefix tree acceptor T , the task of the spine selection
is to find all proper spines with a period k. Starting from the
root r and traversing T using depth-first order, reaching depth
k provides the first candidate w for a vertebra. However, if
F (r) 6= F (δ(r, w)), then we drop the first letter of w and
continue searching for a proper vertebra. Otherwise, we have
to analyze outgoing edges. If one is labeled by the first letter of
w (say, a), and F (δ(r, a)) 6= F (δ(r, wa)) we mark (w, r, |w|)
as a proper spine, and start a new search from the current
node. If state acceptances match, we can continue extending
the current spine as long as the traversed path matches w∗. For
any other edge labeled by b 6= a, we create w′ by dropping
the first letter of w and appending b at the end and proceed
further down with w′ as a new vertebra candidate.

The procedure works recursively for a given state considered
as the actual root, candidate for vertebra, and length of the
longest spine matching so far. Example of the outcome of the
given procedure is shown in Figure 3. The time complexity is
the same as in the case of the standard DFS, i.e. Θ(|Q|) given
that we traverse only trees.

0

1

2

3 4

7

8

9

5

6

a

b

a b

c

c

c

a

a

Fig. 3. For the given PTA, the spine selection procedure returns spines
as (vertebra, initial state, length) triples. Result for k = 1: (a, 1, 2),
(c, 0, 2). Result for k = 2: (ab, 0, 3), (bb, 1, 2), (aa, 1, 2), (cc, 0, 2).

Given a w-spine, the next task is to choose a pair of
states (within geodesic distance |w|), which will be the best
candidate for merging. Our goal is to minimize a chance that
the merge result will be rejected by a consistency checking
procedure and simultaneously maximize the state reduction.

Let q and q′ be two corresponding states in a spine (i.e.
the length of the path from q to q′ is a multiple of |w|), with
outgoing vertebra edges labeled by a. In theory, it is safe to
merge q and q′ if the subtrees rooted in these states are equal
except branches initiated with a. If the property is fulfilled for
every two corresponding states in a spine, such merge does
not add any new words to the language, except for the words
longer then v.

In practice, it is enough to have this property only approx-
imately fulfilled. First of all, it is too costly to check the
equality of two subtrees. Instead, we check only the first level
equality, i.e. if for every letter b 6= a, (q, b) ∈ Dom(δ) ⇔
(q′, b) ∈ Dom(δ) ∧ F (δ(q, b)) ⇔ F (δ(q′, b)). Moreover, we
should be aware that given data might be sparse, and it is less
probable that we will have valid data concerning longer moves.
Given that, we apply a heuristic that allows corresponding
subtrees more distance from the spine root to be smaller.

The overall pair selection procedure starts with a spine root
r as a candidate for merging with δ(r, w). Then, we traverse
through the spine comparing corresponding subtrees and re-
place candidate for merging if we meet a larger corresponding
subtree. Final candidate, if the spine length remains longer
then the vertebra, is the base for the selected pair. Figure 4
presents the visualization of the process. The complexity of
the procedure is Θ(|v| · d), assuming d is the maximal degree
of a node in a spine.

1 2 3 4 5 6
a b a b a

A’ B A B A B’

1 2 3
a b

a

A’ B A

Fig. 4. Example of the spine compaction process. On the top ab-spine rooted
in 1, with subtrees such that A′ ⊂ A and B′ ⊂ B. On the bottom the
situation after compaction: pair (1, 3) is not a safe candidate for merging, so
the states 2 and 4 were selected and merged instead.

B. The Main Algorithm

The main part of the Spine Compaction procedure is
presented as Algorithm 2. It uses a constant K indicating,
similarly as in Björnsson’s algorithm, the maximal allowed
length of the cycle. After constructing initial prefix tree
acceptor, in lines 2–7 we search for all spines not exceeding
period K, starting from the children of the root. Thus, we
explicitly exclude PTA root for being selected as a spine
root, to prevent it from being a part of a cycle (which is an
assumption supported by our experiments). In lines 8–11, we
investigate each spine to select pairs for further merging.

What remains, is to try to merge every pair and check
for consistency (lines 13–18). Very important is the order of
applying merge operations. Our strategy is to compact spines
with shorter vertebra first, starting with the longest spines.

83



The merging function (line 15) is a deterministic merge used
in RPNI algorithm. At this moment, we operate on states
being the sets of original states, to be able to track merging
process. We maintain a set of pairs that resulted in inconsistent
automata (lines 12, 17), which is used to skip unnecessarily
repeated computations (line 14). Additionally, we prevent pairs
to create a multiloop, which is an experience-based heuristic,
as fairy-chess pieces representations rarely have one. To check
this condition it is enough to analyze δ values for the states
in current pair. Finally, we minimize the resulting automaton.

Observation 4. Let S+ be the language accepted by the
piece’s PTA pt, and C(k, td) the complexity of consistency
check given training data td and DFA with k states. We
can estimate upper bound on the number of spines selected
in Algorithm 2 by O(||S+||2). Then, the complexity of the
SpineCompaction algorithm is

O((||S+||2 + C(||S+||, td))||S+||2).

Algorithm 2 SpineCompaction(Piece pt, TrainingData td)
1: A = 〈Q, Σ, δ, q0, F 〉 ← constructPTA(pt, td)
2: spines← ∅
3: for all a ∈ Σ if 〈q0, a〉 ∈ Dom(δ) do
4: for k ← 1 to K do
5: spines← spines∪A.SelectSpines(k, δ(q0, a), ε, 0)
6: end for
7: end for
8: pairs← ∅
9: for all s ∈ spines do

10: pairs← pairs ∪ {A.SelectPair(s)}
11: end for
12: forbidden← ∅
13: for all p ∈ pairs.OrderByPriority() do
14: if p ∈ forbidden ∨ isMultiloop then continue end if
15: A′ ←MergeAndFold(A, p)
16: if consistent(pt,A′, td) then A ← A′

17: else forbidden← forbidden ∪ {p} end if
18: end for
19: return minimize(A)

VI. EXPERIMENTS AND EMPIRICAL EVALUATION

We have performed experiments to compare the three pre-
sented learning algorithms paired with different consistency
check functions in both the single move known and all legal
moves scenarios.

For the all legal moves scenario we have prepared 20
datasets per game, each containing record of 50 plays gen-
erated using two random agents playing against each other.
In the case of the single move scenario, the number of play
records in each dataset was increased to 1000. The maximum
game length was set to 80 moves per player in all cases.
Due to the symmetry of games, we have performed learning
only for the white player (results presented in [4], [15] show
no significant difference for white and black in the case

TABLE I
EXPERIMENT RESULTS FOR THE all legal moves SCENARIO.

Consistency Correct size (%) Errors (%)
Check Bjö. RPNI SC. Bjö. RPNI SC.

Björnsson 87.6 91.5 87.3 4.9 9.1 7.6
Fractional0.5 87.6 89.9 84.9 4.9 6.3 7.6
Fractional0.6 89.0 89.8 86.6 2.4 4.0 5.0
Fractional0.7 87.1 87.1 87.1 2.4 3.5 3.2
Fractional0.8 85.6 85.5 85.6 2.4 3.7 3.2
Fractional0.9 73.7 73.5 73.7 2.4 2.7 3.9

Fast 69.3 69.3 69.3 0 0 0

of such games). If not stated otherwise, the MaxExpansions
constant of Björnsson’s algorithm was set to 20, and K used
in Björnsson’s and Spine Compaction algorithms was set to 2.
All experiments were run on 2.60GHz Intel Core i7-6700HQ
processor.

A. Games

We have used as a testbed 8 fairy chess games, containing
41 pieces altogether. The chosen games can be divided into
three categories. The first one consists of simplified versions
of known boardgames or their variants. It includes chess,
Los Alamos (small chess variants without bishops), Tamerlane
(large 10×11 game containing many non-standard pieces like
giraffe, camel, picket), and a breakthrough variant of Checkers.
(See [32], [4] for more detailed game descriptions.)

The other three games are the result of procedural content
generation algorithms [33], [34]. Thus, they all contain only
non-standard pieces. The last game was handcrafted especially
to fool unaware learning algorithms. It contains two special
pieces that can move horizontally like a rook without capturing
moves, yet with limited movement lengths. The initial position
is constructed such that every move exceeding these lengths
is impossible due to the obstacles. Thus, the setup fulfills pre-
requisites given in the Section III-B, and there is no evidence
of nonconsistency when assuming the (1, 0, e)∗ + (−1, 0, e)∗

language for these pieces.

B. Results and Conclusions

Tables I and II show the results for the all legal moves and
single move known scenarios (Spine Compaction algorithm is
abbreviated as SC). For every (learning algorithm, consistency
check) pair, we have computed the percent of generated
automata with the optimal size (which is the task of regular
language inference), and the percent of automata generating
consistency errors. By an error, in this context, we mean a
non-empty intersection with S− of the piece’s true language.
These data visualize the trade-off between the rapid language
expansion followed by the DFA size reduction and performing
only minor adjustments to the initial prefix tree acceptor.
Runtimes of all experiments are presented in Table III.

The experiments show that our SpineCompaction learning
algorithm provides most accurate results in the single move
known scenario of learning, and comparable although more
erroneous results in the GGP-like all legal moves known sce-
nario. Moreover, it requires much less time for learning than
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TABLE II
EXPERIMENT RESULTS FOR THE single move known SCENARIO.

Consistency Correct size (%) Errors (%)
Check Bjö. RPNI SC. Bjö. RPNI SC.

Björnsson 73.7 70.6 73.7 5.4 19.8 9.6
Fractional0.6 88.7 61.5 87.3 6.8 40.4 6.1
Fractional0.7 89.9 65.7 89.8 4.9 37.6 2.8
Fractional0.8 88.0 64.6 88.0 4.5 34.0 4.4
Fractional0.9 73.3 71.5 73.3 3.7 14.4 3.4

Fast 68.5 68.5 68.5 0 0 0

TABLE III
LEARNING TIMES (IN SECONDS).

Consistency all legal moves single move known
Check Bjö. RPNI SC. Bjö. RPNI SC.

Björnsson 68.2 16.4 4.1 1598.6 454.1 82.4
Fractional0.5 51.8 9.4 2.2
Fractional0.6 50.8 9.3 2.1 5.4 4.4 0.2
Fractional0.7 50.8 9.2 2.0 5.6 3.3 0.2
Fractional0.8 49.4 9.5 1.8 5.7 3.0 0.2
Fractional0.9 42.8 10.4 1.5 5.7 2.6 0.2

Fast 4.0 4.6 0.4 4.6 5.3 0.4

the other tested algorithms. Experiments show that in practice
gathered observations data are incomplete, which justifies the
need for a learning function based on some approximation
method. For this reason, we have also proposed consistency
check functions, determining the acceptance of the proposed
DFA’s on the basis of the fraction of unsafe moves. These are
FractionalCheckα and FastCheck (which is a special case of
FractionalCheck with α = 1). As Tables I and II show, we
can select an α value giving us better results then Björnsson’s
consistency check, which has been our reference point.

Nevertheless, all the tested methods are efficient in com-
parison to game reasoners used in GGP. This supports the
thesis that the problem of General Game Playing should be
solved by detecting subclasses with more effective, domain-
based algorithms applicable [13]. As the boardgames are one
of the most common classes of games used in GGP, the effort
in this direction is relevant for the domain, and has possible
practical applications in the improvement of GGP systems [4].
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Abstract—This paper presents an initial approach to a generic
algorithm for constructing balanced multiplayer maps for strat-
egy games. It focuses on the placement of so-called strategic
features – map objects that have a crucial impact on gameplay,
usually providing benefits for the players who control them.

The algorithm begins with constructing a logical layout of the
map from the perspective of a single player. We use a novel
approach based on graph grammars, where rules do not add
new features but are initially constrained by the content of the
start node, which simplifies their construction. To introduce other
players’ space, the single-player graph is multiplied and partially
merged. The result is projected onto a grid by combining Sam-
mon mapping, Bresenham’s algorithm, and Voronoi diagrams.
Finally, strategic features are arranged on the map using an
evolutionary search algorithm.

We implemented the proposed method in a map generator
which we are developing for the popular strategy game Heroes
of Might and Magic III. We also point out how this approach can
be adapted to other games, e.g. StarCraft, WarCraft, or Anno.

Index Terms—procedural content generation, map generation,
graph grammars, heroes of might and magic

I. INTRODUCTION

Procedural content generation (PCG) has been used in
games since the introduction of home computers. Examples
include Beneath Apple Manor from 1978, or released in 1980
Rogue. However, the progress of PCG techniques did not go
hand in hand with the progress in other areas of game devel-
opment. Nowadays, most popular commercial video games,
especially AAA titles, either do not use procedural generation
or use relatively simple constructive generative techniques [1],
which are not especially interesting from the research point of
view.

World generation in Civilization VI [2] is based mainly
on Perlin noise and simple heuristics for objects placement.
Dungeons in Diablo III [3] consist of handcrafted tiles that
are combined together using a simple generator, and later
populated with randomized treasures and monsters. The levels
in Spelunky [4] always contain 16 rooms whose layouts
are selected from a set of predefined templates. To increase
visual diversity, random obstacles are placed according to
the templates’ indications. Lastly, monsters are put in spots
determined by heuristic rules.

On the other hand, academia-rooted PCG research often
focuses on more advanced techniques, such as evolutionary

algorithms, simulation-based evaluations, or neural networks
[5]. However, their implementations usually have a purely
scientific character, as they are applied mostly to test-bed
games and tools [6], [7], [8], [9], [10], [11], [12], [13],
indie games [14], or reimplementations of older titles [15],
[16], [17]. There are, of course, notable exceptions, including
level generation for Angry Birds [18], Cube 2 [19], [20], or
StarCraft [21]. Some academic approaches even turned out
into commercial (usually independently published) games, e.g.
Galactic Arms Race [22], Petalz [23], or Darwin’s Demons
[24]. Nevertheless, it is often a difficult and laborious task
to meet all of the requirements and generate maps that are
playable in an already existing, commercially published game.

Our ambition is to develop a map generator for Heroes of
Might and Magic III (HoMM3) [25] which could be widely
used by the game’s community. This paper describes the first
step towards this goal. We are presenting an algorithm that
generates a balanced map layout, projects it onto a grid, and
ensures a fair placement of the most important map features,
mainly towns and mines.

One of the main reasons for our work is, as we believe,
a community need for such a tool. Although the game is
nearly 20 years old, it is considered the best part of the
entire Heroes of Might and Magic series and is still widely
played. There are multiple fan-made mods and extensions,
including Horn of the Abyss, In the Wake of Gods, and VCMI
– an attempt to entirely rewrite the original HoMM3 engine.
Additionally, in 2015, Ubisoft released the HD Edition of the
game (642, 075± 24, 614 sold copies according to the Steam
Spy website1). Sadly, this version does not include expansions
and lacks the random map generator.

Existing template-based generators usually require a skilled
user to modify generator’s behavior. Instead, we aim to pro-
pose a method that will be able to produce reliable maps based
on simple user preferences. We provide necessary background
about map generation approaches in the next section. Our
algorithm is fully described in Section III. Section IV contains
details of our implementation, which is tailored for Heroes of
Might and Magic III and yields playable maps. We discuss the
results produced by our algorithm, present the arguments for

1https://steamspy.com/app/297000, retrieved March, 2018
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its generality, and give a perspective of the future research in
Section V. Finally, we conclude in Section VI.

II. RELATED WORK

A. Procedural Map Generation in Games

In this section, we provide a brief overview of the PCG
research and algorithms relevant to this study. For the compre-
hensive survey on procedural generation and its role in games,
we refer to textbooks [5], [26].

Graph grammars ([27], [28]) allow to combine a powerful
and intuitive concept of grammatical rules with a capacious
graph representation. This approach is often used for creat-
ing non-linear story-driven levels, where the level structure
strongly follows the generated plot. In other words, all possible
paths towards the objectives, along with the events that can
be encountered along the way, are constructed as a randomly
generated graph.

In general, application of graph grammar rules is a compli-
cated task, as the left-hand part of a rule has to match a proper
subgraph, which then has to be modified in-place according
to its right-hand side. To make generated structures more
predictable, additional constraints are usually placed upon the
maximum number of application of certain rules or resources
that those rules can place. This causes the entire architecture
to become significantly more complex.

Graph grammars are especially convenient for generating
RPG-style one-player maps. A good example is a mission
graphs generator for Dwarf Quest [14]. It is based on evo-
lutionary search, where grammatical rules are applied as
mutation operators. Evolved mission graphs are converted into
Dwarf Quest levels consisting of pre-made rooms mapped
to nodes using so-called layout solver. Another approach,
presented in [12], generates Zelda-like levels via two-step
evolutionary algorithm: the first phase generates an acyclic
high-level graph of areas, while the second evolves, for each
area, a low-level cyclic graph consisting of rooms and doors.

An important issue is mapping the abstract graph structure
into concrete locations while preserving its characteristics. In
[29], the problem has been restrained to mapping trees into
a low-resolution grid (one node per square) and solved via a
recursive backtracking algorithm. If no mapping solution has
been found, the tree is discarded and regenerated.

An approach of generating RTS-style maps via multiobjec-
tive evaluation has been presented in [6]. The method had
since been extended and used to generate playable maps for
StarCraft, however, it commonly produces maps “not looking
very StarCraft-like” [21]. The genotype consists of player
base locations, resource (gas and minerals) locations, and
information about impassable areas. The algorithm tries to
optimize maps mainly for their fairness (various resource-
related metrics like distance, ownership estimation, safety) and
strategic aspects (metrics related to choke points and possible
unit paths). Recently, a new idea of using neural networks to
predict the placement of StarCraft map features based on the
existing map data has been proposed and tested in [30].

Lastly, we want to raise the subject of using cellular
automata (CA) as a map-filling algorithm. It is often needed to
populate an area with obstacles (water, impassable rocks, etc.)
in a way that is random, fast, and still somewhat controllable.
In [31], cellular automata have been utilized to generate sur-
prisingly lifelike cave-rooms. In particular, the authors perform
an exhaustive study on the influence of the CA parameters
on the style of the obtained caves. In the genetic algorithm
for generating Dune 2-like maps [17], an interesting approach
to cellular automata-based genotype-to-phenotype mapping is
used. Instead of direct map representation, the evolutionary
process modifies only the CA parameters (e.g. size of a Moore-
neighbourhood, activation threshold, number of iterations),
which are later used to fill the map with rock, sand, and
indirectly other features like player starting zones.

B. HoMM3 Map Generation

A random map generator had been introduced into HoMM3
with the first expansion – Armageddon’s Blade. Despite many
faults it was, and still is, commonly used (its exclusion
from HoMM3 HD Edition caused many complaints from
the players). The generator on its default settings tends to
produce highly unbalanced maps filled with items that are
rarely used by human map-makers (e.g. Pandora’s Boxes with
very random rewards), and valuable treasures that often lie
unprotected. One of its bugs can even occasionally make a
player starting position completely surrounded by obstacles.

However, by overriding generator’s template, it is possible
to modify, to some limited extent, the algorithm’s behavior.
This allows to handcraft a structure similar to our map layout
(see Section III-C), which contains information about the
zones’ characteristics and relative positions. Many alternative
templates have been made and shared among the community2.

The improvements of the random map generator are impor-
tant aspects of HoMM3 mods. Horn of the Abyss provides a
graphical template editor offering a wide array of settings3. Re-
cently, a new web-based map generator had been published4. It
is a work-in-progress version and still does not support all map
features (e.g. water, underground). It defines its own format of
templates, which allows for a very high level of customization
and gives a lot of control over the resulting maps.

III. METHODOLOGY

Let us start with the definitions. A zone represents consistent
map area with the same purpose, style, and level of challenge.
Zone is defined by its class, i.e. (type, level) pair. The higher
the level, the more challenging and rewarding the content of
the zone should be. The zones are local if they are easier
accessible for one player, i.e. it should be safe to explore for
that player. The buffer zones are the areas separating different
players’ local areas. Buffers are equally accessible by at least

2http://forum.heroesworld.ru/showpost.php?p=564869&postcount=57,
retrieved March, 2018 (in Russian)

3https://www.facebook.com/h3hotaofficial/posts/1447460758611590
4http://www.frozenspire.com/MapGenerator/Index.html, retrieved March,

2018

87



two players, so in these zones the multiplayer fighting should
take place. The goal zone is a special buffer, limited to one per
map, existing only in maps with specific winning conditions
(capture town, defeat monster, acquire artifact).

The content of zones is represented by features. There
are strategic features, like town and mine, or more technical
features: outers and teleports. The value of a feature describes
its detailed content. We distinguish player’s main town, other
towns they initially possess, towns dependent on surrounding
factions, and two types of random towns (chosen either by our
generator or in-game randomizer). There are base mines (for
wood and ore), primary mines (for faction-dependent most
important resources), gold mines, and random mines.

Outer represents a connection with other player’s part of the
map. Teleport is a special kind of outer: a hyperedge joining
all of its occurrences within the map via two-way monoliths.
The value of an outer is its level – representing difficulty in
the same way as levels of zones and influencing the strength
of guarding creatures. The value of a teleport is its level and
identifier. Teleports with the same identifier are joined together
and there can be at most 4 distinct teleports on the map.

A. Generation Parameters

First, the user needs to specify desired map characteristics.
Apart from necessary settings like map size, players’ spec-
ification, or winning condition, we defined eight parameters
influencing generator’s behavior. All the parameters have
values from 1 to 5, where the default 3 means “standard”.
The most important for the algorithm are:

• welfare – higher values mean more resources and mines,
• towns – higher values mean more towns placed,
• branching – higher values mean more connections be-

tween zones,
• focus – lower values mean more player-vs-player map,

while higher values focus on player-vs-environment,
• zonesize – higher values mean bigger zone areas (which

is equivalent to lesser number of zones placed).
Knowing the map specification, we start by defining the

content of the map without knowledge about its layout. We
do it from the perspective of one player, i.e. we enumerate
the zones he will encounter without going into other players’
territory. The generator uses a set of parameterized, random-
ized rules. For instance: number of zones depends on the map
size and zonesize parameter, maximum zone level depends on
the map size and overall estimated difficulty of the map, and
strong player-vs-player focus results in a smaller number of
local zones compared to the number of buffers.

Let us start with an example. For M-size, 4-player map
generated with default parameters, we can obtain the following
zone classes: (local , 1), (local , 3), (buffer , 2), (buffer , 4).

We generate features in a similar way. However, each feature
is already associated with a zone class. Although we do not
know an exact zone to place a certain feature, we know what
class of challenge this feature should belong to. These classes
are calculated based on feature values (e.g. gold mines have a
higher probability to be placed in high-level zones) and given

parameters (low player-vs-player focus forbids putting outers
in low-level local zones, winning condition “capture town”
requires town in the goal zone, etc.).

Continuing our example, we can obtain a starting town
(TSTART) and two base mines (MBASE) in (local , 1) zone, two
random mines (MRND) in (local , 3), a random (TNEUT) town in
(buffer , 4), and an outer edge in each buffer. (See Figure 1a.)

B. Logic Map Layout

The Logic Map Layout (LML) graph consist of nodes rep-
resenting zones and edges representing connections between
the zones. Each node contains a multiset of zone classes and
a multiset of features (with a proper class associated). LML
defines a logical structure of the map and is constructed using
a novel variant of a graph grammar algorithm.

An LML node is inconsistent if it contains a feature
associated with a class which is not present in the node. We
require our graph to always be consistent. A node is final if
it is consistent and contains only one zone class.

We initialize our graph structure with one node that consists
of all zone classes and features computed from the generation
parameters, as shown in Figure 1a. In our algorithm, graph
generation process comes down to making all nodes final.
Thus, our approach does not require any additional constraints
checking, as all we do is a redistribution of the nodes’ content.

(a) (b) (c)

Fig. 1. Constructing LML. Nodes contain classes and features, bolded lines
are outer edges with levels. Initial node is presented in Fig. 1a. Fig. 1b contains
one of the intermediate steps (after two successful applications of rule (1)).
The final LML is shown in Fig. 1c.

Each grammar rule has a weight assigned. In every step,
one rule is chosen via the roulette-wheel selection. If its
preconditions match, the rule is applied. Otherwise, the graph
remains unchanged. Currently, we use four production rules
(the weight in parentheses is either a constant or a parameter
value):

1) (15) For the first non-final node, divide its content by
pushing out a new node containing zones larger than a
random pivot.

2) (15) For the first non-final node, if it only contains n
zones with the same class, divide its content into n new
final nodes and put them at the same depth.
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3) (branching) Duplicate random edge (if there is only one
edge between the nodes).

4) (branching) Connect two random, previously not con-
nected, nodes (only local-local or nonlocal-nonlocal).

Although this set can be extended infinitely by adding more
and more sophisticated rules, the ones we defined cover most
types of reasonable graphs, while remaining relatively simple.

The effectiveness of this grammar comes from a proper
ordering of the zone classes. We order zones of the same type
by their level, and otherwise we have: local < buffer < goal.
This way rule (1) always creates a new node containing a
buffer zone if the original node had one. It prevents a local
zone from being placed “after” a buffer (counting from the
starting position). Rule (1) alone will eventually give us trees
where any non-final node contains zones of only one class.

Thus, the rule (2) splits such nodes by making several new
nodes all containing only one zone (so they become final).
The new nodes have all or only some of the base node’s
edges (depends on branching parameter). The main issue here
is fair features redistribution. We defined heuristic values for
every type of feature. Thus, for each feature in the base node,
we insert it into the copy that has the lowest value at that
moment. The ordering in which the features are considered
depends on the zone’s type. For local zones, we distribute
towns and mines first, while for the other types we prioritize
outers and teleports. The role of remaining two rules is to
extend otherwise tree-like graphs with cycles and multiedges.

The final LML graph has been presented in Figure 1c. To
visualize the process, Figure 1b contains an exemplary middle
step, before applying rule (3) to duplicate an edge and rule (1)
to the only remaining non-final node.

C. Multiplayer Logic Map Layout

In the next step, we need to compute a layout for the entire
map, including all players and all zones. We call the resulting
structure Multiplayer Logic Map Layout (MLML). To create
this graph, we make a copy of LML for each player. Then,
we join these duplicated LML’s via the outer edges and merge
certain buffer zones. In doing so, we want to obtain a graph
which is connected and isomorphic from the perspective of
every player (i.e. the node containing player’s main town).

We say the MLML zones belonging to different players
are corresponding if they were created as a copy of the same
LML zone. We call a newly added edge valid when it connects
two zones of the same level. First, we attempt to connect all
the players’ graphs with valid edges between buffer zones, to
ensure the final graph will be connected.

After using the buffer zones’ outer edges, we add valid
edges between local zones, connecting the graph if still
needed, and simply distributing them randomly and evenly
otherwise. This can be optimized by keeping track of the added
edges for each players’ corresponding zones and ensuring all
players have similar edges. Remembering which correspond-
ing zones had a connection added between them lets us provide
a much higher chance for the final graph being isomorphic.

After distributing all outer edges, we merge certain buffer
zones, to simplify the graph and allow for a larger buffer zone
to replace several corresponding buffer zones. This is done by
restricting ourselves to a graph made up of the newly added
edges. We search through this graph for sets of corresponding
buffer zones, which only have connections between each other.

If such sets exist, each one can be merged into a single
buffer zone. While merging such zones, we say the merged
zone has a size equal to the sum of sizes of the original buffers,
up to a maximum of 3 times the base size (this is an arbitrary
limit, which has proven to work well enough during tests).
After these merges are finished, we want to verify that the
final graph is isomorphic as observed by the players by using
a rooted tree isomorphism algorithm5.

MLML for our example has been presented in Figure 2.

Fig. 2. Generated MLML. Numbers in braces identifies the corresponding
LML zones. Each zone contains information about accessing them players.

D. Mapping MLML to Grid
Our task is to project the MLML graph onto a grid, i.e. each

vertex has to become a separate zone on a game map. We are
bound by three constraints: (a) zones representing connected
vertices should be directly accessible from one another, (b)
vertex size should represent zone area, and (c) the map should
not contain too much unutilized space. We divide this process
into two stages. First, we embed the graph points in a planar
space. Then, we calculate a modified Voronoi partitioning
based on the result. The visualization of each step is presented
in Figure 3.

Solving the first constraint algorithmically is not a trivial
task. Instead, we chose to pursue a data science approach
and employ Sammon mapping [32] for creating a graph
embedding. Sammon mapping is a data visualization method
deriving from multidimensional scaling. Given a set of points
and a matrix d∗ij of relative distances between them, it embeds
the points in a low-dimensional space by minimizing a stress
function

E =
1∑

i<j

d∗ij

∑

i<j

(d∗ij − dij)
2

d∗ij
,

5https://groupprops.subwiki.org/wiki/Rooted_tree_isomorphism_problem

89



where dij is a distance matrix for the embeddings. Defining a
distance between two vertices as a length of the shortest path
between them allow us to use this method to draw a graph on
a plane [33].

In order to fulfill the (b) requirement, we start with reshap-
ing the graph. We split each vertex of size s into a cycle of
s subvertices. Edge (p, q) in the original graph is translated
to a random connection between the cycles for p and q.
After embedding the obtained graph using Sammon mapping,
we still need to ensure the (c) property. Consequently, the
output is rotated and cropped. Afterward, we use a gravity-
like mechanism to fill sparse regions by pulling the points
closer to the map edges.

Note that this method relies on heuristics, and the desired
proportions between areas are only roughly maintained. Nev-
ertheless, we found the results satisfying for the task.

At this point, we have a good basis for the partitioning of
a map space. To prepare for that, we add a sparse virtual grid
above the map grid. This virtual grid covers the map grid and
consists of sectors, which are rectangles of equal size, each
containing a group of map squares.

We call two sectors direct neighbors when they are next to
each other horizontally or vertically, but not diagonally. For
every zone, we want to have a group of sectors, where each
one is a direct neighbor of at least one other sector in that zone.
This ensures that every zone has a connected set of sectors.

Furthermore, we want every pair of zones which are con-
nected in the MLML graph, to have at least one pair of sectors
(one from each zone), which are direct neighbors. This will
allow us to later specify that the two zones have an edge
between these two sectors.

In our approach, we assign each zone a starting sector, by
taking the average of the zone vertices obtained with Sammon
mapping and choosing the sector which holds this position.

After assigning each zone a starting sector, we go through
the edges from MLML and attempt to connect each pair of
zones with a chain of direct neighbors. First, we calculate
a path between both starting sectors using a Bresenham
algorithm6. This ensures that we always have direct neighbours
along the way. Next, we traverse the path and try to find a
chain of sectors, which start from one of the zones, ends in
the other, and has only empty sectors along the way. If such
a chain exists we assign the sectors fairly to both zones. So,
ultimately, a path starts in one zone, goes along sectors of this
zone, and then continues in sectors of the second zone.

Now that we have assigned sectors for all of the zones,
we proceed to fill the map grid with a basic Voronoi method.
Inside every sector, we generate three random control points
with the sector’s id. We only allow the points to be generated
at a certain distance away from the sector’s sides. We assign
each grid square the id of the control point which is closest
to the center of the square. We only have to take into account
the current and neighboring sectors, because further control
points can never be closer.

6https://www.redblobgames.com/grids/line-drawing.html#stepping

While testing the algorithm, we observed that using too
few control points caused neighboring sectors to be separated
by another sector. However, when using too many control
points, the sector boundaries immediately took the form of
a standard grid, without any irregularities. The three random
control points allow the Voronoi grid some randomness, while
not restricting the sectors to have any specific shape.

Because of the allowed movements in HoMM3, the borders
between sectors of different id’s can not have diagonal gaps. To
decide which grid squares must form a border, we iterate over
the squares and compare a candidate to each of its 8 neighbors.
When comparing the square with a neighbor, we check if both
squares have an id of an assigned sector and if the candidate
square has a larger distance to its control point. If it does,
it is changed to a wall. Otherwise, it remains unchanged and
we continue through the map. The gates between two adjacent
zones are placed in zone border tiles such that adjacent squares
belong only to one of that zones or are neutral.

Fig. 3. On the left, result of the Sammon mapping. On the right, final
partitioning of a grid, including gates between the appropriate zones. (For this
partitioning example, we distorted the graph embedding results to forcefully
fill the entire map.)

E. Strategic Features Placement

To guarantee a decent level of balance, we have to place
the strategic features such that all players have similar access
to the corresponding objects in the corresponding zones. If,
for example, one of the players has a mine near their town,
while all the others have it on the far end of the zone, this
will result in a large difference in their early advancement.

The task can be defined as follows. We are given a set
of corresponding zones and, for each of them, coordinates of
entrances, i.e. tiles where a player can enter the zone. Given
a set of strategic features, the following distances should be
preserved:

• between corresponding features in corresponding zones
(feature-to-feature),

• between corresponding objects and corresponding en-
trances in corresponding zones (entrance-to-feature),

• if the zone is a buffer, between k-th nearest object for
any two entrances in the zone leading from lower-level
zones (for k less equal than the number of features).

The first two rules focus on fairness between corresponding
zones. The last rule ensures that different players arriving from
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their entrances to one particular zone will encounter a strategic
feature in a similar distance.

We aim to optimize the features placement via an evolution-
ary algorithm. A genotype contains the exact position of every
feature. We start with computing all valid feature spots in a
zone and use them to randomly generate an initial population.

To compute the evaluation function, the distances between
all pairs of objects are calculated by BFS. For individuals with
overlapping features, the fitness is infinity. Otherwise, we try
to minimize the sum of squared differences between corre-
sponding distances included in the above list, e.g. we minimize
the discrepancy between the distance from the entrance to the
mine in zone A and the distance to the corresponding objects
in zone B, assuming A and B are corresponding.

For breeding, we choose
√
n best individuals and perform

a uniform crossover on every possible pairing. The mutation
operator replaces each position in an offspring genome with
a valid random position. We discard all identical individuals
and preserve best individual obtained so far (i.e. elitism of size
1). The algorithm stops after a given amount of time or if no
better solution has been found in a number of past iterations.

Assuming we have the features placed, we can finally place
the roads. We calculate a minimum spanning tree connecting
all features and entrances on the zone and set the correspond-
ing tiles as road tiles in this zone and all corresponding ones.
The example is shown in Figure 4.

Fig. 4. The map after the placement of strategic features and roads (red tiles
are zone borders, yellow tiles are roads)

F. Filling Space with Cellular Automata

It is characteristic for HoMM3 maps to contain irregularly
placed obstacles, which allow placing treasures nearby and
effectively guarding them. Since usually the exact locations
of the obstacles do not heavily influence the map’s properties,
we can safely use cellular automata to fill the space randomly,
and, if required, do some small fixes later.

In the standard case, cellular automata operate on two types
of tiles: white and black. In each step, every cell can change
its color according to the rules. In our case, we need to fill the
interior of the zones without erasing borders separating zones
or blocking roads set by the feature placing algorithm. Thus,
we added two additional colors: super-white (which works as

white but cannot be blacked) and super-black (which works
conversely). This is more general then, e.g. overriding tiles
with roads and borders after CA step because we are able to
additionally parametrize automata behavior by giving separate
weights to these special colors.

IV. IMPLEMENTATION

After all the steps presented in the previous section the
main structure of the map is complete. The visualization of
the example run we have described is shown in Figure 5.

Fig. 5. The in-game minimap of the example map we have generated. This
is an M-size map, for 4 players, and with all generation parameters set to
default value.

Our map generator is written mainly in Lua, and partially in
C++ and Python. We used Löve7 for GUI. To generate maps in
proper format, we used (and slightly fixed) C++ homm3tools
library [34], for which we developed Lua API8.

Graph embedding and visualization was done with NumPy9,
SciPy10, and Matplotlib11 Python packages. We used open
source implementation of Sammon mapping from Github12.

Evolutionary algorithm for features placement was run with
population of size 100, mutation rate of 0.01, and time limit
set to 1 second.

V. DISCUSSION

We proposed a method that, in theory, can generate balanced
map layouts for Heroes of Might and Magic III. The algorithm
is highly modular, which proved to have both advantages and
disadvantages. On one hand, we were able to independently
develop and improve individual components. The randomized
nature of some of them gives an opportunity to run them
several times and pass the best result to the next step. It also
means we can obtain varied results using the same parameter
set. The partial visualizations of the process would not be
possible without splitting the generator into separate phases.

On the other hand, ensuring truly balanced outputs turned
out to be very hard. One of the biggest challenges comes from

7https://love2d.org
8https://github.com/radekmie/homm3lua
9http://www.numpy.org/
10https://www.scipy.org/
11https://matplotlib.org/
12https://github.com/tompollard/sammon
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the cumulation of errors. Each step heavily depends on getting
a reasonable input. If the previous phase fails to produce it, we
usually have no way to fix it, since the components are almost
completely independent. For example, MLML step does not
know if the graph it is making can be nicely drawn on a
plane. This sometimes results in scenarios, where Sammon
mapping cannot provide a good embedding, and the final map
is useless. Introducing some backtracking could help with this
issue, but it is going to impossible to completely avoid the
problem without some coupling between phases.

We also need to mention that at this point the balancing
is only theoretical, and we did not have the opportunity to
actually test the maps by playing them. The game HoMM3 is
heavily based on moment-to-moment exploration, so getting
the full experience requires all of the game-specific, low-level
features to be present.

Although we developed our algorithm mainly for the pur-
pose of generating Heroes of Might and Magic maps, it is
generic in nature and can be adapted to other productions.
The algorithm requires the existence of zones and strategic
features, but these concepts occur commonly, and their equiv-
alents can be easily defined in many strategy games.

If we consider real-time strategy game StarCraft [35], [36],
the partitioning into zones is not so clear. However, we can still
keep main routes as edges between some distinguished map
areas and specify their terrain style (level of openness, high
ground flag, the existence of chokepoints). We can identify
resources (minerals, rich minerals, vespene gas) and control-
lable Xel’Naga Towers as strategic features. Destructible rocks
could be encoded similarly to outers.

Another famous RTS, Warcraft III [37], is even more
suitable for our method, mainly because of the number and sig-
nificance of potential strategic features. This category includes
not only gold mines, but also all neutral buildings (taverns,
mercenary camps, marketplaces, etc.), creeps (neutral monsters
of various strength that give experience and item rewards), and
even teleports (called way gates).

As a slightly different example, we will mention Anno 1602
[38], an economic strategy game, usually taking place on a
map consisting of multiple islands. Each island naturally maps
to a zone, where resources, like gold or iron, are its features.
Other strategic features may include island-specific crops, like
cocoa and cotton, or the size of an island. The distinction
between local and buffer zones is conventional in this case.
We can simply assume that local zones form an archipelago
of islands closest to the specific player, while buffer zones are
islands equally distant from more than one player.

A. Future Work

The goal of a future work is to improve and extend the
algorithm, and to finish the remaining parts of our HoMM3
map generator. In particular, we want to develop evaluation
functions to estimate output quality after each stage of the
procedure. It will let us to use generate-and-test approach, i.e.
run each step several times and choose the best outcome.

We also plan to finish the full implementation of all
HoMM3-specific features. Water and whirlpools should be
implemented as the special type of buffer zones and teleport-
like features. Underground map level should be formed by re-
moving some buffer zones before mapping MLML onto a grid,
and placing them below adjacent zones, so the subterranean
gates can be placed in the overlapping areas. Grail should be
placed in a buffer zone close to gameplay-based centers of the
map, i.e. areas equally difficult to reach for all players.

We can also consider generating maps that are deliberately
imbalanced. The simplest example for HoMM3 is a map
containing AI-only players, who should have some handicaps
(richer zones, more starting towns, etc.). This can be done by
generating two different LML graphs – for human players and
for AI-only players. Then, in the MLML phase, these graphs
have to be merged in the right way. This is one of the non-
trivial extensions we plan to implement and test in the future.

The remaining parts we need to include in our map genera-
tor are map aesthetics and low-level features placement. Apart
from functional properties of the map, we should also take
into account its visual aspects. HoMM3 contains various types
of obstacles like trees, lakes, rocks, or mountains, ranging in
size from 1 × 1 to 3 × 5 map tiles. To make generated map
consistent and visually pleasant, the choice of obstacle should
depend on its surroundings: terrain type, other obstacles, and
strategic features. It is natural that sawmill should be near the
trees and crystal cavern is placed in the mountains. Another
example is a water wheel, which is a map object that should
be placed on a river.

Zones and strategic features determine the outline of the
game, but no less significant are low-level features scattered
around the map: resources, artifacts, various special objects,
and creatures guarding them. Their proper placement is the
most important and challenging aspect of a future work, as the
entire gameplay can be seen as a sequence of losses and gains.
For example, a player loses some troops fighting wandering
creatures and then picks up an artifact they were protecting.

In a less complicated domain, the solution could be to use
evolutionary algorithms with balance-testing fitness function
depending on AI agents simulating the players’ behaviors [10],
[39], [40]. In our case, to control the loss-gain loop on the
map, we need to estimate players’ capabilities based on our
knowledge about the game mechanics.

It is for this reason that we introduced zone levels, as their
semantics is closely correlated with player strength. Let us
assume that we want a zone of level four to be attainable
roughly on turn 15. To achieve that we need to estimate
player’s strength at that moment. It is possible knowing their
starting town and the content of closer zones of lower levels.
Thus, the remaining part is to place a proper creature at the
entrance of this zone. We have developed simulation-based
unit value estimation program for HoMM313, which is able
to, for any amount and type of creature, estimate the number
of other creatures needed to match its strength. We plan to

13https://github.com/maciek16180/h3-fight-sim
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use these estimations to ensure the proper level of challenge
when placing guarding creatures.

VI. CONCLUSIONS

In this paper, we focused on generating a balanced map
layouts, with obstacles, partitioning into zones, and fair place-
ment of the strategic features. We combined a variety of
known methods including graph grammars, Voronoi diagrams,
cellular automata, and evolutionary computation with novel
approaches, like feature-redistribution graph grammar algo-
rithm or MDS plus Bresenham-based layout solver.

The proposed algorithm was implemented in a map gener-
ator which we are developing for Heroes of Might and Magic
III. Although it is not finished yet, it produces fully playable
HoMM3 maps in proper h3m format. We argue that there
is a community need for such a tool, especially because the
recently released HD edition of the game does not contain the
original map generator.

We presented a step-by-step description and visualization of
our method, and discussed the details of its implementation.
Lastly, we have shown that the presented algorithm is generic,
and can be applied in other strategy games.
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Abstract—Kingdomino is introduced as an interesting game for
studying game playing: the game is multiplayer (4 independent
players per game); it has a limited game depth (13 moves per
player); and it has limited but not insignificant interaction among
players. Several strategies based on locally greedy players, Monte
Carlo Evaluation (MCE), and Monte Carlo Tree Search (MCTS)
are presented with variants. We examine a variation of UCT
called progressive win bias and a playout policy (Player-greedy)
focused on selecting good moves for the player. A thorough
evaluation is done showing how the strategies perform and
how to choose parameters given specific time constraints. The
evaluation shows that surprisingly MCE is stronger than MCTS
for a game like Kingdomino. All experiments use a cloud-native
design, with a game server in a Docker container, and agents
communicating using a REST-style JSON protocol. This enables
a multi-language approach to separating the game state, the
strategy implementations, and the coordination layer.

Index Terms—artificial intelligence, games, monte carlo, prob-
abilistic computation, heuristics design

I. INTRODUCTION

Implementations and heuristics for computer players in clas-
sical board games such as Chess, Go and Othello have been
studied extensively in various contexts. These types of games
are typically two-player, deterministic, zero sum, perfect infor-
mation games. Historically, game theoretic approaches such as
Minimax and similar variants such as Alpha-Beta pruning have
been used for these kinds of games, dating back to Shannon
in 1950 [1]. Recently more advanced techniques utilizing
Monte Carlo methods [2] have become popular, many of them
outperforming the classical game theoretic approaches [3], [4],
[5].

The characteristics of the Monte Carlo-based methods also
make them viable candidates for games with more complex
characteristics such as multiplayer, nondeterministic elements,
and hidden information [6]. With the recent emergence of more
modern board games (also called eurogames), which often
exhibit these characteristics, we naturally see more and more
research successfully applying Monte Carlo-based methods to
such games [7], [8], [9], [10].

Among the most common Monte Carlo-based methods we
have Monte Carlo Evaluation (MCE) (also called flat Monte
Carlo) [3] and Monte Carlo Tree Search (MCTS) [11], [12].
Flat Monte Carlo has shown some success [4] but is generally
considered too slow for games with deep game trees [13].
MCTS has come to address the problems of MCE and become
a popular strategy for modern board games. A plethora of
enhancements have been presented for MCTS, both general
and domain-dependent, increasing its performance even further

for various games [14], [15], [16], [17], [18]. For shallow game
trees it is still unclear which Monte Carlo method performs
best since available recommendations only concern games
with deep trees.

Kingdomino [19] is a new board game which won the
prestigious Spiel des Jahres award 2017. Like many other
eurogames it has a high branching factor but differs from
the general eurogame with its shallow game tree (only 13
rounds). It has frequent elements of nondeterminism and
differs from zero sum games in that the choices a player makes
generally have limited effect on its opponents. The game state
of each round can be quantified to get a good assessment
of how well each player is doing which facilitates strong
static evaluators. The difference in characteristics compared
to previously examined eurogames can potentially render
previous recommendations misleading.

We examine static evaluators, Monte Carlo Evaluation
(MCE) and Monte Carlo Tree Search using the Upper Con-
fidence Bound for Trees algorithm (UCT). Vanilla imple-
mentations of MCE and UCT are compared with various
enhancements such as heuristics for more realistic playout
simulations and an improvement to UCT which initially steers
the selection towards more promising moves. All variants are
thoroughly evaluated showing how to select good parameters.

The experimental focus is on heuristic design rather than
building efficient competitive agents, i.e., the implementations
are meant to be comparative rather than relying on low-level
optimization tweaks. All agents are independent processes
communicating with a game server using a JSON protocol.

II. KINGDOMINO

Kingdomino [19] is a modern board game for 2-4 players
released in 2016 where the aim of each player is to expand
a kingdom by consecutively placing dominoes provided in a
semi-stochastic manner. A domino contains two tiles, each
representing a terrain type and can have up to three crowns
contributing to the score for its area. The goal is to place the
dominoes in a 5x5 grid with large areas connecting terrains of
the same type (using 4-connectivity) containing many crowns
to score points.

A. Rules (3-4 Players)

You begin with your castle tile placed as the starting point of
your kingdom and a meeple representing your king. In the first
round, the same number of dominoes as there are kings in play
are drawn from the draw pile and added to the current draft.

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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Fig. 1. Kingdomino in-game setup

Each player then chooses one domino each from the current
draft by placing their king on the chosen domino. When all
dominoes in the draft have been chosen, the game moves on
to the second round by drawing a new current draft from the
draw pile. The previous current draft (the one that now has a
king on each domino) becomes the previous draft.

In round two, and every consecutive round up until the
last, the player with the king placed on the first domino in
the previous draft adds the chosen domino to their territory,
according to the connection rules, and chooses a new domino
from the current draft by placing the king on the chosen
domino. The other players then do the same placement-
selection move in the order their kings are positioned in the
previous draft. A placed domino must either connect to the
castle tile or another domino matching at least one of its
terrains (horizontally or vertically only). If you cannot add
a domino to your kingdom, the domino will be discarded.

The last round works the same as the previous rounds with
the exception that there are no more dominoes to draw from
the draw pile and therefore there will be no current draft from
which to choose any new dominoes.

The final score is the sum of the scores for each 4-connected
area of the same terrain type. The score for each area is the
number of tiles multiplied by the total number of crowns on
the area. Note that for an area with no crowns, the score is
zero. There are also two additional rules used in this paper
(both part of the official game rules). The first is the Middle
Kingdom rule, which states that you get an additional 10 points
if your castle is in the center of the 5x5 grid. The second is the
Harmony rule, which states that you get an additional 5 points
if your territory is complete (i.e., no discarded dominoes).

For a complete description of the rules, including rules for
2 players, we refer to [19].

B. Game characteristics

Kingdomino is classified as a non-deterministic game since
the dominoes are drawn randomly from the draw pile. All
players have a similar goal and all players have complete
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Fig. 2. Average branching factor per round for a random player when playing
against three random opponents (1000 games). The error bars show the 95%
confidence interval.

information of the game state at all times, which means that
it is also a symmetric perfect information game.

The number of possible draws from the deck is defined by
the following formula.

∏11
i=0

(
48−4i

4

)
≈ 3.4 · 1044 The most

interesting thing about the number of possible draws is that
it is significantly less than the total number of shuffles of the
deck (around a factor of 3.6 · 1016).

Fig. 2 shows the branching factor for each round. This
is computed experimentally using 4-player games with the
players choosing moves randomly (see Section V-A). Assum-
ing that the branching factor for player p in round r is an
independent stochastic variable Bpr, multiplying the expected
value for the branching factor each round gives the expected
value for the game tree size given a predetermined deck shuffle.
Using the experimentally determined values for Bpr, the game
tree size is approximately

E

[
4∏

p=1

13∏

r=1

Bpr

]
=

4∏

p=1

13∏

r=1

E[Bpr] ≈ 3.74 · 1061

When accounting for the number of possible draws from the
deck, the number of Kingdomino games is around 1.27·10106.
This puts Kingdomino at a game tree complexity between Hex
and Chess when accounting for all shuffles, and similar to
Reversi/Othello for a pre-determined shuffle [20].

III. STRATEGIES FOR KINGDOMINO

Agents can be implemented using a wide range of strategies.
Here we focus on statistical evaluators such as Monte Carlo
Evaluation and Monte Carlo Tree Search together with various
enhancements. We also include some static evaluators to
analyse game characteristics and use as reference agents when
evaluating the statistical strategies.

A. Static Evaluators

Kingdomino generally has a solid score progression which
makes it feasible to implement strong static evaluators by
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computing the score of each player at every state of the game,
unlike, e.g., the game of Go which has to rely heavily on sta-
tistical methods since domain-dependent move generators are
very difficult to improve [4]. Also, considering Kingdomino is
a perfect information game, any static evaluator with a greedy
approach could potentially be competitive. We define two
static evaluators, Greedy Placement Random Draft (GPRD)
and Full Greedy (FG). GPRD places each domino in a greedy
manner (to get maximum point increase) but selects dominoes
randomly from the current draft while FG uses both greedy
placement and selects greedily from the current draft. Both
evaluators avoid moves that break the Middle Kingdom rule
or result in single-tile holes. The FG evaluator is likely to act
similar to an above average human player since it incorporates
the visible domain knowledge to make realistic moves without
using any search strategies.

B. Monte Carlo Methods

Monte Carlo methods such as Monte Carlo Evaluation
(MCE) [3] and Monte Carlo Tree Search (MCTS) [11],
[12] have recently been used successfully for building com-
puter players in both classical two-player deterministic board
games, such as Go [4], and more modern multiplayer non-
deterministic board games, such as Settlers of Catan [7],
Scotland Yard [8], and 7 Wonders [9].

1) Monte Carlo Evaluation: In flat Monte Carlo search
(which we in this paper refer to as Monte Carlo Evaluation),
each game state is represented by a node in a tree structure and
the edges represent possible moves. The root node represents
the current game state and its children represent the game
states produced by each available move. The evaluation selects
a child node randomly (using uniform sampling) and simulates
a complete game from that node (referred to as a playout),
using some playout policy, until termination. The selection-
playout procedure is done repeatedly until either a maximum
number of playouts have been reached or the time runs out.
Each child node stores the average result from all its playouts,
and the the max child is selected as the best move. Evaluators
based on MCE have shown to be strong players in small
classical games, such as 3x3 Tic-Tac-Toe, and play on par
with standard evaluators on larger games [3].

The high exponential cost of searching trees with high
branching factors makes global tree search impossible, espe-
cially under tight time constraints. However, the search depth
of Kingdomino is shallow enough for MCE to potentially
be a viable option since a shallow game tree facilitates high
termination frequencies even at early stages in the game.

2) Monte Carlo Tree Search: Monte Carlo Tree Search
expands on the functionality of Monte Carlo Evaluation by
expanding the search tree asymmetrically in a best-first manner
guided by statistics. A commonly used Monte Carlo Tree
search algorithm for game play is UCT [11], which guides
the search by computing the Upper Confidence Bound (UCB)
for each node and select moves for which the UCB is maximal.

The UCB is defined as

UCB = X̄i + C

√
lnT

Ti
, (1)

where X̄i is the average payoff of move i, T is the number
of times the parent of i has been visited, Ti is the number of
times i has been sampled, and C is the exploration constant.
For a full description of the UCT algorithm we refer to [11].
UCT, with enhancements such as domain-specific heuristics
in the playout policies, has been shown to perform well for
games with high branching factors [6].

C. Playout Policy Enhancements

The playout policy in its standard form uses random move
selection throughout the playout. A common enhancement is
to incorporate, potentially time expensive, domain-dependent
heuristics to get more realistic playouts. We examine four
different playout policies. The true random playout policy
(TR) which chooses all moves randomly in the playout. The
ε-greedy policy (εG) [6] which chooses moves randomly with
ε probability and greedily with probability (1 − ε). The full
greedy policy (FG) which chooses all moves greedily. And
finally we use a playout policy we call the player-greedy
policy (PG). It chooses the player’s move greedily and all
opponent moves randomly. Random opponent modelling has
recently been applied successfully in multi-player tracks of
General Video Game Playing (GVGP) AI competitions [21]
but has, to our knowledge, not previously been applied to AI in
board games. The player-greedy policy should be favourable
in Kingdomino since the actions of the opponents generally
have limited (but not insignificant) impact on the player. Its
success in the GVGP setting can likely be attributed to the
tight time constraints for opponent modelling in GVGP.

The ε-greedy and player-greedy strategies combine the
advantage of domain knowledge with the speed provided by
random move selection. With a low branching factor, there
is a reasonable chance that good moves will be made with
some frequency in random sampling. But games with large
branching factors, such as Kingdomino, generally have many
irrelevant, or even detrimental, moves. In these games the
probability of playing out good moves during random playouts
is relatively small, so there should be a large benefit to using
informed simulation strategies.

D. Scoring Functions

The scoring function defines how the result of a playout is
measured. The basic scoring function is the Win Draw Loss
function (WDL) which simply gives a winning playout the
score 1, a playout where the player is tied with an opponent
for first place (a draw) the score 0.5, and a playout which
is not a win or a draw the score 0. The reward model in
Monte Carlo Evaluation facilitates more sophisticated scoring
functions. One such function, which we refer to as the Relative
scoring function (R), takes the player’s score relative to the
score of the highest scoring opponent f = ps/(ps+qs), where
ps is the player score and qs is the opponent score. A third
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third scoring function, which we refer to as the Player scoring
function (P), simply uses the player’s score. This function does
not care whether the player wins or loses and only tries to
maximize the player’s own score.

E. MCTS Selection Enhancements

Among the popular enhancements for MCTS there are
learning enhancements such as RAVE [16] and the history
heuristic [14], [15]. They use offline information from pre-
vious games to guide the selection toward moves that have
been successful in past games. Kingdomino has a low n-ply
variance which means it could potentially benefit from learning
enhancements [6]. However, in Kingdomino the reward of a
single move is dependent on the game state, so the game state
has to be incorporated in the offline information for each move.
This has the effect of drastically decreasing the hit probability
of a move while increasing lookup time.

A popular online enhancement is progressive bias [17]
which guides the selection towards promising moves by us-
ing a – potentially time consuming – heuristic value which
diminishes with increasing visits to the node. Here we use
a selection enhancement which we call progressive win bias
which combines progressive bias with a tweak that makes the
heuristic value diminish with the number of node losses in-
stead of the number of node visits. The tweak has successively
been applied to the game Lines of Action [22] but has never
been evaluated in a systematic fashion as presented here. We
define progressive win bias as

W
Hi

Ti
(
1− X̄i

)
+ 1

,

where Hi is the heuristic value, X̄i is the average reward for
the node, Ti is the number of node visits, and W is a positive
constant which controls the impact of the bias. In this paper
we use Hi = Si − Si−1 as heuristic, where Sγ is the player’s
score after move γ. The formula is simply added to the regular
UCB in 1.

IV. IMPLEMENTATION

The implementation for the game is based on a server-client
architecture. The server maintains all current, future, and past
games, while a client agent can play in one or more games. A
game is initiated with a set number of players, putting it in the
list of future games. An agent can join a game, on which it
receives a secret token enabling it to make moves for a player
in the game. After enough players join the game, it is started.
The game server has a graphical front-end showing all current
and past games with full history for analysis and inspection.

Agents poll the server for the current game state: the
kingdoms and their scores; the current and next draft; the
current player; all possible moves; and all previously used
dominoes. To make a move, the agent for the current player
chooses one of the possible moves. The communication is
based on a HTTP REST JSON API. The protocol gives enough
information to enable stateless agents that only need remember
their secret token. When joining a game, it is possible for an

agent to register an HTTP callback endpoint that the server
uses to notify the agent that its player is the current player.

The game server is implemented in Scala, and is packaged
as a Docker container. This simplifies running the server in any
setting, either on a remote server or locally. In particular, the
choice of using standard web technologies for communication
leads to a clean and simple separation of agents and the server.

At a one-day hackathon, 7 programmers could without
preparation build rudimentary game playing agents in a variety
of languages (Java, Scala, Python, Rust, and Haskell). The
state representation and the full valid move list make it simple
to implement static evaluators, without having to implement
the full game logic. Naturally, for a more competitive client
the full game logic needs to be implemented also in the client.

V. EXPERIMENTS

Our experiments are intended to give insights into the game,
to give guidance on what strategies and algorithms are useful,
and how to tune parameters for the strategies. To compare
strategies, we have made the choice to use static time limits
per ply to study how well different strategies can make use of
a specific time allotment without introducing the complexities
of full time management.

Note that all games in these experiments are 4-player
games (unless otherwise stated), so a when a strategy plays
equally well as its opponent it will result in a 25% win rate.
All intervals (in both figures and tables) represent the 95%
confidence interval.

In board games the number of victories alone can be con-
sidered insufficient to determine the strength of a player. This
is supported by the USOA (United States Othello Association)
which uses the margin of victory as the single most important
feature in determining a player’s rating [3]. Therefore, most
of our experiments use the victory margin to determine player
strength.

A. Setup

All agents used in the experiments are written in Java and
run on a single threaded 3.2 GHz Intel Core i7 with 12 GB
RAM that is also running the game server. While the agents
are not written to be the fastest possible, some care has been
taken to keep the implementation reasonably fast. The goal is
to facilitate comparison between the agents, not to implement
a certain algorithm optimally.

B. Agents

We use three different static evaluator agents: the True
Random (TR) agent, the Greedy Placement Random Draft
(GPRD) agent, and the Full Greedy (FG) agent. The FG agent
is used as reference player against which we evaluate all
statistical players.

Each Monte Carlo Evaluation agent is implemented using
flat Monte Carlo search and characterized by a playout pol-
icy/scoring function combination. We denote them by MCE-
X/Y where X is the playout policy and Y is the scoring
function.
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The Monte Carlo Tree Search agents all use the WDL scor-
ing function and are therefore only characterized by playout
policy and selection enhancements. The MCTS agents lack
the possibility of using a relative scoring function but use
maximum score increase as tie breaker for moves of equal
win rate. We denote the standard MCTS agents by UCT-X ,
the MCTS agents using progressive bias by UCTB-X , and
progressive win bias by UCTW-X , where X is the playout
policy.

C. Impact of Domain Knowledge

In the first experiment we wanted to quantify how basic
domain knowledge affects strategies based on static evaluators.
We did this by playing a True Random player (TR), a Greedy
Placement Random Draft player (GPRD), and a Full Greedy
player (FG) 1000 games each against three TR opponents and
registered the number of wins, draws, and losses. We also
registered the score after each round in every game to see the
general score progression of each strategy.

The average score progression for the three different strate-
gies over is shown in Fig. 3. All players start with 10p since
the castle is within three tiles distance from the tile furthest
away, thus fulfilling the Middle Kingdom rule. We can clearly
see that the TR player had trouble increasing its score and
even dipped around Round 5-6 due to breaking the Middle
Kingdom rule. The GPRD player did a better job, showing
that it is of great importance to select good positions for the
placed domino. However, the score progression of the FG
player indicates that it is of equal importance to also select
a good domino from the current draft (the score for FG is
approximately twice the score of GPRD when corrected for
the scores of random moves).

The number of wins, losses, and draws for each strategy
are shown in Table I. Here we see that the FG player truly
outplayed the TR opponents, which was anticipated. More
interesting is that the GPRD player only has approximately
79% win rate against the TR opponents. So while carefully
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TABLE I
WIN PERCENTAGES FOR 1000 GAMES AGAINST THREE TR OPPONENTS.

Player Strategy Opponent Strategy
TR

Wins (%) Draws (%) Losses (%)

TR 223 (22.3) 29 (2.9) 748 (74.8)
GPRD 794 (79.4) 22 (2.2) 184 (18.4)
FG 977 (97.7) 2 (0.2) 21 (2.1)

selecting placements, making an uninformed selection from
the current draft has a noticeable impact when played against
random opponents.

D. Static vs Statistical Evaluators

In this experiment we investigated how simple statistical
evaluation performs compared to the best static evaluator-
based strategy. We also look at how different scoring functions
affect the performance of the statistical evaluators. We did this
by playing three Monte Carlo Evaluation players, each using a
different scoring function and random selection playout policy,
500 games each against three FG opponents and compared
the results to the same number of games played by a FG
player against three FG opponents. The time limit was set
to 5s per ply. The three Monte Carlo players were MCE-
TR/WDL, which only counts the number of wins/draws/losses
and chooses the move that maximises the number of wins,
MCE-TR/P, which tries to maximise the player’s final score,
and MCE-TR/R, which tries to maximise the victory margin.
The score progressions are shown in Fig. 4 and the final scores
in Table II.

The experiment clearly shows that the statistical evaluators
significantly outperform the FG player. It is interesting to see
how the statistical evaluators select sub-greedy moves in the
middle of the game to enable higher payoffs in the later parts
of the game. It is also clear that MCE-TR/WDL does not reach
as high final score as the other statistical evaluators. This is
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TABLE II
AVERAGE SCORES FOR 500 GAMES AGAINST THREE FG OPPONENTS.

Player Strategy Avg. Score

FG 51.4 (2.1)
MCE-TR/WDL 55.6 (1.8)
MCE-TR/P 60.6 (1.9)
MCE-TR/R 59.5 (1.8)

most likely a result of the WDL scoring function’s lack of
score information which renders it incapable of discriminating
between branches where all leaf nodes result in a win while it
is in the lead. Since each node only stores the winning average,
it will not be able to determine which branch will lead to a
higher final score. Also, the R and P scoring functions are
more robust against the recurring stochastic events. There is
no significant difference in performance between the Player
scoring function and Relative scoring function.

E. Enhanced Playout Policies

In this experiment we investigated the effect of different
enhancements to Monte Carlo Evaluation by incorporating
domain knowledge into the playout policies. We did this by
playing Monte Carlo Evaluation players, both with and without
domain knowledge, against three FG opponents and compared
the results. The players we used were MCE-TR/R, which has
no domain knowledge at all and only selects moves randomly
for both the player and opponents in the playouts, MCE-
εG/R with ε = 0.75, which uses random selection in 75%
of the times in the playout and greedy selection 25% of the
times, MCE-PG/R, which uses greedy selection for the player
and random selection for the opponents in the playouts, and
MCE-FG/R, which uses greedy selection for all moves in the
playouts. We used the relative scoring function since its goal
aligns with the measure of player strength and facilitates easier
analysis of the result plots.

Since all games in the experiment were 4-player games
and ε was set so that greedy selection will be used 25%
of the time, the number of greedy move evaluations would
be the same for both MCE-εG/R and MCE-PG/R and should
result in approximately the same playout frequency for the two
simulation strategies. This will tell us how important accurate
opponent modelling is in Kingdomino.

Fig. 5 shows the victory margin under various time con-
straints for the different strategies (each point represents 200
games). In addition to the Monte Carlo Evaluation game
strategies, the result from playing 200 games with an FG
player against three FG opponents is also shown (the solid
red line with the 95% confidence interval as dotted red lines).
Fig. 6 shows the number of playouts per second for each
playout policy.

The experiment shows that the FG evaluator is competitive
to the statistical evaluators under tight time constraints. It is
comparable to MCE-TR/R, and outperforms all the others,
when the time is capped to 0.1s per move. It also shows
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that the best knowledge-based statistical evaluators need ap-
proximately 0.5 − 1s time per move for the extra heuristic
computations to pay off compared to selecting playout moves
randomly, but they consistently outperform the random playout
policy for move times > 1s. It also shows that it is more
important to model the player’s own move realistically than
the moves of the opponent. This is clear from the difference in
performance between MCE-PG/R and MCE-εG/R when hav-
ing approximately the same playout frequencies. Furthermore,
if we compare MCE-PG/R to MCE-FG/R we see that realistic
opponent modelling is disadvantageous for short ply times
(< 0.2s). This is natural since realistic opponent modelling
is costly and MCE-FG/R will only have time for few playouts
before selecting its move, while MCE-PG/R can produce more
playouts and have a better statistical sample when choosing
its move. However, once the number of playouts go up
(> 0.1s) we see that realistic opponent modelling consistently
outperforms the player-greedy strategy, although not by much.
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F. Tree Search

We examined the UCB exploration constant C by playing
an UCT-TR and an UCT-FG player against three FG players
for various values of C. The result is shown in Fig. 7. The
experiment shows that C = 0.6 is a suitable value for players
with many playouts per ply and C ≥ 1.0 for strategies with
few playouts per ply. A theory is that due to Kingdomino’s
frequent stochastic events, a move requires numerous playouts
to accumulate a representative reward. So there is a risk of
focusing the tree expansion on high-reward moves before
all moves get representative rewards. Therefore, players with
few playouts per ply should perform better with a higher
exploration constant.

We also examined the impact constant W for progressive
bias and progressive win bias by playing a UCTW-TR player
and a UCTW-FG player, both with C = 0.6, against three FG
opponents for various values of W . The result is shown in
Fig. 8. It shows that we get the highest performance impact
for W = 0.1 ∼ 0.2 and after that the performance decreases
with W .

G. Comparing Strategies

Table III shows the performance of all strategies for 200
games played against three FG opponents. The 95% con-
fidence intervals are in the range [3.5, 6.0] for all entries,
with the majority near the lower limit. The highest performer
for each time constraint is marked by a dark blue box.
Performances within 5% (10%) of the best are marked by
a light (lighter) blue box. The UCB exploration constant was
set to C = 0.6 for all UCT strategies and the the bias impact
factor was set to W = 0.1 for UCTB-* and UCTW-*.

The results show that for each time constraint the best
MCE variant consistently outperforms all variants of UCT. A
possible theory is that UCT is hampered by its WDL scoring
function, but further experiments verifying this hypothesis is
outside the scope of this paper. The true random playout policy
variant (MCE-TR/R) excels for short ply times t < 0.5s.
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Fig. 8. Average victory margins against three FG opponents.

After that the full greedy playout policy variant (MCE-FG/R)
gets enough time each ply to produce rewards representative
enough to reliably select trajectories in the game tree that
outperform the the random playout policy, in spite of the
significantly higher playout frequency of the random playout
policy. The MCE-PG performs almost on par with MCE-FG
which indicates that allocating time for accurate opponent
modelling only has a small gain compared to using random
move selection for the opponents.

The results also show that the UCT enhancements improve
the results for tight time constraints (t < 0.2s), which is
expected due to few playouts, but are otherwise on par with
regular UCT.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces Kingdomino as an interesting game to
study for game playing. The shallow game tree and relatively
limited interaction between players of Kingdomino combined
with the stochastic nature and possibility to evaluate partial
game states is particularly interesting. The results indicate that
for games such as Kingdomino, MCE is superior to UCT,
which would infer new recommendations on the suitability
of MCE for games of similar complexity. This is especially
interesting, given that an MCE evaluator is significantly easier
to implement correctly and efficiently than full UCT.

The player-greedy playout policy is surprisingly effective,
balancing exploration power with (expensive) local evalua-
tion. Our belief is that this is due to the limited (but not
insignificant) interaction among players in Kingdomino, but
further experiments in other games are needed to verify this
hypothesis. The progressive win bias selection improvement
shows promise as a way to combine a heuristic evaluation
with the current knowledge gained from the exploration, but
further experiments in other settings better suited for the UCT
is needed to analyse its impact.

Our evaluation uses thorough systematic examination of all
constants involved to avoid the presence of magic numbers

100



TABLE III
AVERAGE VICTORY MARGINS FOR 200 GAMES AGAINST THREE FG OPPONENTS.

Strategy Time per ply

0.1s 0.2s 0.3s 0.5s 1.0s 2.0s 4.0s 6.0s 8.0s 10.0s

FG -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0
MCE-TR/R -8.5 -5.9 -4.6 -3.7 -1.5 -2.5 -0.1 -0.3 -1.1 -1.3
MCE-FG/R -15.8 -8.8 -7.0 -3.4 -0.6 4.3 7.0 8.4 9.7 9.6
MCE-PG/R -12.2 -10.9 -7.5 -6.0 -1.7 1.9 5.4 6.8 8.4 9.0
MCE-εG/R -20.6 -16.0 -14.5 -12.2 -10.3 -7.5 -2.2 -0.3 1.9 1.3
UCT-TR -13.5 -6.4 -7.3 -4.9 -5.5 -4.4 -3.5 -5.2 -7.2 -4.4
UCT-FG -38.3 -32.5 -29.4 -21.6 -12.0 -1.5 -0.2 3.5 4.0 3.9
UCT-PG -25.8 -20.7 -15.5 -15.3 -13.9 -10.4 -7.1 -7.4 -6.2 -4.1
UCT-εG -33.3 -24.0 -16.2 -15.7 -9.0 -7.0 -3.1 -4.0 -2.6 -1.3
UCTB-TR -10.1 -7.4 -6.1 -7.9 -4.6 -6.7 -4.8 -4.3 -2.9 -4.5
UCTB-FG -39.8 -30.6 -29.7 -21.6 -11.7 -5.9 -0.1 3.2 3.2 1.4
UCTB-PG -25.5 -20.8 -19.7 -15.4 -13.4 -9.1 -7.6 -6.3 -4.5 -12.4
UCTB-εG -31.5 -25.2 -20.2 -16.3 -10.7 -8.1 -4.1 -2.6 -1.9 -2.9
UCTW-TR -11.4 -6.7 -7.3 -5.9 -4.6 -4.1 -5.8 -5.0 -4.0 -4.5
UCTW-FG -42.6 -33.0 -30.3 -18.4 -13.9 -6.0 -2.5 0.6 1.2 1.4
UCTW-PG -29.2 -24.3 -20.0 -19.7 -15.4 -16.9 -13.1 -12.2 -13.9 -12.4
UCTW-εG -30.5 -23.0 -22.8 -16.6 -13.2 -6.6 -5.4 -3.1 -2.7 -2.9

which frequently occur without explanation in many similar
papers in the field. It also uses new and illuminating graphs
for showing the impact of different choices. In particular, the
usage of victory margin in favour of win percentages is very
powerful for a multi player score maximization game such as
Kingdomino. These graphs have helped us gain new insights
into both the game and how our strategies perform.

For future work one MCTS enhancement alternative could
be a learning heuristic that keep offline information on the
success of placement positions for different kingdom patterns.
Experienced human players tend to place dominos in a struc-
tured pattern to avoid single tile holes in the kingdom. It would
also be interesting to implement agents using completely
different strategies such as deep reinforcement learning.

The code for the Kingdomino game server can be down-
loaded from https://github.com/mratin/kdom-ai,
and the AI implementations can be downloaded from
https://github.com/mgedda/kdom-ai.
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Abstract—Number sentence morphing is an example of a
type of edit puzzle. Edit puzzles choose a class of objects and
a collection of editing operators. The goal of the puzzle is to
change an initial configuration into a final one, using the edit
operations, with the intermediate objects remaining within the
selected class of of objects. Changing one English word into
another by changing single letters, with all the intermediate
steps also consisting of English words, is a typical example of an
edit game. A number sentence is a well formed mathematical
object, which can be used to generate a type of edit puzzle
called Number sentence morphing. This puzzle has the player
transform a false number sentence into a true one by removing
and replacing symbols from a number sentence while leaving
the sentence well formed. This type of puzzle is intended
for teaching students the notion of well-formation in a game
setting as well as providing practice with basic arithmetic. An
evolutionary algorithm is used to construct number sentence
morphing puzzles while certifying that they can be solved and
requiring a minimal number of steps in a solution. The search
for number sentences is template driven so particular forms
of sentences are searched for in their own sets of runs. An
unexpected outcome of this study is that the search landscapes
for different templates are very different.
Index Terms: edit puzzles, procedural content generation, edu-
cational content generation, evolutionary algorithms

I. INTRODUCTION

This publication investigates a type of automatic content
generation in which we create instances of a puzzle, number
sentence morphing, with an evolutionary algorithm. Number
sentence morphing is a type of edit game. Edit games are
games where a collection of objects and rules for editing
those objects are chosen. The player then attempts to use
successive edits to transform a given object into a target
object by applying the editing rules. Suppose we may change,
add, or delete single letters from a word. Then Example
1 shows an edit path between two words in which all
intermediates are also English words.

Example 1: If the set of objects we are working with are
English words and the edit operations are to add, delete, or
change a single letter then the following sequence demon-
strates the transformation of one work into another through
a chain of intermediate strings that are also English words.

The authors thank the University of Guelph and Canadian Natural Science
and Engineering Research Council of Canada (NSERC) for supporting this
work.

SHAME SLAMSHAM SLUM

SLUMPLUMPRUMPTRUMP

Example 1 is a word morphing puzzle. For this type of
puzzle the player is given a starting word and a goal word
and asked to transform the first into the second by adding,
deleting, or substituting letters with the added constraint that
each intermediate step must itself be a word. A word morph
is scored by the number of editing moves used with the
goal being to find the smallest number of edits required.
The example used seven moves – but someone with a good
vocabulary might still manage to get there in fewer. A teacher
might also insist that the intermediate words be polite, or
come from the current vocabulary list for the class. This latter
case makes creating such puzzles more challenging because
of the highly restricted set of words available. In the case
of the puzzle in Example 1, style points are awarded for the
appropriateness of the intermediate words to the situation
suggested by the choice of initial and target word.

This study adapts word morphing to a type of puzzle
intended to exercise students on basic arithmetic and at
least one foundational concept, well-formation. A number
sentence is a string of digits and arithmetic operations that
includes one equals sign. In general a construct is well formed
if it obeys a formal grammar. A number sentence is well
formed if numbers and operations alternate with one another
and if the expressions on either side of the equals sign begin
and end with numbers. A number sentence can be false or
true as well, depending on the values on either side of the
equals sign. Example 2 give examples of number sentences
that are not well formed and of both true and false number
sentences that are well formed.

Example 2:
23+=16-7 Not well formed
23=16-7 Well formed but false
23=16+7 Well formed and true.

A number sentence morphing puzzle (NSM puzzle) is an
edit puzzle on the space of well-formed number sentences.
Number sentence morphing was introduced in [4]. The edit
operations consist of moving one symbol from the number
sentence to a symbol pool or re-inserting one of the symbols

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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from the symbol pool into the number sentence. The goal
is to make a false well-formed number sentence into a true
well-formed number sentence. These puzzles are intended
to introduce the notion of well formation to elementary
students, as well as letting them practice arithmetic, in a
game setting. Example 3 gives an example of the solution of
a NSM puzzle.

Example 3: This puzzle starts with 7 ∗ 2 − 9 = 1 and an
empty symbol pool.

Move Sentence Pool
Start 7*2-9=1

1 72-9=1 {*}
2 2-9=1 {*,7}
3 29=1 {-,*,7}
4 9=1 {-,*,2,7}
5 97=1 {-,*,2}
6 9-7=1 {*,2}
7 9-7=12 {*}
8 9-7=1*2

The puzzle in this example was evolved to be solvable in
eight steps, but no smaller number of steps, with the added
condition that all the symbols must be used in the final true
number sentence.

The puzzles created in this study are intended to be pre-
sented to elementary education teachers as a way of enabling
practice of basic arithmetic operation and introducing the
philosophical concept of a well formed formula in a form
that is both engaging and instructive. Rules for a competitive
game based on number sentence morphing are given in [4].
The puzzle can also be used as a solitaire with the goal of
solving the problem in the fewest possible steps.

II. BACKGROUND

Procedural content generation [9] is the use of procedural
methods to generate content for games [3], the web [12],
terrain maps [8], [5], or any of a number of other application
domains [10]. The technique used in this study is an example
of search based procedural content generation. A survey
of the early years of this technique appears in [14]. Other
examples include [11], [2].

The use of procedural content generation to create ed-
ucational materials is a relatively new application. In [13]
the authors make the case that digital content generation is
a good way to generate a sufficiently large collection of
examples that students are more likely, through exposure
to the rich collection of examples, to inductively learn the
underlying principles.

There are many sorts of edit puzzles and design must
look closely at not only the class of objects but the editing
rules. The editing rules in Example 1, for example, permit
the addition and deletion of letters. A more usual version
of word morphing permits only substitutions, making the
number of paths between pairs of words much smaller and so

the puzzles more difficult. Try to solve the puzzle in Example
1 with only substitutions: this is harder, but possible.

Fig. 1. A “remove toothpicks” puzzle starting configuration.

Another type of edit puzzle is one using physical ma-
nipulatives. Figure 1 shows and example of the starting
configuration of a puzzle done with toothpicks. There are
thirteen triangles (of three different sizes) formed by the
toothpicks. A puzzle might ask that the smallest number of
toothpicks be removed to generate a puzzle with five, six, or
seven triangles.

Again, two things are needed to define a class of edit
puzzles. The first is the collection of configurations that are
allowed, the second is a set of editing operations. In the
word morphing example, only English words are allowed,
making the puzzle both more difficult than if any arbitrary
string of letters is permitted, and also rendering the puzzle
a test of the player’s vocabulary. For the toothpick puzzle
the configurations were anything that you could get from
the original configuration by removing toothpicks. The edit
moves consisted of the ways to remove one toothpick. Edit
games can be thought of as being contained in a single,
overarching mathematical structure: graph theory.

An article on the use of graphs in game and puzzle design
is available in [1] while the graph algorithm used for solving
or designing edit puzzles is explained in [6]. Both these
articles appear in earlier editions of Game and Puzzle Design.
Briefly, a graph G is a collection of objects or vertices,
denoted V (G) or just V and a set of connections between
pairs of objects called edges, denoted E(G) or E. For an
edit game, the vertices are the permitted configurations and
the edges are pairs of configurations such that one can be
transformed into another with an editing move. This graph
is the object searched during fitness evaluation. A part of
one of the graphs, demonstrating three distinct solutions to
a NSM puzzle, is shown in Figure 2.
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Fig. 2. A part of the graph that arises from the edit structure of number
sentence morphing.

III. DESIGN OF EXPERIMENTS

The design of number sentence morphing given in [4]
permitted the use of parenthesis which are not used in this
evolutionary study. The fitness function is a search of the
space of legal moves and the use of parenthesis explodes the
size of the search tree. This search is performed with dynamic
programming [6]. The authors intend to restore parenthesis
after a more subtle search strategy for the space of trees
has been found; in the final section the case is also made
that parenthesis can simply be added to puzzles constructed
without them.

A. The Evolutionary Algorithm

The evolutionary algorithm used is a simple one, but with
some unusual properties. Each run of the algorithm uses a
template for a well-formed number sentence, e.g. dodod=dd.
When creating population members, the letter d is replaced
with a digit and the letter o is replaced with an operation.
This permits the generation of an initial population of number
sentences that all agree on their form.

The algorithm uses uniform crossover with a 25% prob-
ability of exchanging symbols at each position. The values
10%, 25% and 50% were compared in preliminary exper-
imentation and the parameter is soft, in part because the
strings being evolved are quite short. Use of the template
ensures that crossover preserves well formation. Mutation
replaces from 1 to some maximum permitted number of sym-
bols, based on the maximum number of mutations (MNM)
parameter. A character is replaced with a distinct character
of the same type (digit or operation).

For fitness, three qualities are evaluated for a number sen-
tence. The researcher states a minimum difference between
the two sides of the equals sign that is acceptable, usually
zero, a minimum number of steps that the problem should
require for solution, and an acceptable number of remaining
symbols in the symbol pool, again usually zero. Any sentence
that can be edited to achieve the desired minimum difference
is more fit than one that cannot. Any sentence that requires
more steps to solve is more fit than another, although the
algorithm does not search beyond a stated minimum desired
number of steps, and, finally, a number sentence is more fit if
it is closer to the desired remaining number of symbols in the
pool in its best solution meeting the other criteria. These three
fitness criteria are applied serially with the less important
ones serving as tie-breakers for the more important ones.
This type of composite fitness function is called a lexical
fitness function [7].

The three qualities, solubility, solution length, and remain-
ing symbol pool size are evaluated by performing a breadth
first search of the tree of legal moves, to a depth equal to the
desired minimum number of solution steps. This is a fairly
expensive fitness function, as it examines a combinatorial
space of possible morphs of the number sentence under test.
The algorithm stops when it finds a formula that meets the
desired goal for all three of the evaluated qualities.

IV. EXPERIMENTS PERFORMED

Initial runs performed while testing the NSM evolution
software found that the problem is almost trivial (solutions
appear in the original population) for smaller requested mini-
mum solution lengths. The search problem grows in difficulty
as the desired minimum solution length is increased. To
better understand this phenomena, a sampling study for the
templates dod=dod and dodod=dod was performed, extract-
ing the minimum steps to solve 4000 randomly generated
number sentences for each template.

A series of experiments were done to try to set the MNM
parameter. Five sets of 100 runs were performed on the
template ddod=ddodd with MNM ∈ {1, 2, 3, 4, 5} and four
sets of runs were performed on the template dodod=dod
with MNM ∈ {1, 2, 3, 4, 5}. The former runs used an
initial population size of 1000 while the latter used an
initial population size of 40. All of these experiments used
a desired minimum number of steps to solution of eight.
Shorter required minimum solution steps yield problems that
can be solved by random sampling.

A barrier to performing larger numbers of experiments
is the speed of the software. The fitness function must
enumerate a very large space of morphs for each formula.
Hand examination showed that it was usually possible to
solve a NSM puzzle with no more than one arithmetic
symbol (+, -, *) in the symbol pool; this restriction was
imposed by saying that an arithmetic symbol could only be
the first symbol added to an empty symbol pool. This run
used initial population size 40 and MNM 5.

104



0 1 2 3 4 5 6
   0

 460

 920

1380

1840
Solvable

Unsolvable

In
st

an
ce

s

Solution time DOD=DOD

Minimum steps to solve

0 1 2 3 4 5 6 7 8
   0

 400

 800

1200

1600
Solvable

Unsolvable

In
st

an
ce

s

Solution time DODOD=DOD

Minimum steps to solve

Fig. 3. Distribution of the number of steps needed to find the best possible result for 4000 number sentences of the sort used in the initial population of
the evolutionary algorithm. Blue denotes sentences that can be solved to zero difference; red those that cannot. Two templates, given above, were sampled.

An additional collection of 100 runs were performed for
population size 100 and MNM = 1 using the templates
ddod=dodd and dodod=d simply to test additional templates
and acquire a richer collection of puzzles.

V. RESULTS AND DISCUSSION

The results of the sampling study are shown in Figure 3.
These demonstrated that a majority of randomly generated
number sentences are solvable with zero minimum differ-
ence. Figure 3 shows that most number sentences for the
simpler template could be solved and almost all (all but five)
of the randomly generated number sentences for the template
dodod=dod solved with zero difference.

The thing that makes it difficult to find NSM puzzles that
have relatively long minimum number of steps to solution is
that a vast majority of the number sentences can be brought
to their best possible minimum difference in four steps. Not
one of the 4000 dod=dod templates required more than six
steps. This means that the hard work for the evolutionary
algorithm is finding puzzles with a large minimum number
of steps to solve.

Figure 4 shows the result of the mutational studies. These
runs demonstrate that mutation is a fairly soft parameter.
Using a larger population size, which is quite expensive,
yields a substantial improvement in the failure rate. Combin-
ing failure rate and number of mutation information yields

a mild preference for MNM = 1 on ddod=ddodd and no
preference on dodod=dod.

The added restriction that only one arithmetic symbol
could be in the number sentence morphing pool yielded a
huge advantage in both time to solution and the error rate.
The effect of this restriction is to reduce the size of the search
tree needed to find formulas. This experiment suggests that
restricting the search tree for fitness evaluation is the clear
direction for improving the speed of the system.

The drop in the error rate for the restricted run – from
31 to 0 given the common MNM = 5 parameter – is
very interesting. When the fitness function of an evolutionary
algorithm is changed, the fitness landscape where search
takes place also changes. Increased speed should permit the
researcher to drop the failure rate by increasing the number
of fitness evaluation: that is not what happened. The same
number of fitness evaluations, 40 in the initial population
and 1000 during evolutionary search, were used in both
collections of runs.

This means that the fitness landscape of the new fitness
function is more evolution-friendly for reasons that are not
obvious. There are a number of ways to prune or restrict the
search tree that generates morphs. These need to be evaluated
not only for their speed increase but on the degree to which
they make the problem more or less evolution-friendly.
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dodod=dod ddod=dodd ddod=ddodd dodod=d
5+5+2=6*3 31*8=6-96 22+3=66+46 1*4-9=2
3*3*6=4+7 43-6=9+62 87+8=61+44 1-9*5=2
4*8*4=9+5 55+6=9-96 97+9=24+44 9-1*5=2
3+9+3=5*5 36*8=7+73 11+7=63+63 2*4-6=1
4*4*4=7+6 65*5=3-74 27+5=88+88 6*3-9=1
7+1+7=9*9 67*9=5*51 77+6=99+39 9*4+2=1
6*6*6=5-4 54-4=3*73 53+8=72+72 3-8*1=6
9*9*9=6-5 81*5=4*93 57+5=22+29 9-1*5=2
5*5*5=6-7 88-4=8*93 58+3=27+27 4*1-9=2
1+7+7=3*3 76-7=2+82 24+4=57+55 4+2*9=1
7*5*6=3-3 64*5=8+54 22+2=87+85 2+4*9=1
6*5*6=9+9 66+5=4-84 22+2=88+79 2*7-9=1
4*4*8=5+7 82-9=6-28 88+8=44+55 2*4-6=1
9-9+5=8*2 84+2=5*58 88+7=44+61 9*4+2=1
4*4*8=7+3 42*6=8*56 33+3=14+44 9*4+2=1
3-9*8=5*4 48+3=3-66 55+5=92+42 2*4-6=1
8*8*8=3-2 48*7=9-43 83+5=19+55 2+4*9=1
3*6*3=4+7 69*8=3-16 36+3=77+58 2*7-9=1
2+4+8=9*9 31-3=6*46 66+6=17+77 2*4-6=1
3*6*6=5-8 26+8=4-84 55+5=92+97 1*9-5=2

Fig. 5. Examples of evolved, solvable puzzles.

A. Different templates yield different search behavior

The two additional templates, intended to gather more
types of NSM morphing puzzles had suggestive outcomes.
The template ddod=dodd had zero failure and the largest
solution time was 45 steps. Even at a minimum search depth
of 8, the problem was nearly trivial. The template dodod=d
had 48 failures – it is a very difficult search problem.

Taken together, the results for all four templates tested
suggest that the search problem is very different for different
templates. It is clear that the speed differs between templates
– templates with more characters generate much larger search
spaces – but the algorithms were not taxed with that cost.
The hard problems were allowed to run for days until the
100 runs finished.

Rather, the difficulty of the problem changed substantially
from template to template. Templates with a higher propor-
tion of digits yield easier search spaces. This is probably
because the degrees of freedom to build numbers to place
around the arithmetic operations is far greater when there
are more digits in the template. It is also possible to write
templates that strongly favor one type of operation. The

template ddod=ddd, for example, will choose the arithmetic
operation * because most true equation for that template are
multiplications.

One distressing outcome that makes the softness of the
parameter tuning results worse is that the change, from
template to template, of the character of the search problem
means that parameter tuning should be done again for each
template. It may be possible to tune for templates based on
their ratio of digits to arithmetic operations.

Figure 5 gives examples of twenty NSM puzzles with
minimum solution length of eight edits for each of four
templates. The third template is an example of a template
that strongly favors a single operation. The first and fourth
templates tend to find variations of the same problem; the first
seems to favor repeating digits. All of these oddities support
the hypothesis that different templates spawn different search
problems.

VI. CONCLUSIONS AND NEXT STEPS

This study has demonstrated an effective, if somewhat
inefficient, method for generating number-sentence morphing
puzzles that can be solved to zero difference between the
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sides of the equation in a fashion that leaves no left-over
symbols and requires a specified minimum number of moves.
Increasing the minimum number of moves beyond eight, a
fairly generous allowance, will require improvements in the
search technology.

On the other hand, it turns out that if the desired number
of moves to solution is small then a majority of randomly
generated examples have the property that they are puzzles
that can be solved with zero difference and no left over sym-
bols. This odd solubility phenomenon seems to arise from
the combinatorial explosion of the number of configurations
reachable in a small number of edits.

The is potentially some pedagogical advantage to having
problems that cannot be solved, if the teacher uses the
lack of a solution as a lever to create a teachable moment.
The software has no problem locating problems that either
cannot be brought to zero difference or can be brought to
zero difference, but not using all the symbols. Figure 3
demonstrates that puzzles that are not solvable by one or
another criterion are rare, and so perhaps good targets for
search based PCG.

A. Fitness landscape issues

A problematic feature of this research is that the search
landscapes seem to be very different from one another for
different templates. It is natural for a template with more
characters to create a larger search space, but the phenomena
goes beyond that. The space of possible solutions to a
template uses the arithmetic symbol set differently. The
difficulty of the problems changes more than simple increase
in size would suggest.

The issue raised in the results section of the restricted
search (permitting only one arithmetic symbol in the symbol
pool) being more evolution-friendly is an intriguing one. Typ-
ically when we are performing automatic content generation,
the changes in the fitness landscape caused by algorithmic
hacks to the fitness function do not have a visible effect on
the character of the fitness landscape. It may be that the NSM
search space, with its high cost fitness evaluation, makes the
difference more visible.

The single operation restriction needs to be applied to
additional number sentence templates to check and see if
the improvement is idiosyncratic to dodod=dod or if this
type of restriction is generally helpful. Another natural way
to prune the search is to limit the total size of the symbol
pool. There is a danger that such limitations might remove
some search paths, but the number of moves (assuming an
empty symbol pool is required in the solution) is twice the
size of the symbol pool. If this modification to the search
strategy becomes problematic the restriction on the size of
the symbol pool could also be added to the rules for working
the puzzle.

This creates a new type of research question. If we modify
the representation or fitness search for a problem, to what
degree does that modification induce a fitness landscape that

is more friendly to evolution, or whatever search algorithm
is being used. Investigating these issues is an early priority
for additional research.

B. Why not speed things up with A*-search?

A*-search is a modification of dynamic programming [6]
in which a progress heuristic is used to speed dynamic
programming search by prioritizing which node in the search
tree to expand first. The reason that A*-search is not being
employed is the lack of an effective heuristic. The version
of number sentence morphing appearing in [4] keeps track
of the difference on both sides of the expression after every
move. The game is competitive and the team(s) with the
lowest difference in each turn gain bonus points. This work
created, as a side effect, a clear indictment of difference
between the sides of the equation as an A*-search heuristic.
Along most shortest paths of most NSM problems the
difference jumps up and down wildly.

The modified heuristic of permitting only one arithmetic
operation in the symbol pool is similar to an A*-search
restriction, but it does not yield a natural A*-heuristic.
Expanding cases with the fewest arithmetic symbols first
interacts badly with the need to remain well-formed and
rapidly forces the deletion of arithmetic symbols as the
supply of operations runs out.

C. Improving Fitness Evaluation

The elephant in the room for the current version of number
sentence morphing is the speed of fitness evaluation. The
vanilla version of the fitness evaluation generates the space
of morphs of the number sentence under test, using dynamic
programming to search for the first acceptable solution. As
the algorithm satisfies the goal of needing a fairly large
number of minimum steps, the size of the search trees
generated explodes and the algorithm slows down.

Added to the observation that minimum solution lengths
of six or more edits can be found by random sampling means
that the first case were it is reasonable to use an evolutionary
algorithm is one where fitness evaluation is quite expensive.
The restriction on permitting at most one arithmetic symbol
in the symbol table looks hopeful. The number of evaluations
needed to find a solution dropped substantially, but of greater
importance, the restriction of the search tree size meant that
the individual fitness evaluations happened faster.

D. Representation as a target for improvement

The representation used here is a simple string in which
a template enforces well formation of the initial number
sentence. The by-hand technique of starting with a true
number sentence and then applying edit moves to generate a
NSM puzzle may be one that could be exploited to improve
the evolutionary algorithm. The minimum number of steps
to solve NSM puzzles generated in that fashion is bounded
by the number used to generate the puzzle; it may be shorter
in practice, but this technique may enrich populations with
puzzles that require a large number of steps.
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The authors attempted to find grammatical techniques for
constructing NSM puzzles, but the fact that the actual value
of the digits plays a huge part in the solution space of the
puzzles caused this to be, at least so far, a fruitless venture.

E. Why no parenthesis?

It is possible to add parenthesis to number sentence
morphing, at least at the level of rules, in a transparent
manner. The rules remove of insert parenthesis in pairs,
something that is required to maintain the well-formation
of number sentences. In many cases parenthesis, inserted in
a grammatically correct fashion, do not change the value of
an expression and they can be inserted in a large number
of places in an expression. This is the problem; adding
parenthesis explodes the size of the space that is explored
during fitness evaluation.

It is possible to add parenthesis to NSM puzzles like those
appearing in Figure 5 without disrupting the solubility of the
puzzle. It may be better to retrofit puzzles with parenthesis
rather than including them in the initial search.

F. Other editing rules

The editing rules used for NSM in this study have the
property that they force the player to preserve the total set
of symbols used. Other editing rules are possible and may
be useful for teaching other mathematical skills. One natural
change is to permit the substitution of the operation symbols
but not the numbers or the digits, but not the operation
symbols. These puzzles would try to correct a well-formed
false number sentence. The search space for such pure-
substitution puzzles would be much smaller than that for
number sentence morphing; one could simply write a true
sentence and then perform random substitutions to generate
a puzzle. The need for powerful search techniques in this
study arises from the ability to insert and delete symbols
together with the desire for puzzles that cannot be solved in
a small number of moves.

This strategy of modifying true sentences was explored for
NSM, but the path of modifications made in generating the
puzzle was frequently not the shortest path to solve it.
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Abstract—General game playing AI and general video game
playing AI are both active research areas. Mathematical games,
like prisoner’s dilemma, rock-paper-scissors, or the snowdrift
game can also be played by general purpose agents. An agent
representation in which agents play knowing only their own
score and their opponent’s score in a previous round is used to
enable general mathematical game playing. Agents are trained
to recognize when the game being played has changed and
trained to play competently on diverse sets of games. This
domain, simpler than general game playing or general video
game playing, is offered as a test lab for concepts in the creation
of general AI. It is demonstrated that agents can be trained to
play three different coordination games competently. The agents
also learn to play prisoner’s dilemma and a coordination game
that reverses which moves lead to high payoffs.

Index Terms: general game playing, mathematical game playing,
evolving agents.

I. INTRODUCTION

General game playing AIs seek to imitate the human
ability to learn and then play, at least competently, any of
a broad variety of games. Any person that plays games
knows that skill levels of their opponents not only vary, but
vary between games. This incredibly broad mission poses
a remarkably hard problem for AI training. General video
game playing is a similar endeavor with a more restricted
domain [20], [2]. This yielded a test domain which is more
reasonable but still quite broad. Current research is driven
by contests in which agents are asked to learn games they
have not encountered before.

In this study it is proposed to examine general math-
ematical game playing (GMGP), an even more restricted
domain. Mathematical games include games like the iterated
prisoner’s dilemma [14], the snowdrift game [13], and rock-
paper-scissors [3]. This study will focus on simultaneous
two-player games which are defined by a payoff matrix that
specifies which moves are available to the players and the
payoff to each player for each pair of moves.

The authors thank the University of Guelph and Canadian Natural Sci-
ences and Engineering Research Council of Canada (NSERC) for supporting
this work.

II. BACKGROUND

Games are commonly used as an approximation to General
Purpose AI, a field in AI in which agents must be able
to respond well to multiple and unprecedented situations.
They present a multitude of different scenarios, in a single
or multi-player mode, in which simulations and repetitions
are generally fast and available. They also capture multiple
facets of character behaviour, such as hidden information,
bluffing and opponent modeling, plus the complexities of
random processes, as the ones determined by shuffling cards
or rolling dies.

Not surprisingly, the literature shows a recent proliferation
on frameworks for general game (GGP) and video game
playing (GVGP). Examples are the GGP benchmark [16], the
Arcade Learning Environment (ALE; [7]), OpenAI Gym [8]
or the General Video Game AI (GVGAI) framework [19].
All these frameworks propose the creation of agents that
should be able to play any game is given to them, often from
different perspectives: single or multi player, board or video-
games, via screen capture or object-based state information,
etc. For this paper, we focus on the GVGAI framework, both
due to its recent popularity and 2-player track.

GVGAI is a framework written in Java that proposes an
interface for agents to play any of its 160 games (at the time
of writing). Concretely, there are 100 single player and 60
two-player games, which have been developed over the years
following its main associated competitions [20], [10]. These
games are written in the Video Game Description Language
(VGDL), a text based language that is able to describe two-
dimensional grid arcade video games, of the like of Space
Invaders, Pacman or Sokoban.

VGDL was initially proposed by Ebner et al. [9] at the
Dagstuhl Seminar on Artificial and Computational Intelli-
gence in Games in 2013, and then developed further by Tom
Schaul [21] in a python-based framework for agent planning
and learning. Games are defined using two different files: a
game and a level description. While the latter specifies which
sprites go where in a two-dimensional grid at the beginning
of the game, the former defines four different constituents:
the set of sprites (plus parameters) that take part in the game,
the rules that govern their interactions, the conditions upon
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which the game ends and a mapping between characters in
the level file and the sprites allowed.

Agents (also referred to as controllers) in GVGAI do not
have access to the VGDL description of the games, but
they receive (in the single and two-player planning settings)
information about the current game state in two different
methods that need to be implemented. The first one is a
constructor, which can be used to initialize any data structure
needed by the controllers, and the second one is an act
method that is called once every frame, which requests an
action to be executed by the player (or avatar) at that time
step. Given that GVGAI operates in real-time, these methods
must return before 1 second and 40 milliseconds respectively
to avoid any penalties.

The information agents receive on each one of these meth-
ods not only contains details about the current game state
(i.e. current game tick, score, avatar features and presence of
other sprites), but also provides a Forward Model (FM) for
controllers to roll the current state forward upon the supply
of potential actions that can be returned. This FM has been
used by multiple approaches in the literature [19] to develop
agents based on simulation techniques such as Monte Carlo
Tree Search (MCTS; [18]) or Rolling Horizon Evolutionary
Algorithms [11].

For the two-player case, games use simultaneous moves,
therefore the FM requires that the agent also supplies the
action that (supposedly) the opponent would take. This
requires, in this particular case, an effort from the agent
to model the behaviour of the other player, which is still
an interesting and open area of research. In their work, J.
Gonzalez-Castro and Diego Perez-Leiebana [12] studied 9
different opponent models for an MCTS controller, from
simple ones (assuming the opponent will use the same /
the opposite action used in the last tick, or that it will
use the action with the best / worst / average estimated
reward) to more complex ones (using models computed
over the distribution of actions used by an MCTS agent
both on multiple games and during the last n frames in
the current game). The authors showed that these latter
approaches where able to outperform a random opponent
model, which was the main model used by all top players of
the competition [10].

However, further research is needed in the topic of adapt-
ing to the other player in the game. For instance, similar
to the games proposed in this paper, a 20% of the 2-player
games existing in the GVGAI framework are cooperative,
and agents are not given the information regarding if they
must compete to win or collaborate in order to achieve a
common goal. Additionally, to the knowledge of the authors,
no research has been undertaken in GVGAI to adapt and
learn from the opponent’s behaviour during the course of
several repetitions of the game being played. Although the
learning track of the competition [15] features agent learning
via playing repetitions (with no FM), at the moment this
setting is restricted to single-player games only.

The present paper attempts not only to extend the kind of
games GVGAI agents can play, but also to give some initial
steps in two-player opponent modeling and adaptation for
general video-game playing. The agents in this study learn
if they are supposed to cooperate or compete via evolutionary
learning; this at least established context for alternate player
modeling methods, implicitly embedded in the agent’s state
space by evolution.

III. DESIGN OF EXPERIMENTS

A population of agents are taught to play multiple games
simultaneously. This is accomplished by changing which
game is being played during fitness evaluation. Agents
trained on two games would play a round-robin tournament
with 150 iterations of the first game, then 150 more of the
second. The goal is to have the agents evolve to notice that
the game has changed based only on the payoff they are
receiving. The need to act based only on payoff information
informs the design of the agent representation.

C

1 2

C/C

D/C

D/D

C/C

Tit−for−two−tats
C

1 2

C/C

D/D

D/D
C/D

Two−tits−for−tat

Fig. 1. Finite state agents that encode two well-know strategies for the
iterated prisoner’s dilemma.

Figure 1 shows two examples of finite state agents that
play iterated prisoner’s dilemma. These are Mealy-style
machines whose transitions are driven by the opponent’s last
action: cooperation or defection. These agents must know
that there are two moves and what those moves are. An agent
trained for GMGP will not have knowledge in advance of the
number or identity of moves in the game.

This design issue is addressed in this study by creating
agents that based their actions on the score that they and
their opponent received on the last round. Some knowledge
is still required: a range in which the scores of all the games
will fall.

A. The Agent Representation

The agent representation used is both relatively novel
and being used in a new setting. It is a new form of,
binary decision automata (BDA). This representation was
first introduced in [17] to model stress in the workplace and
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used to explore the effect of changing information resources
available to game playing agents in [6]. An example of
one of the BDA used in this study is given in Figure 2.
These agents are Mealy architecture finite state machines.
Transitions are driven by a Boolean test, in this case based on
a threshold value stored in each state and the scores obtained
by the agent and its opponent in previous rounds. Three
tests are available: is my score larger than the threshold,
is my opponent’s score larger than the threshold, and is my
opponent’s score larger than my own. Transitions are based
on true and false outcomes of these tests. The novelty of the
representation is that it has no access to knowledge about
what moves are being made, only what payoffs it receives.
This means that the agent can detect and adapt to situations
in which the rules are changed, something demonstrated in
the experimental section.

State Test If True If False
0: If (His>My) C→0; C→1;
1: If (My>0.27) A→3; A→0;
2: If (His>My) A→2; A→3;
3: If (His>3.48) B→3; B→0;

Fig. 2. A 4-state binary decision automata, evolved to play a game with
three moves A, B, and C.

The agent is stored as a vector of states. The action taken
for the true transition of the zeroth state is the agent’s initial
action, used to begin iterated play. During reproduction, two
point crossover on the vector of states is used, followed by
1-MNM mutations with the number of mutations selected
uniformly at random; MNM is the maximum number of
mutations, a parameter of the representation. A mutation
picks a state uniformly at random and then generate a new
value for the state’s threshold or one of its two transitions
and actions.

In both initialization and mutation, a shape [5] is used that
forbids any state to make a transition to itself. Preliminary
work while debugging the agent software demonstrated that
self-looping states that play a single move form a large
local optima in the agent space. Blocking this possibility
improves performance and encourages the agents to learn
more complicated strategies that at least have the potential
to detect and respond to a change of game.

B. The Evolutionary Algorithm

The evolutionary algorithm maintains a population of 72
agents, a number selected by preliminary experimentation
to supply sufficient population diversity to learn multiple
games. The agents are initialized by filling in the threshold
values, actions, and transitions uniformly at random. Thresh-
old values are selected uniformly at random in the range
from the lowest to highest score an agent can receive. The
agents are evolved for 250 generations, sufficient time to
allow the population to stabilize genetically after burning
away the agent’s initial randomness.

Fitness evaluation is a round-robin iterated tournament
on all pairs of distinct agents. Iterated play is continued
for a number of rounds specified for each experiment. The
game being played is changed during fitness evaluation so
that the agent’s score is the average of the scores obtained
while playing multiple different games. This is one of several
possible ways to expose an agent to multiple games; it
was chosen because it is one of the simplest. This issue is
discussed in Section V.

Selection and replacement are performed as follows.
Agents are sorted into fitness order and an elite of the 48
most fit agents (two-thirds) are preserved. The twelve most
fit pairs of agents are copied in fitness order. Succesive pairs
of copies undergo crossover and mutation to produce 24 new
agents, replacing the worst 24 in the population.

The retention of two-thirds of the agents, the elite fraction
is a fairly important parameter. There is a substantial change
in the genetic stability of an evolving population of game
playing agents when this fraction is one-half or less [1]. In
this study agents are given at least 100 rounds of play with
each game with the goal of proof-of-concept that the agents
can be trained to play multiple mathematical games. That
informs the choice of a relatively conservative and high elite
fraction of two-thirds.

C. Games Used

Experiments begin with parameter setting on sets of two
and three simple coordination games. Figure 3 gives the
payoff matrix for the three-move coordination games used.
The first game has X = 6, Y = 3 and Z = 1; the second
X = 3, Y = 1 and Z = 6; the third X = 1, Y = 6
and Z = 3. All of the games give a positive payoff for any
coordination. The high, low, and middle payoff values are
rotated to create games with substantially different payoff
schemes.

Coordination Games

A B C
A X 0 0
B 0 Y 0
C 0 0 Z

Fig. 3. These matrices give the score a player making the move indexing
the row of the matrix will receive against an opponent who makes the move
indexing the column.

Two parameter studies are performed. The first uses the
first two coordination games, the second uses all three
coordination games. These games have three Nash equilibria,
represented by the pure strategies. In the course of the fitness
evaluation, changing which game is being played changes
which of the Nash equilibria have the highest, middle, and
lowest payoff.

The best of the tested parameters (eight states, MNM =
1) is then used for an experiment with the pair of games given
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Prisoner’s Dilemma or Coordination

Prisoner’s Dilemma
M1 M2

M1 3 0
M2 5 1

Coordination
M1 M2

M1 1 0
M2 0 3

Fig. 4. These matrices give two games. The first is prisoner’s dilemma, the
second is a coordination game that rewards coordination on the move that
corresponds to defection in the prisoner’s more highly.

in Figure 4. Here fitness is evaluated on the iterated prisoner’s
dilemma for 150 rounds, then on a coordination game that
has positive payoffs only for coordination for an additional
150 rounds. To make the problem challenging the better
coordination payoff, three, is for the move that corresponds
to defection in Prisoner’s dilemma, while coordination on the
move corresponding to cooperation in the prisoner’s dilemma
pays one.

D. Analysis Tools

During the course of play, the agent’s average and max-
imum score in each generation are recorded in each gen-
eration. In the final generation, the number of each of the
possible pairs of plays is recorded and the fraction of each
type calculated. This creates a matrix of the following form.




0.440 0.013 0.000
0.012 0.325 0.000
0.000 0.000 0.210




This matrix is drawn from one of the runs that achieved a
high score on three games. Any off-diagonal play represents
moves that gained the players no score. A good agent will
place most of its moves in the diagonal entries of this matrix.
In the experiments with two games, we should see similar
numbers in positions (1,1) and (3,3) because these represent
moves scoring the maximum possible value of 6 at some
point. When three games are played we should see roughly
equal distribution along the diagonal in a player that has
learned to shift among the games properly.

Two statistics are extracted to check the agent’s behavior.
The first is the sum of the diagonal of the matrix; this is the
fraction of coordinated moves or coordination fraction.

The second statistic uses the Shannon entropy of the
normalized diagonal entries to estimate the evenness of distri-
bution of the coordinated moves. This entropy is maximized
by an even division among diagonal entries; the normalized
diagonal will yield a score near one if divided evenly between
two possibilities and 1.59 if evenly divided between three.
These numbers, 1.0 and 1.59 indicate correctly learning to
shift between games in agents that also have a high coordi-
nation score for the two-game and three-game coordination
experiments, respectively.

E. Runs performed

A parameter study was performed for agents with 4, 6,
and 8 states using mutation rates MNM ∈ {1, 3, 5}. These
nine sets of parameters were studied for fitness evaluation
with two and three coordination games. The round robin
tournaments for fitness evaluation were run for 300 rounds
of play. These were 150 rounds each for two games or 100
each for three games, with the games always presented in
the same order and played for contiguous blocks of time.

IV. RESULTS AND DISCUSSION

Figure 5 shows the three types of outcomes that occurred
when three games were used. Unlike prisoner’s dilemma, the
agents in the coordination game cannot exploit one another.
The only options are coordination or failure to coordinate.
The costs and benefits of each of these outcomes is the
same for both players. The sole issue here is the difficulty
of learning to detect when the game has shifted.

The top panel in Figure 5 shows a population of agents
that first discover the “just play one move” strategy. The use
of the shape forbidding self-loops in the machine enables the
sort of escape this population makes from that local optima
to a better local optima where the payoffs are 6, 6, and 3 in
the different phases of the game and then, at about generation
150, to adopt a strategy that gets a payoff of 6 in all three
phases of the game. There is some inefficiency in the shift
between games, and the population average score is reduced
by the presence of mutant strategies, but these agents have
discovered a general strategy for the three games and learned
to detect a shift between the games.

The second panel of Figure 5 shows the first escape to an
optima what gets payoffs of 6, 6, and 3, in some order, in the
different phases of the game. This population never makes
the escape to the final global optima. The third panel – one
of the most common outcomes – shows agents that stay in
the “play one move” local optima throughout evolution.

These exemplary runs were taken from the best performing
parameters set, with the most states and the lowest mutation
rate. This suggests that increasing the mutation rate makes
discovery of “just play one move” strategies that use two or
more states (recall one state versions are forbidden by shap-
ing). This suggests that more complex measures might be
needed to prevent this optima from being the most common
outcome, but the shuffled coordination games are simple a
demonstration environment in any case. This problem may
not exist in more complex environments.

Figure 6 shows the fraction-of-coordination results for
the two game experiments while Figure 7 shows the same
quantities for the three game experiments. These results
suggest more states and lower mutation rates are good. The
entropy results suggest that correct shifting among the games
occurred but was rare for both the two and three game
experiments.

Figure 8 shows the outcomes of the experiments with
a version of prisoner’s dilemma and a coordination game
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Fig. 5. Fitness over the course of evolution for three exemplary population
from the runs using three games with 8 states and MNM = 1. The top
run shows a population of agents that learned to play all three games; the
middle track learned two games and accepted the second-best payoff for
the third; the bottom track fails to shift games efficiently, playing a single
move to get 6, 3, and 1 during different phases of fitness evaluation. The
blue and green lines show the maximum and minimum values the average
score can attain.

that reverses prisoner’s dilemma cooperate-defect advantage
structure. In thirty runs, twenty-four adopted “always move
two” which corresponds to the always defect Nash equilib-
rium of the prisoner’s dilemma and obtains the payoff of
3 from the coordination game. Three runs adopted mixed
strategies. Three of the runs managed to detect the change
of games and correctly shift between them.

When playing just iterated prisoner’s dilemma, there is

a tendency for fitness to rise and fall during the course of
evolution as strategies drift away from their defensive ability
though lack of use, followed by periods of exploitation. This
was not visible in any of the thirty runs performed in the
PD/Coordination experiments. This suggests that the need
to deal with the coordination game stabilizes the agents in
strategy space.

The plots in Figure 8 display the population mean and
average fitness. This was done because exploitation in pris-
oner’s dilemma corresponds to divergence of the average and
maximum score. Very little such divergence occurred, even
in the three runs with relatively complex mixed strategies.

V. CONCLUSIONS AND NEXT STEPS

This study presents a new representation for agents that
play mathematical games and demonstrate that it can learn
to play games based only on cues from scores obtained.

A. Better Training for General Agents

The fitness used to train agents for multiple games was
a simple summing of the results of playing all the games
involved. The games were intentionally scaled to have similar
ranges of payoffs; if they had not been the lower payoff
games might have been ignored. The sum-the-scores strategy
makes the three problems decomposable. The agents can
solve each problem individually.

In fact a few agent populations did learn to decompose the
two or three games in all the collections of games used, but in
all cases this was a small minority outcome. This means we
gain proof-of-concept for general mathematical game playing
but with a large dose of future work in improving the training
algorithm.

One natural choice is multi-criteria optimization in which
the score in each game is treated as a separate coordinate.
This is a far more difficult training strategy, but one that
seems likely to generate true general competitors across the
training set.

A less complex solution to the problem consists of adding
games one at a time. Permit the agent population to learn a
first game, then add another game to the menu. This sort of
serial addition of games may make the decomposition of the
problem into distinct games more evolution-friendly.

B. Deep Time and True Generality

This study shows that the BDA-representation for agents
can produce agents that recognize and correctly play games.
They do not do so all that reliably and, this is more problem-
atic, are only shown to be general across the games that serve
as their training examples. A truly general mathematical
game playing agent should be able to adapt to a game it
has never seen before. This is clearly a domain for future
work.

Hope appears in the way that agents, even when one of the
games was the iterated prisoner’s dilemma, tended to exhibit
monotone increase in fitness. Figure 9 shows the way fitness
evolves when two populations of agents are playing iterated
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Fig. 6. Shown are the distribution of fraction of coordinated plays (left panel) and the diagonal play entropy (right panel) of populations of machines
trained on play of two different coordination games.
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Fig. 7. Shown are the distribution of fraction of coordinated plays (upper panel) and the diagonal play entropy (lower panel) of populations of machines
trained on play of three different different coordination games.

prisoner’s dilemma against one another. The monotonicity of
fitness suggests that serial game addition may work.

Another factor is that the number of generations, 250, used
in all the simulations was chosen based on earlier work in
the iterated prisoner’s dilemma. Evolving for 250 generations
is more than enough to generate complex behavior. In [4]
new prisoner’s dilemma strategies were found to arise after
32768 (215) generations of evolution. It may be that better
performance will result from simply running evolution for a
longer time.
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Abstract—The exploration of the relationships between behav-
ior and cognitive psychology of game players has gained impetus
in recent years because such links provides an opportunity for
improving user experiences and optimizing products in the games
industry. At the same time, the volume and global scope of
digital game telemetry data has opened up new experimental
opportunities for studying human behavior at large scales. Prior
research has demonstrated that a relation exists between learning
rates and performance. Although many factors might contribute
to this correlation at least one may be the presence of innate
cognitive resources, as demonstrated in recent work relating
IQ and performance in a Multi-player Online Battle Arena
game. Here, we extend this work by examining the relationship
between early learning rate and long term performance using
a 400,000 player longitudinal dataset generated by new players
of the widely-played MOBA League of Legends. We observed
that the learning rate of new players in a competitive season
explains a significant amount of variance in the performance at
the end of the year. This analysis was then extended by training
two multivariate classifiers (Logistic Regression, Random Forest)
for predicting players who by the end of the season would be
considered masters (top 0.05%), based on their performance in
the first 10 matches of the same season. Both classifiers performed
similarly (ROC AUC 0.888 for Logistic Regression, 0.878 for
Random Forest), extending the time frame for skill prediction
in games based on a relatively sparse sample of early data. We
discuss the implications for these findings based on preexisting
psychological studies of learning and intelligence, and close with
challenges and direction for future research.

Index Terms—skill learning, video games, MOBA, prediction

I. INTRODUCTION

Digital games generate considerable amounts of behavioral
telemetry data [1]. However, despite the ability to track player
behavior in detail within games, build detailed behavioral
profiles [2] and even predict player behavior [3], behavioral
analytics continues to struggle with explaining observed be-
haviors [4], [5]. Similarly, while work focusing on player
psychology has existed for some time [6], purely psychological
studies based on large-scale telemetry data are rare, in part
due to difficulties in acquiring and parsing high quality, well-
controlled data. In the domain of games research, there has
been work exploring the correlations between player behav-
ioral data and motivations for play [7], [8], albeit at smaller
scales. Our work primarily follows recent research on skill

learning and cognition in games, [9], [10], [11], [12], [13]
using larger-scale data (thousands of players and upwards).

The relationship between player behavior and psychology
is an ongoing research topic. Applications include designing
games that are adaptive to player responses and better informa-
tion modelling for AI agents [14]. Psychological research also
benefits from the large datasets provided by game telemetry
which increase statistical power and provide the ability to
follow skill learning in individual subjects over long periods
of time [9].

A growing body of evidence exists for common cognitive
factors underlying early skill learning and late-stage perfor-
mance, and significant progress has been made with prediction
modelling based on smaller or larger scale video game data [9],
[10], [11], [12]. Here the focus is on the application of this
knowledge to inform classification models predicting future
performance, based on data of the span of a whole season.

II. CONTRIBUTION

The work presented here contributes to the understanding of
the relationship between player performance and skill learning,
extending previous research on this topic. Previous work has
established a correlation between skill learning and gameplay
behavior[10] as well as various cognitive and motivational fac-
tors [15], [12]. However, these studies have typically utilised
games designed specifically for the purpose of education or
research. In this paper we explore the relationship between
early learning rates and player performance after one year
by analyzing datasets from more than 400,000 players of the
popular commercial game League of Legends players during
the 2016 season. All player-registered-accounts were new to
the game, and were sampled randomly from a total player
base of more than 100 million monthly active players as of
2016 [16]. Using this dataset, we find a strong relationship
between early skill learning rates and final performance in
a large-scale commercial online multiplayer game and we
also present results of preliminary prediction model building.
Based on previous work, we consider the possibility that this
relationship is mediated by common cognitive factors [13],
and propose future work to test this theory.

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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III. RELATED WORK

The relationship between cognitive skills and digital game-
play has been partially explored in previous work [13], [10],
[15] (see [15] for a recent review), but most research has
focused on snapshot data, examining correlations between
psychological factors and performance at a single point in time
[17]. Longitudinal studies have tended to focus on behavior in
purpose-built non-commercial games over a limited period of
time. An interesting question is therefore whether cognitive
resources influence skill learning and gaming performance
in commercial games where the player has full control on
the frequency and duration of gameplay. Recent work [15],
[10], has avoided this problem by making use of behavioral
telemetries from game servers. This overcomes the common
issue of needing to reconstruct the acquisition process of early
skill learning.

In general, digital games are an exceptional tool for studying
skill learning because players can be followed and assessed
from their first contact with the game. A notable example
is provided by Stafford et al. [9], who analyzed data from
854,064 players, from an online game and established a
relationship between practice volume, spacing, variability and
outcome performance. However, this work was not designed
as a long-term longitudinal study and made use of a relatively
simple game designed specifically for the controlled purposes
of that experiment. Following up on this work, a second
study examined the time-series data of 20,000 players from
the commercial online game Destiny, investigating factors that
contribute to skill acquisition and learning rate [10]. Games
have also been used for similar purposes by Thompson et al.
[11], [12]. In related work, Kokkinakis et al. [13] provided
evidence for a correlation between player performance and IQ.
This work was snapshot based, i.e. based on a specific instant
in time. Given the assumption that these correlations operate
across any point in the learning curve of a player, the work
of Kokkinakis et al. [13] and others, e.g. Bonny et al.[15] are
the basis for investigating cognitive factors underlying skill
learning at large scales in online games.

Related to skill learning in games is research in esports
analytics focusing on predicting the outcome of player per-
formance, either within or between matches [18], [19], [20],
[21]. The majority of this work is focused on match prediction,
i.e. predicting the outcome of specific matches. An example is
provided by [22], who developed match win prediction models
for professional-level matches in the Multi-Player Online Bat-
tle Arena (MOBA) game DOTA 2, comparing mixed-rank and
professional-only rank data in terms of their applicability to a
professional-level real-time prediction system. The classifier
used was a hyper-parameters-tuned Random Forest model
which employed a variety of in-game behavioral features as
well as higher level metadata such as hero character combina-
tions. This type of telemetry has also been used to investigate
patterns of fights that occur across professional DotA 2 games
[23]. Random Forest is a commonly applied model in this body
of work, similar to prediction modeling work in general game

analytics e.g. [24], [25].
The only current work focusing on longer-term player

performance prediction in esports is an unpublished report [26]
focusing on League Of Legends, presenting a skill prediction
model for the game. However, the work is preliminary, based
on 500 matches which limits the generalizability of the results.
Furthermore, the work does not address the challenge of
predicting the peak skill of players based on very early
performance. Work such as Bonny et al. [15] and Kokkinakis
et al. [13] explore longitudinal relationships between skill and
behavior (or training), but do not attempt to provide prediction
models.

In summary, previous work has established the foundation
for behavioral prediction in games across a growing number
of types and genres (e.g. [1], [21], [27], [23]), including in the
MOBA genre of League of Legends, which is the case study
used here. Work such as Stafford et al. [9], [10] and Thompson
et al. [11], [12] has provided a tentative basis for exploring
skill development in digital games, establishing correlations
between skill learning and behavior, as well as cognition (e.g.
IQ) and skill. Here we expand on this foundation.

IV. LEAGUE OF LEGENDS

League of Legends is a Multi-player Online Battle Arena
game (MOBA) developed by Riot Games, published in 2009.
It is the most popular esports game in the world [16], [28].
The game is supported financially by microtransactions [3],
[25], [24].

The game is set in an arena environment where ten play-
ers (’summoners’) control ’champions’, or characters in two
teams of five players. Teams compete against one another to
eliminate the opposing team’s home base. Each match lasts
approximately half an hour - although much shorter and longer
matches are possible. Champions can gain more abilities
during the game - primarily by accumulating ’experience
points’ (XP) or ’Gold’ which can be used to buy performance-
enhancing items. The change in Gold and XP as a function of
time are two of the most commonly used performance metrics
in League of Legends. Other important metrics in include the
number of opponents that a player has killed, the number
of deaths that a player has experienced (champions are ’re-
animated’ after a time-out increasing in accordance to the
champion’s XP) and the number of ’assists’ that one player has
provided to another shortly before an enemy’s death. Jointly,
these metrics vary not only as a function of the player’s skill
and the overall skill of the two teams, but also depend on the
specific champion played and the combat strategy employed.
In general, League of Legends, similar to other MOBAs such
as DOTA 2 or Heroes of the Storm is conceptually simple
but hard to master due to the complexity of the underlying
gameplay [28].

A. Skill and ranking in League of Legends

Performance in League of Legends is calculated using an
ELO-based relative skill rating system originally devised for
chess. It is similar to other multi-player online games such as
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Destiny [10], using a generalization of ELO called TrueSkill,
a Bayesian skill rating system developed by Microsoft [29].
The system is based on wins and losses and serves the function
of matchmaking, provides information to players about their
rank compared to others, and can be used as a qualification
for tournaments. The ELO system used by Riot is specifically
adapted for the 5v5 format used in League of Legends.

Players are divided into different ranks depending on their
overall skill in League of Legends. There are seven tiers, with
the top tier being limited to 200 players. The Master rank is
limited to about 0.05% of the population.

Performance is formally recorded as a hidden value Match
Making Rating or Ratio (MMR). The MMR of a player is not
the same thing as the rank of the player which is determined
by a bin and can be influenced by additional external factors
such as long periods of inactivity.

V. DATA SET

A. Sample

The dataset was provided by Riot Games, the developer
and publisher of League of Legends. The dataset contains
behavioral telemetry data derived from the 2016 season of the
game (ranked play in League of Legends is organized in game
seasons of roughly one year). From the global player base, a
random sample was drawn, covering 413,341 users (players)
and approximately 140 million rows.

Each row in the dataset contained records for a single match
in relation to a particular player account. The earliest match
entry was recorded on 21 January 2016 and the final match
played in the data was logged on 6 November 2016. This
period of time falls under the 2016 Competitive Season of the
game. All accounts had been created at the start of the season
and played a minimum of 150 competitive ladder games during
the season. 150 matches was set as a lower bounds to remove
any largely inactive players. All matches in the data were
restricted to the default 5 versus 5 ranked ”Solo/Duo Queue”
ranked mode. All player MMRs were initialized to the same
starting value by default. After every match, this rating was
then updated based on a system that takes into account the
average rating of a player’s team, an average rating of the
enemy team, whether the player’s team won or lost. Winning
a match resulted in an increased rating, and a loss results in
a decreased rating.

B. Telemetry

Data from League of Legends are publicly available via a
data API service provided by Riot. The dataset provided here
was similar in to the data that might be acquired from these
public sources but had the advantage of being randomly drawn
from the population, and, critically, contained Rating (MMR)
scores for each player, which are not publicly available. 16
features were provided for this analysis (Table I).

VI. METHODS

Data were preprocessed and analyzed in a Python 3.6
environment using Pandas [30], Numpy and SciPy [31] for

TABLE I
RAW IN-GAME DATA, ON A PER MATCH BASIS

Field Description
Account ID Unique Identifier of a player account
Platform ID The server the game was played on
Game ID Unique identifier of the match

Neutral Creep Number of neutral AI enemies killed
Enemy Creep Number of AI enemies killed

Win Boolean indicating a win or loss
Timestamp When the match was logged

Date Date of match played
Hour Hour of match played

Gold Earned Total gold earned in the match
Damage Dealt Total dealt to other players
Time Dead Total seconds spent dead
Time Played Total seconds played in the match

Kills Total Kills
Deaths Total Deaths
Assists Total Assists
Rating The rating of the player before the match
Position The role the player was assigned

The raw data forms the basis for feature engineering (see also Table II).

data handling and statistical analysis. Scikit-learn [32] was
the reference framework for machine learning.

A. Data Preprocessing

The data provided by Riot were drawn directly from the
telemetry servers of League of Legends. In addition to impos-
ing a 150 game minimum requirement, and season time bin
we performed some additional pre-processing steps to ensure
data quality.

We first eliminated players playing more than 3,000 matches
in total, as we were cautious of excessive playtimes indicating
possible contamination from shared accounts or automated
systems. Following this, we also filtered players whose first
MMR entry differed from the pre-defined starting value. This
was determined to be an artifact caused by players migrating
between different servers during the season, displaying only
records of their play on their latest server in our data. We then
eliminated player who abandoned (went ’away from keyboard’
early in the game) during the first 10 games they played
because scores during this period were a critical component
of our analysis. To eliminate these players we filtered users
that recorded Time Played durations of less than 900 seconds.
Despite a legitimate match in LoL might be shorter, these
extremely rare cases hold very little information about the
player performance and are indistinguishable from those where
the player decided to leave the game. We also discarded users
who recorded simultaneous Kills, Deaths and Creep Kill scores
of 0 for the same reason. Finally we also excluded users having
their nominally unique id duplicated on multiple servers.

From the original data of 413,341 players, 313,184 were re-
tained after preprocessing. Standardized distributions of MMR
for this sample can be observed in figure 1, and the trajectories
of MMRs over the season can be observed in figure 2.
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Fig. 1. Distributions of players by MMR during calibration games (left) and after the season end (right). Due to the confidential nature of the MMR values,
the axes have been standardized.

Fig. 2. Trajectories of MMRs over matches from a subsample of players.
All the trajectories stem from the same starting point and spread in the initial
stages mirroring a power law curve. Due to the confidential nature of the
MMR values, the axes have been standardized.

B. Regression Analysis

For each region we evaluated whether the rate of change
in the MMR of the first 10 matches predicted the mean
MMR of the last 10 matches. For comparison, we generated
a synthetic null data set by computing 100,000 random walks
with length and MMR transition probabilities drawn at random
from distributions matching the existing data.

C. Feature Engineering

Since the aim of this work was to evaluate the impact
of early season performance on final season outcome we
computed a set of features based on the original Key Per-
formance Indices (KPIs) over the first 10 matches of each
user (again see Table 1 for further details). Two approaches
were adopted: a brute force one where we retrieved various
statistical descriptors of the original KPIs and an informed one
where we used knowledge derived from our regression analysis

and previous work [10], [27], [24], [25], [12] for retrieving
possible useful features.

In first instance a series of temporal KPIs were created
based on the in-game time alive (i.e. Time Played - Time
Dead): Neutral Creep per Minute, Enemy Creep per Minute,
Gold per Minute, Damage per Minute, Kills per Minute,
Deaths per Minute and Assists per Minute. For each of the
original and temporal KPIs we retrieved mean, median and
standard deviation over the first 10 matches in accordance to
the methodology found in [33]. Following the intuition of [10]
we computed a series of progression metrics retrieving the
first derivative obtained by regressing a particular KPI over
the ordered number of matches (i.e. range from 1 to 10). We
calculated the first derivative for: Gold, Damage Dealt, Time
Alive, Time Dead, Kills, Deaths, Assists, Gold per Minute,
Deaths per Minute, Assists per Minute and MMR over the
first 10 games.

To avoid problems of instability when calculating ratios with
a denominator close to zero we computed the percentage for
the following sets: {Time Alive, Time Dead}, {Deaths, Kills,
Assists}, {Win, Loss}, {Morning Session, Afternoon Sessions,
Evening Sessions, Night Sessions}, and {Position Utility, Posi-
tion Middle, Position Bottom, Position Top, Position Jungle}.

We also calculated a series of miscellaneous features like
Mean Temporal Distance between matches, number of Con-
secutive Wins, number of Consecutive Losses and variability
in the role assumed by the player as measured by the Gini
Index. These were added because previous work has utilized
these metrics e.g. for prediction modeling in games or to
explore skill learning (e.g. [10], [27], [24], [25], [12]

As target variables for our regression analysis and multi-
variate classification task we retrieved for each user the mean
MMR over the last 10 matches and the difference between
the mean MMR of first and last 10 matches. A summary of
features generated can be observed in Table II.
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TABLE II
SUMMARY OF THE FEATURES ENGINEERED FROM ORIGINAL RAW DATA.

Feature Type Description Example
Statistics Common statisti-

cal descriptors
Mean kills
Median kills
Standard deviation Kills

Progression Rate of change
over matches

First derivative of kills
over first 10 matches

Percentages Percentages over
particular sets of
raw data

Percentage of Kills
Percentage of Deaths
Percentage of Assists

Miscellaneous Features covering
specific aspects of
the game

Role variability
Mean temporal distance
between matches

Targets Metric employed
for regression and
classification

Mean MMR over the last
10 matches
(Mean MMR last 10
matches) - (Mean MMR
first 10 matches)

D. Predictive Skill Modeling

Despite an interesting goal would have been forecasting the
players’ performance in continuous fashion (i.e. regression),
we decided to focus on an early detection of extremely
proficient players (i.e. classification)[34]. This solution al-
lowed us both to maximize the prediction power and to
provide a starting point for addressing issues relevant for
the competitive games industry (i.e. player scouting). For our
purpose we used two common machine learning algorithms,
Logistic Regression (LogReg) and Random Forest (RanFor)
[35], able to capture both linear and non linear interactions
between the features. We chose these algorithms because de-
spite their simplicity, they can often achieve good result while
still providing useful insights (i.e. visualization of features
importance). Furthermore, these are models heavily used in
game analytics research for prediction tasks (see e.g. [27],
[18], [24]).

In first instance we created a labeling system for differentiat-
ing the best performing users from the rest of our sample. The
metric employed for this labeling system was the difference
between the mean MMR of the first 10 matches and the mean
MMR of the last 10 matches, this has been done for avoiding
that informations contained in the input features (derived from
the first 10 matches’ KPIs) leaked in the metric employed
for creating the labels consequently biasing the classification
model. Nevertheless, for transparency reasons, we also con-
ducted the same classification task employing labels derived
from the mean MMR of the last 10 matches but due to space
constrains the relative results are reported exclusively in table
IV. The labeling system employed a percentile based encoding
where all the players below the 99.95 percentile were encoded
as negative samples while all the others as positive. We then
divided the original data-frame in validation (n = 209,834) and
test set (n = 103,350) via Stratified Shuffle Split [32]. This was
essential given the extreme imbalance in the label distribution.
We used the validation set for searching for optimal hyper-
parameters and the test set for performing the final prediction.

For each model the best combination of hyper-parameters was
found by using a Grid Search 10 Fold Stratified Shuffle Cross
Validation and selecting the best model based on the average
ROC AUC score. Since the labels distribution was extremely
imbalanced for avoiding under or over-sampling our dataset
we applied a weight to each label inversely proportional to its
frequency in the input data [32].

To improve the performance of the Logistic Regression and
allowing the interpretation of the coefficients associated to
each feature, when using this model we rescaled the features
using a method that is robust to outliers (i.e. removing the
median and rescaling the data accordingly to the quantile
range). After tuning the hyper-parameters to discover the
best model we retrieved the top 20 features contributing
the most to the classification performance, although this can
provide insights, given the high inter-correlation between our
features caution has to be posed in the interpretation of their
importance.

VII. RESULTS

A. Regression Analysis

The learning rate computed from the first 10 games was
correlated significantly with the final average performance
level (fig. 3). This correlation achieved significance across all
servers with p values less than .0001 in all case. Effect sizes
(r2) ranged from .25 to .37. Performance improved with the
number of initial games chosen with an approximately linear
dependence up to 40 games. As expected, our randomized con-
trol dataset using a large set of simulated players (n=100,000)
also exhibited a statistically significant relationship between
slope and final score (p<.0001) reflecting the fact that a slight
positive slope in the initial stages of a random walk will tend,
on average, to result in a slightly positive final value. However,
in this case the effect size was very small (r2 = .008). Similar
results were observed in each server independently (Table III).

TABLE III
REGRESSION RESULTS

Set r2 p value
North Europe 0.308 <.0001
West Europe 0.378 <.0001
Brazil 0.297 <.0001
Latin America 1 0.257 <.0001
Latin America 2 0.307 <.0001
Oceania 0.353 <.0001
North America 0.374 <.0001
Japan 0.315 <.0001
Total sample 0.345 <.0001
Random Walk 0.008 <.0001

B. Predictive Skill Modelling

The best hyper-parameters found by the grid search for the
Logistic Regression were L1 penalty with inverse regulariza-
tion equal to 0.01 while those for the Random Forest included
entropy as a split evaluation metric, maximum depth of the tree
equal to 10, maximum number of features employed by each
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Fig. 3. Regression plots for total sample learning rate and final MMR (top),
and random walk synthetic set (bottom). Due to the confidential nature of the
MMR values, the axes have been standardized.

tree equal to the square root of the total number of features,
maximum number of leaf nodes equal to 15 and number
of trees populating the forest equal to 60. As mentioned
before, we only took into account the results derived from the
adoption of the difference based labeling system, however, for
visibility purposes, in table IV we also reported the results
from the alternative labeling system. The fields in Table IV
specify the model employed, the metric on which the labeling
system is based, the weighted f1 score (i.e. accounting for
imbalance in the labels distribution), the ROC AUC score,
the number of true positive, true negative, false positives
and false negatives. For a better overview of the models’
performances we computed and plotted normalized confusion
matrices showing the percentages of correct and incorrect
classifications (fig. 4) as well as bar charts showing the top
20 features contributing the most in the classification task (fig.
5).

VIII. DISCUSSION

We find that the initial rate of MMR change is strongly
related to the final end-of-season MMR in League of Legends.
This suggests that a common factor which we identify as
cognitive performance underlies learning and performance in

TABLE IV
RESULTS OF PREDICTIVE ANALYSES

Model Metric f1 AUC TN FN TP FP
LogReg Diff 0.940 0.888 92,077 61 456 10,757
RanFor Diff 0.938 0.878 91,780 70 447 11,054
LogReg Final 0.953 0.923 94,534 37 480 8,300
RanFor Final 0.952 0.923 94,309 36 481 8,525

Results of Logistic Regression and Random Forest for prediction using
either end of season MMR (Final) or MMR change (Diff). AUC: area under

ROC, TN: true negative, FN: false negative, TP: true positive, FP: false
positive

this game - and likely in other similar MOBAs. Our results
build on the finding of by Dewar and Stafford [9], extending
them in several ways. Dewar and Stafford’s data were obtained
from users playing a non-commercial on-line game specifically
designed for educational and research purposes. In this respect
their findings mirror those of Quiroga et al. [36] who used
custom-made game-like tests to probe IQ. In comparison,
the game we analyze here is a commercial product with an
active user-base that numbers in the hundreds of millions. The
statistical findings we present are therefore extremely robust
due to the sample size used, and of general interest because of
their ecological relevance. We also presented promising results
from a multivariate classification task showing that end of
season exceptional performance can be identified employing
metrics derived from the early matches.

Our results support a growing body of work indicating
that cognitive performance [13], [10], [15] and possibly other
psychological factors [7], [8] are exposed by game telemetry.
This observation can be used in at least two ways. First, it
has significant value to psychological research as it provides a
way of evaluating cognition at the population level in real-
time and at large scales. In previous work [13], we have
raised the possibility of large-scale video game data being
used to perform ’cognitive epidemiology’ - a population-level
assessment of cognitive health which might provide an early
indicator of environmental changes (for example, disease,
pollution or social factors) that affect cognition. Second, it
is of interest to the e-sports analytics community because it
provides a theoretical basis for performing longitudinal game
analytics - allowing analysts to predict, for instance, churn rate,
future performance levels, and potentially complex player-
player interactions.

Our future work is focused on further exploring the link
between video game data and psychological factors. While
cognitive performance is important, it is just one of a wide
range of psychological factors that can be extracted from these
rich datasets. We expect that these factors will, like the one
studied here, provide insights into psychology at a global level
while also providing the games industry with theoretically
validated tools to improve their products and user experience.

IX. LIMITATIONS AND FUTURE WORKS

We acknowledge that focusing our work on a single MOBA
title might pose limitations to the generalisability of the results.
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Fig. 4. Normalized Confusion Matrices for logistic regression difference based labeling system (top) and random forest difference based labeling system
(bottom).

Fig. 5. Feature importance: 20 most important features for logistic regression (left) and random forest classifier (right). The two models identify different sets
of features as the most important predictors. However, the top five features for both models all deal with player deaths, gold gain and player kills and damage
dealt. Logistic regression adds in the percentage of time spent playing utility roles also. Looking at the top 20 predictors, there is some difference between
the two models but both include similar feature sets: kills, deaths, damage and gold. Notably, win and loss conditions feature relatively low on the features
ranking (”consecutive wins” placed 13th for both models). This indicates that the win/loss features are perhaps too aggregate (i.e. encapsulating performance
of both teams in the game) to be highly significant predictors of individual skill/performance.
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These types of analysis are complicated by the requirement to
gain access to raw ELO scores for these game. This often
requires licencing agreements with the companies that are not
straightforward to obtain. Nevertheless, one possible direction
for future work would be to attempt to replicate the results
presented here employing data from different games.

X. DECLARATION OF CONFLICTING INTERESTS

The authors declare that they have no conflicting interests.

XI. ACKNOWLEDGEMENTS

We thank Riot Games for providing the data used in
this work. We would also like to thank Sagarika Patra
for her help and advice with statistics and data modeling.
Part of this work was conducted in the Digital Creativ-
ity Labs (www.digitalcreativity.ac.uk), jointly funded by EP-
SRC/AHRC/InnovateUK under grant no EP/M023265/1.This
work was also supported by grant EP/L015846/1 for the
Centre for Doctoral Training in Intelligent Games and Game
Intelligence (IGGI - http://www.iggi.org.uk/) from the UK En-
gineering and Physical Sciences Research Council (EPSRC).

REFERENCES

[1] M. Seif El-Nasr, A. Drachen, and A. Canossa, Game Analytics -
Maximizing the Value of Player Data. Springer, 2013.

[2] A. Drachen, R. Sifa, C. Bauckhage, and C. Thurau, “Guns, swords and
data: Clustering of player behavior in computer games in the wild,” in
IEEE Conference on Computational Intelligence and Games. IEEE,
2012, pp. 163–170.

[3] M. Milosevic, N. Zivic, and I. Andjelkovic, “Early churn prediction
with personalized targeting in mobile social games,” Expert Systems
with Applications, 2017.

[4] A. Drachen and S. Connor, “Game analytics for games user research,”
in Games User Research. Oxford University Press, 2018, pp. 333–354.

[5] A. Drachen, J. Green, C. Gray, E. Harik, P. Lu, R. Sifa, and D. Klabjan,
“Guns and guardians: Comparative cluster analysis and behavioral
profiling in Destiny,” in IEEE Conference on Computational Intelligence
and Games. IEEE, 2016, pp. 1–8.

[6] N. Yee, “The demographics, motivations, and derived experiences of
users of massively multi-user online graphical environments,” Presence:
Teleoper. Virtual Environ., vol. 15, no. 3, pp. 309–329, 2006.

[7] A. Canossa, J. B. Martinez, and J. Togelius, “Give me a reason to dig
minecraft and psychology of motivation,” in Computational Intelligence
in Games (CIG), 2013 IEEE Conference on. IEEE, 2013, pp. 1–8.

[8] G. Van Lankveld, P. Spronck, J. Van den Herik, and A. Arntz, “Games
as personality profiling tools,” in Computational Intelligence and Games
(CIG), 2011 IEEE Conference on. IEEE, 2011, pp. 197–202.

[9] T. Stafford and M. Dewar, “Tracing the Trajectory of Skill Learning
With a Very Large Sample of Online Game Players,” Psychological
Science, vol. 25, no. 2, pp. 511–518, Feb. 2014. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0956797613511466

[10] T. Stafford, S. Devlin, R. Sifa, and A. Drachen, “Exploration and Skill
Acquisition in a Major Online Game,” in The 39th Annual Meeting of
the Cognitive Science Society (CogSci). York, 2017.

[11] J. J. Thompson, M. R. Blair, L. Chen, and A. J. Henry, “Video game
telemetry as a critical tool in the study of complex skill learning,” PloS
one, vol. 8, no. 9, 2013.

[12] J. J. Thompson, C. M. McColeman, E. R. Stepanova, and M. R.
Blair, “Using video game telemetry data to research motor chunking,
action latencies, and complex cognitive-motor skill learning,” Topics in
Cognitive Science., vol. 9, no. 2, pp. 467–484, 2017.

[13] A. V. Kokkinakis, P. I. Cowling, A. Drachen, and A. R. Wade,
“Exploring the relationship between video game expertise and fluid
intelligence,” PLOS ONE, vol. 12, no. 11, p. e0186621, Nov. 2017.
[Online]. Available: http://dx.plos.org/10.1371/journal.pone.0186621

[14] G. N. Yannakakis, “Game ai revisited,” in Proceedings of the 9th
Conference on Computing Frontiers. IEEE, 2012, pp. 285–292.

[15] J. W. Bonny and L. M. Castaneda, “Number processing ability is
connected to longitudinal changes in multiplayer online battle arena
skill,” Computers in Human Behavior, vol. 66, pp. 377–387, 2017.

[16] “Riot games reveals league of legends has 100 million monthly
players,” Forbes, 2016. [Online]. Available: https://www.forbes.com

[17] A. D. Castel, J. Pratt, and E. Drummond, “The effects of action video
game experience on the time course of inhibition of return and the
efficiency of visual search,” Acta Psychologica, vol. 119, pp. 217–230,
200.

[18] J. Kawale, A. Pal, and J. Srivastava, “Churn prediction in MMORPGs:
A social influence based approach,” in International Conference on
Computational Science and Engineering, vol. 4. IEEE, 2009, pp. 423–
428.

[19] H. Xie, S. Devlin, D. Kudenko, and P. Cowling, “Predicting Player
Disengagement and First Purchase with Event-frequency Based Data
Representation,” in Proc. of CIG, 2015.

[20] M. Schubert, A. Drachen, and T. Mahlmann, “Esports analytics through
encounter detection,” in Proceedings of the MIT Sloan Sports Analytics
Conference, 2016.

[21] F. Rioult, J.-P. Metivier, B. Helleu, N. Scelles, and C. Durand, “Mining
tracks of competitive video games,” AASRI Procedia, vol. 8, pp. 82–87,
2014.

[22] V. Hodge, S. Devlin, N. Sephton, F. Block, A. Drachen, and P. Cowling,
“Win Prediction in Esports: Mixed-Rank Match Prediction in Multi-
player Online Battle Arena Games,” arXiv preprint arXiv:1711.06498,
2017.

[23] P. Yang, B. E. Harrison, and D. L. Roberts, “Identifying patterns in
combat that are predictive of success in MOBA games.” in FDG, 2014.

[24] J. Runge, P. Gao, F. Garcin, and B. Faltings, “Churn Prediction for
High-value Players in Casual Social Games,” in Proc. of IEEE CIG,
2014.

[25] F. Hadiji, R. Sifa, A. Drachen, C. Thurau, K. Kersting, and C. Bauck-
hage, “Predicting player churn in the wild,” in Computational intelli-
gence and games (CIG), 2014 IEEE conference on. IEEE, 2014, pp.
1–8.

[26] J. Min, S. W. Jang, and J. Ha, “Predicting Matchmaking Rating (MMR)
Change in League of Legends.”

[27] R. Sifa, F. Hadiji, J. Runge, A. Drachen, K. Kersting, and C. Bauckhage,
“Predicting purchase decisions in mobile free-to-play games,” in Proc.
Artificial Intelligence and Interactive Digital Entertainment Interna-
tional Conference, 2015, pp. 79–85.

[28] Y. J. Kim, D. Engel, A. W. Woolley, J. Y.-T. Lin, N. McArthur,
and T. W. Malone, “What Makes a Strong Team?: Using
Collective Intelligence to Predict Team Performance in League
of Legends.” ACM Press, 2017, pp. 2316–2329. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2998181.2998185

[29] “Trueskill: A bayesian skill rating system.”
[30] W. McKinney, “pandas: a foundational python library for data analysis

and statistics,” Python for High Performance and Scientific Computing,
pp. 1–9, 2011.

[31] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–, [Online; accessed ¡today¿]. [Online].
Available: http://www.scipy.org/

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of
Machine Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.
[Online]. Available: http://www.jmlr.org/papers/v12/pedregosa11a.html

[33] S. Kim, D. Choi, E. Lee, and W. Rhee, “Churn prediction of mobile
and online casual games using play log data,” PloS one, vol. 12, no. 7,
p. e0180735, 2017.

[34] “Rank distribution: League of legends,” League of Graphs, 2008.
[Online]. Available: https://www.leagueofgraphs.com/rankings/rank-
distribution

[35] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[36] M. A. Quiroga, S. Escorial, F. J. Romn, D. Morillo, A. Jarabo, J. Privado,
M. Hernndez, B. Gallego, and R. Colom, “Can we reliably measure the
general factor of intelligence (g) through commercial video games? Yes,
we can!” Intelligence, vol. 53, pp. 1–7, Nov. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016028961500104X

124



An Eye Gaze Model for Controlling the Display of
Social Status in Believable Virtual Humans

Michael Nixon
Institute of Communication, Culture,

Information and Technology
University of Toronto

Toronto, Canada
michael.nixon@utoronto.ca

Steve DiPaola
School of Interactive Arts and

Technology
Simon Fraser University

Vancouver, Canada
sdipaola@sfu.ca

Ulysses Bernardet
School of Engineering and

Applied Science
Aston University

Birmingham, United Kingdom
u.bernardet@aston.ac.uk

Abstract—Designing highly believable characters remains a
major concern within digital games. Matching a chosen per-
sonality and other dramatic qualities to displayed behavior is
an important part of improving overall believability. Gaze is
a critical component of social exchanges and serves to make
characters engaging or aloof, as well as to establish character’s
role in a conversation.

In this paper, we investigate the communication of status
related social signals by means of a virtual human’s eye gaze.
We constructed a cross-domain verbal-conceptual computational
model of gaze for virtual humans to facilitate the display of social
status. We describe the validation of the model’s parameters,
including the length of eye contact and gazes, movement velocity,
equilibrium response, and head and body posture. In a first set
of studies, conducted on Amazon Mechanical Turk using pre-
recorded video clips of animated characters, we found statistically
significant differences in how the characters’ status was rated
based on the variation in social status.

In a second step based on these empirical findings, we designed
an interactive system that incorporates dynamic eye tracking and
spoken dialog, along with real-time control of a virtual character.
We evaluated the model using a presential, interactive scenario of
a simulated hiring interview. Corroborating our previous finding,
the interactive study yielded significant differences in perception
of status were found (p = .046). Thus, we believe status is an
important aspect of dramatic believability, and accordingly, this
paper presents our social eye gaze model for realistic procedurally
animated characters and shows its efficacy.

Index Terms—procedural animation, believable characters,
virtual human, gaze, social interaction, nonverbal behaviour,
video games

I. INTRODUCTION

Designing good believable characters to inhabit virtual story
worlds is an ongoing problem, and remains a major concern
within digital games. Researchers have been investigating
many different methods for creating believable expressive
character that can dynamically adapt either at design-time
to their authors’ needs, or during run-time as the situation
they find themselves in evolves. The field of believable char-
acters deals with the intersection of visual aesthetics and
intelligent agent research. In general terms, intelligent agents
are computer systems that possess autonomy, social ability,

This research was supported by the Social Sciences and Humanities
Research Council of Canada.

reactivity, and pro-activeness [1], and are conceptualized and
implemented using anthropomorphic terms, including beliefs,
desires, intentions [2], and other types of cognitive models.
Adding these models allows agents to participate in ongoing
stories, as they possess enough cognitive depth so as to be
interesting. Additionally, as the agents are visually represented
as a human character, they have to meet a range of expectations
for them to appear lifelike and interesting.

Believable character research focuses on providing embod-
ied intelligent agents with overt human bodies and correspond-
ing characteristics for various purposes including entertain-
ment (e.g. Façade [3],), training (e.g. the Virtual Humans [4]
project), and education (e.g. Fear Not! [5]).

To be believable, these characters’ bodies need the ability
to communicate using both verbal and non-verbal channels si-
multaneously. The synchronization of these channels is vital to
meeting appropriate expectations from human communication,
reducing the potential Uncanny Valley effect and making the
computer less of an “unfamiliar interlocutor” [6]. This means
such improvements help in a wide range of use cases where
appearing human is desirable, including games. Along with
accompanying communication, it is important that characters
can use non-verbal behavior to send social signals, which are
“...complex aggregates of behavioral cues accounting for our
attitudes” [7]. This allows them to participate in more dramat-
ically interesting scenarios. Status is one of these important
signals, defined as an embodied or felt sense of one’s social
position relative to others.

We chose status as the aspect to investigate since it is
considered very impactful in the performing arts, and thus
will be valuable in expressive virtual performances, including
those of NPCs in digital games. Status was first popularized
in improv and interactive theater by Johnstone [8], and is now
considered a core concept [9], useful for driving dramatic
activity. This further builds on status as a signal sent by
behaviour rather than overt symbols of e.g. wealth.

Gaze plays a central role in nonverbal communication;
empirical research has found high rates of correlation between
eye gaze and specific conversational actions [10]. Furthermore,
these expectations persist even with androids [11] and seem to
underlie the human ability to understand one another; violating
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them can lead to the Uncanny Valley [12] effect, where view-
ers find characters eerie or inhuman. Besides raw technical
improvements to rendering and resolution, modeling agent
behavior after expected human behavior provides another way
of increasing their believability. As well as enhancement,
gaze can function along with other body language to provide
contrasting messages or subtle meanings to verbal phrases.
We believe this can be synthesized with observations from
performance art to allow us to incorporate powerful dramatic
concepts that draw on embodied experience. Overall, concern
for the gaze of characters, which impacts social signaling and
conversational cues, implies a concern for the presentation of
social behavior in agents and relationships that are portrayed
between agents and between agents and users.

However, gaze has not been used often as a core game
mechanic, apart from a few examples such as L.A. Noire [13]
where the characters trying to deceive you may break eye
contact. Typically, character gaze is functional, with manually-
animated expressive qualities such in as Civilization VI’s
interstitial video clips where a sovereign announces they’re
angry with you and give a unique flourish [14]. Spore’s
[15] creatures that need to dynamically adapt to a variety of
body arrangements are probably one of the most advanced
examples of a game system that procedurally handles gaze;
still, this is mainly functional to allow characters to survey
their environment. Ultimately, since most of the animations
within digital games are baked versions of animator-produced
work, they are not very flexible or contextual. Therefore, to
have the most potential as an effective game mechanic, gaze
behavior should be proceduralized, with attention paid to its
expressive and functional meanings.

To order to move in this direction by improving the quality
of believable intelligent virtual agents’ interactions within
social settings, we examine how the important behavior of
eye gaze can be improved. To do this, we created a social
eye gaze model by synthesizing findings about gaze behavior
and status-related behavior, drawn from both the psychological
and performance art literature. These were developed into six
conceptual parameters that operate on a spectrum. to assess
the efficacy of the model’s static parameters, we conducted an
evaluation to allow us to assess it. After these studies validated
the social gaze model, it was implemented in an interactive
character system, which was evaluated in a lab-based study.

II. RELATED WORK

Conversations between virtual humans and between users
and such characters are an important way of promoting player
engagement. On the level of physiological engagement, we
know that eye gaze plays an important role in human conver-
sations. Its role in avatar conversations has been reasonably
studied, and computational models for controlling the flow
of such conversations has been produced [16]. Due to its
importance, and at times, central focus in animated scenes,
its capabilities are well worth understanding.

Within conversations, gaze is key to regulating conversa-
tional flow, indicating attentiveness, and a variety of affective

cues [17]. Argyle and Cook found that people who exhibit high
amounts of mutual gaze are perceived as competent, attentive,
and powerful. They also describing findings that mutual gaze
between adults in Western cultures lasts an average of 1-2s.
This range has been found to carry over to virtual agents [18].

Gaze behavior is also coordinated with proximity to others.
Equilibrium theory [19], where people reach an equilibrium
based on their interpersonal comfort. If one of the two factors
is varied, the other will be changed in response. The effect of
mutual gaze affecting proximity has also been observed to be
similar in virtual environments [20].

For virtual characters, mutual gaze has been found to build
rapport with people [21] and increase positive perceptions of
affiliation [22]. A functioning gaze model has been found to
motivate interest compared to a fixed-gaze [23]. Moreover,
[24] examined the contributions of avatars with differing gaze
patterns for conversations between remote users by comparing
audio-only, random gaze avatars, inferred gaze avatars, and
full video feed variations. While the random gaze model did
not improve users’ experience, the inferred gaze variation,
which used the audio stream to determine whether a user
was speaking or not, significantly outperformed both the
random gaze and audio-only variations. This indicates that
avatar animation should reflect the ongoing conversation. This
study is also relevant because it uses a dramatic scenario
involving a negotiation between aggrieved parties to provide
the participants with a meaningful task to undertake.

While many advances are being made in improving intelli-
gent virtual agents, to date, relatively few systems have been
designed to directly provide them with the ability to reveal
characters inner states via their gaze and/or head behavior.
Some of the systems devised so far include [18] who used an
animated pair of eyes to display affective signals. Queiroz and
colleagues [25] devised a parametric model for automatically
generating emotionally expressive gaze behavior. Lance et al.
have presented the Gaze Warping Transformation [26], which
is a means of generating expressive head and torso movements
during gaze shifts based on human motion data. Their later
development on GWT lead to them proposing a model of
realistic, emotionally expressive gaze [27].

Busso and colleagues [28] proposed a method to generate
gaze that quantizes motion-captured head poses into a finite
number of clusters, and builds a Hidden Markov Model for
each of these clusters based on the prosodic features of
the accompanying speech. [29] proposed a parametric gaze
and head movement model that is linked with the emotional
state machine developed at MIRALab [30], where mood
is represented with Mehrabian’s Pleasure-Arousal-Dominance
(PAD) Temperament Model [31]. Arousal and dominance
dimensions are used to drive the parameters of the gaze and
head movement models. Custom MPEG-4 Facial Animation
Parameter files are then played to provide appropriate character
animation.

Additionally, gaze control has been implemented in agent
frameworks at various levels. Autonomic behavior is the most
likely to be provided, for example with the “Eyes Alive” model
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[32] for saccades and Elckerlyc’s implementation of breathing
and blinking [33]. Other nonverbal behaviour (NVB) tends to
be generated manually by the content creator or automatically
processing speech for meaningful content to cue off of.

An important precursor is the work done by Brenda Harger
where she proposed using improvisational theater models
to improve believable characters [34], [35]. In one study,
she showed users simple animations of characters entering
a room, while being able to vary the characters movement
through adjusting a status parameter. By altering the parameter,
participants could see the character performing the same action
in different ways. Harger did not formalize a model, but this
showed the potential effectiveness of demonstrating status.

Another important investigation into the development of a
formalized model of NVB for portraying character attributes is
[36]. They found that animators can meaningfully and reliably
respond to prompts to produce character animation based on
Keith Johnstone’s system of Fast-Food Stanislavski.

III. THE SOCIAL EYE GAZE MODEL

We produced a parametric model for controlling the eye-
head gaze behavior of characters to portray differing levels of
social status, which is shown in Table I. Cognitive models have
been a mainstay in cognitive science, and can be specified at
different granularities. This model is of the verbal-conceptual
[37] variety, as we try to break down the components of
believable gaze and assess their impact. It is a model for
portraying status via gaze behavior at a medium-high level
of detail, not at the minute or micro level of detail.

For example, there are existing statistical studies of saccade
behavior, leading to the “Eyes Alive” model of saccades [38],
which indicate how eye-only gaze changes correlate to either
speaking or listening in a dyadic conversation. However, for
portraying social status, behavior changes involving combina-
tions of body parts should be considered. For this reason, the
gaze model portrayed here is evaluated as a whole.

The essential components that affect the model include
movement of the important qualifiers such as use of personal
space and overt social signaling. The model is based on a
number of psychological theories affecting the relationship
between these qualifiers and the behavior performance traits
that vary depending on personality type. After surveying the
literature to compile the most relevant theories, we extracted
the descriptions of NVB in dyadic conversations. We then
grouped these into the aspects of gaze behavior that were
affected. The resulting parameters are labeled following the
naming convention for these phenomena established in [39].

The model contains six important components whose vari-
ation has been found to signify differences in social status.
Table I provides a breakdown of the parameterized behavior
that affects the general pattern described above along several
continua. Movement toward an end of a continuum occurs
simultaneously in the same direction along the other continua,
although each parameter will have differently sized differences
between gradations. Length of eye contact refers to the period
of time during which mutual eye gaze is occurring, measured

in seconds. Length of gazes describes how long gazes toward
the opposite person in the dyad last for, measured in seconds.
Movement velocity refers to the speed of the eyes, head, and
neck during shifts in gaze, measured in degrees per second.
Head posture describes the overall inclination of the head.
Equilibrium response indicates the immediate response made
when the opposite person in the dyad moves into a closer
personal reaction bubble. Posture indicates a general stance
affecting the entire torso.

Table I
THE PARAMETERS OF THE SOCIAL EYE GAZE MODEL FOR PORTRAYING

STATUS THROUGH VARIATIONS IN GAZE

Parameter Low Status Behavior High Status Behavior
Length of eye contact Shorter Longer
Length of gazes Shorter Longer
Movement velocity Fast Slow
Head posture Bowed Raised
Equilibrium response Look away sooner Stare longer
Posture Lean away Lean toward

IV. EVALUATION OF THE SOCIAL EYE GAZE MODEL
PARAMETERS

We wanted to determine whether the listed parameters
produce behaviour that functions as major drivers of audience
perception. Furthermore, while we used the baseline estab-
lished for humans in the psychological literature, we wanted
to find workable ranges of values for these parameters. To do
so, we first implemented a scenario within SmartBody that
would facilitate the comparison of behavioral differences. The
videos of these scenarios were then shown to participants using
Amazon’s Mechanical Turk (MTurk) platform to compare the
conditions and find effective values for the parameters. MTurk
has been generally found to be a reliable mechanism for
conducting experiments [40].

In the empirical evaluations, we test the hypothesis that an
animated character whose gaze movements are faster, whose
fixations are shorter, and whose perceived length of eye contact
is shorter, will be perceived as lower status than one whose
gaze movements are slower, whose fixations are longer, and
whose perceived length of eye contact is longer. We do so by
comparing the participants’ rating of the character’s status.

A. Method

To demonstrate the feasibility of our model, we used the
SmartBody procedural animation framework [41] to animate
a short scene from Keith Johnstone’s book on improvisational
theater [8]. The scene for this study is set in an office
environment with a corporate officer who fires an employee
with a criminal record. We chose to use this scenario because
it has been successfully used to evaluate the NVB of characters
[36], [42], and it explores a situation with dramatic behaviour
where social status plays a meaningful role. It provides a
simple scene that constrains a number of factors including
the length of the exchange, the number of actions that occur,
and the personality traits and emotions on display. In addition,
based on findings in psychological studies, 30 seconds of
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exposure to people is long enough to make an impression
about their personality [43], without tiring participants. This
scenario was implemented using BML to generate the dialog,
as well as a minimal set of accompanying gestures (e.g. head
shakes for negative statements, deictic hand waves to refer to
the other person) to avoid presenting unnaturally still avatars.
These were designed to be emotionally neutral and were not
varied between conditions.

1) Experimental Design: The scenario was produced to
support two conditions, with a corporate officer displaying
either high status or low status behavior as they fired an
employee. This was achieved by varying only behavior as-
sociated with the following three model parameters: length
of eye contact, length of fixations, and movement velocity.
The scenario was implemented in the SmartBody environment
follow the scenario’s script.

Four different evaluations were performed. For each of
them, one human intelligence task (HIT) with 50 assignments
was loaded onto MTurk; thus, 50 unique workers completed
both trials, for a total of 200 participants. We restricted the
participants to be those with US accounts. Overall, the average
age of the 200 participants was 35.0 (SD = 11.0), with 57%
reporting their gender as male; the remainder reported female.

In the first evaluation, we used audio recorded by local
actors. The corporate officer was represented with a masculine
character, and the employee by a feminine character.

In the second evaluation, we replaced the actors’ voices
with TTS voices. The computer-generated voices were SAPI-
compliant male and female voices from Cereproc.

In the third evaluation, we rotated the camera 180◦ from
the first evaluation’s setup to focus on the employee character,
whose NVB was also generated according to the social eye
gaze model. The actors’ voices were retained.

To assess to which degree gender plays a role in the
perception of status, we tested a forth factor, using a female
character as the corporate officer. In this pair of videos,
the camera framed the Corporate Officer character as in the
first evaluation, while the scenario remained the same. The
characters’ voices used the same TTS voices.

We used the Ten-Item Personality Inventory Measure (TIPI)
[44] which is frequently used for measuring the “Big Five”
personality traits (openness, conscientiousness, extraversion,
agreeableness, and emotional stability). TIPI has been used
successfully in assessing virtual characters before, e.g. [18].

2) Procedure: The experiment was registered on the MTurk
website, and workers found it by browsing for HITs. They
viewed the experiment “ad”, and this contained the task in-
structions and informed consent. If they accepted the HIT, they
then saw the system capability verification screen. Next, they
provided some basic demographic information (age, gender).
Then, for each condition, they viewed the video of the scenario
and then rated the character. After each video, participants
completed the TIPI (10 questions), which uses a 7-point Likert
scale response. They were then prompted: “Given that social
status is a person’s standing or importance in relation to other
people, please circle the character’s apparent social status”.

The status question was answered using a 5-point Likert scale,
rated from 1 (Very Submissive) to 5 (Very Dominant).

The experiment was presented to workers on MTurk as
an HTML webpage with task flow controlled by JavaScript
code running locally in each worker’s web browser. Prior to
the experiment workers verified their system functionality by
listening to a brief audio track and transcribing the text. Trials
were constructed by pairing videos of the scenarios in the
different conditions of High and Low Status. The participant
rated the character’s personality and status after each one.
Randomizing the order of the videos counterbalanced the
conditions.

B. Results

In our statistical analysis we compared the change in status
rating across the different experimental conditions.

A univariate repeated measures analysis of variance was
conducted to compare the effect of social gaze model condition
on status. Results indicated there was a significant difference
between the High Status condition (M = 3.64, SD = 1.16)
and the Low Status condition (M = 3.45, SD = 1.24), F(1,
196) = 5.93, p = .016. No statistically significant interactions
between the other conditions (character, voice) were present in
this analysis. This finding supports our hypothesis and suggests
that the differing gaze behavior produced by the model does
have an effect on the perceived social status of animated
characters.

V. INTERACTIVE EVALUATING THE DYNAMIC SOCIAL
GAZE MODEL

This section presents a study that investigates how to send
social signals related to status by varying a virtual human’s eye
gaze and how people evaluate virtual humans engaging them in
social behavior. We integrated the social eye gaze model into
a behavior control module for a character animated with the
SmartBody procedural animation system. By combining this
with a chatbot-driven dialog system, we created a job interview
simulator with two different variations on the character’s eye
gaze. Participants then practiced interviewing the characters
while wearing an eye tracker, which allowed the character’s
behavior to vary based on mutual eye gaze. Again, they
reported that the varying gaze model changed their impression
of the character’s social status, providing further support for
our social gaze model.

A. Method

1) System Design: The system, as shown in Figure 1,
facilitates gathering input from a participant, and simultane-
ously controlling a SmartBody embodied conversational agent
(ECA) based on that input. The two inputs are eye tracking
data, which is monitored for mutual gaze with the ECA, and
voice input, which is used to generate dialog responses. All
scripts and libraries were programmed in Python.

The main sensor used is an eye tracking headset from Pupil
Labs [45], which coordinates a gaze camera and a world
camera to determine where the participant is looking. We used
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Figure 1. Diagram of the virtual agent architecture for eye tracking study.

the world camera’s medium setting of 1280x720 to capture
60fps. The gaze camera captured 640x480 at 120fps, using
IR illumination. Specifically, we defined a virtual region on
the screen surrounding the character’s eyes. These “virtual
surfaces” can be seen in Figure 2, registered relative to fiducial
markers. Doing so allowed Pupil Capture to record and stream
information about the participants’ gazes on the specified
surface, generating surface visibility reports and gaze counts.
This was found to be a very useful way to stream real-
time information about gaze on a user-defined area of interest
within an arbitrary software application.

Figure 2. Sample eye tracking surfaces as seen in Pupil Capture.

To provide dialog for the system, we used a custom chat
bot [46], [47], which uses the Google Speech API to obtain
audio from a microphone, and then relies on a probabilistic
match system to provide the best response to a given prompt
[48]. We provided the bot with dialog relating to a hiring
scenario. The chat bot uses StompSender, which is a Python
class that can send control messages to SmartBody via Apache
ActiveMQ using the STOMP protocol. The chat bot produced
vocal output using computer-generated voices (TTS) that were
SAPI-compliant male and female voices. TTS voices were

used since being able to rely on procedural speech is important
to the overall design goals of flexibility and portability in a
virtual human system.

Finally, the mutual gaze behavior is managed by custom
Python scripts. Whenever contact is made with the virtual
character’s eye region, the script determines how long the
character will sustain mutual gaze for. If the contact is
maintained, then eventually the script will direct the character
to avert their eye-head gaze. We implemented two different
versions of this behavior, to correspond to the experimental
conditions. In the High Status condition, the wait time is based
on a random number chosen from a Gaussian distribution with
M = 6.0s and SD = 1.0s. In the Low Status condition, the wait
time is based on a random number chosen from a Gaussian
distribution with M = 4.0s and SD = 0.5s. These numbers were
chosen to produce a range of times similar to those in the
psychological literature and tweaked with adjustments based
on early pilot studies. The other aspects of the gaze behavior
were timed to provide the maximum realistic separation, based
on the spectrum of parameters in the social eye gaze model.

2) Procedure: All experimental sessions were conducted
individually. The experimenter greeted each participant, and
explained the purpose of the study and the consent form.
Once the participant signed the consent form, the participant
completed a demographic data form and reviewed a set of
instructions for the interaction. To interact with the system,
the participant sat at a desk and wore the eye tracking headset.
Then, a brief calibration routine was conducted to ensure the
eye tracking was functioning properly. The participant then
interacted with the character in a simulated hiring scenario, by
asking the virtual character questions. On the desk was placed
a sheet of potential questions, a microphone, and a mouse that
could be clicked to allow the system to receive voice input.

After each condition, just as in the previous step, the avatar’s
personality was assessed using the Ten-Item Personality In-
ventory (TIPI), and a rating of the character’s apparent social
status on a Likert scale from 1 (Very Submissive) to 5 (Very
Dominant). The participants were also asked to describe their
main reason for the status rating. They were also asked to
rate the character’s competence similarly. They then repeated
the process with the other condition. The study took about 30
minutes to complete.

The participants were recruited from undergraduate and
graduate students. The undergraduate participants received
nominal credit from their course instructors for their partic-
ipation. The remainder of the participants were volunteers. 35
participants were recruited for this study. Typically, eye track-
ing usability-style studies recruit between 6–30 participants,
although oversampling is recommended due to the potential for
technical issues [49]. However, one participant reported that
they had difficulty paying attention to the task, and subsequent
review of their eye tracking data showed they only looked
at the animated character’s head region seven times during
a session, which was well below the average number of
such gazes across participants (M=2440). As perceiving the
character’s activity was the major focus of the study, and a
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Figure 3. The visual portrayal of the two versions of the character. (left)
Brian; (right) Brad.

prerequisite for making judgments about it, this participant’s
data was therefore excluded from the subsequent descriptions
and analyses.

Of the 34 participants, 24 of them were aged 20–24. 18 were
undergrad students. 11 indicated their gender was male, and 24
indicated their gender was female. Regarding their experience
with video games, 19 of them chose responses that indicated
they didn’t play games or did occasionally, but wouldn’t
identify with the term gamer. 15 of them indicated they were
either casual or hardcore gamers. The average number of times
they interviewed someone else in a work setting previously
was 2 (SD = 3), while the average number of times they
were interviewed for work was 6 (SD = 6). Most had not
interviewed someone else, but had been interviewed for work
purposes. The observations of this study are therefore expected
to generalize to young adults with some higher education, and
minor work and video game experience.

The participants engaged in a scripted interaction with our
virtual human character. They were given a list of questions
they could ask in a simulated hiring interview. There were
two versions of the character, with its gaze behavior adapted
to represent a person of either high or low status. Participants
interacted with both versions of the characters, in a within-
subjects design. The variations of the character were assigned
a differently colored shirt and name (“Brian” wore a dark
gray shirt and “Brad” wore a blue shirt, as shown in Figure
3), and the study was counter-balanced by presenting the two
conditions in a random order.

B. Results

The statistical analysis of the study, wherein participants
interacted with an interactive character compared the effects
of the two different conditions. Order of first condition did
not have a statistically significant effect on the results; neither
did participant gender and age range, which was the case even
when assessing virtual characters and gender stereotyping [50].

We performed a paired-sample t-test comparing the social
status rating results for the character in both conditions. There
is a significant difference in the scores for the High Status
condition (M = 3.18, SD = 0.72) and the Low Status condition

(M = 2.79, SD = 0.98); t(33) = 2.03, p = .046. These results
suggest that the differing gaze behavior really does have an
effect on the perceived social status of interactive animated
characters. Cohen’s d = 0.45, which is in the range of a
Medium effect. This finding supports our hypothesis.

We performed a paired-sample t-test comparing the compe-
tence rating results for the character in both conditions. There
was no significant difference in the scores for the High Status
condition (M = 3.85, SD = 0.93) and the Low Status condition
(M = 3.74, SD = 1.11); t(33) = 2.03, p = .54.

Paired-sample t-tests comparing the five personality factors
from each condition found no significant difference. This
implies that the use of the model did not alter the perceived
personality of the character in this evaluation.

VI. DISCUSSION

A. The Parameterized Gaze Model

This study determined that a specific combination of gaze
behaviors could be used to provide virtual humans with the
ability to communicate social status. Implementing the social
gaze model for these static videos allowed us to develop the
necessary BML commands and timing values that could be
used when the model is implemented within an interactive
system, and so this effectively allowed us to prototype the
required behavior for the interactive study in Section V. Find-
ing empirical support for the effects of the social gaze model’s
parameters also gave us confidence it would be effective and
worthwhile evaluating further.

While participants mentioned receiving an emotional im-
pression of the character in the open-ended comments, such
as appearing anxious and uncertain, the assessment of social
status was still effective. A few comments did make direct
reference to the characters’ eye movements. The fact that
they brought up emotional impressions rather than the gaze
behavior actually helps show that social status is perceived
without being overwhelming. Overall, participants reported
that the characters’ roles made the biggest impression on their
rating of social status, with NVB as the second-most frequent
factor. This shows the importance of the narrative context for
indicating to players why character actions occur.

B. Interactive Study

In this study, participants interacted with an ECA that used
the social eye gaze model’s fundamental values to control its
dynamic behavior, while adding in the parameter of length of
eye contact through its ability to respond to mutual eye gaze.
Since this study showed additional support for our hypothesis,
it serves as additional validation of the model. Importantly,
it shows support for the novel element added in this study:
varying response according to mutual gaze.

This finding is in contrast to at least one previous finding,
wherein a character implemented in Elckerlyc was used to
mediate communication between two people [51]. There,
participants saw each other as an avatar while conversing, and
its gaze was delayed to see if it thereby mimicked high status
behavior and portrayed dominance. The researchers weren’t

130



able to support that hypothesis. In that case, participants
knew they were communicating to another person through the
avatar, so it is possible that participants cognitively assessed it
differently than a communicating character, or that the selected
delay didn’t operationalize into a signal of social status.
Additionally, a study of gaze in interpersonal interviews found
that gaze aversions had strong negative connotations such as
perceptions of lowered credibility and attraction [52], whereas
nearly constant levels of high gaze are not significantly more
favorable than normal levels. Thus, it may be that gaze
behavior sends signals of low status more readily than the
inverse. This was supported in the comments about the Low
Status condition in our study. Participants associated the NVB
they saw with low status, while the high status behaviour was
often viewed in neutral terms, and their comments switched
to focus on the content in that condition.

The assessment of competence in this study was an attempt
to determine if there was any connection between the gaze
model and participations’ perception of this characteristic,
following prior findings that interviewees using normative to
nearly constant gaze patterns were seen as more competent
[52]. We did not find that, and indeed most participants
commented on the chatbot’s dialogue options and ability to
respond to questions when asked about their reasoning. It
seems that task performance is a priority in this context.

It is also worth noting that this study examined a different
scenario than those in Section IV. Those videos examined
a dramatic scenario taken from improv acting related to a
firing incident. In this case, participants participated in a
practice interview session. However, it seemed important to
evaluate the gaze model parameters in an interactive setting.
The hiring scenario is a more constrained and formulaic
experience. Still, training simulators represent an important
venue for ECAs [53], even in sophisticated contexts such as
training psychologists to do interviews [54]. Still, both settings
represent a range of experience that is important to equip
virtual humans for.

VII. CONCLUSION

In this paper we propose a verbal-conceptual procedural
model that provides a correspondence between the dramatic
quality of social status and six parameters affecting eye
gaze behavior. The studies documented in this paper provide
evidence for the efficacy of its parameters, through interaction
with both static and interactive representations of virtual
humans.

These studies show the importance of gaze to the social
interaction of interactive virtual agents, particularly during
conversations. Consisting of coordinated motion between the
torso, head, and eyes, gaze provides a broad range of abilities
including general vision, task-monitoring, emotional display,
and even subtler social signals in terms of the social status of
participants. Status was identified as a valuable realistic and
dramatic component of communication, worth investigating
for its contribution to believability. As we create intelligent

virtual agents that are intended to be dramatically believ-
able, the concern for meeting viewer expectations surrounding
communication as well as providing the ability for subtler
contrasting messages leads us to consider ways of improving
the gaze capability of virtual avatars.

As mentioned, [55] proposes a means of guiding partici-
pants by creating status vacuums, based on the principles of
interactive theater. In that case, the believability level of the
agent is important for building user empathy and interest in
the dramatic outcome. If social status is a reliable way of
changing participant behavior, then this model of believable
social gaze could help improve the portrayal of characters
involved in similar kinds of scenarios, as well as contribute to
a new way of directing player actions during dramatic scenes.

Social status is a powerful concept that has the potential
to produce believable behavior in virtual humans. In improv
theater, status refers to power differences in the relationship
between two characters; additionally, the most relevant differ-
ences are seen in actions taken, rather than overt differences
such as apparent wealth and rank. Since Johnstone believes
that the most interesting scenes arise out of status changes, it
is essential that it is possible to portray characters of different
status and have means for changing status. Our social eye
gaze model will enable virtual humans with a reliable way to
communicate status and thus play a part in diverse dramatic
situations. This could increase the number of contexts where
they can be used, including more genres of digital games,
especially those incorporating social simulations to provide
lifelike activity.
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Abstract—We investigate an evolutionary multi-objective ap-
proach to generating micro for real-time strategy games. Good
micro helps a player win skirmishes and is one of the keys to
developing better real-time strategy game play. In prior work,
the same multi-objective approach of maximizing damage done
while minimizing damage received was used to evolve micro
for a group of ranged units versus a group of melee units. We
extend this work to consider groups composed from two types
of units. Specifically, this paper uses evolutionary multi-objective
optimization to generate micro for one group composed from
both ranged and melee units versus another group of ranged and
melee units. Our micro behavior representation uses influence
maps to represent enemy spatial information and potential fields
generated from distance, health, and weapons cool down to guide
unit movement. Experimental results indicate that our multi-
objective approach leads to a Pareto front of diverse high-quality
micro encapsulating multiple possible tactics. This range of micro
provided by the Pareto front enables a human or AI player to
trade-off among short term tactics that better suit the player’s
longer term strategy - for example, choosing to minimize friendly
unit damage at the cost of only lightly damaging the enemy
versus maximizing damage to the enemy units at the cost of
increased damage to friendly units. We believe that our results
indicate the usefulness of potential fields as a representation, and
of evolutionary multi-objective optimization as an approach, for
generating micro.

Index Terms—NSGA-II, influence maps, potential fields, game
AI

I. INTRODUCTION

Real-Time Strategy games provide difficult challenges for
computational intelligence researchers seeking to build arti-
ficially intelligent opponents and teammates for such games.
In these games, players find and consume resources to build
an economy, build an army to defeat an opponent in a
series of skirmishes usually culminating in a large decisive
battle. Good RTS game play embodies near-optimal sequential
decision making in an uncertain environment under resource
and time constraints against a deceptive, dynamic, and adaptive
opponent (when playing against good players). Researchers
have thus begun focusing on real-time strategy games as a new
frontier for computational and artificial intelligence research
in games [1].

RTS game play involves both long-term strategic planning
and shorter term tactical and reactive actions. The long-term
planning and decision making, often called macromanage-
ment, or just macro for short, can be contrasted with the

quick but precise and careful control of game units in order to
maximize unit effectiveness on the battlefield. This short-term
control and decision making is often called micromanagement,
or just micro and good micro can win skirmishes even when a
player has fewer units. This paper focuses on evolving micro
for groups of units of different types.

Although much diverse work has been done on generating
micro for RTS games, our work differs in two aspects. First,
we use evolutionary multi-objective optimization to tradeoff
two objectives: damage done versus damage received. Second,
we represent unit behavior using multiple potential fields and
an influence map whose parameters evolve to generate micro
for groups composed from two types of units. Potential fields
of the form cxe where x can be distance, health, or weapons
cooldown determine unit movement. Influence maps that give
high values to map locations with more opponent units spec-
ify the location to move towards or to attack. This paper
extends earlier work that used the same representation and
Evolutionary Multi-Objective Optimization (EMOO) approach
in evolving micro for one type of melee unit versus one type of
ranged unit [2]. In this work, we use our own implementation
of the NSGA-II algorithms by Deb [3].

Our results indicate that we can evolve micro for a group of
ranged and melee units versus a group of the same number and
types of ranged and melee units. The evolved micro performs
well against hand selected opponents under a variety of con-
ditions. Without explicit representation, we see the emergence
of kiting behavior for the ranged units, fleeing behavior for the
melee units, and strong melee units screening for the relatively
weak ranged units. Kiting refers to attack and flee behavior.
Fleeing refers to running away. The pareto front of evolved
solutions contains a variety of tactics suitable for a variety of
roles in the broader strategic situation in a particular game.
For example, the GA evolves micro that maximizes damage
to opponent units while also receiving significant damage,
more balanced micro that deals and receives approximately
equal amounts of damage, as well as micro that deal little
damage but also receives little damage. In the broader picture,
this enables a human or AI player to choose the appropriate
micro for the current strategic situation. For example, a player
may choose micro that prefers to reduce damage by harassing
because it will tend to draw away opponent units from the
main force or occupy existing opponent units at a distant
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location. We believe these results indicate the potential of a
multi-objective approach for evolving high performance micro
and to the potential for a potential fields representation of
tactical behavior.

The remainder of this paper is organized as follows.
Section II discusses related work in RTS AI research and
common approaches to evolve the micro behavior of units.
Section III describes our 3D simulation platform, FastEcslent.
Section IV introduces the pure potential fields and influence
maps that govern micro in simulated skirmishes. This section
also describes the NSGA-II algorithm used to evolve the
micro behavior. Section V presents results and discussion.
Finally, the last section draws conclusions from our results
and discusses future work.

II. RELATED WORK

RTS AI work is popular in both industry and academia.
Industry RTS AI developers are more focused on entertainment
while academic RTS AI research focuses on learning or rea-
soning techniques for winning. RTS game play involves both
macro-management; long term strategic planning and micro-
management; short term tactical actions. Generating optimal
build orders that produce a needed mix of unit types falls under
the category of long term planning, that is, macro. Since macro
produces the units used for micro, we start with work in macro
for RTS games. Ballinger evolved robust build orders in Wa-
terCraft [4]. Gmeiner proposed an evolutionary approach for
generating optimal build orders [5]. Kostler evolve strategies
for either producing units of more types or producing more
number of units as quickly as possible [6]. Once we have
good macro producing a given a set of units, micro deals with
controlling these units and there is strong research interest in
producing effective group behavior (good micro) in skirmishes
since good micro can often turn the tide in close battles.
Liu used case-injected genetic algorithm to generate high
quality micro [7]. Churchill presented a fast search method
based on alpha-beta considering duration (ABCD) algorithm
for tactical battles in RTS games [8]. Again, Liu investigated
hill climbers and canonical GAs to evolve micro behaviors
in RTS games showing that genetic algorithms were generally
better in finding robust, high performance micro [9]. Louis and
Liu evolved effective micro behavior based on influence maps
and potential fields in RTS games [10]. Our paper extends the
work in [2] and represents micro based on influence maps
and potential fields for spatial reasoning and unit movement.

In physics, a potential field is usually a distance dependent
vector field generated by a force. The concept of artificial po-
tential field was first introduced by Khatib for robot navigation
and later this concept was found useful in guiding movement
in games [11]. An influence map structures the world into
a 2D or 3D grid and assigns a value to each grid element
or cell. Liu compares two different micro representations and
the result indicate that even with less domain knowledge the
potential fields based representation can evolve a reliable, high
quality micro in a three dimensional RTS game [12]. Schmitt
worked on evolutionary competitive approach to evolve micro

using potential fields based micro representation and results
shows that their approach can evolve complex units movement
during skirmish [13].

Early work used influence maps for spatial reasoning to
evolve a LagoonCraft RTS game player [14]. Sweetser pre-
sented an agent which uses cellular automata and influence
maps for decision-making in 3D game environment called
EmerGEnt [15]. Bergsma proposed a game AI architecture
which use influence maps for a turn based strategy game [16].
Preuss investigated an evolutionary approach to improve unit
movement based on flocking and influence map in the RTS
game Glest [17]. Uriarte presented an approach to perform
kiting behavior using Influence Maps in multi-agent game
environment called Nova [18].

Cooperation and coordination in multi-agent systems, was
the focal point of many studies [19], [20], [21], [22].
Reynolds early work explores an approach to simulate bird
flocking by creating a distributed behavioral model that results
in artificial agent behavior much like natural flocking [23].
Similarly Chuang studied controlling large flocks of unmanned
vehicles using pairwise potentials [24].

Within the games community, Yannakakis [25] evolved
opponent behaviors while Doherty [26] evolved tactical team
behavior for teams of agents. Avery used an evolutionary
computing algorithm to generate influence map parameters
that led to effective group tactics for teams of entities against
a fixed opponent [27], [28]. We define potential fields and
influence maps in more detail later in the paper. This paper
extends Louis’ [2] work in dealing with micro for heteroge-
neous groups of units.

To run our experiments we created a simulation model
similar to StarCraft-II called FastEcslent, our open source, 3D,
modular, RTS game environment. The next section introduces
this simulation environment in more detail.

III. SIMULATION ENVIRONMENT

With the release of the StarCraft-II API, StarCraft: Brood
War API (BWAPI) and numerous tournaments such as Open
Real-Time Strategy Game AI Competition, the Artificial In-
telligence and Interactive Digital Entertainment StarCraft AI
Competition, and the Computational Intelligence and Games
StarCraft RTS AI Competition, researchers have been moti-
vated to explore diverse AI approaches in RTS games [29]. In
this work, we ran our experiments in a game simulator called
FastEcslent, developed for evolutionary computing research in
games [30]. Unlike other available RTS-like engines, FastEc-
slent enables 3D movement, and can run without graphics thus
providing simpler integration with evolutionary computing
approaches.

We predefined a set of scenarios where each automated
player controls a group of units initially spawned in different
locations on a map with no obstacles. The entities used
in FastEcslent reflect those in StarCraft, more specifically,
Vultures and Zealots. A Vulture is a vulnerable unit with
low hit-points but high movement speed, a ranged weapon,
and considered effective when outmaneuvering slower melee
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TABLE I
UNIT PROPERTIES DEFINED IN FASTECSLENT

Property Vulture Zealot
Hit-points 80 160
MaxSpeed 64 40

MaxDamage 20 16*2
Weapons Range 256 224

Weapons Cooldown 1.1 1.24

units. A Zealot is a melee unit with short attack range and
low movement speed but has high hit-points. Table I shows
the details of these properties for both Vultures and Zealots
which are used in our experiments. Since our research focuses
on micro behaviors in skirmishes, we disabled fog of war
and enabled 3D movement by adding maximum (1000) and
minimum (0) altitudes, as well as a climb rate constant, rc
, of 2. Comparing to StarCraft, units move in 3D by setting
a desired heading (dh), a desired altitude (da), and a desired
speed (ds). Every time step δt , a unit tries to achieve the
desired speed by changing its current speed (s) according to
the acceleration (rs).

s = s± rsδt (1)

where rs is the units acceleration, δt is the simulation time
step, and ± depends on whether ds is greater than or less
than s. Similarly,

h = h± rtδt (2)

and
a = a± rcδt (3)

Where h is heading, a is altitude, rt is turn rate, and rc is
climb rate. From speed, heading, and altitude, we compute
3D unit velocity (vel) and position (pos) as follows:

vel = (s ∗ cos(h), 0, s ∗ sin(h))
pos = pos + vel ∗ δt

pos.y = a

Here, bold text indicates vector variables, the xz plane is
the horizontal plane, the y-coordinate is height, and the unit
points along its heading. This type of set-up is important
because units micro is governed by physics; that means micro
depends on units turning rate, speed and acceleration. The
effectiveness of a unit that can turn quickly and attack in all
directions is different compared to the effectiveness of a unit
that does not have the ability to turn quickly and can not
attack in all directions. Furthermore, a unit with high-speed
and high acceleration has the ability to flee quickly when
outnumbered compared to a unit with less speed and less
acceleration. Given a simulation environment within which
we can fight battles between unit groups from two different
sides, we need an opponent to evolve against. We first describe
our representation and then describe how we generate a
good opponent to evolve against within this representation.
Figure 1 shows the screen shot of our 3D RTS game simulation
”FastEcslEnt”.

Fig. 1. Screen shot of FastEcslEnt Simulation .

IV. METHODOLOGY

We create several game maps (or scenarios) with two types
of units on each side. When we run a fitness evaluation,
a decoded chromosome controls our units as they move,
using potential fields, towards a target location defined by
an influence map. This game-simulation stops when all the
units on one side die or time runs out. The simulation tracks
the health of units and provides a multi-objective fitness
(damage done, damage received) for this chromosome to drive
evolution. The rest of this section, describes the scenarios,
potential fields, and influence maps used in our work.

Earlier work has shown that evolving (training) on a single
map with fixed starting locations for all units did not result
in robust micro [10]. We therefore train our units over five
different scenarios and measure the robustness of evolved
micro on 50 unseen randomly generated scenarios. In this
work, randomly generated scenarios means only that units start
at different initial positions at the beginning of a fitness evalua-
tion. Scenarios are constructed from ”clumps” and ”clouds” of
entities; defined by a center and a radius. All units in a clump
are distributed randomly within a sphere defined by this radius
(400 for this paper). Units in a cloud are distributed randomly
within 10 units of the sphere boundary defined by the center
and radius (also 400).

We created two sides; player1 with 5 Vultures and 5 Zealots
and player2 with 5 Vultures and 5 Zealots. The training
scenarios are as follows: (a) A clump of player1 versus a
clump of player2, (b) A clump of player1 units surrounded
by a cloud of player2 units, (c) A clump of player2 units
surrounded by a cloud of player1 units, (d) A set of player1
units within range of 250 in all three dimension centered at
the origin and a set of player2 units within 250 in all three
dimension centered at 650, and (e) the same distributions
of units but with the players swapping their centers. Our
evaluation function ran each of these five scenarios for every
chromosome during fitness evaluation and the value returned
by the simulation for each objective is averaged over these
scenarios. This results in evolving more reliable micro that
can do well under different training scenarios.

Once a scenario starts running, units have to come up with
a target location to attack. An influence map determines this
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target location.

A. Influence Maps

A typical IM is a grid defining spatial information in a
game world, with values assigned to each grid-cell by an
IMFunction. These grid-cell value are computed by summing
the influence of all units within range, r of the cell. r is
measured in number of cells. The IM not only considers
units positions in the game world but also includes the hit-
points and weapon cool-down of each unit. The influence of
a unit at the cell occupied by the unit is computed as the
weighted linear sum these factors. A unit’s influence thus starts
as this weighted linear sum at the unit’s cell and decreases
with distance from this cell by a factor: If . The NSGA-II
evolves these parameters and evolving units move towards the
lowest IM grid-cell value [2] using potential fields to guide
all movement.

B. Potential Fields

We use potential fields to guide unit movement to the target
location provided by the IM. Once near the opponent, we
would like our units to maneuver well based on the location
of enemy units, their health, and the state of their weapons.
We define potential field in the form of cde where c and e
are evolvable parameters and d can be distance, health, or
weapons state. We thus define and use attractive and repulsive
potential fields for each of these factors. Since the fields for
friendly units should be different from the fields for enemy
units, we use two such sets of potential fields. Finally, the
target location also exerts an attractive potential. Ignoring the
target location’s potential field, this results in a total of 2
(attractive, repulsive) ×3 (location, health, weapons state) ×2
(friend, enemy) = 12 potential fields for guiding one type of
unit’s movement against an enemy also composed of only one
type of unit. We use the same techniques from [2] to convert
the vector sum of these potential fields into a desired heading
and desired speed and same ranges of value for potential field
parameters. Once we move to micro for groups composed from
two types of units, the number of potentials fields increases.

We need different potential fields for different types of units
because each type of unit treats other types of units differently.
For example a friendly melee unit treats enemy melee units
differently from enemy ranged units. The friendly melee unit
should avoid enemy ranged units and approach enemy melee
units. In contrast, a friendly ranged unit can target any enemy
unit during skirmishes. Thus we need different potential fields
and IM parameters for each type of unit.

Figure 2 shows the four sets of potential fields needed
when dealing with groups composed from two types of units
where F1 represents type one friendly units and F2 represents
type two friendly units. For now, we ignore potential fields
generated by the target location. Similarly E1 represents type
one enemy units and E2 represents type two enemy units. A
total of 4 (two attractive and two repulsive) fields are required
corresponding to F1, F2, E1, and E2 for each of the following
properties: distance, health and weapon state. This results in a

Fig. 2. Potential fields needed for groups composed from two types of units.

total of 4 (attractive, repulsive) ×3 (distance, health, weapons
state) ×2 (friend, enemy) = 24 potential fields per unit type.

The above explanation calculated the number potential fields
required for one type of unit. If p represents the number of
potential fields, then for one type versus one type p = 12.
For two types versus two types of units, recall that we needed
24 potential fields of each type of unit. Thus we will need 2
(types of units) ×24 = 48 potential fields required.

Generalizing if we consider skirmishes between n types of
units versus n types of units, then the number of potential
fields required per type of unit is n× p and the total number
of potential required is n×n×p. Each potential field has two
parameters, thus in total we need 2× n× n× p parameters.

We now consider the potential field exerted by the target
location. Each type of unit has its own target location, and
hence requires a fixed number of parameter for its target
potential field and influence map . Let q be this fixed number
of parameters. q grows linearly with n, thus q×n parameters
are required for n different types of units on each side. We
can see that Equation 4 gives the total number of parameters
required to deal with n different types of units to a side where
TNP refers to total number of parameters. Note that the
distance potential field parameters are computed more than
once, as different types of units are added to each side. We can
therefore subtract the i additional potential field parameters
from the total number of required parameters.

Thus for two types of units on each side, we need a total
of 106 parameters. In real game play, we usually micro with
four or five different types of units resulting in 388 or 595
parameters according to Equation 4. This seems feasible to
evolve with our micro representation.

TNP = (q + 2pn)n−
∑

i∈n
4(i− 1) (4)

These parameters provide a target location and guide unit
movement towards the target. If enemy units come within
weapons range of a friendly unit, the friendly unit targets the
nearest enemy unit. In our game simulation all entities can
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fire in any direction even while moving from one location to
other. With a good set of parameters the units evolve effective
micro that tries to maximize damage done to enemy units
while minimizing damage taken.

Although some work has combined damage done and
damage received into one objective to be maximized, we
keep the objectives separated and use an evolutionary multi-
objective optimization approach to evolve a diverse pareto
front. Specifically, we use our implementation of the Fast Non-
dominated Sorting Genetic Algorithm (NSGA-II) to evolve
a pareto front of micro behaviors for heterogenous groups
composed from two types of units. We try to maximize damage
done to enemy units while minimizing damage to friendly
units. Assume that we normalize damage done and damage
received to span the range [0..1], Equation 5 describes our
multi-objective optimization problem.

Maximize
[ ∑

enemies

(De),
∑

friends

(1−Df )

]
(5)

Here, De represents damage done to enemy units and Df

represents damage to friendly units. Our objectives are to
maximize De and minimize Df respectively. To minimize
damage to friendly units we subtract from the maximum
damage possible, 1, to also turn the second objective into a
maximization objective. This normalized, two-objective fitness
function used within our NSGA-II implementation then pro-
duces the results described in our results section.

C. Baseline Opponent AI

In order to produce high quality micro behavior, finding
a good opponent to play against is crucial. Instead of hand-
coding an opponent, we use a two step approach to find a
good opponent. First, we generated 30 random chromosomes
that we used as opponents and ran NSGA-II against each one
of them with population size of 20 for 30 generations. The best
opponent is the one that does most damage to friendly units.
We thus choose this opponent chromosome that does the most
damage as the next opponent. Second, we then run our NSGA-
II against this chromosome. The last generation pareto front
of NSGA-II provides a diverse set of micro behaviors ranging
from fleeing; less damage done and less damage received (0,
1) to kiting; more damage done and more damage received
(1, 0). We choose the most balanced performance, closest
to ( 0.5, 0.5), as the next opponent micro and repeat this
process five times (five steps). These five steps provide five
Balanced Opponent Micro (BOM) chromosomes (BOM1 -
BOM5). Since we do not use hand-coded opponent micro,
we ran 1000 randomly generated chromosomes against BOM1
through BOM5 to better understand their effectiveness.

Figure 3 shows the performance of 1000 randomly gener-
ated chromosomes against BOM1 to BOM5. In the figure,
the line marked BOi represents the pareto front of these
1000 random chromosomes against BOMi. That is, the points
on the line represent the best performers from among these
1000 random individuals against BOMi The x-axis represents
damage done, while the y-axis represents 1 - damage received.

Fig. 3. Pareto front of 1000 random chromosome against BOM1 to BOM5

The point (1, 1) then represents micro that destroys all enemy
units and receives no damage. (1, 0) is micro that does destroys
all opponents but also loses all friendly units. (0, 1) usually
indicates fleeing behavior, friendly units deal no damage and
receive no damage. (0, 0) is bad, friendly units did no damage
and received maximal damage - micro to be avoided. From the
figure, we can see that the line marked as BO4 did worst. This
means that the 1000 chromosomes did worst against BOM4,
the balanced individual from the last generation pareto front
in step four above. Furthermore, this implies that BOM4 is the
most difficult balanced opponent to play against and thus, with
high probability, a good opponent to evolve against. To confirm
that BOM4 would make a good opponent to evolved against,
we ran 3750 random chromosomes against BOM4 and against
a fleeing individual from the last generation pareto front
from step four.1 Figure 4 shows how these two individuals
fare against these new random chromosomes. Clearly these
individuals again perform worse against the balanced opponent
(BOM4) and we thus choose BOM4 as our final opponent in
the experiments described below.

V. RESULTS AND DISCUSSION

We use real-coded parameter with simulated binary
crossover (SBX) along with polynomial mutation. After ex-
perimenting with different values, we settled on the following.
Crossover and mutation distribution indexes were both set to
20. We used high probabilities of crossover (0.9) and mutation
(0.05) to drive diversity.

A. Pareto Front Evolution of Final Experiment

We evolved micro for groups of 5 vultures and 5 zealots
versus an identical opponent also with 5 vultures and 5 zealots.
We used a population size of 50 for 75 generations and report
results over 10 runs using a different random seed for each run.

13750 comes from our experiments in the next section where we use a
population of 50 running for 75 generations. 3750 = 50× 75.
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Fig. 4. Comparing the pareto front of 3750 random chromosome against good
balanced and good flee-er from step four

Figure 5 shows the evolution of the pareto front at intervals
of fifteen (15) generations for one run of our parallelized-
evaluation NSGA-II. Broadly speaking, the pareto front moves
towards (1, 1) while maintaining representatives along the
tradeoff curve for maximizing damage done and minimizing
damage received. We can see the maintainence of a diverse set
of micro making a diverse set of tradeoffs between damage
done and received. These results provide evidence that we can
evolve a diverse set of micro tactics that learns to performs
well against an existing opponent.

Fig. 5. Micro Evolution for Friendly Unit in Final Experiment

To test the effectiveness of our evolutionary multi-objective
optimization approach, we played a balanced individual and a
fleeing individual from the 75th generation pareto front against
3750 randomly generated chromosomes. Figure 6 shows how
these random chromosomes did against the evolved micro.

For comparision, we also ran BOM4 and fleeing micro from
last generation pareto front of step four against these random
individuals.

Fig. 6. Comparing evolved micro against 3750 random chromosomes

The figure shows that our evolved balanced individual does
better than fourth step balanced individual, and the evolved
fleer also does better than the step four fleer. Evolutionary
multi-objective optimization’s approach to producing a diverse
set of solutions along the pareto front leads seems to lead to
robust micro. Watching the micro we can see the emergence of
kiting, withdrawing, and other kinds of behavior often seen in
human game play. Videos of the evolved micro are available
at https://www.cse.unr.edu/∼rahuld/CIG2018/.

Figure 7 plots the combined pareto front in the first gen-
eration over all ten random seeds versus the combined pareto
front in the last generation over the ten random seeds. That is,
we first did a set union of the pareto fronts in the ten initial
randomly generated populations. The points in this union over
all ten runs are displayed as purple + for the initial generation
(generation 1) points and as green × for the points in the final
generation (generation 75). The figure then shows progress
between the first and last generation over all ten runs. We can
see that the last generation pareto front produces micro on one
extreme on the left (0.02, 0.98) representing a strong tendency
to flee, to the other extreme on the right (1,0.25) denoting an
aggressive attacking micro behavior. There are a number of
solutions near the middle with balanced micro behavior.

To further check the robustness of our evolved micro on
the last generation pareto front, we decided to select one
balanced, one fleeing, and one attacking example of micro
from this last generation and play against BOM4 in a variety of
different randomly generated scenarios. In these 50 scenarios,
we randomly varied the numbers of zealots and vultures, both
between 5 − 10, and made sure that both sides had identical
units. Figure 8 shows results, indicating that the evolved
attacking micro (green ×s) comes in on the lower right,
generally dealing damage while also receiving significant
damage. On average over the 50 scenarios, the attacking micro
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Fig. 7. The initial and final generation pareto front over ten runs for evolved
micro

Fig. 8. Robustness of evolved micro on 50 random testing scenarios

leads to objective function values of (0.812, 0.291), while the
balanced micro leads to an average of (0.39, 0.59) and the
fleeing micro’s average fitness comes to (0.21, 0.79).

Finally, we played the evolved attacking micro
against larger numbers of opponents. The video at
https://www.cse.unr.edu/∼rahuld/CIG2018/Video1.mp4
shows how 5 vultures and 5 zealots controlled by our
evolved attacking micro plays against and defeats 5 vultures
and 10 zealots controlled by BOM4. The attacking micro
manages to destroy all 15 opponent units showing that better
micro can win even when outnumbered. A second video at
https://www.cse.unr.edu/∼rahuld/CIG2018/Video2.mp4 shows
our attack micro controlled 5 vultures and 5 zealots playing
against 5 Vultures and 15 Zealots controlled by BOM4. This
is an example of the type of effective kiting that evolves over
time.

VI. CONCLUSIONS AND FUTURE WORK

This paper focused on extending research in multi-objective
optimization and potential fields based representation to evolve
micro for groups composed from heterogeneous (two) types
of units. We choose a group of ranged and melee units to
play against a group of ranged and melee considering damage
done and damage received as two objective functions. We
use an evolutionary multi-objective optimization approach that
maximizes damage done and minimizes damage received to
tune influence map and potential field parameter values that
lead to winning skirmishes in our scenario.

We can see the emergence of kiting and other complex
behavior as the population evolves. The multi-objective prob-
lem formulation using the fast non-dominated sorting GA
evolves pareto fronts that produced a diverse range of micro
behaviors. These solutions not only beat the opponent that they
played against to determine fitness, but are robust to different
numbers of opponents and can beat an opponent even when
outnumbered.

Although this work dealt with two unit types, we would
like to extend our work to multiple unit types and to reduce
the need for a good opponent to evolve against. As one
of the reviewers pointed out, evaluating our evolved micro
against a hand-coded opponent should give us a better absolute
performance measure. We plan to do so. Since we had to
manually co-evolve the opponent in this paper, we also plan
to investigate co-evolutionary multi-objective approaches. That
is, we would like to use a multi-objective, co-evolutionary
algorithm to co-evolve a range of micro that is robust against
a range of opposition micro. Finally, we plan to work on the
StarCraft -II API to implement our approach and representa-
tion to evolve micro to test against human experts.
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Abstract—We describe a Monte Carlo Tree Search (MCTS)
powered tool for assessing the impact of various design choices
for in-development games built on the Unity platform. MCTS
shows promise for playing many games, but the games must be
engineered to offer a compatible interface. To circumvent this
obstacle, we developed a support library for augmenting Unity
games, and Python templates for running machine playtesting
experiments. We also propose ways for designers to use this
tool to ask and answer designs questions. To illustrate this, we
integrated the library with It’s Alive!, a game in development by
the authors, and 2D Roguelike, an open source game from the
Unity asset store. We demonstrate the tool’s ability to answer
both game design and player modeling questions; and provide
the results of system validation experiments.

Index Terms—machine playtesting, MCTS, restricted play,
Unity

I. INTRODUCTION

Human playtesting is an irreplaceable aspect of game de-
velopment. It can also be logistically cumbersome and creates
a significant bottleneck in the design cycle: design, build,
test, learn, and redesign. One of the main arguments for
machine playtesting is that a simulator can play through games
orders of magnitude faster than a human. Thus, it can cover
more ground, collect more data, and, in some cases, provide
guarantees through exhaustive search.

We present Monster Carlo, a framework for machine
playtesting Unity1 games. Tools based on this framework can
gather data on different design variants and playstyles in order
to detect imbalance and other effects design changes may
have on a player’s experience. We set out to apply Jaffe’s
Restricted Play balance framework [1], to It’s Alive!, a game
in-development by the first author (Figure 2). Contrasting
with Jaffe’s work, which examined the win–lose outcome
of competitive two-player card games, It’s Alive! emphasizes
maximizing the score in a single-player Tetris-like game.
Exhaustive search is not tractable in the general case of It’s
Alive!, due to the vast number of reachable states. In response,
we apply Monte Carlo Tree Search (MCTS) to find input
sequences that approximately maximize the player’s score.

Monster Carlo aims to bring AI techniques to game devel-
opers in the platforms they are already using. In the implemen-
tation of our framework, we made an effort to minimize the

1https://unity3d.com/

game code changes required for integration. We also provide
result visualization templates in Jupyter Notebook, a tool often
used for gameplay data analysis [2].

To test the tool’s versatility, we integrated it with a game
of a different style and one we did not develop: 2D Roguelike
(Figure 5), the open source game from the Unity asset store.2

Monster Carlo is meant to answer a variety of design
questions: In It’s Alive!, how do monster “come to life”
conditions affect the achievable high scores? How does a
player who collects monsters right away compare to a player
who waits until the last moment? In 2D Roguelike, how does
the game dynamic change if we increase both the damage dealt
by the zombies and health gained from food pick-ups? How
feasible is a no-backtracking player strategy?

MCTS has many variations. We experimented with never
re-visiting fully explored branches of the search tree, aiming
to increase the number of states explored. We tested different
values for the tunable exploration constant in the UCT3

algorithm, finding the search performs better if the constant
is closer to an average score of a human player. We also
added an optimization technique of saving the entire playtrace
of each playthrough with a new best score [3]. All of these
game-agnostic variations are available through parameters of
Monster Carlo.

In general, using MCTS for machine playtesting requires the
games to be engineered to be compatible with it. The Monster
Carlo support library is designed to hook into the Unity engine
update cycle and makes this engineering easy. We also created
data analysis templates for experiments that take the form of
comparing optimized scores between variants.

This paper makes the following contributions:

• A framework for machine playtesting Unity games where
instances of the game execute rollouts for MCTS.

• First work to use MCTS at the level of a whole game
platform rather than a specific game.

• C# and Python support libraries for adapting a game to
support machine playtesting and running experiments.4

2https://www.assetstore.unity3d.com/en/#!/content/29825
3Upper Confidence Bound-1 applied to Trees
4https://github.com/saya1984/Monster-Carlo
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• Initial experiments that validate the framework and an-
swer design questions about an in-development game.

II. RELATED WORK

In this section, we review the work related to three topics
relevant to Monster Carlo: design inquiry with restricted play,
MCTS, and frameworks designed to support MCTS.

A. Design Inquiry with Restricted Play

Ludocore is a logical game engine for modeling video
games [4]. Smith et al. imposed restrictions on the player
behavior in order to analyze games created within the Lu-
docore framework. From Ludocore, we borrow the idea of
asking design questions by restricting our player models and
observing how these constrained players perform as variations
in the design are considered. In Ludocore, games had to be
encoded in a specially-designed logic programming language
which Ludocore’s back-end analysis engine could understand.
By contrast, Monster Carlo is meant for integration with
Unity games. Such games can dynamically allocate memory,
hand-off simulation to a physics library, or perform other
computations that would be tedious to model in a purely
symbolic framework.

The Restricted Play concept of asking game balance ques-
tions by preventing or forcing a player to do certain actions
in game was introduced by Jaffe et al. [1] and was applied
to a two-player, perfect-information game Monsters Divided.
In their evaluation tool, the authors calculated the optimal
strategies for each type of restricted behavior. The game size
(five cards per player) allowed for exhaustive search through
the entire game tree, foreseeing every possible playthrough. In
their Future Work section, the authors state that MCTS is a
promising alternative for games whose complexity makes ex-
haustive search impractical. Because of MCTS’s agnosticism
to a game’s features, it can be used without modification on
different restricted players and game design variants. In this
paper, we extend Jaffe’s restricted play idea, combining it with
MCTS and applying it to a new class of games: single player,
discrete state games with a larger space of states.

Zook et al. [5] follow up on Jaffe’s suggestion to use MCTS
for analyzing large games. They experimented with Scrabble
and the Magic: The Gathering inspired card game Cardo-
nomicon. They used restricted play to simulate player skill
levels to see what trends and strategies emerge when players of
different skills are pitted against each other. Although Scrabble
and Cardonomicon are naturally imperfect-information games
(one cannot be sure which tiles or cards the opponent has until
they are played), Zook et al. work with determinized, perfect-
information variations of these games (explained further in
section II-B). It’s Alive! is also a nondeterministic game (the
player does not know which piece will be randomly dropped
next), and we use the determinization strategy by fixing the
game’s random seed value.

Holmgrd et al. [6] used genetic algorithms to evolve custom
evaluation functions for use with MCTS to simulate different
playstyles in the game MiniDungeons 2. They used the evolved

personas to assess feasibility of each playstyle in different level
layouts. This approach can be combined with Monster Carlo,
as it allows the user to implement custom evaluation functions
for use within simulations and final score computation.

B. MCTS

Monte Carlo Tree Search (MCTS) is a heuristic search
algorithm which selectively explores the tree of possible moves
[3]. It assesses the potential of each move by averaging the
scores of simulated random playouts from the current point
in the game until a terminal state. Although MCTS denotes
a broad family of algorithms, the most common, UCT, has a
single tunable parameter: the balance of advancing the more
promising branches of the tree with exploring the paths less
traveled. MCTS is a relatively simple algorithm and can be
used with a multitude of decision problems without the need
for game-specific heuristics. It has been successfully applied to
Go [7], Tetris [8], Scrabble [5] and other games. Most recently,
it was used in the creation of AlphaZero [9], the latest world
champion in Go. In the rest of this paper, we use the general
term MCTS to refer to the specific instance of UCT in the
Monster Carlo framework.

MCTS relies on building a tree of the possible moves in
each state. In games with a random element, such as Tetris
or Scrabble, the search was performed using a predetermined
sequence of pieces. In the determinized version of the game,
the automated player’s goal is simply to find the single best
sequence of moves that maximizes the final score. Without
determinization, the much more difficult goal is to devise a
policy that maximizes the expected score averaged over all
possible random elements in the game. We used determiniza-
tion, as it is sufficient to answer the design questions Monster
Carlo is intended to answer. One of the main differences in
our application of MCTS is that the games described above
all had a win/lose condition (even Tetris, as it was played
competitively), while the games described in this paper focus
on the highest score attained.

C. Environments that support MCTS

The Video Game Definition Language (VGDL) [10] is a
representational language for modeling videogame mechanics
and level designs. The General Videogame Artificial Intelli-
gence (GVG-AI)5 project provides an interpreter for VGDL
games which exposes an MCTS-compatible forward model.
Although VGDL has been used to model games inspired by
many different kinds of pre-existing videogames, it cannot
integrate with the original implementations of any of these
games. Like Ludocore, GVG-AI tools can only understand
games expressed in a specialized language. By contrast, Unity
games can make unrestricted use of the general purpose C#
programming language used for Monster Carlo.

OpenAI Gym6 is a testbed for AI. It includes environments
which provide state information, pixel data and rewards in
response to an agent’s action. It can integrate with commercial

5http://www.gvgai.net
6https://gym.openai.com/
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ROM implementations of many Atari games and can have
algorithms learn to play directly from pixel or memory data,
rather than the simplified game state abstraction used in
VGDL. A growing number of environments are available for
AI experimentation. A related effort, OpenAI Universe,7 aims
to allow integration with an even wider array of gameplay-
like activities, even including a mock travel arrangement task
based on interaction with complex websites. Although these
frameworks allow MCTS-style algorithms to play a very
wide variety of games, they force interaction with the game
at the lowest level of interaction common to all of them:
reading pixels or memory bytes and injecting keyboard and
mouse actions. By contrast, Monster Carlo is intended to give
designers control of the level of abstraction used by MCTS
including high-level game actions (e.g. directly playing a card
rather than clicking somewhere to select a card). This is
important for making Monster Carlo’s analysis useful for game
developers rather than AI researchers.

All of these systems deal with the representations of game
states and actions differently. VGDL uses a data structure for
tracking the abstract state of the game and a list of interactions
between game objects as action representation. OpenAI Gym
uses screenshot pixel data and memory contents for state
representation and low-level keyboard and mouse events as
actions. Monster Carlo does not represent a game state beyond
the sequence of moves needed to reach it, and a way of
asking the framework to make discrete micro-decisions which
assemble into high-level actions (further described in III).

D. Unity and Unity Machine Learning Agents (ML-Agents)
Unity is a powerful game engine available for free for pri-

vate use, which makes it popular with independent developers.
Unity does not directly support integration with MCTS. To
change this, it is necessary for the game to communicate what
actions are possible at any moment and provide a way for
some AI system to select and apply one of those actions.
Additionally, there needs to be a way of communicating a
score to be optimized to the AI system. As the level of
granularity used to model player choices and the notion of
score to be optimized are specific to the game being designed
(and even specific to certain design questions being asked of
that game), these cannot be provided directly at the level of
the Unity platform. In response, Monster Carlo aims to offer
the designer a minimal-effort way of expressing game-specific
concerns on top of the Unity platform.

Unity ML-Agents8 is a plugin meant to enable using games
and simulations to train agents via various machine learning
methods. While both Unity ML-Agents and Monster Carlo
involve running many thousands of simulated play traces,
Monster Carlo focuses on summarizing those trace for im-
mediate review by designers rather than producing a trained
behavioral policy as a side effect. As a result, Monster Carlo
has very few parameters to adjust and does not require defining
a neural network architecture or other policy representation.

7https://blog.openai.com/universe
8https://github.com/Unity-Technologies/ml-agents

III. SYSTEM DESIGN

The Monster Carlo framework consists of four major parts
(Figure 1). The integration modifications to the game and
specifications for the design experiment (the green parts on
Figure 1) have to be written by the game designer, while
everything else is provided through the Monster Carlo tool.

We used MCTS as the main search algorithm for our ex-
periments, but the algorithm can be changed without adjusting
the game or the design experiment notebooks.

A. Experiment setup and result visualization

The user-facing element of the Monster Carlo framework is
a sample Jupyter Notebook for running the experiments and
visualizing the results. This includes the game process factory.
The user must provide a function that can be called to start an
instance of the game, and the game must be compiled with the
C# support module (see III-C). The customized process factory
can be used to pass experiment-specific configuration data to
the game. For example, one can configure it to start in a certain
mode optimized for analysis, or arrange for the execution of
the game to happen on a remote cluster of machines. The
experiment results are returned as an object, which can be
saved in a file at the end of each experiment and later used
for analysis and visualization. We used matplotlib9 to visualize
the results. All the experiment result graphics in this paper
were obtained through this method.

B. Python support module

This module contains the implementation of the MCTS
algorithm in Python. Upon the termination of the experiment,
it returns an object which contains the search tree and any
additional data. This output object can be trivially modified
to keep track of additional metrics. In our experiments, we
kept track of the growth of the highest seen score over the
rollouts, but we could, for example, have as easily kept track
of the number of monsters collected during a playthrough. In a
narrative oriented game, we might track the fraction of dialog
content seen or tally which endings where reached.

The tool supports running multiple instances of the game
to significantly speed up the search (see Section V-A for the
results). It takes as an argument the number of rollouts and
additional optional arguments that include the UCT constant
value, the number of parallel workers, terminal branch treat-
ment, saving of the best path option, and a callback function,
which can be used to implement custom logging. These are
passed to the game instances via environment variables.

C. C# support module

The C# module must be added to the game project. The
module takes in the environment arguments at the start of
the experiment and communicates with the Python module
through a TCP socket. It receives the most promising path
prefix determined by the MCTS algorithm from the Python
module at the beginning of each playthrough. Each time a

9https://matplotlib.org
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Fig. 1. High level architecture of the Monster Carlo framework. The specification of the design experiment (in Python) and the game code itself (in C#) are
project-specific, while the other elements are provided by the framework.

decision must be made in game, the game tells the module
how many legal moves are available, and the module makes
a choice without needing to know what those moves are. If
there are pre-determined moves in the path prefix, the module
feeds those back to the game one at a time. When the end of
the path is reached, the module continues by making random
choices. A custom heuristic can be optionally be expressed in
C# by providing an array of action selection weights to be
consulted during the rollout phase. When the play session is
over, it reports the final score to this module, which sends the
full action path, the final score, and any other information the
designer specified, back to the Python module.

D. Modifications to the game

The designer must implement micro-decisions and scoring:
the game must determine legal moves at each step, request
an index of a move to take, and apply that action. When the
game reaches a terminal state, it must provide the score to
the support module. If random elements are present, each
playthrough needs to use the same random seed. We also
recommend creating a headless, no-graphics mode for the
game, as it can significantly speed up the playthroughs on
some platforms.

The game also needs an experiment mode to be able to
replace the user’s input with decision requests to the C# mod-
ule. Launching the game in the experiment mode can include
skipping menu screens and disabling smooth movements. To
optimize the running time, we recommend adding an ability
to reset the game after the terminal state is reached, so that
the application doesn’t have to be re-launched for each fresh
playthrough.

Additionally, if the designer wishes to conduct Jaffe-style
restricted play experiments, they will have to implement the
player models (which may limit available actions before the
C# module is queried for a choice). They can also implement a
way to switch between the game design variations. The space
of design variants considered can be as flexible as the user
wants, as long as they can specify those variants in Python
and communicate them to the game’s executable.

IV. EXPERIMENTS

This section describes example experiments we conducted
using the Monster Carlo framework. They show how to use

Fig. 2. Possible actions in this state include landing the falling piece in one
of the five columns in one of four orientations, or collecting one of the two
living monsters.

the restricted play methodology to ask design questions for
two games: It’s Alive! and 2D Roguelike.

A. It’s Alive!

It’s Alive! (see Figure 2) is a Tetris-style game where the
player controls the position and orientation of pieces falling
from the top of the board. Player loses if the pieces pile up to
the very top of the board. Rather than trying to make simple
horizontal lines of pieces as in Tetris, the player must form
arrangements of pieces that represent monsters. A monster
comes to life when it minimally contains a head piece and
a heart piece. At this point, the player may choose to collect
it to free up space, or continue building it up. Bonus points
are awarded based on the size and color coordination of each
monster. If there are several moving monsters on screen, the
player can choose which one to collect by shifting the highlight
from one monster to another. The player aims for the highest
score by animating and collecting five monsters.

The player actions consist of rotating the falling block,
moving it left or right, or quick-landing it. The player can
also cycle the highlighter through living monsters or delete
the currently highlighted monster. Thus, at any point, she
has four to six possible keyboard-level actions: rotate, move
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Fig. 3. Highest score achieved for greedy, unrestricted and lazy player models.

left, move right, quick-land, cycle highlighter, collect monster.
Some of those actions could be repeated indefinitely without
affecting the game state, meaninglessly expanding the scope
of the search for Monster Carlo to perform. To avoid this, we
use micro-decisions to model only those choices that resulted
in meaningful state change. The OpenAI Gym would have
forced a mode of interaction at the level of keyboard inputs,
whereas Monster Carlo allows the flexibility to focus the
analysis on the level of details the designer cares about. Instead
of ability to move the block left or right any number of times,
the artificial player simply chooses whether to collect one of
the living monsters or to land the piece in any orientation
in an open column. Similarly, cycling the highlighter is not
considered an action, instead, collecting any of the living
monsters in the current state is considered a legal action,
regardless of the highlighter position (Figure 2). With this new
definition of action in mind, the player has 20 or more possible
actions at every moment. That is five possible columns times
four landing orientations, plus one collect action per living
monster. On a 5x7 playfield, this makes exhaustive search
computationally intractable due to the vast number of possible
combinations.

1) Playstyle experiments: Like Tetris, It’s Alive! has many
quick game-over states resulting from piling pieces in the
same column and reaching the ceiling while most of the
playfield is still empty. To prevent Monster Carlo from wasting
time exploring these dead-end scenarios, we prevented all
player models from placing a piece that would end the game
if a non-game-ending move was possible, such as placing
a piece somewhere else or collecting a monster. We did
this by excluding the game-ending moves from the list of
available actions within the game. No changes to the Monster
Carlo framework were required to express this more focused
analysis.

We used factored actions for most of It’s Alive! experiments.
Each turn, the player makes a sequence of micro-decisions.
First: Should I land the current piece or collect a monster?
Next, if I chose to land a piece: Which column should I land
it in? Finally, in which orientation should I land the piece?
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Fig. 4. Highest score for regular, mon-ochrome-ster and ten-acious designs.

We experimented with three player styles. The greedy player
collects the monsters as soon as they came alive. The lazy
player collects a monster only if the game would otherwise
end. The unrestricted player is free to collect at any point.

Figure 3 shows that the lazy player did best, while the
greedy player performed the worst. The p-values designating
statistical significance of the difference between the scores of
each pair of the results ranges from 3.4e-08 to 4.5e-07.10

These results show that deciding when to collect a monster
is a meaningful choice for the player. Notably, while techni-
cally nothing prevented the unrestricted player from achieving
the same results as the lazy player, presenting it with an
opportunity to collect the living monster at every step slows
down the search progress. This is a reminder that all results
from MCTS are approximations computed within a fixed
computational budget, so they cannot be trusted with the same
level of certainty as in the exhaustive search results in Jaffe’s
original Restricted Play work. Nevertheless, large score gaps
can provide a signal that a designer should look deeper into
the specific playtraces found by MCTS that illustrate specific
styles of play in action. For this reason, it is important that
Monster Carlo returns the resulting tree, not just the aggregate
statistics. The user may decide to replay the highest scoring
play trace in a mode with more detailed analytics turned on
to gain deeper insight into the impact of playstyle difference
that the tool discovered.

2) Design variants: We considered three game design
variants. The regular design follows the rules outlined above.
The mon-ochrome-ster design considers two pieces within a
monster connected only if they are of the same color. In the
third variant, ten-acious, the monster only comes to life if it
consists of at least ten pieces.

The results (Figure 4) show that the mon-ochrome-ster mode
is much harder than the other two, and affords for a lower max-
imum score. Counter-intuitively, the ten-acious design variant,

10Here and in all other experiments, statistical significance is judged
according to the single-sided Mann-Whitney U test applied to the highest score
achieved within the rollout limit. Each experiment involves 20 independent
replicates of each condition.
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Fig. 5. Screenshot of Unity tutorial game 2D Roguelike.

which places a restriction on the player and thus, makes for
a harder game, led to higher scores than those Monster Carlo
achieved in the regular design. Both experiments were run
with the same random seed, so nothing prevented the regular
design player from building monsters of ten blocks or more.
The progression of the highest score seen across the rollouts
in Figure 4, shows that the regular design scores are higher
initially, but are quickly overtaken by those seen in ten-acious.
We believe this is caused by the restrictions in ten-acious,
which prevented the search exploring the frequent collection of
smaller monsters. As before, Monster Carlo does not replace
the user’s judgment of game design alternatives, but it can
gather specific evidence that helps the user make that judgment
for themselves.

B. 2D Roguelike

Note that because we are the developers of both Mon-
ster Carlo and It’s Alive!, it is possible that we have over-
specialized the framework for analysis of games very much
like It’s Alive!. In this section, we consider the integration
effort and results from experiments with a game that we
did not make ourselves, nor considered during the primary
development of the Monster Carlo framework.

2D Roguelike (Figure 5) is an open source official tutorial
game for the Unity game engine.11 It is grid and turn based:
zombies get to take a step for every two steps the player takes.
The player starts at the lower left corner of the field and the
goal is to reach the exit in the upper right corner, signifying he
has survived another day. The game is over when the player
runs out of food points and the final score is the number of
days the player has survived. One food point is lost for every
move and several are lost in case of zombie attacks. The food
points can be replenished by picking up food items. The levels
are laid out randomly. The number of zombies is a function
of the number of days survived, gradually increasing. At any
point, the player may choose to go up, down, left or right.

11https://www.assetstore.unity3d.com/en/#!/content/29825

Each of these actions results in a state change, as the food
points go down even if the player attempts to walk through a
wall and does not actually move.

1) Playstyle experiments: For 2D Roguelike we factored
the actions into a choice of moving toward or away from the
exit, and then deciding whether the move is lateral or vertical.
For the first player, as a simple heuristic, we used Monster
Carlo’s capability for weighted choice to make the player more
likely to move toward the exit in the rollout phase of MCTS.
The second player was restricted to only move toward the
goal. After 30,000 rollouts, the forward-only player achieved
statistically significantly higher scores (p = 3.3e-08).

Due to the game mechanics, while the forward-only player
has a short-term advantage of a powerful heuristic, it would
eventually come to a hard limit, as it is impossible to pass
some levels without backtracking to avoid the zombies. In
this game, while the player can break through inner walls, it is
impossible to kill the zombies. If the player runs into one and
cannot back away, it will eventually kill him. Given enough
time, we believe the unrestricted player would outperform the
forward-only player. However, this would take too long to be
practically feasible for playtesting. Another option would be
to increase the bias with which the unrestricted player would
select the forward motion vs. backtracking. This would help
get more realistic scores faster without imposing the forward-
only restriction.

2) Design variants: We compared the game’s default con-
figuration with one where both the damage dealt by the
zombies and food gained from pick-ups were increased by
50 percent. The results from this high stakes design variant
were statistically significantly higher (p = 4.8e-07). From this,
one could conclude that the high stakes variant of the game
is easier to play for any given score threshold.

V. FRAMEWORK VALIDATION

The original design of It’s Alive! has a 5x7 playfield, which
makes for a large search space with the average branching
factor of 20 and depth of at least 36 (if no monsters are
collected). This leads to longer rollouts and slower depth-
wise exploration rate. For the framework validation exper-
iments we reasoned that having a smaller playfield would
allow us to run experiments faster while still demonstrating
relative differences between performance of Monster Carlo
with different parameters. We built a smaller It’s Alive! with a
3x5 playfield and only three monsters required for the win. A
typical human player score for this game is 1200-1400 points.
Unless stated otherwise, the experiments were run with an
unrestricted player, 24 parallel workers, factored actions, cut-
off terminal branch setting, and the exploration parameter in
the UCT algorithm set to 1000.

A. Parallel vs. Single Thread

The classic MCTS updates the tree after each rollout and
uses the updated tree to chose the next move. With instances
of the game running in parallel, the tree is updated each time a
playthrough is completed, and the next move is selected with
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Fig. 6. Highest score achieved for a single worker and 24 workers in parallel
on a 3x5 board (20 replicates). The rollouts completed approximately 20 times
faster in the parallel case, better results in less wall-clock time.

the results from several other in-flight rollouts still unknown.
This is similar to the tree parallelization with global mutex
approach described by Chaslot et al. [11]. We wanted to see
if there was a large drop in the tool’s effectiveness at the cost of
the speed. We ran two experiments with 30,000 rollouts. The
first set used 24 parallel workers, and the second used a single
worker. The parallel experiment achieved higher scores (Figure
6) with statistical significance (p = 0.02). However, the bigger
difference is in the duration. The single-thread experiment
lasted eight hours and 20 minutes while the parallel experiment
took about 24 minutes. Initially, the parallel experiment took
more rollouts to get to the same scores as the single-thread
experiment. This leads us to extrapolate that parallel workers
have a diversifying effect on MCTS. While this initially leads
to lower scores, it also makes it less likely for the search to
get bogged down in unproductive territory.

B. Terminal Branch Treatment

We noticed that MCTS tended to explore the same branch
and get stuck in local maxima, though much better paths were
available. We tried two ways around it. One was to increase
the UCT constant, traditionally set to 2. The other way was to
prevent the tree from revisiting branches marked as terminal.

We ran two experiments, with 30,000 rollouts each, one
with no special treatment of terminal nodes and branches,
and the other that would mark fully explored sections of
the tree as terminal and ignore them during the optimal
path selection. The results for these experiments showed no
statistically significant difference between the highest scores
achieved or the number of nodes explored. We hypothesize
that this is largely due to the fact that the depth of our test
game was too great, and so the terminal branch treatment did
not come into play to a significant degree.

Notably, not revisiting terminal branches allows for exhaus-
tive search on smaller fields. Earlier in this project, we ran tests
on It’s Alive! with a 2x3 grid. We expected the maximum
score to be 250 points but found that one of the branches
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Fig. 7. Highest score achieved with different values of the UCT exploration
constant (20 replicates)

achieved 290 points. This led to the discovery of a bug that
only manifested if the monster pieces were positioned in one
specific way. After fixing the bug, we were able use Monster
Carlo to exhaustively verify the fix by running the same test
with cut-off terminal branches and observe that no branches
scored higher than 250 points.

C. UCT Constant

The UCT exploration constant (c) regulates how much
MCTS focuses on exploring the most rewarding paths vs.
exploring new areas. Because MCTS is usually applied to
games with a win/lose outcome and the reward values ranging
from 0 to 1, we hypothesized that when applied to a game
where the reward value is the range of possible high scores,
the UCT constant should be closer to a score you would expect
from a moderately proficient player. We obtained this score by
manually playing the game with the same random seed.

We ran three experiments with respective UCT constant
values set to 2, 200 and 1000. The results in Figure 7
demonstrate that Monster Carlo did best with c = 1000, which
was closer to the expected score of 1300. The results were
statistically significant for comparison of c = 2 and c = 1000
(p = 0.0002), and c = 200 and c = 1000 (p = 0.01). While the
experiment with a lower c got slowed in local maxima fairly
early on, the scores corresponding to the higher c continued
growing due to the search’s higher emphasis on exploration.

D. Experiment Speedup Techniques

If the MCTS rollouts happened at the game’s normal
play speed, each of the aforementioned experiments would
take days to complete. Therefore, we employed a number
of speedup techniques. Game-side changes included setting
Unity’s framerate to maximum value, replacing smooth move-
ments with instant jumps and disabling all artificial delays
(such as waiting half a second between accepting player
inputs). This increased the experiment run speed by a factor
of ten. Game-agnostic changes consisted of running parallel
search with 24 workers (speedup by a factor of 20) and running
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on a server-class machine without graphics (speedup by a
factor of eight). The combination of all these allowed us to
run experiments at approximately 1600 times faster than the
original. Distributing the rollouts across several server-class
machines would allow even greater speedups.

VI. CONCLUSION

We presented Monster Carlo, an MCTS-based tool that
can be integrated with the Unity game engine and be used
to perform machine playtesting of in-development games;
conducted a number of framework validation experiments,
which showed merit in adjusting the UCT constant, using
parallel processing when performing rollouts, and applying
special treatment to terminal nodes and branches. Monster
Carlo was integrated with two games: our in-development
game It’s Alive! and an official Unity tutorial game, 2D
Roguelike. The integration with 2D Roguelike required fewer
than 100 lines of code. We also presented results of several
experiments run on both games, exploring restricted player
models and design variations.

Obtaining reasonable results from MCTS on a complex
game takes time, but so does making meaningful changes.
Some modifications, like restricted player models or limited
variety of pieces, can be added to a game fairly quickly. Larger
changes, like introducing a new type of block to the game or
adding heuristics to a player model, usually take much longer.
With this in mind, even if a set of experimental replicates takes
over an hour to run, it can be considered an acceptable turn-
around time, as the results will likely be in before the next
model is ready for testing. Additionally, the independent runs
of MCTS are extremely parallelization-friendly.

Having a reference score helps with setting an appropriate
UCT constant value to guide MCTS toward better results. A
reference score can be provided by the game designer, or
someone familiar with the game, who can play one or two
games to provide a baseline score. This score can be helpful
for setting the UCT constant, as well as interpreting the MCTS
results: if its best scores are much lower than what a casual
player can get, it indicates that MCTS needs tuning.

A severely limited player model can still provide infor-
mation. In early stages of this project, we ran experiments
on an even larger It’s Alive! playfield of 6x8. We used an
unrestricted player model, and one that did not rotate the
pieces. We experimented with lowering the number of different
monster colors. The size of the field led to a very wide tree
that never had a chance to explore very deeply and resulted in
chaotic and mostly very low scores for the unrestricted player.
However, the non-rotating player, whose actions were limited
by a factor of four on every step, was capable of reaching
more stable scores in the same number of rollouts. The scores
made it evident that the no-rotation player got significantly
higher scores when fewer monster colors were present (from
an average of 1600 to an average of 2100). This is an obvious
example, since having fewer colors means it is more likely to
get two blocks of the same color next to each other. However,

it showed that even a severely limited player model is capable
of providing information about design variants.

Much work remains to be done around Monster Carlo, as
the scores it achieves in a reasonable time still fall short of
human results. In the current setup, the search algorithm has
no representation of game state beyond the action sequence,
so it cannot transfer experience gained down one sequence of
moves to another if they differ by even a single move. Rein-
forcement learning algorithms such as those used in AlphaZero
can distill knowledge gained during MCTS rollouts into value-
estimation and rollout-policy networks that can be applied to
states that have never been explored before. We believe that
borrowing some ideas from frameworks like OpenAI Gym
(such as representing game state with universal data structures
like screenshot pixel arrays or memory byte arrays) could help
a generic search algorithm learn a much better default action
policy than even the human user could provide. However, even
with its current shortcomings, Monster Carlo is capable of
providing usable feedback. With the convenient experimental
setup in Jupyter Notebook, our hope is that new kinds of
machine playtesting experiments can by invented and executed
easily. Nelson et al. [12] and Isaksen [13] suggest several
strategies for understanding game artifacts, some of which
could be implemented using Monster Carlo.
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Abstract—Reinforcement learning (RL) is an area of research
that has blossomed tremendously in recent years and has shown
remarkable potential for artificial intelligence based opponents
in computer games. This success is primarily due to the vast
capabilities of convolutional neural networks, that can extract
useful features from noisy and complex data. Games are excellent
tools to test and push the boundaries of novel RL algorithms
because they give valuable insight into how well an algorithm
can perform in isolated environments without the real-life con-
sequences. Real-time strategy games (RTS) is a genre that has
tremendous complexity and challenges the player in short and
long-term planning. There is much research that focuses on
applied RL in RTS games, and novel advances are therefore
anticipated in the not too distant future. However, there are to
date few environments for testing RTS AIs. Environments in the
literature are often either overly simplistic, such as microRTS, or
complex and without the possibility for accelerated learning on
consumer hardware like StarCraft II. This paper introduces the
Deep RTS game environment for testing cutting-edge artificial
intelligence algorithms for RTS games. Deep RTS is a high-
performance RTS game made specifically for artificial intelligence
research. It supports accelerated learning, meaning that it can
learn at a magnitude of 50 000 times faster compared to existing
RTS games. Deep RTS has a flexible configuration, enabling
research in several different RTS scenarios, including partially
observable state-spaces and map complexity. We show that Deep
RTS lives up to our promises by comparing its performance
with microRTS, ELF, and StarCraft II on high-end consumer
hardware. Using Deep RTS, we show that a Deep Q-Network
agent beats random-play agents over 70% of the time. Deep
RTS is publicly available at https://github.com/cair/DeepRTS.

Index Terms—real-time strategy game, deep reinforcement
learning, deep q-learning

I. INTRODUCTION

Despite many advances in Artificial Intelligence (AI) for
games, no universal Reinforcement learning (RL) algorithm
can be applied to complex game environments without ex-
tensive data manipulation or customization. This includes
traditional Real-time strategy games (RTS) such as WarCraft
III, StarCraft II, and Age of Empires. RL has recently been
applied to simpler game environments such as those found
in the Arcade Learning Environment [1](ALE) and board
games [2] but has not successfully been applied to more

advanced games. Further, existing game environments that
target AI research are either overly simplistic such as ALE
or complex such as StarCraft II.

RL has in recent years had tremendous progress in learning
how to control agents from high-dimensional sensory inputs
like images. In simple environments, this has been proven to
work well [3], but are still an issue for complex environments
with large state and action spaces [4]. The distinction between
simple and complex tasks in RL often lies in how easy it is
to design a reward model that encourages the algorithm to
improve its policy without ending in local optima [5]. For
simple tasks, the reward function can be described by only a
few parameters, while in more demanding tasks, the algorithm
struggles to determine what the reward signal is trying to
accomplish [6]. For this reason, the reward function is in liter-
ature often a constant or single-valued variable for most time-
steps, where only the final time-step determines a negative or
positive reward [7]–[9]. In this paper we introduce Deep RTS,
a new game environment targeted deep reinforcement learning
(DRL) research. Deep RTS is an RTS simulator inspired by
the famous StarCraft II video game by Blizzard Entertainment.

This paper is structured as follows. First, Section II and
Section III thoroughly outlines previous work and central
achievements using game environments for RL research. Next,
Section IV introduces the Deep RTS game environment.
Section V presents the Deep RTS performance, a compari-
son between well-established game environments and Deep
RTS, and experimental results using Deep Q-Network as an
agent in Deep RTS. Subsequently, Section VI concludes the
contribution of this paper and outlines a roadmap for future
work.

II. RELATED GAME ENVIRONMENTS

There exist several exciting game environments in the
literature that focus on state-of-the-art research in AI algo-
rithms. Few game environments target the RTS-genre. One
the reason may be because these environments are by nature
challenging to solve, and there are few ways to fit results
with preprocessing tricks. It is, however, essential to include

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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RTS as part of the active research of deep reinforcement
learning algorithms as they feature long-term planning. This
section outlines a thorough literature review of existing game
platforms and environments and is summarized in Table I.

TABLE I
SELECTED GAME ENVIRONMENTS THAT IS ACTIVELY USED IN

REINFORCEMENT LEARNING RESEARCH

Platform RTS Complex1 Year Solved Source
ALE No No 2012 Yes [10]
Malmo Platform No Yes 2016 No [11]
ViZDoom No Yes 2016 No [12]
DeepMind Lab No Yes 2016 No [13]
OpenAI Gym No No 2016 No [14]
OpenAI Universe No Yes 2016 No [15]
Stratagus Yes Yes 2005 No [16]
microRTS Yes No 2013 No [17]
TorchCraft Yes Yes 2016 No [18]
ELF Yes Yes 2017 No [19]
SC2LE Yes Yes 2017 No [8]
Deep RTS Yes Yes 2018 No -

A. Stratagus

Stratagus is an open source game engine that can be used
to create RTS-themed games. Wargus, a clone of Warcraft II,
and Stargus, a clone of StarCraft I are examples of games
implemented in the Stratagus game engine. Stratagus is not
an engine that targets machine learning explicitly, but several
researchers have performed experiments in case-based reason-
ing [20], [21] and q-learning [22] using Wargus. Stratagus is
still actively updated by contributions from the community.

B. Arcade Learning Environment

Bellemare et al. provided in 2012 the arcade learning
environment that enabled researchers to conduct cutting-edge
research in general deep learning [10]. The package provided
hundreds of Atari 2600 environments that in 2013 allowed
Minh et al. to do a breakthrough using Deep Q-Learning and
A3C. The platform has been a critical component in several
advances in RL research. [1], [3], [23]

C. microRTS

microRTS is a simple RTS game, designed to conduct AI
research. The idea behind microRTS is to strip away the
computational heavy game logic to increase the performance
and to enable researchers to test theoretical concepts quickly
[17]. The microRTS game logic is deterministic, and include
options for full and partially-observable state-spaces. The
primary field of research in microRTS is game-tree search
techniques such as variations of Monte-Carlo tree search and
minimax [17], [24], [25].

D. TorchCraft

In 2016, a research group developed TorchCraft, a bridge
that enables research in the game StarCraft. TorchCraft intends
to provide the reinforcement learning community with a way

1A Complex environment has an enormous state-space, with reward signals
that are difficult to correlate to an action.

to allow research on complex systems where only a fraction
of the state-space is available [18]. In literature, TorchCraft
has been used for deep learning research [26], [27]. There is
also a dataset that provides data from over 65,000 StarCraft
replays [28].

E. Malmo Platform

The Malmo project is a platform built atop of the popular
game Minecraft. This game is set in a 3D environment where
the object is to survive in a world of dangers. The paper The
Malmo Platform for Artificial Intelligence Experimentation by
Johnson et al. claims that the platform has all characteristics
qualifying it to be a platform for general artificial intelligence
research. [11]

F. ViZDoom

ViZDoom is a platform for research in visual reinforcement
learning. With the paper ViZDoom: A Doom-based AI Re-
search Platform for Visual Reinforcement Learning Kempka
et al. illustrated that an RL agent could successfully learn
to play the game Doom, a first-person shooter game, with
behavior similar to humans. [29]

G. DeepMind Lab

With the paper DeepMind Lab, Beattie et al. released a
platform for 3D navigation and puzzle solving tasks. The
primary purpose of DeepMind Lab is to act as a platform
for DRL research. [13]

H. OpenAI Gym

In 2016, Brockman et al. from OpenAI released GYM
which they referred to as ”a toolkit for developing and com-
paring reinforcement learning algorithms”. GYM provides
various types of environments from following technologies:
Algorithmic tasks, Atari 2600, Board games, Box2d physics
engine, MuJoCo physics engine, and Text-based environments.
OpenAI also hosts a website where researchers can submit
their performance for comparison between algorithms. GYM
is open-source and encourages researchers to add support for
their environments. [14]

I. OpenAI Universe

OpenAI recently released a new learning platform called
Universe. This environment further adds support for environ-
ments running inside VNC. It also supports running Flash
games and browser applications. However, despite OpenAI’s
open-source policy, they do not allow researchers to add new
environments to the repository. This limits the possibilities of
running any environment. The OpenAI Universe is, however, a
significant learning platform as it also has support for desktop
games like Grand Theft Auto IV, which allow for research in
autonomous driving [30].
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J. ELF

The Extensive Lightweight Flexible (ELF) research plat-
form was recently present at NIPS with the paper ELF: An
Extensive, Lightweight and Flexible Research Platform for
Real-time Strategy Games. This paper focuses on RTS game
research and is the first platform officially targeting these types
of games. [19]

K. StarCraft II Learning Environment

SC2LE (StarCraft II Learning Environment) is an API
wrapper that facilitates access to the StarCraft II game-state
using languages such as Python. The purpose is to enable
reinforcement learning and machine learning algorithms to be
used as AI for the game players. StarCraft II is a complex
environment that requires short and long-term planning. It is
difficult to observe a correlation between actions and rewards
due to the imperfect state information and delayed rewards,
making StarCraft II one of the hardest challenges so far in AI
research.

III. REINFORCEMENT LEARNING IN GAMES

Although there are several open-source game environments
suited for reinforcement learning, few of them are part of a
success story. One of the reasons for this is that current state-
of-the-art algorithms are seemingly unstable [30], and have
difficulties to converge towards optimal policy in environments
with multi-reward objectives [31]. This section exhibits the
most significant achievements using reinforcement learning in
games.

A. TD-Gammon

TD-Gammon is an algorithm capable of reaching an expert
level of play in the board game Backgammon [7], [32]. The
algorithm was developed by Gerald Tesauro in 1992 at IBM’s
Thomas J. Watson Research Center. TD-Gammon consists of a
three-layer artificial neural network (ANN) and is trained using
a reinforcement learning technique called TD-Lambda. TD-
Lambda is a temporal difference learning algorithm invented
by Richard S. Sutton [33]. The ANN iterates over all possible
moves the player can perform and estimates the reward for
that particular move. The action that yields the highest reward
is then selected. TD-Gammon is the first algorithm to utilize
self-play methods to improve the ANN parameters.

B. AlphaGO

In late 2015, AlphaGO became the first algorithm to win
against a human professional Go player. AlphaGO is a re-
inforcement learning framework that uses Monte-Carlo tree
search and two deep neural networks for value and policy
estimation [9]. Value refers to the expected future reward from
a state assuming that the agent plays perfectly. The policy
network attempts to learn which action is best in any given
board configuration. The earliest versions of AlphaGO used
training data from previous games played by human profes-
sionals. In the most recent version, AlphaGO Zero, only self-
play is used to train the AI [34]. In a recent update, AlphaGO

was generalized to work for Chess and Shogi (Japanese Chess)
only using 24 hours to reach a superhuman level of play [2].

C. DeepStack

DeepStack is an algorithm that can perform an expert
level play in Texas Hold’em poker. This algorithm uses
tree-search in conjunction with neural networks to perform
sensible actions in the game [35]. DeepStack is a general-
purpose algorithm that aims to solve problems with imperfect
information. The DeepStack algorithm is open-source and
available at https://github.com/lifrordi/DeepStack-Leduc.

D. Dota 2

DOTA 2 is a complex player versus player game where
the player controls a hero unit. The game objective is to
defeat the enemy heroes and destroy their base. In August
2017, OpenAI invented a reinforcement learning based AI that
defeated professional players in one versus one games. The
training was done by only using self-play, and the algorithm
learned how to exploit game mechanics to perform well within
the environment. DOTA 2 is used actively in research where
the next goal is to train the AI to play in a team-game based
environment.

IV. THE DEEP RTS LEARNING ENVIRONMENT

There is a need for new RTS game environments targeting
reinforcement learning research. Few game environments have
a complexity suited for current state-of-the-art research, and
there is a lack of flexibility the existing solutions.

The Deep RTS game environment enables research at dif-
ferent difficulty levels in planning, reasoning, and control. The
inspiration behind this contribution is microRTS and StarCraft
II, where the goal is to create an environment that features
challenges between the two. The simplest configurations of
Deep RTS are deterministic and non-durative. Actions in the
non-durative configuration are directly applied to the envi-
ronment within the next few game frames. This makes the
correlation between action and reward easier to observe. The
durative configuration complicates the state-space significantly
because it then becomes a temporal problem that requires
long-term planning. Deep RTS supports the OpenAI Gym
abstraction through the Python API and is a promising tool
for reinforcement learning research.

A. Game Objective

The objective of the Deep RTS challenge is to build a
base consisting of a town-hall, and then strive to expand the
base using gathered resources to gain the military upper hand.
Military units are used to conduct attacks where the primary
goal is to demolish the base of the opponent. Players start with
a worker unit. The primary objective of the worker units is
to expand the base offensive, defensive and to gather natural
resources found throughout the game world. Buildings can
further spawn additional units that strengthen the offensive
capabilities of the player. For a player to reach the terminal
state, all opponent units must be destroyed.
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A regular RTS game can be represented in three stages:
early-game, mid-game and late-game. Early-game is the gath-
ering and base expansion stage. The mid-game focuses on the
military and economic superiority, while the late-game stage
is usually a deathmatch between the players until the game
ends.

TABLE II
AN OVERVIEW OF AVAILABLE SCENARIOS FOUND IN THE DEEP RTS

GAME ENVIRONMENT

Scenario Name Description Game Length Map Size
10x10-2-FFA 2-Player game 600-900 ticks 10x10
15x15-2-FFA 2-Player game 900-1300 ticks 15x15
21x21-2-FFA 2-Player game 2000-3000 ticks 21x21
31x31-2-FFA 2-Player game 6000-9000 ticks 31x31
31x31-4-FFA 4-Player game 8000-11k ticks 31x31
31x31-6-FFA 6-Player game 15k-20k ticks 31x31

solo-score Score Accumulation 1200 ticks 10x10
solo-resources Resource Harvesting 600 ticks 10x10

solo-army Army Accumulation 1200 ticks 10x10

Because Deep RTS targets a various range of reinforcement
learning tasks, there are game scenarios such as resource
gathering tasks, military tasks, and defensive tasks that nar-
rows the complexity of a full RTS game. Table II shows
nine scenarios currently implemented in the Deep RTS game
environment. The first six scenarios are regular RTS games
with the possibility of having 6 active players in a free-for-all
setting. The solo-score scenario features an environment where
the objective is to only generate as much score as possible in
shortest amount of time. solo-resources is a game mode that
focuses on resource gathering. The agent must find a balance
between base expansion and resource gathering to optimally
gather as many resources as possible. solo-army is a scenario
where the primary goal is to expand the military forces quickly
and launch an attack on an idle enemy. The Deep RTS game
environment enables researchers to create custom scenarios via
a flexible configuration interface.

B. Game Mechanics

TABLE III
CENTRAL CONFIGURATION FLAGS FOR THE DEEP RTS GAME ENGINE

Config Name Type Description
instant town hall Bool Spawn Town-Hall at game start.
instant building Bool Non-durative Build Mode.
instant walking Bool Non-durative Walk Mode.
harvest forever Bool Harvest resources automatically.

auto attack Bool Automatic retaliation when being attacked.
durative Bool Enable durative mode.

The game mechanics of the Deep RTS are flexible and can
be adjusted before a game starts. Table III shows a list of
configurations currently available. An important design choice
is to allow actions to affect the environment without any
temporal delay. All actions are bound to a tick-timer that
defaults to 10, that is, it takes 10 ticks for a unit to move one
tile, 10 ticks for a unit to attack once, and 300 ticks to build
buildings. The tick-timer also includes a multiplier that enables

adjustments of how many ticks equals a second. For each
iteration of the game-loop, the tick counter is incremented,
and the tick-timers are evaluated. By using tick-timers, the
game-state resembles how the StarCraft II game mechanics
function while lowering the tick-timer value better resembles
microRTS.
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Fig. 1. Unit state evaluation based on actions and current state

All game entities (Units and Buildings) have a state-machine
that determine its current state. Figure 1 illustrates a portion of
the logic that is evaluated through the state-machine. Entities
start in the Spawning state transitioning to the Idle state
when the entity spawn process is complete. The Idle state
can be considered the default state of all entities and is only
transitioned from when the player interacts with the entity.
This implementation enables researchers to modify the state-
transitions to produce alternative game logic.

TABLE IV
THE AVAILABLE ECONOMIC RESOURCES AND LIMITS AVAILABLE TO

PLAYERS IN DEEP RTS

Player Resources
Property Lumber Gold Oil Food Units
Range 0 - 106 0 - 106 0 - 106 0 - 6000 0 - 2000

Table IV shows the available resources and unit limits in
the Deep RTS game environment. There are primarily three
resources, gold, lumber, and oil that are available for workers
to harvest. The value range is practically limited to the number
of resources that exist on the game map. The food limit and
the unit limit ensures that the player does not produce units
excessively.

C. Graphics

The Deep RTS game engine features two graphical interface
modes in addition to the headless mode that is used by default.
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Fig. 2. Overview of a battle in the fully-observable Deep RTS state-space
using the C++ graphical user interface

Fig. 3. Illustration of how the raw state is represented using 3-D matrices

The primary graphical interface relies on Python while the
second is implemented in C++. The Python version is not
interactive and can only render the raw game-state as an image.
By using software rendering, the capture process of images is
significantly faster because the copy between GPU and CPU
is slow. The C++ implementation, seen in Figure 2 is fully
interactive, enabling manual play of Deep RTS. Figure 3 shows
how the raw game-state is represented as a 3-D matrix in
headless mode. Deep learning methods often favor raw game-
state data instead of image representation as sensory input.
This is because raw data is often more concrete with clear
patterns.

D. Action-space definition

The action-space of the Deep RTS game environment is
separated into two abstract levels. The first level is actions
that directly impact the environment, for instance, right-click,
left-click, move-left, and select-unit. The next layer of abstrac-
tion is actions that combine actions from the previous layer,
typically select-unit → right-click → right-click → move-left.
The benefit of this abstraction is that algorithms can focus
on specific areas within the game-state, and enable to build
hierarchical models that each specialize in tasks (planning).
The Deep RTS initially features 16 different actions in the
first layer and 6 actions in the last abstraction layer, but it is
trivial to add additional actions.

E. Summary

This section presents some of the central parts what the
Deep RTS game environment features for reinforcement learn-
ing research. It is designed to measure the performance
of algorithms accurately having a standardized API through
OpenAI Gym, which is widely used in the reinforcement
learning community.

V. EXPERIMENTS

A. Performance considerations in Deep RTS

The goal of Deep RTS is to simulate RTS scenarios with
ultra high-performance accurately. The performance is mea-
sured by how fast the game engine updates the game-state, and
how quickly the game-state can be represented as an image.
Some experiments suggest that it is beneficial to render game
graphics on the CPU instead of the GPU. Because the GPU has
a separate memory, there is a severe bottleneck when copying
the screen buffer from the GPU to the CPU.

Figure 4a shows the correlation between the frame-rate and
size of the game map. Observing the data, it is clear that
the map-size has O(n) penalty to the frame-rate performance.
It is vital to preserve this linearity, and optimally have the
constant performance of O(1) per game update. Figure 4
extends this benchmark by testing the impact a unit has on
the game performance, averaging 1 000 games for all map-
sizes. The data indicates that entities have an exponential
impact on the frame-rate performance. The reason for this
is primarily the jump-point-search algorithm used for unit
path-finding. The path-finding algorithm can be disabled using
custom configurations.

The Deep RTS game environment is high-performance,
with few elements that significantly reduce the frame-rate
performance. While some mechanics, namely path-finding is
a significant portion of the update-loop it can be deactivated
by configurations to optimize the performance further.

B. Comparing Deep RTS to existing learning environments

There is a substantial difference between the performance
in games targeted research and those aimed towards gaming.
Table V shows that the frame-rate difference ranges from
60 to 7 000 000 for selected environments. A high frame-
rate is essential because some exploration algorithms often
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TABLE V
COMPARISON OF THE FPS FOR SELECTED ENVIRONMENTS. THE DEEP
RTS BENCHMARKS ARE PERFORMED USING MINIMUM AND MAXIMUM

CONFIGURATIONS

Environment Frame per second Source
ALE 6,500 [10]
Malmo Platform 60-144 [11]
ViZDoom 8,300 [12]
DeepMind Lab 1,000 [13]
OpenAI Gym 60 [14]
OpenAI Universe 60 [15]
Stratagus 60-144 [16]
microRTS 11,500 [17]
TorchCraft 2,500 [18]
ELF 36,000 [19]
SC2LE 60-144 [8]
Deep RTS 24,000, 7,000,000 -

Fig. 5. Overview of the Deep Q-Network architecture used in the experiments.
Inspired by the work seen in [1]

require a quick assessment of future states through forward-
search. Table V shows that microRTS, ELF, and Deep RTS
are superior in performance compared to other game environ-
ments. Deep RTS is measured using the largest available map
(Table II) having a unit limit of 20 per player. This yields the
performance of 24 000 updates-per-second. The Deep RTS
game engine can also render the game state with up to 7 000
000 updates-per-second using the minimal configuration. This
is a tremendous improvement on previous work and could
enable algorithms with a limited time budget to do deeper
tree-searches.

C. Using Deep Q-Learning in Deep RTS

At the most basic level, Q-Learning utilizes a table for
storing (s, a, r, s

′
) pairs, where s is the states, a is the actions,

r the rewards,and s
′

the next state. Instead, a non-linear
function approximation can be used to approximate Q(s, a; θ).
This is called Deep-Q Learning. θ describes the tunable
parameters (weights) for the approximation function. Artificial
neural networks are used as an approximation function for the
Q-Table but at the cost of stability [3]. Using artificial neural
networks is much like compression found in JPEG images. The
compression is lossy, and some information is lost during the
compression. Deep Q-Learning is thus unstable, since values
may be incorrectly encoded during training [36].

This paper presents experimental results using the Deep
Q-Learning architecture from [3], [37]. Figure 5 shows the
network model, and figure 6 illustrates the averaged training
loss of 100 agents. The agent uses gray-scale image game-
state representations with an additional convolutional layer to
decrease the training time, but can also achieve comparable
results after approximately 800 episodes of training with the
exact architecture from [3]2. The graph shows that the agent
quickly learns the correlation between game-state, action and
the reward function. The loss quickly stabilizes at a relatively
low value, but it is likely that very small optimizations
in the parameters have a significant impact on the agent’s
performance.

Figure 7a shows the win-rate against an AI with a random-
play strategy. The agent quickly learns how to perform better
than random behavior, and achieves 70 % win-rate at episode 1
250. Figure 7b illustrates the same agent playing against a rule-
based strategy. The graph shows that the Deep Q-Network can
achieve an average of 50 % win-rate over a 1 000 games. This
strategy is considered an easy to moderate player, where its
strategy is to expand the base towards the opponent and build
a military force after approximately 600 seconds. Figure 2
shows how the rule-based player (blue) expands the base to
gain the upper hand.

The experimental results presented in this paper show that
the Deep RTS game environment can be used to train deep

2Each episode contains approximately 1 000 epochs of training with a batch
size of 16
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Fig. 6. Training loss of the Deep Q-Network. Each episode consists of
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reinforcement learning algorithms. The Deep Q-Network does
not achieve super-human expertise but performs similarly to
a player of easy to moderate skill level, which is a good step
towards a high-level AI.

VI. CONCLUSION AND FUTURE WORK

This paper is a contribution towards the continuation of
research into deep reinforcement learning for RTS games. The
paper summarizes previous work and outlines the few but
essential success stories in reinforcement learning. The Deep
RTS game environment is a high-performance RTS simulator
that enables rapid research and testing of novel reinforcement
learning techniques. It successfully fills the gap between the
vital game simulator microRTS, and StarCraft II, which is the
ultimate goal for reinforcement learning research for the RTS
game genre.

The hope is that Deep RTS can bring insightful results to
the complex problems of RTS [17] and that it can be a useful
tool in future research.

Although the Deep RTS game environment is ready for
use, several improvements can be applied to the environment.
The following items are scheduled for implementation in the
continuation of Deep RTS:

• Enable LUA developers to use Deep RTS through LUA
bindings.

• Implement a generic interface for custom graphics ren-
dering.

• Implement duplex WebSockets and ZeroMQ to enable
any language to interact with Deep RTS

• Implement alternative path-finding algorithms to increase
performance for some scenarios

• Add possibility for memory-based fog-of-war to better
mimic StarCraft II
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Abstract—Creating Non-Player Characters (NPCs) that can
react robustly to unforeseen player behaviour or novel game
content is difficult and time-consuming. This hinders the design
of believable characters, and the inclusion of NPCs in games
that rely heavily on procedural content generation. We have
previously addressed this challenge by means of empowerment,
a model of intrinsic motivation, and demonstrated how a
coupled empowerment maximisation (CEM) policy can yield
generic, companion-like behaviour. In this paper, we extend
the CEM framework with a minimisation policy to give rise
to adversarial behaviour. We conduct a qualitative, exploratory
study in a dungeon-crawler game, demonstrating that CEM
can exploit the affordances of different content facets in
adaptive adversarial behaviour without modifications to the
policy. Changes to the level design, underlying mechanics and
our character’s actions do not threaten our NPC’s robustness,
but yield new and surprising ways to be mean.

Index Terms—Non-Player Characters, Adversaries, Intrinsic
Motivation, Coupled Empowerment Maximisation

I. INTRODUCTION

Non-Player Characters (NPCs) in video games serve many
purposes: they can be quest givers, conversation partners,
leaders, sidekicks or other kinds of collaborators [1]. But
in many cases they are adversaries. Adversarial NPCs also
come in many forms, their behaviour varying according to
the game genre, the design affordances, and the underlying
algorithms. Treanor et al. [2] make the fundamental distinc-
tion between AI as Adversary and AI as Villain. Adversaries
are designed to defeat the player without resorting to cheat-
ing, e.g. an AI for Chess or Go. The objective of an NPC
villain in contrast is not to defeat the player but to create an
interesting challenge which can be overcome eventually. We
refer to both types simply as adversaries.

Irrespective of the type, an NPC’s primary goal is usually
to convey a special player experience. A substantial part
of this experience is shaped by the believability of their
behaviour [1]: a believable adversary can, amongst others,
adapt to changes in the world and allows the player to
attribute goal-ownership. In existing adversary AI however,
these attributes are either not present, or very shallow.

NPCs in video games are largely hand-authored, using
representations such as finite state machines and behaviour
trees. This limits most NPC AI to a particular game and
a specific role. While such NPCs might appear to own
their goals, they will hardly adapt to unanticipated player
behaviour or changes in the game world. The latter aspect
is partly alleviated by reinforcement learning, evolutionary
approaches or planning. However, there is two caveats.

Algorithms such as Monte Carlo Tree Search (MCTS) are
typically targeted towards maximising adversarial efficacy
against the player, resulting in blunt and single-faceted be-
haviour. Procedural personas [3] contribute to the impression
of more multi-faceted behaviour by optimising a set of pre-
specified utilities. However, even these advanced approaches
usually rely on objective functions, rewards and training
samples which are strongly tied to specific affordances of
the game world. As soon as this world changes, the basis
for their behaviour and thus their believability is lost.

An alternative approach is to use models of intrinsic
motivation [4] to drive NPC behaviour. Models of intrinsic
motivation do not rely on externally specified rewards, and
thus allow an agent to act sensibly even if its means to
interact with the world change. As intrinsic motivations are
usually aligned with key drivers of agency, this can give
the appearance of goal-directness. Merrick and Maher [5]
have used curiosity and learning progress as intrinsic reward
signals in reinforcement learning to drive NPC behaviour.
However, their NPCs work in isolation, and interactions with
the player would be incidental and likely shallow.

In this paper, we address the challenge of creating generic
adversarial NPCs, i.e. NPCs that can adapt and respond
to substantial changes in the game environment, mechanics
and a character’s abilities, and that exhibit a wide range
of new and surprising adversarial behaviours that are not
uniquely focused on winning over the player. We prose to use
the intrinsic motivation formalism of Coupled Empowerment
Minimisation (CEM) [6], an action policy based on the
information-theoretic quantity empowerment [7]. Empower-
ment quantifies the options available to an agent in terms of
availability and visibility. In the stochastic case, it generalises
to an agent’s potential and perceivable influence on the game
world, including other agents such as the player. Empow-
erment forms the basis of empowerment maximisation, an
action policy which drives agents towards states where they
have a higher influence on their environment. CEM is an
extension of this principle to the multi-agent case. The main
idea behind CEM is that an agent not only maximises its
own- but also maximises or minimises the empowerment of
one or more other characters. In previous work [6], we have
exploited the maximisation case to formalise companion-like
behaviour in a very general and flexible way. We expect the
policy to yield sensible NPC behaviour in any game where
a player’s progress towards a goal is accompanied by an
increase in options and influence, and thus empowerment.

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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This is the case for most games: consider e.g. the effect of
accumulating resources and building units in strategy games,
collecting inventory items in an RPG, or using power-ups or
additional and stronger weapons in a shooter.

In this work, we look at the minimisation case to design
more believable adversarial NPCs. Our NPCs essentially
choose actions which increase their own-, and decrease
the player’s empowerment. Note that this is different from
simply maximising or minimising a utility such as score or
health, and promises to give rise to highly adaptive, unex-
pected and novel adversarial behaviour. We explore CEM to
drive adversarial NPC behaviour in different levels of a turn-
and tile-based dungeon-crawler game, where an CEM-driven
agent is confronted with changes in the environment and its
own abilities. A qualitative analysis demonstrates that CEM
yields sensible and interesting adversarial behaviour across
a range of game modes. Relating to Treanor et al. [2], we
show how different parametrisations of our policy give rise to
different adversary types, from opportunists to super-villains.

II. COUPLED EMPOWERMENT MAXIMISATION

In a nutshell, a CEM-driven agent acts to maximise its
own-, while either maximising or minimising another agent’s
empowerment. We investigate the minimisation case here,
and therefore complement previous work [6]. CEM relies on
two types of empowerment: (vanilla) empowerment as briefly
mentioned in the introduction, and the distinct transfer-
empowerment. We now introduce both quantities formally.
Our focus is on games that are discrete in time and space.
However, continuous empowerment implementations exist.
An extensive survey of motivations, intuitions and past
research on empowerment can be found in [8]. CEM has
previously been covered in [9], [6] and [10].

A. Empowerment and Transfer Empowerment

Empowerment is an information-theoretic quantity. It is zero
when the agent has no control over what it can perceive,
i.e. when all actions lead to the same or a random sensor
state, and it increases when different actions lead to separate
perceivable outcomes. We represent an agent’s actions, its
future sensor states, and the state of the environment as
random variables A, S, and R, respectively. The causal con-
ditional probability distribution p(St+1|At, rt) then models
the impact of the agent’s actions, performed in a specific
environment state Rt = rt, on its future sensor states.
For the calculation of empowerment, this distribution is
interpreted as a memoryless, potentially noisy information-
theoretic communication channel.

Vanilla empowerment Ert in a given environment state
rt is calculated as the channel capacity, corresponding to
the maximum potential information flow that an agent could
induce into its future sensor state by a suitable choice of
actions. More generally, we consider a sequence of actions
An

t = (At, . . . , At+n−1) corresponding to a lookahead of
n. With n-step empowerment we then measure an agent’s

influence on its future sensor state n steps in the future:

En
rt = max

p(an
t )
I(St+n;A

n
t |rt) (1)

The term being maximised represents the mutual information
between the actuator and future sensor states, given the
current environment state rt.

Transfer empowerment ET,n
rt relates the actions and sensor

of two agents: it quantifies the potential influence the active
agent’s actions have on the other’s future sensor state. The
channel capacity underlying both empowerment types can be
exactly determined using the Blahut-Arimoto algorithm [11],
[12]. For an introduction to the information-theoretic notions
see [13], and [8] for a detailed introduction to empowerment.

B. Coupled Empowerment Maximisation
CEM is an extension of empowerment maximisation to the
multi-agent case, and we consequently have to account for
the actions of other agents. In this paper, we focus on the
turn-wise interaction of one NPC with the player. Each
interaction cycle is initiated by the player performing an
action, which the NPC reacts to in the next time step. Both
agents can affect the other either explicitly, or implicitly
through their impact on the shared game world. We hypoth-
esise that decreasing the player’s empowerment gives rise
to adversarial behaviour. To test this hypothesis, we model
the NPC’s policy such that it not only maximises the NPC’s
own, but also minimises the player’s empowerment:

π(rt) = argmax
at

(
αA · E[EA,n

rt+2
]at

+ αP · E[EP,n
rt+1

]at
+ αT · E[ET,n

rt+2
]at

)
(2)

Here, parameters αA, αP and αT weight the expected adver-
sary, player and transfer n-step empowerment in the over-
all coupling. The adversary-player transfer empowerment
serves the maintenance of operational proximity: even if the
NPC cannot affect the player’s empowerment at the current
point in time, it will try to remain in states where it can
at least affect the player’s perception, and thus increase the
likelihood of affecting its empowerment in the future.

Determining the optimal action is a two-stage process.
For the first stage, we have to note that empowerment is
a state dependent quantity and the policy thus involves
expectations over the NPC’s actions. For the computation of
these policies, the NPC first determines which environment
states its own actions could yield at t + 1. This is where
the player acts next, and where player empowerment will
be computed. For the calculation of its own and adversary-
player transfer empowerment however, it needs to anticipate
the consequences of the player’s actions on the distribution
of environment states at t + 2. In the second stage, the
NPC then calculates player empowerment in t + 1, as
well as its own and transfer empowerment in t + 2. This
requires another 2n rounds of anticipation steps. For the
calculation of empowerment, the resulting environment states
are transformed to potentially limited sensor states S.

Unlike algorithms such as Minimax or MCTS, states are
uniformly expanded up to a fixed depth, and only distin-
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guished in terms of whether they are perceived differently.
Here, we model the player’s policy as a uniform distribution.

C. Health-Performance Consistency
In many games, a decrease in health or a different core
game quantity does not necessarily result in the decline of a
character’s abilities. For short lookaheads n, empowerment
would thus remain unaffected. We counteract this by adopt-
ing the transformation of health-performance consistency
(HPC) from previous work [6]. It reduces the probability of
a character’s action to lead into the follow-up state originally
prescribed by the environment dynamics proportionally to its
remaining health. The more an agent’s health decreases, the
more likely its actions will be ineffective. Formally:

p(rt+1|at, rt) =
{
1− γ + γp(rt+1|at, rt), if rt+1 = rt

γp(rt+1|at, rt) else.

Here, γ = ht/hmax, the ratio of the agent’s remaining and
maximum health. This can of course be modified to model
non-linear changes. We use HPC as a means for optimisation,
but it is not a necessity: given a large enough lookahead n,
the long-term effect of decreasing an agent’s health will be
reflected in its empowerment.

III. EVALUATION

We hypothesise that CEM yields highly adaptive, adversarial
behaviour. The behavioural dynamics following changes to
the game might be surprising even for the game’s designers,
and likely increase the believability of our characters. How-
ever, quantitative means to evaluate gameplay and player
experience provide insufficient evidence, as they cannot
capture these dynamics as well as novelty and believability
in sufficient detail. We consequently perform a qualitative,
exploratory study, providing the necessary insights for a
quantitative study to follow in future work. This evaluation
is complemented with online videos of the NPC behaviour.

A. Method
We conduct three individual experiments to test our hy-
pothesis and investigate how a CEM-driven NPC copes
with increasingly tough challenges in game development
and research: (1) predator-and-prey behaviour as present in
many games, (2) the exploitation of affordances in the agent-
environment interaction, and (3) the ability to interact with
the player from a distance. The latter is controlled by the
experimenters. To probe how CEM contributes to novelty
and adaptivity, we change the environment dynamics and
the abilities of both characters and analyse the emergent be-
haviour. Each experiment comprises a number of scenarios.

Due to the richness of our testbed, an exhaustive search
through the space of environmental features and character
abilities would be infeasible. We consequently focus on those
combinations that yield the biggest difference in emergent
behaviour. The CEM parameters, i.e. the weights α and the
agent’s lookahead n, cannot be evaluated exhaustively either
in a qualitative study. Instead, we highlight how specific

configurations allows us to model different adversary types,
thus stressing the opportunities in parameter fine-tuning.

B. Testbed
We have adopted our dungeon-crawler testbed from previous
work on CEM-driven general companion NPCs [6] with the
goal to support comparisons and provide a basis for a future
joint quantitative evaluation. The testbed is discrete in time
and action/state space, which simplifies the computation of
our policy and the analysis of behaviour.

The game is populated by the player character and one
CEM-driven NPC. Characters interact in turn-wise order, and
the player must navigate to a goal-tile to win the game. All
characters have a current and maximum amount of health
points, which are indicated by numbers at the bottom of
their avatars. To provide rich challenges for adaptation, we
have extended our previous testbed substantially with both
new environmental features and character abilities. Tbl. I and
II provide an overview of the various features/abilities, their
dynamics and the rationale behind their inclusion.

The sensors of player and adversary are asymmetric,
local and non-overlapping. They are asymmetric in that the
player can also perceive the game status, while the NPC
cannot. Locality means that e.g. the NPC only perceives
the player or other dynamic game elements within a fixed
radius. This determines a character’s perceptive field, which
is only constrained by walls. Other characters within that
field are sensed by their id and relative position. In addition
to its own position, sensors only comprise the agent’s own
rotation and health, but do not allow introspection into
other characters. This separation is crucial to avoid overlap
between empowerment types.

We assume a default configuration of our agents which is
adapted in the experiments. In this minimal setup, characters
can only idle and move. Their sensor is limited to a three-
cell radius. Furthermore, they are initialised with two of two
health points (ht, hmax = 2). This allows them to take damage
without dying right away, and to make use of rechargers.
We compute empowerment for a 3-step lookahead (n=3),
and assume an initial weighting of αA=.5, αP=−.5 and
αT=.1. In this initial setup, the CEM-driven NPC bases
its decision-making on the maximisation of its own, and
on the minimisation of the player’s empowerment to the
same extent. We later deviate from this equilibrium and
show how unbalanced configurations yield radically different
behaviours. Parameters are then chosen from αA, αT ∈ [0, 1]
and αP ∈ [−1, 0]. In our experiments, actions are always
chosen greedily with respect to the policy. We only report on
these settings if they deviate from the default configuration.

C. Experiment 1: Predator-and-Prey
The goal of the first experiment is to illustrate the different
forces within CEM, and to highlight the policy’s potential
to give rise to the classic predator-and-prey behaviour which
is quintessential to many games. Fig. 1a shows the initial
state of the environment, consisting of an arena surrounded
by walls, divided by a wall with small spaces on the sides to
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TABLE I: Level elements in dungeon-crawler testbed

Sprite Type Dynamics Reason for inclusion

Goal Once the character moves on this tile, the game is won. To provide a gradient for progression within a level.

Wall Immovable obstacle. Cannot be penetrated by attacks,
and hides anything behind from character’s perception.

To structure level and provide choke points for specific
interactions. Allows for discovery of hidden elements.

Lava Decreases a character’s health by a fixed amount for
each time step it remains on the field.

Structures environment further and introduces health
trade-offs. Allows for rich interaction with pushing.

Recharger Increases a character’s health by a fixed amount for
each time step it remains on the field.

Makes health a manageable and expendable resource
that might be traded for other gains.

Turret Shoots arrow, inflicting a fixed health damage on the
first character being hit. Here pointing east.

Serves as threat separate from characters’ attack facil-
ities, and bears danger of self-inflicted damage.

Trigger Activates connected turret for each time step that a
character remains on the tile.

Triggers can be far off the activated turret and thus
allow to strike remotely.

TABLE II: Character abilities in dungeon-crawler testbed

Action Dynamics Reason for inclusion
Idle Causes no change to the current game state. Represents fallback if other actions are disadvantageous.
Move Move non-diagonally into adjacent cell if there is no

obstacle. Otherwise only changes character orientation.
Common mechanic allowing for exploration, hiding and
change of position as reaction to other characters.

Push In addition to moving, shift adjacent characters in the
movement direction if there is no obstruction.

Allows for complex interactions with the environment by
pushing others into lava, rechargers, or a turret’s target range.

Fly Allows to move over lava fields without taking damage.
The character can still benefit from rechargers.

A way to access previously inaccessible parts of a level, and
make other characters face new obstacles.

Melee attack Causes damage to adjacent characters if being faced.
The amount of health damage is predefined.

Common mechanic for predator-and-prey scenarios. Requires
to run away or attack from a distance before others close.

Range attack Reduces health of first character in current direction
within attack range. Damage and range are predefined.

Allows to imbalance attack options based on spatial proxim-
ity, making seeking cover a sensible move to escape damage.

Heal Increases health of adjacent, faced character by fixed
amount and up to maximum health for that character.

To check if an action which conventionally does not feature
in player-adversary interaction is chosen and to what effect.

pass through. The adversary (’A’, orange) is at the top and
faces south, while the player (’P’, purple) is situated at the
bottom and faces north. Their perceptive field is shown in
orange and purple, respectively.

We have made this environment deliberately simple to
familiarise the reader with the different empowerment types
in the CEM policy. Fig. 1b shows the adversary NPC’s
empowerment for a 3-step lookahead. Each hue indicates the
agent’s empowerment if it was moved to that position, but the
player’s position remained the same. Brighter hues represent
higher empowerment. In the default configuration, the agents
can only move or idle, and empowerment is consequently
very sensitive to degrees of freedom in movement: it is lower
where the agent would be blocked, e.g. close to walls and
corners. The choke point between the middle and side walls
has particularly low empowerment, separating the lower and
upper parts of the environment into distinct gradients with
local maxima. The player’s 3-step empowerment is very
similar, given that both agents by default possess the same
abilities. Fig. 1c illustrates the transfer empowerment from
the adversary to the player, for different positions of the
adversary. Recall that this empowerment type corresponds to

the influence the NPC has on the player’s sensor. Hence, for
n=1, it is only non-zero within the player’s perceptive field.
For larger lookaheads in contrast, it fades out to states from
which the NPC could influence the player’s perception with
some n-step action sequences (Fig. 1d). This demonstrates
that transfer empowerment does not measure perceptibility,
but operational-, or in this case, spatial proximity.

The contrast between adversary- and adversary-player
transfer empowerment highlights how the different empower-
ment types compete in the CEM policy: If the adversary NPC
only considered transfer empowerment, it would move closer
to the player; maximising its own empowerment however
would require to stay in the middle of the upper part
and avoid the choke points on the sides. This trade-off is
mediated by the α-weights, which can be used to design for
different behaviours. Consider the following example: If we
equip our adversary NPC with the ability to perform range
attacks but stick to the default parameter setup, it remains
in the upper area. Nonetheless, if the player moves into this
territory, it is killed with two directed shots. We classify this
type of adversary as opportunist. In contrast, if we increase
the negative weight of the player’s- while decreasing the
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(a) Initial state (b) EA,3 (c) ET,1 (d) ET,3

Fig. 1: Experiment 1. Initial state with perceptive field of adversary and player, followed by adversary (EA,n) and adversary-
player transfer empowerment (ET,n), the latter for lookaheads n = 1, 3. Brighter hues indicate higher empowerment.

Fig. 2: Experiment 1. “Daredevil” adversary (αA = .0, αP = −1.0 and αT = .1) chasing the player with a range attack.

weight of the NPC’s own empowerment (αA=.1, αP=−1.0),
the NPC is more inclined to trade-off losses in its own- for
the decimation of player empowerment. As a result, we get
a daredevil adversary1, chasing and shooting the player as
illustrated in Fig. 2. As final scenario, we investigate the
adaptivity of our NPC by equipping the player with a range
attack action as well. A video2 shows how the adversary
adapts to this new threat by dodging and keeping distance.

This experiment shows that CEM can yield adaptive
adversarial behaviour, including the classic predator-and-prey
behaviour present in many games. Furthermore, it highlights
that the CEM weights should not be considered a burden, but
rather a feature to create different personas, thus increasing
the believability of our NPCs while overcoming the weak-
nesses of utility-based agents outlined in the introduction.

D. Experiment II: Exploiting Affordances

In a sufficiently complex game, the wealth of possible
interactions between a character’s abilities and features of the
environment becomes hard to anticipate even for the game’s
designers. As a consequence, most hand-crafted NPCs do
not fully exploit these interactions. In more open-ended
algorithms such as MCTS, this anticipation problem creeps
into the definition of the optimisation objective, resulting
in blunt adversary behaviour. Empowerment is defined on
an agent’s possible interactions with its world, and should
thus be sensitive to any interaction between any type of
“functional content” [14]. In our second experiment, we
thus investigate if a CEM-driven NPC can leverage the

1Video online: youtu.be/MVthwbhUNTA
2Video online: youtu.be/9WoMKJAwl6k

possible interactions that a game affords to the full extent
for adversarial behaviour. Because tiny changes to e.g. the
environment or an agent’s abilities can turn the emerging
gameplay upside down, we start with a simple environment
and extend it gradually to investigate CEM-driven adaptation.

Fig. 4a shows the initial state of the environment, where
adversary and player face each other in an arena surrounded
by lava. If an agent happens to step on the lava, its health
decreases by one unit per time step. In order to examine
longer interaction sequences, we extend our characters’
health to four units (ht, hmax = 4). Mediated by health-
performance-consistency, a decrease in health results in
lower empowerment even for small lookaheads. The NPC’s
3-step empowerment (Fig. 4b) is thus lower in the lava, and
decreases the further away the agent is from the platform,
where only few action sequences lead back alive.

Under the default configuration, the NPC closes up to the
player and blocks it to reduce the latter’s movement and
thus empowerment. If we give the NPC the ability to push
though, the dynamics change considerably: As illustrated in
Fig. 3 and in a video3, the NPC then destroys the player
by pushing it into the lava. Importantly, it blocks the player
from returning to the platform, no matter which path the
latter chooses. The policy thus captures how the agent’s new
ability, in interaction with the environment, can be exploited
the decrease the player’s empowerment – resulting in more
challenging and arguably novel gameplay.

But what happens if we give the NPC an action which is
typically not associated with adversaries, such as healing?
Our next scenario shows that this surprisingly takes the

3Video online: youtu.be/-Stm59llrDs
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Fig. 3: Experiment 2 (Detail). Adversary pushing player into lava and blocking it from returning to the platform.

(a) Initial state (b) EA,3

(c) EA,3, flying (d) EA,3, recharger

Fig. 4: Experiment 2. Initial state with perceptive field and
3-step empowerment for different modifications.

adverseness of our NPC to a new level: equipped with the
ability to heal the player by one health unit per time step,
it still pushes the player into the lava. However, once the
player is close to ceasing, the NPC uses its healing action to
keep the player alive4. Crucially, the player’s health in this
situation would be too low to make it back to the platform.
Our CEM-driven NPC thus acts in best super-villain style,
and in stark contrast to e.g. MCTS with the only objective
to destroy: it just keeps the player’s health sufficiently
high to exercise control over it – thus optimising its own
empowerment – while keeping the player’s empowerment
low. We can modulate this behaviour by changing the weight
parameters: if we reduce αA, the NPC lets the player die.

Maximising empowerment cannot only be achieved by
controlling other characters; in scenarios like the present, it
also requires to engage in acts of self-preservation. Dodging

4Video online: youtu.be/fy-2hRf-4L8

attacks by the player as in the previous experiment is such an
act. However, previously both agents had identical abilities,
which is uncommon in most games. To examine whether
CEM can exploit inequalities between characters to further
both self-preservation and adverseness, we allow our NPC
to range-attack and fly, while the player is limited to melee
attacks on the ground. In our testbed, a character that can fly
is not affected by the hazardous effect of lava, and the NPC’s
empowerment is thus not affected by the lava anymore, but
only by the surrounding walls and the player (cf. Fig. 4b and
4c). With its new ability, our NPC now dodges the player’s
melee attacks by escaping over the lava. Once the player
veers away from the NPC, it returns and attacks from a
distance5. Note that, using a uniform model of the player’s
policy, the NPC expects the player to remain on the platform
no more than following it into the lava. However, this would
result in a decrease of the player’s empowerment – which
would be welcome to the NPC trying to minimise it.

In our last scenario, we stress another aspect of self-
preservation: not escaping harm, but recovering from it. If
we allow our characters to push and perform melee attacks,
the NPC engages in close combat, using both direct attacks
and pushing the player into the lava. Meanwhile, if we put
a recharge unit in the middle of the platform, the characters
start competing for the scarce resource: once the NPC’s
health gets close to zero, it captures the recharge tile to
recover, pushing the player off if necessary6. The NPC’s em-
powerment heatmap for a lower health state ht = 2, hmax = 4
(Fig. 4d) highlights the effect of the recharge station - like
a beacon in the reward landscape. This second experiment
support our hypothesis that CEM-driven agents can adapt to-
and exploit changes in the environment and in their abilities.

E. Experiment III: Distant Threats
The most challenging adversaries are arguably those that
strike from a distance, where they remain unaffected by our
actions, and potentially also undetected. An NPC that would
be inferior in direct combat could cast spells, order air strikes
or control traps and doors remotely. In our last experiment,
we investigate if CEM allows for such behaviour to emerge.

Key to such behaviour is player and transfer empower-
ment, with transitions towards direct interactions being facil-
itated by trading off the NPC’s own empowerment. We have
designed our last experiment to provoke such a transition
and examine the interplay of these three components. In the
initial state (Fig. 6a), the player starts on the lower right in

5Video online: youtu.be/tSzYLaCDXiI
6Video online: youtu.be/WoWfLRlY2LY
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Fig. 5: Experiment 3. Adversary harming player by triggering turrets remotely, eventually destroying it with a range attack.

(a) Initial state (b) ET,3

(c) ET,3 (d) ET,3

Fig. 6: Experiment 3. Initial state, followed by adversary
EA,n and adversary-player transfer empowerment ET,n, the
latter for three different player positions. Lookahead n = 3.

a corridor, while the NPC is situated on the upper left in an
open area, separated by a wall with two passages. The player
faces three turrets, two on the sides and one ahead. The
corresponding triggers are positioned in front of the NPC.
Both characters have the ability to perform a range attack.

The NPC’s own empowerment in this state does not
convey any information about the best trigger to affect
the player, as it only quantifies the NPC’s influence on
its own sensor state. Player- and transfer empowerment in
contrast both work as proxy to the player’s condition: transfer
empowerment measures the impact of turret-triggering on
the player’s health, which is captured in the latter’s sensor;
the player’s health in turn affects the player’s empowerment,
which can be exploited by the NPC. Figs. 6b – 6d show how
transfer empowerment peaks on- and around the triggers for
player positions in the shooting range of different turrets.

Following the CEM policy, the NPC triggers the correct
turrets to hit the player on its way towards the goal tile (Fig.

5 1–4). When the player moves between turrets, the NPC
positions itself where it can strike quickest, i.e. between the
triggers. Once the player gets closer to the goal and thus to
the open passage towards the adversary, the latter trades off
its own- against the increase of transfer empowerment: the
spatial proximity of the player results in a transfer empow-
erment gradient which the NPC could follow to eventually
attack the player directly. By doing so however, the NPC
risks its own empowerment to be decreased by a counter-
attack. In the present configuration, the adversary eventually
moves away from the triggers and attacks the player directly
(Fig. 5, last and video7). Meanwhile, decreasing the NPC’s
health (ht=1, hmax=2) makes it remain at its current position
and shoot the player from a distance8. This experiment
supports that CEM also yields complex remote interactions.

IV. DISCUSSION

Our CEM-driven NPC not only proved to be very sensitive
to changes in the environment and its own abilities; we
also demonstrated how small modifications of the weights
can switch behavioural patterns, and yield different character
types such as opportunists, daredevils and “super-villains”.

Our experiments however have also pointed out the im-
portance of incorporating stronger assumptions about the
player’s policy to yield more believable behaviour. At
present, the NPC assumes all player actions in a given state
to be equally likely. Thus, while the CEM policy equips
the NPC with a drive for survival and self-defense, no such
assumption is present in the model of the player’s policy.
More than that, the adversary-player relationship is one-
sided: while the NPC would select its actions to diminish
the player’s empowerment, the player is not assumed to have
a negative bias. We think that empowerment can be used
successfully to induce such a bias into the NPC’s model of
the player’s policy, while maintaining the generality of the
approach. Importantly, assuming the player to minimise the
NPC’s empowerment would be short-sighted: unless fighting
adversaries contributes explicitly to achieving a game’s goal,
a human player might be more inclined to evade adversaries
than to attack them. Instead, we suggest to go one step
further and model the player as maximising empowerment
itself. This should yield a good prior particularly in games
where progress is aligned with an increase in options and
influence. We presently do not represent the player’s goal in

7Video online: youtu.be/qBTdGCkspA4
8Video online: youtu.be/HnVE-IHmGG8
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the policy model, but CEM operates implicitly on the player’s
trajectories towards goal achievement. Ultimately, we expect
the quality of adversarial behaviour to increase further when
inferring and modelling these goals explicitly.

Another question arising from our experiments is how
challenge induced by CEM-driven adversary NPCs can be
modulated to produce a well-balanced player experience
[15]. Given that our NPCs adapt to changes in their abilities,
such modulation can be facilitated by the classic means of
balancing the characters’ abilities with respect to the envi-
ronment. But CEM offers additional alternatives. Adjusting
the weight parameters allows us to model characters that
challenge us in different ways: an adversary can be made
aggressive or more cautious, only fighting back if they are
confronted directly. Furthermore, noise can be introduced
into the NPCs model of the environment dynamics, making
it overconfident or insecure about their own and other char-
acters’ possible interactions with the world. Finally, biases
can also be introduced into the NPC’s model of the player’s
policy, rendering the latter e.g. as anticipated threat or
harmless peer. We expect this to yield particularly interesting
gameplay in combination with online model learning.

We finally want to address the scalability of CEM. In order
to discriminate small effects of the underlying quantities in
this study, we have computed coupled empowerment exhaus-
tively. However, this comes with exponential computational
complexity, mostly due to the calculation of the forward
transitions and the channel capacity. In recent years, several
approximations for the maximisation of mutual information,
underlying empowerment, have been proposed, drawing on
variational inference and deep neural networks [16], [17],
[18]. We believe that these are presently the most promising
candidates to increase the scalability of CEM. Furthermore,
the lookahead in CEM can be increased by utilising macro-
actions. In sufficiently large action spaces, Monte-Carlo
sampling of action sequences (cf. [19]) is also likely to yield
good approximations. Finally, more informed policy models
could not only increase the quality of behaviour, but also be
used to prune the search tree.

V. CONCLUSION AND FUTURE WORK

We have set out to provide an open-ended action policy
for NPCs to leverage any interaction a game affords, and
to adapt to changes in a game with the ultimate goal to
design more believable characters. In previous work, we have
proposed to use CEM to engineer general companion NPCs
that yield a large variety of new and potentially surprising,
supportive behaviours. In this paper, we have adopted the
action policy to give rise to adversarial behaviour. We have
shown by means of a qualitative study that minimising the
player’s empowerment in a CEM policy yields rich adversar-
ial behaviour, based on our NPC’s successful exploitation of
interaction affordances, and the adaptation to changes to its
own- and the player’s abilities, as well as to the environment.
Our NPC has used its abilities, e.g. to heal, in ways that we
would find surprising even in respect to human opponents.

Our study has provided valuable insights towards increas-
ing the believability of our NPCs further, which we plan to
use in a quantitative evaluation to conclude this proof-of-
concept. We will employ AI playing agents to remove any
experimenter bias, and investigate the suitability of CEM
to drive both adversarial and supportive behaviour based
on objective metrics such as goal achievement, as well as
subjective measures of player experience. Given the present
observations, we are confident that our participants will
not be bored with stereotypical adversary behaviour, but
encounter genuinely new and surprising ways to be mean.
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Abstract—Models of intrinsic motivation present an important
means to produce sensible behaviour in the absence of extrinsic
rewards. Applications in video games are varied, and range
from intrinsically motivated general game-playing agents to
non-player characters such as companions and enemies. The
information-theoretic quantity of Empowerment is a particularly
promising candidate motivation to produce believable, generic
and robust behaviour. However, while it can be used in the
absence of external reward functions that would need to be
crafted and learned, empowerment is computationally expensive.
In this paper, we propose a modified UCT tree search method
to mitigate empowerment’s computational complexity in discrete
and deterministic scenarios. We demonstrate how to modify
a Monte-Carlo Search Tree with UCT to realise empowerment
maximisation, and discuss three additional modifications that
facilitate better sampling. We evaluate the approach both quanti-
tatively, by analysing how close our approach gets to the baseline
of exhaustive empowerment computation with varying amounts
of computational resources, and qualitatively, by analysing the
resulting behaviour in a Minecraft-like scenario.

Index Terms—empowerment, tree search, MCTS, UCT,
Minecraft, intrinsic motivation

I. INTRODUCTION

The empowerment formalism [1], [2] offers interesting
game applications in terms of believable NPC behaviour [3],
general game-play [4] and player experience modelling [5].
But the high computational complexity of empowerment is
problematic for a wider application in games. In this paper we
show how a UCT tree search formalism [6], [7] can be adapted
to approximate empowerment maximisation in the discrete
domain. But first, we motivate the application of empowerment
to games in more detail.

A. Motivation

Empowerment is a measure of how much an agent can affect
the world it itself perceives. Empowerment maximisation is
considered an intrinsic motivation (IM) [8], and has been
recently linked to competence and autonomy, two motivations
which are frequently discussed in a games context [9]. As
intrinsic motivation, i.e. as an essential motivation linked to
agency itself, empowerment can generate behaviour even in
the absence of externally defined goals. Behaviour then results
from fulfilling a motivation that arises from the agent-world
interaction. An illustrative, non-empowerment example for

this is the work of Merrick and Maher [10], [11], where an
agent’s actions are selected based on learning progress [12]
and curiosity [13]. Curiosity, or the desire to experience
something new, can create behaviour without further reward.
The broad concept of curiosity is also a good illustration of an
intrinsic motivation, as it is hard to imagine agency without
the least desire to experience novelty or learn something new.
Empowerment, in contrast, is about having affordances, about
self-efficacy and the ability to affect one’s own world. Em-
powerment has also been linked to the idea of an organism’s
striving to preserve its precarious existence [14]. Applied
to a Minecraft-like simulation this drive to self-preservation
resulted in behaviour where the agent would restructure the
world to keep itself alive [15], producing different behaviour
patterns in reaction to changes in the environment. The same
work also demonstrated how the embodiment of the agent was
reflected in the structures built in the world. This apparent
self-directed behaviour, arising from- and reacting to changes
in the game world make the application of empowerment in
games interesting.

Previously, empowerment has been applied to play Sokoban
and PacMan [4]. In this work, Anthony et al. speak about
the generality of empowerment by asserting that it provides
a utility that: “1) derives only from the structure of the
problem itself and not from an external reward; 2) identifies
the desirability of states in a way that matches intuition;
and 3) carries over between scenarios of apparently different
character.” This would make empowerment a good proxy for
general game-play, and thus biasing the decision making of
reward-optimising agents with empowerment might lead to
better performance. Similar approaches have been used in
the domain of robotics, where a robotic follower [16] and
underwater vehicles [17] had their decision making biased
or enhanced with empowerment maximisation. But while the
empowerment formalism is generally applicable, i.e. can be
computed based just on the structure of a given forward model,
the utility it provides may not always agree with an externally
defined reward. One common example here are games where
empowerment has to be “traded away” to win a game - imagine
a game like Starcraft where you first obtain resources and
units, which increase your empowerment, but then you lose
those units and resources in a material exchange to defeat
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your opponent. Note though, that there is still an incentive
to maximise empowerment, even as you are giving it up. It
is also possible to define games with a (possibly contrived)
win condition that conflicts with empowerment. In a lot of
cases, though, games are designed to be aligned with intrinsic
motivations, and progressing in a game usually goes along
with increasing player empowerment. As you progress you
usually get more abilities, better and more tools, have access
to more actions, can explore more of the world and generally
have more rather than less influence on the game world.

Creating believable non-player characters (NPCs) in a game
is another possible application of empowerment in games.
Empowerment maximisation can, without defined goals, pro-
duce behaviour related to self-preservation and maximisation
of options. This can be used to give NPCs an appearance of
self-determination. The general applicability of the formalism
also allows NPCs to adapt to changing circumstances. This
has been explored by Guckelsberger et.al. [3] for the design
of general companion characters. In addition to having the
companion NPC maximise their own empowerment, two ad-
ditional empowerment drives were introduced. Maximising the
player’s empowerment motivates the companion to protect and
help. It would, for example, shoot enemies that threaten the
player. This multi-perspective approach has also been explored
in relation to robots, where it could produce generic robot
behaviour guidelines [18]. Very recently, it has been extended
to design highly adaptive and robust adversary NPCs [19].

Finally, there is also the question as to which extent a
player’s empowerment in a game can be used as predictor
for their experience. A preliminary study [5] identified causal
efficacy as potential candidate experience that empowerment
is closely related to, with mediate effects on “challenge, in-
volvement, attention and engagement, learning and emotions”.
Having a measure that computes user experience without an
actual player would be beneficial in rapid prototyping and
when creating or adapting games automatically.

Yet, one downside of empowerment maximisation is its
lack of scalability, due to the formalism’s high computational
complexity, especially when looking at longer time horizons.
Approximations have been developed both for the continuous
domain [20] and discrete but noisy models [4]. In this paper,
we use UCT to accelerate the computation of the most
empowered action in a discrete and deterministic model.

B. Overview

We first describe the actual empowerment formalism, and
then focus on empowerment in discrete and deterministic
models. We discuss the problems arising from sparse sam-
pling, and introduce a modified UCT tree search algorithm
to find the most empowered actions with less sampling. We
complement this with three modifications – novelty bias,
aggregated empowerment and full branching – to further
enhance the sampling. We evaluate the optimisation scheme
in a Minecraft-like world model which has also been used in
previous work [15]. We briefly introduce the model, followed
by a quantitative and a qualitative evaluation. We demonstrate

how the UCT approach and the different modifications perform
better with less samples than the current baseline of sparse
random sampling.

II. EMPOWERMENT

Rt+1

St+1 At+1

Rt+2

St+2 At+2

Rt+3

At St+3

Figure 1. The perception-action-loop visualised as a Bayesian
network. S is the sensor, A is the actuator, and R represents
the rest of the system. The index t indicates the time at
which the variable is considered. This model is a minimal
model for a simple memoryless agent. The red arrows indicate
the direction of the potential causal flow relevant for 3-step
empowerment.

Empowerment [1], [15] is an information-theoretic formal-
ism that captures how much an agent can affect the world it
itself perceives. It is defined for all systems that can be mod-
elled as an action-perception loop, as seen in Fig. 1. Where
the random variables S, A and R model the sensors, actions
and remaining state of the world, respectively. Empowerment
for a given state r ∈ R is formally defined as the channel
capacity from an agent’s actions at time t to its sensors at a
later point in time. This channel goes through the environment
R. A common generalisation is n-step empowerment, where
all actions from at to at+n−1 are considered as input to the
channel, and the output is the sensor of the agent at t+ n:

E(rt) = max
p(at...t+n−1)

I(St+n;At...t+n−1|rt). (1)

The quantity captures how much information an agent can
“inject” into its sensor St+n via the environment by interven-
ing earlier in At...t+n−1. It is equivalent to potential causal
information flow as defined in [21]. An agent is usually
highly empowered if it has a lot of different options that all
lead to different, predictable outcomes, unaffected by noise.
A highly empowered agent can reliably bring about many
different sensor states. A more detailed discussion of the
general concept and its information theoretic basis can be
found in [1], [15].

Empowerment maximisation is the idea that an agent wants
to be in a state that is highly empowered. Note, when comput-
ing the empowerment for a given state the channel capacity
achieving distribution p(at...t+n−1) might contain a lot of ac-
tion sequences that lead to bad outcomes. But the action policy,
i.e the way the agent picks it actions, is not determined by
this distribution. Instead, a greedy empowerment maximisation
strategy computes the empowerment for all possible successor
states to the current states, and then chooses the action leading
to the one with the most empowerment. It is empowerment
maximisation that is considered an intrinsic motivation, and
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in this paper, we focus on how to efficiently determine which
actions will lead us to the most empowered state.

While empowerment can be defined for both a noisy and
even a continuous channel, in this paper we focus on discrete
and deterministic models. In the deterministic case, where each
possible action sequence at, ..., at+n−1 leads to one specific
state st+n, the channel capacity is the logarithm of the number
all reachable states. So, to calculate the empowerment we have
to determine the resulting sensor state for each possible n-step
action sequence, and then count how many different states
there are in total. This simplifies the computation significantly,
and allows to compute n-step empowerment for larger time
horizons n. We will refer to these reachable sensor states
as “reachable states”, dropping the word sensor for brevity.
Despite this simplification, if we look at a model where each
action step has, for example, a branching factor of 5, we still
have to evaluate 5n action sequences and the corresponding
final states. This number quickly grows infeasibly. In previous
work [15] this was addressed with sub-sampling, where a
random subset of all possible action sequences was evaluated
to compute 15-step empowerment, with a branching factor
of 12. In this work the limitations of random sampling
became evident. Sometimes, the empowerment-maximising
agent would be in a situation where it could get to a part
of the world where it would be able to reach a lot of different
sensor states, but to get there it would have to perform very
specific actions in the beginning of the action sequence -
think of a bridge as an evocative example. Due to the random
nature of the sampling, this bridge might only be crossed with
a few of the sequences, and the evaluation would miss the
considerable gain that going over the bridge yields for the
agent’s empowerment. In this work, we aim to use UCT tree
search to both (i) bias the exploration towards those initial
sequences, and to (ii) identify the best possible action more
efficiently.

III. EMPOWERMENT WITH UCT TREE SEARCH

In this section we outline how to use tree search with
UCT (upper confidence bound applied to tree search, [6])
to accelerate the decision making based on deterministic
empowerment. To find the best action, we need to determine
which of the successor states of the current world state has the
most different sensor states reachable with action sequences
of length n. Note that while we compute the empowerment
for sensor states derived from the world, the computations to
determine the empowerment are done with a complete model
of all world state transitions. In other words, our computation
is not limited by the agent’s perspective and has access to the
full world model.

Our approach is inspired by Monte Carlo tree search
(MCTS) with UCT [7], but there are substantial adaptations
in the expansion, simulation and backpropagation steps. The
basic idea of MCTS UCT, or any informed search for that
matter, is to guide the use of resources, such as forward model
calls, to the parts of the search space which yield the most
information for picking the best action.

So, when we sample action sequences to determine reach-
able sensor states, we assume that sequences starting with
actions that have led to new results are more likely to yield
new results again. We then use the UCT formula [6] to bias
our exploration towards those actions that have previously led
to new states. Further analysis is still needed to determine if
the mathematical properties of the bandit problem, which UCT
is derived from, hold for empowerment computation. Here we
look at simulated results only.

In the next section, we describe the algorithm in detail, and
motivate three modifications. Both are further illustrated with
pseudocode in Alg. 1. Keep in mind, the goals is to determine
which successor state of the current world state has the most
reachable sensor states, i.e. is the most empowered.

A. UCT tree search

In our algorithm nodes are associated with world states. We
start by creating a root node that is associated with the world
in its current state. This node has a depth of zero.

1) Expansion: The algorithm starts at the root, and checks
if there are unexpanded, i.e. unvisited children. As long as
there are unvisited children we select randomly one of the
actions that would lead to an unexpanded child. We create the
child node with a depth value one higher than its parent node.
We then repeat the expansion step, i.e. expanding another
unvisited child, until we reach a node that has a depth equal to
the empowerment horizon n plus one. This is because the first
step just creates the successor nodes that we are evaluating for
their empowerment, and the successive n steps realise the n-
step empowerment approximation. Note that we immediately
expand the tree down to n-steps, and there is no roll-out phase.

2) Backpropagation: Once we reach a node at the horizon,
we obtain the agent’s sensor state and store it in the set of
reachable states in the node. We then also add this reachable
state to the node’s parent node. The parent checks if it already
has this state in its reachability set, and if not, adds it. It
then also adds it to its own parent, recursively. After the
backpropagation finishes, the tree should be in a state where
each node has a reachability set that contains all sensor states
that can be reached from it with the already expanded action
sequences. After this step the algorithm starts over at the root
of the tree, if there is time left.

3) Selection: As the tree fills up, the algorithm will en-
counter nodes where all children have at least been visited
once, and it then has to decide which node to expand again.
At this point we sort the children c with the modified UCT
formula and pick the child c with the highest value:

uct(c) =
c.states.size()

c.visits
+ 0.01 ·

√
log (root.visits)

c.visits
(2)

The function states.size() gives us the size of the reacha-
bility set, and visits() tells us how often the root node and the
child node have been visited. The size of the reachability set
divided by the visits to the child gives us a value between 0.0
and 1.0, the ratio of how many new states each visit to this
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Algorithm 1 Overview of the agent’s decision making algorithm. Methods that take place in other objects, such as applying
actions to the world or selecting a random number are omitted for brevity. HORIZON is n + 1 for n-step empowerment, as
we can determine the initial successor states in the same tree. The colours indicate code changes for the modification. For
basic UCT empowerment read just the code in black. For aggregated empowerment, add the red line at 18. For novelty bias
add the two blue code snippets in 29 and 36. For the full branching modification add the code in green, and set DEPTH to a
non-zero value.

1: procedure BEST ACTION(World w)
2: Node root← new Node
3: while time left do
4: depth← 0
5: Node t← root
6: World test←copy(w)
7: while depth < HORIZON - DEPTH do
8: t.visits++
9: depth++

10: if t has unexpanded children then
11: Action a← RANDOM ACTION(t, test)
12: test.applyAction(a)
13: Node child← new Node
14: child.parent ← t
15: child.action ← a
16: t.children.add(child)
17: state← test.s() . Agent sensor state
18: ADD STATE(state, child)
19: t← child
20: else . use UCT selection
21: t← BEST CHILD(t, root)
22: test.applyAction(t.action)
23: BRANCH(t, test, DEPTH, root)
24: return root.children[max(states)].action
25:
26: procedure ADD STATE(state, Node n)
27: if state 6∈ n.states then
28: n.states.add(state)
29: if state 6∈ parent.states then n.unique++
30: if ∃ n.parent then ADD STATE(state, n.parent)

31:
32: procedure BEST CHILD(Node t, Node root)
33: best← null
34: fitness← 0
35: for c ∈ t.children do

36: f= |c.states|+c.unique
c.visits

+ 0.01 ·
√

log root.visits
c.visits

37: if f > fitness then fitness← f ; best← c
38: return best
39:
40: procedure BRANCH(Node t, World w, d, Node root)
41: if d = 0 then
42: state← test.s() . Agent sensor state
43: ADD STATE(state, t, root)
44: else
45: Action[] a← w.getPossibleActions()
46: for action ∈ a do
47: World test ← copy(w)
48: test.applyAction(action)
49: Node child← new Node
50: child.parent ← t
51: child.action ← action
52: t.children.add(child)
53: BRANCH(child, test, d - 1, root)
54:
55: procedure RANDOM ACTION(Node t, World w)
56: Action[] a← w.getPossibleActions()
57: for actions ∈ t.children do a.remove(action)
58: return random(a)

particular child found. The best value here is 1.0, meaning
every visit leads to one new sensor state. The term in the
square root guides selection towards under-explored states; it
grows larger as more action sequences are sampled that do
not go through c. The factor of 0.01 was chosen to have a
good balance where the distribution of visits among children
was neither approximately uniform (as it would be for a larger
value), nor heavily skewed towards the first best solution (as
it would be for a smaller value).

4) Action Selection: At some point the algorithm runs out
of time (or some other computational limiter) and it needs
to decide what action to take. It looks at the root and picks
the action leading to the child with the biggest reachability
set. This action should lead to a state with the highest n-
step empowerment, meaning that from this state, the agent can
reach the maximum number of different sensor states within
n steps. Note that the algorithm does not select the state with
the highest ratio of new states vs. visits, which was used for
the UCT based selection.

Rationale: Compared with randomly sampling action se-

quences for each successor state, this algorithm should perform
better at finding the state with the highest empowerment, as it
spends less time on investigating the worst alternatives. The
UCT function in selection should bias computational resources
towards the most promising candidates. While the utility of a
node for action selection is the size of the reachability set,
we chose to divide this value by the number of visits for the
selection phase. We thus keep the value between 0.0 and 1.0
and the nodes remain comparable. If this was not the case,
nodes that had been explored more would be preferred as
the number of found reachable states heavily depends on the
number of visits.

Before we evaluate this approach, referred to as UCT from
now on, we introduce three modifications to the algorithm.

B. UCT with Novelty Bias

For this modification we check every time a child node adds
a reachable state to its parents reachability set, if this state is
new to the set. If this is the case, no other child of that parent
has an expanded action sequence leading to that sensor state
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yet. In case of a novel addition, the child increases its novelty
counter by one (line 29 in Alg. 1).

The novelty counter is added to the size of the reachability
set in the UCT function. This means that the performance
of the nodes is now not only defined by how many different
states it found, but also by how many of those states were
novel contribution to the reachability set of its parent node;
an idea somewhat similar to novelty pruning[22].

Rationale: This modification is aimed at biasing exploration
towards sub-sequences that add novel states. Consider an agent
in front of a doorway. One action leads through it, while
the others keep the agent moving around in the room. The
sequences that stay in the room end up overlapping, and while
they might each lead to a sizeable amount of states, they all
lead to the same states. In contrast, sequences that go through
the door can add new reachable states to the parent nodes, and
should therefore be preferred.

C. Aggregated Empowerment
For aggregated empowerment, which we will refer to as

UCTa, we not only consider the sensor states reached at tree
depth n, but we also consider all reachable states along the
way. This is achieved by simply adding the sensor state of
the current world state to every newly expanded node and
propagating it upward (line 18 in Alg.1).

Rationale: Aggregated empowerment corresponds to a
somewhat different quantity, and the implications of this
measure go beyond the scope of this paper. Using this value
to approximate regular empowerment however still has the
advantages that it allows to differentiate between individual
action sequences. Normally, each sequence reaches exactly
one state. But with aggregated empowerment, sequences that
go through different sensor sequences along the way are
considered better. This difference can indicate that the agent
is still operational and able to affect the world.

More conceptually, it also allows to differentiate between
different sequences, even if they ultimately end in the same
state, e.g. death. In this case, the agents prefers to live a less
boring life. In a way, this introduces a form of count-based
novelty into the empowerment calculation.

D. UCT with Full Branching
For n-step empowerment with k-step full branching, the

algorithm only expands the tree to a depth of n − k, i.e. it
stops k steps before it reaches the time horizon. It then fully
expands the tree from that node for the remaining k steps with
depth-first search, and eventually propagates all found sensor
states upwards. All full branching examples in this paper use
1-step full branching. This modification is implemented by the
extension of the BRANCH function in Alg.1, highlighted in
green.

Rationale: Full branching also aims to differentiate be-
tween sequences. It basically computes 1-step deterministic
empowerment for the semi-leaf node. This local empowerment
ideally gives us an idea of how empowered close-by states are,
and thus should guide our exploration towards- or away from
action sequences starting with the same actions.

IV. EVALUATION

A. Simulation Model

To evaluate the different UCT algorithms we implemented a
three-dimensional block world, similar to [15]. The world is a
three dimensional grid, and each grid cell is empty or contains
exactly one block such as earth, the agent and lava. The agent
can try to move in the four cardinal directions (north, east,
west, south). The move will be successful, if a) the target
location is empty, or if b) the target location is filled, but
the one above is empty. In the second case, the agent will
‘climb’ to the location above the target block. In all other
cases the move fails (is blocked) and the agent remains in its
current position. The agent can also act in all six directions
(above, below, north, south, east, west). This action is context-
sensitive on the agent’s inventory, which can hold exactly one
block. If the inventory is empty, the agent will try to take the
block from the target location into its inventory, if there is
any. If the inventory contains a block, the agent will try to
place it. This will succeed if the target location is empty. If
an action fails, the world remains unchanged. There are two
additional actions, waiting and destroying the current block in
the inventory. Overall, this gives the agent 12 actions in each
time step.

Between actions the world simulates liquid flow and gravity.
Agents and lava are affected by gravity, i.e. they fall until
they rest above a filled block. Earth blocks are not affected
by gravity. Lava spreads to neighbouring tiles every 4 time
steps, if they are empty. Lava is an environmental hazard, and
the agent dies if it is next to a lava block. ‘Death’ in this
case means that the agent’s actions have no effect any more
on the world. The sensors considered for the empowerment
computation capture the agent’s x, y, z position.

B. Method

Fig. 2: Typical randomly generated world used for the quan-
titative evaluation. Two red lava blocks are visible among the
grey earth blocks. The agent is colored blue.

For the quantitative evaluation we created 1000 different
random worlds of size 7x7x7. Each block has a 40% chance
to be an earth block, a 2% chance to be a lava block, and
remains empty otherwise. Fig. 2 shows an example world.

169



10−2 10−1 100 101 102
0.2

0.4

0.6

0.8

1

Forward Calls in % of Exhaustive Search

R
at

io
of

O
pt

im
al

D
ec

is
io

ns
Basic
UCT
UCT with Novelty
UCT with Branching
UCT with Both
UCTa
UCTa with Novelty
UCTa with Branching
UCTa with Both

Fig. 3: Ratio of selecting the optimal action for different budgets of forward model calls. The evaluation is based on 1000
different random worlds, computing 4-step action sequences.

10−2 10−1 100 101 102
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Forward Calls in % of Exhaustive Search

A
ve

ra
ge

R
el

at
iv

e
Pe

rf
or

m
an

ce

Basic
UCT
UCT with Novelty
UCT with Branching
UCT with Both
UCTa
UCTa with Novelty
UCTa with Branching
UCTa with Both

Fig. 4: Average relative performance (in reachable states) for the picked actions compared to the optimal action, for different
budgets of forward model calls. The evaluation is based on 1000 different random worlds, computing 4-step action sequences.

The agent (blue) is placed in a random position, replacing the
block in that position if necessary.

For each world we computed 4-step empowerment with an
exhaustive depth-first search to obtain a baseline comparison.
We recorded the number of reachable states, which determine
the empowerment, for each immediate successor state and the
action leading to that state from the root. This gives us an
empowerment value for each action. The UCT algorithm can
ultimately be applied to longer action sequences, but we chose
a horizon of 4 for the quantitative evaluation, as it allows us
to compare the approximations to an exact baseline.

We evaluated 9 different algorithms. The basic agent re-
alises just random sampling, as describe in [15]. We evaluated
the described UCT algorithm with each of the three modifica-
tions (novelty bias, aggregated empowerment, full branching

for 1 step) turned on or off. Additionally, we evaluated the
UCTa algorithm based on aggregated empowerment for each
modification.

For each of the 1000 different worlds, each of the 9
algorithms tried to find the most empowered action. Our goal
was to see how the algorithm’s performance would degrade
if they were given less computational resources. To have a
hardware-independent comparison, we limited each algorithm
to a certain number of forward model calls, which are used
every time a world is advanced by applying an action. This
decision was based on a preliminary analysis, showing that for-
ward model calls were (unsurprisingly) the main contributor to
computational load. We recorded the number of forward model
calls used by the depth-first algorithm from the exhaustive
baseline computation. This number, 22621, was considered as
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100% of needed calls. We then evaluated all 9 algorithms on
all 1000 worlds by giving them only 1/2, 1/4, 1/8, etc, of
the forward calls required for the baseline.

The performance of returned actions was evaluated in two
ways. We checked, in comparison to the baseline computation,
if the action selected by an action is optimal, i.e. if it has
as many reachable states as the best answer. The average
performance in this case is the ratio of how many of the
chosen actions where optimal. We also implemented a second
performance measure, where we compared the empowerment
of the given action to the empowerment of the best action.
If for example the best action would lead to a state with 20
reachable states, and the given answer would lead to a state
with 10 reachable states, the performance would be 0.5. The
performance is then averaged over the 1000 tested worlds.

C. Results

Figs. 3 and 4 show the results of the evaluation. As expected,
both performance measures get worse if the agents get fewer
forward calls to determine the best action. The important
result here is that the UCT algorithms, especially those with
modifications, outperform the basic agent from [15] for less
forward calls. If we look at the graph in more detail, we see
that for the least number of samples, all agents perform at
about 0.7 in Fig. 4 and at about 0.25 in Fig. 3. This is basically
the performance of a random agent that occasionally finds
the best action by chance, or picks an action that has decent
empowerment. Keep in mind that in some worlds several
actions are optimal, or close to optimal.

The remaining graph can be split into three parts. For the
first 5 sample points, i.e. the part with the least forward calls,
we see that the basic agent , as well as UCT and
UCT with novelty all perform at the random level. At
this point so few forward calls are made that each child of the
root is only expanded once, i.e. has one full actions sequence
going through it evaluated. This does not allow yet for an
informed choice, as all sequences in this case lead to exactly
one sensor state, making all choices equivalent. The algorithms
with aggregated empowerment ( , , , ) perform
better here, as even a single sequence becomes informative.
Each sequence might be visiting more or fewer different states,
giving a better picture of how much an agent that picked a
specific first action can affect the world afterwards. If, for
example, the first action would lead the agent to touch lava and
die, or fall in a hole, then all successive states of that sequence
would be identical. The four algorithms with full 1-step
branching ( , , , ) perform best in the segment,
as they create the most information for a single sequence.
By evaluating how many states could be reached from the
second to last step, the algorithms can differentiate between
different starting actions. These approaches cost slightly more,
as they use 11 additional forward calls in the end, but then
saves forward calls by not having to go down the same full
sequence several times.

In the middle segment of the graph we see an increase
in performance for all algorithms. Noteworthy here is that

for every configuration the variant with novelty outperforms
the respective variant without novelty bias. As we now have
enough samples so that children are fully expanded, the UCT
selection comes into play. The bias towards those states that
brought novel contributions seems to guide us towards better
states. Aggregated Empowerment seems to have little effect
on performance in this segment.

Towards the end, where the algorithms get nearly enough
calls to exhaustively sample the space we can see that
the marginal difference in performance gets slimmer as
the performances increase overall. The algorithms basically
split into two groups, those with full 1-step branching
( , , , ) clearly outperforming those without. We
should also note that the basic agent performing random
sampling gets more competitive once we get to nearly 100%
of the needed samples.

D. Bridge Example

Fig. 5: Bridge example world. The agent (blue) should cross
over the narrow bridge and avoid the lava (red).

The qualitative effect of the different algorithms becomes
more evident if we are looking at a concrete example. In Fig. 5
we see an agent on a small platform surrounded by lava. The
agent should cross over the narrow bridge to reach the much
larger area. This would massively increase its empowerment.
Looking at 10-step empowerment, the agent has a long enough
time horizon to figure this out. But it is infeasible to evaluate
all 61,917,364,224 10-step action sequences, so we do not
have a ground truth to evaluate against. This is the kind of
scenario the algorithm in this paper was developed for.

We evaluated this example with 10000 forward calls and
less, for all previously described algorithmic variations. We
ran the world seen in Fig. 5 100 times, and we checked how
often the agent started moving onto the bridge leading to more
empowerment. From our conceptual understanding of discrete
empowerment we know that this is the most empowered
option. The graph in Fig. 6 shows the results of the evaluation.
The basic and the UCT agent struggle to find the
optimal action, as fewer than 5% actually move towards the
bridge with the first action. The bridge defines a bottleneck
that first has to be crossed with an initial, very specific 4-step
sequence, and biasing the exploration of the graph towards this
one sequence does not happen in this case. The addition of
novelty bias seems to add relatively little, but full branching
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and aggregated empowerment pick the optimal action far more
often. The algorithm that combines all modifications performs
best, finding the optimal solution 52% of the time compared to
2% for the basic agent from [15]. As a side note, this is also an
example of how directed behaviour arises in a world without
the kind of utility function typical to most games. The agent
prefers to be on the bigger platform, as it can move around
more and dig down to obtain blocks to climb up.
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Fig. 6: Evaluation of the bridge example in Fig. 5 for 10-step
sequences. The optimal choice is going towards the bridge.

V. CONCLUSION

The results indicate that all three modifications introduced
in this paper improve the performance of empowerment max-
imising agents that have a limited amount of computational
resources. While the approach is intended to be used for
longer, i.e. above 10-steps, action sequences, we evaluated
4-step sequences. Due to computational intractability, we do
not have a baseline comparison for longer sequences. The
bridge example is promising though, as it showed that the
modified algorithms can deal with bottlenecks in longer se-
quences, something the basic algorithm from previous work
[15] struggled with considerably.

A. Future Work

This technical improvement opens up possible applications
of empowerment in the discrete and deterministic domain.
For example, this would make it more feasible to apply an
empowerment-biased agent to games such as those found in
general game-playing competitions [23], [24]. The other pos-
sible extension of this work is to extend it to non-deterministic
but discrete models. While there are faster approximations for
this domain [4], it might prove useful to apply the extensive
catalogue of MCTS enhancements to this problem.
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Abstract—Multi-agent pathfinding, namely finding collision-
free paths for several agents from their given start locations
to their given goal locations on a known stationary map, is
an important task for non-player characters in video games.
A variety of heuristic search algorithms have been developed
for this task. Non-real-time algorithms, such as Flow Annotated
Replanning (FAR), first find complete paths for all agents and
then move the agents along these paths. However, their searches
are often too expensive. Real-time algorithms have the ability to
produce the next moves for all agents without finding complete
paths for them and thus allow the agents to move in real
time. Real-time heuristic search algorithms have so far typically
been developed for single-agent pathfinding. We, on the other
hand, present a real-time heuristic search algorithm for multi-
agent pathfinding, called Bounded Multi-Agent A* (BMAA*),
that works as follows: Every agent runs an individual real-
time heuristic search that updates heuristic values assigned to
locations and treats the other agents as (moving) obstacles.
Agents do not coordinate with each other, in particular, they
neither share their paths nor heuristic values. We show how
BMAA* can be enhanced by adding FAR-style flow annotations
and allowing agents to push other agents temporarily off their
goal locations, when necessary. In our experiments, BMAA* has
higher completion rates and lower completion times than FAR.

Index Terms—multi agent pathfinding, video games, artificial
intelligence, real-time heuristic search

I. INTRODUCTION

Pathfinding is a core task in many video games, for ex-
ample, to allow non-player characters (NPCs) to move to
given goal locations on a known stationary map. A* [1] is
a classic algorithm for single-agent pathfinding. The artificial
intelligence algorithms in video games, however, often need to
find collision-free paths for several agents to their given goal
locations. Figure 1 illustrates multi-agent pathfinding (MAPF)
[2] on a map from the Dragon Age: Origins video game [3],
where NPCs (green dots) have to move to their given goal
locations (red dots).

The constraints on MAPF algorithms depend on the ap-
plication. For example, real-time strategy games, such as
StarCraft [4], require the NPCs to move simultaneously in real

time, which limits the amount of time available to compute
the next moves for all NPCs before they need to start moving.
Video games can generate maps procedurally to create new
game levels on the fly, which makes it impossible to preprocess
the maps. Players can often re-task NPCs at will or the
map can change, rendering their previously calculated paths
obsolete on a moment’s notice. Finally, game settings can limit
the amount of coordination allowed among characters in the
game (such as sharing their paths or heuristic values), and
some characters might not even be under the complete control
of the system (because they are on an opposing team).

These constraints motivated our development of Bounded
Multi-Agent A* (BMAA*) — a MAPF algorithm that operates
in real time, loses only a small amount of search in case
players re-task NPCs or the map changes and neither requires
explicit inter-agent coordination, complete control of all NPCs
nor preprocessing of maps. BMAA* works as follows: Every
agent treats the other agents as (moving) obstacles, runs an
individual real-time heuristic search that searches the map
around its current location within a given lookahead to select
the next move and updates heuristic values assigned to loca-
tions to avoid getting stuck. We show how BMAA* can be
enhanced by, first, adding flow annotations from the MAPF
algorithm FAR [5] (that impose move directions similar to
one-way streets) and, second, allowing agents to push other
agents temporarily off their goal locations, when necessary, if
agents are allowed to send each other move requests. In our
experiments, BMAA* has higher completion rates and smaller
completion times than FAR, thus demonstrating the promise
of real-time heuristic search for MAPF.

II. PROBLEM FORMULATION

A MAPF problem is defined by a pair (G,A). G =
(N,E, c) is an undirected weighted graph of nodes N con-
nected via edges E ⊆ N × N . The costs c(e) of all edges
e ∈ E are strictly positive with the following exceptions:
There exists an edge for every node that connects the node

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18

173



Fig. 1: NPCs on a Dragon Age: Origins map [3].

to itself, allowing the agent to always wait in its current node.
The costs of these edges are zero. A = {a1, . . . , an} is a set of
agents. Each agent ai ∈ A is specified by the pair (ni

start, n
i
goal)

of its start node ni
start and goal node ni

goal. We use graphs that
correspond to rectangular 8-neighbor grids, as is common for
video games. The nodes correspond to the cells not blocked
by stationary obstacles. The nodes of two neighboring cells
are connected with an edge. The costs of these edges are one
for cardinal neighbors and

√
2 for diagonal neighbors.

Time advances in discrete steps. Every agent always occu-
pies exactly one node at every time step. We use ni

curr ∈ N to
refer to the current node of agent ai. The agent determines a
prefix P of a path from its current node to its goal node and
sends it to a central NPC controller. P (n) is the successor
node of node n on the path. The central NPC controller then
moves the agent from node ni

curr to node P (ni
curr) with the

following exceptions: The agent waits in its current node if
P (ni

curr) is undefined or the agent would collide with another
agent. Two agents collide iff they swap nodes or move to the
same node from one time step to the next one.

We use the following performance measures: The comple-
tion rate is the percentage of agents that are in their goal
locations when the runtime limit has been reached [5], [6]. The
completion time for an agent is the time step when that agent
last reached its goal location. If an agent leaves its goal and
does not return the completion time is undefined. Finally, the
travel distance of an agent is the sum of the costs of the edges
traversed by that agent. We consider the mean of all agents’
travel distance and the mean of all agents’ completion time
as the performance measures in our MAPF problems. These
performance measures cannot be optimized simultaneously.
Their desired trade-off can be game specific. We choose to
maximize the completion rate (because players will notice if
NPCs do not reach their goal locations) but report on the other
two performance measures as well.

III. RELATED WORK

We now review search algorithms that are related to
BMAA*, focusing on pathfinding with heuristic search algo-
rithms, which use heuristic values to focus their search.

A. A*

A* [1] provides the foundation for our BMAA* and many
other MAPF algorithms, even though it was developed for
single-agent pathfinding. An A* search for an agent explores
the search space starting at its current node. The exploration is
informed by heuristic values and driven toward nodes with a
low estimate of the estimated cost of moving from the current
node via them to the goal node. Algorithm 1 shows the pseudo-
code for a version of A* that finds a cost-minimal path for
agent ai from its current node ni

curr to its goal node ni
goal under

mild assumptions about the graph and the heuristic values.1

It maintains two lists of nodes, namely the closed and open
lists. The closed list is initially empty (line 3), and the open
list contains the current node (line 4). The closed list is an
unordered set of nodes that A* has already expanded. The open
list is an ordered set of nodes that A* considers for expansion.
A* always expands a node in the open list with the lowest f -
value next, where the f -value of node n is f(n) = g(n)+h(n).
Its g-value g(n) is the cost of the lowest-cost path from the
current node to node n discovered so far, and its h-value h(n)
(or, synonymously, heuristic value) is the heuristic estimate of
the cost of a lowest-cost path from node n to the goal node.
(The g-values are initially zero for the start node and infinity
for all other nodes.) A* removes node n from the open list and
adds it to the closed list (lines 11 and 12). It then expands the
node by iterating over all of its neighbors n′. It updates the
g-value of node n′ if node n′ has not yet been expanded (i.e.,
it is not yet in the closed list) and the g-value of node n′ can
be decreased due to the fact that the cost of the path from the
current node via node n to node n′ is smaller than the g-value
of node n′ (because the search has then discovered a lower-
cost path from the current node to node n′) (line 19). In this
case, it also updates the parent of node n′ to node n (line 20)
and adds it to the open list if it is not already in it (line 22). A*
continues its search until either the open list is empty (line 6)
or the node about to be expanded is the goal node (line 7).
In the former case, no path exists from the current node to
the goal node. In the latter case, the path P that is obtained
by repeatedly following the parents from the node about to be
expanded to the current node is a cost-minimal path from the
current node to the goal node in reverse (line 8).

B. Online MAPF Algorithms

We focus on online MAPF algorithms, where there entire
problem is not required to be solved before agents begin
moving. since we are interested in MAPF algorithms that
operate in a short amount of time, lose only a small amount
of search in case players re-task NPCs or the map changes
and neither require explicit inter-agent coordination, complete

1In our pseudo-code, First returns a node with the smallest f -value in
the open list (breaking ties in favor of a node with the largest g-value, with
any remaining ties broken by first-in first-out); Pop removes a node with
the smallest f -value from the open list (breaking ties in favor of a node
with the largest g-value) and returns it; Add adds an element to a list; and
GetNeighbors returns all neighboring nodes of a node in the graph.
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Algorithm 1 A*.
1: procedure A*
2: P ← ()
3: closed← ∅
4: open← {ni

curr}
5: g(ni

curr)← 0
6: while open 6= ∅ do
7: if open.First() = ni

goal then
8: calculate P
9: break

10: end if
11: n← open.Pop()
12: closed.Add(n)
13: for n′ ∈ n.GetNeighbors() do
14: if n′ 6∈ closed then
15: if n′ 6∈ open then
16: g(n′)←∞
17: end if
18: if g(n′) > g(n) + c(n, n′) then
19: g(n′)← g(n) + c(n, n′)
20: n′.parent← n
21: if n′ /∈ open then
22: open.Add(n′)
23: end if
24: end if
25: end if
26: end for
27: end while

control of all NPCs nor preprocessing of maps. We describe
only the most suitable online MAPF algorithms below.

Windowed Hierarchical Cooperative A* (WHCA*) [6] finds
collision-free paths for all agents for their next window of
moves. It shares the paths of all agents up to the given move
limit through a reservation table, which adds a time dimension
to the search space and thus results in expensive searches.
Beyond the move limit, WHCA* simply assumes that every
agent follows the cost-minimal path to its goal node and thus
ignores collisions among agents. The move limit needs to be
sufficiently large to avoid conflicts among agents, resulting
in searches that might exceed the amount of time available to
compute the next moves for all NPCs before they need to start
moving. Furthermore, WHCA* requires all NPCs to be under
its complete control.

Flow Annotated Replanning (FAR) [5] combines the reser-
vation table from WHCA* with flow annotations that make
its searches less expensive since no time dimension has to
be added to the search space. Each agent has to reserve its
next moves before it executes them. Agents do not incorporate
these reservations into their search but simply wait until other
agents that block them have moved away, similar to waiting at
traffic lights. FAR attempts to break deadlocks (where several
agents wait on each other indefinitely) by pushing some agents
temporarily off their goal nodes. However, agents can still
get stuck in some cases. The flow annotations of FAR [5]

change the edges of the original graph G in order to reduce
the number of collisions among agents. They effectively make
the undirected original graph directed by imposing move direc-
tions on the edges, similar to one-way streets, which reduces
the potential for head-to-head collisions among agents. This
annotation is done on a grid in a way so that any node remains
reachable from all nodes from which it could be reached on
the original graph, as follows: The new graph initially has
no edges. The first row of nodes is connected via westbound
edges, the second row is connected via eastbound edges,
and so on. Similarly, the first column of nodes is connected
via northbound edges, the second column is connected via
southbound edges, and so on. Sink nodes (with only in-bound
edges) and source nodes (with only out-bound edges) are
handled by adding diagonal edges adjacent to them. If sink and
source nodes are in close proximity of each other, the diagonal
edges can end up pointing at each other and result in a loss
of connectivity, in which case additional undirected edges are
added around them. Corridor edges (that is, edges on paths
whose interior nodes have degree two) of the original graph
remain undirected, which is important in case the corridor is
the only connection between two components of the original
graph. A standard implementation of A* is then used to search
for a path to the goal in this restricted graph.

C. Real-time Heuristic Search

Video games often require NPCs to start moving in a short
amount of time, which may not be possible with any of the
search algorithms reviewed above since they need to compute
a complete path before an agent can execute the first move.
Real-time heuristic search (RTHS) algorithms, on the other
hand, perform a constant amount of search per move regardless
of the size of the map or the distance between the start and
goal nodes. They have been studied for single-agent pathfind-
ing [7]–[10], starting with the seminal work by Korf [11].
They need to compute only the prefix of a path before the
agent can execute the first move — and repeat the operation
until the agent reaches the goal node. To avoid cycling forever
without reaching the goal node due to the incompleteness of
the searches, the algorithms update the heuristic values over
time by making them locally consistent [11], incrementally
building the open and closed lists [12] or ignoring parts of the
map [13]. There are two benefits to using RTHS algorithms
in video games. First, an NPC can start moving in a short
amount of time. Second, only a small amount of search is lost
in case a player re-tasks NPCs or the map changes.

A well-known RTHS algorithm Real-Time Adaptive A*
(RTAA*) [14] performs an A* search, limited to a given
number of node expansions. RTAA* then uses the f -value
of the node A* was about to expand to update the heuristic
values of all expanded nodes (that is, all nodes in the closed
list closed ) as shown in Procedure Update-Heuristic-Values in
Algorithm 4. The agent then moves along the path from its
current node to the node A* was about to expand, limited to a
given number of moves — and RTAA* repeats the operation.
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IV. OUR APPROACH: BMAA*

Our Bounded Multi-Agent A* (BMAA*) is a MAPF al-
gorithm where every agent runs its own copy of RTAA*.
BMAA* satisfies our requirements: It operates in real-time,
loses only a small amount of search in case players re-task
NPCs or the map changes. Additionally, it does not requires
explicit inter-agent coordination, complete control of all NPCs
or preprocessing of maps. The design of BMAA* is modular
to allow for extensions by adding or changing modules. For
example, BMAA* can be enhanced by, first, adding flow
annotations from FAR and, second, allowing agents to push
other agents temporarily off their goal nodes, when necessary,
if agents are allowed to send each other move requests.

We parameterize BMAA* as follows in the spirit of recent
research in the context of Parameterized Learning Real-Time
A* [15]: First, expansions is the limit on the number of node
expansions of the A* search of RTAA*. Second, vision is
the distance within which agents can see other agents. Third,
moves is the number of moves that each agent makes along
its path before RTAA* determines a new path for the agent.
Fourth, push is a Boolean flag that determines whether agents
can push other agents temporarily off their goal nodes. Finally,
flow is a Boolean flag that determines whether RTAA* uses
the flow annotations from FAR.

A. Procedure NPC-Controller

Algorithm 2 shows the pseudo-code for the central NPC
controller. The time step time is initialized to zero at the start
of BMAA*, and the central NPC controller is then invoked at
every time step with A, the set of agents currently under the
control of the system. In the search phase, the central NPC
controller lets every agent under the control of the system use
the Procedure Search-Phase shown in Algorithm 3 to find a
prefix of a path from its current node to its goal node (line 3,
Algorithm 2). In the subsequent execution phase, the central
NPC controller iterates through all agents under the control of
the system: First, it retrieves the node that the agent should
move to next, which is the successor node of the current
node of the agent on its path (line 7, Algorithm 2). Second,
if the desired node is blocked by an agent that has reached
its own goal node already and agents can push other agents
temporarily off their goal nodes (push = true), it can push the
blocking agent to any neighboring node (line 9, Algorithm 2).
The blocking agent returns to its own goal node in subsequent
time steps since all agents always execute RTAA* even if
they are in their goal nodes. Finally, it moves the agent to
the desired node if that node is (no longer) blocked (line 12,
Algorithm 2) and increments the current time step (line 16,
Algorithm 2).

B. Procedure Search-Phase

Algorithm 3 shows the pseudo-code for the search phase. It
finds a new prefix of a path from the current node of the agent
to its goal node when it has reached the end of the current
path, the current node is no longer on the path (for example,
because the agent has been pushed away from its goal node),

Algorithm 2 BMAA*’s NPC Controller.
1: procedure NPC-CONTROLLER(A)
2: for all ai ∈ A do
3: ai.Search-Phase()
4: end for
5: for all ai ∈ A do
6: if ai.P (ni

curr) is defined then
7: n← ai.P (ni

curr)
8: if push ∧ n is blocked by agent aj then
9: aj .PushAgent()

10: end if
11: if n is not blocked by an agent then
12: ai.MoveTo(n)
13: end if
14: end if
15: end for
16: time ← time + 1

Algorithm 3 BMAA*’s Search Phase.
1: procedure SEARCH-PHASE
2: if Search.P(ni

curr) is undefined or time ≥ limit then
3: Search()
4: if Search.open 6= ∅ then
5: n← Search.open.First()
6: f ← g(n) + h(n)
7: Update-Heuristic-Values(Search.closed, f)
8: limit← time + moves
9: end if

10: end if

Algorithm 4 BMAA*’s Update Phase.
1: procedure UPDATE-HEURISTIC-VALUES(closed, f )
2: for n ∈ closed do
3: h(n)← f − g(n)
4: end for

or the agent has already executed moves moves along the path.
(The “expiration” time step limit for the path keeps track of
the last condition on line 2 and is set on line 8.) If so, then it
uses Procedure Search in Algorithm 5 to execute an RTAA*
search (line 3) and uses Procedure Update-Heuristic-Values to
update the heuristic values afterward (lines 5-7).

C. Procedure Search

Algorithm 5 shows the pseudo-code for an A* search,
as discussed before, but with the following changes: First,
each agent maintains its own heuristic values across all of
its searches. Second, the search also terminates after it has
expanded expansions nodes. Thus, the path P obtained on
line 9 by repeatedly following the parents from the node about
to be expanded to the current node is now only the prefix of
a path from the current node of the agent to its goal node.
Finally, GetNeighbors returns a node’s neighbours that are
not blocked by stationary obstacles. However, other agents
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Algorithm 5 BMAA*’s Version of A*.
1: procedure SEARCH
2: P ← ()
3: exp← 0
4: closed← ∅
5: open← {ni

curr}
6: g(ni

curr)← 0
7: while open 6= ∅ do
8: if open.First() = ni

goal ∨ exp ≥ expansions then
9: calculate P

10: break
11: end if
12: n← open.Pop()
13: closed.Add(n)
14: for n′ ∈ n.GetNeighbors(flow) do
15: d← distance(ni

curr, n
′)

16: if n′ is blocked by an agent∧d ≤ vision then
17: if n′ 6= ni

goal then
18: continue
19: end if
20: end if
21: if n′ 6∈ closed then
22: if n′ 6∈ open then
23: g(n′)←∞
24: end if
25: if g(n′) > g(n) + c(n, n′) then
26: g(n′)← g(n) + c(n, n′)
27: n′.parent← n
28: if n′ /∈ open then
29: open.Add(n′)
30: end if
31: end if
32: end if
33: end for
34: exp← exp + 1
35: end while

within the straight-line distance vision within which agents
can see other agents are treated as obstacles as long as they
do not block its goal node. Thus, the corresponding nodes
are immediately discarded (lines 16-18). If RTAA* uses the
flow annotations from FAR (flow = true), then GetNeighbors
returns only those neighboring nodes of a node of the graph
which are reachable from the node via the flow annotations
from FAR. The flow annotations are not computed in advance
but generated the first time the node is processed and then
cached so that they can be re-used later.

V. EXPERIMENTAL EVALUATION

We experimentally evaluate four versions of BMAA* both
against FAR and against A*-Replan, which is equivalent to
FAR with no flow annotations. BMAA* cannot push other
agents temporarily off their goal locations (push = false) and
uses no flow annotations (flow = false), BMAA*-c can push
other agents temporarily off their goal locations, BMAA*-f

Fig. 2: Completion rates averaged over all MAPF instances.

uses flow annotations, and BMAA*-f-c combines both fea-
tures. All BMAA* versions use the parameters lookahead =
32 , moves = 32 and vision =

√
2. We choose these

parameters on the basis of preliminary experiments. Increasing
lookahead often decreases the travel distance at the cost of
increasing the search time per move. Increasing vision often
reduces the completion rate since it makes agents react to
far-away agents. FAR and A*-Replan use a reservation size of
three, as suggested by the creators of FAR, meaning that agents
must successfully reserve their next three moves before they
execute them. All MAPF algorithms use the octile heuristic
values as heuristic values (or, in case of BMAA*, to initialize
them), are coded in C# and are run on a single Intel Broadwell
2.1Ghz CPU core with 3GB of RAM and a runtime limit of
30 seconds per MAPF instance, which is sufficiently large to
allow for full A* searches.

We evaluate them on ten maps from the MovingAI bench-
mark set [16]. We use three maps from Dragon Age: Origins
(DAO), three maps from WarCraft III (WCIII), three maps
from Baldur’s Gate II (BGII) (resized to 512× 512) and one
map from Baldur’s Gate II in its original size. We create ten
MAPF instances for each map with the number of agents
ranging from 25 to 400 in increments of 25 and from 400
to 2000 in increments of 200. We assign each agent unique
randomly selected start and goal locations which are reachable
from each other in the absence of other agents.

A. Aggregate Completion Rate Results

Figure 2 shows the completion rates of all MAPF algorithms
averaged over all MAPF instances on all maps. The completion
rates of all MAPF algorithms decrease as the number of agents
increases because the congestion and amount of search (since
every agent has to search) increase. A higher congestion makes
it more difficult for agents to reach their goal locations, and a
higher amount of search makes it more likely that the runtime
limit is reached.
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Fig. 3: Issue for FAR: One-cell-wide corridors.

Fig. 4: Issue for BMAA*: Dead ends.

All BMAA* versions have substantially higher completion
rates than FAR and A*-Replan for more than 200 agents, with
the BMAA* versions that can push other agents temporarily
off their goal locations being slightly better than the other
BMAA* versions. This can be explained as follows: FAR and
A*-Replan determine complete paths for the agents, which
results in many agents sharing path segments and thus creates
congestion around choke points, such as the one-cell-wide
corridor in Figure 3. The BMAA* versions often avoid this
behavior, for two reasons: First, the agents of the BMAA*
versions have larger travel distances than the ones of FAR
and A*-Replan. While the large travel distances of RTHS
algorithms are viewed as a major deficiency in the context
of single-agent pathfinding, they are beneficial in the context
of MAPF since they avoid congestion around choke points.
Second, the agents of the BMAA* versions treat the other
agents as (moving) obstacles and thus find paths that avoid
choke points that are blocked by other agents and thus appear
impassable, while the agents of FAR and A*-Replan assume
that they can resolve conflicts in their paths with those of other
agents and thus move toward choke points.

However, the BMAA* versions also have disadvantages:

Fig. 5: Unsolvable MAPF instance for the BMAA* versions,
where the triangular agent has to move to its red goal location
while the dark green square agents are already at their own
goal locations in a one-cell-wide corridor.

First, they might move agents into dead ends, such as the one
shown in Figure 4, if the initial heuristic values are misleading
(resulting in depressions in the heuristic value surface). This
well-known issue for RTHS algorithms is addressed by them
updating their heuristic values. Several recent RTHS tech-
niques attempt to reduce the travel distances but, of course,
agents exploring new areas in imperfect manners could also be
viewed as realistic in some cases. Second, even the BMAA*
versions that can push other agents temporarily off their goal
locations might not be able to move all agents to their goal
locations when other agents on their paths are unable to vacate
their own goal locations (Figure 5).

B. Per-Map Results

Tables I-III show the three performance measures for all
MAPF algorithms averaged over all MAPF instances for each
of the maps separately since the map features affect the
performance of the MAPF algorithms. The best results are
highlighted in bold.

1) Per-Map Completion Rate Results: Table I shows that
BMAA*-f-c has the highest completion rates on seven out of
the ten maps but the completion rate of BMAA*, for example,
is 15 percent larger than the one of BMAA*-f-c on map DAO-
lak307d.

2) Per-Map Completion Time Results: The completion rates
of FAR and A*-Replan drop substantially for more than 200
agents, as shown in Figure 2. We thus limit the number
of agents to 200 since most agents then reach their goal
locations. We assign the remaining agents a completion time
of 30 seconds. Table II shows that BMAA*-f has the lowest
completion times on five maps and BMAA* has the lowest
completion times on the remaining four maps.

3) Per-Map Travel Distance Results: We again limit the
number of agents to 200 since most agents then reach their
goal locations. We assign the remaining agents their travel
distances when the runtime limit is reached. Table III shows
that FAR has the lowest travel distances on nine maps.
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TABLE I: Completion rates averaged over all MAPF instances for each map.

Map Name A*-Replan BMAA* BMAA*-c BMAA*-f BMAA*-f-c FAR Overall

BGII-AR0414SR (320*281) 45 87 87 85 89 32 71
BGII-AR0414SR (512*512) 14 80 79 82 83 07 58
BGII-AR0504SR (512*512) 08 51 51 62 62 05 40
BGII-AR0701SR (512*512) 08 48 49 64 65 06 40
WCIII-blastedlands (512*512) 14 85 85 78 80 03 58
WCIII-duskwood (512*512) 08 58 58 67 67 03 43
WCIII-golemsinthemist (512*512) 10 59 59 72 72 04 46
DAO-lak304d (193*193) 19 39 38 53 51 27 38
DAO-lak307d (84*84) 60 79 77 68 64 60 68
DAO-lgt300d (747*531) 12 65 65 77 77 10 51

Overall 20 65 65 71 71 16 51

TABLE II: Completion times (in seconds) averaged over all MAPF instances for each map.

Map Name A*-Replan BMAA* BMAA*-c BMAA*-f BMAA*-f-c FAR Overall

BGII-AR0414SR (320*281) 2.8 1.2 5.1 2.2 5.6 3.8 3.5
BGII-AR0414SR (512*512) 8.8 3.6 6.6 3.0 6.8 12.9 7.0
BGII-AR0504SR (512*512) 12.3 8.6 12.7 6.3 12.5 16.0 11.4
BGII-AR0701SR (512*512) 12.7 4.0 5.4 3.2 4.5 15.0 7.5
WCIII-blastedlands (512*512) 8.8 1.4 1.5 2.2 2.3 21.0 6.2
WCIII-duskwood (512*512) 12.5 4.1 5.8 3.7 5.5 21.1 8.8
WCIII-golemsinthemist (512*512) 11.1 4.2 5.9 3.0 4.2 19.0 7.9
DAO-lak304d (193*193) 4.5 6.7 15.1 7.9 11.4 3.2 8.1
DAO-lak307d (84*84) 0.2 0.2 0.2 0.5 0.3 0.6 0.3
DAO-lgt300d (747*531) 8.3 1.4 1.6 2.2 2.4 10.5 4.4

Overall 8.2 3.5 6.0 3.4 5.5 12.3 6.5

TABLE III: Travel distances averaged over all MAPF instances for each map.

Map Name A*-Replan BMAA* BMAA*-c BMAA*-f BMAA*-f-c FAR Overall

BGII-AR0414SR (320*281) 663 554 557 620 639 130 527
BGII-AR0414SR (512*512) 661 1538 1557 2080 2115 224 1363
BGII-AR0504SR (512*512) 407 2167 2231 3671 3783 227 2089
BGII-AR0701SR (512*512) 562 973 967 1267 1287 322 896
WCIII-blastedlands (512*512) 299 376 376 775 784 268 480
WCIII-duskwood (512*512) 367 1179 1188 1712 1737 257 1073
WCIII-golemsinthemist (512*512) 530 1205 1206 1371 1369 285 994
DAO-lak304d (193*193) 2154 1425 1460 1258 1295 148 1290
DAO-lak307d (84*84) 578 38 39 125 95 47 154
DAO-lgt300d (747*531) 435 403 404 592 603 289 454

Overall 666 986 998 1347 1371 225 932

VI. CONCLUSIONS

Our paper considered an important problem faced by ar-
tificial intelligence in many video games, namely MAPF.
We reviewed recent related work and argued for the use of
real-time heuristic search. We then contributed a new real-
time MAPF algorithm, BMAA*, which is of modular design
and can be enhanced with recent flow-annotation techniques.
BMAA* has higher completion rates and smaller completion
times than FAR at the cost of longer travel distances, which
is a good trade-off since NPCs reaching their goal locations
via possibly longer paths is less noticeable by players than
NPCs not reaching their goal locations at all. Finally, we
discussed what makes MAPF difficult for different algorithms,
paving the road to per-problem algorithm selection techniques
in the spirit of recent research in the context of single-agent
pathfinding [17], [18].

Overall, BMAA* demonstrates the promise of real-time
heuristic search for MAPF. Its main shortcoming is its large
travel distances compared to the ones of FAR. Several recent
RTHS techniques attempt to reduce the travel distances for
single-agent pathfinding [19] and thus might also be able to
reduce the travel distances for BMAA*. Examples include
search space reduction techniques [13], [20], precomputation
techniques [21], [22] and initialization techniques for the
heuristic values, which might help to reduce the dead-end
problem shown in Figure 4.
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Abstract—Two fundamental problems in computational game
theory are computing a Nash equilibrium and learning to
exploit opponents given observations of their play (opponent
exploitation). The latter is perhaps even more important than the
former: Nash equilibrium does not have a compelling theoretical
justification in game classes other than two-player zero-sum,
and for all games one can potentially do better by exploiting
perceived weaknesses of the opponent than by following a static
equilibrium strategy throughout the match. The natural setting
for opponent exploitation is the Bayesian setting where we have
a prior model that is integrated with observations to create a
posterior opponent model that we respond to. The most natural,
and a well-studied prior distribution is the Dirichlet distribution.
An exact polynomial-time algorithm is known for best-responding
to the posterior distribution for an opponent assuming a Dirichlet
prior with multinomial sampling in normal-form games; however,
for imperfect-information games the best known algorithm is
based on approximating an infinite integral without theoretical
guarantees. We present the first exact algorithm for a natural
class of imperfect-information games. We demonstrate that our
algorithm runs quickly in practice and outperforms the best prior
approaches. We also present an algorithm for a uniform prior.

Index Terms—game theory; opponent modeling; imperfect
information; Dirichlet prior; uniform prior; Bayesian approach

I. INTRODUCTION

Imagine you are playing a game repeatedly against one or
more opponents. What algorithm should you use to maximize
your performance? The classic “solution concept” in game
theory is the Nash equilibrium. In a Nash equilibrium σ, each
player is simultaneously maximizing his payoff assuming the
opponents all follow their components of σ. So should we just
find a Nash equilibrium strategy for ourselves and play it in
all the game iterations?

Unfortunately, there are some complications. First, there
can exist many Nash equilibria, and if the opponents are
not following the same one that we have found (or are
not following one at all), then our strategy would have no
performance guarantees. Second, finding a Nash equilibrium
is challenging computationally: it is PPAD-hard and is widely
conjectured that no polynomial-time algorithms exist [1].
These challenges apply to both extensive-form games (of both

perfect and imperfect information) and strategic-form games,
for games with more than two players and non-zero-sum
games. While a particular Nash equilibrium may happen to
perform well in practice,1 there is no theoretically compelling
justification for why computing one and playing it repeatedly
is a good approach. Two-player zero-sum games do not face
these challenges: there exist polynomial-time algorithms for
computing an equilibrium [3], and there exists a game value
that is guaranteed in expectation in the worst case by all
equilibrium strategies regardless of the strategy played by the
opponent (and this value is the best worst-case guaranteed
payoff for any of our strategies). However, even for this game
class it would be desirable to deviate from equilibrium to
learn and exploit perceived weaknesses of the opponent; for
instance, if the opponent has played Rock in each of the first
500 iterations of rock-paper-scissors, it seems desirable to put
additional weight on paper beyond the equilibrium value of 1

3 .

Thus, learning to exploit opponents’ weaknesses is desirable
in all game classes. One approach would be to construct an
opponent model consisting of a single mixed strategy that
we believe the opponent is playing given our observations of
his play and a prior distribution (perhaps computed from a
database of historical play). This approach has been success-
fully applied to exploit weak agents in limit Texas hold ’em
poker, a large imperfect-information game [4].2 A drawback
is that it is potentially not robust. It is very unlikely that the
opponent’s strategy matches this point estimate exactly, and we
could perform poorly if our model is incorrect. A more robust
approach, which is the natural one to use in this setting, is to
use a Bayesian model, where the prior and posterior are full
distributions over mixed strategies of the opponent, not single
mixed strategies. A natural prior distribution, which has been

1An agent for 3-player limit Texas hold ’em computed by the counterfactual
regret minimization algorithm (which converges to Nash equilibrium in certain
games) performed well in practice despite a lack of theoretical justification [2].

2This approach used an approximate Nash equilibrium strategy as the
prior and is applicable even when historical data is not available, though
if additional data were available a more informed prior that capitalizes on the
data would be preferable.

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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studied and applied in this context, is the Dirichlet distribution.
The pdf of the Dirichlet distribution is the belief that the
probabilities of K rival events are xi given that each event
has been observed αi − 1 times: f(x, α) = 1

B(α)

∏
xαi−1
i .3

Some notable properties are that the mean is E[Xi] =
αi∑
k αk

and that, assuming multinomial sampling, the posterior after
including new observations is also Dirichlet, with parameters
updated based on the new observations.

Prior work has presented an efficient algorithm for optimally
exploiting an opponent in normal-form games in the Bayesian
setting with a Dirichlet prior [5], which is essentially the
fictitious play rule [6]. Given prior counts αi for each opponent
action, the algorithm increments the counter for an action
by one each time it is observed, and then best responds to
a model for the opponent where he plays each strategy in
proportion to the counters. This algorithm would also extend
directly to sequential games of perfect information, where
we maintain independent counters at each opponent decision
node; this would also work for games of imperfect information
where the opponent’s private information is observed after
each round (so that we would know exactly what information
set he took the observed action from). For all of these game
classes the algorithm would apply to both zero and general-
sum games, for any number of players. However, it would
not apply to imperfect-information games where opponents’
private information is not observed after play.

An algorithm exists for approximating a Bayesian best
response in imperfect-information games, which uses im-
portance sampling to approximate an infinite integral. This
algorithm has been successfully applied to limit Texas hold
’em poker [7]. 4 However, it is only a heuristic approach with
no guarantees. The authors state,

“Computing the integral over opponent strategies
depends on the form of the prior but is difficult
in any event. For Dirichlet priors, it is possible to
compute the posterior exactly but the calculation is
expensive except for small games with relatively few
observations. This makes the exact BBR an ideal
goal rather than a practical approach. For real play,
we must consider approximations to BBR.”

However, we see no justification for the claim that it is possible
to compute the posterior exactly in prior work, and there could
easily be no closed-form solution. In this paper we present a
solution for this problem, leading to the first exact optimal
algorithm for performing Bayesian opponent exploitation in
imperfect-information games. While the claim is correct that
the computation is expensive for large games, we show that in
a small yet realistic game it outperforms all prior approaches,
which are based on sampling. Furthermore, we show that the
computation can run extremely quickly even for large number

3B(α) is the beta function B(α) =
∏

Γ(αi)

Γ(
∑
i αi)

, where Γ(n) = (n − 1)!

is the gamma function.
4In addition to Bayesian Best Response, the paper also considers heuristic

approaches for approximating several other response functions: Max A
Posteriori Response and Thompson’s Response.

of observations (though it can run into numerical instability).
We also present general theory and an algorithm for another
natural prior distribution (uniform over a polyhedron).

II. META-ALGORITHM

The problem of developing efficient algorithms for opti-
mizing against a posterior distribution, which is a probability
distribution over mixed strategies for the opponent (which are
themselves distributions over pure strategies) seems daunting.
We need to be able to compactly represent the posterior
distribution and efficiently compute a best response to it.
Fortunately, we show that our payoff of playing any strategy σi
against a probability distribution over mixed strategies for the
opponent equals our payoff of playing σi against the mean of
the distribution. Thus, we need only represent and respond
to the single strategy that is the mean of the distribution,
and not to the full distribution. While this result was likely
known previously, we have not seen it stated explicitly, and it
is important enough to be highlighted so that it is on the radar
of the AI community.

Suppose the opponent is playing mixed strategy σ−i where
σ−i(s−j) is the probability that he plays pure strategy
s−j ∈ S−j . By definition of expected utility, ui(σi, σ−i) =∑
s−j∈S−j

σ−i(s−j)ui(σi, s−j). We can generalize this natu-
rally to the case where the opponent is playing according to
a probability distribution with pdf f−i over mixed strategies:
ui(σi, f−i) =

∫
σ−i∈Σ−i

[f−i(σ−i) · ui(σi, σ−i)] . Let f−i de-
note the mean of f−i. That is, f−i is the mixed strategy that
selects s−j with probability

∫
σ−i∈Σ−i

[σ−i(s−j) · f−i(σ−i)] .
Then we have the following:

Theorem 1.
ui(σi, f−i) = ui(σi, f−i).

That is, the payoff against the mean of a strategy distribution
equals the payoff against the full distribution.

Proof.

ui(σi, f−i)

=
∑

s−j∈S−j

[
ui(σi, s−j)

∫

σ−i∈Σ−i
[σ−i(s−j) · f−i(σ−i)]

]

=
∑

s−j∈S−j

[∫

σ−i∈Σ−i
[ui(σi, s−j) · σ−i(s−j) · f−i(σ−i)]

]

=

∫

σ−i∈Σ−i


 ∑

j∈S−j

[ui(σi, s−j) · σ−i(s−j) · f−i(σ−i)]




=

∫

σ−i∈Σ−i
[ui(σi, σ−i) · f−i(σ−i)]

= ui(σi, f−i)

Theorem 1 applies to normal and extensive-form games
(with perfect or imperfect information), for any number of
players (σ−i could be a joint strategy profile for all opponents).

Now suppose the opponent is playing according a prior
distribution p(σ−i), and let p(σ−i|x) denote the posterior
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probability given observations x. Let p(σ−i|x) denote the
mean of p(σ−i|x). As an immediate consequence of Theo-
rem 1, we have the following corollary.

Corollary 1. ui(σi, p(σ−i|x)) = ui(σi, p(σ−i|x)).
Corollary 1 implies the meta-procedure for optimizing per-

formance against an opponent using p:

Algorithm 1 Meta-algorithm for Bayesian opponent exploitation
Inputs: Prior distribution p0, response functions rt
M0 ← p0(σ−i)
R0 ← r0(M0)
Play according to R0

for t = 1 to T do
xt ← observations of opponent’s play at time step t
pt ← posterior distribution of opponent’s strategy given

prior pt−1 and observations xt
Mt ← mean of pt
Rt ← rt(Mt)
Play according to Rt

There are several challenges for applying Algorithm 1. First,
it assumes that we can compactly represent the prior and
posterior distributions pt, which have infinite domain (the set
of opponents’ mixed strategy profiles). Second, it requires a
procedure to efficiently compute the posterior distributions
given the prior and the observations, which requires updating
potentially infinitely many strategies. Third, it requires an
efficient procedure to compute the mean of pt. And fourth, it
requires that the full posterior distribution from one round be
compactly represented to be used as the prior in the next round.
We can address the fourth challenge by using a modified
update step:

pt ← posterior distribution of opponent’s strategy given
prior p0 and observations x1, . . . , xt.

We will be using this new rule in our main algorithm.
The response functions rt (which return a strategy for

ourselves that performs well against input opponents’ strate-
gies) could be standard best response, for which linear-time
algorithms exist in games of imperfect information (and a
recent approach has enabled efficient computation in extremely
large games [8]). They could also be a more robust response,
e.g., one that places a limit on the exploitability of our
own strategy, perhaps one that varies over time based on
performance (or a lower-variance estimator) [9], [10], [11]. In
particular, the restricted Nash response has been demonstrated
to outperform best response against agents in limit Texas hold
’em whose actual strategy may differ substantially from the
exact model [9].

III. ROBUSTNESS OF THE APPROACH

It has been pointed out that, empirically, the approach
described is not robust: if we play a full best response to
a point estimate of the opponent’s strategy we can have very

high exploitability ourselves, and could perform very poorly
if in fact we are wrong about our model [9]. This could
happen for several reasons. Our modeling algorithm could
be incorrect: it could make an incorrect assumption about
the prior and form of the opponent’s distribution. This could
happen for several reasons. One reason is that the opponent
could actually be changing his strategy over time (possibly
either by improving his own play or by adapting to our play),
in which case a model that assumes a static opponent could
be predicting a strategy that the opponent is no longer using.
The opponent could also have modified his play strategically
in an attempt to deceive us by playing one way initially
and then counter-exploiting us as we attempt to exploit the
model we have formed from his initial strategy (e.g., the
opponent initially starts off playing extremely conservatively,
then switches to a more aggressive style as he suspects we will
start to exploit his extreme conservatism). His initial strategy
need not arise from deception: it is also possible that simply
due to chance events (either due to his own randomization in
his strategy or due to the states of private information selected
by chance) the opponent has appeared to be playing in a certain
way (e.g., very conservatively), and as he becomes aware of
this conservative “image,” naturally it occurs to him to modify
his play by becoming more aggressive.

A second reason that we could be wrong in our opponent
model other than our algorithm incorrectly modeling the
opponents’ dynamic approach is that our observations of
his play are very noisy (due to both randomization in the
opponent’s strategy and to the private information selected
by chance), particularly over a small sample. Even if our
approach is correct and the opponent is in fact playing a static
strategy according to the distribution assumed by the modeling
algorithm, it is very unlikely that our actual perception of his
strategy is precisely correct.

A third reason, of course, is that the opponent may be
following a static strategy that does not exactly conform to our
model for the prior and/or sampling method used to generate
the posterior.

We would like an approach that is robust in the event that
our model of the opponent’s strategy is incorrect, whichever
the cause may be. Prior work has considered a model where
the opponent plays according to a model x−i with probability
p and with probability 1−p plays a nemesis to our strategy [9].
For carefully selected values of p (typically 0.95 or 0.99),
they show that this can achieve a relatively high level of
exploitation (similar to a full best response) with a significantly
smaller worst-case exploitability. We note that, as described in
Section II, Algorithm 1 can be integrated with any response
function, not necessarily a full best response, and so rt could
be selected to be the Restricted Nash Response from prior
work [9]. However, it seems excessively conservative to give
the opponent credit for playing a full nemesis to our strategy;
if we are relatively confident in our opponent model, then
a more reasonable robustness criterion would be to explore
performance as we allow the opponent’s strategy to differ by
a small amount from the predicted strategy (i.e., the opponent
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is playing a strategy that is very close to our model, and not
necessarily putting weight on a full nemesis).

Suppose we believe the opponent is playing x−i, while he is
actually playing x′−i. Let M be the maximum absolute value
of a utility to player i, and let N be the maximum number of
actions available to a player. Let ε > 0 be arbitrary. Then, if
|x−i(j)− x′−i(j)| < δ for all j, where δ = ε

MN ,

|ui(σ∗, x−i)− ui(σ∗, x′−i)|

=

∣∣∣∣∣∣
∑

j

(x−i(j)− x′−i(j))ui(σ∗, s−j)

∣∣∣∣∣∣

<=
∑

j

∣∣(x−i(j)− x′−i(j)
)
ui(σ

∗, s−j)
∣∣

<=
∑

j

(∣∣x−i(j)− x′−i(j)
∣∣ · |ui(σ∗, s−j)|

)

<=
∑

j

(
|x−i(j)− x′−i(j)| ·M

)

< M
∑

j

δ <=MNδ =MN · ε

MN
= ε

This same analysis can be applied directly to show that our
payoff is continuous in the opponent’s strategy for many
popular distance functions (i.e., for any distance function
where one strategy can get arbitrarily close to another as
the components get arbitrarily close). For instance this would
apply to L1, L2, and earth mover’s distance, which have been
applied previously to compute distances been strategies within
opponent exploitation algorithms [4]. Thus, if we are slightly
off in our model of the opponent’s strategy, even if we are
doing a full best response we will do only slightly worse.

IV. EXPLOITATION ALGORITHM FOR DIRICHLET PRIOR

As described in Section I the Dirichlet distribution is the
conjugate prior for the multinomial distribution, and there-
fore the posterior is also a Dirichlet distribution, with the
parameters αi updated to reflect the new observations. Thus,
the mean of the posterior can be computed efficiently by
computing the strategy for the opponent in which he plays each
strategy in proportion to the updated weight, and Algorithm 1
yields an exact efficient algorithm for computing the Bayesian
best response in normal-form games with a Dirichlet prior.
However, the algorithm does not apply to games of imperfect
information since we do not observe the private information
held by the opponent, and therefore do not know which of
his action counters we should increment. In this section we
will present a new algorithm for this setting. We present it
in the context of a representative motivating game where the
opponent is dealt a state of private information and then takes
publicly-observable action, and present the algorithm for the
general setting in Section IV-C.

We are interested in studying the following two-player game
setting. Player 1 is given private information state xi (accord-
ing to a probability distribution). Then he takes a publicly

observable action ai. Player 2 then takes an action after
observing player 1’s action (but not his private information),
and both players receive a payoff. We are interested in player
2’s problem of inferring the (assumed stationary) strategy of
player 1 after repeated observations of the public action taken
(but not the private information). Note that this setting is very
general. For example, in poker xi could denote the opponent’s
private card(s) and ai denote the amount he bets, and in an ad
auction xi could denote his valuation (e.g., high or low), and
ai could denote the amount he bids [12].

A. Motivating game and algorithm

For concreteness and motivation, consider the following
poker game instantiation of this setting, where we play the
role of player 2. Let’s assume that in this two-player game,
player 1 is dealt a King (K) and Jack (J) with probability 1

2 ,
while player 2 is always dealt a Queen. Player 1 is allowed to
make a big bet of $10 (b) or a small bet of $1 (s), and player
2 is allowed to call or fold. If player 2 folds, then player 1
wins the $2 pot (for a profit of $1); if player 1 bets and player
2 calls then the player with the higher card wins the $2 pot
plus the size of the bet.

Fig. 1. Chance deals player 1 king or jack with probability 1
2

at the green
node. Then player 1 selects big or small bet at a red node. Then player 2
chooses call or fold at a blue node.

If we observe player 1’s card after each hand, then we
can apply the approach described above, where we maintain
a counter for player 1 choosing each action with each card
that is incremented for the selected action. However, if we do
not observe player 1’s card after the hand (e.g., if we fold),
then we would not know whether to increment the counter
for the king or the jack. To simplify analysis, we will assume
that we never observe the opponent’s private card after the
hand (which is not realistic since we would observe his card
if he bets and we call); we can assume that we do not observe
our payoff either until all game iterations are complete, since
that could allow us to draw inferences about the opponent’s
card. There are no known algorithms even for the simplified
case of fully unobservable opponent’s private information. We
suspect that an algorithm for the case when the opponent’s
private information is sometimes observed can be constructed
based on our algorithm, and we plan to study this problem in
future work.
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From analysis in the accompanying tech report [13], we are
able to compute a closed-form expression for the expectation
of the posterior probability that the opponent takes action b
with a Jack given that we have just observed him take action
b (the other quantities can be computed analogously), which
is denoted by P (b|O, J).

B(αKb + 1, αKs)B(αJb + 1, αJs) + B(αKb, αKs)B(αJb + 2, αJs)

Z
(1)

where the denominator Z is equal to

B(αKb + 1, αKs)B(αJb + 1, αJs) + B(αKb, αKs)B(αJb + 2, αJs)

+B(αKb + 1, αKs)B(αJb, αJs + 1) + B(αKb, αKs)B(αJb + 1, αJs + 1).

Note that the algorithm we have presented applies for the
case where we play one more game iteration and collect
one additional observation. However, it is problematic for the
general case we are interested in where we play many game
iterations, since the posterior distribution is not Dirichlet, and
therefore we cannot just apply the same procedure in the next
iteration using the computed posterior as the new prior. We
will need to derive a new expression for P (b|O, J) for this
setting. Suppose that we have observed the opponent play
action b for θb times and s θs times (in addition to the number
of fictitious observations reflected in the prior α), though we
do not observe his card. Then P (b|O, J) equals

∑θb
i=0

∑θs
j=0 B(αKb + i, αKs + j)B(αJb + θb − i+ 1, αJs + θs − j)

Z
(2)

The normalization term is

Z =
∑

i

∑

j

[B(αKb+ i, αKs+ j)B(αJb+θb− i+1, αJs+θs− j)

+B(αKb + i, αKs + j)B(αJb + θb − i, αJs + θs − j + 1)].

Details of the derivation are in the tech report.
Thus the algorithm for responding to the opponent is the

following. We start with the prior counters on each private
information-action combination, αKb, αKs, etc. We keep sep-
arate counters θb, θs for the number of times we have observed
each action during play. Then we combine these counters
according to Equation 2 in order to compute the strategy for
the opponent that is the mean of the posterior given the prior
and observations, and we best respond to this strategy, which
gives us the same payoff as best responding to the full posterior
distribution according to Theorem 1. There are only O(n2)
terms in the expression given by Equation 2, so this algorithm
is efficient.

B. Example

Suppose the prior is that the opponent played b with K 10
times, played s with K 3 times, played b with J 4 times, and
played s with J 9 times. Thus αKb = 10, αKs = 3, αJb =
4, αJs = 9. Now suppose we observe him play b at the next
iteration. Applying our algorithm using Equation 1 gives

p(b|O, J) =
B(11, 3)B(5, 9) +B(10, 3)(6, 9)

Z
=

2.65209525e−7

Z

p(s|O, J) =
B(11, 3)B(4, 10) +B(10, 3)(5, 10)

Z
=

5.5888056e−7

Z

−→ p(b|O, J) =
2.65209525e−7

2.65209525e−7 + 5.5888056e−7
= 0.3218210361.

So we think that with a jack he is playing a strategy that bets
big with probability 0.322 and small with probability 0.678.
Notice that previously we thought his probability of betting
big with a jack was 4

13 = 0.308, and had we been in the
setting where we always observe his card after gameplay and
observed that he had a jack, the posterior probability would
be 5

14 = 0.357.
An alternative “naı̈ve” (and incorrect) approach would be to

increment αJb by αJb
αJb+αKb

, the ratio of the prior probability
that he bets big given J to the total prior probability that he bets
big. This gives a posterior probability of him betting big with J
of 4+ 4

13

14 = 0.308, which differs significantly from the correct
value. It turns out that this approach is actually equivalent to
just using the prior:

x+ x
x+y

x+ y + 1
· x+ y

x+ y
=

x(x+ y) + x

(x+ y + 1)(x+ y)
=

x

x+ y

C. Algorithm for general setting

We now consider the general setting where the opponent
can have n different states of private information according to
an arbitrary distribution π and can take m different actions.
Assume he is given private information xi with probability πi,
for i = 1, . . . , n, and can take action ki, for i = 1, . . . ,m.
Assume the prior is Dirichlet with parameters αij for the
number of times action j was played with private information
i (so the mean of the prior has the player selecting action
kj at state xi with probability αij∑

j αij
). Assume that action

kj∗ was observed in a new time step, while the opponent’s
private information was not observed. We now compute the
expectation for the posterior probability that the opponent
plays kj∗ with private information xi∗ .

P (A = kj∗ |O,C = xi∗)

=

∫ [
qk∗j |x∗

i

∑n
i=1

[
πiqkj∗ |xi

∏m
h=1

∏n
j=1 q

αjh−1

kh|xj

]]

p(O)
∏n
i=1B(αi1, . . . , αim)

=

∑
i

[
πi
∏
j B(γ1j , . . . , γnj)

]

Z
,

where γij = αij + 2 if i = i∗ and j = j∗, γij = αij + 1 if
j = j∗ and i 6= i∗, and γij = αij otherwise. If we denote
the numerator by τi∗j∗ then Z =

∑
i∗ τi∗j∗ . Notice that the

product is over n terms, and therefore the total number of
terms will be exponential in n (it is O(m · 2n)).

For the case of multiple observed actions, the posterior is
not Dirichlet and cannot be used directly as the prior for the
next iteration. Suppose we have observed action kj θj times
(in addition to the number of fictitious times indicated by the
prior counts αij). We compute P (q|O) analogously as
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P (q|O) =

∑n
i=1

[
πi
∑
{ρab}

∏m
h=1

∏n
j=1 q

αjh−1+ρjh
kh|xj

]

p(O)
∏n
i=1B(αi1, . . . , αim)

,

where the
∑
{ρab} is over all values 0 ≤ ρab ≤ θb with∑

a ρab = θb for each b, for 1 ≤ a ≤ n, 1 ≤ b ≤ m:

∑

{ρab}
=

θb∑

ρ1b=0

θb−ρ1b∑

ρ2b=0

. . .

θb−
∑n−2
r=0 ρrb∑

ρn−1,b=0

θb−
∑n−1
r=0 ρrb∑

ρnb=θb−
∑n−2
r=0 ρrb

.

The expression for the full posterior distribution is

P (q|O) =

∑
i

[
πi

∑
{ρab}

∏
hB(α1h + ρ1h, . . . , αnh + ρnh)

]

Z

The total number of terms is O
((

(T+n)!
n!T !

)m)
, which is

exponential in the number of private information states and
actions, but polynomial in the number of iterations.

The following theorem shows an approach for computing
products of the beta function that leads to an exponential
improvement in the running time of the algorithm for one
observation, and reduces the dependence on m for the multiple
observation setting from exponential to linear, though the
complexity still remains exponential in n and T for the latter.
See tech report for full details [13].
Theorem 2. Define γj =

∑n
i=1 γij and the empirical probability

distribution P̂j(i) =
γij∑n
i=1 γij

=
γij
γj

. Define the Gamma function
Γ(x) =

∫∞
0
xz−1e−x dx, for integer x, Γ(x) = (x−1)!. Now define

the entropy of P̂i as E(P̂j) = −∑n
i=1 P̂j(i) ln P̂j(i). Then we have∏m

j=1 B(γ1j , . . . , γnj) equals

exp




m∑

j=1

(
−γjE(P̂j)−

1

2
(n− 1) ln(γj) +

n∑

i=1

ln(Pj(i)) + d

)
 .

Here d is a constant such that 1
2 ln(2π)n − 1 ≤ d ≤ n −

1
2 ln(2π), where ln(2π) ≈ 0.92.

V. ALGORITHM FOR UNIFORM PRIOR DISTRIBUTION

Another prior that has been studied previously is the uni-
form distribution over a polyhedron. This can model the
situation when we think the opponent is playing uniformly
within some region of a fixed strategy, such as a specific
Nash equilibrium or a “population mean” strategy based on
historical data. Prior work has used this model to generate a
class of opponents who are more sophisticated than opponents
who play uniformly at random over the entire space [11]). For
example, in rock-paper-scissors, we may think the opponent
is playing a strategy uniformly out of strategies that play
each action with probability within [0.31,0.35], as opposed
to completely random over [0,1].

Let vi,j denote the jth vertex for player i, where vertices
correspond to mixed strategies. Let p0 denote the prior distri-
bution over vertices, where p0

i,j is the probability that player i
plays the strategy corresponding to vertex vi,j . Let Vi denote
the number of vertices for player i. Algorithm 2 computes
the Bayesian best response in this setting. Correctness follows
straightforwardly by applying Corollary 1 with the formula for
the mean of the uniform distribution.

Algorithm 2 Algorithm for opponent exploitation with uni-
form prior distribution over polyhedron
Inputs: Prior distribution over vertices p0, response functions
rt for 0 ≤ t ≤ T
M0 ← strategy profile assuming opponent i plays each
vertex vi,j with probability p0

i,j =
1
Vi

R0 ← r0(M0)
Play according to R0

for t = 1 to T do
for i = 1 to N do

ai ← action taken by player i at time step t
for j = 1 to Vi do

pti,j ← pt−1
i,j · vi,j(ai)

Normalize the pti,j’s so they sum to 1

Mt ← strategy profile assuming opponent i plays each
vertex vi,j with probability pti,j

Rt ← rt(Mt)
Play according to Rt

VI. EXPERIMENTS

We ran experiments on the game described in Section IV-A.
For the beta function computations we used the Colt Java math
library.For our first set of experiments we tested our basic
algorithm which assumes that we observe a single opponent
action (Equation 1). We varied the Dirichlet prior parameters
to be uniform in {1,n} to explore the runtime as a function
of the size of the prior (since computing larger values of
the Beta function can be challenging). The results (Table I)
show that the computation is very fast even for large n, with
running time under 8 microseconds for n = 500. However,
we also observe frequent numerical instability for large n.
The second row shows the percentage of the trials for which
the algorithm produced a result of “NaN” (which typically
results from dividing zero by zero). This jumps from 0%
for n = 50 to 8.8% for n = 100 to 86.9% for n = 200.
This is due to instability of algorithms for computing the beta
function. We used the best publicly available beta function
solver, but perhaps there could be a different solver that leads
to better performance in our setting (e.g., it trades off runtime
for additional precision). Despite the cases of instability, the
results indicate that the algorithm runs extremely fast for
hundreds of prior observations, and since it is exact, it is
the best algorithm for the settings in which it produces a
valid output. Note that n = 100 corresponds to 400 prior
observations on average since there are four parameters, and
that the experiments in previous work used a horizon of 200
hands per match against an opponent [7].

We tested our generalized algorithm for different numbers of
observations, using a fixed Dirichlet prior with all parameters
equal to 2 as in prior work [7]. We observe (Table II) that
the algorithm runs quickly for large numbers of observations,
though again it runs into numerical instability for large values.
As one example, it takes 19ms for θb = 101, θs = 100.
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n 10 20 50 100 200 500
Time 0.0005 0.0008 0.0018 0.0025 0.0034 0.0076
NaN 0 0 0 0.0883 0.8694 0.9966

TABLE I
RESULTS OF MODIFYING DIRICHLET PARAMETERS TO BE U{1,N}
OVER ONE MILLION SAMPLES. FIRST ROW IS AVERAGE RUNTIME
IN MILLISECONDS. SECOND ROW IS PERCENTAGE OF THE TRIALS

THAT OUTPUT “NAN.”

n 10 20 50 100 200 500 1000
Time 0.015 0.03 0.36 2.101 10.306 128.165 728.383
NaN 0 0 0 0 0.290 0.880 0.971

TABLE II
RESULTS USING DIRICHLET PRIOR WITH ALL PARAMETERS
EQUAL TO 2 AND θb , θs IN U{1,N} AVERAGED OVER 1,000

SAMPLES. FIRST ROW IS AVERAGE RUNTIME (MS), SECOND ROW
IS % OF TRIALS PRODUCING “NAN.”

We compared our algorithm against the three heuristics
described in previous work [7]. The first heuristic Bayesian
Best Response (BBR) approximates the opponent’s strategy
by sampling strategies according to the prior and computing
the mean of the posterior over these samples, then best-
responding to this mean strategy; Max A Posteriori Response
heuristic (MAP) samples strategies from the prior, computes
the posterior value for these strategies, and plays a best
response to the one with highest posterior value; Thompson’s
Response samples strategies from the prior, computes the
posterior values, then samples one strategy for the opponent
from these posteriors and plays a best response to it. For all
approaches we used a Dirichlet prior with the standard values
of 2 for all parameters. For all the sampling approaches we
sampled 1,000 strategies from the prior for each opponent and
used these strategies for all hands against that opponent (as
was done in prior work [7]). Note that one can draw samples
xi from a Dirichlet distribution by first drawing indepen-
dent samples yi from Gamma distributions each with density
Gamma(αi, 1) =

y
αi−1

i e−yi

Γ(αi)
and then setting xi =

yi∑
j yj

.We
also tested a best response strategy that knows the actual
mixed strategy of the opponent, not just a distribution over
his strategies, as well as the Nash equilibrium strategy.5 Note
that the game has a value to us of -0.75, so negative values
are not necessarily indicative of “losing.”

Table III shows that our exact Bayesian best response
algorithm (EBBR) outperforms the heuristic approaches, as
expected since it is optimal when the opponent’s strategy is
drawn from the prior (though performance is very similar to
BBR and not statistically distinguishable until 25 iterations).
BBR performed best out of the sampling approaches, which is
not surprising because it is trying to approximate the optimal
approach while the others are optimizing a different objective.
All of the sampling approaches outperformed just following
the Nash equilibrium, and as expected all exploitation ap-
proaches performed worse than playing a best response to

5Note that the Nash equilibrium for player 2 is to call a big bet with
probability 1

4
and a small bet with probability 1 (the equilibrium for player

1 is to always bet big with K and to bet big with probability 5
6

with J).

the opponent’s actual strategy. Note that, against an opponent
drawn from a Dirichlet distribution with all parameters equal
to 2 and no further observations of his play, our best response
would be to always call, which gives us expected payoff of
zero. Thus for the initial column the actual value for EBBR
when averaged over all opponents would be zero. Against this
distribution the Nash equilibrium has expected payoff −0.375.

Algorithm Initial 10 25
EBBR −0.00003 ± 0.0003 −0.0004 ± 0.0009 0.0002 ± 0.0008
BBR −0.00003± 0.0003 −0.0004± 0.0009 −0.0065± 0.0008
MAP −0.1649± 0.0002 −0.2025± 0.0007 −0.2664± 0.0007

Thompson −0.2098± 0.0002 −0.2224± 0.0007 −0.2996± 0.0007
FullBR 0.4975± 0.0002 0.4971± 0.0006 0.4978± 0.0005
Nash −0.3750± 0.0000 −0.3749± 0.0001 −0.3751± 0.0001

TABLE III
COMPARISON WITH ALGORITHMS FROM PRIOR WORK, FULL BEST

RESPONSE, AND NASH EQUILIBRIUM USING DIRICHLET PRIOR WITH
PARAMETERS EQUAL TO 2. SAMPLING ALGORITHMS USE 1000 SAMPLES.
FOR INITIAL COLUMN WE SAMPLED 100 MILLION OPPONENTS FROM THE
PRIOR, FOR 10 ROUNDS WE SAMPLED ONE MILLION, AND FOR 25 ROUNDS

500,000. RESULTS ARE AVERAGE WINRATE PER HAND OVER ALL
OPPONENTS WITH 95% CONFIDENCE INTERVALS.

On the positive side the exploitation approaches (particu-
larly EBBR and BBR) are able to significantly outperform
the Nash equilibrium strategy when given access to a reliable
prior distribution; however, none of them are able to improve
over time as a result of additional observations (EBBR and
BBR perform around the same with more observations while
Thompson and MAP perform noticeably worse). This indicates
that, for this setting at least, just observing the opponent’s
public action and not private information is not additionally
useful in comparison to the performance variance and the
noise introduced from sampling. In order to successfully learn
beyond the prior in imperfect-information settings, algorithms
will need access to some of the opponents’ private information.
Previous experiments had also shown that when the sampling
approaches are played against opponents drawn from the prior,
the winning rates converge, typically very quickly (even with
access to the opponent’s private information in certain hands
that went to showdown): “The independent Dirichlet prior
is very broad, admitting a wide variety of opponents. It is
encouraging that the Bayesian approach is able to exploit even
this weak information to achieve a better result.” [7]

We also tested the effect of using only 10 samples of
the opponent’s strategy for the sampling approaches. The ap-
proaches would then have a noisier estimate of the opponent’s
strategy and should achieve lower performance against the
actual strategy of the opponent, though run significantly faster.

Thompson and MAP performed very similarly using 10 vs.
1000 samples (these approaches essentially end up selecting a
single strategy from the set of samples to be used as the model,
and the results indicate that they are relatively insensitive to
the number of samples used), but BBR performs significantly
worse. While the performance between EBBR and BBR
was statistically indistinguishable for 1000 samples, EBBR
significantly outperforms BBR with 10 samples, particularly
for more iterations. As before the sampling approaches seem
to actually perform worse over time as the noise propagates,
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Alg Initial 10 25 100
EBBR .0001 ± .0003 -.0003 ± .0003 .0002 ± .0002 -.0014 ± .0005
BBR -.0662± .0003 -.0902± .0003 -.1634± .0002 -.3127± .0004
MAP -.1699± .0002 -.2060± .0002 -.2657± .0001 -.3082± .0004

Thomp. -.2118± .0002 -.2247± .0002 -.2844± .0001 -.3725± .0004
FullBR .4976± .0002 .4973± .0002 .4975± .0001 .4969± .0003
Nash -.3750± .0000 -.3750± .0000 -.3750± .0000 -.3750± .0001

TABLE IV
COMPARISON OF OUR ALGORITHM WITH ALGORITHMS FROM PRIOR
WORK (BBR, MAP, THOMPSON), FULL BEST RESPONSE, AND NASH

EQUILIBRIUM USING DIRICHLET PRIOR WITH PARAMETERS EQUAL TO 2.
THE SAMPLING ALGORITHMS EACH USE 10 SAMPLES FROM THE

OPPONENT’S STRATEGY (AS OPPOSED TO 1000 SAMPLES FROM OUR
EARLIER ANALYSIS). FOR THE INITIAL COLUMN WE SAMPLED 100

MILLION OPPONENTS FROM THE PRIOR, FOR 10 AND 25 ROUNDS WE
SAMPLED TEN MILLION, AND 300,000 FOR 100 ROUNDS.

while the performance of EBBR remains about the same. The
dropoff of BBR is particularly significant. The results indicate
that EBBR would be particularly preferable over the sampling
approaches if the number of available samples is small (e.g.,
due to running time considerations) and as the number of
game iterations increases (though eventually EBBR can run
into numerical stability issues described earlier).

VII. CONCLUSION

One of the most fundamental problems in game theory
is learning to play optimally against opponents who may
make mistakes. We presented the first exact algorithm for
performing exploitation in imperfect-information games in the
Bayesian setting using the most well-studied prior distribution
for this problem, the Dirichlet distribution. Previously an exact
algorithm had only been presented for normal-form games, and
the best previous algorithm was a heuristic with no guarantees.
We demonstrated experimentally that our algorithm can be
practical and that it outperforms the best prior approaches,
though it can run into numerical stability issues for large
numbers of observations.

We presented a general meta-algorithm and new theoretical
framework for studying opponent exploitation. Future work
can extend our analysis to many important settings. For ex-
ample, we would like to study the setting when the opponent’s
private information is only sometimes observed (we expect our
approach can be extended easily to this setting) and general
sequential games where the agents can take multiple actions
(which we expect to be hard, as indicated by the analysis in
the tech report). We would also like to extend analysis for any
number of agents. Our algorithm is not specialized for two-
player zero-sum games (it applies to general-sum games); if
we are able to compute the mean of the posterior strategy
against multiple opponent agents, then best responding to this
strategy profile is just a single agent optimization and can
be done in time linear in the size of the game regardless
of the number of opponents. While the Dirichlet is the most
natural prior for this problem, we would also like to study
other important distributions. We presented an algorithm for
the uniform prior distribution over a polyhedron, which could
model the situation where we think the opponent is playing
a strategy from a uniform distribution in a region around

a particular strategy, such as a specific equilibrium or a
“population mean” based on historical data.

Opponent exploitation is a fundamental problem, and our
algorithm and extensions could be applicable to many domains
that are modeled as an imperfect-information games. For
example, many security game models have imperfect infor-
mation, e.g., [14], [15], and opponent exploitation in security
games has been a very active area of study, e.g., [16], [17].
It has also been proposed recently that opponent exploitation
can be important in medical treatment [18].
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Abstract—We introduce a new abstract graph game, SWAP
PLANARITY, where the goal is to reach a state without edge
intersections and a move consists of swapping the locations of two
vertices connected by an edge. We analyze this puzzle game using
concepts from graph theory and graph drawing, computational
geometry, and complexity. Furthermore, we specify what good
levels look like and we show how they can be generated. We also
report on experiments that show how well the generation works.

Index Terms—planarity, graphs, puzzle games, puzzle com-
plexity, instance generation

I. INTRODUCTION

PLANARITY [15] is a popular abstract puzzle game that
is widely available. Besides being a smartphone app and
having a Wikipedia page, it is also available as a “model”
in Netlogo [16]. The idea is that a tangled graph is given
with intersecting edges, and the objective is to untangle the
graph by dragging vertices to other locations. If the graph is
planar (meaning that it can be embedded in the plane without
intersections), then the objective can always be realized, and
we never need more vertex drags than there are vertices.

Algorithmically, planarity of a graph can be tested in linear
time [6], [8], [14], and the algorithm returns an embedding of
the graph in which it is drawn planar. So for an algorithm,
an instance of PLANARITY is easily solvable in linear time.
Minimizing the number of moves, however, is NP-hard [9],
[18], see also [4].

In this paper we propose several variations on the game
PLANARITY. These variations essentially limit the freedom
of the operations that can be done on the drawn graph. We
will investigate one of the new variations closely: SWAP PLA-
NARITY, where we can swap the locations of two vertices that
are connected by an edge. Examples are shown in Fig. 1. We
show that quadratically many swaps are sometimes necessary,
even if the input has just one edge crossing, and we show
that quadratically many swaps are always sufficient. We also
show that the solvability question is NP-complete for general
graphs. Simple graphs like trees can always be made planar

(a)

(b)

Fig. 1. (a) Puzzle and solution after one swap (the left, nearly vertical edge).
(b) Puzzle and solution after two swaps.

by swaps, but we show that minimizing the number of swaps
needed is NP-hard.

We also investigate the automated generation of good puzzle
instances. We describe a five-step process which yields a
puzzle instance. Some of the considerations of a good instance
are puzzle (complexity) based and some are geometry based.
Our process guarantees that the puzzle and geometry criteria
are met.

We implemented the generator and ran a number of experi-
ments that uncover some properties of point set generation and
puzzle diversity. The implementation includes a puzzle mode
where the user can solve generated instances by hand.

II. GRAPH UNTANGLING PUZZLES

We will limit the operations that change the drawing of
the graph to arrive at different puzzles. Since the puzzle type
is abstract, it is necessary that the interaction and operations
themselves are simple. The puzzle then becomes an elegant
abstract puzzle of which there are many already (Move,
Lines/Flow, Zengrams, Nintaii, Fling, and several more).

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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Fig. 2. Six steps to solve an 8-cycle with one intersection. The edge to be
reversed is indicated.

Besides interacting with a vertex like in PLANARITY, it
is natural to interact with an edge. Clicking or selecting is
arguably the easiest interaction. We list a number of ways in
which the graph drawing can change when an edge is selected:

• Swap: the two endpoints of the selected edge swap
locations. Intuitively, the edge turns around while the
endpoints drag all incident edges with them.

• Rotate: like swap, but now the selected edge rotates over
90 degrees around its center. Since a single edge can
be selected consecutively three times, it does not matter
whether we rotate clockwise or counter-clockwise.

• Stretch: the selected edge is scaled by a factor 2 from its
center, or by a factor 1/2.

• Collapse: the endpoints of the selected edge are united.
The united vertex is placed in the middle of the edge
and gets all edges incident to the original vertices. The
selected edge is removed.

Of these versions, the first one distinguishes itself from the
others because no new vertex positions appear. The graph will
always be drawn on the original positions. Furthermore, the
last version distinguishes itself by the fact that the number
of vertices is reduced. Eventually, the whole graph could be
reduced to a single vertex, so the challenge must be to remove
all intersections in a limited number of steps. In the first three
versions, steps are reversible.

We can also stay closer to the original PLANARITY puzzle
and drag vertices in more limited ways. For example, a set
of points can be given along with the graph, and the vertices
must be dragged to the given points. This version is related
to a well-known problem in the graph drawing research area,
namely that of embedding a graph on a given set of points [5].
In essence, the initial drawing of the graph is irrelevant.

In this paper we concentrate on the swap version, named
SWAP PLANARITY. It is perhaps the most elegant version
and the graphs appearing after operations can be controlled in
their appearance, unlike with the other versions (where edges
may get so short that they cannot be selected any more). All
following results concern this version.

Before we go into the algorithmic complexity of solving
such puzzles and the process of generating good puzzle
instances, we give a few examples to understand the puzzle

p1

p2

pn

v1

v2
vn/2

pn/2

pn/2+1

vn/2+1

vn

Fig. 3. Positions and vertices for the lower bound construction.

better. First, consider the puzzle instance in Fig. 2 with eight
vertices and eight edges. The graph is a single cycle and it has
only one intersection. To solve this puzzle, note that any swap
will increase the number of intersections. The minimum num-
ber of swaps needed is six; the set of intermediate drawings
is shown in the figure and the selected edge is shown. When
we extend this example to a set of n vertices and edges, then
we need Ω(n2) swaps to solve the instance.

Lemma 1: There exist graphs with n vertices that require
Ω(n2) swaps to obtain a plane drawing.

Proof. Consider the drawing of Fig. 2 generalized to n ver-
tices, with n even. Name the vertices of the graph v1, . . . , vn
so that v1, . . . , vn/2 are clockwise and vn/2+1, . . . , vn are
counter-clockwise. This implies that the edges (v1, vn) and
(vn/2, vn/2+1) intersect. Let us name the positions for the
vertices p1, . . . , pn, where initially v1 is at p1 and the positions
are numbered clockwise, see Fig. 3.

In total there are 2n ways to place v1, . . . , vn on p1, . . . , pn
without intersections: in cyclic order clockwise or counter-
clockwise, and starting anywhere. This means that either
v1, . . . , vn/2 or vn/2+1, . . . , vn must be reversed on the po-
sitions p1, . . . , pn.

Listing the node identifiers in the order of the
cycle v1, . . . , vn, we initially get the cyclic sequence
p1, . . . , pn/2, pn, . . . , pn/2+1. A swap exchanges precisely
two adjacent elements (where the first and last are also
adjacent). Thus, to sort this sequence in one of the 2n ways,
at least

(
n/2
2

)
= Ω(n2) swaps are needed. �

The next lemma shows that quadratically many swaps
are sufficient; the result has been proved before as node
swapping [19].

Lemma 2: Every graph with n vertices that has a solution
has a sequence of O(n2) swaps to obtain a plane drawing.

Proof. Assume first that the graph has a single connected
component. Name the positions p1, . . . , pn, and name the
vertices of the graph v1, . . . , vn in such a way that the graph
is drawn plane if vi is at position pi. We prove by induction
that any connected graph with n vertices can place its vertices
at v1, . . . , vn at positions p1, . . . , pn, respectively.

Choose any vertex vj such that its removal will leave the
graph connected. Suppose a vertex vk is currently at position
pj . Use the path between vj and vk in G to get vj onto pj
as follows. Suppose this path is vk = w1, w2, . . . , wh = vj ,
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w3
w1 = vk

w2

w3

w2

w1

pj pj
w3 w2

w1

pj

= vj

Fig. 4. Bringing vj to pj using the bold path w1, w2, w3 (note that all plane
embeddings must have vj at pj ). Left: initial situation. Middle: after swap
(w1, w3). Right: after swap (w2, w3).

see Fig. 4 for an example. We swap (w1, w2), then (w2, w3),
and so on until (wh−1, wh). This brings vj onto pj in
h − 1 = O(n) swaps. We remove vj from the graph and pj
from the locations and continue inductively. It is clear that
at most O(n2) swaps are needed in total. If the graph has
multiple connected components, we follow this procedure for
each connected component. �

Another puzzle variant of swapping to planarity is possible,
namely where we swap any two vertices (so they need not
be connected by an edge). The interaction with the puzzle
consists of clicking on two different vertices consecutively.
In this variation, any solvable puzzle instance with n vertices
is solvable in at most n − 1 swaps, because we can directly
bring any vertex to the correct position. The challenge of this
variant reduces to recognizing where vertices need to be to
get a planar embedding, and no longer how to get it there.

III. COMPLEXITY OF SWAP PLANARITY

Theorem 3: Given an embedded graph G, it is NP-complete
to decide if the graph can be made planar using swaps.

Proof. A solution of the problem can be presented by the
sequence in which vertices are swapped. This solution can
be represented in O(n2) space by Lemma 2. Swapping these
vertices and checking if the resulting graph is plane can be
done in polynomial time, hence the problem is in NP.

Cabello [5] showed that it is NP-complete to decide if a
given point set P admits a planar drawing of a given graph G
where the vertices must be placed at the points. This is also
true for connected graphs. Given an instance of this problem
with a connected graph, we assign the vertices of G to the
points in P arbitrarily.

We now solve the graph planarization using swaps on
this embedding of the graph. If it has a solution, we can
just output the final point-vertex relation, leading to a planar
embedding of the given graph. If no solution exists, we also
know that no planar embedding exists, since by the proof of
Lemma 2, we can realize any assignment of vertices to points
in a connected graph. �

It is known that if G is a tree, the embedding problem of
G onto P is no longer NP-complete because every tree can
be embedded without intersections onto a planar point set [3],
[13]. This does not imply that our puzzle game is easy to solve
when the graph is a tree when we bound the number of swaps.
In particular, we can show that deciding whether the vertices

of an embedded tree can be swapped to become plane in at
most k swaps is NP-complete.

Theorem 4: Given an embedded tree on n vertices, it is NP-
complete to decide if k swaps suffice to obtain a plane drawing.

Proof. (sketch) We reduce from positive planar 1-in-3-SAT,
which was shown to be NP-complete by Mulzer and Rote [11].

Positive planar 1-in-3-SAT. In the positive planar 1-in-
3-SAT problem we are given a collection of clauses, each
consisting of exactly three variables. Each of these variables
occurs positively in the clause. In addition, we are given a
planar embedding of the clauses and variables such that a
variable is connected to a clause if and only if the variable
occurs in the clause. The positive planar 1-in-3-SAT problem
is to decide if there exists a truth assignment to the variables
such that for each clause exactly one variable is true.

Variable gadget. We construct a variable gadget as follows
by placing two rows of vertices with a row of vertices
vertically between them and adding edges as shown in Fig. 5.
In order to remove the created crossings using the minimum
number of swaps, we need to swap the endpoints of two of
the four vertical edges (first and third or second and fourth).

Split gadget. In order to connect the variable to clauses,
we construct a split gadget by taking the variable gadget
and adding an extension to one of the vertices of a column
(see Fig. 6a). There are two minimal ways of removing the
crossings, each costing two swaps. The first is by swapping
(v6, v7) and (v13, v14) (see Fig. 6b). Note that (v13, v14)
is forced to be swapped, since otherwise (v6, v10) crosses
(v7, v14). The other option is to swap (v1, v2) and (v11, v12)
(see Fig. 6c). Note that in this case, (v13, v14) can be swapped,
but doing so implies that we use more than the minimal
number of swaps to make the tree plane.

Clause gadget. The construction of a clause gadget is
shown in Fig. 7. We place a central vertex v1 and we place

v1

v2

v3 v4 v5

v6

v7

v8 v9 v10

v11

v12

v13 v14 v15

v16

v17

Fig. 5. The variable gadget.

v1

v2

v3 v4 v5

v6

v7

v8 v9v10

v11

v12

v13 v14

(a) (b) (c)

Fig. 6. (a) The split gadget and its two minimal planarizations: (b) the TRUE
assignment and (c) the FALSE assignment.
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Fig. 7. The clause gadget.

Fig. 8. A clause satisfied by the bottom-left variable.

three vertices v2, v3, and v4 equidistant from it, connecting
them to v1. Next, we place three layers of three vertices
each equidistant from v1 such that each layer forms a triangle
containing the central vertex. We note that the only way to
untangle this structure is to swap locations of the central vertex
with one of v2, v3, and v4 and orient the three layers in such
a way that the edges missing in each layer line up towards the
new location of v1. This takes three swaps.

We connect a variable to a clause by first adding a split
gadget and connecting the path that was split off to the central
vertex of the clause. We connect each variable to the clause
using two crossing steps, similar to the variable gadget. In
the full version of this proof, we argue that a clause gadget
can be untangled using five swaps if and only if exactly one
of its variable gadgets satisfies the clause. We also argue that
there is no globally different solution that uses this number of
swaps, yet is not a valid solution to the 1-in-3-SAT instance.

Constructing a tree. We note that the graph described
above is not necessarily a tree as it can contain cycles. To

Fig. 9. Removing edges to construct a tree.

construct a tree, we remove the middle edges from some of
the chains (see Fig. 9). Since the endpoints of these edges
are never swapped in any satisfiable assignment, this does not
influence the satisfiability of the instance.

This last step shows that we can solve an instance
of positive planar 1-in-3-SAT by constructing a tree and
determining whether the clause gadgets can be untangled
using five swaps per clause. Retrieving the variable assignment
for positive planar 1-in-3-SAT can be done by checking how
the corresponding variable gadgets are untangled. Hence, the
problem is NP-complete. �

IV. GENERATING LEVELS

In this section we describe how puzzle instances or levels
can be generated for SWAP PLANARITY. First we outline a
five-step procedure, and then we explain these steps in more
detail. We pay attention to three properties: (i) the puzzle
instance should look good, also in states to be reached later,
(ii) every possible good puzzle instance should be a possible
output, for diversity, and (iii) solutions should not have a
particular structure that might be identified by a puzzler, which
may upset the intended puzzle instance difficulty.

A. Process of level generation

We describe a five-step procedure to generate a puzzle
instance. We assume that a desired number n of vertices is
specified, and also a desired number m of edges, and a desired
minimal number s of swaps to the solution.

1) Generate a set V of n points in a playing area, such that
for no two points, an edge between them would visually
conflict with any other point from V (property (i)).

2) Generate a Delaunay triangulation on V , leading to an
edge set E′′.

3) Perform a number of Lawson flips to make sure that
the solution of the puzzle instance need not only have
Delaunay edges (done for properties (ii) and (iii)). This
makes E′ out of E′′.

4) Remove a number of edges at random from E′ until
m edges remain. Make sure that no isolated vertices
remain. This gives the edge set E.

5) Perform s swap operations at random, by picking edges
at random from E. Test if the resulting instance requires
s swaps to a planar state (and if not, swap more edges).

The whole process ensures property (ii): any puzzle instance
that satisfies property (i) can be generated, provided that
sufficiently many flips are performed in step 3.
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B. Generating points

Given the shape of screens, it is natural to generate a
point set in a square or rectangular region. There are two
important issues to consider when generating point sets. First,
collinearity or near-collinearity of points means that poten-
tially, an edge will partly overlap a vertex in the drawing.
This is undesirable. Second, point sets are “combinatorially
different”, which relates to the variation to be obtained in
puzzle instances. We discuss these two issues next.

Let us assume that each vertex is drawn as a disc with
radius r and every edge is drawn as a rectangle with length
the distance between its endpoints and width w < 2r. Then
any two vertices (centers) should be separated more than 2r
in order for their discs to be disjoint. Furthermore, each vertex
should be further away than r + w/2 from any edge it is not
incident to [17]. To have a little more room around each vertex
and edge we introduce a parameter δ that specifies for each
point how far it must be from each other point and edge,
when points are viewed as 0-dimensional and edges as 1-
dimensional. We always choose δ > 2r.

To generate a point set with these characteristics, we in-
crementally add points, uniformly distributed in a square. For
each addition, we check if the vertex-vertex distance condition
is violated or the collinearity is violated, and if so, we discard
the last added point. We need to test only the new point
against the previously accepted points. Hence, testing the
vertex-vertex distance is easy in linear time per new point.
To test collinearity, we choose the new point and every pair
of accepted points. Using a bit of geometry we can identify
a region bounded by four lines where the new point may not
lie, see Fig. 10. The four lines are the inner and outer tangents
to two discs of radius δ centered on the two accepted points.
Hence, the test for collinearity can be done in quadratic time
per new point.

When we generate puzzles with a considerable number of
points we may get many failures. It is possible to compute the
whole region where new points can be placed by generating
the quadratically many regions for the accepted points and
computing their union. The complement of this union is where
a new point can still lie. In particular, we can compute this
union and sample the complement explicitly, which means we
do not get failures. If the union covers the whole square, we
cannot add points anymore. The union itself, for p accepted
points so far, has complexity O(p4) and can be computed in
O(p4) time [10].

We next discuss the issue of combinatorially different point

δ

Fig. 10. Region where a third point may not be placed if collinearity should
be avoided.

sets. To understand what this means, imagine a set of n points
in convex position: they all lie on the convex hull. Whether
points lie as the vertices of a regular n-gon, or spread on an
ellipse, or more randomly placed (but still in convex position),
these point sets are essentially the same from the perspective of
intersecting edges between these points. If we have any graph
on these points, the same edges will intersect and it does not
matter where the points lie precisely. Moreover, any point set
with n points of which 3 ≤ k ≤ n lie on the convex hull
has at most 3n− k − 3 edges that do not intersect (the fewer
vertices on the convex hull, the more edges can be in a plane
graph). Point sets with the same number of points but different
numbers of points on the convex hull are combinatorially
different. But there are still differences between point sets with
the same numbers of points and the same number of points
on the convex hull.

Two point sets V and W of n points each are combinato-
rially the same if and only if a one-to-one mapping f from
one point set V to the other point set W exists such that for
any three points a, b, c ∈ V , the sequence abc is a left turn
if and only if the sequence f(a)f(b)f(c) of points from W
is a left turn. The equivalence class thus obtained is called
an order type [1], [2]. Two point sets of the same order type
allow exactly the same puzzle instances, and two point sets of
different order types allow different sets of puzzle instances
(but which might have some instances the same). So order
types are directly related to the diversity of puzzle instances
that can be made. In order to generate a variety of puzzles with,
say, eight vertices, it will be useful to choose vertex locations
with different order types in the point generation part. We will
not discuss this further in this paper.

C. Generating a plane graph

Once we have generated a set V of n points without
collinearity or closeness, we can generate edges. We generate
a plane graph (a solution) to a puzzle instance in three steps
(steps 2–4).

First, we compute the Delaunay triangulation of V [7].
This is a specific triangulation of a point set that maximizes
the smallest angle that is used in the triangulation. If is
also characterized by the empty-circle property: for any two
points vi and vj for which a circle exists that touches only
vi and vj and which has no points of V inside, there is an
edge connecting vi and vj . This characterization (in general)
completely specifies the triangulation. There are several known
algorithms to compute the Delaunay triangulation of n points
in O(n log n) time. This gives the edge set E′′.

Second, we perform a few Lawson flips (beware that flips
and swaps are very different operations). A Lawson flip can be
applied to a pair of edge-adjacent triangles in a triangulation if
those triangles together form a convex quadrilateral. A Lawson
flip removes the shared edge and re-triangulates the resulting
quadrilateral in the (only) other way. The reason to perform
these flips is to make it harder for a puzzler to solve instances.
Delaunay triangulations favor shorter edges, and Lawson flips
can generate longer edges again. If a puzzler would know—or
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realize—that the solution to each puzzle instance uses only
Delaunay edges, then (s)he can quickly see which edges must
be avoided in the drawing by imagining the empty-circle test
(let’s face it: these puzzles are going to be done by geometers).
Edges to be flipped are selected randomly, and the flip is
done only if the four involved vertices are in convex position
(otherwise the resulting drawing would be non-planar). The
resulting edge set is denoted E′.

Third, we remove some edges from E′ so that a puzzle
instance solution is not always a triangulation. We take care
to not create any isolated vertices. These would not influence
the puzzle or its solution in any way. Notice that an isolated
edge does influence the puzzle. While a swap applied to such
an edge does not change the drawing, swapping other edges
may resolve edge intersections with the isolated edge.

By removing edges we can realize a desired number of
edges in the solution. Removing many edges may cause the
puzzle instance to have multiple solutions and become easy.

D. Generating an instance

We have now generated a graph with a specified number of
vertices and edges, and in particular, a solution to this puzzle
instance. To generate the puzzle instance itself we make some
swaps such that undoing these (swapping the same edges in
reverse order) solves the instance.

It appears that puzzle instances with just two or three swaps
from a solution are already not so easy (Fig. 1). Once a player
gets more experienced, instances with four swaps may become
suitable. This means that testing the difficulty of a solution
can be done by brute-force. For example, a graph with 20
edges that should be four swaps away from a solution can
be tested by trying all 20 · 193 = 137, 180 possibilities (we
exclude swapping the same edge twice in a row).This may
lead to an instance with fewer necessary swaps to solve than
we have used to generate it; in this case we perform extra
swaps until the desired minimal number of swaps is obtained.
We will also recognize if there are more ways to a solved
state, making the instance a bit easier too. Finally, swaps that

are independent and possibly even well-separated also give
rise to easier instances. Two swaps are independent if the four
endpoints of the edges are disjoint and there is no other edge
than the two that are swapped between these four vertices.

Observe that we have realized the three properties we
aimed for. The visual quality (i) of the instance and every
intermediate state that can be reached is captured by the
vertex-vertex distance and vertex-edge distance conditions.
The puzzle diversity (ii) is realized by allowing any number
of vertices, edges, and steps to the solution, every possible
plane drawing as a solution, and every possible non-plane
drawing as a puzzle instance. There is no puzzle instance
that cannot be generated. Absence of unintended structure (iii)
is accomplished by ensuring that for a point set, any edge
between two points could be part of the solution.

V. IMPLEMENTATION AND EXPERIMENTS

The SWAP PLANARITY game is implemented using Unity.
Besides trying the game to see how difficult and fun puzzle
instances are, we are interested in the efficient generation of
non-collinear point sets, the number of points on the convex
hull, the non-collinearity parameter δ, and relations these.

Fig. 11 shows the interface. From the settings on the right
we can see that the instance has 11 points generated with
δ = 0.03 to ensure non-collinearity, the initial triangulation is
3 flips away from being Delaunay, then 4 edges were removed
and two swaps were performed to shuffle the planar graph. The
solution is shown on the right.

When we try to generate a large point set with a large value
of δ, we may fail because there may not be enough space
on the screen (play area) to realize the separation. This also
depends on the random generation itself. It can happen that a
point set of 14 points cannot be extended to 15 points without
violating collinearity, but sets of 15 non-collinear points may
still exist. This means that the point generation procedure
may have to abort and restart. If aborting is done too early,
generation may be inefficient because we start from scratch
without having to. If aborting is done too late, generation

Fig. 11. Left figure, screenshot with the steps of the generation listed in sequence (Generate does all steps in order) and the settings used. Right figure, the
solution of this puzzle instance.
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Fig. 12. Performance (total number of attempts to add a point to generate a complete point set) as a function of threshold choice, for different point set sizes.
The threshold value represents the total number of attempts to add a random point before the generation of a point set is aborted and restarted.

Fig. 13. Number of points inside the convex hull as a function of the point set size, for different thresholds. Data points are averaged over 100 point set
instances that were generated. To the right, detail of the same figure.

may have spent a lot of time on a configuration that cannot be
extended anymore. Fig.12 illustrates this for a fixed value of δ;
data points we generated with intervals of 50 between 0 and
500 and with intervals of 500 after that. Note that the vertical
axis has exponential scale. For the larger point set sizes we
observe that we should make enough attempts to add a point,
but not too many, to get the best efficiency.

We also determined the number of points inside the convex
hull for different point set sizes and different values of δ. We
noticed a surprising phenomenon: the larger δ, the fewer points
are in the convex hull. This can be seen in Fig. 13, right:
for increasing δ, fewer points tend to lie inside the convex
hull. This happens especially when it gets difficult to generate

point sets of a size with a δ, and hence we cannot observe the
behavior for larger point set values in Fig. 13, left. It may be
the case that a placement of points on the convex hull is a good
placement if one wants to realize a large δ. This suggestion
is supported by theory on bold graph drawings [12]. Fig. 14
shows the standard deviations over the 100 point set instances.
It also shows that if δ is chosen relatively large, fewer points
will be inside the convex hull.

The experiments show the following trade-off: puzzle in-
stances with a good visual appearance (clear non-collinearity,
large δ) are harder to generate efficiently and show less
diversity, indicated by the relatively large number of points
on the convex hull.
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Fig. 14. Standard deviation of the number of points inside the convex hull as a function of the point set size, for different thresholds.

VI. CONCLUSIONS

We introduced a new graph planarity puzzle game called
SWAP PLANARITY and analyzed various properties, including
the algorithmic complexity of solving instances. We presented
a method to generate instances effectively while paying at-
tention to visual clarity, diversity, and absence of accidental
structure. Our implementation shows that generation works
well, but has a trade-off between a good visual clarity on the
one hand and diversity and efficient generation on the other.

We believe that the new, swap-based graph planarity puzzle
game is a nice, elegant addition to the collection of abstract
puzzle games. The puzzle is NP-hard, the number of crossings
may need to be increased to reach a solution, and even small
instances are not so easy to solve.
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Abstract—This paper describes an Ensemble Agent for the
classic arcade game Ms. Pac-Man. Our approach decomposes
the problem into sub-goals. An expert agent is created for each
sub-goal, with all experts reporting to a central arbiter. Our
Ensemble Agent has achieved the AI world record for the arcade
version of Ms. Pac-Man with a score of 162,280. For comparison,
a MCTS-based monolithic agent was also created, based on the
same accurate forward model that the Ensemble Agent uses,
reaching a score of 115,180.

Index Terms—ensemble, mcts, pac-man, real-time, decision

I. INTRODUCTION

A. Ensemble Systems

Ensemble systems have been used for classification prob-
lems since the late 1970s [1]. They made use of feature parti-
tioning to create multiple classifiers. These early classification
systems used ensembles for a number of reasons.

• If there is too much data, divide and conquer techniques
can be applied to split the data into more manageable
subsets. Each subset can be run through a separate
instance of the classifier.

• Too little data can be used more efficiently by creating
multiple, overlapping training sets, with each set being
used to train a separate classifier.

• A level of redundancy can be achieved by creating
multiple classification systems, each trained on a unique
or overlapping subset of the training data. The chances
of misclassification can be lower for an ensemble classi-
fication system than for a monolithic system.

• Ensemble systems can easily handle heterogeneous data.
A separate classifier can be built for each data source,
and the ensemble system can combine the results for an
overall classification.

A modern example of a powerful ensemble system is IBM’s
Watson [2]. Watson was originally created to play the TV quiz
show Jeopardy, but has since been opened up for general use.
It uses natural language recognition to analyse questions and
generate queries. It sends the queries to multiple sources of
answers, known as many experts, and combines the answers,
calculating confidence levels for each of the answers. Watson
has shown great potential in helping doctors with patient
diagnoses [3].

The Ensemble decision system described in this paper uses
concepts from ensemble classification systems, namely feature
partitioning and expert systems, and applies them to real-time

State

Ensemble Agent

Pre-filter

Voice

Voice

Voice

Arbiter Decision

Fig. 1: Ensemble Decision System

decision making. The Ensemble decision systems can be used
to build complex agent behaviors out of simple components
or voices. Each voice can be considered an agent in its own
right, but with a simple, single goal or task. At the heart of the
system is an arbiter which takes the outputs, or opinions, of
the voices and generates the final decision, as shown in Figure
1.

The concept sounds similar to that of a subsumption archi-
tecture, but it differs significantly in that the decision making is
not being deferred from one component to the next. Instead, all
of the voices have an opinion all of the time, with each voice
contributing to the net result. Ensemble decision systems far
more akin to ensemble classification systems than subsumption
architectures.

Ensemble decision systems are inherently flexible. They
can have voices added or removed without affecting the other
voices or the arbiter, only the final decision. Greater efficiency
can also be achieved through the separation of behaviours that
can be handled either reactively or deliberatively. Ideally all
voices would be reactive, but some behaviours, such as ghost
avoidance in Ms. Pac-Man, require some deliberation in order
to achieve good results. These deliberative voices can be kept
as simple as possible by disregarding anything unrelated to its
given task. Pre-filtering is an option step that removes any
moves known to be invalid or determined to be bad from
previous iterations.

In its simplest form, the Ensemble Decision System was
envisioned to have three primary component classes, short-,
middle- and long-range goals. These can be seen as survival,
tactics and strategy. This idea is by no means a requirement,
and the Ms. Pac-Man ensemble agent described in this paper
does not strictly adhere to this structure.

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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B. Pac-Man

The original Pac-Man is an arcade machine from 1980,
created by game designer Toru Iwatani of Namco and released
in the United States by Midway Manufacturing Corporation.
Pac-Man was a massive success, being the second highest
grossing arcade game after emphSpace Invaders.

In Pac-Man, the player controls the main character around
a maze using a four-way joystick. The aim of the game is
to complete each level by eating all the pills dotted around
the maze whist avoiding the four antagonistic ghosts. Each
level also has four power-pills that allow Pac-Man to become
energised for a short period of time, during which the ghosts
can be eaten. Eating a power-pill also has the effect of making
the ghosts reverse direction. In later levels the time that
the ghosts are edible drops to zero. Two bonus items, often
referred to as fruit, also appear per level.

Points are scored by eating normal pills (10 points each),
power pills (50 points each), ghosts (200, 400, 800 and 1600
points if eaten in succession) and bonuses (100, 300, 500, 700,
1000, 2000, 3000 or 5000, depending on the bonus). From
level 13 onwards, the bonus is always worth 5000 points.

C. Ms. Pac-Man

Ms. Pac-Man is a sequel to Pac-Man. It has essentially the
same game mechanics but with several enhancements over the
original game. There are four mazes, as opposed to the single
maze of Pac-Man. The bonuses move around the maze, rather
than appearing stationary in the centre of the maze, and in the
later levels the bonus item is chosen pseudo-randomly.

The main difference, and what makes Ms. Pac-Man more
appealing to players and AI developers alike, is the non-
deterministic behaviour of the ghosts. The original Pac-Man
game is entirely deterministic, so players can learn patterns to
complete each level. The game can be beaten over and over
by the simple repetition of the correct pattern. Ms. Pac-Man
introduced enough random behaviour in the ghosts to allow
for strategies but not patterns.

Ms. Pac-Man was chosen for this project as it is well known
and there is a lot of prior AI research for this game [4]. Most
of the prior work has been done using either the screen-capture
Ms. Pac-Man competition framework1, or the Ms. Pac-Man vs.
Ghost-Team framework2. This project uses our own emulator,
written in Java and capable of playing the original Ms. Pac-
Man code. The emulator is described in section IV.

The original game has more complexity than the Ms. Pac-
Man vs. Ghost-Team framework, and while the screen-capture
framework is true to the original game, it has its own usability
issues. The use of a emulator written in Java gives the
simplicity of the Ms. Pac-Man vs. Ghost-Team framework and
the authenticity of the screen-capture framework.

Ms. Pac-Man is a good benchmark of an AI system as
it combines simplicity and difficulty. There are at most four
possible options to choose from for any given state, and the

1http://csee.essex.ac.uk/staff/sml/pacman/PacManContest.html
2http://www.pacmanvghosts.co.uk/

search space is confined to a single-screen maze. Despite
this simplicity, Ms. Pac-Man remains a hard problem for
AI agents and humans alike. This is primarily because of
the enclosed nature of the game space and the four-to-one
ghost ratio. Simply trying to keep a certain distance from the
ghosts is likely to end up with Ms. Pac-Man being trapped.
Understanding how the ghosts will react to in particular
situation, and so avoiding being trapped, is the key to survival
in Ms. Pac-Man.

D. High Scores

The highest published score for an AI playing the original
Ms. Pac-Man is 44,630 [5], using the screen-capture frame-
work. This score was the maximum of 100 games, with level
six being the highest reached. This would be considered a
good score for a human. The best human players can reach
scores in excess of 900,000, clearing more than 130 levels3.
The highest score recorded by the Ensemble agent is currently
162,280 at level 24. This result was achieved while recording
a video and is not part of the experimental data. The video is
available on YouTube4.

Ms. Pac-Man was recently released on Steam. The leader
board would suggest 30,000 to be a reasonable average score
for a human. In discussion with Patrick Scott Patterson—
a video game advocate, journalist and record holder—Mr.
Patterson suggested that six-figure scores were rare, and that
only a handful of players in the world are capable of playing
the game at this level. The current official world record is
933,580, set by Abdner Ashman in 2006. Only five people
have officially reached over 900,000 points.

In their paper Hybrid reward architecture for reinforcement
learning [6], van Seijen et al. describe an agent for the Atari
2600 version of Ms. Pac-Man. The agent they describe is very
similar to the Ensemble agent described in this paper, but they
use many more voices and the voices are learned rather than
hand-coded. Their agent is effectively unbeatable, but the Atari
2600 version of Ms. Pac-Man is a lot simpler than the arcade
version.

II. MONTE-CARLO TREE SEARCH IN MS. PAC-MAN

MCTS has been applied to Ms. Pac-Man before. In their
paper Monte-Carlo Tree Search In Ms. Pac-Man [7], Ikehata
and Ito describe a MCTS agent for the screen-capture frame-
work Ms. Pac-Man. For the MCTS simulations, Ikehata and
Ito used a simplified model of the game. Despite using this
simplified model, the agent entered and won the 2011 IEEE
Ms. Pac-Man competition.

In 2014, Pepels et al published their paper Real-Time Monte
Carlo Tree Search [8]. The paper describes an MCTS agent
for the Ms. Pac-Man vs. Ghost Team framework. In this
framework, agents have only 40ms to choose a move, so the
team use depth-limited roll-outs and branch re-use to achieve
competitive play.

3https://www.twingalaxies.com/game/ms-pac-man/arcade
4https://youtu.be/Y9YazqWaEAM
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III. MS. PAC-MAN VS. GHOST-TEAM

Initial experiments for this project were done using the Ms.
Pac-Man vs. Ghost-Team framework. This led to some useful
insights and a very capable agent—usually reaching the global
time-limit at around level 12, often without losing a life. The
agent played especially well against highly predictable ghosts,
such as the aggressive ghost team, where it could group the
ghosts together, eat a power-pill and then eat all the ghosts in
quick succession.

To find out how the agent would fare against a top-ranking
ghost team, we contacted the author of the Memetix ghost
team, Daryl Tose, who very graciously sent us his code. As
it turned out, despite the Memetix ghost team being almost
completely deterministic, and the Ensemble agent being very
capable against predictable ghosts, the agent rarely got past the
first level. The conclusion we made was that however strong
the Ms. Pac-Man agent is, the ghosts can always win if they
work together as a team.

IV. JAMES

JAMES was written from the ground up to be an object-
oriented Ms. Pac-Man emulator. Large sections of the code
came from the ArcadeFlex project56, an automated Java port
of the Multi Arcade Machine emulator (MAME)7. The code
was constructed as a core emulator, with a full emulator built
around it. The core emulator emulates the CPU, RAM and
I/O. The full emulator adds windowing, graphics and keyboard
support. This allows the core emulator to be used as a forward
model not tied to the 60 frames per second of the full emulator.

Agents interact with the game via the Game API. Game
state information is obtained by interpreting the contents of
specific memory locations within the emulator. Actions are
performed by setting the values of the memory-mapped I/O
ports. The Game class abstracts away from these low-level
operations.

A graph data structure was created for maze-based queries.
All-pairs tile distances were pre-calculated using the Floyd-
Warshall algorithm [9]. In addition to the all-pairs distances,
every tile stores the distance to every other tile for each
available move. These directional distances were also pre-
calculated, this time using A* search with the Floyd-Warshall
computed distance as the heuristic.

Using the emulated Ms. Pac-Man code as a forward model is
extremely accurate, but very inefficient. An alternative forward
model, the simulator, was created.

V. THE SIMULATOR

The simulator is a Java-native partial model of the game.
A lot of work went into making the simulator as accurate as
possible, especially with regard to ghost behaviour. Although
the simulator it is not 100% accurate, it is generally accurate
enough if synchronised with the emulator before each use.

5https://www.facebook.com/arcadeflex/
6https://github.com/georgemoralis/arcadeflex029
7http://mamedev.org/

Fig. 2: Opposing opinions

The simulator is very fast compared to the emulator, more
than making up for the loss of accuracy.

A simple test was conducted to gauge the relative speeds of
the emulator and simulator forward models. In this test, Ms.
Pac-Man travels from the bottom-right corner of maze one
to the bottom-left corner. This is a straight path, with pills,
that takes 198 frames. In real-time, at 60 frames per second,
that is just over three seconds. Averaged over 1000 runs, the
emulator took 23.1ms; 137 times faster than real-time. The
simulator took just 0.2ms; 16,417 times faster than real-time
and 119 times faster than the emulator forward model.

VI. ENSEMBLE AGENT FOR MS. PAC-MAN

For the Ms. Pac-Man agent, the tasks were defined as:
• Eat pills. This is primarily a long range goal to clear the

level.
• Eat fruit. This is a medium range goal to collect extra

points.
• Eat ghosts. This is another medium range goal to collect

extra points.
• Avoid ghosts. This is a short or medium range goal,

depending on whether Ms. Pac-Man is escaping from a
close-range ghost or avoiding being trapped.

It became apparent during initial experiments that simply
having each voice offering its preferred move at any given
point lead to a lot of deadlocks. The voices would often have
opposing opinions due to the completely disparate nature of
their goals. In Figure 2, Ms. Pac-Man is approaching a junction
with three options: UP, LEFT or DOWN. The pill eating voice
will vote to go DOWN, the ghost eating voice will vote to
go LEFT and the fruit eating voice will vote to go UP. No
reward is worth dying for, so the ghost avoiding voice will veto
DOWN, leaving a deadlock between UP and LEFT. The move
could be picked at random, or the arbiter could be crafted with
some domain knowledge to make a more informed decision.
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The final Ensemble Agent uses a technique similar to fuzzy
logic, where each voice rates each of the available moves
according to its own metric.

Using the same scenario as in Figure 2, with DOWN vetoed
by the ghost avoiding voice, the other three voices need to
present their ratings for UP and LEFT. As the voices are all
distance based, the ratings will be the inverse of the distance to
the goal in each available direction. If the voices are weighted
equally, the resulting move would be UP. An approximation
of the calculation can be seen in Table I.

Pill eater Fruit eater Ghost eater Sum (approx.)

UP 1/7 1/3 1/24 1/2

LEFT 1/7 1/24 1/4 2/5

TABLE I: Calculating move values

This solution is far less likely to lead to a tie-break situation,
and it is also more flexible in terms of weighting each voice’s
opinion. In the above example the agent decided to go UP
because the fruit is closer than the edible ghost, but it was
close. Generally, there is likely to be more chance of eating
the fruit in the future than the ghost, so LEFT would probably
have been a better choice. Weighting the ghost eater higher
than the fruit eater would have changed the decision to LEFT.
Rating the pill eater low, because pills are relatively low value
and static, would likely make the agent head towards the
fruit after eating the ghost. The arbiter never actually targets
anything, or makes any sort of plan. It simply chooses the
highest combined-rated move at any given point.

The final Ensemble Agent for Ms. Pac-Man in JAMES is
composed of four voices, with an arbiter taking the opinions
of each voice and combining them to make the final decision.

• Ghost Dodger. Avoiding ghosts is the most important
aspect of the game, and is also the hardest to do, com-
putationally. It is the average result of sparse sampled,
depth-limited roll-outs. This voice is discussed in detail
in the next section.

• Pill Muncher. This voice rates each move as the inverse
of the tile distance to the nearest pill in that direction.
Pills near ghosts are artificially made to look further away,
meaning that the pill muncher will rate safe pills higher
than those with ghosts near by.

• Fruit Muncher. This voice has no opinion unless there
is a fruit bonus on the screen. If a fruit is on the screen,
the voice will attempt to intercept it. It rates the available
moves as the inverse of the tile distance to the fruit.

• Ghost Muncher. This voice only has an opinion if Ms.
Pac-Man is energised. This voice uses a similar sparse
sampling technique as the Ghost Dodger voice, but it
could also simply rate each move based on the distance
to the nearest edible ghost. The sparse sampling technique
allows for elegant behaviour such as intercepting ghosts,
rather than simply chasing them.

A. Ghost Dodging
The final Ghost Dodger algorithm uses the simulator for

depth limited search, and rates each move based on sparse
random sampling. This algorithm is closely related to the
averaged depth-limited search technique we applied to the
game 2048, as demonstrated at the IEEE CIG2014 conference
in Dortmund [10].

The algorithm is given 10ms in which to make random
depth-limited, Monte-Carlo style samples through the maze.
Every time it reaches its depth limit of 8 without dying, the
initial move’s score gets incremented. At the end of the 10ms,
or it has found enough safe paths to be sure a move is safe,
the voice returns its rating for each move, based on how many
times it reached the depth limit. The depth of 8 was chosen as
a trade-off between depth and the number of samples possible
in the time-frame. For this algorithm, a move is a straight line
from the current position to the next corner or junction. This
simplifies the algorithm as Ms. Pac-Man’s direction does not
need to be re-calculated mid-move for cornering.

Because the simulator is not 100% pixel-perfect, it may
determine a path to be safe when in the real game it is not.
This usually occurs if there is a ghost very close. This becomes
a real problem when deciding whether or not to clear a path
of pills. Ms. Pac-Man pauses for a single frame when she
eats a pill but the ghosts do not, so a following ghost will be
faster. This quite often leads to situations where the simulator
determines a path to be safe to traverse, only to realise its
mistake when it is too late.

B. Arbitration
As previously discussed, the ensemble voices offer ratings

for each available move. It is the job of the arbiter to combine
the ratings into a decision. Voices associated with risk, such
as the Ghost Dodger, are treated as multiplicative. Voices
associated with reward, such as the Fruit Muncher, are treated
as a sum. The overall value of a move is the sum of its rewards
multiplied by the risk factor of that move.

In general, the first k voices of the total n voices are
multiplicative, with the remainder being a summation. The
value of each move m for each voice Vi is multiplied by weight
Wi. The product of all the risk-based voices is calculated to
give us a relative measure of risk. In this case, 0 indicates
certain death and 1 indicates no risk.

RISKm =
i=k∏

i=1

Vi,mWi (1)

We also need to calculate the reward associated with each
move. This is done by summing all the move values for each
of the reward voices:

REWARDm =
i=n∑

i=k+1

Vi,mWi (2)

To calculate the final vector of move ratings R, we multiply
these two factors. This ensures that any reward, no matter how
large, will be nullified if the risk is too great.
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Rm = RISKm ×REWARDm (3)

The arbiter simply chooses the move corresponding to the
highest valued Rm. If more than one move have the highest
rating, the arbiter will select at random from the highest rated
moves.

In this project the weights were hand-crafted and tuned until
the behaviour was deemed good enough. These weights are
unlikely to be optimal, so weight optimisation is a potential
area for improvement.

1) Evolving Weights: Instead of hand-crafting the weights,
as a proof of concept, a simple one-plus-one evolutionary
strategy was used to optimise the weights of the voices. A
baseline score was recorded over 100 games, then the weights
were adjusted by a small random amount. Another 100 games
were played with the new weights. If the new weight were kept
if the average score improved. This was done 1000 times, for
a total of 100,000 games. An early version of the Ensemble
AI was used for this experiment, and it was able to increase
the ability of that player. In this experiment, a noticeable
increase in average score of approximately 30% was achieved.
Unfortunately this technique takes a very long time, and it was
not used in any of the final agents. In their paper The N-Tuple
Bandit Evolutionary Algorithm for Game Agent Optimisation
[11], Lucas et al describe an algorithm for optimising N-Tuple
values for noisy and expensive problems. This approach could
achieve better results quicker than the simple one-plus-one
approach.

2) Dynamic Weights: Dynamic weighting is also a pos-
sibility, combining the Ensemble arbiter with a finite-state
machine. Using such a technique would allow the agent to
adjust the voice weights depending on the situation. This
could be of use in, for example, stealth games. One set of
weights could be used during stealthy missions, or portions of
missions, while another set of weights used in situations where
the player’s stealth has been compromised. Dynamic weighting
could also be used in general video game playing (GVGP)
[12], especially if combined with general-purpose components.

VII. MONTE-CARLO TREE SEARCH

The MCTS agent was developed to set a high bar, and
to demonstrate what a purely deliberative agent was capable
of. Despite using the simulator forward model, and hence no
knowledge of fruit, the MCTS agent manages to play to a very
high standard.

A. Deliberation and Double Checking

In order for a our MCTS agent to perform well, it needs
time to deliberate. In real-time games this is tricky. If the
MCTS agent was trying to play synchronously with the game,
a decision would need to be made every 16ms. Our simple
implementation of MCTS was incapable of even playing the
game, let alone play it well.

In order to solve the problem, we allow the MCTS agent
to utilise the time it takes to get to its next target to run the
simulations of what will happen when it gets there.

Fig. 3: MCTS paths

In figure 3, the agent is at point A and has committed to
traveling to point B. Path AB has already been simulated and
checked using the emulator forward model, so the agent can
be almost certain that it is safe. During the time it takes to
reach point B, the MCTS algorithm is running simulations
from point B onwards.

The instant Ms. Pac-Man enters the tile associated with
point B, the MCTS algorithm is stopped and the best move
from point B is selected. In figure 3, BD always leads to
death, so BC is selected. The agent will then double check
BC using the emulator and commit to that move. The MCTS
algorithm will start simulating moves from point C onward. If
something unexpected happened and the emulator check shows
a problem, the agent will cancel that move and go back; in this
case, towards point A. The MCTS algorithm will be restarted
from point A.

Using this travel time for deliberation allows the MCTS
algorithm to visit each move hundreds, if not thousands of
times.

B. Selection Phase

Preliminary experiments with exploration verses exploita-
tion showed that with high exploration, and hence highly
symmetric trees, the agent did not perform so well as with
high exploitation. The symmetric and asymmetric agents both
scored roughly the same on average, but the asymmetric
agent’s average level reached was 15, as opposed to the 10
of the symmetric agent8.

From watching two versions of the MCTS agent playing,
it could be seen that the symmetric agent starts off well, and
does a great job of eating the edible ghosts, but when the level
is almost complete—especially if there are two small, separate
clusters of pills, the agent doesn’t seem to know what to do.

8These results were obtained using an early version of the agent. The final
MCTS agent plays much better, but the findings on symmetry still hold true.
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There is very little reward available but lots of ghost death to
be avoided. These situations lead to the agent getting stuck in
a local optimal loop, going back and forth avoiding ghosts,
but not getting the level complete. If the agent gets pushed by
the ghosts close enough to one of the clusters of pills, it will
take them. As soon as only one cluster of pills remains, the
agent can see the win and will go for it.

In contrast to this, the asymmetric MCTS agent does not
seem to do as good a job of eating the ghosts, and so scores
fewer points, but it doesn’t get stuck in local optima as often
or for as long. The asymmetric nature of the trees means the
agent is more likely to be able to see a winning path through
two distant clusters of pills.

The average reward of a given move is used in the selection
phase in place of the number of wins. As this reward is based
on the score delta of the move, the exploitation value tends to
be very high. To counter this, and create a better balance of
exploration verses exploitation, am exploitation factor of 2000
is used.

C. Simulation Phase

Pure MCTS makes random, legal moves until an end-state is
reached. While this approach works well for zero-sum games,
for an arcade game like Ms. Pac-Man the only true end-state is
GAME OVER. We could use intermediate end-states, such as
when the agent is killed or the level is completed, but losing
a life is also bad, and finishing a level is unlikely to happen
making random moves.

Full roll-outs are difficult to assess, being as the vast
majority of them will be death. Even if we use an evaluation
function with a partial roll-out, the roll-out is likely to end
in death. Another issue with evaluation functions is that they
will heavily bias the roll-outs. If, for example, the evaluation
function rewards distance from ghosts, the MCTS algorithm
will avoid ghosts and end up being trapped just like a distance
rule-based ghost avoidance algorithm.

The final, and best performing, MCTS agent has no roll-out
phase at all. Once a new leaf is generated in the expansion
phase, the current score delta is returned for back-propagation.
The only cases where the score is not simply returned is when
either the agent is killed or the level is complete. In the case of
a death, the reward (score) is divided by 10. This has the effect
of guiding the selection away from that part of the path, but
without poisoning the entire branch, as was the case when
the reward was set to zero on death. In the case of level
completion, an extra 1000 points are added to the reward.
That sounds low, but it is enough to get the agent going in
the right direction without taking unnecessary risks to get the
win.

D. No Emulator Checking

For the experiments where the agents cannot access the
emulator, the MCTS agent did not do so well. Because it
is always thinking one decision point ahead, it relies on the
emulator to ensure the current path is safe. Removing this
accurate checking mechanism proved to be a problem for the

MCTS agent. The less than 100% pixel-perfect simulator can
sometimes regard a path as safe when it is not; when a ghost is
following Ms. Pac-Man very closely, for example. Just a single
pixel discrepancy between the simulator and the actual game
can result in completely different decisions from the ghosts,
especially at close-quarters.

In order to have the MCTS agent able to perform reasonably
well without the emulator, it needed to be able to react to
its mistakes. This was achieved at the expense deliberation
time by changing the algorithm to return a decision at each
new tile, rather than at each corner or junction. The actual
MCTS algorithm still used the corners and junctions as nodes
when expanding the tree, but the tree gets rebuilt each time the
agent enters a different tile. This allows the agent to effectively
change its mind half way along a corridor, if a danger becomes
apparent.

VIII. EXPERIMENTS

The experiments themselves were very simple. Each agent
plays 100 games at normal speed. The results of these exper-
iments are then compared on both score and level reached.
The level reached being used as a measure of the survivability
of the agent. All experiments were run on a single desktop
computer.

• Machine: 2011 Dell OptiPlex 790
• CPU: Intel Core i7-2600 running at stock 3.4GHz
• RAM: 16GB DDR3 running at 1333MHz
• OS: Linux Mint 17
• JVM: Oracle Java 7
Variations of the two main agents, MCTS and Ensemble,

were used for comparison and fairness. Along with the ‘best’
versions of each agent, experiments were run with and without
access to the emulator forward model. The MCTS agent makes
far greater use of the emulator, so it is to be expected that
this agent suffers more for having it removed. Hopefully the
experiments show that the emulator is very useful, not a
necessity.

Experiments were also run where the Ensemble does not
include the fruit munching component. The fruit bonuses are
not included in the simulator, so the MCTS agent has no
knowledge of the fruit. This gives the Ensemble agent an
unfair advantage in terms of point scoring. Turning off the
fruit component removes this advantage.

IX. RESULTS

Both agents use the emulator as a short-range, accurate
forward model. The MCTS uses the emulator to double-
check before it commits to a path, and the Ensemble uses the
emulator to pre-filter the available moves to remove certain-
death moves. The Ensemble also uses it as double-check for
immediate death on the current move.

The MCTS agent reached level 13 in all 100 game played
and reached level 21 in 68 of the 100 games. In terms
of survivability, the MCTS agent is very strong. The main
weakness of the MCTS agent is its relatively poor points
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scoring. This is primarily due to the lack of knowledge of
the fruit bonuses.

Because the MCTS agent does not have any knowledge
of the fruit, a version of the Ensemble agent without the
fruit muncher voice was also tested. In this configuration, the
MCTS agent and the Ensemble agent score almost identical
average scores.

The MCTS agent has greater survivability than the Ensem-
ble, with an average level reached of 20.38 to the Ensemble’s
18.67. That the Ensemble agent manages to score equally
well in fewer levels than the MCTS agent, even without fruit,
suggests that the Ensemble agent is slightly better at capturing
ghosts than the MCTS agent.

Adding the fruit component to the Ensemble resulted in
a 26% increase in maximum score, with a 33% increase in
average score. This increase in score did come with a very
small drop in survivability, with the average level reached
dropping from 18.67 to 18.37, less than 2%.

A. Results With emulator

As can be seen in Table II, when compared to the MCTS
agent the Ensemble agent scores significantly better. Most of
the extra points seem to come from the MCTS agent’s inability
to effectively capture fruit. When the Ensemble agent has the
fruit muncher voice disabled, there is no significant difference
in scoring compared to the MCTS agent.

Agent Minimum Maximum Mean Std. Err. p-value
Ensemble 44860 153280 118610 2477 < .0001

MCTS 57920 115180 89278 1286
Ensemble no fruit 36310 121360 89095 1547 .9276

TABLE II: Comparison of scores with emulator

Table III shows the levels reached by each agent. These
figures give a measure of the agents’ survivability. Compared
to the Ensemble agent, the MCTS agent is significantly better
at surviving. The fruit munching voice does not significantly
affect the survivability of the Ensemble agents.

Agent Minimum Maximum Mean Mode p-value
Ensemble 6 25 18.37 21

MCTS 13 24 20.38 22 < .0001
Ensemble no fruit 8 24 18.67 21 .5852

TABLE III: Comparison of levels reached with emulator

B. Results Without emulator

In terms of both scoring and survivability, all agents were
significantly worse off for having the emulator forward model
removed (p-value < .0001), but he MCTS agent was the most
dramatically affected. The MCTS is more heavily dependent
on the emulator for accurate checking of paths. The ensemble
uses the emulator much less; only for pre-filtering moves, and
as an extremely short range (eight frames) safety check.

The full Ensemble’s performance drops by about 23% for
both average score and average level reached. The Ensemble
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Fig. 5: Box chart of agent scores with emulator

without fruit loses about 19% in average score, and 17% in
average level reached. The MCTS agent, however, loses a huge
48% in average score, and 52% in average level reached.

Table IV shows the scores for each agent over 100 games.
Compared to the MCTS agent, both of the Ensemble variants
are much higher scoring.

Agent Minimum Maximum Mean Std. Err. p-value
Ensemble 16760 145510 91167 2848 < .0001

MCTS 3930 92660 46672 2028
Ensemble no fruit 26200 115350 72586 2064 < .0001

TABLE IV: Comparison of scores with emulator

In Table V we can see that the MCTS agent is now
significantly worse at surviving than the Ensemble agent, and
that removing the fruit munching voice does not significantly
change the survivability of the Ensemble.

Agent Minimum Maximum Mean Mode p-value
Ensemble 3 22 14.19 16

MCTS 1 20 9.83 7 < .0001
Ensemble no fruit 6 23 15.49 21 .0642

TABLE V: Comparison of levels reached without emulator
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X. CONCLUSION

This paper described the use of an Ensemble Decision
System to create a Ms. Pac-Man agent. It also described a new
framework that allows Java controllers to be written for the
original Ms. Pac-Man arcade game. Using this framework, and
a powerful simulator forward model, we were able to create
very high scoring agents.

The Ensemble agent scored a world record AI score for
Ms. Pac-Man, outperforming a MCTS-based monolithic agent
based on the same system and forward model.

The Ensemble decision systems show great potential as
efficient and flexible alternatives to monolithic agents, and
also as lightweight augmentations to existing systems. Adding
fruit awareness to the MCTS agent, for example. This could
be done without interfering with the MCTS algorithm in any
way, only potentially altering the chosen move.

XI. FUTURE WORK

The simple arbiter could be replaced by something more
sophisticated and dynamic; possibly a trained neural network
or a genetic algorithm to learn a strategic sense of the game.
The experiments evolving the voice weights of the ensemble
were mildly successful, but slow and tedious. It does leave
open the possibility of using better optimisation algorithms.

The results for Ms. Pac-Man are very good, but it is only
one game. We would like to see Ensemble Decision Systems

applied to GVGP problems, to get an understanding of how
flexible they can be, and if multi-purpose, or reusable, voices
can be created.

XII. CODE

The code used in this project can be downloaded from
GitHub at https://github.com/philrod1/james
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Abstract—A recent publication suggested an integrated process
for game balancing by means of a combination of manual and
automated balancing approaches. In this work, we refine the
approach and show how to apply it to a “real game”, not a
simple prototype, namely to an open source clone of the real-
time strategy game “Red Alert”. Specifically, we are interested
in how to utilize the outcomes of automated balancing to inform
and direct our iterated approach. This enables us to follow and
explore several diverse balancing solutions at the same time,
which should in turn improve performance and reliability of
the balancing process. We are not primarily interested in the
determined solutions, but in the process that can easily be
adapted to other games and balancing goals.

Index Terms—balancing, RTS games, process

I. INTRODUCTION

Game balancing is defined as the “process of systematically
modifying parameters of game components and operational
rules in order to determine satisfactory configurations regard-
ing predefined goals” [3, p. 1]. It is well known to be a non-
trivial issue that is especially necessary but also challenging in
later phases of game design to ensure, e.g., the fairness of the
final game [14]. While the prevalent approach in the industry
still mostly consists of manual trial-and-error methods based
on the tacit knowledge and experience of the game designer,
there have been a number of approaches that show the potential
of (at least partially) automated balancing, employing AIs that
mimic the behavior of human players, and utilizing algorithms
for optimization.

Recently, BEYER ET AL. have proposed an integrated pro-
cess for game balancing that combines the advantages of both
manual and automated balancing activities [3]. Based on its
application to a simple test game, the authors demonstrate
that automation can be beneficial, but also has certain down-
sides. We continue this line of research by reporting on the
results of a case study conducted using a more complex real-
time strategy (RTS) game to investigate how the results of
automated balancing can be used to inform and direct the
entire balancing process. This represents a conceptual shift
from uncoordinated alterations between manual and automated
activities towards a more structured approach where automated
balancing serves the exploration of meaningful parameter
combinations, whereas manual game-testing provides exploita-
tion by applying smaller changes to obtain feasible solutions.

The main contribution of this paper lies in an examination of
how automated balancing via optimization can be conducted
in practice, i.e. how the problem complexity can be suitably
reduced. Furthermore, we investigate how it is possible to in-
tegrate automatic balancing into the overall balancing process
that is still very much based on intuitive design decisions and
heuristics. To that extent, we modify the process proposed
in [3] to enable a more dynamic integration of manual and
automatic balancing. More concretely, we especially add as-
sessment simulations and correlation checks to our toolbox in
order to inform the manual steps. Furthermore, we also divide
the preparatory steps into subtasks and show how these can
be executed for a 2-player RTS game. Ultimately, we hope to
be able to transfer the experiences from this case study to a
more general level.

The remainder of this paper is structured as follows: First,
Section II gives a brief overview of the fundamentals of
game balancing and presents the state-of-the-art approaches
employing some degree of automation. Afterwards, Section III
describes OPENRA, the test game that was employed in the
case study. The applied balancing process and the modifica-
tions that were made to the proposal by BEYER ET AL. are
outlined in Section IV, and the results of several experiments
conducted as part of the case study are reported in Sections V
and VI. Finally, the paper closes with the conclusions.

II. RELATED WORK

Game balancing is a process that tunes a game to fulfill
one or multiple design goals, such as fairness, average game
duration, or difficulty (cf. [14]). In the context of RTS games,
fairness, in the sense that the winner is determined by player
skill, is one of the most prominent points of contention. It is
often targeted via patches in popular RTS games1, discussed
by industry professionals2 and has also been the subject of
research. Mahlmann et. al target it in consecutive work where
they propose an RTS-specific representation language and sev-
eral evaluation functions to find balanced game configurations.
Specifically, they try to find games where (1) the units are
complementary, (2) the outcome is uncertain for a long time,

1http://liquipedia.net/starcraft2/Patches
2GDC talk: Real-Time Strategy Game Balance (https://www.gdcvault.com/

play/1022530/Real-Time-Strategy-Game)

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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or (3) the lead changes multiple times. To this end, they
propose three different fitness functions that are computed
based on data collected from the gameplay of AI agents. As
in our case, they optimise these fitness functions using an
evolutionary algorithm. While they describe interesting results,
they also find that the proposed evaluation methods vary
with the specific AI agent employed in the simulations. They
recognise that in order to obtain meaningful measurements, the
AI would need to behave human-like in some aspects, which
would need to be determined as well. As a potential solution
to this issue, we propose an integrated approach with human
designers and play-testers, which counteracts overfitting to AI
characteristics.

In general, using AI gameplay simulations to evaluate some
aspects of a game which are then optimised using an evolu-
tionary algorithm is a relatively wide-spread approach in game
balancing. It has been applied to card games [18], Ms PacMan
[11], tower defence games [1] and many more. However, the
examples we know all conduct full-automatic balancing and
thus also lack human behaviour modeling. Moreover, they
are generally applied to games with only a small number of
permutable parameters, and a relatively small search space is
of course beneficial for any kind of optimization algorithm.
Additionally, many of these examples are short, relatively
simple games, so that the implementation of an AI is not
prohibitively difficult and the simulation is not excessively
computationally expensive.

The research fields around procedural content generation
[17] and dynamic difficulty adaptation are related to AI-
assisted game balancing, as all need some form of automatic
evaluation of the degree to which specified design goals are
satisfied. For example, in [7], the authors find that human
players experience RTS games against AI opponents with
dynamically adapting difficulty as most enjoyable. Such AI
agents are proposed in [5, 12].

Work on gameplay evaluation, procedural content genera-
tion and dynamic difficulty adapation of course also exists in
context of other genres, e.g. first-person shooters [4, 8] or role-
playing games [16], and there are even some generalisable
approaches [10]. However, the focus in this paper is on
the balancing process itself instead of game evaluation, and
specifically its integration with human designers and players.
We will thus refrain from providing a detailed overview of
these research areas.

Finally, there is a comparatively large corpus of work on
mixed-initiative design, which also integrates automatic evalu-
ations and human opinions. This includes map/level design for,
e. g., RTS games (Sentient Sketchbook) [9], platformers [15]
and mobile games [13]. However, these approaches mostly
focus on said map/level creation and/or optimization, whereas
we want to approach game balancing with a mixed-initiative
concept.

III. TEST GAME: OPEN RED ALERT

Rather than implementing our own game prototype, an
existing game was chosen to examine whether our balancing

Fig. 1. Screenshot of the test RTS game Open Red Alert.

approach is well-suited for published games with standard-to-
high complexity (as opposed to toy games), and to show that
(semi-)automated balancing can be plugged into an existing
game. The choice of game was restricted to the RTS genre for
three main reasons: 1) It has an especially high demand for
balancing, as allowing the development of sophisticated and
diverse strategies by players requires a deep and fair game as
foundation. 2) The inherent complexity of RTS games with
different unit types and high challenges for AI players makes
them hard to balance. 3) The concept of balance is rather
tangible for RTS games; establishing a fair and engaging setup
of different factions is the main balancing challenge for most
RTS games.

We determined the following requirements for potential
game candidates: (1) open source code access to allow for the
implementation of any necessary modifications (e.g., headless
simulation runs), (2) ongoing maintenance so that help can
be easily obtained should technical problems occur, and (3)
support for small changes by the game architecture to enable
a simple adaption of game parameters relevant for balancing
without requiring the game to be recompiled. The three most
suitable candidates that were discovered are MEGAGLEST3,
0 A.D.4, and OPENRA5. The choice was made in favor of
OPENRA due to its parameterization via YAML files, which
makes it easier to handle than MEGAGLEST, and the early
development state of 0 A.D.

Compared to the original COMMAND & CONQUER: RED
ALERT (Westwood Studios, 1996) on which OPENRA is
based, the following notable changes were made: the introduc-
tion of a Fog of War, a non-cheating AI (i.e., the AI does not
get more information or resources than human players), and a
re-balancing of factions. The non-cheating AI is advantageous
for automated balancing as it likely approximates a human

3https://megaglest.org/
4https://play0ad.com/
5http://www.openra.net/
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Fig. 2. The slightly modified new balancing process (cf. [3]), modeled in BPMN (Business Process Modeling and Notation). Plus signs indicate the existence
of subtasks within the activity, X stands for an either/or decision. The main change is that automated balancing is inserted as a preparatory step for the
integrated balancing phase that also partly relies on automation.

play style more closely than an AI that can cheat.
As the original, OPENRA is set in a fictional reality in which

the death of Adolf Hitler in 1924 results in an alternate World
War II fought between the Soviet Union and the allied nations
of Europe. It is a typical RTS game in which players are tasked
with destroying all of their opponent’s buildings, to which end
they must farm ore to obtain credits as a resource for creating
units and buildings, and produce energy through power plants
to allow existing buildings to operate. A screenshot of the
game UI is shown in Fig. 1. The sidebar on the right provides
controls for the creation of units and buildings. It furthermore
shows information about resources; the player is currently in
possession of 2900 credits and has a power surplus of 20. The
resource ore is shown on the lower right, as well as an ore
truck gathering it.

Of the requirements most important for balancing RTS
games, the most prominent one from the perspective of players
is arguably fairness. Other requirements such as richness
(multiple meaningful strategies and no dominant strategy) and
usefulness (meaningfulness of every unit/building in some
context) exist as well, but are typically addressed through the
concept of intransitive superiority [2, 19], also known as rock-
paper-scissors, on the unit level.

For symmetric games with identical player setups (same
units, buildings, symmetrical map), fairness is trivially
obtained and—with the exception of non-deterministic
mechanisms—the winner should be determined exclusively by
player skill. However, RTS games are not like chess in this
regard: their fascination comes to a large extent from replaying
historical or fictional settings as ancient, fantasy, World War
II, or science fiction settings. Asymmetry is therefore built into
these games, be it in the form of asymmetric maps or goals,
or, as most frequently encountered, factions with different
units and buildings. As this is also the case for OPENRA,
in the following we will exclusively focus on fairness under
asymmetric conditions for competitive scenarios with two
human players. Obtaining fairness is then the task of the
balancing process that shall ideally respect any ideas about
the game play as envisioned by the game designer as well as
playability.

IV. INTEGRATED GAME BALANCING PROCESS

In [3], BEYER ET AL. propose a standard process model
for game balancing that is intended to be valid across all
games and genres. This model is integrated in the sense that it

considers both manual and automated balancing activities as
well as their iterative repetition towards some balancing goal.
Nevertheless, its definition also allows for purely automated
or exclusively manual instantiations of the balancing process.

In the proposal by BEYER ET AL., the role of automated
balancing was rather unspecified and the interaction between
manual and automated balancing unclear. Consequently, we
suggest to modify this scheme by adding some automation
also to the manual balancing phase, albeit with a more precise
purpose. The modified process model is depicted in Fig. 2,
using the BPMN standard (Business Process Modeling and
Notation)6 widely used in the Information Systems discipline
for representation. In the following, we give a high-level
description of the individual steps (activities) of this process
set against the backdrop of RTS games in general before
applying it to OPENRA.

Step 1: Assess context. The first activity consists of two
subtasks. 1) Define scope: First, the game or game component
to be balanced must be chosen. 2) Define goals: Second, the
balancing goal must be specified in human-readable as well
as machine-readable, computable form. The latter represents
an objective function encapsulating the intentions of the game
designer and is used to conduct automated balancing and to
evaluate balancing success later on. The importance of this
subtask lies in the fact that the concrete choice of a goal
function strongly influences the characteristics of the game
after balancing. After this step, all further activities are part
of a cycle and may thus be repeated an arbitrary number of
times.

Step 2: Set environment. The second activity consists
of four subtasks. 1) Choose scenario: Having defined the
scope, we next need to select levels, game mechanics, units,
buildings, and other components that constitute the scenario
to be balanced. This will typically entail the omission of some
constituents of the game play, such as special units that are
only used in single-player missions. 2) Choose parameters:
Next, it must be decided which game parameters are con-
sidered out of bounds of the balancing endeavor (e.g., due
to their presumed minor importance) and the values of these
parameters must be set. This may become necessary if the
amount of parameters otherwise becomes too large for an
optimization-based approach and means that some aspects of

6www.bpmn.org Business process models are particularly employed for
describing how computer systems and humans interact, in contrast to data
flow models or algorithmic descriptions in computer science.
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game objects are disregarded. To give an example, units may
possess a speed parameter for all possible terrain types, but the
disadvantage of complicating the balancing process with about
10 parameters more per unit may outweigh the advantage of
diversifying unit behavior by far. 3) Define parameter bounds:
For the chosen parameters, lower and upper bounds as well
as possible step sizes must be defined. This is necessary for
automated balancing, but can itself be considered an act of
manual balancing. Consequently, the bounds should not be so
tight that a large number of potentially interesting solutions
is excluded, but also tight enough so that solution candidates
are feasible with a high probability. 4) Implement automated
environment: Finally, an environment that is capable of running
automated games must be implemented. Ideally, the game can
be run headless (i.e., without GUI) and with a quicker pacing
than the normal speed, as this enables more simulations in
shorter time. Furthermore, an AI that can act as a stand-in
for human players is needed. This AI should be complete
in the sense that it has access to and can exploit all game
mechanics. For RTS games, this is usually not a problem as
the existing AI has to deal with the same problems as the
human player (controlling a whole faction) Nevertheless, there
may still be technical issues because games are not usually
intended to be played in a fully automated fashion without
any human intervention. Thus, while it may be argued that
the AI may never fully replace a (particular) human player, we
presume that the advantages of automated test runs outweigh
the disadvantage that the playing styles of AIs are more
restricted than the ones of humans.

Step 3: Perform automated balancing. In the third step,
an optimization algorithm needs to be chosen for automated
balancing and a stopping condition must be defined. Here,
the objective function specified for the balancing goal in
the first step plays an important role again. We generally
recommend evolutionary algorithms or related meta-heuristics
as the problem itself is black-box, i.e., it depends on the
results of a simulation. However, the ideal, perfectly balanced
solutions is likely unknown and in addition difficult to find due
to the uncertainty inherent to non-deterministic AI decisions
or game mechanics (e.g., randomized damage values). As a
result, the stopping criteria for the optimization algorithm will
either be available time budget and/or detected stagnation. The
outcome of this activity is a set of the best balancing parameter
configurations found that are sufficiently different from one
another with regard to some quantitative indicator.

Step 4: Perform integrated balancing. The final activity
consists of two subtasks that can be executed in any order
or number of repetitions as deemed necessary. The purpose of
this is to validate solutions yielded by the automated balancing
process and to adjust them with respect to the original inten-
tions of the game designer if the playing experience deviates
from the former. The two subtasks are as follows.

1) Execute simulations: Having refined some candidate so-
lution through small adjustments of its parameter configuration
the modified solution should be playtested automatically to as-
sess its effect. For instance, performing 100 simulations before

applying a change and 100 afterwards would facilitate exam-
ining its impacts on game play. We call this simple technique
assessment simulations. 2) Conduct manual playtest: Possi-
ble motivations for conducting additional, manual playtests
include validating a game configuration regarding design ideas,
complementing AI-based evaluations if a divergence from
human behavior is expected, or checking if a solution also
leads to a satisfactory play experience for other scenarios
than those chosen in the second step. Furthermore, it may
also become obvious that a solution is already quite good
but a small set of parameters appears problematic. These
parameters can then be changed manually and tested again,
essentially signifying a very limited and thus fast manual
balancing process. Additionally, the playtests may be assisted
by another round of simulations. As simulations only test one
specific parametrization, they are much faster to execute than
automated balancing.

V. CASE STUDY: PREPARATION

Step 1: Assess context. According to the balancing process
outlined in Sect. IV, the first activity is to assess the context,
consisting of scope and goal definition. In case of OPENRA,
we have a set of 39 different unit types, each possessing
about 40 parameters. Doing an automated balancing run with
more than 1000 real-valued variables seems impractical if not
infeasible if a single simulation takes some seconds. Such
an optimization run would probably require at least around
1 million evaluations, even in a noiseless environment. In
the end, it is highly likely that even for the best solutions,
some parameters would not be well adjusted and need to be
corrected manually. There are certainly several ways how to
deal with this problem; we suggest a bottom-up approach that
first balances the most important units/parameters and is then
extended step by step.

Define scope: from the available game modes (missions,
skirmish), we select the 2-player skirmish games as this is
probably the game setting that is played most often and thus
the most interesting.

Define goals: our high-level goals are fairness, richness,
and tension. More concretely, for OPENRA balancing we
demand that: 1) a 2-player skirmish with different factions
on a symmetric map should be fair (success largely depends
on player skill), 2) all unit types must be relevant for the
gameplay, and 3) matches should be close, meaning that both
factions should loose about the same amount of troops, taking
importance differences into account (a tank is more relevant
than a rifleman). The latter is a very rough heuristic only and
could be replaced or complemented by other conditions as the
length of games.

Step 2: Set environment. In order to establish the bal-
ancing environment, we first need to choose a scenario. This
entails selecting units, buildings, and maps to be considered.
According to our bottom-up approach, we concentrate on the
core game first, that is the set of units that are available early
in the game. Besides the MCV (mobile construction vehicle)
that is used to establish the base and then disappears from
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Fig. 3. Relations between combat units of the first iteration: backgrounds
symbolize factions (blue=allied, red=soviet), units on the same line are
functional counterparts, black arrows stand for a is well suited against, green
arrows for support.

the game, we also need to add ore trucks in order to enable
harvesting the main resource, ore. However, since these do not
take part in battles (other than being destroyed), we thus just
adopt their parameters from the default parameter set that is
shipped with the game. Nevertheless, their speed and capacity
of course has some influence on the game.

The most important battle units are displayed in fig. 3 along
with their relations, namely the rifleman, the basic infantry unit
that is available to both factions, the medic, the grenadier, the
light tank and the heavy tank. This selection is a compromise
between enabling a sophisticated gameplay and reducing the
number of units to a minimum, according to expert judgement.

As these units have to be built and supported, we need to
add 5 basic building types: construction yard, power plant,
barracks, ore refinery and war factory. Additionally, a sym-
metric simple map without many obstacles is selected, as we
want to avoid adding any bias in this step. Later on, resulting
parameterizations will be validated on other maps as well.

Given the available units, we need to choose the parameters
that will be subject to change, as well as define parameter
bounds. As ≈ 200 parameters are still infeasible, we reduce
their number by disregarding all parameters (e.g., separate

TABLE I
UNITS AND PARAMETER BOUNDS FOR THE FIRST BALANCING ITERATION

Unit Parameter Shorthand Min. Value Max. Value

Rifle Man

Cost CR 20 200
Reload Delay RR 5 40
Damage DR 2 20
Health HR 10 60
Movement Speed MR 10 80

Medic

Cost CM 20 200
Reload Delay RM 40 200
Health HM 20 80
Movement Speed MM 10 80

Grenadier

Cost CG 20 200
Reload Delay RG 15 60
Damage DG 10 50
Health HG 20 80
Movement Speed MG 10 80

Light Tank

Cost CL 200 1000
Reload Delay RL 2 15
Damage DL 2 15
Health HL 100 450
Movement Speed ML 10 120

Heavy Tank

Cost CH 500 2000
Reload Delay RH 30 100
Damage DH 25 80
Health HH 500 1000
Movement Speed MH 10 60

movement speeds for different terrains) that, according to our
assessment, do not have a large impact. Tab. I shows the 24
(the medic does not do damage) selected parameters and their
relatively wide value intervals. This choice avoids restricting
the available choices too much but keeps basic design ideas
(e.g., tanks should have higher cost than infantry) intact.

Next, we have to prepare the automated environment for
running balancing optimization runs. Game parameter settings
are read via console option or parameter file and the results
are written to a log file and an SQL database. Automation
features three main requirements:

• the game must run without GUI in the background
• the game speed should be as fast as possible
• an AI must be available that plays in a human-like fashion

In contrast to a game under development where these require-
ments can be implemented on the fly, the game code (C#)
had to be changed in our case. By means of introducing a
parameter that determines the length of a game frame, we
managed to speed up headless game runs to about a factor of
40. Another important aspect of the automated environment is
the availability of an AI that can play as stand-in for a human
player. The AI engine of OPENRA is named Hacky AI, and
it comes in different instantiations: Rush AI, Turtle AI, and
Naval AI. In the following, we employ the Rush AI only, as
it is the most versatile version. The AI is implemented via
simple rule sets, but its behavior looks reasonably similar to
a human playing style. By means of several comparison tests,
we made sure that the AI behavior stays the same for headless,
accelerated runs. If the GUI is switched off, we can speed up
the game around a factor of 2.

VI. CASE STUDY: BALANCING ITERATIONS

We are now going to run through the cycle of automated and
integrated balancing (according to fig. 2) 2 times, with only
slight changes to the environment in the successive iterations.
Of course, 2 is not a fixed number. More iterations can be
performed as needed. After every finished iteration, it is up
to the user to decide if the current solution is satisfactory and
the process can be stopped. However, 2 iterations already show
what kind of difficulties are encountered and how we can add
more game objects after being satisfied with the balancing of
the restricted system. In the descriptions, prevailing decisions
will not be mentioned again.

A. Setting Up Target Function and Algorithm

While the game is prepared now for automated parameter
optimization, we also need to choose a target function and an
optimization algorithm. Formally, this belongs to the perform
automated balancing step of the first iteration. However, both
choices will be kept fixed throughout the paper, and for reasons
of clarity, we single it out here.

From the 3 goals named in sect. V, we choose the third
(comparable losses of buildings and units mean close games)
for setting up a target function as the first is partly included in
it and the second (all unit types relevant) cannot be assessed
very well automatically at this stage (we have a very restricted
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TABLE II
PEARSON CORRELATIONS BETWEEN USER FEEDBACK AND CLOSENESS

Measurements ρ

FA : Fitness −0.82
FB : Fitness −0.77
CA : Fitness −0.70
CB : Fitness −0.69
CA : FA −0.82
CB : FB −0.77

setup with only 5 unit types here, the second goal would
become more important later on when more units are added).
As buildings are much harder to destroy than units, we
measure the absolute difference between players in both and
weigh buildings with a factor of 5 (see equation (1), where
Dpx is the number of buildings destroyed by player x and
Kpx the number of units killed by player x).

f(Dp1, Dp2,Kp1,Kp2]) = 5× |Dp1, Dp2|+ |Kp1,Kp2]| (1)

This target function has been validated by a user playtest
and survey, with 2 experienced (and similarly skilled) RTS
gamers playing 15 games of the unmodified restricted version
and rating each game on a scale from 1 to 10 for how much
fun they had (FA/FB) and how close the game was perceived
(CA/CB). These two are probably connected for RTS games.
We assume that at least for experienced players, fun depends
on the impression of fairness as a precondition. Table II shows
the Pearson correlation of the fitness values computed on the
resulting games (equation (1)) as well as the respective fun and
closeness values according to the players. As the correlation
values (fitness is minimized, therefore the negative correlation)
are around 0.7 and higher, the test clearly indicates that the
target function is reasonable, and we will thus stick to it in
this work. This does not mean that there are no (possibly even
better) alternatives.

Concerning algorithm choice, the environment (noisy objec-
tive function provided by a relatively slow simulation engine)
strongly suggests a meta-heuristic approach. As a rule of
thumb, doing 1000 simulations needs around 10 hours of com-
putation time, putting us into the realm of (noisy) expensive
optimization. We thus apply an Evolution Strategy (a simple
Evolutionary Algorithm with deterministic selection, see [6])
with a rather small population and plus-selection (the current
best individuals are only replaced if better ones are found).
In order to cope with the noise, every solution candidate is
evaluated 3 times and the median is then used as objective
value.

Whereas algorithm runtimes do not allow for an extensive
parameter tuning, we have tested several parameter sets and
eventually agreed on the following 3 settings:

• Recombination is meant to generate original mixes from
existing parent solutions, but also puts us in danger
of losing diversity quickly. In order to keep different
types of solutions in the pool, we generate only 20%
of the offspring by applying uniform crossover, 80%

TABLE III
MOST STRIKING PARAMETER DIFFERENCES AND GROUPING OF 10 BEST

SOLUTIONS OF AUTOMATED BALANCING IN ITERATION 1

Solutions S1, S2, S4, S5, S8, S9 S6, S7, S10 SG1 SG2

Parameter Min Max Min Max

RM 110 122 63 69 116 66
MM 43 52 25 27 46 26
CG 165 177 57 59 172 58
DG 20 25 46 48 22 46
DH 37 43 65 72 38 68
MH 34 39 20 20 36 20

are generated as clones of a single parent. All offspring
individuals undergo mutation in any case.

• As opposed to many numerical optimization settings,
small changes to the parameter values have often lit-
tle effect in our context. We thus employ a uniformly
distributed mutation of ±5% instead of a normally dis-
tributed one.

• A small population size enables rapid progress, a larger
can keep more diversity (and thus more completely dif-
ferent solutions). After some tests with different sizes, we
fix parent and offspring size to 6, resulting in a (6+6)-EA.
Smaller population sizes quickly lead to quasi-fixation of
all parameters after a few generations.

The resulting EA is implemented based on the Python
library evoalgos7.

B. Iteration 1

Step 3: Perform automated balancing. After performing
5 optimization runs, a list of the best 10 overall solutions
(S1 to S10) is compiled and manually (visually) clustered
according to their differences in parameter values, as depicted
in tab. III. With the exception of one solution that seems to
be a mixture of both groups (discarded here), two distinct
clusters are obtained; these are named SG1 and SG2. The left
part of the table shows the parameter ranges of the grouped
solutions for the most different 6 parameters, the right part
the rounded averages which form the starting point of the
integrated balancing.

In what do the two groups differ? Interestingly, all 6
parameters belong only to 3 of the 5 units, namely medic
(reload delay, movement speed), grenadier (cost, damage), and
heavy tank (damage and movement speed). As the medic is an
allied unit and the other two are soviet units, we presume that
somehow the changes on the one side (if comparing SG1 to
SG2) compensate for the ones on the other side. However, it
seems to be the case that the two changes to the medic (halved
reload time, but also halved movement speed) counterbalance
each other, while the grenadier is much stronger in SG2, and
the heavy tank is now so slow that it seems almost unusable.

Step 4: Perform integrated balancing. Manual playtests
quickly show that the infantry units are generally too slow,
making their use very annoying (this is a subjective impression

7https://pypi.python.org/pypi/evoalgos/
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Fig. 4. Boxplot of the parameter values of the best 200 solutions from the
automated runs in iteration 1, normalized

and cannot be seen from the raw value). They should have a
movement speed of at least 50 to enable strategic maneuvers
such as flanking. The heavy tank is also too slow, making it
almost useless. Generally, SG1 appears favorable over SG2,
as it makes better use of the different units. Additionally,
the Allies seem to have a slight advantage over the Soviets.
Running 100 simulations for SG1 confirms that with the Allies
winning 85 games.

End: Assess balancing goals. While the third balancing
goal (close matches) is technically almost fulfilled, the current
best solution SG1 does not really enable fair games, and due
to the dominance of the light tank and the slowness of the
rifleman, we clearly miss the second goal (all units relevant).
However, we got some hints on what to change in order to
make the game more balanced.

C. Iteration 2

Step 2: Set environment. It is obvious that in the light of
the results of iteration 1, we have to readjust our parameter
bounds. As a first step, we perform a sensitivity analysis
by doubling and halving every parameter value in SG1 and
running 100 games on each, resulting in 4800 games. The main
result of this analysis is that all parameters have noticeable
impact on fitness, except from the movement speed of rifle
man and medic. This can be explained by their lack of
relevance in the meta resulting from the obtained parameter
configuration.

In correspondence to our findings in the manual playtests of
iteration 1, we fix the movement speeds of the infantry units
rifleman, medic, and grenadier to 55, 55, and 50, respectively.
Additionally, we fix the reload times (except for the medic)
to the values of SG1 in order to reduce redundancy. Next, we
investigate if some parameter bounds were too tight in the first
iteration. A boxplot (fig. 4) of the normalized values of the
best 200 solutions from the automated balancing runs reveals
that this may be the case for the cost of medic and grenadier
as mostly values near 1 were chosen (the damage value for the
grenadier in SG1 is low as also the mean value is, therefore
no correction is needed for DG). After increasing the upper
bounds for the cost of medic and grenadier, we now end up
with 17 parameters and slightly adapted parameter bounds.

TABLE IV
SOLUTIONS TAKEN OVER FROM AUTOMATED BALANCING OF ITERATION 2

Parameter SG3 SG4 SG5

CH 893 940 1018
HH 400 422 463

TABLE V
FINAL BALANCING SOLUTION AFTER ITERATION 2

Parameter Value Parameter Value Parameter Value

CR 105 CM 192 CG 183
DR 14 DM 134 DG 26
HR 54 HM 54 HG 40

CL 546 CH 1018
DL 6 DH 63
HL 256 HH 463
ML 65 MH 40

Step 3: Perform automated balancing. The second auto-
mated balancing step leads to a number of similar best solu-
tions, these cannot be separated into several groups, but they
reflect some trade-offs. Especially the cost and health values
of the heavy tank are highly correlated, which actually makes
sense from a balancing perspective, because the health-per-cost
values stays more or less constant. From these solutions, we
carry the 3 that are depicted in tab. IV over into the integrated
balancing phase, namely the ones with the smallest and the
largest values in these two parameters, and an intermediate
one.

Step 4: Perform integrated balancing. After multiple
playtests with the 3 solutions of tab. IV, we find that unit
behavior differences between these solutions are relatively
small, hardly noticeable for a novice player. SG5 feels sub-
jectively a bit better because the heavy tank more resembles
the expectation towards heaviness. Performing another set of
100 simulations with SG5 reveals that now the Soviets have
a slight advantage of winning 63 games.

End: Assess balancing goals. The final solution after the
second balancing iteration is provided in tab. V. Although the
AI wins slightly more often while playing the Soviets, we can
consider this solution balanced as the AI is not able to use
the medic to its full potential. It keeps the medic near to the
infantry units, but takes no precaution to save it from enemy
fire, possibly making it an early victim in infantry fights, which
in turn weakens the Allies. Manual playtests have shown that
proper use of the medic balances this solution well.

VII. CONCLUSION AND OUTLOOK

Balancing is a notable challenge for the game industry that
is relevant throughout the entire game development process. Its
difficulty increases further whenever many game constituents
are created in an automated way or by external actors (e.g., by
the community of an existing game). Balancing a full-fledged,
commercial game does not yet seem possible with the tools
and techniques described in Section II, and manual balancing
approaches are very time-consuming and costly, and mostly
based on heuristics and rules of thumb (e.g. “doubling and
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halving”). Therefore, in this work we have adjusted a process
model for manual and automated game balancing aiming to
combine the advantages of both approaches while avoiding
their pitfalls. This process was adapted and then applied to an
existing open source RTS game.

In the original proposal by BEYER ET AL., a clear dis-
tinction was made between manual and automated balancing
activities. Here, we acknowledge that while automated (opti-
mization) runs are able to identify a number of candidates
for good and diverse solutions, the inherent difficulty of
formulating a good objective function makes it necessary to
combine them with manual playtests for checking if the game
is not only fair, but also playable and, most importantly,
subjectively entertaining. Additional assessment simulations
(or parameter tests) can help to understand the parameter
interactions and also find relevant parameters or check the
effects of a single change. The result is a truly integrated
process for game balancing that we presented in Section IV.
Summarizing, the most important tools in our toolbox are:

• correlation checks for fitness function justification
• automated balancing via optimization
• doubling and halving of parameters
• manual playtesting
• assessment simulations

Within the guidelines of the overall process, these can be used
as appropriate. As possibly subjective human assessment is
included here, there is no fully specified algorithm that can
solve all problems in one go, balancing is and stays an iterative
process. As we acknowledge the importance of human input
for this integrated approach, it is difficult to compare to purely
algorithmic approaches. However, we do not see this work as
gradual improvement but as first (successful) application of
an integrated balancing approach to a real game with many
parameters.

The algorithmic parts of our approach can surely be im-
proved. Grouping the best solutions to clusters can be auto-
mated, and the optimization algorithm may be adapted further
to the problem, especially concerning noise handling.

Given the inherent redundancy of the balancing problem
(most changes of one property of a unit can be counterbalanced
by an adequate change in another one), it is no surprise
that the problem, seen as an optimization problem, is highly
multimodal. Therefore, specific algorithms for this setting
should be applied, as well as multi-objective optimization
algorithms, which would enable optimizing towards two or
more goals at the same time.

REFERENCES

[1] Philipp Beau and Sander Bakkes. “Automated Game Balanc-
ing of Asymmetric Video Games.” In: IEEE Conference on
Computational Intelligence and Games (CIG). 2016.

[2] N. Beume, T. Hein, B. Naujoks, N. Piatkowski, M. Preuss,
and S. Wessing. “Intelligent anti-grouping in real-time strat-
egy games”. In: 2008 IEEE Symposium On Computational
Intelligence and Games. 2008, pp. 63–70.

[3] Marlene Beyer et al. “An Integrated Process for Game Bal-
ancing”. In: Proceedings of the IEEE Conference on Compu-
tational Intelligence and Games (CIG 2016). 2016.

[4] William Cachia, Antonios Liapis, and Georgios N. Yan-
nakakis. “Multi-Level Evolution of Shooter Levels”. In: AI-
IDE. 2015.

[5] S. H. Chang and N. Y. Yang. “DCA: Dynamic Challenging
Level Adapter for Real-time Strategy Games”. In: IEEE 15th
International Conference on Computational Science and En-
gineering. 2012, pp. 30–35.

[6] A. E. Eiben and James E. Smith. Introduction to Evolutionary
Computing. 2nd. Springer, 2015.

[7] J. Hagelback and S. J. Johansson. “Measuring player ex-
perience on runtime dynamic difficulty scaling in an RTS
game”. In: IEEE Symposium on Computational Intelligence
and Games (CIG). 2009, pp. 46–52.

[8] Pier Luca Lanzi, Daniele Loiacono, and Riccardo Stucchi.
“Evolving maps for match balancing in first person shooters”.
In: 2014.

[9] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius.
“Sentient Sketchbook: Computer-Aided Game Level Author-
ing”. In: 8th International Conference on the Foundations of
Digital Games. 2013, pp. 213–220.

[10] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius.
“Towards a Generic Method of Evaluating Game Levels”. In:
9th AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment. 2013, pp. 30–36.

[11] M. Morosan and R. Poli. “Evolving a designer-balanced neural
network for Ms PacMan”. In: Computer Science and Elec-
tronic Engineering Conference (CEEC). 2017, pp. 100–105.

[12] Jacob Kaae Olesen, Georgios N. Yannakakis, and John Hal-
lam. “Real-time challenge balance in an RTS game using
rtNEAT”. In: IEEE Symposium On Computational Intelligence
and Games (CIG). 2008, pp. 87–94.

[13] Edward J Powley, Swen Gaudl, Simon Colton, Mark J Nelson,
Rob Saunders, and Michael Cook. “Automated Tweaking of
Levels for Casual Creation of Mobile Games”. In: Proceedings
of the 2nd Computational Creativity and Games Workshop.
2015.

[14] Jesse Schell. “Game Mechanics Must be in Balance”. In: The
Art of Game Design: A Book of Lenses. Morgan Kaufmann,
Burlington, MA, 2008. Chap. 11, pp. 171–206.

[15] Gillian Smith, Jim Whitehead, and Michael Mateas. “Tanagra:
Reactive planning and constraint solving for mixed-initiative
level design”. In: IEEE Transactions on Computational Intel-
ligence and AI in Games 3.3 (2011), pp. 201–215.

[16] Pieter Spronck, Marc Ponsen, Ida Sprinkhuizen-Kuyper, and
Eric Postma. “Adaptive game AI with dynamic scripting”. In:
Machine Learning 63.3 (2006), pp. 217–248.

[17] Julian Togelius and Noor Shaker. “The search-based ap-
proach”. In: Procedural Content Generation in Games: A
Textbook and an Overview of Current Research. Ed. by Noor
Shaker, Julian Togelius, and Mark J. Nelson. Springer, Berlin,
Germany, 2015, pp. 17–30.

[18] Vanessa Volz, Günter Rudolph, and Boris Naujoks. “Demon-
strating the Feasibility of Automatic Game Balancing”. In:
Genetic and Evolutionary Computation Conference (GECCO
16). ACM Press, New York, NY, 2016, pp. 269–276.

[19] Richard A Watson and Jordan B Pollack. “Coevolutionary
dynamics in a minimal substrate”. In: Proceedings of the 3rd
Annual Conference on Genetic and Evolutionary Computation.
Morgan Kaufmann Publishers Inc. 2001, pp. 702–709.

212



Applying Commitment to Churn and Remaining
Players Lifetime Prediction

Luiz Bernardo Martins Kummer, Julio Cesar Nievola and Emerson Cabrera Paraiso
Graduate Program in Informatics

Pontificia Universidade Catolica do Parana
Rua Imaculada Conceicao, 1155, Curitiba-PR, Brazil
{luiz.kummer, nievola, paraiso}@ppgia.pucpr.br

Abstract—In this paper, we present a Machine Learning
approach based on commitment to deal with two risky situations
over game usage lifecycle: the prediction of churn and players
remaining lifetime. These risky situations are gauged by game
producers to try to maintain the players motivated, intervening
when players tend to leave. The problem is that this information is
not trivial to obtain due to the players‘ motivational usage linked
to the many activities available in the game content (e.g., all the
possible actions in an MMORPG). To deal with that, we proposed
the use of the commitment concept to assign the engagement of
a player to a game based on the usage data. The main aspect
of the proposed approach is related to the preprocessing step,
where measures for the actions related to commitment were
computed, generating a tendency degree for each one. We used a
dataset from the CIG 2017 Game Data Mining competition which
focused on the same risky situations as a comparison baseline.
This paper approach overcomes the competition’s results for both
challenges. All experiments followed the competition rules. These
experiments show that looking at tendencies on commitment is
an option to gauge players’ engagement over time.

Index Terms—game analytic, player behavior, player com-
mitment, churn prediction, remaining lifetime prediction, data
mining.

I. INTRODUCTION

The players’ engagement to a game changes over time
according to what content is available to them. To captivate
new players and to motivate the active ones, game producers
offer new game content through new games or game upgrades
[1]. Artificial intelligence techniques can be applied to the
new game content, affecting the gameplay experience of the
player [2]. A “clue” to try to identify the degree of experience
(motivation in playing) is analyzing the players’ generated
data when they play (the usage data). This motivation can be
represented by “how a player plays” [1]. Approaches to try to
measure it are usually done through Data Mining techniques
[3]. Usage data can have different granularities, depending on
how detailed are the players’ activities (in-game actions).

During the usage lifecycle, there are risky and good situa-
tions that game producers gauge over time to try to minimize
(the risky ones) or to maximize (the good ones) them [1].
This paper focus on two risky situations: the prediction of
the remaining players’ lifetime (regression) and the churn
(classification). Churn is a situation when the player abandons
a given game, and the remaining lifetime refers to how long
a player will stay playing until he/she churns. These topics

present a challenge for prediction because they differ from
traditional approaches due to the players’ motivational usage
[4]. A churn in a given game can differ from a churn of a
service because there is no deregistration process associated.
The player can stop playing due to several reasons [5][6].

We understand that to better measure how motivated are the
players, we need to evaluate as many as possible the different
activities that players do playing a game. Related to this idea,
commitment is the amount of time played and score obtained
[7] by a player during his/her play. We expanded the idea of
[7] to other players activities which we understand that also
refer to players’ motivation.

Our approach was applied over a dataset containing 10,000
players of the MMORPG Blade&Soul1. The dataset was made
available for the Game Data Mining competition at the CIG
2017. The dataset has labels for churn and lifetime. There are
568,992,669 instances where each one represents an activity
done by a player in a distinct time-stamp. The dataset time-
span contemplates 24 weeks. During this period, the game
changed its business model from a subscription model (pay-
to-play) to a free-to-play model. There are 82 different types
of activities detailed in the data (e.g. spend money, acquire
quest, PvP kill, dismiss guild, etc.).

In this paper, we manually selected 54 out of 82 activities
(actions) of the dataset based on the commitment concept [7].
We assume that “if a player likes the game, he/she will spend
more time playing and will improve his/her abilities”. As an
active player is “writing” his/her history in the usage data
while playing, we understand that it is better to try to identify
the future of this history if we have a clue about it. Therefore,
we computed a new attribute to each player‘s action to measure
its tendency and the resultant dataset from this preprocessing
has 122 attributes and was used to induce models to deal with
both predictions of churn and lifetime. The same rules of the
competition were applied to this paper to allow a baseline
comparison. As a final result, our proposed strategy overcame
the best teams for both challenges.

The paper is organized as follows: next related works
are presented. Then, the commitment approach is explained.
Following, we present the competition details. The results of
some experiments are also shown. Finally, we conclude with

1http://www.bladeandsoul.com/en/

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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a discussion on our approach and present possible directions
for future work.

II. RELATED WORKS

This section is divided into three topics regarding game
usage lifecycle modeling, prediction of players’ behavior and
the approaches presented at the CIG 2017 Game Data Mining
competition.

A. Game Usage Lifecycle Modeling

The usage of software was modeled by [8] as the number of
active users a software has at a given time-span. This number
changes over time due to many causes, such as the software
acceptance. In games it is not different, players also have an
acceptance stage, but differently from users of “commercial
software” (e.g., a text editor), a player has something else, a
motivational factor related to entertainment [6].

Most of all games are developed to profit, and it is re-
lated to how well the game content keeps players attached.
Game producers extract some metrics from usage data to
try to identify the players’ motivation, such as the MAU
(monthly active users), DAU (daily active users), Sticky Factor
(DAU/MAU) and revenue [1], but those metrics give the idea
of “how many players play”, and not “how attached the active
players are”. One alternative for that was the work of [7],
where they proposed a way to measure the commitment of
players, given an alternative to the empirical interpretations
done by game producers. Their approach could identify risky
situations where the classical approach (MAU) could not. The
concerns around the usage lifecycle can be divided into two
perspectives: one for game producers and other for players.

The game producers aim at identifying when a good or
risky situation is happening to make decisions. For example,
when the abandon rate is greater than the new players’ rate,
an upgrade can be applied to motivate the players again with
some novelties to know [1]. On the other hand, when a good
situation is identified (e.g., a great revenue), the game producer
can opt to expand its games to other platforms [9][10]. There
are many business models applied to games, where ones
have too many players and low revenue and others have the
opposite. Sometimes, game producers choose to change its
business models, as occurred to the Blade&Soul.

Players have a motivation in continuing playing and it is
associated to the content available to them. Some researchers
focused on identifying the players’ motivational stages over
the usage lifecycle. The work of [6] interviewed players from
an MMORPG and identified four motivational stages:

• Try: the players have a curiosity about the game and will
try it for the first time. If they do not like it, they will
abandon it.

• Tasting: after a first good experience, the players start
to accumulate profit (e.g., levels, items, friends, quests,
etc.).

• Retention: the players already know all the challenges
provided to them and start to have a lack of motivation.
They continue to play because their friends are playing.

• Abandonment: in this stage, the game content does not
please the player and nothing can change his/her mind
about leaving the game.

Some researches showed that contacting a player when
he/she starts to demonstrate a lack of motivation can change
the player’s mind [1][11][12].

B. Player Behavior Prediction

Some researchers dealt with the challenge of predicting and
identifying players profiles based on usage data associating it
with the game usage lifecycle. However, there are also works
that identify profiles without doing this association.

In [1], the author was motivated for a “good” problem
presented by game producers that have got a great success with
their games, “how will the MAU behave?”. Some metrics that
affect the MAU were identified and then a dynamic system
was built based on it. The research final product was a system
capable of predicting the MAU’s behavior based on changes
in current metrics, like the new players’ rate and abandonment
rate.

The remaining lifetime and churn prediction were object
of study for [13] and [14]. In [13], the authors analyzed the
login rate changes until players churn. In the case of [14],
the measure analyzed was the amount of played time. In both
cases, the measures presented a gradual decay until the churn
occurrence.

The commitment idea used in this paper was based on
the work of Kummer and colleagues [7], where the authors
proposed a way to measure the players’ commitment to three
different degrees (low, average or high). They gauged the
changes on the number of players on each commitment degree
and proposed a KRI (Key Risk Indicator). They compared
the MAU and KRI behaviors during game upgrades of an
MMORPG, the proposed metric could identify a risky situation
(discontentment associated to upgrade) when the MAU did not.

The works of [15] and [16] studied the aspects related to the
identification of players’ profiles (different gameplay styles)
and which clustering algorithm fits better to that identification.
However they have got interesting results, these approaches
were not associated with the motivational stages of players
during the usage lifecycle.

C. Approaches at CIG 2017 Game Data Mining Competition

This edition of the competition ended in the middle of
August 2017. No published papers were found. However, a
summary2 of the competition was presented by its organizers.
The competition had got a total of 264 enrolled and started in
March 2017 and ended in August 2017.

For the churn prediction challenge, there were 13 teams that
delivered a solution (Table I) and for the lifetime prediction
challenge were five teams (Table II). It is possible to iden-
tify that there were three main approaches applied (Neural
network, Trees and Linear models). The ranking process is
detailed later in this paper. Unfortunately, no preprocessing

2https://cilab.sejong.ac.kr/gdmc2017/index.php/results/
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steps were described, therefore it is not possible to compare
our approach in this context.

TABLE I
CHURN PREDICTION RANKING

Rank Team Techniques
1 YD (Japan) LSTM+DNN, Extra-Trees Classifier
2 UTU (Finland) Logistic Regression
3 TripleS (South Korea) Random Forest
4 TheCowKing (South Korea) LightGBM (Light Gradient Boosting Machine)
5 goedleio (German) Feed Forward Neural Network
6 MNDS (South Korea) Deep Neural Network
7 DTND (South Korea) Generalized Linear Model
8 IISLABSKKU (South Korea) Tree Boosting
9 suya (South Korea) Deep Neural Network
10 YK (South Korea) Logistic Regression
11 GoAlone (South Korea) Logistic Regression
12 NoJam (South Korea) Decision tree
13 Lessang (South Korea) Deep Neural Network

TABLE II
LIFETIME PREDICTION RANKING

Rank Team Techniques

1 YD (Japan) Ensemble of Conditional Inference Trees
(# of Trees = 900)

2 IISLABSKKU (South Korea) Tree Boosting
3 UTU (Finland) Linear regression
4 TripleS (South Korea) Ensemble Three Method
5 DTND (South Korea) Generalized Linear Model

III. COMMITMENT PROPOSED APPROACH

This section presents our approach to the churn and remain-
ing lifetime prediction. The main contribution of this paper
regards the preprocessing step because it allows to construct
a training set with a richer information than the original data.
The new attributes aim at giving a clue about the future
behavior based on observed changes. The idea is using the
same set of attributes to deal with both problems.

A. Commitment: the Basic Concept

We advocate that to establish if a player is attached to a
game, besides the time spent playing the game, his/her actions
that highlight that attachment (the commitment approach [7])
must be also considered. As players evolve while playing the
game, they may change their activities [6]. For example, after
reaching a certain level, a given player can stop doing daily
quests and start to join Player versus Player (PvP) battles. Or
start to upgrade his/her equipment when the player’s max level
is reached. On the other hand, there are actions that may not
suggest if a player is attached to the game, like the action
of removing an item. Players have a ludic and exploratory
behavior, and like to have the capacity of completing difficult
challenges, as described by the Flow theory of [17] (Figure
1). The Flow describes some players’ characteristics, such
as the anxiety derived from a too difficult challenge when
the player does not have the required skill or the boredom
when the challenge is too easy. The pleasure in playing stays
in a balance between the players’ ability and the challenge
difficulty. It is possible to assimilate changes on players’
commitment with the Flow concept, because while a player
evolves his/her skills (becoming more committed to the game),

he/she may do more difficulty activities (“following the flow”).
We assume that the Flow concept applied to this paper can be
seen as the growth of occurrence of player’s actions together
with the beginning of new activities (as the player is becoming
more skilled, they may do more of the same or start to do
something new).

Fig. 1. The flow, extracted from [17]

B. Proposed Method

To apply this method, the candidate game must have usage
data with (method assumptions):

• Player identification.
• Time-stamp.
• Player score.
• Action taken.
• Label for Churn and Remaining Lifetime.
The proposed method adds new attributes to the original

commitment concept. The idea is to measure all activities
related to the players’ engagement and then generate new
attributes based on them to try to identify a tendency behavior.
Players can have different life routines, so it is needed to
look individually to each one to detect a change in his/her
engagement. Before preprocessing the dataset, it is required to
define a time-span to apply the method (e.g., weekly). Then,
the following steps for each committed related actions can be
applied:

1) To count for each time-span the number of occurrence;
2) To normalize the occurrence number into a range from

0 to 1 for the whole time-span (e.g., all weeks);
3) To compute the mean over the whole time-span;
4) To compute the tendency.
The commitment original measures are not actions [7], they

are states regarding obtained score and time spent playing.
In our approach, the score is a single attribute regarding the
max score obtained in the whole time-span (it represents the
player‘s best performance; e.g., in MMORPGs, the score can
be the obtained level, although, there are other attributes that
can measure it in more details, such as the occurrence of “level
up”) and the played time has its mean and tendency values (its
granularity may be chosen, like the number of days played).

The normalization step aims at putting “in a same base”
players with distinct behavior. A daily player and a weekend
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player will be analyzed in the same way through changes in
the normalized value. If the original value were used, we can
have very distinct values for each player, turning a comparison
not fair (e.g., a daily player with 100 completed quests and a
weekend player with only 10 may have the same commitment
to the game).

The tendency value represents if, at the last time-span, a
given action occurrence growth, stayed stable or dropped. The
motivation behind this measure consists in finding a “clue”
about the future behavior of some action, as it represents the
last “feeling” about it considering the historical behavior. The
tendency range is from 0 to 1, where a value below 0.5 means
a drop of occurrence, a value of 0.5 means stability and a
value above 0.5 means a growth of occurrence. It was kept
into a positive range to try to avoid wrong computations in
the regression models‘ equations. The tendency is computed as
follows: assuming S1, ..., Sn as the occurrences (normalized)
of a player’s action for a given time-span, the differences
between S1 and S2 until Sn−1 and Sn are summed and then
normalized (Equation 1).

Tendency =
(((
∑n−1

i=1 Si − Si+1) ∗ −1) + 1)

2
. (1)

where the sum (
∑n−1

i=1 Si − Si+1) refers to the changes
on the occurrence and the others operators besides the sum
( ((
∑

)∗−1)+1)
2 ) act only to keep the tendency with the range

(0 to 1) and the properties previously described.
To keep this explanation as clear as possible, let us name

the original dataset as “basic attributes set” (BAS) and the
pre-processed one as “pre-processed attributes set” (PAS).
The final product of this preprocessing is the generation of
two new attributes for each basic attribute (each commitment
related action), which are its mean and tendency values. At
this moment, the PAS has only the player identification, the
original commitment attributes and the new commitment at-
tributes (mean and tendency values for all commitment related
actions). To use PAS to the churn problem, just the class
attribute must be added, and to use it to the lifetime problem
just the remaining lifetime must be added. Next, a running
example will present more details about the preprocessing step.

To better clarify our approach, let us assume the Table III
data as our example dataset. The time-span adopted is weekly
(eight weeks in total) and the action considered is “Acquire
Quest”. Note that this player did not acquire quests during all
the 8 weeks, only between the 1st and 5th weeks.

The objective of the first step regards counting the number
of occurrence of a given action per week. Table IV illustrates
the first step result.

The second step consists in transforming the occurrence
counts into a range between 0 and 1, where 1 represents the
max count identified in the previous step. Table V shows the
normalization result. If there are another example with values
of 100, 80, 70, 80, 20, 10, 90 and 0, the normalized values
will be 1, 0.8, 0.7, 0.8, 0.2, 0.1, 0.9 and 0 respectively. This

TABLE III
RUNNING EXAMPLE DATASET

Player id Log name Date
Player 1 AcquireQuest 14:30 01/01/2018 (week 1)
Player 1 AcquireQuest 15:00 01/01/2018 (week 1)
Player 1 AcquireQuest 20:45 08/01/2018 (week 2)
Player 1 AcquireQuest 20:55 08/01/2018 (week 2)
Player 1 AcquireQuest 21:10 16/01/2018 (week 3)
Player 1 AcquireQuest 09:10 25/01/2018 (week 4)
Player 1 AcquireQuest 09:30 25/01/2018 (week 5)

TABLE IV
OCCURRENCE COUNTING RESULT (FIRST STEP)

Player id Log name S1 S2 S3 S4 S5 S6 S7 S8
Player 1 AcquireQuest 2 2 1 1 1 0 0 0

operation consists in dividing the occurrence value by the max
occurrence value (Equation 2).

NormalizedValue =
Si

Max(S)
. (2)

TABLE V
NORMALIZATION RESULT (SECOND STEP)

Player id Log name S1 S2 S3 S4 S5 S6 S7 S8
Player 1 AcquireQuest 1 1 0.5 0.5 0.5 0 0 0

The mean computation step consists of computing for all the
eight weeks’ normalized values their mean, which was 0.4375
in this case. Next, to obtain the tendency value (last step) the
application of Equation 1 is required; the value obtained for
the running example was 0. This value means that at the 8th

week, the action “AcquireQuest” for “Player 1” tends to drop.
Given the running example, some details about the gen-

erated measures are described next. The tendency can be
interpreted as follows:

• If a player did not do a given activity in the first week
and did it in the last week, then a value greater than 0.5
will be obtained. This shows the idea of having a new
behavior (doing something new). If the tendency value is
1, it means that the last player behavior has the highest
occurrence.

• If a player did not do a given activity in the first and last
weeks, then a value of 0.5 will be obtained. This shows
the idea of a stable behavior. The same occurs if a player
does an activity in the first and last weeks with the same
occurrence.

• If a player did a given activity in the first week and did not
do it in the last week, then a value lower than 0.5 will be
obtained. This shows the idea of having a new behavior
(stop doing something, like the running example). The
same occurs when a player does an activity in the last
week with less occurrence than in the first week.

The mean measure can be interpreted with the following
possibilities:
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• A value near 1 means that the player does a certain
activity with a stable behavior.

• A value near 0.5 means that the player changed its
behavior (but we do not know when it happened; the
tendency idea acts here).

• A value near 0 means that the player rarely does an
activity.

• A value of 0 means that the player does not do a certain
activity.

We proposed to use the tendency value to give an extra
information about the player behavior, because we understand
that using only the mean value does not fit well, as it may
hide some information, like abrupt changes on behavior.

The mean and tendency values analyzed together can have
a richer information, such as:

• When the mean value is near 0 and the tendency is near
1, it means that the player started to do something new
in the last week.

• When the mean value is near 1 and tendency is near 0, it
means that the player stopped abruptly to do something.

• When both values are near 1, it means that the player
has a stable behavior and the last week have one of the
highest occurrences.

• When both values are near 0, it means that the player
tried a new activity which was discontinued.

After preprocessing, the Data Mining step may start.

IV. THE CIG 2017 GAME DATA MINING COMPETITION

Blade&Soul is a famous MMORPG in South Korea and
was released in June 2012. The dataset contains 568,992,669
instances (about 100GB) and is divided in three subsets: one
for training and two for test, where the test sets do not have
the labels related to churn (Yes or No) and the lifetime (e.g.,
30 days) (the lifetime granularity defined to the competition
is daily). Each instance represents one of 82 possible players’
actions in-game, such as getting an item, spending money or
winning a PvP battle.

The proposed challenges consist in measuring the loyalty
of players to the game in two perspectives, if the player will
abandon the game and how long he/she will continue to play.
The dataset time-span contemplates a total of 24 weeks, but
the data are not continuous in time. There is a distinct period
for each subset (training and test sets; eight weeks for each).
In December 2016, the game changed its business model from
subscription to free-to-play. It gave to the competition an extra
challenge because the behavior of test set 2 tended to change.
A summary of each subset is described in Table VI. It is
important to highlight that the labels from the test sets were
available only after the end of the competition. During the
competition time, only the training set had values for churn
and lifetime.

In order to rank the competition results, the organizers used
for the churn challenge (classification problem) the F1 score
and for the prediction of the remaining lifetime (regression)
the Root Mean Squared Logarithmic Error (RMSLE) (3).

RMSLE =

√∑n
i=1(log(pi + 1)− log(ai + 1))2

n
. (3)

where n is the total number of observations, pi is the
predicted value and ai is the actual response value (the real
value).

The churn definition was also provided by the organizers.
As in games like Blade&Soul, players do not simply do a
deregistration, they simply stop playing. It is not much precise
to define when a player churned because he/she can just stop
for a period and then came back again. The organizers took it
into account and proposed the following model. The churn
occurs based on three-time slices, the first one with eight
weeks, the second one with three weeks and the last one with
five weeks. The slices are continuous (the end of the first
corresponds to the start of the second and so on). If a player
plays in the first slice and does not play in the third, then
he/she churned. The second slice can be considered a period
of no data. If the player played just one day in the third period,
he/she did not churn.

The 10,000 players presented in the dataset were selected
by the organizers based on the following criteria:

• They are not bots (malicious users) (examples in [18]).
• They are not “light users” (players who are not loyal and

not profitable).
It is interesting to notice that the game producer focuses

only on the “best” players, leaving apart the “not so promis-
ing players”. As bots present a distinct behavior [19], their
exclusion helps in removing some noise from the dataset.

V. EXPERIMENTS

As the Blade&Soul dataset is divided into weeks, we assume
the weekly granularity to the proposed method. Table XI
shows all the attributes presented in the usage data and which
ones were selected based on commitment. Besides the 54
attributes chosen (from the total of 82) we added more 8
(totalizing 62), which are:

• Player max level during the eight weeks: this attribute has
a maximum value of 50. At the beginning of the game,
a new player will evolve this level.

• Player max mastery level during the eight weeks: the
mastery level starts to grow when the player reaches the
maximum player level (50).

• The average session time.
• The number of days played.
• Splitting the “PartyBattleResult(PC)” into “WinPartyBat-

tleResult(PC)” and “LosePartyBattleResult(PC)”.
• Splitting the “PartyBattleEnd(Team)” into “WinPartyBat-

tleEnd(Team)” and “LosePartyBattleEnd(Team)”.
• Splitting the “DuelEnd(PC)” into “WinDuelEnd(PC)” and

“LoseDuelEnd(PC)”.
• Splitting the “DuelEnd(Team)” into “WinDue-

lEnd(Team)” and “LoseDuelEnd(Team)”.
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TABLE VI
SUBSETS SUMMARY

Subset
Number

of
Players

Business Model Start Date End Date # Churn = No # Churn = Yes

Training 4000 Subscription 2016-03-16 2016-05-11 2800 1200
Test 1 3000 Subscription 2016-07-27 2016-09-21 2100 900
Test 2 3000 Free-to-play 2016-12-14 2017-02-28 2100 900

The commitment original measures [7] are contemplated
into the following attributes: average session time, number
of days played, player max level and player max mastery
level. After the preprocessing step, the PAS (preprocessed
attributes set) contains 122 attributes, where an amount of
120 was obtained processing 60 attributes (mean and ten-
dency) and two referencing the players’ levels (inside the
attributes chosen, there is the “Level Up” action, which
describes into a more detailed way the evolution of the players‘
level). This process was applied to the Test datasets too,
the total of 568,992,669 original instances from all datasets
was pre-processed into 10,000 instances (4,000 for training,
3,000 for Test 1 and 3,000 for Test 2; these datasets are
available at https://www.ppgia.pucpr.br/(tilde)paraiso/Projects/
GameAnalytic/DataBases/BladeAndSoul/).

The proposed challenges consist in better predicting the
correct values for churn and lifetime (Test dataset 1 and
Test dataset 2) according to the Training dataset. As we are
following the competition rules, we looked only to the labels
in the Training set, although the Test datasets labels became
available after the competition.

We tested four different algorithms for the churn identi-
fication, which were: C4.5, RepTREE, MLP and SVM. All
with the default configuration. The algorithms tested to the
lifetime prediction were: M5P, RepTREE and MLP. All with
the default configuration. The classification and regression
results are presented in the next section.

VI. RESULTS AND ANALYSIS

Before applying the classification and regression models
over the test sets, we had to opt which one is the chosen
one for each challenge based on the training results. Although
we identified a statistical difference between the classifiers’
predictions (comparing each instance prediction; test t with
p < 0.05), as the classification challenge is evaluated by the
F1-score, we chose the algorithm with the best F1-score in the
training, which was the C4.5. Table VII shows all algorithms
results for the classification (10-fold cross-validation), also
including the test scores.

TABLE VII
CLASSIFICATION: TRAINING AND TEST RESULTS

Training Test (F1-score)
Algorithm Accuracy F1-score Test 1 Test 2 Test mean
C4.5 75.9 0.757 0.712 0.738 0.725
RepTREE 75.675 0.751 0.721 0.730 0.7255
MLP 71.95 0.715 0.648 0.655 0.6515
SVM 76.925 0.753 0.721 0.726 0.7235

Comparing the C4.5 result with the competition result we
get the rank presented in Table VIII (only the first five teams
are shown).

TABLE VIII
CHURN FINAL RESULT COMPARISON

Rank Team Test1 score Test2 score Total score
1 This approach 0.712 0.738 0.725
2 YD (Japan) 0.61008 0.63326 0.62145
3 UTU (Finland) 0.60326 0.60370 0.60348
4 TripleS (South Korea) 0.57968 0.62459 0.60130
5 TheCowKing (South Korea) 0.59370 0.60718 0.60036

The C4.5 generated tree had a max deep of six levels (21
nodes) and its attributes near the root were the mean of the
number of days played and the player’s max mastery level.
We compared the performance of this approach for Test 1 and
Test 2 with the other approaches presented in Table VIII using
a t test with p < 0.05 and statistical differences were found.

The same was done for the regression problem, but here
the evaluation is based on the RMSLE (Equation 3). Table IX
shows the training (10-fold cross-validation) and test results.
It is important to report that for M5P and MLP, it was not
possible to compute their RMSLE values for training and
test datasets. As they predicted negative values, an error is
generated in Equation 3, because there are no values for a
negative log. We opt to not apply a normalization in this case
because we could not find a reason to use a prediction of
a remaining lifetime with negative values (it looks wrong).
We manually applied the generated regression equations for
M5P and MLP and confirmed that in some cases, negative
values are generated. The algorithm chosen for the regression
problem was the RepTREE.

TABLE IX
REGRESSION: TRAINING AND TEST RESULTS

Training Test (RMSLE)
Algorithm RMSLE Test 1 Test 2 Test mean
M5P Computation error - - -
RepTREE 0.4426 0.4722 0.4413 0.4568
MLP Computation error - - -

The final rank for the lifetime prediction is presented in
Table X.

The RepTREE generated tree had a max deep of seven
levels (47 nodes) and its attributes near the root were the
same as for the classification problem. We compared the
performance of our approach for Test 1 and Test 2 with the
other approaches presented in Table X using a t test with

218



TABLE X
LIFETIME FINAL RESULT COMPARISON

Rank Team Test1 score Test2 score Total score
1 This approach 0.4722 0.4413 0.4568
2 YD (Japan) 0.883248 0.616499 0.726151
3 IISSLABSKKU (South Korea) 1.034321 0.679214 0.819972
4 UTU (Finland) 0.927712 0.898471 0.912857
5 TripleS (South Korea) 0.958308 0.891106 0.923486
6 DTND (South Korea) 1.032688 0.930417 0.978888

p < 0.05 and statistical differences were found (as occurred
to the classification).

VII. CONCLUSION AND FUTURE WORKS

In this paper, we present a commitment based approach to
churn and remaining players lifetime prediction. We applied
the approach to the CIG 2017 Game Data Mining Competition
data. It is interesting to notice that even if the game changed
its business model (Table VI), our approach had got similar
results to both Test datasets, whereas the other teams presented
a certain variance between them (especially in the lifetime
prediction; Table X). It means that the commitment approach
looks to have a certain generic approach over different business
models, showing that similar players’ behavior can exist
between them. The fact that this paper approach got the first
place in the two challenges foments that commitment is an
option to gauge players’ engagement over time. Experiments
with new data may confirm, or not, these first conclusions.

For each attribute accepted in Table XI, the preprocessing
step produced two new attributes, the mean and the tendency.
Their combination was valid, because the generated decision
trees (C4.5 and RepTREE) used both attributes into the
decision nodes, emphasizing their interpretations contained in
the Commitment Proposed Approach section (especially in
the running example observations). It is also interesting to
notice that the attributes near the root for both models were
very similar, focusing on the time spent playing and the score
obtained (player’s level), giving support to the commitment
definition of [7]. The generated new attributes were used in
deeper levels of the decision trees, acting as specifiers inside
the time spent playing and obtained score universe. Although
not all new attributes were used by the classifiers, they may
be used to deal with other prediction challenges.

We also note that all the classification and regression
algorithms tested (except the ones with computation errors)
outperformed the competition results. It foments the fact that
the preprocessing step is the key aspect of this work. The
generation of attributes regarding the tendency of each action
gave an extra information to the models allowing a better
performance.

As future works, we intend to apply this approach to other
games and compare the results (considering other game genres
too). We also want to apply an automatic feature selection
algorithm, and check if the attributes chosen are the same
as selected in this paper. It can give more robustness to this
approach.
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TABLE XI
SUMMARY OF BLADE&SOUL ATTRIBUTES

Log id Log name Retained Motivation
1003 EnterWorld Already explored in the session time and played days attributes
1004 LeaveWorld Already explored in the session time and played days attributes
1005 EnterZone Trivial action not relevant to Commitment
1006 LeaveZone Trivial action not relevant to Commitment
1010 Teleport Trivial action not relevant to Commitment
1012 DeletePC As a player can churn without deleting his/her character, we discarded this attribute
1013 PcLevelUp X Related to Commitment
1016 GetExperience Present in other attributes, such as the PcLevelUp
1017 GetMoney X Related to Commitment
1018 SpendMoney X Related to Commitment
1022 GetItem X Related to Commitment
1023 LoseItem X Related to Commitment
1101 InviteParty X Related to Commitment
1102 JoinParty X Related to Commitment
1103 RefuseParty X Related to Commitment
1104 DismissParty X Related to Commitment
1105 KickPartyMember X Related to Commitment
1201 Exhaustion X Related to Commitment
1202 Die X Related to Commitment
1203 Resurrect If a player dies, he/she will resurrect. So, we disconsidered this attribute
1208 KillNPC X Related to Commitment
1209 KillPC X Related to Commitment
1404 DuelEnd(PC) X Related to Commitment
1406 DuelEnd(Team) X Related to Commitment
1407 MoveToArena Trivial action and not relevant to Commitment
1422 PartyBattleEnd(Team) X Related to Commitment
1424 PartyBattleResult(PC) X Related to Commitment
1425 OccupyBase This kind of activity is not usual, so we discarded
2001 LootItem X Related to Commitment
2002 UseItem X Related to Commitment
2004 DestroyItem X Related to Commitment
2006 getLootMoney X Related to Commitment
2011 PartyAuctionStart This kind of activity is not usual, so we discarded
2013 BidPartyAuction This kind of activity is not usual, so we discarded
2014 PartyAuctionSuccess This kind of activity is not usual, so we discarded
2016 DistributeAuctionMoney This kind of activity is not usual, so we discarded
2102 UnEquipItem Trivial action not relevant to Commitment
2103 SaveEquipInfo Trivial action not relevant to Commitment
2105 RevealItem X Related to Commitment
2106 ConsumeGemByReveal This kind of activity is not usual, so we discarded
2109 GetItemByDecomposition X Related to Commitment
2112 ExpandWarehouse This kind of activity is not usual, so we discarded
2113 RepairItem X Related to Commitment
2121 GrowUpItem X Related to Commitment
2126 ResultOfTransform Trivial action not relevant to Commitment
2127 ExceedItemLimit Trivial action not relevant to Commitment
2141 ChangeItemLook X It is related to the commitment idea
2145 FeedingResult Trivial action not relevant to Commitment
2201 TradeGiveItem X Related to Commitment
2202 TradeGetItem X Related to Commitment
2204 SellItem X Related to Commitment
2205 BuyMyItem X Related to Commitment
2206 TradeGiveMoney X Related to Commitment
2207 TradeGetMoney X Related to Commitment
2209 GetItemFromNPC X Related to Commitment
2221 DepositItem X Related to Commitment
2222 RetriveItem X Related to Commitment
2301 PutMainAuction This kind of activity is not usual, so we discarded
2307 BuyItemNowMainAuction This kind of activity is not usual, so we discarded
2405 UseGatheringItem Trivial action not relevant to Commitment
2407 GetGatheringItem Trivial action not relevant to Commitment
2503 ExpireEventItem Trivial action not relevant to Commitment
4001 AcquireSkill X Related to Commitment
4002 SkillLevelUp X Related to Commitment
4006 LearnTraining X Related to Commitment
5001 AcquireQuest X Related to Commitment
5004 CompleteQuest X Related to Commitment
5005 DisposeQuest X Related to Commitment
5006 GetQuestItem Trivial action not relevant to Commitment
5008 GetQuestSkill Trivial action not relevant to Commitment
5010 GetChallengeTodayItem X Related to Commitment
5011 CompleteChallengeToday X Related to Commitment
5014 GetChallengeWeekItem X Related to Commitment
5015 CompleteChallengeWeek X Related to Commitment
6001 CreateGuild X Related to Commitment
6002 DestoryGuild X Related to Commitment
6003 GuildLevelUp X Related to Commitment
6004 InviteGuild X Related to Commitment
6005 JoinGuild X Related to Commitment
6008 RefuseGuildInvite X Related to Commitment
6009 DissmissGuild X Related to Commitment
6010 KickGuildMember X Related to Commitment
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Abstract—This paper uses neuroevolution of augmenting
topologies to evolve control tactics for groups of units in real-
time strategy games. In such games, players build economies
to generate armies composed of multiple types of units with
different attack and movement characteristics to combat each
other. This paper evolves neural networks to control movement
and attack commands, also called micro, for a group of ranged
units skirmishing with a group of melee units. Our results
show that neuroevolution of augmenting topologies can effectively
generate neural networks capable of good micro for our ranged
units against a group of hand-coded melee units. The evolved
neural networks lead to kiting behavior for the ranged units
which is a common tactic used by professional players in ranged
versus melee skirmishes in popular real-time strategy games like
Starcraft. The evolved neural networks also generalized well to
other starting positions and numbers of units. We believe these
results indicate the potential of neuroevolution for generating
effective micro in real-time strategy games.

Index Terms—neural networks, evolution, NEAT, RTS micro

I. INTRODUCTION

Real Time Strategy (RTS) games are a genre of multi-player
video games where players take actions concurrently and the
underlying game world dynamically changes over time. The
overarching objective of the the game is to establish a posi-
tion capable of defending against and destroying opponents.
Actions in the game can be largely divided into two modes:
”macro” and ”micro”. Macro management relates to long term
strategic decisions and is concerned with resource gathering,
spending those resources on research, deciding on the type
and number of units to build, and in building those units.
Micro management is concerned with quick and short term
tactical control of units usually during a skirmish between
a group of friendly units against an opponents group. RTS
game environments are a partially observable and imperfect
information environment due to a restricted view through the
camera on a part of the whole map and a ”fog of war” which
hides information form parts that have not been explored.
Players have to control numbers of units ranging from tens
to hundreds while simultaneously moving the camera around,
deciding which units or unit factories to build, selecting units,
scouting, and exploring. The state space of typical RTS games
like Starcraft is estimated to be more than 1050

36000

using a
conservative branching factor of 1050 for each frame in a 25
minute game [1]. Consequently, RTS games provide a chal-
lenging platform for testing machine learning approaches [2].

This paper focuses on generating artificial agents capable
of good micro control in RTS games. Micro requires quick
decision making and fast successive actions to control both

movement and attack commands for units in a group. There
are multiple types of units, each with its own advantages
and disadvantages. Each unit has unique, well-defined char-
acteristics regarding its capabilities, like weaponry, range,
speed, maneuverability and others. Good micro can be a
deciding factor in a skirmish between two groups with similar
characteristics and the player has to consider the attributes of
both friendly and enemy units to choose an effective tactic
for the particular scenario. The complexity of the different
ways in which any unit group can be controlled is as a result
challenging, particularly since directives have to be provided
in quick reactive time-frames.

RTS games have been used as an environment for AI
research and various approaches towards automation of dif-
ferent aspects of RTS game playing have been explored [1].
Approaches like reinforcement learning, scripting, and search,
among others, have been used with the end goal of creating a
fully automated, human-comparable RTS player [3]. Previous
work has explored using Genetic Algorithms (GA) to search
for an optimal combination of parameters, which are then used
in Potential Fields (PF) and Influence Maps (IM) equations
to control the tactical actions of skirmishing units [4]. Our
research builds on this previous work in RTS game AI, but
takes a different approach. Rather then having a set of param-
eterized control algorithms, or potential fields, for controlling
movement, we explore the feasibility of evolving a neural
network to perform good micro. In particular, we explore
using Neuro-Evolution of Augmented Topologies (NEAT) [5]
to evolve neural networks to effectively and autonomously
control units for skirmishes in RTS games.

NEAT evolves both the structure and connection weights of
a neural network by utilizing genetic algorithm principles [6]
and applying them to a population whose chromosomes repre-
sent different instances of networks being explored. Thus, the
NEAT approach encodes both the structure and weights of a
neural network that tries solve a problem. NEAT incorporates
historical markings, speciation and starts complexification
from a minimal network. There is good empirical evidence
that NEAT can evolve robust solutions for non-trivial prob-
lems [7].

We feed the evolving network with the relative positions
of all units in the arena along with the unit’s internal state
as inputs. There are three outputs. Two specify a relative 2D
position (δx, δy) to move towards and third represents a binary
value that determines if we move or attack.

Preliminary results, on an underlying RTS-physics imple-
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menting simulation, show that NEAT can evolve networks for
micro control of ranged units against a group of melee units.
The evolved network generated kiting behaviour for ranged
units (copied from vultures in Starcraft) which allowed five
vultures to eliminate twenty-five zealots (a strong melee unit)
without suffering any damage. We evolved our network on ten
different starting configurations differing in the initial positions
and numbers of zealots, and tested the evolved network on
configurations with varying numbers of zealots from one to
thirty. Our results indicate that evolved networks generalize
well to different starting configuration and varying numbers
of vultures. We then moved to the recently released Starcraft
II (SCII) game API [8] and were able to show that NEAT can
evolve good micro on a simple, flat Starcraft II map with no
obstacles. Although the networks evolved in SCII are not as
effective as those that evolve in our simulation, when pitting
5 hellions against 25 zealots, hellions learn to kite and can
on average destroy close to a majority of zealots. 1 As before,
the NEAT networks generalized to different numbers of zealots
and to different starting locations. We believe our method of
network representation can be extended to incorporate new
inputs to be applicable to more complex micro scenarios. In
addition, we believe that we can significantly improve NEAT
evolved micro in SCII with more computational resources.

The remainder of this paper is organized as follows. Sec-
tion II describes previous approaches related to our current
work, Section III describes the neural network representation,
evolution configurations and NEAT setup. In Section IV, we
describe our generalization results and lastly in Section V we
draw our conclusions and explain possible future approaches.

II. RELATED WORK

Significant work has been done over the years in the field of
designing effective RTS AI players using different techniques
[1]. Buckland et al. described a rule based approach in his
book [9] and Rabin and Steve [10] explained scripted agents
which is a general approach used by bots that play in starcraft
AI ladder matches. Weber and Mateas [11] explored using
data mining on gameplay logs to predict the strategy of an
opponent. A tree based search approach was used by Churchill,
Saffidine and Buro who utilized transition tables to generate
trees of actions and performed alpha beta pruning to create
agents for 8 vs 8 unit skirmish [12]. Others have also tried
reinforcement Learning: Wender and Watson [13] used Q
learning and Sarsa to develop a fight or retreat agent. Shantia,
Begue and Wiering [14] applied reinforcement learning on
neural networks by using neural-fitted and online versions of
the Sarsa Algorithm where they implemented a state space
representation similar to [13]. Vinyals et al. [15] applied
deep reinforcement learning in a Starcraft II environment to
train neural networks using gameplay data from expert players.
Their representation used raw image features corresponding to
the game display called feature maps and they provide baseline

1Like vultures in Starcraft, hellions are also relatively fragile, longer ranged,
and fast Starcraft II units.

results for convolutional, long-term short-term memory and
random policy based agents.

Potential Fields (PFs), which has been widely used for robot
navigation and obstacle avoidance [21][22] [16] have also been
used for micro. Hagelback and Johansson [17] presented a
multi-agent potential field based bot architecture for the RTS
game ORTS [18] which incorporated PFs into their unit
AI. More recent work has focused on combining PFs with
Influence Maps (IM) to represent unit and terrain information.
In this context, an influence map is a grid superimposed on
the virtual world where each cell is assigned a value by an IM
function, which is used by an AI to determine desired actions
[19] [4]. Coevolution was used by Avery and Louis in [20]
to develop micro behaviours by coevolving influence maps
for team tactics and in [21] where they cooevolved influence
map trees(IMT) and show that evolved IMTs displayed similar
behaviours to hand coded strategies.

NEAT has been applied to dynamic control tasks like double
pole balancing without velocity information [5] where it could
evolve a robust control policy. It has also been applied to
evolving walking gaits for virtual creatures [22] and steering
control for driving agents [23] [24]. NEAT has also been
applied to evolve video game playing agents for games like
Ms. Pac-Man [25] and Tetris [26] and has been shown to be
applicable to general Atari gameplaying [7]. Board games like
2048 [27] and Go [28] have also been shown to be within
reach.

NEAT and its realtime variant rtNEAT have been used to
tackle different aspects of RTS games. Olesen et al. [29]
used NEAT and rtNEAT to control the macro aspects of the
game to match the difficulty of the opponent. Gabriel et al.
[30] used rtNEAT to evolve a multi-agent system for Brood
war agents based on ontological templates, where they show
that their hierarchical method could be used to evolve good
micromanagement tactics. NEAT for RTS micro control was
applied in [31] where the authors approached the problem
by having a neural network control a combat unit’s fight or
flee decision, based on various entity properties like weapon
cooldown, remaining health, weapon range, enemy weapon
range, number of allies in range and number of enemies in
range. They used NEAT and rtNEAT and had the fight or flee
logic hard-coded for the network to activate; which differs
from the approach in this paper where we are directly trying
to control unit movement based on the position of friendly
and enemy units around the entity being controlled, without
further structure.

III. METHODOLOGY

There are different aspects of micro game-play that can be
controlled for an entity, such as movement, whether to attack,
when to flee, and other such unit specific actions. Controlling
all aspects of a micro engagement is therefore a complex
endeavor. In this research, we focus on entity movement and
firing control. Movement can be further classified into long
and short range, based on the timescale within which the
action must execute. Longer routes pertain to long distance
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movement of units, say from a player’s base to an enemy’s
base, while short duration movement, like kiting, are finer
tactical movements done in shorter periods of time. Kiting is
a strategy that is used by speedy ranged units against slower
melee units, where the ranged units fire, run out of range,
turn back, fire, and run back out of range again and again
avoiding damage to themselves while damaging the enemy.
We are trying to evolve networks which can perform similar
tactics for ranged units against melee units.

We next describe the NEAT evolutionary algorithm, the
neural network representation for NEAT, and the experimental
setup used for evolution.

A. Neuro-Evolution of Augmenting Topologies

NEAT is a robust algorithm for evolving neural networks
based on genetic algorithm principles. NEAT attributes it’s
robustness to three aspects, specifically that it starts complex-
ifing from minimal structure, that it leverages speciation and
its use of historical markings in the genome for crossover and
speciation [5]. NEAT allows for continuous complexification
by allowing mating together with mutation to fully modify the
resulting network and a number of different kinds of mutation
are used [5].

NEAT evolves a neural network from inputs and outputs
specified by the problem domain. We specify the inputs and
outputs in more detail below.

Our neural network inputs can be divided into two classes
according to the type of information they represent. The first
class deals with spatial information and describes the relative
position of all entities on the map. In order to be able to
represent units consistently and uniformly, regardless of the
number, we followed an approach whereby we divide the
visible world into regions relative to the current position of the
unit being controlled. Figure 1 shows the spatial information
being fed into the neural network. In our representation, the

Fig. 1. Input and Output Representation

world around the entity is divided into 4 quadrants with the

entity at its center. The four quadrants are further divided
into eight regions separated by the attack range of the unit
as shown by the labels R1 to R8 in Figure 1. Each region
then corresponds to four inputs in the network:

1) the number of enemy units
2) average distance of enemy units
3) number of friendly units and
4) average distance of friendly units in the region
Next, we have four inputs indicating map boundaries. These

inputs provide distance from the entity to north, south, east and
west boundaries correspondingly. The second class of inputs,
feeds the entity with some of the entity’s own internal state.
The internal features that we have considered are

1) the current health
2) weapon cool-down
3) current fire or move state and
4) a recurrent input which is the previous attack/move

output from the network
Thus, in total the neural network that controls the movement

of friendly units in our environment has 40 inputs, 16 that are
used to represent the position of all friendly units, 16 that
are used to represent the position of enemy units, 4 boundary
sensors and 4 inputs for the internal state as shown in table
I. The representation is constructed such that it can capture
essential information from different map configurations and
number of entities, without having to vary the number of inputs
in the network. Once computed, all inputs are scaled between
0 to 1 by representing each value as percentage of a maximum
possible value for that input.

TABLE I
NEURAL NETWORK INPUTS

id Type

1-8 enemy avg position per region
9-16 friendly avg position per region
17-24 enemy units per region
25-32 friendly units per region
33-36 boundary sensors for 4 directions

37 self cooldown
38 self hitpoint
39 current attack/move state
40 previous attack/move state

1) Output representation: The output is represented by
two scalars representing a desired δx and δy coordinate
displacement, and one boolean for whether a unit should fire
or move at that instant. δx and δy displacement output are
scalar values from 0 to 1 from which we subtract 0.5 and
then scale them to go the coordinate position relative to the
unit’s current position. This allows the output to represent any
coordinate around the entity in the region corresponding to
the scaling factor. The outputs are then fed into the movement
mechanism of the simulation or SCII in order to generate
movement. The third output is a move or attack command
which is a Boolean signal. If the output is greater than 0.5,
the entity has to focus on attack and if the output is lower,
the entity stops attacking and begins moving to the position
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signalled by δx and δy displacement output. To attack, the
entity focuses on the nearest opponent in range and fires its
main weapon if the weapon is not in cooldown.

B. Experimental setup

Although our physics-simulation used for preliminary re-
sults and for experimentation to explore input and output
representations runs fast, the simulated physics and entity
properties cannot be easily made identical to SCII. This means
that micro evolved in our simulation may not transfer well to
SCII. In addition, there are differences in the properties of
vultures in our simulation, vultures in Starcraft Brood Wars,
and hellions in SCII. However, our simulation runs much faster
and we can experimentally try multiple representations, input
configurations, and NEAT parameters far more quickly than
when using the SCII API. We can then start long evolutionary
runs within the SCII environment with more confidence.

For our experiments, we choose the zealot as a repre-
sentative melee unit and either the vulture or hellion as a
representative ranged unit. More specifically, for our simu-
lation environment, we copied zealot and vulture properties
from the Starcraft BW API [32]. When running in SCII,
zealots and hellions use SCII properties. Vultures/hellions
and zealots deal comparable damage in each attack but have
different attack range and movement speeds. Table II shows
the properties of the units considered in this paper. Hellions
and vultures, when micro’d well can be strong against zealots
because of their greater speed and attack range, which makes
it possible for a small number of vultures/hellions to kite a
bigger group of zealots to death. We expect our approach to
evolve good tactical control that can exploit this strength of
vultures/hellions against zealots.

TABLE II
PROPERTIES OF VULTURES, ZEALOTS AND HELLIONS

Property Vulture Hellion Zealot

Hit-points 80 90 100
Damage 20 13 16
Attack Range 5 5 0.1
Speed 4.96 5.95 3.15
Cool-down 1.26 1.78 0.857

NEAT evolves the network across generations based on the
fitness of the network. To evaluate the fitness of the neural
network, we used two different environments: the Starcraft II
game and our own simulation of the Starcraft environment
which is tailored to capture the micro combat aspects of
Starcraft and can be run without graphics for significant
speedup.

Our experimental setup had three main components, the
NEAT evolution module, the Simulation adapter and the game
itself, which could either be Starcraft II or our own simulation
of the game. The evolution module is concerned with running
the evolution by assimilating the fitness results and generating
networks. We used the SharpNeat implementation of NEAT by
Colin Green [33] for the evolution module and adapted it for
our purpose. A simulation adapter is the mediator between the

evolutionary algorithm and the game which we implemented
using sockets to be able to run the game simulations in parallel.
It gets the configuration from the NEAT module and sets up
the game, it also gets a neural network configuration from
the evolution module and feeds inputs with the current game
state into the network and uses the output from the network to
feed the game and move entities. The adapter returns the final
fitness after running the simulation which ends when one of
the players has no units left or after a set number of frames.
The game component can be either Starcraft or our combat
simulation. The architecture diagram of the components is
shown in figure 2.

Fig. 2. Architecture Diagram

1) Map configurations: We choose five different unit spawn
configurations that determine entity starting positions. These
are diagonal, side by side, surround, surrounded and random.
In diagonal, opposing sides spawn in groups diagonally on
a square map. Similarly, in the side by side configuration,
entities appear along the same y-coordinate separated by a
fixed distance of 10% of the map size. In surrounded, vultures
or hellions appear at the center in a group surrounded by
number of zealots and the opposite is true for surround -
hellions or vultures surround zealots. We also experimented
on random spawning locations for all units of both players.
We kept the number of vultures or hellions constant at five
(5) but randomly varied the number for zealots for different
configurations. In the rest of the paper, we mean vultures or
hellions when we use the term ranged units.

2) Fitness Function: We used a fitness function that con-
siders both the damage received and the damage dealt by
the our evolving ranged units (vultures and hellions). Over
evolutionary time, fitness gradually grows as the ranged units
get better at damaging zealots and at evading attacks. At the
end of each game run, we sum the remaining hitpoints for
both zealots (Hz) and ranged units (Hh) and subtract the
remaining hitpoints of zealots from the remaining hitpoints of
the ranged units. We add the maximum hitpoints for all zealot
units so that the fitness function is always positive.

For number of starting zealots Nz, remaining zealots Rz,
remaining hellions Rh, and maximum hitpoint of zealot
Hzmax, fitness F is calculated as:

F =
Nz∑

n=1

Hzmaxn +
Rh∑

n=1

Hhn −
Rz∑

n=1

Hzn
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We should note that as the hit points of both zealots and
ranged units are similar, with increasing numbers of zealots
and low numbers of ranged units, this fitness function leans
towards giving more weight to damage done than damage
received. This could be better balanced in various ways. For
example, by multiplying the sum of hitpoints of hellions by a
balancing factor. Nevertheless, we found that the current con-
figuration performed well during our experimentation phase.

IV. RESULTS AND DISCUSSION

We experimented with two different RTS game environ-
ments. The Starcraft II game, and our simulation of the
RTS environment particularly developed for fast simulation of
skirmishes. Below, we describe our experiments and analyze
the results for each.

A. Simulation Results

TABLE III
HYPER-PARAMETERS FOR NEAT EVOLUTION

Property Simulation Starcraft II

Population 50 50
Generations 100 100
Species 5 5
Initial Conn Probability 0.2 0.1
Elitism Proportion 0.2 0.2
Selection Proportion 0.2 0.2
Asexual Offspring Proportion 0.5 0.8
Sexual Offspring Proportion 0.5 0.2
Inter-species Mating 0.01 0.01
Connection Weight Range 5 7
Probability Weight Mutation 0.95 0.95
Probability Add Node 0.01 0.02
Probability Add Connection 0.025 0.04
Probability Delete Connection 0.025 0.025

In our first set of experiments using our simulation environ-
ment, we evolved vultures against a larger group of zealots.
Zealots in our simulation, use a hand coded AI which controls
each unit as follows: pursue the nearest vulture and attack
when it is in range. Both zealots and vultures were given
complete map vision - there was no fog of war and thus they
did not have to explore the map and could start pursuing their
enemy right away. Note that this is a significant difference
from SCII.

We ran NEAT on a population size of 50 individuals for 100
generations. The following results are average of 10 different
runs of a complete evolutionary epoch, started with different
random seeds. Various hyper-parameters that we used for the
evolution are noted in table III. Each genome was evaluated
based on a complete run of a test configuration, which con-
sisted of 10 different spawning locations with different number
of zealots and vultures. We sum the fitness for each of the 10
different training configurations to get the final fitness, which
is then forwarded to the NEAT module. We run each scenario
until one of the player loses all his units or for a maximum
number of frames. We had the option to run our simulation
without the graphics rendering which significantly decreased
running time compared to SCII.

Initially, we tried to evolve agents only based on a single test
configuration of the map, but results showed that they did not
generalize well to new scenarios. Using the sum of fitnesses
from different configurations led to good generalization across
different map configurations and different numbers of units.
The 10 different test cases are a sample from the the possible
configuration space of different number of zealots and 5
different starting configuration. The training scenarios are
listed below and are depicted in Figure 3.

Fig. 3. Map configurations for friendly (green) and enemy (red) positions
used for training

1) Diagonal, 25 zealots
2) Reversed Diagonal, 20 zealots
3) Side by Side, 10 zealots
4) Reversed Side by Side, 15 zealots
5) Surround, 20 zealots
6) Surround, 10 zealots
7) Surrounded, 20 zealots
8) Surrounded, 25 zealots
9) Random, 15 zealots

10) Random, 25 zealots
In our simulation environment, the average number of

generations over ten runs, needed to find the best individual
was 80 and the average best fitness was 96% of the maximum
fitness possible. We found that the the evolved vultures learned
kiting or to hit and run, against the group of zealots. Kiting is
an effective tactic for speedy ranged units against slow melee
units as explained earlier.

After evolving neural networks to control vultures with
kiting ability against groups of zealots, we tested for the
generalizability of our result against scenarios that the Vultures
did not encounter during the training phase. For each possible
starting configuration, we varied the number of starting zealots
from 1 to 30 while the number of Vultures was always constant
at 5. Here, we note that Vultures were only evolved against
the group of 10, 15, 20 and 25 zealots thus, their performance
against different number of zealots shows the robustness of
the evolved network.
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Fig. 4. Remaining Vultures corresponding to increasing zealot numbers

Results of our generalizability tests are shown in Figures 4
and 5. The vertical axis represents the number of units
remaining at the end of each game run and the horizontal
axis represents the number of zealots against which the five
vultures skirmish. We present the results for 6 different starting
positions, each starting position averaged over ten runs. Fig-
ure 4 shows the number of vultures remaining when times runs
out while Figure 5 shows the number of zealots remaining. As
shown in Figure 4, we see that vultures’ performance smoothly
decreases as the number of zealots increases. The number
of vultures never goes below two, a good indication of the
robustness of evolved networks.

Generalization with respect to damage done is shown in
figure 5 where we note that the zealots are completely de-
stroyed by vultures till the number of starting zealots rises
above 13. The number of surviving zealots then gradually
increases across all our scenarios. The number of remaining
zealots never rises above six another good indicator of micro
quality and robustness.

Fig. 5. Remaining zealots corresponding to increasing zealot numbers

We also found that we must provide a number of different
training configurations in order to evolve robustness. Evolving

with only one configuration, results in much less robust
networks whose performance might jump form high to low
or low to high when changing the number of zealots even by
as little as one zealot. In one case removing a single zealot
significantly decreased vulture performance. This variability
is also shown by other neural network based approaches for
Starcraft AI [31].

B. Starcraft II Results

In Starcraft II, we evolved hellions which are a ranged
units that can do splash damage against zealots which are
strong melee units. We control the movement and attack
commands for the hellions after translating the outputs from
NEAT evolved neural networks to the commands for Starcraft
II using the API. We ran the game at the top speed of 16. As
Starcraft II runs relatively slow even at top speed, we ran on
15 machines for 24 hours.

For StarcraftII experiments, we ran on a population size of
50 for 100 generations and the results averaged over 10 times
for the final results. We use the same NEAT parameters as for
our simulation and given in table III. Unlike our simulation,
we used the sum of fitness for only three different configura-
tions to get the individual fitness. The three configurations and
corresponding number of zealots are listed below; the number
of hellions is always five.

1) Diagonal, 25 zealots
2) Random, 20 zealots
3) Side by Side, 15 zealots
Over 10 runs, the average number of generations needed to

find the best individual was 85 and the average best fitness was
88% of the maximum fitness possible. The evolved network
also displayed kiting behaviour against the zealots - similar to
our findings from the simulation approach.

We tested for the generalizability of the evolved networks
in similar fashion to the tests for then simulation environment.
That is, we tested the best evolved network against new
configurations and with varying number of zealots. Here, we
note that hellions only evolved against groups of 15, 20 and
25 zealots, and on only three configurations. Generalization
results are shown in Figure 6 and 7. The vertical axis repre-
sents the number of units remaining at the end of each game
run and the horizontal axis represents the number of zealots
remaining when skirmishing with five hellions. We present
the results for six different starting positions with the number
of zealots varying from 1 to 30. We ran the simulation for
five runs on the same starting configuration to get the average
number of remaining units. We expect to do more runs as
computational resources allow.

As shown in figure 6, we see a downward trend for
then number of remaining hellions starting from 5. However,
unlike in our simulation, the trends are different for different
starting configurations. Diagonal and side by side show good
performance across different numbers of zealots while random
and surrounded perform comparatively lower. The gradual
decrease is expected as the hellions get overwhelmed by the
increasing number of zealots. Still, we can see from the graph
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Fig. 6. Remaining hellions corresponding to increasing zealot numbers

that hellions are generalizing well with respect to damage
received against different number of zealots and different
starting positions.

Generalization with respect to damage done is shown in
figure 7 where we again note that the hellions perform well
for diagonal and side by side scenarios while performing
comparatively lower in random and surrounded scenarios. The
number of remaining zealots for each scenario only gradually
increases on these previously unseen scenarios and indicates
generalizability of our evolved result.

Fig. 7. Remaining zealots corresponding to increasing zealot numbers

C. Comparison of Results

We have shown that the NEAT generated neural networks
from from Starcraft II and our simulation were able to
generalize with respect to different starting positions and
different numbers of zealots. Ranged units performed well
against smaller numbers of zealots and performance decreased
with increase in number of zealots for both environments.
The gradual progression of values for different series without
major deviance indicates that the evolved network is robust
against changes in both starting position and number of
zealots. Videos at https://www.cse.unr.edu/ aavaas/Micro.html

serve well to indicate the quality and robustness of the evolved
micro.

NEAT was able to evolve kiting behaviour in both our
simulation and in the Starcraft II environments but there are
some differences between the results from two environments.
The evolved network in Starcraft II seemed to perform com-
paratively worse than our simulation. We believe the fewer
training configurations, the increased complexity of SCII, and
differences in the AI we evolved against, account for these
differences.

V. CONCLUSION AND FUTURE WORK

Our research focused on using NEAT to evolve neural
networks that could provide robust control of a squad in an
RTS game skirmish. We showed that our representation of
the game state provided to NEAT sufficed to evolve high
performing micro, while training on a variety of scenarios
leads to more robust and high performing micro. The evolved
networks generalized well to different numbers of opposing
units and different starting configurations.

We used our own simulation environment for initial experi-
mentation and exploration. Because our simulation runs much
faster than Starcraft II, we were able to explore multiple input
and output representations and different evolutionary hyper-
parameters to hone in good representations and parameters.
We then used this experience to try reproduce our results in
the popular RTS game. Starcraft II. Here, we ranged hellions
evolved kiting behaviour against melee zealots - like in our
simulation environment and meeting our expectations. We
believe these results show that NEAT holds promise as a
potential approach to evolving RTS game micro.

With a general neural network representation and with
NEAT, we think that our approach can be effectively extended
to approach more complex scenarios and group configura-
tions. We are working on probabilistic activation model for
outputs: we can consider the output of the neural network
as the probability of it being active rather than comparing it
against the threshold. Using recurrent neural networks would
enable incorporating sequential strategies spanning multiple
time frames. In addition, we will be adding more game state
information about opponents, considering a multi-objective
formulation of the fitness function, and obtaining and using
much larger computational resources.
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Abstract—Real-Time Strategy (RTS) games are complex do-
mains with huge state and action spaces. In such games, humans
usually pursue long-term plans, which take long sequences of
actions to achieve. In this work, we implement this behavior by
reasoning over options, which are temporally-extended actions in
Markov Decision Processes. Our options are defined with the aid
of a state aggregation scheme and a portfolio of game-playing
algorithms. Experimentally, we show that our approach leverages
the capabilities of traditional reinforcement-learning techniques,
which become competitive against state-of-the-art search methods
in µRTS.

Index Terms—real-time strategy games, options, reinforcement
learning

I. INTRODUCTION

To succeed in a real-time strategy (RTS) game, a player
must handle resource collection, construction of buildings and
battles against enemies. Such scenarios are challenging for
Artificial Intelligence because of their dynamic nature, their
huge state-action spaces and the need for both short- and long-
term decision-making.

Part of the research effort in real-time strategy games
focuses on search approaches that either operate in abstract
representations of a game, as in [1], [2] or are tested in combat
scenarios, as in [3]–[5]. Some approaches deal with RTS
games as a whole, as in [6]–[8]. However, search approaches
require a forward model of the world. Supervised learning
approaches, as [9], dismiss the forward model, but require la-
beled data. Reinforcement learning [10] does not need labeled
data, but so far it has been restricted to combats, as in [11]–
[13], which are mainly reflex-based, not requiring long-term
decisions. In other words, reinforcement learning approaches
are unable to handle all aspects of real-time strategy games
successfully, due to their complexity.

This paper contributes with a methodology that allows the
application of classic reinforcement learning approaches to
problems with large state and action spaces, including real-
time strategy games, in all its aspects. We require (1) a state
abstraction function and (2) a portfolio of domain-specific
algorithms, scripts or heuristics, that receive the current envi-
ronment state and output a valid action. Those are combined to

Authors are thankful to CAPES, CNPq and FAPEMIG for support in this
research.

allow the use of options [14], or temporally-extended actions
in Markov Decision Processes. We create an option for every
abstract state and algorithm in the portfolio. Our learning agent
observes the abstract state and selects an option, which acts
according to its associated algorithm. The option terminates
upon reaching a new abstract state. The learning agent then
observes the new state, the received reward, and selects a new
option, just as in the traditional tabular reinforcement learning
framework, but now applied to an abstract representation.

We instantiate the proposed approach in µRTS [15], using
simple game-playing algorithms to define the options’ policies.
Our approach enables classic Q-learning [16] to play the
game as a whole, not only combats. It achieves competitive
performance against some state-of-the-art search approaches
by reasoning at a different temporal scale via the options
framework. We also identify limitations regarding the pro-
posed state abstraction, which is still challenging for the agent,
and the reward function, that directs the agent to a myopic
behavior, sacrificing long-term benefits in favor of short-term
material advantage.

This paper is organized as follows: Section II discusses
related work; Section III introduces our framework; Section
IV describes µRTS and the instantiation of our approach; Sec-
tion V shows our experiments against state-of-the-art search
approaches; Section VI presents an overall discussion with
the framework benefits, its limitations and potential solutions;
and Section VII presents concluding remarks and directions
for future research.

II. RELATED WORK

Our use of options in real-time strategy games is associated
with game-playing algorithms, also called strategies or scripts.
Many works in the literature use game-playing algorithms to
abstract from the game’s low-level actions. For example, [17]
use fuzzy rules to determine usefulness of strategies according
to the game state in StarCraft; [18] use case-based reasoning
in Wargus, an open-source Warcraft II clone; [19], [20] study
game-theoretic approaches for strategy selection and even
StarCraft bots rely on a pool of build-orders, or scripts to
dictate early-game behavior, to play a match [21]. However,
those approaches do not make use of reinforcement learning
frameworks as a mean to learn useful behaviors, as in the

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18

229



present work. Reinforcement learning has the advantage of not
requiring expert knowledge to determine the usefulness of a
given behavior, as the agent learns from experience, in contrast
with the fuzzy approach of [17], nor it requires forward models
of the world to perform planning, as in [20].

Our use of options is equivalent to selecting a single
algorithm that controls all units in a real-time strategy game.
A similar, but finer-grained approach is to assign scripts
individually to game units: [3] perform the assignment via hill-
climbing, which [4] later accelerates with a type system and
[5] use an online evolutionary algorithm for the assignment.
Although assigning individual unit scripts has potential for
achieving strong game-playing behavior, it has only been
tested in combat scenarios of real-time strategy games, and
with approaches that require the game’s forward model to
simulate the assignments’ outcome.

Model-free reinforcement learning approaches have been
successfully applied to combat scenarios in real-time strategy
games. For example, [11] use a tabular approach, partitioning
the game state space into clusters of states with similar
features - an idea we use for our abstract state representation
(see Section III). The tabular approach of [11] is able to
tackle small-scale combat. Other works, such as [12] and
[13] use deep reinforcement learning approaches, in which
a raw state representation is fed to a convolutional neural
network. From a large number of samples, such networks
are able to extract state features, generalizing action-value
estimates. Nevertheless, [12] and [13] tackle only the combat
task in real-time strategy games, albeit in a larger scale than
[11]. Combats are reflex-based tasks, where the player must
promptly react to the current elements on screen. Real-time
strategy games as a whole encompass long-term planning in
tactical and strategic levels as well, which are not tackled in
combat-centered approaches.

In parallel to real-time strategy games, deep reinforcement
learning has tackled classic Atari games in the Arcade Learn-
ing Environment [22], with similar successes and struggles as
in real-time strategy games research. The approach of [23]
achieves super-human performance in reflex-based games, but
performs poorly in games with long-term planning horizons,
such as Montezuma’s Revenge. A two-level hierarchical ap-
proach is introduced in [24] to enable reasoning at different
time scales. The upper layer observes the environment state
and chooses a goal, and the lower layer learns a policy to
achieve that goal (i.e., the option’s policy). The upper layer
receives the environment reward and generates intrinsic reward
signals to the lower layer. The proposed approach remedies the
deficiency of [23] in Montezuma’s Revenge, using manually-
designed goals. Posteriorly, [25] propose an approach to dis-
cover options based on intrinsic reward functions that direct
the agent towards traversing the state space in directions
specified by a learned representation. The proposed approach
was able to discover similar options to the ones achieved via
the handcrafted goals of [24].

Real-time strategy is much more complex than Atari: for a
given state, there are 18 actions in Atari (all possible button

combinations), whereas a single real-time strategy game unit
can perform a similar number of actions. Each player controls
several units, resulting in a combinatorial explosion of possible
actions. Nevertheless, the use of options has remedied the
deficiency of deep reinforcement learning in Atari games,
by allowing reasoning at different time scales. Thus, we
bring this idea to real-time strategy games, albeit in a tabular
reinforcement learning framework.

III. OPTIONS IN REAL-TIME STRATEGY GAMES

Real-time strategy (RTS) games are sequential decision
problems in large state and action spaces. Formally, we can
model a RTS game as a discrete Markov Decision Process1

(MDP), which is defined by a tuple (S, A, T , R):
• S is the set of environment states;
• A is the set of actions;
• T : S × A × S → [0, 1] is the state transition function.

It indicates the probability of reaching a state, given an
action taken in a previous state;

• R: S × A → R is the expected reward function. It
indicates the expected reward of taking an action in a
given state.

The agent interacts with a MDP according to its policy π :
S × A → [0, 1], which indicates the probability of taking an
action in a given state. An usual goal in a MDP is to maximize
the expected sum of discounted rewards: E

[∑∞
j=0 γ

jrt+j

]
,

where t is the current time, rt+j is the reward received j steps
in the future and γ ∈ [0, 1] is a discount factor indicating how
much the agent values future rewards.

Tabular reinforcement learning methods, such as Q-learning
[16], maintain estimates of action-values in tabular form:
each entry Q(s, a) indicates the expected discounted sum of
rewards of taking action a in s and following the optimal
policy thereafter. Given an experience tuple 〈s, a, r, s′〉, which
indicates that the agent took action a in state s, receiving
reward r and reaching state s′, Q-learning updates the action-
value estimates via Eq. 1, where α is the step-size or learning
rate, which indicates by how much the current action-value
estimate moves towards the sampled value.

Q(s, a)← Q(s, a) + α

[
r + γmax

a′∈A
Q(s′, a′)−Q(s, a)

]
(1)

In real-time strategy games, the state and action spaces are
huge. For example, in StarCraft, [21] estimated 101685 states
and from 1050 to 10200 actions. Such complex domains are
impractical for tabular reinforcement learning approaches.

To tackle the complexity of a real-time strategy game, we
resort to options [14], which are temporally-extended actions
in Markov Decision Processes. Intuitively, an option is a
sequence of actions, which might aid the learning agent to
achieve a specific goal. Formally, an option is defined by a
tuple 〈I, π, β〉. I ⊆ S is the initiation set: an option is available

1Real-time strategy games are adversarial domains, but by modeling the
domain as an MDP we are interpreting the opponent as part of the environ-
ment. Explicitly accounting for the adversary would require a model with
joint actions [26], which is out of this papers’ scope.
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in state s if and only if s ∈ I . The option’s policy is π: if
the option is active in state s, actions are selected according to
the probability distribution dictated by π(s, ·). The termination
condition β : S → [0, 1] indicates the probability of an option
terminating in a given state.

Many real-time strategy games have scripts or algorithms,
either built-in or developed by enthusiasts. The algorithms
define game-playing policies, mapping game states to actions.
Thus, we denote an algorithm by the policy π it specifies. We
then need to define the remaining components of the options:
their initiation sets and termination conditions. In this work we
do so with via a state abstraction scheme, where we partition
the set S of primitive states into a set S of clusters, or abstract
states. A state abstraction function φ : S → S maps a state in
the primitive state space to an abstract state2.

Given the abstract state set S, the corresponding state
abstraction function φ and our portfolio of algorithms Π, the
set of options is defined formally as follows: for each abstract
state s and algorithm π ∈ Π, there is an option o = 〈I, π, β〉
with initiation set defined as: I = {s ∈ S : φ(s) = s}
and termination condition defined as: β(s) = 0 if s ∈ I and
β(s) = 1 otherwise. In other words, for each abstract state s,
there are |Π| available options. The agent then selects an option
o, which performs actions according to the corresponding
policy, passing through various primitive states, and terminates
when the current primitive state maps to a different abstract
state from the one it has initiated at.

A reinforcement learning agent reasoning over our options
scheme can use an option-value function Q(s, o), which
indicates the expected sum of discounted rewards of taking
option o at the abstract state s and then following the optimal
policy over options thereafter. The option selection agent,
upon reaching an abstract state s′ and receiving a reward r
after selecting option o at state s, can update its option-value
estimate via Eq. 2, which is the Q-learning update rule of Eq.
1 adapted to options.

Q(s, o)← Q(s, o)+α

[
r + γ max

o′∈Os′
Q(s′, o′)−Q(s, o)

]
(2)

Our approach for learning over options is formalized in Alg.
1, where Os is the set of options available at the abstract state
s. The ε-greedy selection means to select a random option
with probability ε and the greedy, value-maximizing option
(argmaxo∈Os

Q(s, o)) with probability 1− ε.
Our agent uses only the reward of the transition that led

it to a different abstract state to update the option-value
function Q, whereas in the original definition [14], the agent
accumulates all rewards received in the trajectory determined
by the selected option. This modification suits the idea that
the information received when the agent reaches a different
abstract state is more important, because primitive states in
the same cluster are similar. Nevertheless, the algorithm can
be easily changed to accommodate the original definition, by

2We follow the notation of [27] to represent the set of abstract states and
the abstraction function.

Algorithm 1 Learning over Options
1: s← initial state
2: s← φ(s)
3: while s is not terminal do
4: Choose option o = 〈I, π, β〉 ∈ Os via ε-greedy
5: while s ∈ I do
6: Select action a according to π(s, ·)
7: Execute a in s, observe reward r and next state s′

8: s← s′

9: end while
10: s′ ← φ(s′)
11: Use 〈s, o, r, s′〉 to update Q via Eq. 2.
12: s← s′

13: end while

accumulating the rewards received during the option execution
(lines 5–9).

Our agent executes an option until termination (lines 5–9 in
Alg. 1) and our set of options do not include primitive actions3.
Formally, according to Theorem 1 of [14], the agent follows a
Semi-Markov Decision Process (SMDP), which adds impor-
tant implications: for example, an optimal policy over options
does not necessarily result in optimal behavior in the original
MDP. Intuitively, this happens because the agent is limited by
the options’ policies, as they perform the primitive actions. In
complex domains such as real-time strategy games, sacrificing
optimality in exchange for feasibility is a reasonable choice.

The success of learning over options in real-time strategy
games thus depends on the quality of the available options’
policies, which depend on the portfolio of algorithms and on
the quality of the proposed state abstraction scheme. Coarser
abstractions may ignore important context information. An
extreme case is [19] which considers a single abstract state or
decision point, ignoring all context information. On the other
hand, finer abstractions result in more abstract states, which
increase the number of entries in the option-value function,
requiring more training to learn useful policies.

IV. SCENARIO

A. Testbed

We evaluate our learning over options approach in µRTS
(Fig. 1), a real-time strategy (RTS) game designed to facilitate
artificial intelligence research [15]. It simplifies RTS games
by having fewer types of units and buildings, a shallow
technology tree, and simpler combat model. Moreover, µRTS
provides a forward model to foster the development of search
and planning methods, some of which are our adversaries in
the experiments.

In µRTS, there are two types of buildings: Bases and Bar-
racks, which produce Workers and military units, respectively.
Workers harvest resources (needed to create buildings and
produce units), construct buildings and have limited melee

3Primitive actions can be seen as one-step options [14] and thus could be
included in the set of options as well.
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Fig. 1. A screenshot of µRTS.

combat ability. Military units are either Heavy, Light or
Ranged. Heavy and Light are strong but slow and weak but
fast melee units, respectively. Ranged are weak units, but can
attack from distance. To win a µRTS match, a player must
destroy all buildings and kill all adversary units. In this work,
µRTS is configured with full visibility (perfect information)
for the players.

B. Model instantiation

This section discusses our model of options in µRTS as well
as the reward function we adopt to train our learning agent.

When µRTS is configured for full visibility (perfect infor-
mation), a software-controlled player has access to all game
data: both players’ resources, attributes and actions of all units
and buildings, and even information on units and buildings
under production, including the remaining time to produce.
Thus, the µRTS game state has the Markov property, as there
is no underlying information hidden from the player.

Our options are defined with abstract states and a set of
algorithms (see Section III). Our set S of abstract states is
constructed by identifying eight features in µRTS. First, we
divide the game duration equally into five intervals, related to
the match stage: opening, early, mid, late and end. The other
seven features account for material advantage between player
and opponent in each game entity: resources, bases, barracks,
workers, heavy, light and ranged units. As a simplification,
the material advantage features are discretized in three values:
ahead, even and behind, assigned as follows: ahead if the
player controls two or more entities of the given type than
the adversary; even if the difference is between +1 and -1
and behind if the adversary controls two or more entities than
the player. In total, we have 5 × 37 = 10935 non-terminal
abstract states. A terminal is created as an additional abstract
state. It is reached whenever a player wins the game or time
runs out. That is, all primitive terminal states in µRTS are
mapped to the abstract terminal state. Our state abstraction
function φ then maps a primitive µRTS state to an abstract
state by checking the game termination conditions, and then
determining the stage from the current game time and counting

the entities of each type owned by the player and its opponent
to determine the features’ values.

Our abstract state representation does not have the Markov
property: from a given abstract state, different abstract states
could be reached under the same option, depending on which
primitive state the player is actually in. However, our learning
agent overlooks this issue, acting as if the states were marko-
vian.

Our portfolio Π of algorithms contains four simple built-in
µRTS scripts: Worker, Ranged, Heavy and Light rushes plus
two scripts we developed: Expand and BuildBarracks. Worker
rush only trains workers, using one to harvest resources and
the remaining to attack the adversary. The other rushes use
a worker to construct a single barracks which trains units of
the respective type to attack the adversary. The single worker
keeps harvesting resources after constructing the barracks.
Expand and BuildBarracks do not perform combat actions
themselves. Instead, they send a worker to build a new base
or barracks, allowing faster production of workers or military
units, respectively.

Our reward signal is the player score minus the opponent’s.
The score function counts the material a player has. The
function is provided by µRTS, being used as a state evaluation
function by some search approaches. The score of a player i
is calculated according to Eq. 3, where Bi is the amount of
resources owned by the player, Wi is the amount of resources
being carried by player i’s workers, Ui are the units player
i controls, c(u) is the cost to produce a unit, hp(u) are the
current hit points of a unit and hpmax(u) are the maximum
hit points of a unit.

scorei = 20 ·Bi + 10 ·Wi +
∑

u∈Ui

40 · c(u) ·
√

hp(u)

hpmax(u)
(3)

V. EXPERIMENTS

In our experiments, we run µRTS matches with 3000 frames
of duration on the map “basesWorkers24x24”. Each run of
our approach consists of 5000 training episodes against an
adversary, where each episode is a µRTS match. We then
extract the resulting policies and run 100 test matches against
the same adversary. Parameters were determined from prelim-
inary experiments as follows: α decays exponentially with rate
0.99907939, (from 1 to 0.01 in 5000 episodes); γ = 0.9 and
ε = 0.1. The search methods (our adversaries) were executed
with their default parameters in µRTS. We run 5 repetitions
of each experiment. All experiments were executed in a 40-
core machine with 256GB of RAM memory. Each core is a
Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz.

We use the following state-of-the-art search methods as our
opponents to evaluate our learning over options approach:
• Strategy simulation, or SS for short [20]: at each frame,

playouts among scripts are used to fill a normal form
game’s payoff matrix. Then, Nash Equilibrium is calcu-
lated and a script is selected accordingly. The available
scripts are the same we use, except by BuildBarracks and
Expand, that have no combat capabilities.
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• Adversarial Hierarchical Task Network, or AHTN for
short [7]: this approach extends the use of hierarchical-
task network (HTN) planning, which encode domain
knowledge via the definition of useful tasks in the do-
main, with a minimax-like game-tree search.

• Puppet-αβ [6]: PuppetSearch is a framework that aug-
ments the capabilities of game-playing scripts by means
of move choices they expose to search procedures. By
exposing a restricted set of actions, the search methods
can look further ahead, finding potentially better solu-
tions. Moreover, as computational budget allows, more
choices can be exposed so the search algorithms can
investigate with a broader perspective. In [6], StarCraft
playing scripts are combined with a version of the α-
β considering durations (ABCD) algorithm [28]. This
approach was ported to µRTS as well.

• PuppetUCT [8]: this is a variant of Puppet-αβ, which
replaces the ABCD algorithm with a version of the
upper-confidence bound for trees considering durations
(UCTCD) algorithm [3].

Figure 2 shows the training performance of Q-learning over
options against each adversary, in terms of mean reward (a)
and win rate (b) on the 5 repetitions. We show the running
average on 100 episodes do display the overall trend of
the training process. The baseline for the reward is zero: a
superior value means that the player had more material than
its opponent throughout the match. The baseline for the win
rate is 0.5: a superior value means that the learning agent has
defeated its adversary in most repetitions.

Against all opponents, rewards (Fig. 2a) become positive
after a number of episodes. As the reward function reflects
material advantage, the agent is being able to maintain more
units than its opponents during parts of the game. However, the
plots show the rewards accumulated for an entire episode. It
might be the case that the agent maintains material advantage
for a period in the game but loses the match near its end. In
this case, the reward accumulated in that episode might still
be positive. Moreover, the rewards oscillate through the entire
training period, even with the running averages. This might
be due to actions of the adversary: the agent might learn a
policy that reaches states where the search opponent performs
well, reducing the agent reward, forcing it to change its policy
again. It is also possible that the agent could learn more stable
and stronger policies by training for more episodes. Section
VI discusses the issue of the number of training episodes in
more detail.

The win rate during training (Fig. 2b) increases against
all opponents, although the increment and final performances
are weaker against PuppetUCT and Puppet-αβ than against
AHTN and SS. The learning agent was able to win the
majority of matches against AHTN and SS, getting above
the baseline, but has not succeeded against PuppetUCT and
Puppet-αβ, remaining below the baseline during the entire
training. This suggests that our approach was able to learn
strong policies against AHTN and SS, but was unable to do
the same against PuppetUCT and Puppet-αβ. Moreover, this

indicates that the reward function is not directing the agent
towards victories. The agent is likely acting myopically: even
if it loses a match in the end, receiving a few negative rewards,
it might be taking decisions that maximize its immediate
reward in earlier game stages, ending up with a positive reward
balance.

To evaluate resulting policies’ strength, we run 100 test
matches against the same training opponents. In the tests, ε and
α are set to zero, to ensure the agent acts greedily according to
the learned policy, without further updates. As a baseline, we
also tested random and fixed policies over options against each
adversary. Each fixed policy always chooses a single option.
We tested a fixed policy for each available option with combat
capabilities: Light, Heavy, Worker and Ranged rushes. Figure
3 shows the results4. Heavy rush is omitted because it does
not win any match in the tests.

The resulting policy of Q-learning outperforms a random
policy over options against all adversaries. Interestingly, how-
ever, for each adversary, there is a fixed policy over options
that outperforms the Q-learning resulting policy. This means
that each adversary can be defeated by a simple script. Nev-
ertheless, learning is useful, because no fixed policy defeated
all search approaches. Thus, an agent must learn which option
(or combination of options) defeats each adversary.

Our approach learned a strong policy against SS, competi-
tive policies against AHTN and PuppetUCT, and a poor policy
against Puppet-αβ. Chronologically, SS [20] was proposed
earlier, followed by AHTN [7] and then by Puppet-αβ [6]
and PuppetUCT [8]. Our approach fared better against older
approaches rather than newer ones, except by Puppet-αβ
which is older than PuppetUCT and imposed more difficulties
to our approach.

VI. DISCUSSION

Our approach enabled the use of Q-learning, a traditional
tabular reinforcement learning method, in a real-time strategy
game. By reasoning over options in an abstract state space,
the learning agent does not need to consider all possible
underlying game actions, nor does it need to store action-
values for every primitive state. Our approach thus sacrifices
optimality to handle a previously unfeasible domain. Our
results showed that a random policy over options had poor
performance and no fixed policy over options was able to
overcome all opponents. Being able to learn from experience
has proved essential to success against a variety of adversaries
in such a complex domain.

Our model has the limitation of ignoring adversary actions,
by interpreting the opponent as part of the environment. Thus,
the agent learns a policy suited against the specific training op-
ponent. In theory, such policies could be arbitrarily exploited
by an agent employing game-theoretic reasoning. Thus, ex-
plicitly accounting for opponent actions [26] or incorporating
opponent models [30], [31] would facilitate the discovery of

4The search approaches are sensitive to the underlying hardware. The
performance of the individual fixed policies reported here against the search
approaches has slight differences, for example, with [29].

233



0 1000 2000 3000 4000 5000

Episode

−500

0

500

1000

1500

2000

2500

3000

3500

R
ew

ar
d

SS AHTN PuppetUCT Puppet-αβ

(a) Reward

0 1000 2000 3000 4000 5000

Episode

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
in

ra
te

SS AHTN PuppetUCT Puppet-αβ

(b) Win rate
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more general and/or robust policies. With opponent models,
the agent would be able to identify the opponent given its
behavior and then learn a proper response.

Our approach demonstrated limited performance against
some of the state-of-the-art search methods, even though the
agent tried to learn a specialized policy. On the other hand,
our reinforcement learning approach dismisses forward models
and decides much faster than search approaches, because its
decision is an ε-greedy procedure, followed by the chosen
algorithm’s action selection. An ε-greedy choice over primitive
actions would be impacted by the number of such actions, but
ours operate over options, whose quantity is small. The choice
of simple algorithms to compose the portfolio was of benefit,
because more sophisticated but slower algorithms would result
in increased training time.

The first point for improving the performance of our ap-
proach would be the adoption of a new reward function,
because the current one, related to material advantage, seemed
to direct the agent to a myopic behavior. The final game result
is the ultimate measure of performance, but it is sparse: the
agent must go through all game states to finally receive a
feedback of its performance. Thus, learning which choices
contributed to the final result is more difficult. This requires
more training episodes until the result is gradually fed back to
states in earlier game stages. However, training against search
methods consumes considerable time because the game speed

is limited by the time those approaches need to calculate their
actions5.

Three measures could be adopted to accelerate the agent’s
training: the use of a simpler state abstraction model, a
learning generalization technique and training via self-play.

The current state aggregation model, although enabling the
adoption of tabular Q-learning, still has a large number of
abstract states (10935 as discussed in Section IV-B) compared
to the number of training episodes (5000, in Section V).
Although many states will never be reached in real games, the
number of possible states is large so that some state-action
pairs will have only a few visits to produce precise estimates.
A simpler model, on the other hand, could ignore important
information, preventing the agent to discover strong policies.

Thus, a learning generalization technique would be of great
value: the learned value of a state would be propagated to
similar ones. Such idea has achieved remarkable success in
Backgammon [32] and Go [33]. A generalization technique
specially suited for tabular learning methods is presented in
[34]. This could be readily applied, preserving our tabular state
abstraction scheme.

Training the agent against a copy of itself (self-play) would
be fast, but it does not have mathematical guarantees of
convergence, as our agent does not account for the adversary
[26]. A model that explicitly accounts for the opponent, as
proposed in [26], has those convergence guarantees. Thus,
training the opponent-aware agent in self-play has the potential
to discover strong game-playing policies, although the com-
plete model scales poorly: the action-value function becomes
a joint-action-value function. Thus, the agent must learn the
value of his actions for each opponent’s action. The number of
entries in a tabular joint-action-value function thus increases
exponentially with the number of actions of both the agent
and the opponent.

5Training against AHTN takes about one day, whereas against PuppetUCT
it takes about a week.
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VII. CONCLUSION

A. Overview

In this paper we modeled a real-time strategy game as a
Markov Decision Process (MDP) and presented an approach
based on options to tackle the complexity of the resulting
MDP. Options can be seen as specific behaviors that perform
sequences of actions in the MDP, aiding the learning agent
to navigate through the MDP’s state space. We partition the
MDP’s state space into clusters, or abstract states, which are
observed by the learning agent. Then, instead of low-level
actions, the agent selects options. Those options determine tra-
jectories in the MDP and terminate upon reaching a different
abstract state.

The proposed framework reduces the problem complexity,
enabling the use of traditional tabular reinforcement learning
methods in real-time strategy games. Our experiments in µRTS
demonstrate this. We use simple scripts to define the options’
behaviors and our learning agent is competitive against some
of the state-of-the-art search methods, which have the advan-
tage of a forward model for planning their actions. Although
the simple scripts define strong game-playing policies, they
alone are not sufficient to defeat the range of tested opponents,
which shows the usefulness of learning and adapting.

Our experiments also revealed limitations on our approach,
as it does not learn strong playing policies against some
adversaries. We identified that the abstract state representation
is still challenging, as the number of states is high compared
to the number of training episodes. Training for more episodes
would take considerable time as the game speed is limited by
the opponents’ search methods. The search methods work in
real-time, but are considerably slower than the quick look-up
performed by the learning agent’s decision. We also noted that
the reward function is directing the learning agent towards a
myopic behavior: it sacrifices long-term benefits in favor of
short-term material advantage.

B. Future work

Future work can address the limitations of our approach.
Adopting a more realistic reward function (e.g. the final game
result) would ultimately direct the agent to win matches,
although the outcome of an action taken early in the game is
not immediately fed back to the agent. Thus, simply changing
the reward function could require more training episodes,
which are time-consuming because the training opponents take
time to perform their searches.

Learning generalization techniques could accelerate train-
ing, by propagating the sampled value of a state to similar
states, even in tabular representations [34]. Training the agent
against a copy of itself (self-play) would be fast, but our model
does not have mathematical guarantees of convergence in such
case. Those guarantees are attained by explicitly accounting
for the adversary [26]. Alternatively, we could employ function
approximation techniques, feeding a neural network with the
state representation so that it automatically generalizes learned
values to similar states. This idea has been successful in earlier

[32] and recent times [33], with the added benefit that we do
not need to manually identify state features as we did here.

Future research could also investigate the discovery of
options in real-time strategy games, extending the tests of [25],
which were performed in Atari games.
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[2] A. Uriarte and S. Ontañón, “Improving Monte Carlo Tree Search
Policies in StarCraft via Probabilistic Models Learned from Replay
Data,” in AAAI Conference on Artificial Intelligence in Interactive
Digital Entertainment (AIIDE), 2016, pp. 100–106.

[3] D. Churchill and M. Buro, “Portfolio Greedy Search and Simulation for
Large-Scale Combat in StarCraft,” in IEEE Conference on Computa-
tional Intelligence and Games (CIG). IEEE, 2013, pp. 1–8.

[4] L. H. Lelis, “Stratified Strategy Selection for Unit Control in Real-
Time Strategy Games,” in International Joint Conference on Artificial
Intelligence (IJCAI), 2017, pp. 3735–3741.

[5] C. Wang, P. Chen, Y. Li, C. Holmgård, and J. Togelius, “Portfolio Online
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Abstract—Agents now exist that can play Texas Hold’em Poker
at a very high level, and simplified versions of the game have
been solved. However, this does not directly translate to learning
heuristics humans can use to play the game. We address the
problem of learning chains of human-learnable heuristics for
playing heads-up limit Texas Hold’em, focusing on the post-flop
stages of the game. By restricting the policy space to fast and
frugal trees, which are sequences of if-then-else rules, we can
learn such heuristics using several methods including genetic
programming. This work builds on our previous work on learning
such heuristic rule set for Blackjack and pre-flop Texas Hold’em,
but introduces a richer language for heuristics.

Index Terms—beginner heuristics, genetic algorithms, poker

I. INTRODUCTION

If you were teaching someone to play Poker, but could only
tell them a single rule for how to play, what would that rule be?
That you should raise if you have a pair but fold otherwise?
Now, if you could also tell them a second rule, what would
that be?

Every journey starts with a first step and learning a complex
skill starts with learning a simple part of that skill. Learning to
drive a car usually starts with learning to shift gears, or in the
US, to find the brake. This is no different in games. Playing
Super Mario Bros, you will first learn to move sideways, then
to jump over enemies, then to jump on top of enemies, bump
into question mark blocks, shoot fireballs etc. Much later in the
game you will learn complex combinations of these such as
wall-jumping or finding secret passages. Every simple thing
you learn makes you play the game better. These units of
learning have been called “skill atoms” or “heuristics”; in this
paper, we’ll use the latter.

Being able to automatically subdivide a complex skill into
heuristics would be very useful for being able to automatically
(or semi-automatically) generate instructional sequences or
tutorials for that skill. Given that we know what heuristics
must be learned, and in what order, the task of figuring out
how to teach those heuristics becomes much easier. But finding
the heuristics necessary for a task is important for at least one
other reason as well: to gauge the depth of the task. Deep tasks,
for example deep games, are characterized by that mastering
them requires learning a long chain of heuristics that build on
each other. This can be contrasted with shallow tasks/games
where there are only a small number of effective heuristics
available, or there is a large number but they cannot be used

together. Automatically finding the heuristics can therefore
also help us estimate the depth of the task.

In this paper, we investigate methods for finding heuristics
for post-flop heads-up limit Texas Hold’em Poker. This is one
of the simplest versions of Poker available (chosen because
it is somewhat tractable) and we are only tackling the later
stages of the game. This follows on from our earlier work on
finding heuristics for Blackjack and for the pre-flop phase of
the same type of Poker. The basic idea is to use and search
in the space of heuristic chains, and evaluate them by playing
against a strong adversary.

Like in our previous work, we apply and compare greedy
exhaustive search, axis-aligned search, and genetic program-
ming, and represent heuristics in a domain-specific language
meant to be able to express human-learnable rules. A major
contribution in this paper with respect to our previous work
is a richer language for the heuristics, able to capture late-
game aspects of Poker. Other novel contributions include
our approach to finding initial positions for the gameplay
simulations, and our table-based reduced adversarial agent
which allows fast simulation.

In the next section we describe previous work on heuristics,
genetic programming, Poker AI and other topics. We then
describe the particular Poker variant we are addressing, and the
adversarial agent we employ. Next, we describe the heuristic
language that we developed for post-flop Poker, and the details
of the algorithmic approaches. In the results section, we
perform comparative analysis of the quality of heuristics found
through the different approaches and plot curves of policy
strength relative the the length of the heuristic chain, as well
as show examples of particular heuristics found.

II. BACKGROUND

When making decisions, novices are not the only ones that
use simple models. The theory of bounded rationality claims
that the human decision making process is a factor of the
amount of time available to make a decision and the amount
of information available [1], [2]. Opting for simple rules-of-
thumb can provide better outcome when compared to using
complex algorithms because they are less prone to errors in
the execution [3].

Agents that target optimum play have been able to show
impressive results, in some cases being able to compete or
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surpass professional human players. Approaches for Check-
ers [4], Chess [5], Go [6], Othello [7] and Poker [8] are some
of the examples of such agents. Unfortunately, most of these
solutions require large memory space or heavy computation
that are unfeasible to be executed by human players. In order
to create powerful strategies, players use heuristics to approxi-
mate the evaluation of a complex scenario. Our paper contrasts
with approaches that look to maximize quality of the solution
in that we constrain our heuristics to be simple to understand
and execute, being careful to analyze the relationship between
quality and complexity. Furthermore, we target novice players
who would have been just introduced into the game.

Evolutionary approaches have also been successful at gener-
ating high performance agents. Players have been evolved for
adversarial games such as Poker [9], Backgammon [10] and
Lose Checkers [11]. Evolutionarhy approaches for developing
strategies have also been applied to a clone of Super Mario
Bros where neural nets were evolved to create controllers that
play the game [12], to the solo variant of Pong [13], and to
evolve controllers that exhibit general driving skills [14].

Good game-playing in poker has many different aspects to
it. Bluffing, reading your opponent and calculating the risks
involved in the betting are essential for high skill play [15],
[16], [17]. Another important aspect of the game are what is
called mixed strategies. With a mixed strategy, when observing
the same game state, action A is played with probability X and
action B with probability Y, as opposed to a deterministic de-
cision. The heuristics generated in this paper are deterministic,
resembling rules-of-thumb, which are known to only have a
reasonable performance at the beginner level [17]. That don’t
pose a problem to us since beginner players are exactly the
ones we wish to target with our heuristics.

The work on this paper follows our previous work on
generating simple heuristics for Blackjack [18] and for the
Pre-Flop round of Heads-Up Limit Texas Hold’em [19]. Using
Blackjack we were able to show that it is possible to generate
these heuristics and by evaluating their performance versus
their complexity we approximated the skill chain [20] of the
game. Blackjack was a good first step since it is a 1.5 player
game, the opponent is the dealer that always plays following
a known deterministic algorithm. In the Pre-Flop round paper,
we showed that the same algorithms were indeed capable
of generating simple heuristics on a 2-player game. In a
multiplayer game your opponents are able to react and reshape
their strategies during gameplay to adapt to yours, that brings
the question of whether the heuristics we generated were
subjected to a intransitivity relationship, meaning heuristic
A beats heuristic B, heuristic B beats heuristic C, but C is
able to beat A. We showed that there was in fact intransitvity
between our heuristics. In this work we expand the analysis to
the Post-Flop rounds of Poker, which has a richer vocabulary
due to more information being available in the game state.
Furthermore, we propose how a player with knowledge of the
heuristics of all rounds could be able to use those to play a
complete match of Heads-Up Limit Texas Hold’em.

III. HEADS UP LIMIT TEXAS HOLD’EM POKER

Poker is a popular gambling card game. Having many
variants and being played all around the world, whether it
be online, casually at casinos or at a professional level. One
of the most popular variations of Poker is Texas Hold’em. In
this work, we will discuss how to generate novice-level simple
heuristics for playing this variant of the game.

In Texas Hold’em, 2 or more players bet over multiple
rounds on the best 5 card poker hand they can make out
of the cards in play. The game has stochastic elements, with
cards being distributed from a randomly shuffled deck, hidden
information with the players holding cards in secret from each
other, and as gameplay progresses more information is added,
with cards that are shared by all players being revealed and
actions being made. Strategies in the game usually involve
bluffing, reading your opponents and assessing the risks of
performing each action. Good strategies tend to have a lot of
moving parts that are usually overwhelming for beginners.

A match of Texas Hold’em has 4 card rounds (in this
respective order): Pre-Flop, Flop, Turn and River. Each of
these rounds consists of card dealing followed by betting. In
the Pre-Flop round, players are each dealt 2 cards they keep in
their hand, secret from the others. In the Flop round, 3 cards
are dealt face-up on the table, these are cards that are shared
between all players. In both the Turn and River 1 more card
is dealt to the pool of shared cards, totaling 5 face-up cards
at the end. After the last round of betting, if there is more
than 1 player still in the match, the showdown happens. In the
showdown, the players remaining form the best 5 card poker
hand they can from a total of 7 cards, their 2 cards from the
Pre-Flop and the 5 cards face-up on the table. The player with
the most valuable hand, following the standard hand ranking
comparison, wins the total pot. On this paper, we focus on
generating heuristics for playing the betting rounds in the Flop,
the Turn and the River, following our previous work on the
Pre-Flop round [19].

During betting, players alternate turns choosing to take 1
of the 3 possible actions. The action Fold has the player
discarding their hand and being out of the game until the end
of the match, meaning that player will not participate in the
showdown. The Check/Call action has the player matching
the largest bid made by another player so far. When using
the action Raise players increase the highest bet to this point,
turning them into the highest bidder. Once play comes back
to the last player to have Raised, if there are multiple players
remaining, the betting round ends and the match proceeds to
the next round.

For the scope of this work we will be using the variant
Heads-Up Limit Texas Hold’em. Heads-Up means that the
matches are played by only 2 players. The variant Limit
means that every time players Raise they can only do it by
a fixed amount. Furthermore, we utilize the same settings as
the Annual Computer Poker Competition for Heads-Up Limit:
Only a total of 3 Raises can happen at Pre-Flop and 4 in the
other rounds. After the limit of Raises has been met, the player
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Action 3 Default

True
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Fig. 1. Structure of a Fast and Frugal Tree (FFT). In this binary tree, each
node in blue represents a condition and each node in yellow represents an
action. When a condition is satisfied, the FFT returns the left child of that
condition, otherwise it proceeds to next condition or, if it reached the end,
returns the default action.

has to choose a different action.
The decision to use this variant of Poker is to have a simpler

game to build our analysis on, and still have significant result,
considering that a lot of the principles behind good heuristics
in Heads Up Limit Texas Hold’em can be used to play other
variants. Those are some of the reasons why this specific
variant has been the focus of a lot of research, culminating
in an agent that weakly solved this game [21].

IV. HEURISTIC STRUCTURE

Since we are looking to generate heuristics that are simple
and effective, we need a proper representation. Commonly
used in bounded rationality theory, Fast and Frugal Tree
(FFT) is a type of binary search tree. In FFTs, nodes that
have children represent conditions that inform decisions, while
the leaves represent the action to be executed following the
parent’s outcome. Figure 1 shows the structure of FFTs. In
order to make a decision we start at the condition in the
root. If that condition is satisfied, we return the action on
the left child of this node. If that condition fails, we proceed
to the right child condition node. In case there are no more
conditions to be tested, the default action (right child of the
condition node of highest depth) will be returned. FFTs can
also be expressed as decision lists [22], [23] and commonly
have a higher performance, in practice, when compared to
more complex algorithms [24].

Throughout the following sections of this paper we will
represent FFTs as a chain of if-then-else statements. Their
structure is as follows:

if CONDITION 1 then ACTION 1
else if CONDITION 2 then ACTION 2
else if ... then ...
else DEFAULT ACTION

We will refer to the grouping of a condition and the
action resulting from successfully meeting such condition as
statement. Each condition is formed by one or more boolean
tests, called clause, that satisfy the condition when, and only

when, are all evaluated to true. This means that a condition is
formed by a conjunction of clauses. Lastly, the action returned
by reaching the else statement is therefore the default action.

A. Poker Clauses

In order to generate heuristics, we first need to define a
vocabulary to express them. The vocabulary is the basis of
all heuristics, and determines what kind of information about
the game state can be used. It is composed of several boolean
functions that can be called as clauses for a condition.

When comparing to our previous work on generating heuris-
tics for the Pre-Flop round of Heads-Up Limit Texas Hold’em,
one of the main differences is the vocabulary being used. Since
during the Pre-Flop players only have access to their two cards,
a consequence is that the clauses rely heavily on those. For
the rounds after, we no longer address the two cards in hand
specifically, but rather the game it is forming together with the
shared face-up cards. The only aspect of the game state that
is common across all rounds is the size of the pot.

The vocabulary used in this work was built following
common points of analysis discussed by players and frequently
analyzed in books about Poker, such as Play Poker Like the
Pros [15] and The Mathematics of Poker [16].

In the remainder of this section we describe the different
boolean functions and clauses used to generate the heuristics.

1) Hand Rank: We define Hand Rank as the value the
current player hand would have at the showdown. Since
there is an order for the quality of different hands, it is
possible to make statements such as: FullHouse > Pair
and Flush < FourOfAKind. Given such, we analyze
Hand Rank in the interval: HighestCard ≤ HandRank ≤
RoyalStraightF lush. It is worth noting that this does not
take into account the value of the highest card in the hand,
used to break ties between hands with the same Hand Rank.
For such, we have another boolean function.

2) Highest Valued Card in Hand: When there is a tie
between 2 hands of the same Hand Rank, the value of the
highest card that composes that hand is used to break ties.
For hands of ThreeOfAKind or higher it is not uncommon
to play them through even when the value of the card used
to form it is low. That is not the case for the lower ranks
though. Considering that the bottom 3 Hand Ranks happen
more often then all others, testing the value of the tie breaker
is due necessary. Given the range of cards, the interval that
can be analyzed in a clause is: 2 ≤ x ≤ 14.

3) Total Pot: The size of the pot is important when playing
the game since it represents the rewards for winning that
match. In the heuristics we show, we represent Total Pot in
relation to how many Big Blinds it represents. So, a test such
as TotalPot ≥ 30 is true when the pot is equal or greater
than 30 Big Blinds. In Poker, Big Blind refers to the amount
the last player to act in the Pre-Flop is forced to bet in the
beginning of the game, to account for their favorable position.

4) Aggressive Opponent: Evaluating the behavior of the
opponent can give valuable information about how a player
is to proceed with their actions. Since building and analyzing
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a model for the adversary is beyond the scope of this paper,
we have a simplified but significant representation. We add to
the vocabulary 2 boolean functions: IsOpponentAggressive
and NotIsOpponentAggressive. The first is satisfied when
the last move the opponent made was Raise. The second just
returns the inverse of the first’ result.

5) Texture of the Board: By observing the face-up cards
present in the board, we can analyze their texture. Texture of
the Board indicates whether the shared cards shown make it
likely or unlikely for players to build a good hand. For such,
we create IsBoardDry, that is satisfied when the board is dry
(unlikely to form good hands with) and IsBoardWet which
represents the opposite.

6) Outs: A very common and powerful strategy in Texas
Hold’em is to be aware of the number of outs you have. The
number of outs represents the number of cards left in the deck
that if drawn to the board at later stages can improve your
Hand Rank from what it currently is. We count the number
of cards to turn Pairs into Three of a Kind, number of cards
that can turn a 2 pair into a Full House and number of cards
that can complete the a Flush or Straight missing 1 card. This
function is not used for the River round, since no more cards
will be added to the board.

V. OPPONENT AGENT

In order to find good simple heuristics, we need to search the
space of possible FFTs and evaluate their quality. To estimate
the quality of a heuristic, which we will call fitness for this
point on, we rely on playing a substantial amount of games
and evaluating the average outcome.

Since Heads-Up Limit Texas Hold’em is a 2-player game,
the fitness is calculated in relation to playing the different
heuristics against the same opponent. In order for it to be
feasible to play enough games in a short amount of time, we
require an automated agent to play against.

For our work on Pre-flop, we were able to use the table that
is part of the Nash Equilibrium used to solve the game [21].
For the post-flop rounds this table would be too large, and we
don’t require optimal play. Therefore we resort to a method
similar to the one used to weakly solve the game. Another
caveat is the time it takes for the agent to be trained. These
motivate using the same methods, but under a simplified
strategy, while making it more vulnerable.

The Opponent Agent we created is inspired by the work
done towards building competitive AI for Heads-Up Limit
Texas Hold’em [25], [26], [27] and the agent that was able
to weakly solve the game [21].

This agent is built using the Counterfactual Regret Min-
imization (CFR) algorithm. The agent, as opposed to our
heuristics which are deterministic, plays a mixed-strategy,
meaning that depending on the game state it has different
probabilities of making moves X, Y or Z. By starting from an
equal probability for making any of the 3 moves, the algorithm
then plays against itself and updates its probabilities based on
the amount of regret of having performed each action. With
the regret values, it updates the probabilities in relation to

their positive regret (how much better it would have done if it
picked another action). The algorithm has to be trained over
an expressive amount of runs, relative to the size of the space
that is being represented.

Since computing individual probabilities for each possible
card combination is beyond the scope of this work (and tackled
in Bowling et al. [21] and Tammelin et al. [28]), we opt to use
a very simple card representation abstraction. For every 1 of
the possible 57,344 sequences of actions, the agent classifies
their Hand Rank, dividing hands of different rank into different
buckets. This creates a probability distribution that reflect
knowledge of the game and that is feasible to be trained in
a small amount of time. That said, the agent has very small
granularity, meaning it is vulnerable to being exploited. But,
since it represents a more general play, it is unlikely to bias
the heuristics generated against it. Our agent was trained using
30 cores for 7 hours, having played over 5.5 billion matches.

VI. ALGORITHMS

Once we have an Opponent Agent, we can define our Fitness
function. Such will be the average amount of money earned
from playing against the agent for 400,000 matches. And the
end of every match we reset each players pot and we guarantee
that our heuristic will be first player through half the matches
and second player for the others. Subjects with higher fitness
are ranked higher in the algorithms.

We now introduce the algorithms we use to generate simple
heuristics. Increasing the fitness usually reflects in an increase
in complexity. So, in order to form a diverse population and
be able to approximate the skill chain [20], we target creating
heuristics of growing complexities, such as we did with the
game Blackjack [18].

Since we are generating heuristics for the different rounds
in the game, we run the algorithms separately for each case.
Since the game develops over previous rounds, to avoid bias,
we have the Opponent Agent play against itself until it reaches
the start of the round we want to generate heuristics for. From
there, we have the game be played by the heuristic until the
end of the current round. Once the round is over, we deal
out any cards that haven’t been dealt yet, as if there was no
more betting rounds in the game. After such, we proceed to
the showdown to decide the outcome of this match. Once we
generate heuristics for each stage of the game we will analyze
how we can use these to create a strategy for playing a match
from start to finish, using only heuristics found.

A. Greedy Exhaustive Search

With this algorithm, we start by initializing the population
with all possible FFTs that are composed by a single condition
with a single clause. They are created by assigning the boolean
functions to clauses using all possible values in range and also
varying all actions to be any of the 3 possible.

We proceed to evaluating the fitness of all individuals in the
population, and the one with highest fitness is then the best
1-statement FFT possible. If we desire to have an individual
with more statements, we repeat the process of generating all
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1-statement possibilities and appending these to the end of the
heuristic found on the previous step.

Since as the number of statements grow the amount of
possible FFT we can build increases exponentially, it is
unfeasible to exhaustively explore all possible heuristics with
more than 1-statement. Even by just allowing for a statement
to have more than 1 clause, the space of possible heuristics
grows exponentially. As a consequence, the algorithm is very
prone to finding local maximum as opposed to approaching
the global optimum. Even with these caveats, it is still useful
for finding the heuristics with the least amount of complexity.

B. Axis-Aligned Search

Since the space of possible heuristics is very large, per-
forming a search for quality heuristics is computationally
expensive. To avoid such, we created the Axis-Aligned search.

The method is inspired by computer graphics techniques,
in particular line search, and it targets optimizing individual
dimensions, one at a time, rather than the whole. The algorithm
starts from a randomly generated heuristic. Then it creates a
copy of the FFT, for each clause and action in the heuristic,
changing only the value being compared in a clause or which
action is returned. A copy is created for every possible value
that can be tested for every possible clause. Copies are also
created for every action. We now have a population of all
these small variants of the original heuristic. We calculate
the fitness for all of individuals and find the one with the
highest value. The most fit now becomes the main subject. We
then repeat the process, now varying all clauses and actions,
except that we lock the clause/action that was changed from
further mutating for the rest of the iterations. We continue with
iterations until all clauses and actions are locked, or when the
most fit individual of an iteration is the initial subject.

The quality of the results from this method are reliant on the
random heuristic generated at the beginning. However, Axis-
Aligned Search runs faster than the Genetic Algorithm, so we
can have multiple runs and pick the most fit individual out of
all of them. The algorithm can also be used to optimize the
results found through other methods, by seeding a generated
heuristic to the first iteration, instead of randomly creating one.

C. Genetic Programming

The most robust and the one most successful method at
finding close to optimum heuristics for different complexities.
Usually the best heuristics found come from using Genetic
Programming [29], [30], [31] to search the space.

The algorithm starts with a population of 100 FFTs, of
a fixed number of statements, generated at random. Then,
a generation is executed by evaluating the fitness of all
individuals of the population. The top 50, the elite, are selected
to move to the next generation. The bottom 50 are discarded.
New individuals are generated: 20 by mutating copies of elite
individuals, 30 by randomly crossing over copies of the elite
and then mutating the children. By maintain the top half of
the population we assure that poor performing genomes do
not propagate, while keeping the population diverse through

if HandRank ≥ Pair then RAISE
else CHECK/CALL

Fig. 2. Most fit least complex heuristic for Flop round. Found by Exhaustive
Search, fitness is approximately 0.89.

having a large size for the elite and performing mutation and
crossover. The algorithm performs 100 generations.

When mutating a heuristic, the algorithm visits every clause,
every constant in a clause and every action and mutates it with
a 30% probability. When a clause is mutated, it is replaced
with an entirely new one. When a constant is mutated, it
is replace with a new constant that falls within the interval
accepted by that clause. When an action is mutated, one of the
other 2 actions substitutes it. Heuristics that return the same
action for both evaluations of the last condition and heuristics
that have a condition that always evaluates to the same value
are not accepted into the population, neither are duplicates of
other heuristics already in the population, and the mutation is
repeated until a valid individual is created.

When crossing over 2 heuristics, a random condition or
action is selected and it crosses over with the condition or
action at the same depth/position in the other FFT. As it is
with the mutation, with crossover creates a invalid individual
or a copy of an individual already in the population, the step
is repeated until a pair of valid children are returned.

Despite being the best at finding close to optimum indi-
viduals, the genetic algorithm is the most computationally
expensive being roughly 25 times longer than 1 run of Axis-
Aligned Search. As it is going to be discussed in the next
section, the Genetic Algorithm found the majority of the most
fit individuals we have for each complexity.

VII. RESULTS

In this section we showcase the results of running the
algorithms described previously to generate simple heuristics
for the Flop, Turn and River rounds of Heads-Up Limit Texas
Hold’em. For each round we demonstrate 2 heuristics: the
most fit of the lowest complexity and the most fit overall.

In order the evaluate the results found, we measure the
complexity of a heuristic. For the remainder of the paper,
complexity will refer to the sum of the number of clauses and
number of actions (including the default action) of a heuristic.
Although this evaluation does not take into account that some
clauses or statements might be harder than others to parse for
humans, it provides a good approximation of the amount of
information that is represented.

A. Flop

Figure 2 shows the lowest complexity most fit heuristic for
the Flop round. This heuristic raises if it is currently holding
a hand with a pair or higher and checks/calls otherwise. Since
the heuristic was trained in games that end after the Flop,
holding a pair at this stage of the game can be a powerful
hand, but one that can lose strength if play was to move past
this round. Since there are still 2 cards left to be dealt to the
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if HandRank ≥ Pair then RAISE
else if TotalPot ≤ 2 then RAISE
else if Outs ≥ 11 then RAISE
else CHECK/CALL

Fig. 3. Most fit heuristic for Flop round. It has a complexity of 7. Found by
Genetic Programming, fitness is approximately 1.28.

Fig. 4. Plot showcasing the relation between fitness and complexity for
the heuristics found for the Flop round. The Y-axis represents fitness and
X-axis represents complexity. Each dot represents 1 heuristic. The red line
is an approximation of the skill chain found from the heuristics generated.
Heuristics found with fitness bellow 0.8 were omitted from the graph.

board, a pair would beat other hands that have a higher reward
expectation in the long run, such as a hand that is 1 card away
from making a Flush.

This heuristic having positive fitness (as observed with other
heuristics shown for Flop and River) indicates that it beat the
opponent agent over time, but since play is cut short and later
betting is skipped, it cannot be pointed as an indication that
this heuristics dominates the opponents strategy.

In contrast, Figure 3 demonstrates the most fit heuristic, of
complexity 7, found for the Flop round. The heuristic raises
on any hand that has a pair or higher. The second statement
represents a very specific scenario, the only sequence of
actions that reach the Flop with total pot being 2 or lower
is when all players have only checked/called in the Pre-Flop.
The third statement clause checks for a state that is very
advantageous to the player. If the player has 11 or more outs
during the Flop, considering that at this round the deck has 45
cards and 2 more cards will be added to the board, it means
that approximately 25% of the deck will improve the player’s
hand. Raising the pot is a strong action in these conditions.

Worth noticing is that both heuristics shown share the same
first statement. This means that it could be possible to reach the
best heuristic found by iterating on the best simplest heuristic.
However, it is unlikely that the Greedy Exhaustive Search
would have reached this result, specially considering that the
second statement covers a very small part of the space of
possible game states.

Figure 4 displays the relationship between fitness and com-

if HandRank ≥ TwoPair then RAISE
else CHECK/CALL

Fig. 5. Most fit least complex heuristic for Turn round. Found by Exhaustive
Search, fitness is approximately -0.61.

if HandRank ≤ HighestCard then CHECK/CALL
else if isBoardDry then RAISE
else if totalPot ≥ 31 then CHECK/CALL
else if HandRank ≤ Pair then CHECK/CALL
else RAISE

Fig. 6. Most fit heuristic for Turn round. It has a complexity of 9. Found by
Genetic Programming, fitness is approximately 0.56.

plexity for the heuristics we generated. We can observe a
fitness increase from complexity 3 through 7. While moving
from complexity 3 to 4 grants a small gain in fitness, the
greatest gain comes from reaching complexity 5. This can be
explained by observing that while heuristics of complexity 3
and 4 have 1 statement, the best of complexity 5 has 1 more.

It is also worth noting that the peak of the graph is present
on complexity 7, despite there being plenty of samples for
complexity 8 and 9. It is unlikely that there are no heuristics
of higher complexity that can outperform the current peak. It
is also easy to construct heuristics of higher complexity that
simply imitate the functionality of lower-complexity heuristics.
It is very likely that additional search time will allow to us
find heuristics with higher complexity of at least equivalent
fitness. We can extend this concept to explain the sharp drop
from complexity 10 to 11.

B. Turn

When observing the most fit simplest heuristic for the Turn,
showcased in Figure 5, we can notice a similarity with the
heuristic for the Flop. Changing from raise on pair or higher
to raise on two pair or higher models a more conservative
playstyle. Furthermore, it is noticeable that the fitness that
before was positive is now negative. It indicates the opponent
agent becomes harder to exploit further into the game.

The most fit heuristic for the Turn, represented on Figure
6, is the most granular of the ones detailed in this paper. The
first statement has the players checking/calling if they reach
the Turn and don’t even have a pair. Next, it evaluates if the
board is dry, and if so chooses to raise. This means it raises if
it is holding a pair or higher and the board is dry, which puts
the player in a position that seems advantageous. It proceeds to
check/call if the total pot is greater or equal to 31 Big Blinds,
which would indicate that the opponent has been constantly
investing in their hand. In the case that the pot isn’t as great,
and the board is wet, it chooses to be slightly conservative
and check/call if the best it has is a pair, otherwise it will
raise. The heuristic has a positive fitness, meaning it is able to
exploit the opponent in a more advanced stage of the game,
but only by half the margin that we have reported for the Flop.

When comparing the plot for Turn, shown on Figure 7, and
the Flop plot, we notice 2 main differences. The first being the
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Fig. 7. Plot showcasing the relation between fitness and complexity for
the heuristics found for the Turn round. The Y-axis represents fitness and
X-axis represents complexity. Each dot represents 1 heuristic. The red line
is an approximation of the skill chain found from the heuristics generated.
Heuristics found with fitness bellow -0.7 were omitted from the graph.

if HandRank ≤ Pair then CHECK/CALL
else RAISE

Fig. 8. Most fit least complex heuristic for River round. Found by Exhaustive
Search, fitness is approximately -2.27. This heuristic is analogous to the one
shown in figure 2.

sharp increase that was from complexity 4 to 5 repeats, but
is followed by another sharp increase from 5 to 6. The other
is that there is a gain from incrementing complexity from 3
all the way to 9. It is possible that since the Turn states have
more information, an extra card on the board, than the Flop
it reflects on the space of viable good heuristics, making it
easier for an algorithm such as Genetic Programming to find
good individuals. Another observation that is worth making is
how the fitness interval shifted, going from -0.6 to 0.6, when
compared to the all positive interval of the Flop graph.

C. River

The most fit least complex heuristic for the last round of the
game, the River, show on Figure 8, is the exact same found
for the Flop and shown back on Figure 2. Despite playing
exactly the same, the fitness is considerably smaller, going
from 0.89 in the Flop to -2.27 in the River. This is likely due
to the opponent agent having had the chance to play the game
from start to finish, making it considerably more efficient than
when the future betting rounds were skipped. Another detail
to notice is how the best complexity 3 heuristic became more
conservative only for the Turn, that is due to there is still being
a lot of opportunities for improvement after the Flop and that
the potential positive return of checking/calling with a pair or
lower outweigh the negative return of folding at this stage.

The most fit heuristic for the River, shown on Figure 9, has
2 unique features when compared to all the others we analyzed
so far: it is the only heuristic that folds and is the only heuristic
to observe the opponents last action. The heuristic starts by
evaluating if it the best hand it has is only a highest card and in

if HandRank ≤ HighestCard AND OppAggressive
then FOLD
else if HandRank ≤ TwoPair then CHECK/CALL
else if totalPot ≥ 26 then FOLD
else RAISE

Fig. 9. Most fit heuristic for River round. It has a complexity of 8. Found
by Genetic Programming, fitness is approximately -0.41.

Fig. 10. Plot showcasing the relation between fitness and complexity for
the heuristics found for the River round. The Y-axis represents fitness and
X-axis represents complexity. Each dot represents 1 heuristic. The red line
is an approximation of the skill chain found from the heuristics generated.
Heuristics found with fitness bellow -2.5 were omitted from the graph.

case that is true and the opponent is being aggressive with their
last move. In that case it decides to fold. It is counterintuitive
that folding is only part of any heuristic when we reach the last
round of the game. It proceeds to Check/Call if it is holding
two pairs or lower. Lastly it once again folds if the pot is
above 25 Big Blinds, otherwise it raises.

By analyzing the graph for River heuristics, shown on
Figure 10, we observe that it fits somewhere in between the
2 previous. There is only 1 sharp increase, from complexity
4 to 5, but it peaks at complexity 8, with complexity 9 being
considerably close in fitness. The unique feature of this graph
is that the fitness interval is completely negative, meaning no
matter which of the heuristics found we play, we’ll lose money
to the opponent agent. This corroborates our hypothesis that,
when it is able to play the full game plan, from start to finish,
the Opponent Agent’s strategy becomes less exploitable than
when skipping later betting on previous rounds.

D. Playing the full game with heuristics

With the results from our work on Pre-Flop heuristics [19]
and the ones just presented, we raise the question: How well
can we play the game using only our heuristics? A complete
exploration and discussion of how to approach this is out of the
scope of this work, but we are interested in briefly discussing
the most naive approach to this: Play each round of the game
with the most fit heuristic we have found for that round.

Using this method, we played 400,000 games between our
best heuristics (the single best heuristic for each phase) and
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our opponent agent. To our slight surprise, the set of heuristics
outperformed the opponent agent, with a fitness of 3.43. Our
best explanation for this is that the heuristics, which have
only been trained on this particular agent, have overfit to that
agent and learned to exploit it. An alternative explanation is
that the representation used to create the opponent agent is
too limited, and that the heuristic representation, despite its
apparent simplicity, is capable of learning powerful strategies.

Even though our multiple heuristic player performs well
against the Opponent Agent, it remains much more vulnerable.
This is due to the fact that our heuristics are deterministic; if
the opponents are able to read the heuristics play style, they
will be in a very good position to exploit it.

VIII. CONCLUSION

In this paper we presented techniques for generating simple
novice-level heuristics for the Post-Flop rounds of Heads-Up
Limit Texas Hold’em. We utilized 3 different algorithms to
find such heuristics, with Genetic Programming being the
most successful at generating the more complex heuristics
and Greedy Exhaustive Search being the most practical for
generating the simplest of 1-statement heuristics.

We then proceed to analyze the most fit simplest heuristic
and the most fit of heuristics found for each of the 3 Texas
Hold’em rounds being discussed. We observed and compared
their differences and made an attempt at creating a parallel
with the thought process behind the decisions the heuristics
make. We also discussed the plots of fitness x complexity
for the heuristics found for each round, and the curve that
approximates the skill chain [20] for each. The graphs also
helped observe the differences the games’ design brings to
each individual round of the game.

Lastly, we proposed a naive approach to build a strategy
for the full game from only the heuristics we have found. By
selecting the most fit heuristic of each round, we obtained a
large positive reward against the same opponent the heuristics
were trained in. This raises the question of if our heuristics
learned to do better than expected, or whether the heuristics
found were overfit to beat that specific opponent. The answers
to these question are out of the scope of this work and will
instead be proposed as future work.
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Abstract—This work proposes a new approach for the graph-
based procedural level generation for games, through evolution-
ary algorithms. The levels are encoded as a graph structure
inspired by the concepts of a scale-free network. A scale-
free network lacks an internal scale as a consequence of the
coexistence of nodes with different degrees in the same network.
This approach aims to avoid the generation of linear, repetitive
and grid-like levels, giving the algorithm additional freedom to
explore the search space for diverse solutions. The algorithm
was designed to provide a smooth mixed-initiative authorial
control, allowing the designer to adjust constraints parameters,
input aesthetically desired properties, manage critical contents
of the level and even edit edges and nodes in a drag-and-drop
manner. The results show that the algorithm can evolve scale-
free structures with moderated nonlinearity, which is taken as
an ideal measure for game levels that feature player progression
like lock-and-key puzzles.

Index Terms—procedural content generation, scale-free net-
works, evolutionary computation

I. INTRODUCTION

In the field of Procedural Content Generation (PCG) for
computer games, one of the most common generation prob-
lems is the automated creation of levels [1]. Here, a level
is defined as the spatial environment where the players can
walk through during the gameplay. Despite being a common
problem, the task of generating a reasonable level is still hard
and it is usually handled by search-based methods, such as
Evolutionary Algorithms (EA) [2].

One of the benefits of using PCG for the creation of
computer games is the expected reduction of the costs in
the team’s budget [3]. There are also other benefits like the
diversity of the solutions, the rapid content generation, and
others. However, despite such good benefits, complete search-
based level generators are still unpopular in the industrial field
[4], in comparison with simple single content generators such
as SpeedTree [5]. A possible reason for this unpopularity is
the lack of control that human designers can exert on the
creative process and the unpredictable nature of the stochastic
metaheuristics used.

Therefore, a desirable property of PCG techniques is called
controllability, defined as the ability to control the generation
process, setting desired aesthetical features, evaluation metrics,
among other essential characteristics [1]. In such scenario, the
system can run entirely independent or aided by a human
designer in a mixed-initiative approach [6].

The goal of this paper is to provide a mixed-initiative tool
for generating game levels, providing an improvement to the
state of the art solutions. To demonstrate the method, we
defined the level as a three-dimensional dungeon, a typical en-
vironment to adventure games or Role Playing Games (RPG)
styles. In this dungeon, the player must reach a goal, moving
through the rooms and eventually solving some puzzles. These
puzzles can be in a lock-and-key style, where the player needs
to find a key to proceed.

There are a few successful examples in literature, such as
the already mentioned works [3], [4]. Though, these works
usually generate maps with predictable degree distribution
among the nodes, consequently resulting in solutions with
reduced diversity in the overall dungeon topology.

This paper presents a novel approach, representing the
content as scale-free complex-network [7], instead of using
graph grammar-based solutions [8] or other grid-like and tile-
based mechanisms [9]. Our results show that the proposed
method can evolve diverse, resolvable, compact and nontrivial
solutions with user-controlled nonlinearity and desired aesthet-
ical characteristics. The developed code is available at our
GitHub repository1.

II. RELATED WORK

As already mentioned, there are many successful methods
for the procedural level generation problem, through a wide
range of different techniques, which are not confined to just
EA [1]. For example, in [10] the authors used a Cellular
Automata model to generate caves. Despite its efficiency, it
is tough for the designers to control the generation process
and define the attributes of the output content.

Recently, some papers have used graph grammars to gener-
ate levels for adventure games [3], [4], [11]. In such models,
the graph structure represents first a mission (or a quest) plot
that motivates the spacial level generation. Thus, driven by
missions, the algorithm can generate meaningful levels.

Other similar works [12], [13], also consider a story plan
at first place, using tree structure to represent levels, which
is also the genetic representation. Probably, the most similar
work is [14], where the authors used a graph to describe a 3D
dungeon and the contents were generated considering a set of
constraints.

1https://github.com/KuruLab/ScaleFreeMapGenerator
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Different from the papers mentioned above, this work does
not focus on the mission, quest, or story plan as a motiva-
tion for the level generation. Even in featuring lock-and-key
puzzles, the puzzles do not motivate the algorithm’s creative
process. The lock-and-key puzzles are taken as a secondary
step in the individual decoding. However, we do not discard
the possibility of implementing this successful idea in future
works.

On the other hand, all the mentioned works, including [14],
share a common limitation: the level topology consists of a
grid or follows predictable rules. Especially in [13], there is
an explicit grid mapping stage. Consequently, it is possible
to figure out not just a pattern in the degree distribution
of the rooms (as nodes of a graph), but also the angular
orientation of the room’s connections. In this paper, we focus
on the generation of the spatial level itself, proposing a novel
individual representation, inspired by scale-free networks [7],
which does a step forward to overcome such limitations.

In this paper, we consider the lack of topological diversity
as a drawback that we attempt to overcome. For example, in
[3], the dungeons are generated for Zelda-like games [15],
but the grid-like shape of the resulting levels converts it into
an ad-hoc application. It works for Zelda-like rooms, but it
may fail in producing 3D levels for realistic adventure games,
where not all the rooms are arranged orthogonally.

The graph grammar-based level generators evolve levels
where the number of connections between nodes happens
predictably. In such cases, there is only one connection in
each cardinal direction, and it is barely possible to see levels
featuring simple diagonal connections. Additionally, fixed pa-
rameters set the number of nodes or the level dimensions. This
work can overcome these limitations, showing solutions fea-
turing free-form topology, which in turn can be controlled by
a human designer, with granted resolvability and nontriviality.

III. BACKGROUND

A scale-free network is a type of complex network that has
the connections (edges) between its nodes determined by a
stochastic algorithm. The nodes in this network are inserted
one by one, and whenever a new node is inserted, it makes
m, m ≥ 1, connections with other nodes already existing in
the network. The node to which the new node will connect is
determined probabilistically. The probability to connect to a
node is proportional to the number of connections it already
has (degree). As the number of nodes in the network grows,
the trend is that a few nodes will have the most significant
number of connections, usually called hubs.

The inspiration in this model is justified by its capabilities
to describe networks that grow infinitely (in theory). Addi-
tionally, it is not possible to predict the average degree of the
network as it grows, hence the name scale-free. Accordingly
to Barabási, “the scale-free name captures the lack of an
internal scale, a consequence of the fact that nodes with widely
different degrees coexist in the same network” [7].

The traditional Barabási-Albert model constructs the net-
work in a stochastic way, but in [7], chapter 5, an alternative

deterministic model is presented, oriented towards optimiza-
tion in real-world applications, taking into account Euclidean
distances between the nodes. For this reason, in this work,
we adopted the mentioned network model. In this alternative
model, hubs feature a basin of attraction that lures nearby
nodes to link (i.e., create an edge) to it [16]. An iterative
process builds the network. On each step, a new node is
inserted in the network at random positions and attach itself
to already existing nodes. The parameter m, (m ≥ 1), defines
the number of new links. The m new links from the new node
i are created based on cost function [16]:

Ci = minj [δdij + hj ], (1)

where dij is the Euclidean distance between node i and a
candidate node j, already inserted, hj is the network-based
distance (path cost) from node j to the very first inserted
node, considered as an ideal network center. Thus, the new
node i will link itself to the least cost node j. The δ factor is
related to the strength of the basin of attraction. For example,
if δ = 0, the Euclidean distances are irrelevant. Hence each
node links to the first central node, shaping the network as a
star. It happens because of h0 = 0, and so the central node
is always the best one. Star topologies can be observed for
δ ≤ (1/2)1/2. However, for large values of δ, each node is
connected to the nearest neighbor, because the contribution
provided by the distance term δdij , in (1), dominates hj . In
this case, the network will have a random topology. On the
other hand, Barabási guarantees that the deterministic model
can present the same characteristics of a scale-free network
for 4 ≤ δ ≤ N1/2, where N is the total number of nodes.
Therefore, the oblique boundary of the scale-free regime is
δ ≤ N1/2.

The power law distribution in this model has its origin tied
to both optimization and randomness, even without a stated
probability function. It is known that these mechanisms lead
to linear preferential attachment, as assumed in the referred
Barabási-Albert model. The read of [7] is strongly suggested
for a better understanding of such complex models.

IV. PROPOSED APPROACH

In the this section, we describe our proposed approach,
detailing the adopted network model and the implemented
Evolutionary Algorithm (EA).

A. Network Model

In this work, our adopted network model differs briefly from
the method described in Section III. Basically, we did two
minor changes:

• First, instead of disposing a node at a random position,
the node positioning is defined by evolutionary means.

• Second, each new link is created with a probability p` =
1/`, where ` is the link number, such that 1 ≤ ` ≤ m.

For example, for m = 2, the first link (` = 1) is always
guaranteed to exist, since p1 = 1, but the second link (` = 2)
has a p2 = 0.5, thus having half chances of not existing. Since
m = 1 results in an acyclic graph, the default value for this
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parameter is m = 2. As δ ≤ N1/2, and because we deal with
networks as small as 25 nodes, the δ value was fixed in δ = 5
in this whole work.

In this abstraction of the level as a complex network,
the nodes of the network correspond to physical regions in
which the player can walk, and the edges correspond to the
connections between those regions. It is possible to imagine
different ways of mapping the network graph in a 3D game
level. For example, a single door can represent a connection
between two rooms, as well as a bridge (between two sides
of a river), a road (between cities), and so on. In this work,
we consider an adventure game, where the level is a dungeon,
consisting of rooms (nodes) and corridors (edges) at their most
basic abstraction. However, it is easy to extend this work for
other level abstractions and game genres, with minor changes
in the proposed generator code, since its output is just a
network description.

All network data is stored in JSON formatted files, allowing
easy human reading and writing, as well as compatibility with
several other systems and languages. The Unity3D2 game
engine does the network mapping into a virtual representa-
tion as a 3D game level, using a deterministic algorithm,
implemented in C# language. Thus, C# scripts interpret the
data from a JSON file and create the 3D environment with
the characteristics described above: nodes are parsed into
rooms and edges are parsed into paths connecting the rooms.
When the game scene is loaded, the player is automatically
positioned at the center of the start room. The goal of the level
is to reach the boss. However, there are many locked rooms
and the path to the boss may not be trivial. To overcome
this problem, the player should find keys along his path to
unlock the rooms and find a way to the boss. This simple game
description imposes a few inherent rules that are not present
in the scale-free network model. These rules are handled as
problem constraints, which we discuss below.

B. Emergent Constraints

Complex-networks often show many intriguing structures
of edges sharing the same source node. In the abstract space
of a network, represented by a graph, a vertex does not have
physics or doesn’t occupy space. The same applies for an edge.
Thus, in a visual representation of a graph, if an edge crosses
another edge, it does not mean the edges are connected, cause
edges do not link with other edges, but only vertexes. Even if
an edge crosses another vertex, it is possible that this vertex is
neither source (origin) nor the target of the edge. Therefore,
in the geographical (virtual) representation of a network, if
there is no treatment to such conditions, it is possible to have
corridors blocked by room walls (without doors, because they
are not connected), which could break the level, making it
unsolvable. Additionally, edges crossing might be translated
into unpredicted corridors crossing, creating shortcuts, which
in turn can trivialize the level. It is also possible to imagine
other undesired situations.

2Unity3D: https://unity3d.com

To avoid the problems described, there are three constraints
related to nodes and edges geography. First, nodes cannot have
any overlapping internal area, although they can share a wall.
Second, edges cannot intersect nodes or other edges and for
this purpose, not only the straight segment is considered, but
the area formed by the width per length of the corresponding
corridor. Third, if two nodes are connected diagonally, the
edge’s length must be higher than a minimum value (currently
defined as 5 meters). The third constraint was designed to
prevent the installation of doors in improper positions, when
the connected rooms are sharing a corner. However, it can be
removed in future versions if a better algorithm for parsing
edges into corridors is conceived. Currently, the corridors are
straight paths, without corners or curves.

There is a fourth constraint: the number of nodes must be
higher than a predefined minimum. It was created to avoid
the generation of tiny dungeons and to prevent the network
from running out of the scale-free regime (remember 4 ≤ δ ≤
N1/2), ending up in a random or a star shape. We also define a
maximum number of nodes, to prevent a network overgrowth,
despite the fact that it is doubtful to happen.

Since scale-free networks inspire this design, there is no
restriction to the number of edges or degree of the nodes.
However, in practice, the constraints mentioned above end
up forcing the algorithm to avoid high degree nodes, since
the excess of adjacent rooms may eventually violate some
constraint (especially if we consider that the corridors have
a fixed width). Similarly, the length of a corridor is unlimited,
but it is worth remembering that the more extended its length,
the higher the chances of intersecting with other corridors or
rooms.

C. Content Representation

The system’s goal is to produce a game level for an
adventure game. The level is, in turn, built by parsing a
complex-network into a 3D virtual environment. However, the
individual phenotype is the network structure and not the game
level itself. Following, we describe the genotype encoding and
the decoding process.

There are many successful proposals of how to represent
a network as an individual. For example, [17] presented the
Node-Depth Encoding (NDE) for network design problems.
Despite the reported NDE efficiency for building minimal
spanning trees, it is suitable for producing acyclic graphs.

In this work, the acyclic graph generation is considered as
a drawback, since it results in a level featuring a linear player
progression, a feature that we attempt to avoid. Thus, cyclic
graph representation is desirable, due to its potential to pro-
duce more alternative paths to the player’s goal. Additionally,
the generation of edges by evolutionary means and not by
the methods described in Section IV-A can compromise the
scale-free network characteristics, unless we design the genetic
algorithm explicitly for this task (which is not the case). For
this reason, we decide to omit the edges in the encoding of
an individual. In other words, the genotype of an individual
consists of only an array of nodes.
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Under these circumstances, to build up an entirely connected
graph that represents a dungeon, the decoding process has two
sequential steps:

• The connection step, to link the nodes.
• The dungeon step, to create a lock-and-key puzzle.
The connection step follows the method described in Sec-

tion IV-A. Consequently, the evolutionary process has the task
of finding suitable positions for the rooms of the dungeon.
However, the scale-free regime takes not only the nodes’
coordinates but also their order. In the i-th iteration, the i-
th node is inserted. The method considers the first node as
the network center and the most critical node, since each
subsequent node will take into account the cost to connect
to it. Also, while forging the new links, it computes the cost
function (1) only for the previous nodes, i.e., for the nodes
that are already present in the system. Thus, the order in
which the nodes are arranged in the genetic material matters.
Hence, the EA is responsible for not only optimizing the nodes
positioning at the virtual space but also the nodes ordering at
the encoding array.

In [17], the authors also point that the generated graphs may
be very different from their parents, depending on the adopted
representation. As a consequence of this inconvenience, the
algorithm may present a very slow convergence. In fact, it is
expected that, in a suitable representation, small changes in
the genotype results in proportionally small changes in the
phenotype and the fitness value, thus, preserving the principle
of locality. According to Section IV-A, our decoding process
establishes the number ` of links of a new node randomly.
Therefore, a child that receives a node may generate a different
number of links for that node. In other words, the same node
set may show a different edge set within different individuals,
which is considered to be a problem.

To solve that problem and preserve the desired properties,
we control the randomness of the connection step. The pseudo-
random number generator takes a seed as input. This seed is
the hash code computed over the node coordinate set. By this
way, two nodes at the same (x, y, z) point (even if in different
individuals) produce the same hash code. Consequently, as the
seed is the same, both nodes share an equal number of links.
Hence, the genotype-phenotype mapping problem is solved.

When the connection step is complete (i.e., all nodes are
inserted and all edges are computed), there dungeon step
starts. The network is submitted to an extended version of the
MetaZelda3 project. The MetaZelda project is a Java program
used to create Zelda-like dungeon scratches. It iteratively
creates nodes in a tree structure to ensure a connected dungeon
of predefined size. Then, it generates a lock-and-key puzzle,
while ensuring resolvability and finally converts the tree into a
graph. In our extended version, the graph was already created
by the previous connection step. Instead of building a new
random tree, it generates a spanning tree from the given
connected graph. Based on this tree, it then creates the lock-
and-key puzzle, defining the start room, the goal room, the

3MetaZelda GitHub: https://github.com/tcoxon/metazelda

keys and doors disposition. Finally, the edges outside the
spanning tree are fixed to prevent the dungeon trivialization
(i.e., it places proper doors if necessary).

The idea of using an extended version of MetaZelda was
just to test the nonlinearity capabilities of the initial results.
However, doing this process for every individual in the popu-
lation, in every decoding, is not an efficient practice, since the
population may contain unfeasible solutions that cannot even
hold a puzzle. Despite being very useful at first moments, the
MetaZelda mechanisms are not based on search algorithms.
Thus, in future versions, we consider delegating this task to
another search-based process. For example, in [9], the authors
used cooperative coevolution to evolve vital elements for a
game level, in which each subpopulation was designed to
evolve just a particular kind of content.

D. Evaluation
Although some restrictions have been presented in IV-B,

the evaluation function has not been defined yet. For each con-
straint, there is a penalization method that measures how much
the individual violates the restriction. That is, the algorithm
allows the existence of infeasible solutions, but penalizes them,
so that their probability of survival is low. At its basic level,
the algorithm’s goal is to minimize the penalization value.
For this task, the results of the four penalization methods are
summed up without any distinction between them. However,
there are other objectives, called design preferences that we
discuss ahead.

In [18] and [3], the authors defended the idea of building
a user-friendly system, which allows the designer to control
the content generation. In this work, we applied the same
principles to implement a collaborative mixed-initiative design
process. There is a graphical user interface in which a human
designer can add objectives and tweak several parameters at
runtime. The user interface is built over the GraphStream4

framework. This framework provides graph viewers where
the human designer can manipulate vertexes by clicking and
dragging with a mouse. Additionally, in the user interface,
the designer can toggle on or off the presence of design
preferences that affect the individual evaluation.

There are currently four design preferences. They were
initially conceived to work independently. Nevertheless, they
can provide exciting results while working together. Instead
of using a Multi-Objective approach [19], it was decided to
keep with a single objective algorithm that first prioritizes the
minimization of the penalizations and then takes the design
preferences into account as a tiebreaker (or a second fitness
function). The idea was to keep the algorithm simple enough
at early stages of development and evaluate the effect of the
design preferences over the evolutionary process. However,
we do not discard the possibility of extending each design
preference as a new objective, driving the problem to the
many-objective optimization field [19].

The first design preference is to maximize the number of
existing nodes in the network. Thus, if two individuals with

4GraphStream: http://graphstream-project.org/
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zero penalization (or equal) are competing for survival, the
tiebreaker consists in prioritize the individual with more nodes
(N ). The idea of this measure is not to say the more rooms,
the better, but to investigate how much the individual can grow
within our network model (see IV-A), without violating any of
the mentioned constraints (see IV-B). It is challenging to define
the ideal number of rooms in a dungeon or set the bounds of
minimum and maximum values. That relies on personal feeling
and can vary drastically from game to game. While in [18] a
procedurally generated dungeon presents 27 rooms, in [3] the
authors takes as reference the Gnarled Root Dungeon, from
The Legend Of Zelda: Oracle of Seasons [15], with only 20
rooms. In this work, we set the minimum as 25 and maximum
at 100, and it does not require formalization.

It is important to highlight that the network has no bounds
for its geographical space. Thus, the second design preference
is the minimization of the all-pairs Average Shortest Path
length (ASP) , in an attempt to control the network geography,
preventing the existence of long edges. We formalize the ASP
as follows [7]:

ASP = (N(N − 1))−1
∑

dij , (2)

where N is the total number of nodes, and dij is the travel
distance of the shortest path from node i to node j, i 6= j,
which is in turn computed by the GraphStream’s A* algorithm.
We chose the ASP metric based on the fact that it carries more
information about the network than just the edge’s length. By
trying to minimize the ASP, the algorithm is indirectly creating
convenient edges between scattered nodes. Those additional
edges may even help the generated dungeon to feature a higher
number of alternative paths. Consequently, the adoption of this
metric can circumvent the generation of linear levels.

One of the desired properties of a procedurally generated
content is its creativity and believability, or the ability to
seems like a computer did not create it, but a creative human
artist [1]. Human-designed artifacts usually present patterns,
symmetry, and familiar geometrical shapes. The third design
preference relies on this aesthetical field. It is called Undesired
Angular-difference Sum (UAS), and as its name suggest, the
algorithm attempts to minimize it. The user specifies an array
A = {a0, a1, . . . , aj} of desired angles (in degrees). For each
edge i, the algorithm computes the absolute difference between
the edge’s rotation θi, 0◦ ≤ θi ≤ 180◦, and each element in A
and, then, picks the minimal value. This UAS value is the sum
of all minimal results. If θi matches with a specified angle aj
(i.e., θi = aj), the minimal difference is zero, and so it takes
no effect on the UAS. We formalize the UAS as follows:

UAS =
E∑

i

minj [|θi − aj |], (3)

where E is the total number of edges and aj ∈ A. While
trying to minimize the UAS of the individuals, the algorithm
produces solutions that fit the designer aesthetical preferences.
It is important to remind that one of the primary goals of
this approach is to evolve solutions that feature a free-form,

avoiding the grid-like shaped answers present in literature [18].
However, the designer controllability is also a primary goal,
and this method gives him the power to influence the evolution
of the dungeon geometry. Furthermore, to keep the free-form
pattern, the designer can just turn off the UAS minimization.

Finally, the last design preference is the Distance from the
Ideal Nonlinearity (DIN) value, in which the algorithm also
attempt to minimize. In this context, a nonlinear level is a level
that features path backtracking to solve it. In the MetaZelda
project, the nonlinearity score, NLactual, is defined as the
number of times a player must walk through each room after
its first encounter, on the shortest path through the dungeon.
In [20], Mike Sout discuss the concept of nonlinearity present
in Zelda dungeons. Despite considering a linear level design
as a bad feature that we aim to avoid, although, we agree
with the author’s general idea: high values of nonlinearity
are undesirable. For instance, the Gnarled Root Dungeon,
discussed in [3], has a nonlinearity score of 3 (NLactual = 3).
For this reason, the default value of the ideal nonlinearity
NLideal parameter is set to 3. We formalize the DIN value
as follows:

DIN = |NLideal − NLactual|. (4)

It is important to remember that each of the four mentioned
design preferences could be turned on or off at the runtime.
By this way, it is possible for the designer to change the
fitness function at the 50-th generation, for example, forcing
the current population to adapt to the new environment.

E. Genetic Operators

Due to the chosen individual representation, the rest of the
genetic operators are easy to conceive and understand. The
individuals undergo selection employing a Binary Tournament,
in which two individuals are compared, selecting for mating
the individual with the best fitness.

The crossover has probability ρc = 0.9 and occurs with
a random cut-off point, producing two children consisting of
the permutation of the elements. On important detail is that
the number of nodes in each individual is undefined. For this
reason, it is necessary to treat this cut-off point so that it does
not exceed the size of one of the individuals. It is important
to mention that the simple cut-off point can cause identical
nodes, commonly shared between parents, but at different
positions of the array, to be both passed to a single child,
creating redundancy. For the evolutionary algorithm, this is
not a problem, because the first constraint (the restriction of
intersection area between nodes) penalizes this solution.

The mutation of each child generated occurs with a global
probability ρm = 0.1. There are four mutation operators, all
with the same ρm/4 probability: (i) adds a new randomly
generated node; (ii) removes a randomly selected node; (iii)
exchange the position of two randomly chosen nodes; (iv)
disturbs the coordinates (x, y, z) of a randomly selected node.

It is worth mentioning that the coordinate system starts
at the point (0, 0, 0), and there is no negative coordinate.
There is a bsize border value that applies to the x and
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y axes. Therefore, the minimum coordinate for a node is
(bsize, bsize, 0). However, there is no maximum coordinate,
and the individuals are free to expand its dimensions as much
as possible. The width and the height of an individual are
defined by the farthest node in the respective axis.

Each coordinate has a parameter that controls the possible
tweaking values during the mutation operators. These are
the parameters vx, vy and vz . They refer to the maximum
perturbation that a coordinate can suffer, both positively and
negatively, in said axis, concerning the global dimensions of
the level. The limits of the perturbation can be computed as
boundsx = x± ((vx− 1)×width) for the x axis. Thus, in
each mutation, a level has the potential to enlarge or reduce
its dimensions, proportional to the value of these parameters.

There is also a refinement operator, which runs with prob-
ability ρr = 0.01 on each individual. The refinement consists
of a first improvement heuristic that attempts, iteratively, to
reposition the nodes in supposedly ideal positions. If the
repositioning of a node results in a reduction in fitness, then
the modification is accepted. Otherwise, it discards the change.
The refinement ends when no development is found in the
neighborhood structure around the solution in improvement.

After each improvement on the best fitness value found so
far, the respective best individual is submitted to the refinement
operator with ρr = 1.0, and then it is stored in an archive.
At the end of the reproduction steps, each child overtakes its
parents’ position in the population. There is no elitism. The
algorithm has a population of µ = 100 individuals and runs
for a maximum of g = 100 generations.

V. COMPUTATIONAL EXPERIMENTS

In this Section, we present the computational results of the
conducted experiments. It is important to remind that, even
producing a 3D level, the algorithm is not working over the z
axis yet, and so vz = 0. It is also important to remember that
there is no restriction on the maximum length of an edge, but
there is the minimum value, dmin = 5, which only applies
in a particular case (corner encounter), described in Section
IV-B. The size of a room, in the current version, is normalized
automatically, based on the node degree, taking into account
the parameters Smin = 15 and Smax = 30.

Since there are four metrics to evaluate a solution, in
this work different scenarios were considered, in which the
configuration of the evaluation function is varied. In the
standard scenario, all four metrics work together. In this
case, the desired angle set is A = {0◦, 90◦, 180◦} (orthog-
onal connections). Despite trying to avoid grid-like levels, in
general, here we want to prove that the algorithm can find
solutions featuring connections approximately at any desired
angle set, including grid-like shape if the designer wants to.
The Table I presents the results of a total of 30 runs of the
standard experiment. It distinguishes the minimum, mean (and
standard deviation) and maximum values, for each metric,
independently. The N value is the number of nodes. The
area value (which is in the 105 scale) is not an optimizing
metric, but it is shown here to promote future comparison. The

TABLE I
STANDARD SCENARIO RESULTS

Metric Min Mean ± Std Max
N 25 25.033±0.183 26
ASP 260.836 320.888±41.642 419.523
UAS 28.093 80.036±33.547 149.619
DIN 0.000 0.000±0.000 0.000
Fitness 318.020 400.924±52.587 544.822
Area (×105) 1.6 2.9±0.8 4.8

algorithm successfully reaches a 100% accuracy regarding the
DIN metric, i.e., it always returned solutions with nonlinearity
score of exactly 3. The first impression is that the algorithm
is free to produce levels within the size bounds. However,
that cannot be observed. Even rewarding solutions with higher
N , the algorithm ends up minimizing N , reaching the lower
bound Nmin = 25 (or approaching, with 26 in just one case)
in all executions. This fact demonstrates the conflicting nature
of the valued metrics. To understand that, consider the ASP
minimization problem. The algorithm may create new edges,
which serves as shortcuts, in attempt to reduce the ASP value.
However, if the shortcut edge’s rotation does not match with a
desired angle in the A set, its creation results in a consequent
increase in the UAS value, thus increasing the fitness value.
By this way, reducing the ASP by creating new edges is not
that trivial task, since it may imply a worse fitness. Then, it
is necessary to find suitable positions in a matching rotation
to achieve a good trade-off between such metrics, of course,
taking care of every constraint. Alternatively, the algorithm can
just remove a node. There is no edge to a non-existing node.
Thus, there is no path, no rotation angle, no intersections, and
so on. Consequently, removing a poorly positioned node is a
more straightforward solution to achieve a higher fitness value.
Conclusively, by trying to minimize both ASP and UAS, the
algorithm also minimizes N , until the lower bound.

These results suggest that, due to the conflicting behavior
of the considered metrics, they may not be the most adequate
to meet the initial intentions for which they were designed.
The ASP design intentions were not just a compact level, but
a suitable set of edges, providing alternative paths. Thus, in
future versions, it may be considered a Pareto front, where
each metric correspond to an additional objective, instead of
a single objective function with tiebreakers.

In the second scenario, the fitness function consists of only
ASP and DIN metrics thus, removing the UAS and the higher
N priority. The idea of this experiment is to investigate the
effect of the ASP metric without the influence of the desired
angles. The Table II present the results of 30 runs of such
experiment.

Comparing Tables I and II, it is easy to see that the fitness
value has narrowed beyond what should be only by removing
the UAS value. That relies on the problem complexity. By
adding a new metric, the problem complexity increases, hence,
making it harder for the algorithm to find quality solutions, as
suggested by [3].
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(a) GraphStream’s Viewer (b) True Map (c) Unity3D’s Scene Editor

Fig. 1. Best individual from the ASP and DIN scenario.

TABLE II
ASP AND DIN SCENARIO RESULTS

Metric Min Mean ± Std Max
N 25 25.167±0.658 30
ASP 138.428 168.829±14.542 206.222
DIN 0.000 0.078±0.269 1.000
Fitness 138.428 168.906±14.498 206.222
Area (×105) 0.821 1.283±0.211 1.896

To illustrate a result of the current work, Fig.1 shows three
different versions of the best individual in the second scenario.
Figure 1a shows GraphStream’s version. In this figure, the teal
node, at the bottom right corner, is the starting point, while
the purple node, at the top right, is the boss (goal) room. For
each other node, the colors are a heat map of the relative
difficulties of the rooms in the dungeon, in such a way that:
green means easy; yellow means medium; red means hard.
However, despite computed, such difficulty is not yet taken
into consideration in this work, consisting of a feature out of
the scope of this paper. A few edges present a letter on it,
representing the required key the player must have to traverse
it. The same applies to the nodes’ letters inside the brackets.
Figure 1b consists of a true map representation, where the
actual dimensions of rooms and corridors are translated. The
teal room is the starting point, the red is the goal, the yellow
ones are the keys placing, and the blue ones are just normal
rooms. The normal letters mark the preconditions (i.e., the key
the player must have) to enter the respective room, while letters
between stars mark the actual key. Finally, Fig.1c shows the
same individual at runtime on the Unity3D’s scene editor. The
small red points are the doors, while the highlighted central
room is the network center (i.e., the first node).

Fig. 2. Third Scenario: the size of the best invididual over the generations

Finally, the third scenario was designed to investigate the so-
lutions’ growth capabilities. In this scenario, the ASP, UAS and
DIN metrics are toggled off. Thus, the fitness function consists
only in, first, minimize the violation penalties, including the
size bounds, and second, maximize N . There is no limit for
the level’s dimensions, which is directly influenced by the vx
and vy parameters. However, the insertion of a new node has
spatial implications, such that the higher the N , the harder it
became to add a new node without violating any constraint.
Thus, the complexity of the algorithm grows substantially as
N increases over the generations. Therefore, the algorithm
requires more generations to reach considerable high values
of N .

In earlier experiments, we believed that such spatial issues
could lead to a “practical bound” to the growth of individuals
and other scale problems. However, we were wrong about that.
In fact, for g = 100, the maximum value of N found was 48.
We decided to test different settings of vx and vy parameters
in several experiments, resulting in large and sparse maps.
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The results demonstrated that, even in a considerably large
(although undesired) area, the supposed practical bound of
N = 48 was still very consistent, thus, revealing its nature
does not rely on a dimensional problem, but on other evolu-
tionary parameters, such as the stopping criteria (g = 100). For
this reason, we decided to let the algorithm run for g = 1000
generations. With this extended stopping criteria, it is possible
to find solutions with up to 235 nodes.

The Fig.2 presents a scatter plot of the size of best individ-
uals found at its respective generation in another 30 runs. As
can be seen, the growth of N over the generations follows a
linear trend within the observed range. Thus, this result made
us to discard the idea that there is a potential problem between
the allocation of nodes and the spatial growth of the map.

It is important to mention that in all above experiments,
totalizing 90 executions, not a single violated solution was
returned, showing the strength of this model in finding quality
solutions. In general, we can affirm that the algorithm can
overtake the literature appointed limitations, however, pre-
senting its drawbacks regarding the higher complexity. Even
without using a search-based algorithm to build the lock-
and-key puzzles, the algorithm is successful in achieving the
desired nonlinearity score.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a novel approach for the graph-based
level generation problem. It distinguishes from the current
literature by using a complex network model, specifically the
Barabási-Albert scale-free model, to represent the procedurally
generated content, instead of tree structures, acyclic graphs
or graph grammar-based models. An EA was used to evolve
levels considering four penalization functions and four design
preferences. We also provided a user interface, where a human
designer can interact with to control the generation process.

In literature, the most prominent solutions usually are lim-
ited to create grid-like topologies for the dungeons. Often, the
rooms’ connections are tied to one neighbor in each cardinal
direction. The goal of this paper is to provide a tool that is easy
to use and can produce levels in a large variety of topologies,
either automatically or aided by a human designer. The results
indicate that the algorithm is successful in achieving this goal,
even considering different scenarios. However, the data shows
the algorithm suffers from a natural limitation: the addition of
one or more metrics in the evaluation function increases the
algorithm’s complexity, thus affecting the quality of the final
solutions negatively.

Shortly, we plan to extend the current version to a many-
objective approach, where each metric corresponds to an
objective. This extension will allow a better investigation of
the design preferences, due to its conflicting nature. Another
probable extension consists of delegating the task of creating
a mission plan, and the lock-and-key puzzles, to a separated
process, thus, simplifying the spatial level generator. Addition-
ally, it could be implemented another method to populate the
rooms of the dungeon, accordingly to the already computed
difficulty, providing an appropriated level of challenge. All

parallel processes can be integrated through a coevolutionary
approach or by a multi-agent system, where each process is
responsible for a specific task, but in cooperation with each
other to produce a complete solution.
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Abstract—Turn-based multi-action adversarial games are games
in which each player turn consists of a sequence of atomic actions,
resulting in an extremely high branching factor. Many strategy
board, card, and video games fall into this category, for which the
current state of the art is Online Evolutionary Planning (OEP)
– an evolutionary algorithm (EA) that treats atomic actions as
genes, and complete action sequences as genomes. In this paper,
we introduce Evolutionary Monte Carlo Tree Search (EMCTS)
to tackle this challenge, combining the tree search of MCTS
with the sequence-based optimization of EAs. Experiments on the
game Hero Academy show that EMCTS convincingly outperforms
several baselines including OEP and an improved variant of OEP
introduced in this paper, at different time settings and numbers
of atomic actions per turn. EMCTS also scales better than any
existing algorithm with the complexity of the problem.

Index Terms—game tree search, Monte Carlo Tree Search,
strategy games

I. INTRODUCTION

Computer programs typically play adversarial games with a
form of search, choosing paths to desirable future game states
as determined by e.g. a heuristic evaluation function. Monte
Carlo Tree Search (MCTS) [1], [2] is the state of the art search
framework for a variety of classical board games with moderate
branching factors of up to a few hundred [3], as well as many
card games, video games, and non-game domains [4].

However, most turn-based multi-action adversarial games
– games in which each turn consists of a sequence of atomic
actions, instead of just a single action – have much higher
branching factors. This class of games includes board games
such as Arimaa and Risk, mobile games such as Battle of
Polytopia, and PC games such as Civilization, XCOM, Heroes
of Might and Magic, and Into the Breach. A turn in a strategy
game could for example consist of moving nine units with
ten available actions each, resulting in a branching factor of
one billion. Vanilla MCTS cannot handle this complexity, even
with the help of various techniques for reducing the effective
branching factor. Finding a good action sequence for a single
turn, even without considering the next turns, is a challenging
search problem in such domains. That is the problem we
tackle in this paper. While some of the games in this class
feature indeterminism (e.g. Risk) or partial observability (e.g.
Civilization), our initial focus here is on deterministic multi-
action adversarial games with perfect information.

One possible approach is searching a tree in which each edge
represents an atomic action instead of a complete turn, resulting
in a much smaller branching factor, but also a much deeper
tree (see [5] for a similar trade-off). According to Kozelek [6]
and Justesen et al. [7] however, vanilla MCTS is often not able
to search the tree of its current turn deeply enough, and focuses
too much on optimizing the first actions compared to the last
actions. MCTS can be enhanced with pruning techniques that
make the search spend the same amount of time on each
action [8] – but this still suffers from the problem that MCTS
has to find the actions of its turn in a fixed order, so that
choices on earlier actions can influence later actions but not
vice versa. Justesen et al. therefore proposed a different, tree-
less search approach: Online Evolutionary Planning (OEP), an
evolutionary algorithm that treats atomic actions as genes and
complete turns as genomes [9], [7]. By searching over the space
of possible next turns with the help of crossover and mutation,
it can optimize each action equally and simultaneously. OEP
is the current state of the art in multi-action adversarial games.

In this paper, we propose an alternative approach called
Evolutionary MCTS (EMCTS), combining some of the features
of MCTS and evolutionary algorithms. It searches a tree
with nodes representing genomes (in multi-action adversarial
games: complete turns instead of partial turns, or the states
resulting from them), and with edges representing mutations of
those genomes (in multi-action adversarial games: mutations of
turns instead of additional atomic actions). EMCTS therefore
explores the mutation landscape of evolutionary algorithms
in a systematic, best-first manner, providing evolution with
lookahead search.

We use the same testbed game as Justesen et al. [7] in
this paper: the turn-based multi-action adversarial game Hero
Academy. We also introduce an improved variant of OEP called
greedy OEP by transferring some ideas from EMCTS to OEP.
EMCTS is then compared to vanilla OEP, greedy OEP, and
four other baseline search algorithms including two vanilla
MCTS variants specifically designed for Hero Academy, at
different CPU time per turn and at different numbers of actions
per turn.

This paper begins with a brief review of relevant related
work in Section II. Section III describes our testbed, Hero
Academy, outlines the baseline algorithms we are comparing,
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and introduces Evolutionary MCTS. Section IV presents our
experimental setup and results, and Section V gives our
conclusions and suggests future work.

II. BACKGROUND AND RELATED WORK

This section reviews work on MCTS for very large branch-
ing factors, on the current state of the art for multi-action
adversarial games – Online Evolutionary Planning – and on
previous attempts at combining evolution and tree search.

A. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [1], [2] is a best-first
tree search algorithm based on stochastic simulations for state
evaluation, which has been successfully applied to a large
variety of games and other tasks [4]. The algorithm typically
constructs a search tree with nodes representing game states,
and edges representing actions leading from one state to another.
In a deterministic game and ignoring transpositions, this can
also be seen as a tree in which nodes represent the list of
actions that have been applied from the root state to reach
their respective state – this view will be helpful later. MCTS
begins its search at a root node corresponding to the current
game state. It then repeats the following four-phase loop until
computation time runs out:

1. In the selection phase, a selection policy is used to traverse
the tree until an unexpanded action is chosen. The selection
policy should balance the exploitation of states with high value
estimates and the exploration of states with uncertain value
estimates. In this paper, the popular UCB policy is used [10].

2. In the expansion phase, the previously unexpanded action
and a node representing its successor state are added to the
tree.

3. In the rollout phase, a rollout policy is used to play out
the remaining part of the simulated game, starting from the
state represented by the newly added node. This rollout policy
can be uniformly random, but can also profit from heuristic
game knowledge. In this paper, we use ε-greedy rollouts, which
select a random action with probability ε, and otherwise follow
simple greedy heuristics.

4. In the backpropagation phase finally, the value estimates
of all states traversed during the simulation are updated with
the result of the finished game.

Several MCTS variants and enhancements have been pro-
posed over time in order to apply MCTS to games with
increasingly higher branching factors.

First-play urgency [11] encourages exploitation by providing
a value for unvisited child nodes, removing the need for MCTS
to visit every child of a node before a selection policy like
UCB can be applied. Progressive widening [12] and unpruning
[13] approach the branching factor problem in Go by first
limiting the number of actions expanded in a new MCTS node,
then growing it over time so as to improve value estimates
and still guarantee convergence in the limit. For games with
much higher branching factors such as real-time strategy (RTS)
games, script-based approaches have been developed in order to
search over a small number of hand-coded scripts instead of a

larger number of atomic actions: Hierarchical Portfolio Search
[14] and Script-based UCT [15] fall into this category, as well
as the non-MCTS approach of Portfolio Greedy Search [16].
Some previous works have applied MCTS variants to domains
with very large or continuous action spaces by making strongly
simplifying assumptions such as independence of units in an
RTS game [17], or similarity of “close” actions in a physics-
based domain [18]. Often, the assumption is made that each
unit can perform one action per time step, as is typical for RTS
games. In this paper, we do not assume independence of units,
do not tie actions to units, and do not assume the existence of
predefined policies or scripts. We do however use a heuristic
evaluation function – which is hand-coded in our test domain,
but could in future work be automatically learned [3].

We are using two specifically adapted variants of MCTS as
baselines in our experiments, described in Subsection III-B.
The proposed EMCTS is similar to vanilla MCTS in the
sense that it uses the same tree search structure of selection,
expansion, rollout, and backpropagation, while working on a
new, evolution-inspired search space.

B. Online Evolutionary Planning

Evolutionary algorithms (EAs) are a class of optimization
algorithms inspired by natural selection that has been used
extensively for evolving and training AI agents for games
[19], [20]. In the classic, offline evolutionary approach, an AI’s
parameters are evolved using its performance at playing the
game as a fitness function. No evolution is applied after the
training has finished and the AI is deployed in the game [21],
[22], [23], [24].

Online evolution is a newer approach, in which evolutionary
algorithms are applied during gameplay. This can take the
form of evolving the AI’s parameters while it is playing [25].
However, it is also possible to evolve the next action(s) to take
in the currently running game. Rolling Horizon Evolutionary
Algorithm (RHEA) [26], [27] for example evolves fixed-length
future sequences of actions in a single-player game, which are
compared by simulating them and evaluating the resulting game
states. When a time limit is reached, the algorithm executes the
first action in the best action sequence found, and continues
search on action sequences starting from the next time step
(“rolling” search horizon).

Online Evolutionary Planning (OEP) [28], [7] is a recent
evolutionary approach that is applicable to adversarial multi-
action games. It optimizes only the action sequence of the
current turn, without lookahead to future turns of the player or
the opponent. It can therefore be seen as doing one iteration of
RHEA at the beginning of each turn, and with a search horizon
of one turn. The best action sequence found is then executed
without “rolling” the horizon forward action by action.

OEP begins its search by creating an initial population of
genomes, each genome representing a complete turn (fixed-
length sequence of actions). Vanilla OEP chooses each of these
genomes by repeatedly selecting random actions starting from
the current game state. This population is then improved from
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generation to generation, until a given computation time runs
out. Each generation consists of the following four phases:

1. All genomes are translated to their respective phenotypes,
the game states resulting from applying their action sequence
to the current game state. The fitness of these phenotypes is
then evaluated with the help of a static heuristic evaluation.

2. The genomes with the lowest fitness are removed from
the population. The proportion of genomes to be removed is a
parameter called the kill rate.

3. The surviving genomes are each paired with a randomly
chosen different genome, and create an offspring through
uniform crossover. If this crossover operator leads to an illegal
action in the offspring, it is repaired by replacement with an
action from the other parent, or otherwise with a random legal
action.

4. A proportion of the offspring, determined by a parameter
called the mutation rate, undergoes mutation. One randomly
chosen action of the sequence is changed to another action
randomly chosen from all legal actions. If this leads to illegal
actions later in the sequence, they are replaced with random
legal actions as well.

When the time budget is exhausted, OEP returns the action
sequence represented by the current best genome, which is then
executed action by action. In the words of Wang et al. “the
action selection problem is seen as an optimization problem
rather than a planning problem” [29]. This is currently the best-
performing approach for turn-based multi-action adversarial
games, in particular the test domain of this paper: Hero
Academy [7]. It has also been applied to other problems such
as micro battles [29] or online build order adaptation [30] in
RTS games.

We are using the original OEP, as well as a new improved
variant, as baselines in our experiments. The proposed EMCTS
is similar to OEP in the sense that in multi-action adversarial
games, it also searches a space of complete turns, which are
connected to each other through the same mutation operator.
It is different in being a tree search algorithm.

C. Hybrids of tree search and evolution

Several other methods have been published that combine
ideas from tree search algorithms and evolutionary algorithms.

Gaina et al. [31] experimented in General Video Game AI
(GVGAI) with splitting the total search time in two, using
MCTS in the first half to provide an initial solution, which is
then refined by RHEA in the second half. This was able to
outperform RHEA, but not MCTS. Horn et al. [32] hybridized
MCTS and RHEA in two different ways: By making use of
limited-depth Monte Carlo simulations in the evaluation of
RHEA genomes, and by running RHEA and MCTS separately
and choosing the best solution found by either of them for
execution. EMCTS on the other hand uses a single search
algorithm, and a tree search with static state evaluation instead
of an evolutionary search with rollouts for evaluation. Lucas et
al. [33] used an evolutionary algorithm to improve the rollout
policy of MCTS while the search is running. Perez-Liebana
et al. [34] adapted a similar method for GVGAI, combining

it with a knowledge base to improve reward calculations of
given states. While improving MCTS or RHEA performance
in various single-player games, the algorithms developed for
the GVGAI framework are not straightforwardly applicable to
multi-action adversarial games.

For adversarial games, Hong et al. [35] proposed a strategy
to evolve paths through a game tree with the help of an
evolutionary algorithm. While their approach assumes identical
actions to be available in all states at the same search depth,
which is not the case in most real-world games including our
testbed Hero Academy, it gives an interesting indication for
possible future work that could take opponent actions into
account.

III. METHODS

This section briefly describes the game we use as testbed,
lists the search algorithms we are comparing to, and finally
presents our approach: Evolutionary MCTS.

A. Test Domain: Hero Academy

Rules. Our test domain is a simplified1 Java clone [36] of
Hero Academy [37], a two-player turn-based tactics game.
Players can use a variety of combat units, items, and spells
by first drawing them from a card deck onto their hand, and
then deploying, casting, or moving them on a battlefield of
9×5 squares. Special squares on this battlefield allow for unit
deployment, boost the stats of individual units, or represent
a player’s two crystals. The game is won by the first player
to either eliminate all enemy units, or to destroy both enemy
crystals. More details on implementation and rules can be
found in [28].

Fig. 1: The testbed game Hero AIcademy. The six symbols at the
bottom represent the current player’s hand, and the numbers below
the doors represent the deck sizes. One of the red player’s crystals
has already been destroyed.

A central mechanic of the game are the action points (AP).
For each turn, the player to move receives a number of action
points – five in the standard form of the game. Each action

1For example, only the “Council” team of units is available.
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point can be used for any one atomic action such as deploying
a unit from the player’s hand onto the battlefield, moving
a unit on the battlefield, attacking an enemy unit, healing a
friendly unit, and others. The player can spend any number of
action points on a single unit, for example by moving it several
times. With an average of 30-60 actions available per game
state, depending on the playstyle, the full branching factor
per turn can be roughly estimated to be 305 ≈ 2.4 × 106 to
605 ≈ 7.8× 108. Finding the best sequence of actions for any
given turn is therefore a challenging search problem in itself.

The order of cards in the deck as well as the opponent’s
cards are unknown to the Hero Academy player. However, this
paper focuses on the challenge of multi-action turns, ignoring
the aspects of hidden information and indeterminism as in [7].

In line with Justesen et al.’s prior work on Hero Academy,
we use game knowledge for state evaluation as well as action
pruning and ordering:

State evaluation. All algorithms compared in this paper
use the same heuristic evaluation function. This function is a
linear combination of features such as the current health of
individual units, whether they are equipped with certain items,
and whether they are standing on special squares. Improving
this hand-coded function with machine learning, and testing if
our conclusions still hold, could be worthwhile future work.

Action pruning and ordering. All algorithms compared in
this paper use a form of hard pruning, removing a number
of redundant or provably suboptimal actions from the set of
available actions considered in any given state. The two MCTS
variants considered as baselines also make use of static action
ordering, giving the more promising actions priority in their
expansion and rollout phases. The heuristics used for this are
simpler and faster than those of the evaluation function.

The interested reader can refer to [28] for a full definition of
the heuristic evaluation function and the pruning and ordering
strategies.

B. Baseline Approaches

In order to make our results directly comparable to the litera-
ture, we are testing our approach against five of the algorithms
described in [7]. Four of them are tree search techniques, and
one is Online Evolutionary Planning representing the state of
the art for Hero Academy.

Greedy Action. The Greedy Action AI chooses the first
action of its turn with a simple one-ply search of all legal
actions, maximizing the heuristic evaluation of the immediately
resulting state. This is repeated for each action point, i.e. for
all five actions of the turn.

Greedy Turn. The Greedy Turn AI chooses its actions
by attempting a five-ply depth-first search of the entire turn,
maximizing the heuristic evaluation of the leaf states resulting
from full turns. It uses a transposition table in order to avoid
re-visiting states. Actions are ordered for search with the
evaluation function, which is especially important since Greedy
Turn can usually not exhaustively search the entire turn in the
given time limit.

Non-exploring MCTS. This AI is the first MCTS variant
adapted for multi-action adversarial games in [7]. It searches a
game tree as shown in Figure 2, in which each edge represents
an additional action for the turn under consideration (or its
application). The opponent’s next turn can be reached by a
tree deeper than five plies, the number of action points. The
selection policy of this MCTS variant is UCB, and the rollout
policy deterministically follows the action ordering heuristics.
It was found to improve performance when rollouts are just
long enough to complete the current turn of the player to act
in the leaf node, calling the heuristic state evaluator at the end
of the turn for a rollout result. The MCTS exploration factor is
set to C = 0 in an attempt to grow a deep enough tree (pure
exploitation).

M
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Fig. 2: Tree structure as searched by vanilla MCTS and its vari-
ants (non-expl. MCTS, BB-MCTS). Nodes represent partial action
sequences, or the states resulting from them. Edges represent the
addition of an atomic action to an action sequence, or the application
of an atomic action to a state. After each node expansion, a rollout
is performed for evaluation. (We use symbols to represent different
atomic actions.)

Bridge-burning MCTS (BB-MCTS). This MCTS variant
searches the same kind of tree shown in Figure 2. Instead of
deterministic rollouts, it uses ε-greedy rollouts with ε = 0.5,
which also only reach to the end of the current turn of the
leaf node. Its exploration factor is C = 1/

√
2. In order to

grow a deep enough tree for multi-action turns however, it
employs a technique called “bridge burning” in [7] – a re-
invention of move-by-move search [8]. We are keeping the
term “bridge burning” here, as the term “move” is ambiguous
in Hero Academy, and also because we are going to generalize
the concept of bridge burning to a different kind of tree in the
next subsection.

The idea of BB-MCTS is to split the time budget for the
current move search into five phases, equal to the number of
actions per turn. During each phase, the MCTS search proceeds
normally, but at the end of each phase, the most promising
action at the root is executed, leading to the root state for
the next phase. This can be implemented as the hard pruning
strategy shown in Figure 3.

Online Evolutionary Planning. The OEP baseline is as
described in Subsection II-B. In our experiments, we use the
same parameter settings as suggested in [7]: A population size
of 100, a kill rate of 0.5, a mutation rate of 0.1, and uniform
crossover and mutation operators.
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Fig. 3: The “bridge burning” search strategy (illustration adapted from
[7]). (a) After phase 1, all branches but the best one are pruned at
the root. (b,c) After phases 2, 3, . . . n, pruning is applied at depth 2,
3, . . . n. The partial tree below the best branch is retained.

This algorithm is currently the best-performing approach
for multi-action turn-based games such as Hero Academy.
Although [7] shows it to be of similar strength to non-exploring
MCTS and BB-MCTS in the standard form of the game with
5 action points per turn, OEP was shown to scale better to the
tougher challenges of Hero Academy using 10 AP or more.
Our experiments include those exponentially more complex
variants as well.

C. Evolutionary MCTS

This subsection proposes our new search algorithm, Evolu-
tionary MCTS or EMCTS, as applied to playing multi-action
turn-based adversarial games. It combines the tree search
of MCTS with the genome-based approach of evolutionary
algorithms.

Instead of the vanilla MCTS tree seen in Figure 2, EMCTS
builds a tree as shown in Figure 4. Instead of starting from
an empty turn in the root, EMCTS starts from a complete
sequence of five (or more, depending on the domain) actions
– just like the genomes of OEP. Instead of growing a tree
that adds one action to the current sequence with every edge,
EMCTS grows a tree that mutates the current sequence with
every edge – using the same mutation operator as OEP. And
instead of using rollouts to complete the current turn and then
evaluating it as our MCTS baselines do, we simply evaluate
the solutions at the leaf nodes2. Backpropagation is unchanged.

EMCTS does not apply mutations randomly, but can choose
exactly which action in the sequence to mutate and which other
legal action to mutate it to3. While OEP turned the planning
of the action sequence into an optimization problem, EMCTS
thus takes the evolutionary optimization of the sequence and
turns it back into a planning problem. It can be seen as tree
search, but it can also be seen as a systematic exploration of
the mutation landscape of OEP, giving evolution the benefit of
lookahead.

Two questions need to be answered to fully flesh out EMCTS.
First, where does the root sequence come from? EMCTS needs

2Evaluating at the leaf nodes is a well-known MCTS variant that was
successfully employed for example in AlphaGo Zero and AlphaZero [3].

3No crossover operator is used.
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Fig. 4: Tree structure of Evolutionary MCTS. Nodes represent
complete action sequences (genomes), or the states resulting from
them. Edges represent the mutation of an atomic action within a
genome. Repairs can be necessary if those mutations can lead to
illegal genomes. After each node expansion, the evaluation function
is called instead of a rollout. (We use symbols to represent different
atomic actions.)

a starting solution to its search, just like EAs such as OEP
need a starting population of solutions. Different approaches
are possible – in this paper, we are using the Greedy Action
algorithm described above for a quick and greedy initialization
of the root. Second, what happens when a mutation leads
to an illegal action sequence? We could filter these out by
simulating every possible mutation in advance, but that would
be computationally expensive. Instead, like OEP we are taking
the classic evolutionary algorithm approach of using a repair
strategy – in this paper, we are using the Greedy Action AI
for repairs as well whenever necessary.

Note that the use of Greedy Action does not introduce
additional heuristic knowledge, as all algorithms compared
in this paper are working with the same evaluation function.
However, we noticed that like EMCTS, OEP can also be
significantly improved by using a Greedy Action repair policy
instead of a random repair policy. This results in higher quality
repairs on average. And just like EMCTS profits from a greedy
root genome, OEP can profit from filling 20% of the starting
population with Greedy Action sequences instead of random
ones4. This kick-starts the search with higher-quality starting
solutions. We are calling this new variant greedy OEP here,
as opposed to vanilla OEP with random repairs and a purely
random starting population as described in [28], [9], [7], and
include it in our experiments for a fair comparison.

Finally, EMCTS results in an even larger branching factor
than the vanilla MCTS variants. While the branching factor
in Hero Academy games between the MCTS baselines was
measured to be between 30 and 40, the branching factor of
the mutation tree of EMCTS is about 30 per action point – so
around 150 for the standard settings of the game with five action
points. We found that an effective way of dealing with this
is “bridge burning”, just as applied to the regular MCTS tree
by BB-MCTS. Instead of executing the most promising action
at the root after every search phase like BB-MCTS, EMCTS
executes the most promising mutation at the root after each
phase. The number of bridge burning phases, of successive

4This performed better than filling 1%, 10%, and 50% of the starting
population with Greedy Action sequences.

257



searches and prunings/mutations, is the only parameter of
EMCTS we tuned (see the following section). The MCTS
exploration factor was set to C = 0. The selection policy is
UCB as in the other MCTS variants.

IV. EXPERIMENTS AND RESULTS

This section describes our experimental setup for testing the
proposed Evolutionary MCTS, as well as the results.

A. Experimental Setup

We tested EMCTS in Hero Academy against Greedy Action,
Greedy Turn, non-exploring MCTS, BB-MCTS, and vanilla
OEP as proposed in [7], as well as the improved greedy OEP
as proposed in the previous section. All comparisons were
performed on the standard settings of the game with 5 action
points per turn, but also with altered rules allowing 10 AP
or even 15 AP per turn5. This increases the complexity of a
single turn exponentially, but gives a stronger indication of
generalizability to other games which can have higher numbers
of possible actions per turn. Furthermore, all comparisons were
done at different time budgets of 200 ms per turn, 1 second
per turn, and 5 seconds per turn. Each comparison consisted
of 400 games, with EMCTS playing 200 games as the first
player and 200 games as the second player. The map used is
shown in Figure 1. Games that had no winner after 200 turns
were counted as draws, i.e. half a win for each player.

All algorithms used the parameter settings described in
Section III. The number of “bridge burning” phases for EMCTS
was determined in preliminary experiments and set to 20 for
200 ms, 40 for 1 second, and 100 for 5 seconds per turn time
controls. The number of phases for BB-MCTS were identical
to the AP per turn, since it searches the type of tree shown in
Figure 2 and does not profit from deeper searches. As no other
algorithm was modified based on the AP per turn, EMCTS
was also not specifically tuned for different AP.

B. Results

Table I shows the performance of the proposed Evolutionary
MCTS against the five baselines and the improved greedy
Online Evolutionary Planning.

EMCTS is significantly stronger than all baselines (Greedy
Action, Greedy Turn, BB-MCTS, non-expl. MCTS, and vanilla
OEP) at all time controls and all numbers of action points
per turn. Its relative strength increases with the complexity of
the search problem as measured in action points per turn. The
newly proposed greedy OEP is a dramatic improvement over
vanilla OEP as described in [7], but still significantly weaker
than EMCTS at all action points at 200 ms per turn, and at all
action points except for the lowest setting (5) at 1 s and 5 s per
turn, where the two algorithms perform similarly. The results
therefore show that Evolutionary MCTS is highly effective at a

520 or even 25 AP as in [7] were not included. As the authors noted, such
high numbers of AP make it possible to win the game within very few turns,
and make the winner very strongly depend on who gets the first turn. Strength
differences between AIs are therefore harder to measure. More significant rule
changes would have to be made to balance the game with such high AP.

Opponent Action points per turn

5 10 15

200 ms per turn

Greedy Action [7] 87.6%*** 97.8%*** 98.3%***
Greedy Turn [7] 96.9%*** 100.0%*** 100.0%***
BB-MCTS [7] 68.6%*** 88.8%*** 93.0%***
non-expl. MCTS [7] 74.5%*** 91.8%*** 92.0%***
vanilla OEP [7] 77.8%*** 92.0%*** 94.8%***
greedy OEP [this paper] 60.6%** 59.5%** 65.3%***

1000 ms per turn

Greedy Action [7] 88.1%*** 98.5%*** 99.3%***
Greedy Turn [7] 92.8%*** 99.0%*** 100.0%***
BB-MCTS [7] 67.1%*** 90.3%*** 94.5%***
non-expl. MCTS [7] 65.5%*** 93.5%*** 97.3%***
vanilla OEP [7] 70.5%*** 84.8%*** 91.0%***
greedy OEP [this paper] 52.5% 58.8%* 61.8%***

5000 ms per turn

Greedy Action [7] 91.9%*** 99.0%*** 99.8%***
Greedy Turn [7] 78.1%*** 98.8%*** 100.0%***
BB-MCTS [7] 67.0%*** 90.3%*** 94.8%***
non-expl. MCTS [7] 56.9%* 94.8%*** 98.5%***
vanilla OEP [7] 69.0%*** 80.3%*** 87.5%***
greedy OEP [this paper] 51.4% 59.0%* 61.3%**

TABLE I: Win rates of EMCTS vs. all baselines at different time
controls. 400 games per data point. Asterisks indicate significantly
stronger play by EMCTS: *p < 0.05, **p < 0.01, ***p < 0.001

variety of time controls, and scales better with the complexity
of the domain than all other tested approaches.

Note that there is a tradeoff for “bridge burning” EMCTS
between doing more phases (pruning all but the best mutation
and continuing search from there), and having more time for
each phase (to identify the best mutation). With search time,
both the optimal number of phases as well as the optimal time
per phase seem to increase. The settings found to perform best
in our experiments have such high numbers of phases, and such
little time for them, that EMCTS could be seen as a type of
local search [38] or (1, λ)-Evolution Strategy [39]. At longer
time settings though, deeper trees can form, and EMCTS turns
into a new kind of genome-based planning, or evolution with
lookahead. These connections are worth exploring more deeply
in future work.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a new algorithm for playing turn-
based adversarial games, where each turn consists of a
sequence of multiple actions. Such action sequences, common
in strategy games, lead to the challenge of extremely large
branching factors per turn. This is difficult to handle even for
selective tree search methods such as MCTS, which typically
search a tree of atomic actions, and specifically developed
evolutionary algorithms such as OEP, which optimize entire
action sequences.
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Our new algorithm, called Evolutionary MCTS (EMCTS), is
based on the idea of combining the tree search of MCTS with
the sequence-based optimization of evolutionary algorithms.
Instead of searching a vanilla MCTS tree, EMCTS searches
a tree in which each edge mutates one action in a complete
action sequence. Experiments on the game Hero Academy
show that EMCTS convincingly outperforms several baselines
from the literature, including the state of the art OEP and an
improved variant of OEP introduced in this paper, at different
time settings and numbers of actions per turn. EMCTS also
scales better than any existing algorithm with the complexity
of the problem. It is therefore the currently strongest algorithm
for playing Hero Academy, and a promising candidate for other
turn-based multi-action games such as Civilization, XCOM,
Heroes of Might and Magic, or Into the Breach.

Several directions appear interesting for future work. First,
the comparison between Evolutionary MCTS and the baseline
algorithms could be deepened, including experiments with
different initialization and repair strategies, different evaluation
functions, more careful tuning of algorithm parameters such
as OEP’s population size, mutation rate, and kill rate, and
possible improvements to MCTS methods such as stronger
rollout policies. Second, various aspects of EMCTS could
be considered in more detail, such as speed optimizations
– it currently only evaluates roughly 20% as many action
sequences per second as OEP. Mutations for expansion could
for example be generated lazily in the tree nodes, and various
MCTS enhancements could be used to improve their ordering.
Third, the performance of EMCTS in other games could be
tested, such as strategy games with longer matches and larger
numbers of units. We are planning to apply it to Battle of
Polytopia, a mobile turn-based strategy game in which armies
can grow to 15 to 20 units or more in the late game. Unlike Hero
Academy, Battle of Polytopia does not allow for any unit to
move more than once per turn; however, additional complexity
arises from units whose actions themselves consist of several
atomic parts such as moving, attacking, and retreating. An
interesting challenge for the application to commercial games is
that the existence of a heuristic state evaluation function cannot
generally be assumed, requiring machine learning approaches.
Just like OEP, EMCTS could also be generalized to other
problems such as micro battles [29] or online build order
adaptation [30] in RTS games. In the former scenario, the
genomes would consist of a list of scripts representing simple
policies assigned to each unit, instead of a list of atomic
actions for the player. In the latter scenario, the genomes
would be candidate build orders, i.e. fixed-length sequences
of future units and buildings to construct. Fourth, the problem
of considering future actions of the opponent has not been
tackled successfully yet, neither by OEP nor by EMCTS.
Generalizing to larger classes of games will also require dealing
with indeterminism and partial observability. And last but not
least, the algorithmic similarities between Evolutionary MCTS
and certain local search algorithms and evolutionary algorithms
deserve further study, in order to further explore the idea of
“evolution with lookahead”.
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Abstract—In this paper, we introduce a skill-balancing mecha-
nism for adversarial non-player characters (NPCs), called Skilled
Experience Catalogue (SEC). The objective of this mechanism is
to approximately match the skill level of an NPC to an opponent
in real-time. We test the technique in the context of a First-
Person Shooter (FPS) game. Specifically, the technique adjusts a
reinforcement learning NPC’s proficiency with a weapon based on
its current performance against an opponent. Firstly, a catalogue
of experience, in the form of stored learning policies, is built
up by playing a series of training games. Once the NPC has
been sufficiently trained, the catalogue acts as a timeline of
experience with incremental knowledge milestones in the form
of stored learning policies. If the NPC is performing poorly,
it can jump to a later stage in the learning timeline to be
equipped with more informed decision-making. Likewise, if it
is performing significantly better than the opponent, it will
jump to an earlier stage. The NPC continues to learn in real-
time using reinforcement learning but its policy is adjusted, as
required, by loading the most suitable milestones for the current
circumstances.

Index Terms—Skill balancing, Dynamic Difficulty Adjustment,
reinforcement learning, First Person Shooter

I. INTRODUCTION

This paper presents a new mechanism for Dynamic Dif-
ficulty Adjustment in the context of reinforcement learning
called Skilled Experience Catalogue (SEC). Specifically, we
store the current policy of the non-player character (NPC) at
various intervals during an initial training phase. Once the
training phase is complete, the base policy of the NPC can
be adjusted in real-time, influenced by a threshold value, to
approximately match the skill level of the current opponent.

To test our SEC mechanism, we apply it to the weapon
proficiency of an NPC bot in a First-Person Shooter (FPS)
Deathmatch game. Specifically, the mechanism applies only
to the learned task of aiming/firing a weapon at an enemy.
The NPC has fixed strategies for the other in-game tasks such
as item collection, opponent evasion and travelling around the
map. The NPC bot is initially trained against a single opponent
and builds up a catalogue of reinforcement learning policies
as it gains experience from using the weapon over time. These
stored policies, that loosely represent skill level, can then be
loaded in subsequent games to balance the gameplay against

the current opponent. We demonstrate this SEC mechanism
against five different levels of fixed-strategy opponents and
show that a single catalogue of experience can be used to
closely match the performance of each. The NPC that we
have developed is an adversarial one [1] which contrasts with
supportive companion NPCs [2] found in some game genres.

The approach that we present is novel in that it is using a
by-product of the bot’s learning process to create milestones
which represent the knowledge acquired at the different stages
of learning. The policies of the bot are stored, at different
stages, to keep a sequential catalogue of experience. The bot
can then jump to the most appropriate policy to coincide with
the skill level of the current opponent while continuing to
adapt based on its in-game experience. Our approach does not
require manually optimising parameters to represent different
skill levels. Conversely, we are sampling from the natural
learning progress of the agent over time.

II. BACKGROUND INFORMATION

A. Dynamic Difficulty Adjustment

Traditionally, human computer game players select a diffi-
culty setting from a menu before beginning the game. This
can be as simple as selecting easy / medium / hard or can
include more detailed options for the player to choose from.
These settings have a direct, and usually static, effect on
the skill level of the NPCs. Such fixed-difficulty settings can
often be too broad. For instance, a setting that is intended
to be easy may nonetheless be too difficult for some players.
Players may also improve their performance at different rates.
The traditional approach does not make use of the player’s
current performance measures to direct the gameplay. While
this approach has the benefit of simplicity, from a game
development point of view, it can lead to predictable gameplay
when static rule-based opponents are deployed which can
adversely affect the entertainment value of the game. Dynamic
Difficulty Adjustment (DDA) [3], which can also be referred to
as Dynamic Game Balancing (DGB) [4], involves identifying
the player’s performance and skill level, and then dynamically
adjusting the difficulty level accordingly. The goal of this is
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to ensure that the game remains challenging and can cater for
many different players of varying skill levels.

B. Reinforcement Learning

Reinforcement learning (RL) is a branch of artificial in-
telligence in which a learner, often called an agent, interacts
with an environment to achieve an explicit goal or goals [5].
The environment consists of a set of states, called the state
space, and the agent must choose an available action from the
action space when in a given state at each time step. The agent
learns from its interactions with the environment, receiving
feedback for its actions in the form of numerical rewards, and
aims to maximise the reward values that it receives over time.
Two common approaches to storing/representing a policy in
reinforcement learning are generalisation and tabular. With
generalisation, a function approximator is used to generalise
a mapping of states to actions. The tabular approach, which
is used in our research, stores numerical representations of
all state-action pairs in a lookup table. The agent’s decision-
making involves choosing between exploring the effects of
taking novel actions and exploiting the knowledge that it has
acquired from earlier exploration. Reinforcement learning is
inspired by the process by which humans interact with the
world and learn from experience.

C. Game Environment and Development Tools

For this research, we use the game Unreal Tournament 2004
(UT2004) which is a commercial FPS game [6]. The agents
are developed using a toolkit called Pogamut 3 [7] which is an
open-source development platform for creating virtual agents
in the 3D game environment of UT2004. The main objective
of Pogamut 3 is to simplify the coding of actions taken in the
environment, such as path finding, by providing a modular
development platform. Making use of these primitives, the
focus of our development is on producing intelligent NPC
behaviour.

III. MOTIVATION

When computer-controlled opposition is too strong, human
players can become frustrated with the gameplay. Conversely,
opponents that are too weak result in predictable games
in which human players do not feel challenged [8]. The
challenge of a game is widely considered to play a crucial
role in the player’s overall enjoyment [9]. We believe that
successful game AI requires techniques to be developed in
which the NPCs can learn good tactics independently as well
as being both unpredictable and adaptive to their surroundings.
Keeping a player’s win and loss rate close and unpredictable
in a game can increase the player’s overall suspense and the
game’s outcome uncertainty. Abuhamdeh et al. [10] carried
out a study on the relevance of outcome uncertainty and
suspense for intrinsic motivation and concluded that games
with higher outcome uncertainty were more enjoyable to play.

We observe that modern computer games can often lack
flexibility with regards to difficulty settings and this can lead
to mismatches between the player’s ability and the overall

difficulty of the game. DDA can be used to ease the learning
process for beginners. Difficulty settings are balanced in
real-time in contrast to traditional approaches that involve
extensive user testing and redesign in order to identify suitable
levels. This can be a costly and time-consuming process [11].

IV. RELATED RESEARCH

Hunicke and Chapman [3] presented an interactive DDA
system called Hamlet which is an integrated set of libraries
within the Half-Life SDK. The Hamlet system has an eval-
uation function, which maps the current state of the game
world to an evaluation of the player’s performance and an
adjustment policy, for mapping the evaluation to adjustments
in the game world. Hamlet monitors incoming game data
and estimates the player’s future state from the data. If an
undesirable state is predicted, the system will intervene and
adjusts the game settings as required. Hunicke [12] used
Hamlet to examine the requirements for incorporating effective
dynamic difficulty adjustment into an FPS game. The aim
of the study was to identify if DDA could be performed
effectively, without degrading the core gameplay experience
for the user. The authors reported that their preliminary results
show an improvement in player performance, while retaining
the player’s sense of agency and accomplishment.

Spronck et al. [13] showed the extent to which their
technique of dynamic scripting [14] could be used to adapt
game AI to balance the gameplay in a simulation closely
related to the Role-Playing Game (RPG) Baldur’s Gate. The
authors focussed on enhancing the difficulty-scaling properties
of the dynamic scripting technique. These were high-fitness
penalising, weight clipping, and top culling. The reward peak
value in dynamic scripting determines how effective the oppo-
nent behaviour will be. With high-fitness penalising, this value
is adjusted after every fight depending on the outcome. If the
computer-controlled opponent wins, it is reduced; otherwise
it is increased. There is also a maximum and minimum value
that this reward peak value can be. The maximum weight value
determines the maximum level of optimisation a learned tactic
can achieve. With weight clipping, this value is automatically
changed to balance the overall gameplay. Top culling is similar
to weight clipping, however, rules with a weight greater
than the maximum weight value are allowed. Those that
exceed the maximum weight value will not be selected for
a generated script which will force the computer-controlled
opponent to use weaker tactics. The authors reported that,
of the three different difficulty-scaling enhancements, the top-
culling enhancement was the best choice. It was reported that
it produced results with low variance, was easily implemented,
and was the only one of the three enhancements that managed
to force a balanced game when inferior tactics were used.

Tan et al. [15] presented two adaptive algorithms, based on
ideas from reinforcement learning and evolutionary computa-
tion, to scale the difficulty of the game AI to improve player
satisfaction. They introduced two controllers, namely, the
adaptive uni-chromosome controller (AUC) and the adaptive
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duo-chromosome controller (ADC). The authors examined the
effects of varying the learning and mutation rates and proposed
general rules for setting these parameters. The authors carried
out experimentation using a modified version of the car
simulator used in the Simulated Car Racing Competition held
during the 2007 IEEE Congress on Evolutionary Computation
(CEC 2007). It was demonstrated that the proposed algorithms
can match their opponents in terms of mean scores and
winning percentages. The authors also reported that both algo-
rithms were able to generalize well to a variety of opponents.

Vicencio-Moriera et al. [16] carried out three separate
studies on the performance of different aim assist techniques
in an FPS game developed by the authors using the Unreal
Development Kit (UDK). Aim assistance in FPS games is used
to make it easier for players to select on-screen targets. This
enables players with less skill to perform at a more competitive
level increasing the competition and, in turn, the enjoyment
of the player, which essentially balances the gameplay. The
authors compared the following aim assist techniques: target
lock (moves the crosshairs of the player’s weapon to the closest
target’s head), bullet magnetism (bullets towards the closest
target if within the activation range), area cursor (physical size
of the crosshair changes), sticky targets (changes control-to-
display ratio when the crosshairs are over a target) and gravity
(targets have an attractive force dragging crosshairs towards
them). The authors reported that the assists worked well in a
target-range scenario, but their performance was reduced when
real-game elements were introduced. They reported that bullet
magnetism and area cursor worked well in a wide variety of
situations but techniques such as target lock, while working
well, were too perceptible to be successful for balancing.
Vicencio-Moriera extended this work, in [17], by refining
the bullet magnetism and area cursor techniques. They also
developed a new technique to maintain the effect of the aim
assist for a longer duration. They also included a map for
novice players that shows them the location of expert players
and incorporated different rates of damage for stronger and
weaker players. The authors report that the new balancing
schemes were extremely effective with the ability to balance
the gameplay amongst players with large skill differences.

Our approach, which is outlined in the following section,
differs from the aforementioned methods in that it uses real-
time learning during the game coupled with a mechanism for
loading policies that closely match the current opponent.

V. SKILLED EXPERIENCE CATALOGUE

We designed SEC based on the premise that there is a
progressive timeline which begins with poor performances
and ends with good performances as the agent learns how
to perform a task over time. In general, SEC involves storing
the policy of an RL agent at periodic intervals during an initial
training phase. The agent will begin the training phase with
no knowledge of the environment or intuition on what the
best actions are to take given the circumstances. Well-designed
learning agents will depict a clear upward trend in performance
over time as the agent gains more experience. This time-based

increase in performance is crucial to the success of using
SEC. Milestones of the timeline of experience are stored by
recording the RL policy at set intervals during the training
phase. Once the experience catalogue has been populated
with these learning milestones they can then be loaded to
either increase or decrease the current underlying ability of
the agent by effectively adding or removing experience (see
Figure 3). Our application of SEC is concerned with balancing
the Assault Rifle skill of a Deathmatch NPC playing against a
single opponent. The NPC is initially trained using the shooter
bot implementation from Glavin and Madden [18][19].

The main features of this implementation are as follows.

Fig. 1. Shooting actions available (top) and varied decision-making based on
experience [19] (middle/bottom). The heat maps represent the percentage of
time that a specific action was chosen up to that point. This is illustrated for
those chosen up to 150 lives and up to 1500 lives respectively to show the
improved decision making.

The state space is made up of a series of discretised features
including the relative speed, relative moving direction, relative
rotation, and distance to the opponent. The velocity and
direction values of the opponent are translated into the NPC’s
point of view so that the NPC’s actions can include discretized
variations of shooting in a forward direction. The opponent’s
direction and speed are recorded relative to the NPCs own
speed and from the perspective of the NPC looking directly
ahead. Full details on the state space can be found in Glavin
and Madden [19].

Figure 1 shows the actions that are available to the NPC, the
percentage of those chosen after 150 lives and the percentage
of those chosen after 1500 lives. These values were chosen
as representative early and late stage learning to highlight the
differences in decision-making as the NPC gains experience.
The actions are expressed as different target directions in
which the NPC can shoot, and which are skewed from the
opponent’s absolute location on the map. The amount of
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skew along the X-axis (left and right) and Z-axis (up and
down) varies by different fixed amounts as shown in the upper
segment of Figure 1. These actions were designed specifically
for the Assault Rifle weapon. The logic of this shooter NPC
is based on the SARSA(λ) [5][20] algorithm which uses
eligibility traces [21] to speed up learning by allowing past
actions to benefit from the current reward. The NPC receives a
reward of 250 every time the system records that it has caused
damage to the opponent with the shooting action. If the NPC
shoots the weapon and does not hit the opponent, it receives of
penalty of -1. We use a tabular approach to represent the policy
of the learner by storing numerical representations (Q-values)
of all state-action pairs in a lookup table (Q-table). These are
periodically stored and used to represent base learning levels
(policies) as milestones. Full details of this algorithm and NPC
implementation can be found in Glavin [22]. The following
sections include details on the training experimentation and
milestone switching mechanism for SEC.

A. Training Experience

The NPC must play a series of games against an opponent to
populate the catalogue of experience. Each time the NPC dies
it will write out its Q-table to a file. Once this training period
has been completed, milestone Q-tables (from set intervals of
the learning timeline) must be selected and placed into the
SEC. We have chosen 100 deaths to represent a milestone in
our implementation. That is to say that a milestone Q-table
is added to the SEC after 100 deaths, 200 deaths, 300 deaths
and so on. Since continuous reinforcement learning is being
used, we believe that the resulting performance will be more
natural and will make the adjustments of the skill level harder
to detect.

B. Skill Adjustments

Once the SEC has been populated with the desired number
of milestones, the mechanism for changing milestones must
be set. Our implementation uses a simple positive/negative
threshold for kill-death differences (KDDs) to drive the switch-
ing between milestones. Specifically, if the KDD between the
NPC and the opponent exceeds a value of 5 (meaning the bot
is performing significantly better), the policy will revert back
to the previous milestone from the SEC. It will continue to
step back through the milestones, after every opponent death,
while the KDD remains above 5 or until it has reached the
first milestone (empty Q-table; no knowledge). If the KDD
falls below -5, the next milestone will be chosen from the
SEC after every death until either the KDD returns to the
match range (−5 > KDD 6 5) or the highest milestone has
been reached. The current milestone will remain unchanged
while the KDD value is within the match range. The value 5
was chosen after a series of preliminary runs. This value could
be increased to make the skill adjustments less prominent or
reduced to enable faster skill adjustments.

The learning algorithm that is controlling the bot is as
described in Glavin and Madden [19]. Both Periodic Cluster
Weighted Rewarding (PCWR) and Persistent Action Selection

(PAS) are both enabled, and all of the algorithm settings are
as described in that research work.

VI. EXPERIMENTATION

In this section, we outline how we first trained the NPC
by playing against a single opponent for 100 individual thirty-
minute games. The purpose of this training phase is to populate
the catalogue of experience as the NPC acquires knowledge
through trial and error over time. After this, we discuss the
experiments in which the NPC used the SEC mechanism,
while playing against opponents with differing skill levels, to
balance the game play. We then discuss re-running these exper-
iments with the technique disabled to carry out a comparative
analysis.

A. Training Experiments

There are eight different pre-programmed native bot skill
levels in UT2004 that are designed to increase the challenge
for human players as the skill level is increased. High-level
descriptions of the attributes associated with the first five of
these skill levels, as reported in [23], are listed in Table I.
The first step of our experimentation involved training the

Skill Attributes

Novice 60% of regular running speed, will not move during
combat unless very weak, limited perception with
30◦ field of view, shooting aim can range 30◦ off
target, slow to turn.

Average 70% of regular running speed, slightly higher shoot-
ing accuracy, turns slightly faster than novice.

Experienced 80% of regular running speed, will move and fire
simultaneously, 40◦ field of view, can turn by more
than 1/2 per second.

Skilled 90% of regular running speed, can double jump, 60◦
field of view, turns more than 5/8 per second.

Adept Run at full speed, will dodge enemy fire, will close
in on enemy, aim “leads” the target, 80◦ field of
view, turn almost 3/4 per second.

TABLE I
UT2004 NATIVE BOT SKILL ATTRIBUTES. (SOURCE: [23])

NPC by playing it against a Level 5 (Adept) opponent. We
ran one hundred 1-vs-1 Deathmatch (30 minute) games on
the Training Day map. This is a small map which encourages
almost constant combat. The resulting data showed that the
learner NPC performed poorly during the early games in which
it died much more often than killing the opponent. This would

Fig. 2. Games won and lost during the one hundred 30 minute training games.
The number of games won increases in the latter stages of the training phase.
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be expected as the NPC needs time to experience all the game
states and experiment with the different actions. The NPC
began to outperform the opponent at the half way point of
the 100 games. Figure 2 shows the number of wins and losses
that the NPC recorded against the Level 5 opponent during
the 100 training games. The NPC must play 15 games before
it manages to defeat the Level 5 opponent. The NPC manages
to beat the opponent much more frequently when it passes the
half way point of the 100 games. This verifies that the NPC
is in fact learning how to play more proficiently as it gathers
experience. The NPC wins 39 out of the 100 games with 28 of
these wins occurring in the second half of the games played.
During the 100 games, the NPC died almost 9000 times. As
a result of this we stored 90 milestone Q-tables. These were
from no experience (empty Q-table) up to having died 8900
times in increments of 100.

Table II compares the average kills, deaths and kill-death
(KD) ratio from the first 25 games (First Quarter - Q1) to
the last 25 games (Fourth Quarter - Q4) in order to test if
the enabled learning is leading to a statistically significant
improvement in the average performance in the latter stages
of learning. The ** in the table entries signifies that there are
statistical differences with significance level α equal to 0.05
using an unpaired two-tailed t-test. It is important to note that
in each successive game the bot begins with the knowledge
that it has built up from all of the previous games. Therefore,
the examples are not strictly independent as memory from each
game is persisting over time. The settings of the individual 30-
minute games and the opponents remain consistent throughout
the 100 games. Both sample sets comprise individual games
that take place in a period of 12.5 hours of learning.

The purpose of this comparison is to check for a statistically
significant difference in the average performance between
these two learning periods (early and later learning) in order
to verify that the bot continues to improve its performance
over time. For instance, if there was no significant difference
between the bot’s average performance during the period of
0 to 12.5 hours and the bot’s average performance during
the period of 37.5 to 50 hours then we could conclude that
the effect of learning on the bot’s performance had already
plateaued during the earlier stages of learning. Table II shows
that this is not the case and that the average number of kills
achieved, and the average kill-death ratio has improved, at a
95% confidence level, in the later learning period. We have
also confirmed from the bot logs that the bot continues to
encounter new states throughout all of the training games and
therefore may have an opportunity to learn a better policy in
the latter stages of the training phase.

B. SEC-Bot versus Fixed Strategy Opponents

From here on, we will refer to the NPC that uses the
SEC as SEC-Bot. The SEC-Bot begins each new game that
it plays with no experience and then increases or decreases its
knowledge as required, based on the threshold, by using the
Q-table milestones. These experiments were also carried out
on the Training Day map.

TABLE II
COMPARISON OF PERFORMANCE BETWEEN Q1 AND Q4. LEVEL OF

CONFIDENCE: ** = 95%. THIS SHOWS AN INCREASE IN PERFORMANCE IN
THE LATTER STAGES OF LEARNING.

Q1: Games 1 to 25
Avg (Std Error)

Q4: Games 75 to 100
Avg (Std Error)

Kills 79.20 (± 2.09) 84.56 (± 1.46) **

Deaths 91.60 (± 2.02) 87.52 (± 1.46)

KD Ratio 0.88 (± 0.04) 0.98 (± 0.03) **

Table III shows the number of times that the SEC-Bot won,
lost and drew against the first 5 levels of the native fixed-
strategy bots. The SEC-Bot won 39, lost 30 and drew 6 of the
75 games that were played (15 individual games per level of
native opponent) which shows that there is a large amount of
outcome uncertainty when playing against five different levels
of opponent. For instance, the SEC-Bot does not constantly
beat the Level 1 opponent all the time nor does it struggle to
play at the same standard as the Level 5 opponent. We can

TABLE III
WINS, LOSSES AND DRAWS FOR THE SEC-BOT AGAINST EACH OF THE 5

LEVELS.

Opponent Skill Level Win Lose Draw

Level 1 8 6 1

Level 2 9 6 0

Level 3 8 4 3

Level 4 7 6 2

Level 5 7 8 0

see from the table that the win and loss rate for the SEC-Bot
are closely matched and that it is managing to successfully
balance the gameplay against the different levels of opponent
using just a single catalogue of experience. As we will see
later, the difference between a win and a loss is often only a
small number of kills. The following figures, from Figure 4 to
Figure 8, show the results of the SEC-Bot playing a total of 15
thirty-minute games against five different levels of opponent.
The purpose of this is to observe how well it can match the
opponent’s skill level, with respect to killing and being killed,
by using the SEC mechanism. From the results, we can see
that the SEC-Bot manages to closely match the kill rate of
the opponent over each of the different levels. During these
experiments, we noted the changes to the milestones that were
occurring during the game-play. These include any time the bot
moved up or down a milestone from the SEC and are listed
as milestone adjustments on the figures. A policy clearance
occurs when the SEC-Bot is currently using Policy 0 and still
out-performing the opponent. It involves clearing all of the
Q-values that were built up during gameplay and essentially
re-starting learning. For Level 1, the SEC-Bot never increased
to a higher milestone than Policy 0. At the beginning of each
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Fig. 3. An overview of Skilled Experience Catalogue.

Fig. 4. SEC-Bot: Killed vs WasKilled against a Level 1 opponent.

game, it started with no knowledge and then only required
the in-game learning experience to remain balanced with this
opponent. It did, however, have to carry out a policy clearance
over 1900 times throughout the games as it was out-performing
the Level 1 opponent at the early stages of learning. The SEC-
Bot, once again, had no milestone increases during the Level 2
games whereas the changes were much more prevalent against
the more difficult opponents (Level 3, Level 4, and Level 5).
The SEC-Bot had to almost immediately rise up through the

milestones (once it fell below the threshold), before stopping at
the highest point, while playing against the Level 5 opponent.
This explains the larger variance that is seen in Figure 8
compared to the other results. It is important to recall that the
SEC-Bot was initially trained using this level of opponent and
it took almost 50 games before it had enough knowledge and

Fig. 5. SEC-Bot: Killed vs WasKilled against a Level 2 opponent.

managed to start convincingly defeating the opponent. Even
at this point, it was still losing some games.

C. RL-Bot versus Fixed Strategy Opponents

We also ran all the above experimentation with the SEC
mechanism disabled to perform a comparative analysis. The
results, recorded over the 15 thirty-minute games for each skill
level, are shown in Table IV. The RL Only entries represent the
reinforcement learning bot with the SEC mechanism disabled.
It therefore continues to learn as it gains experience and does
not attempt to match the level of the opponent. For each level
of opponent, we report the final KD ratio and the number
of accumulated kills and deaths over the 15 thirty-minute
games for the NPC. From the results, we can see that the
performance of the RL Only bot depends on the skill of the
opposition whereas the SEC-Bot can adjust its performance to
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Fig. 6. SEC-Bot: Killed vs WasKilled against a Level 3 opponent.

Fig. 7. SEC-Bot: Killed vs WasKilled against a Level 4 opponent.

Fig. 8. SEC-Bot: Killed vs WasKilled against a Level 5 opponent.

retain a KD ratio of approximately 1.0 in each case. Figure
9 shows a comparative visualisation of the KD ratio for the
SEC-Bot versus the RL Only bot. The ratio is plotted for each
game incident (an incident occurs when the NPC has killed
an opponent or died itself) against the Level 3 opponent. This

TABLE IV
COMPARISON OF PERFORMANCE WHEN ENABLING AND DISABLING THE

SEC MECHANISM

Level
RL Only

KD Ratio
SEC-Bot

KD Ratio
RL Only

Kills|Deaths
SEC-Bot

Kills|Deaths

1 3.90 1.01 1955 | 501 988 | 974

2 3.73 1.03 1915 | 514 976 | 944

3 2.46 1.00 1561 | 635 1014 | 1011

4 1.33 1.00 1214 | 915 1004 | 1005

5 0.70 0.99 1032 | 1476 1302 | 1311

Fig. 9. KD Ratio when the SEC mechanism is enabled versus disabled.

clearly shows that SEC achieves successful game balancing
with an approximate 1:1 KD ratio over time.

VII. DISCUSSION

The success of our approach relies on the implicit as-
sumption that, during the training phase, the skill-level grows
monotonically as the learning time increases. For this reason,
the choice of task to be learned is an important one. We have
chosen the task of shooting as the NPC becomes naturally
more proficient with aiming, through the use of RL, as it
encounters more states (movement and orientation of the
opponent) over time. The approach is limited by the upper
bound of the performance that can be achieved by the NPC
and therefore the learning component has to be well defined to
avoid potential local minima stagnations during the learning
phase. For instance, the SEC-Bot has to adjust to the most
knowledgeable policy all of the time in order to compete at
the same as a Level 5 fixed-strategy opponent.

Another point to note is that our skill balancing technique
is only concerned with a single task at the moment, that of
weapon proficiency. In this case, tasks such as item collection,
enemy avoidance and movement around the map have fixed
strategy implementations. We used a small map for both
the training and testing phases so that we could focus our
evaluation on the shooting performance of the NPC. This is,
of course, the key task in an FPS game but there is plenty
of scope for learning other secondary tasks in the game and
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combining them to form the balancing mechanism.
There is no guarantee that the underlying RL agent for SEC

will exhibit a skillset that will suit all human players, given the
different player personas and playing styles that exist. In this
research, we decided to focus on the aiming efficiency of the
NPC with a single weapon. We ran tests against scripted fixed-
strategy opponents so that we could closely monitor the effect
of the skill adjustments. We were successful in what we set
out to achieve and we believe that it would be straightforward
to develop tailor-made behaviours to suit each of the different
types of weapon available. Having weapon-specific decision
making for multiple weapons could take us a step closer to
more generalised behaviour that would suit a wider variety of
playing styles.

The results for SEC are very promising and show that,
using a threshold mechanism and milestones from the learning
timeline, we can closely match the level of five different fixed-
strategy opponents (with varying degrees of proficiency) using
a single instance of the SEC mechanism. We believe that this
mechanism could be useful for a wide variety of game genres
that produce explicit performance metrics and, in this paper,
we have shown how successful it can be in the context of
weapon proficiency in an FPS game.

VIII. FUTURE WORK

The following are some possible refinements that could be
applied to the SEC-Bot in order to improve its skill-balancing
capability.

The criteria for selecting appropriate milestones is an in-
teresting task. Careful performance analysis could aid in the
process of milestone creation to determine definitive points of
performance improvement which may not follow systematic
increments. For instance, we may wish to select a larger
number of milestones during the earlier stages of learning and
select fewer milestones as the learning begins to plateau.

A milestone/player caching system could be introduced for
using the SEC against multiple opponents. Each opponent
would have an ID and an associated milestone so that the
SEC-Bot could switch to an appropriate milestone based on
the current opponent. We designed the initial system to balance
play with just a single opponent.

Finally, the SEC-Bot could be trained against different levels
of human players as opposed to fixed-strategy bots. Another
approach could be to deploy the SEC-Bot on a server, over
the Internet, to train it against both the human and computer-
controlled players that it encounters.
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Abstract—Simulated car races have been used for a long time
as an environment where car controlling algorithms can be
tested; they are an interesting testbed for all kinds of algorithms,
including metaheuristics such as evolutionary algorithms. How-
ever, the challenge in the evolutionary algorithms is to design
a reliable and effective evaluation process for the individuals
that eventually translates into good solutions to the car racing
problem: finding a controller that is able to win in a wide range
of tracks and with a good quantity of opponents. Evaluating
individual car controllers involves not only the design of a
proper fitness function representing how good the car controller
would be in a competitive race, but also the selection of the
best solution for the optimization problem being solved; this
decision might not be easy when uncertainty is present in the
problem environment; in this case, weather and track conditions
as well as unpredictable behavior of other drivers. Creating a
methodology for the automatic design of the controller of an
autonomous driver for a car racing simulator such as TORCS is
an optimization problem which offers all these challenges. Thus,
in this paper we describe an analysis and some proposals to
improve the evaluation of optimized fuzzy drivers for TORCS
over previous attempts to do so. It builds on preliminary results
obtained in previous papers as a baseline and aims to obtain a
more competitive autonomous driver via redesign of the fitness
evaluation procedure; to this end, two different fitness functions
are studied in several experiments, along with a novel race-based
approach for the selection of the best individual in the evolution.

Index Terms—simulated car racing, TORCS, fuzzy controllers,
autonomous drivers, genetic algorithms, optimization, evaluation

I. INTRODUCTION

Autonomous driving is a problem that shows up in many
environments, including of course self-driving cars, but also
in drones, ships, trains and underwater vehicles. In general,
there will be a series of sensor inputs that include real speed,
obstacles and other vehicles, and based on those sensors, the
bot will have to take a decision on speed and steering that
is optimal in several different senses [13]. Testing different
autonomous driving methodologies in real life is usually
reserved to just a few big players, and methodologies as well as
algorithms are usually tested in simulated environments; these
simulated environments, at the same time, offer the incentive
of competition among your system and others. In this paper,
we will be using the Open Racing Car Simulator (TORCS)
[28], a very realistic racing simulator which offers a great

testbed for the implementation and evaluation of autonomous
drivers. It has been used several times for the celebration
of Artificial Intelligence (AI) competitions, where the aim
is to create the best autonomous driver for racing [16]–[18].
Besides being able to test your car against other cars that have
been published, it can be used as a standalone environment to
optimize driving in a solo race.

Evolutionary Algorithms (EAs) [1] have been frequently
applied as a general-purpose optimization method in this
area, generally combined with behavioural engines that rule
different parts of the car [5], [11], [23], [24]. These driving
engines have included lately fuzzy controllers [8], [15], [22].
These controllers use fuzzy Logic [6], a technique that is
quite suitable for defining this kind of autonomous agents,
since they are in part inspired by the human reasoning when
driving. A fuzzy controller works with linguistic variables,
and will for instance turn slightly to the right when the next
curve is close, but these controllers have to be designed to
map properly inputs to desired outputs in particular situations.
Previously, the authors presented an approach combining two
specialized fuzzy controllers, designed by hand, that were able
to decide the car’s proper steering angle and desired speed at
every single point (or tick) during a race [26]. This driver
was later improved [27] optimizing the parameters of their
membership functions by means of a Genetic Algorithm [7];
this automated design improved manual one obtaining several
controllers that were able to beat the initial hand-designed
controller in a race, as well as other published controllers.

This proved that evolutionary algorithms were able to
get the fuzzy controller parameters better than a hand-made
design, but at the same time revealed several challenges. In
general, evolutionary algorithms optimize the fitness function
that is used; evolved fuzzy controllers (hereafter FCs) will be
eventually as good as the fitness function allows. But in this
particular case we cannot use as fitness function the position
obtained by the FC in every possible race on every possible
track with every possible opponent, so we have to settle for
a surrogate of the fitness in a very limited environment. First
we opted for eliminating opponents and making evaluations
in solo races; then we chose a particular track that combined
straight segments as well as some curves and did not take too
long to run, and eventually we had to decide what factors
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related to speed, damage and lap time were going to be
effectively included in the final fitness function.

Results were encouraging, but it is still a surrogate model.
As such a model, we need to decide on the best track to
perform training and also the solo race measures with the
biggest impact in the eventual racing performance. This is why
in this paper we have combined into the fitness function only
those terms related with speed during race (to maximize) and
damage (to minimize) - the most important factors - in two
different approaches. Besides, the fitness evaluation process
has a certain amount of uncertainty because damages and some
track conditions can randomly vary in different evaluations.
This is why instead of selecting directly the driver as we did
before, we will be using an actual race among the best drivers
to select the best one.

The main objective of the three new techniques introduced
in this paper, namely, heuristic track selection, fitness function
design and winner selection have as the main objective to
create a better model of the racing environment. Its results
will be commented in the corresponding section.

The rest of the paper is organized as follows. Next we
present the state of the art, to be followed by a description of
the TORCS simulator, the fuzzy controllers and the Genetic
Algorithm implemented in Section III. After it, the exper-
iments conducted and the obtained results are described in
Section IV. Finally, conclusions and future lines of work will
be presented in section V.

II. STATE OF THE ART

TORCS has become one of the main environments for
research on AI since its launch in 2007 [28]. It offers different
kinds of problems to solve, such as the definition of the
optimal parameters for the cars (before the race) [12], and
the main one, the design of competitive autonomous drivers
aiming to win races against other cars, mainly presented in the
context on the Simulated Car Racing Competition [16], [17].

Evolutionary algorithms have targeted TORCS almost since
its publication, for instance, for determining the optimal tra-
jectory of a lap in a known circuit [25], but this approach
suffers from the problem that the obtained trajectory in the
evolving process strongly depends on the initial state of the
car. In the same context, the authors in [19] tried to design
a novel approach to compute the optimal racing line without
any human intervention, using a GA to find the best trade-off
between the minimization of two conflicting objectives: the
length and the curvature of the racing line.

However, definitely, the most prolific area of application of
EAs inside TORCS has been the optimization of autonomous
controllers for car driving, i.e. conducting a meta-optimization
process. Thus, EAs have been applied to ‘refine’ the parame-
ters which define the driver’s behavior [2], [11], or to improve
the structure/architecture of the models [11], [14], working
offline, or online (during the game) [3], [29]. Our approach
is focused in this line, proposing the application of an off-
line genetic algorithm for the improvement of the parameters
which determine the behavior of a controller for TORCS. We

have focused on a Fuzzy-based model, as it is one of the
best options for modeling human-like decisions and actions,
as others authors have also used this kind of technique in the
literature with good results [23]. For instance, in [8], a fuzzy
rule-based car controller for a Car Racing Competition was
built and tuned with co-evolutionary genetic algorithms. Two
fuzzy sub-controllers were designed (acceleration and turning
angle). But this approach was applied to a simpler simulator
than TORCS which is more realistic and time-constrained.

Pérez et al. introduced an evolutionary fuzzy approach for
TORCS in [15], where they applied EAs for improving fuzzy
models to infer the acceleration and turning angle. However,
the models were not so specialized as the proposed here, since
their controller did not compute the target speed, which is a
key factor for a competitive controller.

Onieva et al. [22] presented a parametrized modular archi-
tecture with a fuzzy system and a GA, aiming to reproduce
the behavior of a human driver when controlling the steering
wheel. In this line, we presented an improved approach [26],
which evolved a fuzzy-based driver considering the target
speed in addition to the steer (two fuzzy sub-controllers). This
controller was also enhanced in a further work [27] optimizing
the parameters of the membership functions by means of a
real-coded GA, obtaining a noticeably improved performance.

In this paper we focus on the improvement of the evolved
controllers by means of a redefinition of the fitness functions,
looking for a parameter-less approach (no weights in the
terms) [9], which will be also more focused on the real
objectives for a driver during a race, rather than the overall
target. In addition, a ‘fairer’ selection process of the best
individual has been implemented, aiming to focus on real good
drivers in races, instead of choosing the one with the highest
fitness value, which could have a poorer performance due to
the uncertainty/noise present on the problem.

III. EXPERIMENTAL SETUP

The Open Racing Car Simulator (TORCS) [28] is an open
source, modern, multi-player, modular and portable racing
simulator that allows users to compete against other computer-
controlled opponents. Its high degree of modularity and
portability, together with the realistic and real-time driving
simulation, make it an ideal testbed for artificial intelligence
research, as we have shown in the previous section.

Every car in TORCS includes a large set of sensors, whose
values the car can use during a race, such as distances to
track borders, to rivals, current fuel, current gear, position
in the race, speed, or damage, among others. The sensor
values can be considered by any TORCS autonomous driver,
or controller, to manage the car using actuators: the steering
wheel, the accelerator, the brake pedal and the gearbox. The
designed controller is based on the model of sensors and
actuators of the simulated car racing competition [18].

A. Fuzzy sub-controllers

The controller proposed initially [26] has the same modular
architecture as the simple TORCS driver; however, the target
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speed and steering angle are computed by means of two
modular and specialized fuzzy sub-controllers, which consider
five position sensors. This is the controller which will be
improved by means of a GA in this work.

The fuzzy target speed sub-controller aims to estimate the
optimal target speed of the car, both in straight parts and curves
of the track, taking into account two criteria: move as fast as
possible and be safe. This estimation is based on two general
cases: if the car is in a straight line, the target speed will take
a maximum value (maxSpeed km/h). However, if it is close
to a curve, the controller will decrease the current speed to a
value included in the interval [minSpeed, maxSpeed] km/h.

This fuzzy controller has an output, the speed, and three
input values:

• Front = Track 9: front distance to the track border (angle
0°).

• M5 = max (Track 8, Track 10): max distance to the track
border in an angle of +5°and -5°with respect to Front.

• M10 = max (Track 7, Track 11): max distance to track
border in an angle of +10°and -10°.

It is a Mamdani-based fuzzy system [10] with three trape-
zoidal Membership Functions (MF) for every input variable.
In [27] the different sets of parameters which define the mem-
bership functions were improved using a Genetic Algorithm
to obtain the best results.

Moreover, the controller is based in a set of fuzzy rules,
designed to maximize the car speed depending on the distance
to the track border. These rules can be consulted in [26].
The second is the fuzzy steering sub-controller, which aims
to define the steer angle estimating and determining the target
position of the car. The structure of this sub-controller is
similar to the speed one, but it has the steering as output. Thus,
the set of sensors considered is the same as in the speed case.

Then, as general rules: if the car is in a straight line, it
will set as target position half width of the race track (central
position of the lane). Whereas, if the car is near a right/left
curve, it will approach the path leading to the right/left, with
a space between the car and the border of the track to avoid
the loss of control.

In order to detect the curves, the controller focuses on the
sensor values (M10, M5, and Front). So, if the value on Front
sensor is the longest, there is a straight road; whereas if the
values of M5 and M10 with positive angles (+5 and +10) are
the longest, there is right curve; and the other way round.

It uses a base of rules which has been defined trying to
model the behavior of a human driver [26].

B. Genetic Algorithm

The proposed optimization approach aims to find the op-
timal parameters of the membership functions of the two
sub-controllers previously introduced. The followed process
is depicted in Figure III-B, in which, as it can be seen, the
GA uses TORCS for the evaluation of every individual during
the evolutionary process.

The GA starts by creating the initial population with random
values for the parameters in the defined range [0, 100]. The

Fig. 1. Optimization of a fuzzy controller flowchart. The evaluation of an
individual is performed by: putting the parameter values on the two sub-
controllers, launching a race in TORCS with this configuration, obtaining the
resulting values of Damage, Top Speed and mean Lap Time and using these
values for the computation of the fitness of the individual.

fitness of each candidate solution is computed by injecting its
gene values to the parameters of the membership functions
of the two fuzzy sub-controllers. The defined autonomous
controller is used to drive a car in a 20 laps race in a circuit
without opponents, and the results (Maximum, Minimum and
Average speed, Damage) are used to compute the fitness value.

As previously stated, the designed fuzzy controllers have
trapezoidal membership functions given by Equation 1. In such
a controller, fuzzy rules are applied to linguistic terms. These
terms, which qualify a linguistic variable, are defined through
membership functions, which, in turn, depend on a set of
parameters that ‘describes’ their shape (and operation). Using
a GA we will optimize the parameters of the membership
functions that constitute the fuzzy partition of the linguistic
variable [30]. The input linguistic variables in our problem,
Front, Max5 and Max10, are represented by three trapezoidal
membership functions.

A trapezoidal membership function in a finite universe of
discourse [a, b] can be defined by:

µA(x) =





x−x1

x2−x1
, x1 ≤ x ≤ x2

1, x2 ≤ x ≤ x3
x4−x
x4−x3

, x3 ≤ x ≤ x4
0, else

(1)

with:
x1 ≤ x2 ≤ x3 ≤ x4 (2)

This MF function is defined by four parameters x1, x2, x3
and x4 taking their values in the interval [a, b] (Figure 2).

And a fuzzy partition with n trapezoidal membership func-
tions is defined by 2n variables (a = x1,x2,. .., x2n =
b)(Equation 4). In this case, the representation is given by
Figure 3. With:

a = x1 ≤ x2 ≤ ... ≤ x2n−1 ≤ x2n = b (3)

271



Fig. 2. Trapezoidal MFs

Fig. 3. Trapezoidal-shaped MFs coding

µA1(x) =





1, x1 ≤ x ≤ x2
x3−x
x3−x2

, x2 ≤ x ≤ x3
0, x > x3

µAi(x) =





0, x ≤ x2i−2
x−x2i−2

x2i−1−x2i−2
, x2i−2 ≤ x ≤ x2i−1, n = 2, ..., i− 1

1, x2i−1 ≤ x ≤ x2i
x2i+1−x
x2i+1−x2i

, x2i ≤ x ≤ x2i+1

0, x > x2i+1

µAn(x) =





0, x ≤ x2n−2
x−x2n−2

x2n−1−x2n−2
, x2n−2 ≤ x ≤ x2n−1

1, x > x2n−1

(4)
When the number of parameters is reduced and their ranges

of variations are well defined, a GA with a binary coding is
largely sufficient to find their optimal values. On the other
hand, if the number of parameters becomes important, and
their variation interval is not well known, the real coding is the
most appropriate [4]. Since our work requires some precision
and the variation interval of each parameter is not well known,
we have considered a real coding implementation in a vector
that includes all variables to optimize.

In that GA, every individual is a vector of 18 val-
ues/parameters, 6 per variable. Figure 4 illustrates the structure
of the chromosome.

The initialization of the chromosomes (first population) is
performed assigning random values inside a range of variation
[7], in order to start from feasible values [26]. Tournament
based selection has been used to elect chromosomes as par-
ents for genetic operators, while simple arithmetic two point
crossover [31] and non uniform mutation [21] have been
chosen, as two of the most contrasted methods in the literature.

The objective of the car controller is to win as many races as
possible. However, we have to optimize the most general case
by carrying out solo training races, which will be less sensitive
to the presence of noise/uncertainty due to the participation of
other controllers.

In previous approaches we focused on minimizing the
damage of the car (damage) and the lap time LapT ime,
while maximizing TopSpeed. However in this study, we have
turned our focus to a more ‘human-like approach’, i.e. trying
to drive as fast as possible in every single part of the track
while avoiding damage. Thus, we have considered:

• MinSpeed: aiming to increase the good driving in the
difficult zones of the tracks (e.g. curves).

• MaxSpeed: centered on the enhancement of the con-
troller in easy or straight parts.

• AV G(Speed): which shows the combination of the over-
all behavior in the whole track.

• Damage: aiming to create ‘safe’ controllers, as it is
mandatory being able to finish the race.

We have combined these terms into two possible fitness
functions:

GFC-MMS:
f1 = (MinSpeed∗MaxSpeed)

Damage+1
(5)

GFC-AVS:
f2 = AVG(Speed)

Damage+1
(6)

As it can be seen, the aim is to maximize the minimum and
maximum velocities while minimizing the damage in the first
fitness. In the second one, we try to maximize the average
speed on the complete circuit.

To evaluate every candidate controller during the evolu-
tionary process, we will make each of them compete in a
20 laps practice race in a medium difficulty circuit without
rivals. As stated, we have omitted the presence of opponents
in order to avoid including additional uncertainty sources to
the optimization process. In order to obtain general-behaviour
controllers, the selected track for this process will be one with
a combination of curves and straight parts.

Once this practice is finished, the obtained output values
Damage, MinSpeed, MaxSpeed and AV G(Speed) are
collected to compute the corresponding fitness value.

IV. EXPERIMENTS AND RESULTS

After analyzing most of the available tracks, we have
selected for these experiments the Alpine 2 circuit. It is a
quite complex one, with multiple turns, but also straight parts
(See Figure 5).

Fig. 5. Alpine 2 Track: Slow mountain road. Length: 3773.57m, Width: 10m

We have used the driving car car1-tbr1 for our controllers,
since according to previous experiments [26], this is a fair
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Fig. 4. Chromosome description

choice due to its moderate performance. This will lead our
controller to be prepared to drive in the most usual conditions.

We have evaluated the Genetic Fuzzy Controller (GFC)
with the two proposed fitness functions: GFC-MMS (Equation
5) and GFC-AVS (Equation 6), comparing them for racing
performance. We have run the algorithm with a population size
of 50 individuals. The rest of parameters are: Generations=50,
Crossover rate=0.85, Mutation rate=0.1, and 10 different runs
per configuration.

The two genetic optimization processes have been run
independently. However, as a difference to previous works
in which we just selected as the best the individual with the
highest fitness value in the last generation, in this study we
have aimed to implement a better methodology, which we
expect will yield a more competitive controller.

To this end, once the evolutionary process is finished and
for every approach, the best four individuals have competed
together in 5 races (of 5 laps) in the Alpine 2 track (used in the
optimization) and 5 races (of 5 laps) in E-Track 5 track (a new
one for them). In order to enhance the selection of the best,
another two controllers are picked randomly from the default
TORCS bots to participate in the race. We have implemented a
score-based competition, which is based in Formula 1 schema,
so the obtained scores depend on the car position: 1 - 25 points,
2 - 18, 3 - 15, 4 - 12, 5 - 10, 6 - 8, 7 - 6, 8 - 4, 9 - 2, 10
- 1. Moreover, in order to consider the fitness terms, we have
defined an extra score, so the controller which gets the fastest
time or the minimum damage in each lap is given 5 extra
points.

The results of these runs are shown in Table I. ”Best
laps” and ”Min damage” are the scores obtained by every
controller in every race when getting the best lap time or/and
the minimum damage of all the contenders. The symbol ‘-’
means the TORCS bot do not participate in the race.

According to the table, the first individual of GFC-MMS and
the second of GFC-AVS have won the same number of races
but GFC−AV S2 has achieved better scores on the races it did
not win. We have to remark that the TORCS bots results are
not counted since they only serve to diversify the selection and
they do not participate in all the races. This selection allowed
us to choose the best individual on several races and the most
stable, and thus, avoid the classical selection by tournament
where the winner of a single confrontation is chosen.

It could be also pointed out that the genetic-based fuzzy
controllers have get all the points of the minimum damage
even when they do not win the race, this fact strongly justifies
the use of damage in the fitness functions, which is a key
factor to consider in real races.

The controllers obtained using the first fitness have also
collected the points of the best laps in five out of the ten
races. We have to bear in mind that the best lap is the result
of a minimum damage and a high MaxSpeed, which are both
optimized by the first function. In the same line, the second
fitness tries to maximize the average speed, not necessarily the
MaxSpeed.

For the following experiment, we have chosen the two - one
per fitness function - best genetic-based fuzzy controllers ob-
tained in the previous tests, which are named GFC−MMS1

and GFC − AV S2. They have been evaluated in a set of
practice races against some selected opponents. In addition,
the two best evolutionary controllers of our previous paper
[27], EV O1 and EV O2, have been also included in the
competition.

This evaluation is a type of mini-championship, which also
considers Formula 1 scores. It consists of 10 races, each one
for 20 laps, and with a total of 10 participants per race: the best
two GFC−MMS1 and GFC−AV G2, EV O1, EV O2, and
also 6 bots from TORCS are used to test our controllers. The
first 5 races are conducted in Alpine 2 track (trained one); and
the other 5 races took place in E-Track 5 track (not trained for
the new controllers, but used in the evolution of our previous
ones). The the starting grid (initial positions of cars) on these
races was set randomly. It is important to note that in these
races there are not extra points.

The results are shown in Table II. This table shows how
one of the fuzzy controllers that are evolved using the new
selection and evaluation functions GFC-MMS2 yields the best
results, obtaining very good overall rankings in the races.
Inferno1 controller also obtained very good results, getting
3 times the best lap score, but it happened due to it used the
fastest car. We can also see that our two genetic based fuzzy
controllers have only won: one race GFC −MMS1 and two
races GFC−AV S2, while berniw2 and inferno1 bots have
won three races each one. To complement the visualization
of results, we have plotted the overall number of points of
the championship in Figure 6. Figure 7 represents the number
of races where each controller has obtained the minimum
Damage and the highest Maximum Speed.

As it can be seen in the table and figures, even if they are
not able to win, our new genetic controllers have finished in
the first four positions in the races, which helped them to win
the championship by score. This result is due to the trade-off
between the damage and the average speed achieved by the
fitness function (mainly the second one). This property has
given our controllers an advantage in minimizing damage and
looking for top speed in the straight sections of the track while
it tries to find the best trajectory in turns to avoid hitting the
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TABLE I
OBTAINED SCORES ON THE RACE-BASED SELECTION FOR THE TWO APPROACHES IN TWO DIFFERENT TRACKS.

5 races in Alpine 2 track (5 laps each) 5 races in E-Track 5 (5 laps each)
Driver R1 R2 R3 R4 R5 Best laps Min damage R1 R2 R3 R4 R5 Best laps Min damage Total

GFC − MMS1 25 18 8 15 12 15 10 12 25 18 25 18 10 10 221
GFC − MMS2 12 25 15 12 15 0 5 8 15 15 4 10 0 0 136
GFC − MMS3 6 6 10 10 8 0 0 15 10 10 18 6 0 5 104
GFC − MMS4 2 8 4 4 6 0 0 10 1 2 1 2 0 0 40
GFC − AV S1 1 4 6 2 4 0 0 4 2 12 10 4 0 0 49
GFC − AV S2 15 10 18 25 18 5 10 25 18 25 15 15 5 10 206
GFC − AV S3 10 2 1 6 2 0 0 2 6 4 6 1 0 0 41
GFC − AV S4 4 1 2 1 1 0 0 1 4 8 2 8 0 0 32

bt1 - - - 8 - 0 0 - 8 6 8 - 0 0 -
inferno1 18 - 12 - - 0 0 18 12 - - - 0 0 -
berniw2 8 15 - 18 - 0 0 - - - 12 12 5 0 -
berniw3 - 12 - - 25 5 0 4 - - - 25 5 0 -
damned1 - - 25 - 10 0 0 - - 8 - - 0 0 -

TABLE II
RESULTS OF THE MINI-CHAMPIONSHIP WITH 10 DRIVERS AND 10 RACES IN TWO DIFFERENT TRACKS. tita, berniw AND inferno ARE EXAMPLE

CONTROLLERS INCLUDED WITH THE TORCS SIMULATOR [28]

Races in Alpine 2 track (20 laps each) Races in E-Track 5 track (20 laps each)
Driver R1 R2 R3 R4 R5 Track Score R6 R7 R8 R9 R10 Track Score Total Score

GFC − MMS1 25 10 18 12 10 75 18 12 15 15 12 72 147
GFC − AV S2 15 18 25 15 15 88 25 18 18 12 18 91 179

tita1 4 2 1 2 2 11 4 2 1 4 6 17 28
tita2 2 1 2 1 1 7 1 1 2 1 2 9 16

inferno1 12 15 12 18 18 75 12 15 25 25 15 92 167
inferno2 10 12 4 10 25 61 10 10 4 2 8 34 95
berniw1 18 25 15 8 6 72 8 8 6 10 10 42 114
berniw2 8 8 10 25 12 63 15 25 10 8 25 83 146
EV O1 6 6 8 4 8 32 2 6 12 8 4 32 64
EV O2 1 4 6 6 4 21 6 4 8 6 2 26 47

Fig. 6. Total and partial score for all controllers in the championship. The two controllers introduced in this paper use the GFC prefix.

track edges or get out of it.

Also, as we can see in Figure 7 GFC−MMS1 is better at
doing fast laps, and at the same time it sustains less damage.
Peak speed is not enough to eventually win a race. Figure
6 shows how GFC − AV S2 achieves the best score in the
championship. It should be noted that this victory is mainly
achieved thanks to the victories in E-Track 5. Although it
is always in a good position in this track, GFC −MMS1

fails to win a single race, being overcome by the other tested
controller as well as inferno1.

Finally, Table III presents a comparison between the genetic
based fuzzy controllers presented in this paper, GFC −
MMS1 and GFC−AV S2 with those obtained in [27], EV O1
and EV O2. The results are the average values of damage,
MaxSpeed and Speed of 10 races in the Alpine 2 and E-
Track 5 tracks.
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Fig. 7. Bar chart with the number of races where controlled cars obtain the
minimum damage and where they obtain the highest MaxSpeed in a lap.

TABLE III
AVERAGE DAMAGE AND SPEED RESULTS OF GFC IN 5 RACES IN ALPINE

2 AND 5 RACES IN E-TRACK 5 TRACKS

Alpine 2
GFC − MMS1 GFC − AV S2 EV O1 EV O2

Average Speed
(km/h)

188.66 194.39 154.02 150.98

Max Speed
(km/h)

229.77 218.91 213.42 215.00

Damage 122.43 134.85 124.02 131.41
E-Track 5

GFC − MMS1 GFC − AV S2 EV O1 EV O2
Average Speed
(km/h)

166.89 169.33 147.92 145.78

Max Speed
(km/h)

252.72 241.29 236.33 231.90

Damage 22.89 18.44 23.34 15.26

The average values obtained for the maximum speed and
the damage show a clear improvement for the two new
controllers, with regard to previous ones, given by the novel
fitness functions proposed here. Although the damage values
of GFC − MMS1 and GFC − AV S2 remains similar to
the ones obtained by ‘EVOs’, the improvement in the average
and maximum speed reached during the races is clear. This
fact is even more remarkable in the case of GFC −MMS1,
which was designed with a fitness function in which the speed
had a higher relevance. On the other hand, we can notice
the considerable increase in the average speed of controller
GFC−AV S2 in both tracks and especially in Alpine 2, which
was the one used during the evolution process. This increase
translates into a decrease in race time in each segment of the
track and therefore an overall better performance. According
to the results in the table we could argue that the evaluation
functions are working properly. And moreover, that the new
approaches are working much better than previous ones, even
in the circuit in which the ‘EVOs’ were trained.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have presented new ways of evaluating
controllers for the TORCS game; these new methods work
within an evolutionary algorithm that optimizes a set of
fuzzy controllers for TORCS cars [27]. It combines two sub-

controllers, one to calculate the target speed and the other for
the direction, that is, for driving the steering wheel.

After initial tests in previous works [26], [27], that showed
the promise of using evolutionary algorithms with two dif-
ferent fitness functions, one considering the average lap time
and the car damage and another adding the top speed reached,
we discovered the importance of the speed, using different
combinations. A priori, we could think that races are won
by being very fast when you can be, and trying not to get too
slow in tortuous segments. This heuristic was what drove us to
design the first evaluation function, GFC−MMS. However,
it could be thought that sustaining a high average speed will
be the most important factor; this was the heuristic used for
GFC−AV S. The choice of the single track used for training
reflected these facts: tracks usually combine “fast” and “slow”
segments, and the car should be able to perform well on both.

Besides, the uncertainty of the evaluation is taken into
account when selecting the best controller. Since there is a
random element in evaluation, instead of just picking the
individual with the best fitness in the last generation, we select
the best ones, make them complete against each other and
other rivals in a set of real races in several tracks; then select
the one with the best results overall score. Introducing this
element of reality also makes the choice of controller for
comparison a more robust choice than previously.

The yielded results are very promising since the optimized
controllers (one per fitness function) were ranked among the
first ones in different evaluation races with rivals, with the
minimum of damage and a very good average and maximum
speed.

In the comparison with the previous evolved fuzzy con-
trollers (from [27]), the improvement can be clearly seen in
the results. The new controllers are able to drive much faster
than them, even in a track where the latter were trained, and
moreover they manage to sustain a low damage. They do so
even if, compared with [26], [27], they are not using damage
as a criterium for optimization. High damage might make a
car abandon a race, but apparently a certain amount of damage
should be expected if you want to win the race.

At this point, it would be difficult to say which of the
three factors introduced in this paper, namely, new evaluation
functions, race track for evaluation and post-optimization
selection of winner, is the one that contributes the most to
the good results. Clearly all three of them have an impact,
but, taking into account the big difference among results
in the post-optimization selection of controllers in the last
generation, probably this step, which deals with uncertainty
in the evaluation of the controller, might have had the biggest
impact. This way of dealing with uncertainty, which is usually
a problem in game bot optimization [20], might be extended
in different ways, for instance as a selection method for all
generations.

This is one of the future lines of work, combined with
a study of the influence of all factors in bot performance.
This will have to include tracks, fitness functions and post-
optimization selection. This will have to be combined with
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the improvement of the controllers considering a ‘deeper’ and
‘wider’ evaluation (more laps and more tracks). There is also
a similar research line to address, which is the optimization of
the outputs in the fuzzy system, which has been set manually
in all our approaches.

With regard to the applied GA, it could be improved in
different ways, for instance, reducing its computation time by
means of the parallelization of the evaluation phase. Also, a
multi-objective approach could be implemented, in which the
main objectives to address by the controller could be optimized
at once. Moreover, we could also try to generate, optimize
and tune automatically the rule base of the fuzzy controller
by means of a Genetic Programming algorithm.
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for car setup optimisation in torcs,” in 12th UK Workshop on
Computational Intelligence (UKCI), Sept 2012, pp. 1–8. [Online].
Available: https://doi.org/10.1109/UKCI.2012.6335749

[13] S. Kolski, D. Ferguson, C. Stacniss, and R. Siegwart, “Autonomous
driving in dynamic environments,” in In Proceedings of the Workshop
on Safe Navigation in Open and Dynamic Environments at the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Beijing, China, 2006.

[14] J. Koutnik, G. Cuccu, J. Schmidhuber, and F. Gómez, “Evolving large
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Abstract—This paper describes how a surrogate model of the
interrelations between different types of content in the same
game can be used for level generation. Specifically, the model
associates level structure and game rules with gameplay outcomes
in a shooter game. We use a deep learning approach to train
a model on simulated playthroughs of two-player deathmatch
games, in diverse levels and with different character classes per
player. Findings in this paper show that the model can predict
the duration and winner of the match given a top-down map
of the level and the parameters of the two players’ character
classes. With this surrogate model in place, we investigate which
level structures would result in a balanced match of short,
medium or long duration for a given set of character classes.
Using evolutionary computation, we are able to discover levels
which improve the balance between different classes. This opens
up potential applications for a designer tool which can adapt
a human authored map to fit the designer’s desired gameplay
outcomes, taking account of the game’s rules.

Index Terms—deep learning, surrogate model, artificial evo-
lution, procedural content generation, computational creativity

I. INTRODUCTION

Despite a long history of procedural content generation
(PCG) in the game industry, there is still a gap between the
algorithms developed in the academic community and those
applied in the commercial sector. In an effort to address one
of the major concerns of the industry, there is an increasing
research interest in giving designers more control over the
generated content. There are several ways to ensure that a
designer can influence the creative process, e.g. by creating
a set of modular components that can be recombined via a
generative grammar [1] or evolution [2], by placing constraints
which can be solved via answer-set programming [3], or by
adjusting the objectives of a search-based generator [4].

While there has also been work towards making the designer
a part of the generative loop itself, e.g. via interactive evolution
or through a mixed-initiative process [5], this paper will focus
on tools that allow the designer to customize the generative
space a priori. This can be done with visualizations that show
the effect of generative parameters on the expressive range of
the generator [6], allowing designers to more efficiently tune
the algorithm’s parameters to the intended outcomes, or by
allowing designers to literally set targets (or acceptable ranges)
for their desired output. Both search-based and constrained

programming approaches can use such a designer-specified
goal to bias their generative output.

This paper proposes a tool for designers to create or adapt
levels towards specific gameplay outcomes. The tool takes
advantage of a model of gameplay that can predict emergent
gameplay properties from the level structure as well as the
game’s ruleset. This model, trained via deep learning on a
large corpus of simulated plays with artificial agents, acts as a
surrogate model [7] and bypasses the need for computationally
expensive simulations. As a design tool, the quick response
times afforded by this model can be used both for immediate
feedback while the designer adapts the level or the game rules
(both of which affect the gameplay outcomes). Moreover, as
explored in this paper, the surrogate model can be used to
generate new levels or variations of existing levels through a
search-based process which uses the surrogate model instead
of computationally expensive simulation-based evaluations.

The use case in this paper is competitive first person shooter
(FPS) gameplay, which has easily quantifiable gameplay out-
comes, i.e. gameplay balance (whether a player wins easily
over another) and match duration (whether the match is over
quickly). The game rules and level structures that are being
provided as input to the surrogate model are the game’s
competing character classes and the top-down view of the
FPS map. Character classes are common in shooter games:
each competing player chooses a class, which may have a
different survivability and speed as well as a signature weapon
which fits its role (e.g. scout, sniper class). The FPS map
itself has multiple floors, to allow for FPS level patterns
such as sniping positions [8]. Experiments in this paper focus
on the designer-guided aspect of this framework, allowing
designers to specify a map they would like to improve, the
target character classes that this map is intended for, and the
desired game balance and duration. The system then adapts
the level via recombination and mutation, to minimize the
distance with the designer’s desired gameplay outcomes, using
the surrogate model to predict the evolving maps’ gameplay
properties. A thorough evaluation with a broad set of character
classes and target match durations shows that the generative
approach can improve the designer’s map to better match
the gameplay outcomes and better take advantage of specific
classes’ strengths and weaknesses.

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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II. RELATED WORK

Evaluation of game content has been a topic of broad
academic inquiry, e.g. via heuristics, constraints, or a com-
bination of the two. Game levels have often been parsed
in terms of their geometric or path properties to estimate a
modicum of balance between two or more competing players
[9]–[11]. These heuristics observe the level structure alone,
and are expected to be accurate only if the two players have
the same in-game characteristics (e.g. available units, tech
tree, or weapon power) and the same playstyle or skill. A
more objective way of assessing game balance is through
agent-based simulations or actual player traces. For the latter,
interactive evolution can be used indirectly to adapt a level
based e.g. on the combat time of a player [12]. For the former,
artificial agents have often been used in simulations to assess
each and every individual in the evolving population; this
approach is computationally expensive and forms the bottle-
neck in simulation-based evaluations for search-based PCG
[4]. Such agents are often simplistic (including those used in
this paper), but agents may use more general gameplaying
algorithms such as Monte-Carlo Tree Search [13] or may
have different goals depending on the play persona they are
trying to emulate [14]. Our proposed framework attempts to
alleviate the computational cost of extensive simulations by
using a model trained on a broad variety of level structures
and diverging in-game characteristics.

This paper explores how machine learning can be used for
procedural content generation as a surrogate model, indirectly
influencing the fitness function of a search-based PCG al-
gorithm [4]. So far, machine learned models are primarily
used to directly manipulate game content [15]. For instance,
neural networks have mostly been used to learn level patterns
which are then applied directly to the level. For example, a
recurrent neural network that predicts sequences of tiles is
used to create levels for Super Mario Bros. (Nintendo 1985)
in [16]; a convolutional neural network (CNN) is used to place
resources on a pre-made Starcraft II (Blizzard 2010) map [17].
Other work has used autoencoders to learn patterns in Super
Mario Bros. levels and use the encoding-decoding sequence to
repair broken segments [18]. Finally, CNNs have been used
to predict various characteristics of Super Mario Bros. levels
based on player annotations [19], but these networks were
not used for content generation. While machine learning has
a long history in procedural generation [15], the proposed
framework uses its learned model indirectly (i.e. to guide
evolution) rather than directly. More importantly, it is the
first attempt at using a model that has learned to combine
both game rules (in the form of class parameters) and level
properties for actual generation. The model combines three
different facets of games, i.e. game design, level design and
gameplay as discussed in [20]. The framework is thus the
first step towards game facet orchestration where all facets of
games are considered as a whole rather than e.g. considering
only the structural parts of the level [10] or the properties of
weapons [21] in a vacuum.

III. GAME FRAMEWORK

This paper uses first-person shooter (FPS) games as a use
case for mapping level structure and game parameters with
gameplay outcomes; it uses that mapping to generate levels
appropriate for a one versus one deathmatch game between
two players. The players are assumed to be on an equal skill
level, and each of them controls one avatar that belongs to
a specific character class. Character classes are common in
shooter games such as Team Fortress 2 (Valve 2007) and
have different gameplay styles and strategies, as well as a
different signature weapon. This paper uses the same character
class names and attributes from Team Fortress 2 (TF2) as a
benchmark for the level generator capabilities.

Deathmatch games are competitive: the player who score
more kills on their opponent(s) is the winner. A session in
a deathmatch game finishes usually after a specific time has
elapsed or a specific number of kills by one or both players.
The framework in this paper considers matches to be complete
when a total of 20 kills is scored; a time limit of 600 seconds
is also in place, but results from matches that timed out are
ignored. The game used for these experiments is implemented
in Unity 2017, a commercial game engine, and is based on an
existing toolkit1. The two competing players start the game in
opposite corners of a game level (described below).

A. Game Parameters
The character class of each avatar is represented by eight

parameters. Two of these parameters are specific to the charac-
ter, i.e. hit points and movement speed, while the other six are
characteristics of their weapon: damage (per shot), accuracy
(i.e. the size of the cone in which bullets are fired), rate of fire,
clip size, the number of bullets per shot and weapon range. As
noted earlier, the inspiration for the class parameters is from
the TF2 game; experiments in this paper use parameter values
from the game itself. The one addition to TF2 parameters was
that of range, to discern when AI agents should shoot.

B. Map properties
The maps in the game consist of a grid of 20 × 20 tiles,

which can have three degrees of elevation. The ground floor
and first floor are both traversable, while the second floor
is inaccessible and acts as a barrier. Each tile only has one
elevation (there are no tunnels or bridges). Players travel from
the ground floor to the first floor via stairs; they can go down
to the ground floor via stairs or drop off a ledge. An example
map is shown in Figure 1a, where the floors are indicated
in white, dark gray and black, and stairs between the ground
and the first floor in light gray. The spawn point of the first
player (P1) is always in the bottom left corner, while the
second player (P2) always spawns in the top right corner.
Furthermore, the maps can contain three types of pickups that
are common in shooter games: a healthpack (increases health
up to a maximum), armor (offers additional health which is
depleted first) and a damage boost (player’s bullets temporarily
deal double damage).

1http://opsive.com/assets/DeathmatchAIKit/
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(a) 3D shooter level (b) CNN inputs

Fig. 1: A view of the in-game 3D level and its transformation
into CNN inputs. Orange and purple areas are the bases
of player 1 and 2 respectively. Red tiles are healing loca-
tions, blue and turquoise tiles are armor and double damage
powerups respectively.

IV. A SURROGATE MODEL OF GAMEPLAY

In order to learn a mapping between levels, game rules, and
the gameplay outcomes, a deep learning approach was used.
This Section describes the corpus used to learn patterns from,
the machine learning approaches and their performance.

A. Creating a Game Level Corpus

In order to provide a rich and expressive dataset to learn
patterns from, gameplay outcomes were collected from sim-
ulations between artificial agents playing through a broad set
of levels and character classes. Agents’ behavior is controlled
by behavior trees that were adapted from the original toolkit.

Agents played two matches in a unique combination of class
pairs (one character class per player) and levels: each agent
used the same character class twice, one starting from the
bottom left corner of the level and the other starting from the
top right corner of the level (orange and purple in Fig. 1). In
total, 105 levels and class pairs were generated, resulting in
2 · 105 data points regarding gameplay outcomes.

To generate a pair of character classes, 16 game parameters
(8 per player) were normalized to a predetermined value range
and a floating point value for each was randomly assigned;
range was chosen randomly between short, medium and long.

To generate the game levels, a constructive map generator
was implemented, using digging agents and generative gram-
mars [22]. The overall layout of the map is created in a lower
resolution representation (4 × 4 grid of cells), crafting two
paths between player bases: one on the upper side and one
on the lower side of the diagonal. Agents then operate on
each cell (which is 5 × 5 tiles in the final level) to connect
the cell to its adjacent ones. The “walls” that remain from
this process are transformed into first or second floor tiles
randomly; cellular automata then add more first floor tiles. The
algorithm places stairs on eligible tiles with a 20% probability.
Each unreachable first floor tile is transformed into a second
floor, in order to guarantee traversability of first floor tiles.

(a) Game Duration (b) Kill Ratio

Fig. 2: Distribution of gameplay outcomes in the corpus.

After the level architecture is created, each cell has a 33%
chance of having a pickup placed on a random tile within it.

Through the process described above, a dataset of 2 · 105
gameplay outcomes is created, out of which 6% are omitted
as the matches are not completed within the time limit. For
the remaining matches, the core gameplay outcomes that can
be learned is the kill ratio (KR) of one player (P1) to the total
kills, and the duration of the match in seconds. The distribution
of these two gameplay outcomes is shown in Fig. 2. There
is an almost uniform distribution between balanced matches
(KR of 0.5) and matches where P1 had a clear advantage
(KR near 1) or disadvantage (KR near 0). On the other hand,
duration is skewed towards values around 300 seconds, with
very few matches lasting below 200 seconds (2%) or over
500 seconds (4%). This may affect the accuracy of the deep
learning approach, as will be discussed in Section IV-D.

B. Data Input

Several steps are taken to process the data collected from
simulated matches in order for the machine learning approach
to read it. For gameplay outcomes (the intended outputs) the
kill ratio and duration are normalized to the [0, 1] range:
kill ratio is already normalized while duration is min-max
normalized. For character class parameters, all parameters are
min-max normalized in order to generate character classes for
the training set. For the game level, the grid of 20×20 tiles is
transformed into multiple channels using a variant of one-hot
encoding (see Fig. 1). In the channels that encode pickups,
a tile with a pickup and all its adjacent tiles are 1, except
second floor tiles. Pickups were given more prominence in
their respective channel due to their scarcity in the level and
their importance in gameplay.

C. Convolutional Neural Network Architecture

Following a broad set of preliminary experiments with
network architectures, activation functions and optimization
strategies, the network chosen for this task is similar to [23].
This CNN has two separate information streams, one for the
map and one for the pair of character classes. The level input
is passed through two blocks of convolution and max-pooling,
with 8 and 16 filters respectively. The convolutions are of size
3×3 (with zero-padding), and the end-result is a flat vector of
400 features for the level. The 16 parameters of the character
classes are passed to a single fully-connected layer of 8 nodes,
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the output of which is concatenated to the flat feature vector
of the map. Finally, this combined feature vector is connected
to a single fully connected layer of 32 nodes which connects
to two outputs that predict the two gameplay outcomes (kill
ratio and duration). All nodes use a ReLU activation function.

D. Training Results

In order to validate the performance of our CNN archi-
tecture, baselines with several multi-layer perceptron models
(MLP) were tested, as well as a perceptron and linear regres-
sion (LR). For the sake of brevity, the performance of the best
MLP (with 128 neurons) is reported. Additionally, to assess
the importance of each input modality, the same models are
trained using only the character class parameters or only the
map as input by leaving the remaining inputs at a value of 0.
This paper focuses on a supervised regression task; the two
accepted performance criteria for such tasks are (a) the model’s
prediction error and (b) how much of the variance in the data is
explained by the model. The former is computed by the mean
absolute error, MAEt and MAEKR for duration and score
respectively. The latter is computed by the R2 metric (with
typical ranges of [0, 1]) for these dimensions (R2

t and R2
KR).

All models in this section were trained for 30 epochs, while
early stopping was used to prevent over-fitting. The results
reported are based on 10-fold cross-validation.

In general all baseline models perform very similarly, with a
maximum difference in error of 0.01 for both dimensions. All
baseline models can fairly accurately predict the kill ratio of P1
(MAEKR = 0.09) and, surprisingly, the CNN is only slightly
better (MAEKR = 0.07). Similarly, the explained variance is
fairly high with R2

KR values ranging from a minimum of 0.83
for LR to 0.91 for the CNN. This high accuracy even with
simple models can be explained by the significant Pearsson
correlations between score and 6 class parameters (out of 16).

In contrast, all models seem to struggle to predict game
duration. Although the error is quite similar to score prediction
(0.09≤MAEt≤0.10 for all models), the explained variance
is much lower. The perceptron and LR perform the worst
predictions (R2

t = 0.48), while both the MLP (R2
t = 0.55)

and CNN (R2
t = 0.57) are somewhat better. The low mean

squared error but low R2
t values is likely due to the skewed

distribution of duration in the training set (see Fig. 2b).
All in all, the CNN model can predict both kill ratio and

duration more accurately than baselines, although even simple
models such as the perceptron perform surprisingly well.

V. GENERATING LEVELS FOR SPECIFIC GAME OUTCOMES

Our main goal is to explore how the trained surrogate
model of Section IV can be used to generate a map with
a specific game duration and kill distribution for a matchup
between two character classes. To achieve this, a genetic
algorithm is used to generate levels targeting a fitness function
based on the outcomes of the surrogate model. The surrogate
model is exploited by using the evolving map (transformed
as per Section IV-B into readable input) and the character
classes (which are specified a priori and do not change), and

evaluating whether the gameplay output provided by the CNN
matches some designer-specified goals. The fitness for the
level is calculated based on the Euclidean distance between
the vector of kill ratio and duration provided by the CNN
and the designer-specified vector of intended kill ratio and
duration. Evolution attempts to minimize this fitness score.

Regarding the specifics of the genetic algorithm itself,
the level representation is based on tiles which contain all
relevant information (rather than individual channels used by
the CNN). Each tile is represented as a tuple of integers
describing the elevation (0 for ground floor, 1 and 2 for first
and second floor) and contents (e.g. stairs, healthpack, etc.).
The players’ bases are identical to the original training set (P1
has 5×5 tiles at the bottom left corner, similarly for P2 at the
top right corner) and evolution can not change those areas.

A new population is created by first selecting individuals
to reproduce. The fittest 10% of the population is copied
to the new population unchanged (elitism). The remaining
90% is chosen via tournament selection of size 5, and then
recombined and mutated. For the purposes of mutation and
recombination, the level (of 20 × 20 tiles) is divided into a
4×4 grid of cells. Each pair of individuals has a 20% chance
of producing offspring via recombination: recombination is
implemented by randomly picking a cell at that position from
either parent. Offspring and any unselected parents are then
susceptible to mutation. Every cell of every individual has a
10% chance of being mutated by one of the following variants:

• Move Pickup: If a cell contains one or more pickups, one
of these pickups is moved to a neighboring cell.

• Grow Cell: One of the following operators is chosen at
random: either all ground tiles that are adjacent to a 1st
floor tile transform into 1st floor tiles, or all 1st floor tiles
adjacent to a 2nd floor tile transform into 2nd floor tiles.

• Erode Cell: Opposite of Grow Cell, either 1st floor tiles
adjacent to ground tiles are transformed into ground tiles
or 2nd floor tiles adjacent to 1st floor tiles are transformed
into 1st floor tiles.

• Place Stairs: Adds a stair to a random ground floor tile
which is adjacent to only one first floor tile (remaining
adjacent tiles must be ground floor tiles).

• Place Block: A 3× 3 block of first floor tiles and a stair
is created if there is enough space on the ground floor.
Any pickups in this area are moved to the first floor.

• Dig Hole: Within a 5 × 5 block of first floor tiles, the
central 3× 3 first floor tiles are transformed into ground
tiles with a stair directed inwards. Any pickups in this
area are moved to the ground floor.

If a mutation is not applicable, (e.g. if a cell does not contain
pickups for the first variant), another variant is attempted until
either a mutation is applied or all mutation variants are tested.

After mutation and recombination, each map is analyzed
in terms of traversability in order to prevent infeasible maps.
The following constraints are enforced: (a) bases must always
be reachable via ground floor tiles, (b) each pickup must
be reachable, (c) each first floor tile must be connected to
at least one stair, (d) there must be no holes in an area
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TABLE I: Trade-offs between character classes in this paper.

Class High Low
Heavy health, rate of fire speed, accuracy
Pyro damage accuracy
Scout speed health
Spy accuracy clip size
Sniper damage, accuracy rate of fire, clip size

of first floor tiles without a stair to climb out of the hole
and (e) a stair must always lead to a first floor. A naive
constructive algorithm repairs unreachable areas and stair
placements (without changing players’ bases).

VI. EXPERIMENT

Experiments in this paper target a set of gameplay outcomes
for specific matchups between two character classes. More-
over, to show how the algorithm can be used as a design tool
for human-authored designs, all evolutionary runs start from
a well-formed map and attempt to improve it. Details of this
seeding process are given in Section VI-A, while other seeds
are tested in Section VI-D.

In order to demonstrate the algorithm, a set of five diverse
classes was chosen from Team Fortress 2: Heavy, Pyro, Scout,
Spy, Sniper. The major trade-offs in terms of their class
parameters are shown in Table I. The Heavy, Pyro and Scout
all carry short ranged weapons; the Sniper carries a long
ranged weapon. The cloaking and knifing abilities of the spy
are ignored, treating it as a regular, medium ranged class.

Matching all character classes against each other results
in 25 matchup combinations (5 between avatars of the same
class). Three target match durations were selected to cover
the spectrum of possible game lengths: 200 seconds (short
duration), 300 seconds (medium duration) and 600 seconds
(long duration). Since the two agents have an equal skill level,
the target kill ratio (for P1) was set to 0.5 (i.e. balanced
kills). As mentioned above, the fitness function for evolution
is the Euclidean distance from both target gameplay outcomes.
Significance tests reported in the paper use α = 5%.

A. Starting Map

The initial population is seeded with the map shown in
Fig.1a: its central area is symmetrical as opposed to the edges.
The map has four healthpacks on a diagonal between the two
bases and two damage boosts on the first floor at the center
of the map. P1 (orange) spawns near a damage boost and P2
(purple) spawns near armor.

Based on simulations on the initial map (as part of the
ground truth evaluations discussed in section VI-C), the
matches on this map on average last for 266 seconds, but
can be as short as 203 seconds (Heavy versus Sniper) and as
long as 484 seconds (Heavy versus Heavy). The map is most
suitable for Snipers and least suitable for Heavies, judging
by their average kill ratio against other classes. This explains
the short duration of the Sniper versus Heavy matchup, which
ends in a hands-down defeat for the Heavy which manages a
kill ratio of 0.2 (the worst in all matchups). All matches seem
to give a slight advantage to P1 regardless of their class.

B. General Performance
Each class matchup (out of 25) and intended duration (out

of 3) is provided as input and intended output respectively and
the genetic algorithm attempts to improve the human-authored
level in 20 independent runs. Results in this section examine
the fittest evolved levels at the end of each evolutionary run,
after a maximum of 100 generations (although early stopping
is possible). In all cases, the initial population consists of 20
copies of the human authored map of Fig. 1. Unless explicitly
noted, all metrics are calculated from the average of these 20
independent runs per matchup and intended duration.

Based on the surrogate model’s predictions, the Euclidean
distance from the target balance and playtime decrease over the
course of evolution, dropping to an average of 0.19 from 0.42
in the initial map. As expected, evolution is more challenging
for the longer durations which are rarely seen in the training
set: there, the average distance using predicted values is 0.35.
The easiest duration to predict is the medium duration, which
is very common among matches in the training set and the
average distance using predicted values is 0.09. However, these
distances could be low because the model has been over-
fitting to a skewed training set towards 300 seconds. To verify
whether the predictions are reflected in actual gameplay traces,
the ground truth in terms of gameplay outcomes is calculated
via simulations as described in Section VI-C.

C. Improvements over the initial map
For the purposes of grounding, the best evolved maps for

each run (i.e. 20 maps per class pairing and intended duration)
were simulated using the agents on which the model was
trained. Each map was simulated 10 times to account for the
stochasticity of the AI, and gameplay outcomes (kill ratio,
duration) are averaged from those 10 simulations (ground
truth or GT). The different ground truth, predicted, and initial
values per matchup are shown in Fig. 3. Two key performance
metrics will be used to compare the evolved maps to the
initial map, and to assess the prediction accuracy of the model.
We measure prediction discrepancy based on Eq. (1), i.e. the
difference in the Euclidean distance between intended and
predicted values and Euclidean distance between intended and
GT values. We measure improvements from the initial map
based on the difference in the Euclidean distance between the
initial map’s GT values and intended ones and the Euclidean
distance between final map’s GT values and intended ones,
normalized to the former to give a ratio. This performance
metric, formulated in Eq. (2), is positive if the evolved map
actually approaches the intended gameplay properties in one
or both dimensions compared to the initial map and negative
if it actually is more distant than what the designer intended.

P (m) = |(dist(mpred,mi)− dist(mgt,mi)| (1)

O(m) =
dist(m0,mi)− dist(mgt,mi)

dist(m0,mi)
(2)

where m is the generated map being assessed; dist(x, y) =√
(KR(x)−KR(y))2 + (d(x)− d(y))2 is the Euclidean dis-

tance between parameter vectors x and y; KR(x) and d(x) is
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(b) Short duration (c) Medium duration (d) Long duration

Fig. 3: The feature values of the designer’s intent, the initial map, the model’s predictions, and the ground truth of the evolved
maps. Top row: game duration, bottom row: kill ratio. The data is split along the 25 matchups, ordered alphabetically.

Duration O P
Short -10%±18% 0.14±0.03
Medium 7%±7% 0.13±0.03
Long 28%±4% 0.23±0.05
Average 8%±7% 0.16±0.02

TABLE II: Improvement over initial map and prediction
discrepancy. Values are averaged across all 25 matchups, along
with their 95% confidence interval.

the kill ratio and the duration (respectively) in the parameter
vector x; mgt and mpred is the gameplay parameter vector
based on GT and CNN prediction respectively; m0 is the GT
parameters for the initial map of Fig. 1; and mi is the intended
gameplay parameter vector specified a priori by the designer.

Observing the improvement of maps evolved for medium
and short duration (see Table II), we note some mixed results.
On the one hand, maps evolved for medium duration show a
minor improvement over the initial map, while maps evolved
for short duration often have negative improvements (i.e.
moving away from the desired values). It is important to
note that for short durations specifically, more matchups have
negative improvements (14) than positive (10). Many negative
improvements were also observed for medium duration (7),
but not more than positive (14). When evolving for long
duration, on the other hand, evolution was far more successful
in improving the maps compared to the initial state. A likely
reason for this discrepancy between short and long durations
is because the initial map was mostly favoring short or
medium durations than long durations; improving towards
short durations was therefore more challenging for evolution.

Although maps for long durations were always improved
over the initial map (in all 25 matchups), the model over-
estimated the predicted improvements; the high P value for
long durations is primarily due to the fact that most matches
in truth took less time than what was predicted. Similarly,
for short durations the model overestimated how short the
duration would be (see Fig. 3). This is somewhat expected
from a regression model (especially one with a worse R2

t

than R2
KR), but it should be noted that in the majority of

matchups the ground truth durations for maps evolved for short

durations were shorter than those evolved for medium (16 of
25 matchups) and maps evolved for long durations were longer
than those evolved for medium (25 out of 25 matchups).

It is interesting to note that different class matchups have
different performances across intended durations. The matchup
with the highest improvement was Scout versus Scout for
short durations (42% improvement), Sniper versus Sniper for
medium durations (38% improvement), and Heavy versus
Heavy for long durations (63% improvement). It is worthwhile
to note that the matchups with the highest improvements were
predominantly symmetrical (both players have the same class).

D. Performance with Different Initial Seeds

In order to test the generality of surrogate-based level
generation, the same generation methods were applied using
a broader range of levels as initial seeds. Unlike the in-depth
assessment of the hand-crafted level of Fig. 1, a high-level
analysis is provided using P of Eq. (1) and O of Eq. (2) as
performance metrics. Ten game levels are used, each of which
acts as an initial seed for 75 evolutionary runs: one run for
each of 25 Team Fortress 2 class matchups and each of three
intended durations (short, medium, long). The ten levels are
shown in Fig. 4: the first 5 levels are created by the same
level generator used to produce the corpus, having similar but
not identical patterns to levels on which the CNN model was
trained on. The last 5 levels were created by a human designer,
featuring a degree of symmetry and explicit level patterns such
as arenas, choke points and flanking routes [8].

Results averaged across all maps of Fig. 4 for both per-
formance metrics are shown in Table III. Results show some
similar trends from Table II, and some differences. On the
one hand, due to the large number of initial maps being
tested, improvements were highly varied. Each initial map
had a different duration and balance per class matchup and
thus its improvements could be minor or negative. With
generated levels as initial seeds, in particular, many matches
had durations very close to the intended medium duration
(causing the negative O values). It is not surprising that
generated levels generally had match durations close to 300
seconds, as evidenced by the distribution in Fig. 2a. Despite
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(1) G1 (b) G2 (c) G3 (d) G4 (e) G5 (f) D1 (g) D2 (h) D3 (i) D4 (j) D5

(k) Scout vs
Heavy (M),
O = 74%

(l) Heavy vs
Heavy (M),
O = 89%

(m) Spy vs
Spy (L), O =
88%

(n) Spy vs
Pyro (L), O =
100%

(o) Heavy
vs Scout (M),
O = 93%

(p) Heavy vs
Spy (L), O =
96%

(q) Scout vs
Pyro (L), O =
93%

(r) Pyro vs
Scout (L),
O = 100%

(s) Scout vs
Scout (M),
O = 81%

(t) Spy vs Spy,
Medium, O =
95%

Fig. 4: Additional levels used as initial seeds for testing the generality of the method (top) and best evolved maps in terms of
improvement (O), based on each initial map (bottom). Intended durations are shown as M (medium) and L (long).

Maps Generated Designed All
Duration O (improvements from the initial map)
Short 13%±6% 24%±6% 19%±5%
Medium -31%±47% 10%±24% -11%±26%
Long 37%±5% 32%±6% 35%±4%
Average 6%±16% 22%±8% 14%±9%
Duration P (prediction discrepancy)
Short 0.13 ±0.02 0.16 ±0.02 0.15 ±0.02
Medium 0.14 ±0.02 0.15 ±0.02 0.15 ±0.02
Long 0.13 ±0.02 0.18 ±0.03 0.16 ±0.02
Average 0.13 ±0.01 0.17 ±0.01 0.15 ±0.01

TABLE III: Performance metrics averaged across 5 or 10 maps
of Fig. 4 and their 95% confidence intervals.

a few extremely negative O values, in almost all cases the
positive improvements were more than the negative ones per
initial level and duration individually, and on average2. The
only exception is for the 25 levels evolved for short duration
based on G2 (9 positive versus 16 negative improvements). In
terms of predictions, it is not surprising that using a designed
level as an initial seed is more challenging than using a
generated one (with slightly higher P values across durations)
since generated levels have patterns closer to those learned by
the CNN model. However, when averaging P values across
the many evolutionary runs the differences between intended
durations are less pronounced.

Fig. 4 also shows a sample of the evolved levels for a
specific class pair and match duration. The evolved map with
the best overall improvement (O) is shown, but it is interesting
to note that not all maps are much changed from their initial
states. In many cases, there are minor architectural differences
while most changes are focused on the number and type of
powerups (e.g. Fig. 4t and 4p). In other cases the powerups
largely remain the same, but entire pathways are blocked off
(Fig. 4o and 4q) or balconies or galleries introduced (Fig. 4o).

2There are 185 positive versus 63 negative in short matches, 173 versus 74
in medium matches, 222 versus 22 in long matches

VII. DISCUSSION

Based on the training results of Section IV-D, it is evident
that the surrogate model is able to learn several interrelations
between level and class parameters. However, the biased
distribution of durations in the training corpus is evidently
hampering the network’s ability to accurately predict values
outside the medium durations around 300 seconds; this is
corroborated by the lower R2

t value. This lack of precision in
predictions affects the performance of the genetic algorithm
in non-medium durations, as evidenced by higher P values
in most instances of Table II and III. Results are still fairly
consistent: most evolved maps have an actual shorter duration
when evolving for a short duration than when evolving for a
medium or long duration and vice versa. Future work should
attempt to create a more fairly distributed dataset in terms of
duration. Another notable improvement would be prematurely
ending evolution when fitness consistently decreases compared
to the initial map. In experiments of Section VI-D, the initial
seed matched the intended balance and duration almost per-
fectly, and therefore evolution explored away from that (due
to random mutations in 100 generations). Stopping evolution
when maps can not be improved further would enhance results.

It is difficult to ascertain to which degree the inaccuracy
of the model has led evolution away from more promising
maps than the tested ones, i.e., whether it converged to a false
optimum provided by the surrogate model [24]. An important
strength of the surrogate model is its speed when it replaces
simulation-based evaluations. Indicatively, one evolutionary
run as described in Section VI lasts for 3.5 minutes on a
12-core Intel i7 processing unit; a single simulated match
(optimized to run without graphics) lasts for 50 seconds on
the same machine. If we use the mean gameplay metrics
from 10 simulations for each class pairing to account for
stochasticity (as used to calculate the ground truth in Section
VI-C), one evolutionary run with 20 individuals evolving
for 100 generations would last 12 days; even with a single
simulation per individual one run lasts 1.2 days. This large
computational overhead renders testing the surrogate model
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against a pure simulation-based model unrealistic.
It should be noted that the convolutional network has been

trained on synthetic playtraces, which may not always match
human decision-making. Notable discrepancies when agents
navigated the map of Fig. 1 was the fact that P2 rarely
exploited the armor pickups of the right side of the map, which
was intended as a safe hiding spot. Tactically, therefore, agents
do not behave like human players do. While relying on human
playthroughs for the vast data required to train deep learning
models is not realistic, actual player traces from some of the
promising levels can be used to fine-tune the current model.

The results of the experiments point to several possible
directions for future work. First, discrepancy between predic-
tion and ground truth values may require a more involved
re-training process (with a better duration distribution and
possibly human traces, as discussed above). Alternatively,
we can re-introduce simulation-based evaluations when the
predictive model deems that a map has sufficient quality
that a more precise assessment of the gameplay outcomes
(via simulations) is warranted. There are various strategies
for combining simulation-based evaluations with a surrogate
model, such as individual-based, generation-based or adaptive
evolution control [7]. Finally, the evaluation could move away
from the Euclidean distance which combines both gameplay
outcomes (and treats them as equivalent) and use a multi-
objective approach [25], treating distance from intended du-
ration and distance from intended kill ratio as individual –
possibly conflicting– objectives. The generator might leave this
trade-off between fidelity to intended duration and fidelity to
game balance up to the designer by presenting the Pareto front
(and accompanying maps) to a user for manual selection.

VIII. CONCLUSION

This paper demonstrated how deep learning and evolution-
ary computation could be combined for the purposes of a
generative algorithm. The neural network can process game
levels as an image and game properties as a parameter vector
and predict two core gameplay outcomes. These gameplay
predictions can then drive the evolutionary adaptation of game
levels towards specific outcomes. Focusing on the domain
of shooter games, the model is able to learn the majority
of patterns between levels and character classes playing in
them. The interrelations between levels, class parameters and
gameplay outcomes are then exploited to generate new shooter
levels which target a balanced gameplay of short, medium, or
long duration for a specific pairing of character classes. Future
work could exploit the learned mappings among dissimilar
facets to generate content of different types (e.g. character
classes), generate multiple types of content simultaneously or
as a real-time co-creator for a human level designer.
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Abstract—Deep reinforcement learning (DRL) has proven to
be an effective tool for creating general video-game AI. However
most current DRL video-game agents learn end-to-end from
the video-output of the game, which is superfluous for many
applications and creates a number of additional problems. More
importantly, directly working on pixel-based raw video data is
substantially distinct from what a human player does. In this
paper, we present a novel method which enables DRL agents to
learn directly from object information. This is obtained via use
of an object embedding network (OEN) that compresses a set
of object feature vectors of different lengths into a single fixed-
length unified feature vector representing the current game-state
and fulfills the DRL simultaneously. We evaluate our OEN-based
DRL agent by comparing to several state-of-the-art approaches
on a selection of games from the GVG-AI Competition. Exper-
imental results suggest that our object-based DRL agent yields
performance comparable to that of those approaches used in our
comparative study.

Index Terms—artificial neural networks, deep Q-learning,
reinforcement learning, computer games, general video game AI

I. INTRODUCTION

General video-game AI (GVG-AI) is an area regarding the
development of general algorithms that enable AI agents to
play a wide range of different video-games with minimal tailor-
ing to specific games. While developing techniques for General
AI is a key focus of research into GVG-AI, general video-game
playing agents also have a number of applications within the
games industry. Asides from the obvious applications, such
as a replacement to hand-coded in-game AI, GVG-AI can
also either be used as a development tool or as a proxy for
human play-testers. Such agents could be employed effectively
in a wide array of applications from testing game balance [1]
to evaluating procedurally generated content [2]. As well as
applications within games and games design, GVG-AI also
has wider implications for the field of AI, as techniques which
work well on video-games can often also be applied to real-
world problems.

One promising area in the search for general video-game
players is Deep Reinforcement Learning (DRL). DRL agents
have been successfully applied to a wide range of video-games
ranging from 2D arcade games [3] to challenging 3D shooters
[4]. These agents learn through interacting with the game
autonomously, using a deep neural network to select actions
based on the current state of the game. During this process

the agent receives rewards (usually dictated by the in-game
score) which indicate how well it is performing. By using
an appropriate reinforcement learning algorithm the agent is
able to modify its neural network in order to maximise this
reward signal. However, such agents are far from perfect, and
can sometimes be difficult to apply in practice – a problem
compounded by the fact that they typically take a long time
to train. A significant consideration into the design of these
agents is how information from the game is presented to their
neural networks (i.e. the representation given to the agent), as
well as the design of the networks themselves.

Current state-of-the-art DRL approaches to video-games
learn directly from raw video data, using deep convolutional
neural networks (CNNs) [3]. While widely applicable, this
approach is subject to limitations for certain applications.
For example, many games (e.g., Starcraft) feature controllable
cameras, meaning much of the game-state is obscured from
the agent at any given point. Working around this, e.g., by
putting the camera under the agent’s control, adds additional
complexity to the agent. Additionally, in many cases it may be
undesirable, or even impossible to produce a video-output for
the agent to consume. Rendering videos for multiple agents
may be prohibitively expensive, and in some cases there may
be no obvious way to produce a good visual representation for
NPCs (non-player characters). More importantly, interpreting
raw video data at a pixel level is substantially different from
how human players appear to play, as studied in [5].

Unlike many other reinforcement learning tasks, the
ground-truth information about the current state of the en-
vironment is often available in video-games, although such
information needs to be organised and presented to an agent
in some way. Hence, the use of this direct information about
the current game-state could be alternative to working di-
rectly on raw video data. For instance, Samothrakis et al.
[6] employ a fixed set of general features, i.e., distance to
the nearest enemy, number of tokens collected and so on, to
encapsulate the current game-state. While this approach often
works well, those general features have to be handcrafted,
which is laborious and requires human expertise. Moreover,
this approach is relatively game-specific and hence gener-
ally inappropriate to GVG-AI. To overcome this limitation,
various game-independent object representations, have been
employed [7], [8]. In an object representation, each game-
state observation is given as a list of objects, and their classes
and attributes. For example, the state of one round of the
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game Pong might be represented by two objects of the class
bat, with attributes of x-coord, y-coord, and player,
and an object of the class ball with attributes x-coord,
y-coord, x-velocity, and y-velocity. Many video-
games rely on objects for their internal representation of the
game-state. For instance, the popular Unity 3D game engine
relies heavily on game objects, and even the early Atari console
used a primitive sprite-based system. In general, the use of
object representations not only leads to an effective approach
to representing game-states across a wide variety of video
games but also has a number of practical benefits. For example,
it allows the use of different subsets of objects for different
agents. Also, objects provide useful anchor points for applying
various advanced reinforcement learning techniques such as
hierarchical reinforcement learning [9], intrinsic motivation
[10], and planning [11]. Given there are a different number of
objects in different states of game, however, how to structure
this information in a way that can be input into a conven-
tional deep neural network is a key issue of using object
representations with DRL. Previous solutions to this problem
mimic an image representation by using an “object perception
grid”, where objects are overlayed onto a grid and mapped
to the nearest cell determined by their x and y co-ordinates
within the game. The number of objects mapped to each cell
is then used as an input for a conventional neural network
(either fully-connected or convolutional). Unfortunately, such
a solution requires selecting an appropriate grid size manually,
and entails a large input space, increasing the required neural
network complexity. In general, it also still suffers from many
of the same problems as encountered by using raw image
representations, such as a restricted field of view.

In this paper, we present a novel approach to address
the object representation issues in GVG-AI. To overcome all
the aforementioned limitations, we adopt a specific type of
neural network architecture, set networks [12]–[14], to develop
our object embedding network (OEN). This network can not
only take a list of object-feature vectors of arbitrary lengths
as input to produce just a single, yet unified, fixed-length
representation of all the objects within the current game-
state, but also be trained on a given task simultaneously.
Hence, our OEN-based approach provides an alternative way
to apply DRL algorithms within video-games, based on object
information. Our approach is generally motivated by recent
advances within approaches to relational reasoning [13] and
dynamics prediction [14], which suggest that working with
objects, rather than raw data, can help scale up deep learning
to more complicated tasks in a similar fashion to human
information processing.

Our main contributions in this paper are summarised as
follows:

1) We propose an OEN model, based on set networks,
for learning directly from sets of object feature vec-
tors.

2) We develop an OEN-based GVG-AI agent for playing
general video games.

3) We evaluate our approach on selected games from
the GVG-AI competition and demonstrate that it
performs comparably to a variety of other popular
approaches for representing game states.

The rest of this paper is organised as follows. Section II

reviews related work. Section III presents our OEN model.
Section IV describes our object-based approach to GVG-AI.
Section V describes our experimental settings and reports
experimental results. Finally, Section VI discusses issues and
implications arising from this study.

II. RELATED WORK

A. Deep Reinforcement Learning for video-games

Reinforcement learning is a sub-field of machine learning
where agents autonomously interact with an environment and
seek to maximise some reward signal. Deep reinforcement
learning (DRL) is an extension of classical ‘tabular’ ap-
proaches to reinforcement learning which enable these tech-
niques to be applied to more complicated problems. By using
the in-game score counter as a reward signal, DRL can be
applied to develop agents for playing video-games [3], making
video-games a popular test-bed for new DRL algorithms.
Those algorithms work by using a deep neural network to
‘score’ possible actions given a particular game-state, which
is then trained according to a loss function. Such a loss
function for DRL may be formulated based on the agent’s
past experience as well as the reward obtained.

The deep-Q network (DQN) algorithm [3] is a pioneering
work in applying DRL to general video games playing, where
the DQN was trained to play a variety of games for the Atari
2600 games console. In the original DQN algorithm, the game-
state is presented to the agent as a series of four images from
four consecutive frames of video output, which is interpreted
by a deep convolutional neural network (CNN) with four input
channels. The success of this DQN algorithm has led to a
number of alternative DRL algorithms for video-game playing
[15], [16] for the Atari system, and these algorithms have also
been applied to a variety of other video games [4], [17]. While
the DQN algorithm and its variants can be easily adapted to a
variety of input types and network architectures, these mainly
use the same input format; i.e. a sequence of frames from a
game video stream. A notable exception is the use of object
perception grids, which is described below in Section II-B.

B. Object-oriented reinforcement learning

Reinforcement learning from objects has previously been
studied within object-oriented reinforcement learning [18],
which allows for exploiting structural information at an object
level. In object-oriented reinforcement learning, the state-space
is expressed in terms of a set of objects. These objects all
belong to some class from a fixed set of classes. Each object
is an ordered tuple of object attributes, where the domain of
these attributes is determined by the object class. For example,
for a simple empty 5× 5 grid-world, we might formulate the
state-space with a single class, Agent, of attributes x and y,
Dom(x) = Dom(y) = {1, 2, . . . , 5}. Then the initial state s0
would be a single object agent from the Agent class with
attribute values x = y = 0.

Conventional approaches to solving these problems usually
involve planning algorithms, and first order logic [19], or
otherwise rely on the discrete nature of the environment, which
is generally incompatible with DRL approaches. In particular,
structuring this information in a way that can be used by a
neural network is a challenging problem. Very recently, this
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problem has been addressed via an object perception grid
representation, e.g., [7], [8]. In this representation, objects are
mapped onto grid squares, based on their x and y attributes.
Each of these grid squares is then treated as an input neuron,
which is set to 1 if an object of a given class is present at that
cell, and 0 otherwise. The full representation is then given
by multiple input grids, one for each possible object class.
This effectively produces an image-like representation, which
can be fed into a CNN. Apart from removing some of the
complexity of the input, this approach suffers from most of
the same problems as a visual representation. Moreover, this
representation also requires the designer to select a grid size
and coarsity. While many games may feature a natural choice
for these, for many games it may require careful selection
and additional tuning to select these parameters appropriately.
Additionally this process can only be applied where objects
are related by a clear 2D structure.

III. OBJECT EMBEDDING NETWORK

In this section, we present an object embedding network
(OEN) to learn a unified object representation from arbitrary
sets of objects characterised by a variety of object features
without being limited to 2D spatial structures. Our OEN
model is based on an emerging class of deep neural-network
architecture, set networks [12], which were recently developed
to tackle the input data in a set form. In general, objects
in a game-state naturally stand in a set form. By using the
same principles behind set networks, our OEN transforms
an arbitrary number of object feature vectors corresponding
to a game state into a single fixed-length “unified” object
representation. This unified representation can be used for a
variety of different purposes. Our OEN can be trained to learn
a unified representation and fulfil a specific learning objective
simultaneously.

At game-state st, assume that there is a set of objects,
O(t) = {o(t)k }k∈1,··· ,Kt , where each object, o(t)k , can be
characterised by a feature vector (or a number of attributes),
xxx
(t)
k . Hence, the feature vectors of all Kt objects collectively

form a set, X(t) = {xxx(t)k }k∈1,··· ,Kt , for game-state st. Our
problem is how to learn a fixed-length unified feature vector
that retain as much representative information conveyed by Kt

objects as possible for arbitrary Kt.

A common way to get representative information of a
set of vectors is to compute some statistic about the set.
In practice, this can be achieved using simple arithmetic
pooling functions, e.g., max or sum pooling, applied element-
wise, which condense an input set of vectors into a single
fixed-length vector of the same dimension. However, simply
applying simple pooling functions over a set of object feature
vectors is likely to incur a loss of important information. For
example, if the object features consist of x and y co-ordinates
then taking the mean of all object feature vectors simply ends
up with the average position of all objects. While this is useful
information, it does not convey the important information, e.g.,
“is object o(t)i next to object o(t)j ?”. Hereinafter, we drop out
the explicit game-state index, t, to facilitate our presentation.

Motivated by set networks [12], we deal with this problem
by embedding raw feature vectors of objects into a higher

dimensional space, which allows for retaining non-trivial in-
formation after pooling. This can be achieved by applying a
proper “embedding” function E to the feature vector of each
object:

E(X) := {E(xxx1), ..., E(xxxK)}.

Let Π to denote a pooling function, a unified representation of
the object feature set, X , is then achieved by

rrr(X) = Πk∈1,··· ,KE(xxxk).

However, finding a proper embedding function explicitly
is extremely difficult in general. Also, the optimal choice
of such an embedding function is task-dependent. Instead of
using an explicit embedding function, we can employ a neural
network to learn an optimal embedding function. Furthermore,
for a specific task based on the unified representation, we
can incorporate another neural network for fulfilling the given
learning objective and learning the optimal embedding function
simultaneously.

Fig. 1: Basic object embedding network architecture.

As illustrated in Fig. 1, a generic object embedding network
(OEN) consists of embedding network (shown in green), global
pooling function and task network (shown in pink). For a set
of K objects in a game-state, K identical embedding networks
E(X; θE) are employed for embedding different objects, re-
spectively, where θE is a collective notation of parameters
shared by all K embedding networks. The global pooling
function condenses the embedding object representations pro-
duced by K embedding networks to yield a fixed-length unified
object representation: rrr(X) = Πk∈1,··· ,KE(xxxk, θE). Then, the
unified representation is fed to the task network denoted by
P (rrr(X); θP ) where θP is a collective notation of parameters
in the task network.

Parameter estimation in the OEN is done by optimising a
loss function defined on training data, D, given for a specific
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task, L(D; θE , θP ):

{θ∗E , θ∗P } = argminθE ,θPL(D; θE , θP ).

For some loss function L, e.g., in a supervised learning
task, a prediction-error based loss function can be used. In
Section IV, we detail a loss function defined on transitions
(st, at, rt, st+1), drawn from experience-replay, for our rein-
forcement learning tasks.

Contextual information regarding the relationship between
an object and other co-occurring ones at the same game-state
can play an important role. We can exploit this by replacing
our embedding function E(xxx) with a “contextual” embedding
function E(xxx,X) which takes into account information from
the wider set when embedding each object. To this end, differ-
ent techniques have been proposed in set networks, e.g., [12],
[14], [20], to explore this contextual information. Motivated
by the work of [12], [20], we adopt a simple global-context
based method to explore the contextual information in our
work. In this method, some statistic Π of feature vectors of
all the objects in the set X is first estimated by x̂xx = Πxxx∈Xxxx.
Then, the feature vector of each object, xxx, is concatenated
with this statistic vector, x̄xx, to form a “contextualised” feature
vector of the object: (xxx, x̂xx). Instead of the feature vector of
each object, xxx, its contextualised feature vector, (xxx, x̂xx), is fed
to the embedding network in the OEN. In particular we adopt
the same “equivariant” transformation proposed in [12] which
is given by:

fequiv(xxx,X) = xxx−maxpool(X).

By using this method, our OEN model can be extended to
explore contextual information without altering its general
architecture and learning algorithms.

IV. MODEL DESCRIPTION

In this section, we present our method for establishing an
OEN-based DRL agent for playing general video games. We
first describe object and feature extraction required by the OEN
and then propose our OEN implementation and its deep Q-
learning algorithm.

A. Object and feature extraction

For our agent, the process of identification and extraction
of objects is handled by the environment. That is, we assume
that object extraction can be done directly via access to the
ground truth of the environment. Hence, the wide-spread use
of object-oriented programming languages should help with
this process, as many objects are likely to be treated as such
in code. Thus, the description of a game state is given in an
object-oriented format; i.e., observation O from a game-state
is given as a list of objects, O = {o1, · · · , oK}.

Given a list of objects in this format, we still need to
characterise those objects via a number of attributes to meet
our requirement of our OEN-based DRL. In essence, this is a
feature extraction process to obtain object feature vectors from
the raw objects basted on their attributes, which leads to a
pre-processing function process_observation required
by our OEN. A natural solution to feature extraction is con-
catenating all real-valued attributes of an object into a single
feature vector. However, this solution results in a problem;

Fig. 2: Exemplar object feature extraction process.

while our OEN can handle only fixed-length object feature
vectors, the number of attributes used to characterise an object
is not fixed and different objects could have a different number
and types of attributes. Hence, the user must select a set of
attributes applicable to all the objects for a fixed-length feature
vector. In this manner, a set of fixed-length feature vectors,
X = {xxx1, · · · ,xxxK}, can be extracted for a list of objects, O,
in a game-state. This set of feature vectors are fed into our
OEN, which acts as a value-network for the agent.

Fig. 2 depicts an exemplar object feature extraction process.
As seen in Fig. 2, a game-state is broken down into a (finite) set
of objects, along with a number of attributes for each object,
as chosen by the user, e.g., position, class of object, and so
on. This list of objects is then converted into a list of feature
vectors by mapping each object to a fixed-length vector based
on its attributes. In this example, a one-hot vector of the object
class concatenated with the object’s co-ordinates yields a 5-
dimensional object feature vector.

Algorithm 1 Q-learning algorithm for OEN

// Initialise agent
initialise empty replay memory M
initialise θ for OEN Q-function Q(s, a; θ)
θtarget ← θ
// Initialise environment
env.reset()
step ← 0
while step ≤ max_step do
step ← step +1
// Get action from Q-function
st ← env.get_state()
Ot ← process_observation(st)
at ← epsilon_greedy(Q(Ot, a; θ))
// Step environment and observe result
rt, st′ ← env.apply_action(at)
Ot′ ← process_observation(st′)
Tt′ ← env.has_ended()
add tuple (Ot, at, rt, Ot′ , Tt′) to M
// Train network
sample tuple (O′t, a′t, r′t, O′t′ , T ′t′) from M
Qtarg ← r′t + T ′t′ · γ ·maxaQ(O′t′ , a; θtarget)
update θ via gradient descent on (Q(O′t, a′t; θ)−Qtarg)2
if step %1000 == 0 then
θtarget ← θ

end if
end while

B. OEN-based Q-learning

Motivated by the deep set network of [12], we develop
an object embedding network to implement our DRL agent,
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Fig. 3: The object embedding network used to implement our DRL agent.

as illustrated in Fig. 3. In this OEN, the embedding network
consists of four layer of 128 ReLu units, with an “equivariant”
transformation fequiv(xxx,X) = xxx − maxpool(X) between
each layer. To generate a unified object representation, all
embedding representations are pooled by element-wise max
pooling across the whole set. The task network consists of
three fully connected hidden layers of 128 ReLu units, and a
final output layer of M linear units corresponding to value
functions of M possible actions used in playing the given
video games. It is worth mentioning that our OEN-based DRL
implementation is largely identical to the DQN-based DRL [3]
apart from two aspects: a) we use the OEN shown in Fig. 3,
while the DQN uses a deep CNN as a learning model, and
b) our OEN works on object feature vectors, while the DQN
works on raw video data. Thus, the same deep Q-learning
algorithm can be adapted to train our OEN-based DRL agent.

In a Q-learning based DRL algorithms, the Q-values are
estimated using a value function given by a neural network
Q(s, a; θ), where s is a game-state, a is a selected action and
θ is a collective notation of all the parameters in this neural
network. The policy for the agent is then given by selecting the
action which maximises Q(s, a; θ) for the agent’s current state.
In the DRL learning algorithm proposed by Mnih et al. [3],
the DQN actually outputs a value vector, QQQ(s; θ), for all the
actions simultaneously, where Q(s, am; θ) is the mth element
of this output vector, reflecting the value of the mth action.
Given a sequence (st, at, rt, st+1), we can obtain an estimate
for Q(st, at) using the Bellman equation:

Q̂(st, at) = rt + γmax
a

Q(st+1, a).

This estimate is used as a target Qtarg for Q(st, at). Thus, we
define the Q-learning loss function at game-state t as follows:

L(Dt; θ) = (Q(st, at; θ)−Qtarg)2,
where Dt = (st, at, rt, st+1) is training data retrieved from
an experience-replay memory [3]. Since the new estimate
Qtarg depends heavily on the previous values Q(st+1, a; θ),
a separate network parameterised with the known θtarget is
used to obtain Qtarg estimates. θtarg is then updated once the
new parameters θ in the OEN are achieved during the learning.
To optimise the loss function for the Q-learning, we employ
the Adam optimizer [21], a gradient-based optimiser. Network
parameter update is also done in mini-batches of multiple state-
actions and targets simultaneously. Since multiple sequences
of different lengths are not readily expressible as fixed-size
tensors (which is required by most deep-learning libraries),

for each batch we pad each sequence with zero vectors until
they have the equal length. A mask of these zero elements is
produced and used to nullify their contribution to the output
of the OEN. For clarity, we describe the detailed Q-learning
algorithm used for training our OEN in Algorithm 1.

V. EXPERIMENT

In this section, we evaluate the performance of our OEN-
based DRL agent on five selected games used in the GVG-AI
competition [22] by comparing with two baseline agents that
use different representations of the game-state, and measure
average performance during training on a variety of games.
To ensure a fair comparison between the different forms of
representations, for each agent we change only the agent’s
neural network and the format of the observation presented
to the agent, keeping the rest of the agent design the same.

A. Test environment

In order to adequately test our approach, we require a
corpus of distinct video-games, preferably unified under a
single framework. A common choice for this is the arcade
learning environment (ALE) [23], however, the ALE does
not provide access to ground truth information about object
attributes, hence we instead look to the GVG-AI Competition.

The GVG-AI competition [22] is a regular competition
challenging researchers to build AI agents capable of playing a
variety of different video-games. These games are specified via
video-game description language (VGDL) [24] where games
are defined by a block-based sprite system, and are often based
on well-known titles. Importantly, games from previous rounds
of the competition are released to the public, proving a large
collection of games, all running within the same framework.
See Figure 4 for some examples of games from the GVG-AI
Competition.

Importantly, information about the current game-state is
presented to the agent in the form of a state-observation
which includes a list of information about the various sprites
(i.e., game objects) within the game. Additionally, while not
explicitly provided to the agent, a video output is also produced
for human consumption.

As well as giving direct access to in-game objects, VGDL
provides a number of other benefits as a reinforcement learning
test-bed, including:
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(a) (b) (c) (d) (e)

Fig. 4: Five games from Test Set 1 of the GVG-AI Competition used in our experiments: (a) Aliens. (b) Boulderdash. (c) Missile
Command. (d) Survive Zombies. (e) Zelda. Missile Command, Boulderdash and Zelda are based on classic arcade games of the
same names, while Aliens is loosely based on the game Space Invaders.

• Existing tasks can easily be modified to test how this
affects the agent.

• New games/tasks can be quickly synthesised for par-
ticular purposes.

• A large available pool of pre-existing tasks in the form
of GVG-AI competition games.

• Direct access to the underlying mechanics and on-
tology, which may be useful as a ground-truth for
investigating things such as model-based agents and
transfer learning.

For our environment we adapted the original py-vgdl
code 1, adding in some extra functionality from the competition
version such as support for sprite images. Another option
would have been to use the code provided for the GVG-AI
Competition, although when we started this work there was
no python client available.

B. Experimental Settings

To evaluate the performance of each agent we train the
agent for 2,000,000 steps, testing the agent for 50 episodes
(without training) every 50,000 steps, and record the reward
obtained over each of these episodes. While there are a number
of different indicators of agent performance, e.g., percentage
of games won, we select average episode rewards as this most
closely reflects the reinforcement learning objective of the
agent, hence is less sensitive to factors such as a mis-specified
reward. Additionally, different users may have different criteria
for how they want agents to perform during training, i.e., some
may be interested in short-term performance after a certain
number of training steps, while others may be interested only
in the ‘asymptotic’ final performance, hence we record agent
performance throughout training.

We modified our environment code to included support for
three different forms of observation types:

1) Image representation: A sequence of raw pixel images
of the game screen, appropriately sized to be close to
the 84× 84 post-processed resolution of the original
DQN algorithm.

2) Object representation: A list of game objects, each
given in the form of vector with: a one-hot vector of
object class, object co-ordinates, object orientation,
and values of given object resources.

3) Feature representation: A list of the shortest distances
from each object class to the player avatar, plus a list
of any additional avatar resources. This is the same
as the features described in [6].

1Available here: https://github.com/EndingCredits/gym vgdl

In order to simplify our input space, and since certain objects
in the game are irrelevant (or invisible) to the agent, for each
game we defined a list of the important object classes, and
ignore any objects from classes not on that list for both the
objects and features representation. We also remove the frame-
skip functionality from our agent as GVG-AI Competition
games have a slower update rate, so being able to select actions
at each step is important.

For each of these three observation types, we modify our
baseline agent as follows, giving us three different agents2:

1) For the image representation we use the same CNN
as used in [16] with a final linear layer of M
outputs. Similar to the original DQN algorithm we
also compile states from two consecutive frames (we
do not use four frames as sprites are visible every
frame in VGDL which is not the case for certain ALE
games3, and this reduces computational burden).

2) For the object representation we use the OEN de-
scribed in Figure 3.

3) For the feature representation, we use a simple fully-
connected neural network with layers of 64, 64, 128,
and M ReLu units, respectively.

Where M is the number of possible actions in the given
environment. All the agent hyper-parameters use in our ex-
periments are as follows: γ=0.99, ε-start=0.5, ε-final=0.1,
ε-anneal-step=500,000, replay-memory-size=50,000 learning-
rate=0.00025, mini-batch-size=32, the agent is trained every
four steps, and the parameters are initialised randomly with a
Gaussian distribution: N (0, 0.1).

We select five games from Test Set 14 of the GVG-
AI competition as our test set: Aliens, Boulderdash, Missile
Command, Survive Zombies, and Zelda. For each of these we
use the first level (i.e., level_0) as our game environment.
We train our agents on each game four times, using a different
seed for agent initialisation each time. Initial environment
seeds are reset to the same value for each agent, ensuring that
there are no differences in agent performance due to different
environment initialisations.

C. Results

Full results of our experiments are shown in Figure 5. We
also report the best mean test score on each game for each
agent in Table I, as these give an idea of the theoretical max

2Our agent & experimental code is available at: https://github.com/
EndingCredits/Object-Based-RL

3Due to the limited sprite buffers of the Atari console, a common optimi-
sation is to draw certain sprites only every other frame.

4Found here: http://www.gvgai.net/training set.php?rg=1
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Fig. 5: Average episode rewards over 50 episodes at various points during training for five games: (a) Aliens. (b) Boulderdash.
(c) Missile Command. (d) Survive Zombies. (e) Zelda. Results are are smoothed using a forth-order Savitzky-Golay filter with a
window size of 21 to improve readability. Lines in Blue are agents with feature representation & fully connected network, Red
are image representation & CNN, and Green are object representation & OEN (ours). Best viewed in colour.

TABLE I: Best mean score for each agent over 50 episodes.

Aliens Boulderdash Missile Command Survive Zombies Zelda

Image 35.98 41.90 5.72 16.4016.4016.40 1.16
Features 29.82 43.3443.3443.34 9.12 10.42 1.58

Objects (ours) 37.3037.3037.30 35.90 10.4410.4410.44 14.88 1.681.681.68

performance of each agent type accounting for variability in
agent parameters (although clearly these results are subject to
sample bias, and are likely to be overestimates).

Due to the unpredictable nature of deep reinforcement
learning we observed a large variance in agent performance
between episodes but also between the average of different
tests, making it difficult to compare individual agent results.
Additionally, due to time and computational constraints we
were only able to train for two million steps (comparable to
eight million frames with frame-skip). This is significantly
fewer than the tens and hundreds of millions of frames which
many agents from the literature are trained for, meaning
the results reported here may only be representative of the
early stages of training. Nevertheless, we do observe certain
patterns. In particular, there are notable difference in per-
formance between representations. This is not surprising, as
it is well known that choice of representation and network
architecture has a big impact on performance across other areas
of deep learning. However, this difference in performance is
not consistent across all games; different games seem to favour
different representations. Surprisingly, the “features” baseline
outperforms each other agents on certain games, despite often

obscuring information about the game state (for example, the
agent is given distances to certain objects, but not the direction
to them, or the number of them).

It is observed from all the experimental results reported
above that our object-based agent is capable of learning in all
five games we tested it on. Additionally, across all the games,
our agent performs comparably with the other two approaches.
To this end, our experiments demonstrate that our OEN-based
DRL agent can be an effective alternative to the existing agents
for playing general video games.

VI. DISCUSSION

While we believe out method is generally widely appli-
cable, a fundamental assumption made for our approach is
that the game-state can be expressed in terms of objects.
In some games object information may be unavailable, thus
our approach cannot be applied in those games. Nevertheless,
our object-based approach could work on those games, e.g.,
Starcraft, where image-based approaches, e.g, DQN [3], are
difficult to apply due to unavailability of a complete visual-
output snapshot of the full game-state (e.g. due to presence of a
controllable camera, or mouse-over options). In general, object
extraction from a game-state can be done either directly via
access to the ground-truth of the environment or from video or
some other sources. When the ground-truth of the environment
is available, object extraction is usually straightforward by
utilising the object-oriented nature of most games (although
this may also rely on certain domain knowledge to identify
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which objects are relevant to the agent). Otherwise, objects
could be extracted directly from video data based on the state-
of-the-art semantic image segmentation techniques. As a game
environment is usually much simpler than natural images,
existing semantic image segmentation techniques should be
sufficient for this task. Another limitation of our approach is
that it requires the user to find a fixed number of attributes to
form feature vectors for all objects applicable to the OEN.
In future this requirement for a fixed number of attributes
across all object classes could be removed by pre-embedding
all objects into a fixed-size space, or using class-specific
embedding functions.

The use of relational information between objects is im-
portant when expressing the game-state. Indeed, Liang et al.
[25] showed that simple relationships between objects form a
good feature set for reinforcement learning in video-games. In
our work, we use only a simple method to exploit contextual
information which has limited ability to capture these relations.
In set networks, there are more sophisticated methods to
exploit the contextual information, e.g., those used in [13],
[14]. To achieve more effective unified object representations,
our OEN model described in Section IV-B can be improved
by adopting those techniques developed for set networks.

To conclude, we have presented a novel approach to
learning directly from semi-structured object information via
an OEN for playing general video games. A comparative study
based on five GVG-AI competition games suggests that our
approach yields performance comparable to two state-of-the-
art approaches in general. In our ongoing research, we aim
to address the issues and the limitations discussed above for
improvement.
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Abstract—Reward shaping allows reinforcement learning (RL)
agents to accelerate learning by receiving additional reward
signals. However, these signals can be difficult to design manually,
especially for complex RL tasks. We propose a simple and
general approach that determines the reward of pre-defined
events by their rarity alone. Here events become less rewarding
as they are experienced more often, which encourages the
agent to continually explore new types of events as it learns.
The adaptiveness of this reward function results in a form of
automated curriculum learning that does not have to be specified
by the experimenter. We demonstrate that this Rarity of Events
(RoE) approach enables the agent to succeed in challenging
VizDoom scenarios without access to the extrinsic reward from
the environment. Furthermore, the results demonstrate that RoE
learns a more versatile policy that adapts well to critical changes
in the environment. Rewarding events based on their rarity could
help in many unsolved RL environments that are characterized
by sparse extrinsic rewards but a plethora of known event types.

Index Terms—reinforcement learning, intrinsic motivation,
VizDoom, reward shaping

I. INTRODUCTION

Deep reinforcement learning and deep neuroevolution have
achieved impressive results learning to play video games
[17] and controlling both simulated and physical robots [2,
9, 15, 27]. These approaches, however, struggle to learn in
environments where feedback signals (also called rewards)
are sparse and/or delayed. A popular way to overcome this
issue is to shape the reward function with prior knowledge
such that the agent receives additional rewards to guide its
learning process [22, 23, 31]. Another approach is to gradually
increase the difficulty of the environment to ease learning
through curriculum learning [4, 46]. Both approaches are time-
consuming, require substantial domain knowledge and are
especially difficult to implement for complex environments.
In this paper, we propose a simple method that automatically
shapes the reward function during training and performs a
form of curriculum learning that adapts to the agent’s current
performance. The only required domain knowledge is the
specification of a set of positive events that can happen in
the environment (e.g. picking up items, moving, winning etc.),
which is easy to implement if raw state changes are accessible.

The method introduced in this paper rewards a reinforce-
ment learning (RL) agent by the rarity of experienced events
such that rare events have a higher value than frequent events.

The idea is to completely discard the extrinsic reward and
instead motivate the agent intrinsically toward a behavior that
explores the pre-defined events. As the agent first experiences
certain types of events that are relatively easy to learn (e.g.
moving around and picking up items) they will slowly become
less rewarding, pushing the agent to explore rare and poten-
tially more difficult events. Thus by only rewarding events
for their rarity, the system performs a form of automated
curriculum learning.

The goal of this approach is to learn through a process of
curiosity rather than optimizing toward a difficult pre-defined
goal. We apply our method, called Rarity of Events (RoE),
to learn agent behaviors from raw pixels in the VizDoom
framework [19]. While our approach could be applied to
any reward-based learning method and possibly also fitness-
based evolutionary methods, in this paper we train deep
convolutional networks through the actor-critic algorithm A2C
[29]. In the future, RoE could offer a new way to learn
versatile behaviors in increasingly complex environments such
as StarCraft, which is a yet unsolved reinforcement learning
problem [44].

The paper is structured as follows. We first review relevant
previous work, including related approaches in Section II.
After explaining RoE (Section III), we demonstrate the use-
fulness of the method on five challenging VizDoom scenarios
with sparse rewards and show how RoE learns a versatile
behavior that can adapt to critical changes in the environment
(Section V).

II. PREVIOUS WORK

A. Deep Reinforcement Learning

Deep reinforcement learning allows learning agent behav-
iors in video games directly from screen pixels, including Atari
games [28], first-person shooters [19, 22, 46], and car racing
games [29]. These methods are typically variants of Deep Q
Networks (DQN) [28] or actor-critic methods with parallel
actor-learners such as Asynchronous Advantage Actor-Critic
(A3C) [29]. Neuroevolution [13, 36] has also recently shown
promising results in playing Atari games and can be easier to
parallelize [39, 43].

A key requirement for deep RL methods to work out of
the box are frequent and easy obtainable reward signals from
the environment that can guide learning toward an optimal

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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behavior. An infamous Atari game where this is not the case
is Montezuma’s Revenge; for this game with very sparse
rewards, both DQN and A3C variants fail [28, 29].

The lack of frequent reward signals can be overcome by
reward shaping, where a smoother reward function is designed
using prior domain knowledge [22, 23], or by gradually
increasing the difficulty of the environment (e.g. the level itself
or the NPCs’ behaviors) to ease learning through curriculum
learning [4, 46]. Related to curriculum learning is a method
called Power Play that searches for new unsolvable problems
while the agent is trained to progressively match the difficulty
of the environment [41]. Another related approach is hierar-
chical reinforcement learning where a meta-controller controls
one or more sub-policies that are trained to reach sub-goals
(equivalent to events) [7, 20].

B. Curiosity & Intrinsic Motivation

In curiosity-driven learning the agent seeks to explore
new situations guided by intrinsic motivation [18, 32, 38].
One theory of intrinsic motivation is reduction of cognitive
dissonance, i.e. the motivation to learn a cognitive model that
can explain and predict sensory input [12, 33]. This theory
has also been formalized in the context of RL in which agents
are intrinsically rewarded when observing temporarily novel,
interesting, or surprising patterns based on their own world
model [40]. A related idea is optimal incongruity, where dis-
crepancies between the currently perceived and what is usually
perceived produce a high stimulus; thus novel situations that
yet lie within our current understanding are highly rewarding
[5, 16]. The prediction error of a learning model can thus be
used directly to define the reward function [14].

One way of implementing intrinsic motivation is to model
the expected learning progress ζ(s, a) of a state-action pair
[25]. The Intrinsic Curiosity Module (ICM) is another ap-
proach that encodes states st and st+1 into features Φ(st)
and Φ(st+1) and determines the intrinsic reward based on
the prediction error of these features and the forward model’s
features [34]. State-density models that assign probabilities to
screen images, can be learned together with a policy and then
determine intrinsic motivation as the model’s temporal change
in prediction, such that surprising screen images produce
higher rewards [3].

Rewarding RL agents based on the novelty of events has
been explored earlier with tabular Q-learning in a simple 3D
environment [26], where the reward is highest when novelty
is moderate. A combination of habituation theory and self-
organizing maps was employed to vary the agent’s curiosity
(the reward signal toward certain events).

C. Novelty Search

The pursuit of novel situations also shares some similarities
with novelty search [24] in evolutionary computation. The idea
of novelty search is to search for novel behaviors instead of
optimizing toward a specific objective directly. Both novelty
search and our approach RoE push the search toward unex-
plored areas; however, novelty search does so for a population

of individuals where novelty is defined as the behavioral
distance to other behaviors in the population. Our approach is
trained through reinforcement learning and novelty (or rather
rarity of events) is based on experiences of previous versions
of the policy.

D. VizDoom

The approach in this paper is tested in VizDoom, an AI
research platform based on the commercial video game Doom
that allows learning from raw visual information [19]. The
VizDoom framework includes several diverse environments,
some of which are very challenging to learn due to their sparse
and delayed rewards. Several deep RL approaches have been
applied to Doom, which include auxiliary learning [21, 22],
game-feature augmentation [6, 8, 11], manual reward shaping
[8, 11, 22], and curriculum learning [46]. A very different
approach by Alvernaz and Togelius applies neuroevolution
on top of a pre-trained auto-encoder [1]. In this paper, we
purposefully build on a vanilla implementation of the RL
algorithm A2C, to set a baseline for how well RoE can help
in challenging VizDoom scenarios.

III. APPROACH

This section describes our Rarity of Events (RoE) approach
and its integration with A2C in VizDoom.

A. Rewarding Temporally Rare Events

The reward function in RoE adapts throughout training to
the policy’s ability to explore the environment. By rewarding
events based on how often they occur during training, the agent
is intrinsically motivated toward exploring new parts of the
environment rather than aiming for a single goal that might be
difficult to obtain directly. In effect, the approach performs a
form of curriculum learning since events are rewarded based
on the agent’s current ability to obtain them. As the agent
learns, it becomes less interested in events that are frequent
and curious about newly discovered events.

Our method requires a set of pre-defined events, and the
reward Rt(εi) for experiencing one of these events εi at time
t is determined by its temporal rarity 1

µt(εi)
, where µt(εi) is

the temporal episodic mean occurrence of εi at time t, i.e.
how often εi occurs per episode at the moment. The mean
occurrences of events are clipped to be above a lower threshold
τ (we used 0.01 such that the maximum reward for any event
is 100). For a vector of event occurrences x, such that xi is
the number of times εi occurred in a game step, the reward is
the sum of all event rewards:

Rt(x) =

|x|∑

i=1

xi
1

max(µt(εi), τ)
. (1)

The rarity measure 1
µt(εi)

is not arbitrary but is designed
such that all events have equal importance. If any event εi
is experienced n times during an episode, and n = µt(εi)
(which is the expected amount), then the accumulated reward
for εi is 1 regardless of the rarity. This means that in theory
all events have equal importance. In practice, the policy might
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learn that some events have a negative or positive influence
on the occurrence of others.

B. Determining the Temporal Episodic Mean Occurrence

There are arguably many ways to determine the temporal
episodic mean occurrence µt(εi); here we employ a sim-
ple approach that nevertheless achieves the desired outcome.
Whenever an episode during training reaches a terminal state,
a vector ε containing the occurrence of events in this episode is
added to a buffer of size N . The size of the buffer determines
the adaptability of the reward function. If N is small, the agent
quickly becomes bored of new events as it easily forgets their
rarity in the past. If N is large, the agent will stay curious for a
longer period of time. The temporal episodic mean occurrence
µt(ε) is then determined as the mean of all records in the
buffer, i.e. the episodic mean of the last N episodes.

C. Events in Doom

We track 26 event types in VizDoom by implementing a
function that determines which events occur in every state
transition (i.e. in each time step). The event types include
movement (one unit), shooting (decrease in ammo), picking
up an item (one event for each item type; health pack, armor,
ammo, and weapons 0–9), killing (one for each weapon type
0–9 as well as one regardless of weapon type). Movement
events are triggered when the agent has traveled one unit from
the position of the last movement event (or the initial position
if the agent has not yet moved).

D. Policy

The presented reward shaping approach can be applied
to most (if not all) RL methods that learn from a reward
signal. It could potentially also be applied to evolutionary
approaches such as Evolution Strategies by defining fitness as
the sum of rewards in an episode. A standard policy network
is employed that has three convolutional layers followed by
a fully connected layer of 512 units, and a policy and value
output. We use filter sizes of [32, 64, 32] with strides [4, 2,
1], ReLU activations for hidden layers, and softmax for the
policy output.

The input is a single frame of 160×120 pixels in grayscale,
cropped by removing 10 pixels on top/bottom and 30 pixels on
the sides and then resized to 80×80. In most of the scenarios,
the agent can perform four actions: attack, move forward, turn
left, and turn right. In this case, the policy output has 24 = 16
values to allow any combination of the four actions. The event
buffer is updated whenever a worker reaches a terminal state.
The rewards from VizDoom, which vary between -100 and
100, are normalized to [0, 1]. Rewards based on our approach
are not normalized and vary between [0, 100] (due to τ =
0.01), while for all events where µt(εi) ≥ 1 the reward will
be between 0 and 1 (following Equation 1 in Section III-A).

E. Advantage Actor-Critic (A2C)

The deep networks in this paper are trained with the deep
reinforcement learning algorithm A2C, a synchronous variant

of Asynchronous Advantage Actor-Critic (A3C) [29], which
is able to reach state-of-the-art performance in a wide range
of environments [42, 45, 47].

A2C is an actor-critic method that optimizes both a policy
π (the actor) and an estimation of the state-value func-
tion V (s) (the critic). Parallel worker threads share the
same model parameters and synchronously collect trajec-
tories (st, st+1, at, rt+1) for tmax game steps where after
the model’s parameters are updated. Threads restart new
episodes individually when they are done. The discounted
return Rt =

∑k−1
i=1 γ

irt+i + γkV (st+k), where k is the
number of trajectories collected after t, and the advantage
A(st, at) = Rt−V (st) is determined for each step, for every
worker. A2C then uses the traditional A3C update rules in
[29] based on the policy loss log π(ai|si)A(si) and value loss;
the mean squared error between the experienced Rt and the
predicted V (st): 1

2 (Rt − V (st))
2. In contrast to A3C, A2C

updates the parameters synchronously in batches.

Fig. 1: The five ViZdoom scenarios. Scenarios with multiple spawning
positions randomly select one of them at the start of an episode. The episode
ends when the goal armor, which only appears in My Way Home and Deadly
Corridor, is picked up. The agent periodically looses health when standing
on acid floors.

IV. VIZDOOM TESTING SCENARIOS

This section describes the five VizDoom scenarios used in
our experiments. They all have sparse and/or delayed rewards
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and are therefore a good test domain for our approach. The
scenarios are from the original VizDoom [19] repository1.

For each scenario we also detail the extrinsic reward from
the environment, which is used when training models without
RoE. Some of these extrinsic rewards were rescaled to be
coherent across scenarios. If not stated otherwise, the agent
can move forward, turn left, turn right, and shoot. Screenshots
from these scenarios are shown in Figure 2, with top-down
views in Figure 1.

1) Health Gathering: The goal is to survive as long as
possible in a square room with an acid floor that deals damage
periodically. Medkits spawn randomly in the room and can
help the agent to survive as they heal when picked up. The
agent is rewarded 1 for every time step it is alive, and -100
for dying. The maximum episode length is 2,100 time steps.
The agent cannot shoot.

2) Health Gathering Supreme: Same as Health Gathering
but within a maze.

3) My Way Home: The goal is to pick up an armor, which
gives a reward of 100 and ends the scenario immediately. The
agent cannot shoot and is rewarded -0.1 for every time step it
is alive. The agent starts an episode at one of the randomly
chosen spawn locations with a random rotation.

4) Deadly Corridor: Similarly to My Way Home, the goal
is to pick up an armor, which gives a reward of 100 and ends
the scenario immediately. The armor is located at the end of
a corridor, which is guarded by enemies on both sides. The
agent must kill most, if not all of the enemies to reach it, and
receives a -100 reward if it dies. The original reward shaping
function (the distance to the armor) has been removed to make
it harder and to compare RoE with a baselines that does not
use any reward shaping. The maximum episode length is 2,100
time steps.

Fig. 2: From top-left to bottom-right: Screenshot from Deathmatch, My Way
Home, Health Gathering Supreme, and Deadly Corridor. Notice that in some
scenarios the agent cannot shoot. The scenario Health Gathering is similar to
Health Gathering Supreme but without walls within the room.

5) Deathmatch: The agent spawns in a large battle arena
with an open area in the middle and four rooms, one in each
direction that contain either medkits and armor, or weapons
(chainsaw, super shotgun, chaingun, rocket launcher, and

1https://github.com/mwydmuch/ViZDoom/tree/master/scenarios

A2C
Learning rate 7e-4
γ (discount factor) 0.99
Entropy coefficient 0.01
Value loss coefficient 0.5
Learning rate 0.0007
Max. gradient-norm 0.5
Worker threads 4 (16 in DM)
tmax (Steps per. update) 20
Batch size 64
Frame skip 4

RMSprop Optimizer
ε 1e-5
α 0.99

RoE
N (event buffer size) 100
τ (mean threshold) 0.01

TABLE I: Experimental configurations for A2C and A2C+RoE. 16 worker
threads were used in Deathmatch.

plasma gun) and ammunition for each weapon. The maximum
episode length is 4,200 time steps. The agent is rewarded
the following amounts when killing an enemy: Zombieman
(100), ShotgunGuy (300), MarineChainsawVzd (300), Demon
(300), ChaingunGuy (400), HellKnight (1,000). These enemies
spawn randomly on the map when the scenario starts.

To test how well the approach can adapt to new scenarios,
five variations of Deathmatch were also created that only
include a certain weapon type. These scenarios are called
Deathmatch Chainsaw, Deathmatch Chaingun, Deathmatch
Shotgun, Deathmatch Plasma, and Deathmatch Rocket to de-
note which weapon that remains on the map. The ammunition
for the other weapons was also removed.

V. RESULTS

We tested A2C with our approach Rarity of Events
(A2C+RoE) on the five VizDoom scenarios described in
Section IV. The Deathmatch variations were not used for
training. As a comparison baseline, A2C was also trained using
the extrinsic reward from the environment as described in
Section IV. Due to computational constraints we only trained
each method once on each scenario.

When training with A2C+RoE, the agent did not have
access to the extrinsic reward throughout training but only the
intrinsic reward based on the temporal rarity of the pre-defined
events. The algorithms ran for 107 time steps for each scenario
and 7.5×107 for the Deathmatch scenario. For both A2C and
A2C+RoE we save a copy of the model parameters whenever
the mean extrinsic reward across all workers improves. The
last copy is considered to be the final model that we use in
our tests. The complete configurations for A2C and A2C+RoE
are shown in Table I and the code for the experiments and
trained models are available on GitHub2. Videos of the learned
policies are available on YouTube3.

2https://github.com/njustesen/rarity-of-events
3https://youtu.be/YG-lf732a0U

296



0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

10

20

30

40

50

60

70
Deadly Corridor

0.0 2.5 5.0 7.5
1e7

0

1000

2000

3000

4000

5000
Deathmatch

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

500

1000

1500

2000

2500

Re
wa

rd
 / 

Ep
iso

de

Health Gathering

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

200

400

600

800

1000

1200
Health Gathering Supreme

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

20

40

60

80

100
My Way Home

A2C A2C+RoE
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Scenario A2C A2C+RoE t-test
Health Gathering 399 ± 107 1261 ± 533 p < 0.0001
Health Gathering Supr. 305 ± 60 1427 ± 645 p < 0.0001
Deadly Corridor 0.00 ± 0.0 40 ± 49 p < 0.0001
My Way Home 96.69 ± 0.12 97.89 ± 0.01 p < 0.0001
Deathmatch 4611 ± 2595 4062 ± 2442 p = 0.1250
Deathmatch Chainsaw 1025 ± 809 3750 ± 3130 p < 0.0001
Deathmatch Chaingun 1487 ± 1189 2852 ± 2038 p < 0.0001
Deathmatch Shotgun 1375 ± 941 1832 ± 1752 p = 0.0226
Deathmatch Plasma 4538 ± 1537 3248 ± 2701 p < 0.0001
Deathmatch Rocket 616 ± 583 1463 ± 1449 p < 0.0001

TABLE II: Shown are average scores based on evaluating the best policies
found for A2C and A2C+RoE 100 times each. The best results are shown
in bold. The five last rows show how the policies that were trained on the
original Deathmatch scenario generalize to five variations where only one
weapon type is available. Standard deviations are shown for each experiment
and two-tailed p-values from unpaired t-tests.

A. Learned Policies

The A2C baseline did not learn a good policy in Health
Gathering Supreme and Deadly Corridor, and only improved
slightly in Health Gathering (Figure 3). A2C learned a weak

policy in three out of five scenarios, which demonstrates that
they are indeed difficult to master guided by the extrinsic
rewards alone. In My Way Home, A2C does learn a strong
behavior that consistently locates and picks up the armor
but only after 8–9 million training steps. In Deathmatch,
A2C learned a very high-performing behavior that directly
walks to the plasma gun (the most powerful weapon in this
scenario) and shoots from cover toward the center of the
map. The behavior is simple but effective until it runs out of
ammunition, after which it attempts to find more ammunition
and sometimes fails.

Our approach A2C+RoE learns effective behaviors in all
five scenarios. The learned behavior in Deathmatch does not
exclusively use the powerful plasma gun, which results in
a slightly but not significantly worse performance than A2C
(p = 0.125 using two-tailed t-test). The policy is still effective
with over 10 kills per episode. These kills are spread across
all weapons that are available, resulting in a behavior that
is more varied (and interesting to watch). As we will show
in Section V-B, the versatile behavior learned by A2C+RoE
allows it to adapt to critical changes in Deathmatch in contrast
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to policies trained through A2C.
The episodic mean occurrence of events (Figure 4) allows

us to analyze how the policies change over time. In Health
Gathering and Health Gathering Supreme, A2C+RoE quickly
learns to move ∼80 and ∼30 units per episode, respectively.
This behavior might explain why the agent also quickly learns
to pick up medkits. A2C, on the other hand, learns the
relationship between movement, medkits, and survival at a
much slower pace, at least in the Health Gathering scenario. In
Deadly Corridor A2C+RoE discovers an interesting behavior.
After the agent learns to kill all six enemies (the red line) and
to pick up armor (purple line), it still manages to increase the
movement and the shooting events; the agent learned to walk
back to its initial position while shooting and then afterwards
to return to pick up the armor. This result is not unexpected
as the agent is intrinsically motivated to experience as many
events as possible during an episode.

In My Way Home, after the A2C+RoE policy has learned to
routinely pick up the armor, it shifts into a different behavior
toward the end of training. The agent learned to avoid the
armor to instead continuously move around in the maze.
We suspect that the policy would shift back to the previous
behavior if training was continued, as the movement reward is
now decreasing and the armor reward is increasing. Since our
rarity measure is temporal, loops between these two behaviors
could emerge as well. As policies with the highest extrinsic
reward are saved during training, these sudden changes do not
affect the final policy. In fact, one might argue that this is a
useful feature of RoE: a network that has converged to some
optimum can escape it to find other interesting behaviors.

B. Ability to Adapt

A2C+RoE motivates the agent intrinsically to learn a bal-
anced policy that strives to experience a good mix of events.
Reinforcement learning algorithms that exclude pre-training
or proper reward shaping, including our A2C baseline, can
easily converge into local optima with very narrow behaviors.
In this context, narrow refers to behaviors that act in a very
particular way, only utilizing a small subset of the features in
the environment. This handicap prevents the learned policies
from adapting to critical changes in the environment as they
only know one way of behaving.

To test for such adaptivity, the learned policies are evaluated
on five Deathmatch variations in which critical weapons and
ammunition packs have been removed. Note that the policies
were not directly trained on these variations. The results in
Table II show that A2C+RoE learned a policy that significantly
outperforms A2C (p < 0.0001 using two-tailed t-test) in four
out of five Deathmatch variations. A2C+RoE learned a policy
that is more versatile, capable of using all the weapons in
the map, which is the reason it can easily adapt. Figure 5
shows heat maps (i.e. the proportional time spent at each
map location) during the evaluations of the two policies on
Deathmatch and its variations. The A2C+RoE policy expresses
different strategies depending on the weapon available on the

map, while the A2C policy mostly circles around the plasma
gun location, regardless of it actually being there. However,
if the plasma gun is present, A2C alone does execute a fairly
effective strategy, shooting toward enemies in the middle of
the map.

The heat maps show that the A2C policy has learned to stay
at only one location on the map from which it can pick up the
powerful plasma gun and thereafter shoot efficiently toward
enemies in the middle of the map (see the video of the learned
policies). In the Deathmatch variations, in which the map only
contains two weapons of the same type, the A2C-policy fails
to adapt to use the other weapons and instead walks around
the area where the plasma gun would have been located.

The A2C+RoE policy has learned to explore a larger part
of the maps in a more uniform way (Figure 5,bottom). In the
different Deathmatch variations, a clear change in behavior can
be observed when only a certain type of weapon is available.
For example, in the DM Rocket scenario, the agent lures
enemies into the map’s top and bottom room while efficiently
using the rocket’s splash damage.

VI. DISCUSSION

While the presented approach worked well in VizDoom
it will be important to test its generality in other domains
in the future. RoE is designed to work well in challenging
environments that have a plethora of known events and sparse
and/or delayed rewards. Video games are thus a very suitable
domain and we plan to test RoE in Montezuma’s Revenge
and StarCraft in future work. For domains in which reward
shaping is not necessary, i.e. the extrinsic reward smoothly
leads to an optimal behavior, our approach might add less
value. We imagine that RoE should also work well in domains
with deceptive reward structures, just as novelty search out-
performed traditional evolutionary algorithms in mazes with
dead ends [24] or deceptive meta-learning tasks [37]. Novelty
search and RoE have the ability to learn interesting behaviors
without the need for a goal. In the future, our approach could
also be extended to reward the agent for both the rarity of
events as well as the environment’s original objective, inspired
by quality diversity methods [35] that use a combination of
diversity and objective-based search [10, 30].

The specification of adequate events is intimately tied to the
success of our approach; events that lead to direct negative
performance should be avoided. For example, if the extrinsic
reward is negative when the agent wastes ammunition, it
should not be intrinsically rewarded for shooting event. A
benefit of the presented method is that events that contribute to
the occurrence of other events (e.g. such as movement leads to
medkit pickups), can lead to a system that performs automated
curriculum learning. However, it is not guaranteed that this
effect will occur, and it might require a bit of trial and error
during the specification of events. Some events can also be
contradicting, such as killing with the chainsaw and killing
with the plasma gun, as the agent cannot do both at the same
time. Our approach is designed to learn a policy that can
balance their occurrences which results in a more versatile
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behavior. Important future work will test how RoE scales to
hundreds or even thousands of events. A promising testbed for
such experimentation is StarCraft, for which events can easily
be defined as the production of each unit and building type, as
well as killing different opposing unit types. We believe that
reinforcement learning methods that are guided by intrinsic
motivation are key to solving these challenging environments.

The A2C baseline reached the best performance in the
original Deathmatch. However, it can be argued whether it
learned to actually play Doom, or just learned to follow a
fixed sequence of actions that lead to the same behavior
every time. While it can be useful to find a niche behavior
with high performance, learning a rich and versatile behavior
has particular relevance for video games. Here, behaviors
that explore the game’s features could potentially help for
automatic game testing and also lead to more human-like
behaviors for NPCs.

Regarding our implementation of the RoE approach, future
work will also explore other variations in determining the
episodic mean occurrence of events, such as discounting the
mean occurrences over time. With this modification, event
occurrences older than N episodes (the event buffer only holds
N event occurrences) would still effect the intrinsic reward.

It is important to note that since we save the best model
based on the mean extrinsic reward across all worker threads,
increasing the number of threads should make the evaluation
less noisy by reducing the chances of accidentally overriding
the best model with a worse performing one. This hypothesis
still needs to be confirmed, but the number of threads was
already increased from 4 to 16 in the longer Deathmatch
scenario to speed up learning.

VII. CONCLUSION

We introduced Rarity of Events (RoE), a simple reinforce-
ment learning approach that determines reward based on the
temporal rarity of pre-defined events. This approach was able
to reach high-performing scores in five challenging VizDoom

scenarios with sparse and/or delayed rewards. Compared to a
traditional A2C baseline, the results are significantly better in
four of the five scenarios. Importantly, the presented approach
is able to not only receive a high final reward, but also
discovers versatile behavior that can adapt to critical changes
in the environment, which is challenging for the baseline
A2C approach. In our experiments, the extrinsically motivated
baseline either fails in these environments or learns a behavior
that is unable to adapt to changes in the environments it has
been trained on. In the future, the presented RoE approach
could allow more complex scenarios to be solved, for which
it is infeasible to learn from extrinsic rewards without manual
reward shaping and curriculum learning.
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Abstract—Real-time strategy (RTS) games have drawn great
attention in the AI research community, for they offer a chal-
lenging and rich testbed for both machine learning and AI
techniques. Due to their enormous state spaces and possible map
configurations, learning good and generalizable representations
for machine learning is crucial to build agents that can perform
well in complex RTS games. In this paper we present a convolu-
tional neural network approach to learn an evaluation function
that focuses on learning general features that are independent
of the map configuration or size. We first train and evaluate
the network on a winner prediction task on a dataset collected
with a small set of maps with a fixed size. Then we evaluate
the network’s generalizability to three set of larger maps. by
using it as an evaluation function in the context of Monte Carlo
Tree Search. Our results show that the presented architecture
can successfully capture general and map-independent features
applicable to more complex RTS situations.

Index Terms—real-time strategy, neural networks, MCTS

I. INTRODUCTION

Real-time strategy games (RTS) pose a significant challenge
to AI research given their huge space space and decision
space complexity and their real-time nature. Specifically, an
open problem is how to define evaluation functions that,
given a game state, predict the probability of each player of
winning the game. Previous work in computer Go [1] and
RTS games [2] has shown the potential of neural networks
to automatically learn such evaluation functions from data.
One challenge, however, is how to represent the game state to
present it to the network. Existing work [1], [2] has focused
on fixed-size games (like Go), or RTS situations with fixed
map sizes.

In this paper, we focus on the problem of learning evaluation
functions for arbitrary RTS game maps by learning general and
map-independent features applicable to complex situations.
This is important, since scenario variability is not just a key
feature of most RTS games, but of many real-world problems
as well.

Specifically, we propose a convolutional neural network
architecture specifically designed to learn features that are
map size-independent and generalizable to larger maps. We
report experiments training the network with data collected
on smaller maps, which is cheaper to collect than data for
larger maps, and then evaluate the performance of the trained
network on a collection of larger maps. By utilizing general-
izable features learned from small maps, we can improve the

time and data efficiency of our learning approach for building
agents for complex maps. All reported experiments are carried
out on the µRTS simulator [3].

The remainder of this paper is organized as follows. First,
Section II provides some necessary background on RTS AI
research, and on µRTS. After that, Section III describes
our processes of data collection, neural network architecture,
and training procedure. Section IV then reports experimental
results under two separate conditions (winner prediction accu-
racy and in-game playing strength). Finally, the paper closes
with conclusions and possible future work.

II. BACKGROUND

RTS games have drawn great attention in the AI research
community, since they offer a challenging and rich testbed for
both machine learning and search techniques. For example,
many platforms and tools, such as TorchCraft [4], SC2LE [5],
µRTS [3], and ELF [6] have been developed to promote
research in the area. Specifically, in this paper, we focus on
the problem of game state evaluation and use µRTS as our
experimental domain, as it offers a minimalist yet sufficient
RTS game environment and a collection of implementations of
search algorithms to be used for testing. Game state evaluation
is an important component of almost any game tree search
approach such as minimax or Monte Carlo Tree Search.

Monte Carlo Tree Search (MCTS) [7] algorithms initially
became popular because of their success in computer Go,
where MCTS was a significant step forward toward overcom-
ing the huge search space of this game via sampling sequences
of stochastic play. However, without a good representation
of Go knowledge, MCTS failed to scale to the level of top
professional Go players. The recent progress that ultimately
culminated in defeating professional players [1] has been due
to integrating convolutional neural networks (CNN) into the
MCTS search process, which can learn complex representa-
tions of the game state and perform tasks such as game state
evaluation or predicting good moves, in order to guide the
search.

In the context of RTS games (and besides non-determinism
and partial observability, which are not considered in this
paper), two of the main open challenges for game tree search
approaches are: (1) the combinatorial branching factor and (2)
the lack of accurate state evaluation functions. For example,
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a game situation where a player controls just 10 units, where
each unit can execute 5 different actions each results in a
potential branching factor of 510 ≈ 10 million, beyond what
standard MCTS algorithms can handle. Additionally, unlike
games like Go which are always played from the same starting
position, RTS games are played in a large variety of maps that
are highly configurable both in terms of size and initial states.
Thus, an evaluation function that is not only accurate but also
applicable to different maps is key for guiding MCTS.

In this paper, we employ a variant of MCTS algorithms
called Naı̈veMCTS [8] to handle the combinatorial branching
factor, and focus on the problem of using CNNs to achieve
evaluation functions that can generalize to a large variety of
maps. There has been successful applications of combining
CNN with MCTS in the domain of game AI, such as computer
Go [1] and Atari 2600 games [9]. Specifically in the context of
RTS games, [2][10] trained a CNN as state evaluation function
and combined with Monte Carlo Tree Search, but was limited
to fixed sized maps. In this paper we specifically focus de-
signing a CNN approach that generalizes to maps of arbitrary
size. Another related piece of work is that of Vinyals et al. [5]
where, in order to train a map-size independent network, they
reduce the resolution of the map and minimap to always be
64x64. In contrast, our approach does not require reducing the
input to a fixed size. Finally, Stanley and Miikkulainen [11]
proposed an approach based on a “roving eye” for evaluating
Go boards of arbitrary sizes. Their approach is based on a fixed
size “eye” that moves around the board. They key problem is
learning the policy to control the eye to move to the important
parts of the board, as well as having a memory that keeps a
record of the important aspects it has observed. Our approach
does not require learning such policy, and can observe the
whole board/map directly (notice that the idea of the roving
eye and that of a convolutional neural network are not that
different in that both scan smaller neural networks through
the input).

A. µRTS

µRTS1 is a simple RTS game designed for testing AI tech-
niques. µRTS provides the essential features that make RTS
games challenging from an AI point of view: simultaneous and
durative actions, combinatorial branching factors and real-time
decision making. The game can be configured to be partially
observably and non-deterministic, but those settings are turned
off for all the experiments presented in this paper. We chose
µRTS, since in addition to featuring the above properties, it
does so in a very minimalistic way, by defining only four unit
types and two building types, all of them occupying one tile,
and there is only one resource type. Additionally, as required
by our experiments, µRTS allows maps of arbitrary sizes and
initial configurations.

There is one type of environment unit (minerals) and six
types of units controlled by players, which are:
• Base: can train Workers and accumulate resources

1https://github.com/santiontanon/microrts

• Barracks: can train attack units
• Worker: collects resources and construct buildings
• Light: low power but fast melee unit
• Heavy: high power but slow melee unit
• Ranged: long range attack unit

Additionally, the environment can have walls to block the
movement of units. A example screenshot of game is shown
in Figure 1. The squared units in green are Minerals with
numbers on them indicating the remaining resources. The units
with blue outline belong to player 1 (which we will call max)
and those with red outline belong to player 2 (which we will
call min). The light grey squared units are Bases with numbers
indicating the amount of resources owned by the player, while
the darker grey squared units are the Barracks. Movable units
have round shapes with grey units being Workers, orange units
being Lights, yellow being Heavy units (now shown in the
figure) and blue units being Ranged.

"max" 
player 
units 

"min" 
player 
units 

Fig. 1. A Screenshot of µRTS.

III. LEARNING TRANSFERABLE FEATURE USING
CONVOLUTIONAL NEURAL NETWORKS

Many deep neural network architectures trained for com-
puter vision tasks learn features similar to Gabor filters and
color blobs [12] in the first layer. These features tend to be
generalizable to different domains and tasks. Based on this
observation, in this paper we design and train our µRTS state
evaluation networks for small game maps and show that they
generalize to larger maps.

The remainder of this section, first presents the procedure
we followed to collect training data for our models, how
are the game states encoded to be provided as input to the
neural networks, and finally, we describe the proposed network
architecture and training procedure.
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A. Data Collection

We collected replay data from a round-robin tournament
with 10 µRTS bots. Specifically, we used the following bots:
• Rush bots: hardcoded deterministic bots that implement a

rush strategy that constantly produces one type of unit and
sends them to attack the opponent’s base. Specifically,
we used the WorkerRush, LightRush, RangedRush and
HeavyRush bots of µRTS, which implement rushes with
worker, light, ranged, and heavy units respectively.

• PortfolioAI: playouts using a set of simple bots (Work-
erRush, LightRush, RangedRush, and Random), are run
all possible pairings, and the minimax bot is selected to
produce the next action.

• MonteCarlo: flat Monte Carlo search, splitting the com-
putation budget uniformly among all possible actions.

• ε-Greedy MonteCarlo: same as flat Monte Carlo search
but using ε-greedy strategy to allocate computation bud-
get to each action.

• DownsamplingUCT: Standard UCT [7], but in those
nodes of the tree where the branching factor is larger
than a constant k (k = 100 in our experiments), k of
those actions are sampled at random, and only those are
considered during search.

• UCTUnitActions: Standard UCT, but in nodes where we
can issue actions to more than one unit, rather than
considering the whole combinatorics, we only consider
the actions of one unit per node (the children nodes of
this node will consider actions of the rest of units, in
turn). This follows the UCT implementation of Balla and
Fern in their work on the Wargus RTS game [13].

• Naı̈veMCTS: MCTS algorithm with a tree policy specifi-
cally designed for games with combinatorial branching
factors. The tree policy exploits Combinatorial Multi-
Armed Bandits [8] to handle the combinatorial explosion
of possible moves.

Four different configurations of Naı̈veMCTS were used, for
a total of 13 different bots. For bots with configurable com-
puting budget (PortfolioAI, MonteCarlo, DownsamplingUCT,
UCTUnitActions and Naı̈veMCTS), we run tournaments under
eight different budgets per game frame: 100ms, 200ms,
400ms, 800ms, 100 playouts, 200 playouts, 400 playouts
and 800 playouts (i.e., giving the bots a certain amount of
milliseconds per game frame, or a certain number of playouts,
which makes sense in the MCTS-based bots).

Maps of size 8× 8 with 23 different starting configurations
were used. We decided to collect data only on small 8 × 8
maps, since it’s cheaper to generate (games in larger maps
take longer to execute). Additionally, in this way, we can also
test if the learned evaluation function generalizes to larger
maps, when trained only in smaller maps. After we discard
all replays that resulted in a draw and duplicated replays from
games between two deterministic bots (to avoid biased data),
this resulted in 25,200 replays.

Since states coming from the same replay are highly cor-
related (a state at time t and one at time t + 1 from the

TABLE I
DESCRIPTION OF FEATURE PLANES FOR GAME STATE REPRESENTATION

Features Planes Description
Unit Type & Position 7 Base, Barracks, Resource, worker,

light, ranged, heavy
Unit Health 5 1, 2-3, 4-5,6-7, ≥ 8
Unit Owner 2 Mask each unit to its player owner
Worker Resources 1 1 if the worker is carrying a resource,

0 otherwise

same replay are likely to be very similar), if we were to
use all the states from all replays, the i.i.d. assumption of
supervised learning algorithms would be violated. To mitigate
this problem, we randomly sample three positions in each
replay. We also augmented each position in the training set
with all reflections and rotations. As a result, we ultimately
have a training set with 484,800 game states and testing set
with more than 15,000 game states (if one state extracted from
a trace was placed in the training set, then all the other states
from that trace were also placed in the training set). Each game
state is labeled with the player that won the corresponding
game.

B. Features

For this work, we assumed each map can have an arbitrary
size w × h where w and h is the width and height of the
map. Each game state is thus converted into a 15 × w × h
tensor, composed of 15 feature planes (each of them of size
w × h), to be fed as input to the neural network. The feature
planes that we use (see Table I) come directly from the raw
representation of the board information (unit types, unit health,
unit owners, unit positions, and resources carried by workers).
Many of the features are split into multiple planes of binary
values, for example in the case of unit positions there are six
feature planes for each type of the units indicating position
information. In addition to the 15 feature planes, we have a
global feature array, consisting of the following features:
• Resources owned by each player
• Proportion of game time left scaled from 0-20
For example a global feature array [5, 6, 4] can be inter-

preted as that the max player has 5 resources, the min player
has 6 resources, and the game has about 20% of its maximum
pre-defined length (5000 cycles in our experiments) left.

In comparison to the input of Stanescu’s work [2], we
employ a similar one-hot encoding for spatial information. The
difference between our work and theirs is that we separated
the global information from the spatial information and they
encoded them all together. In next section, we will describe
the design of our model and usage of the inputs.

C. Neural Networks Architecture and Training

Since our goal is to train a neural network that can handle
different map sizes as input and generalize across them, we
made the following design decisions:

1) Structurally: we employed a convolutional neural net-
work (CNN) approach [14]. Usually, CNNs consist of
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Fig. 2. Proposed neural network architecture for maps-size independent game state evaluation.

a set of convolutional layers, followed by a set of
fully connected layers. This assumes a fixed input size.
We replaced the fully connected layers (typically at
the end) by a global average pooling layer (described
below), which converts different-sized convolutional fea-
ture maps into a fixed size vector. In this way, we can
provide maps of different sizes as input.

2) Algorithmically: only using one but thick convolutional
layer with 512 filters to focus on learning general
features. After this layer, we feed the concatenation of
the output of the convolutional layer (after having been
converted to a fixed size vector by the pooling layer) and
the global feature array to the output layer (as shown on
Figure 2).

As described above, the input is the a stack of 15×w × h
spatial features where w×h is the size of the input map plus a
global feature array of size 3. First, each spatial feature plane
is padded with 0s to obtain a (w + 1)× (h+ 1) plane. Then
the input is convolved with 512 3×3 filters with stride 1. The
resulting feature maps are also padded with 0s to keep the
same size as the input. After the convolutional layer, rectified
linear units (ReLU) are applied to calculate activations and
a 0.5 dropout ratio is applied to prevent overfitting. We then
directly output the spatial average of the feature maps from
the convolutional layer as the confidence of categories through
a global average pooling layer [15] instead of adopting the
fully connected layers for classification that are usual in
CNNs. This results on a vector of size 512 (one per spatial
feature map). This vector is then concatenated with the non-
spatial global feature array. Finally, the concatenated vector
is fed into the softmax layer of 2 units, which predicts the
winning probability for each player. The final architecture of
the proposed neural network is shown in Figure 2.

We use Xavier algorithm to initialize weights [16], and
adaptive moment estimation (ADAM) [17] with hyperparam-
eters β1 = 0.9, β2 = 0.999, and α = 0.001 as the optimizer.
We employ cross entropy loss for backpropagation. The whole
training process takes about 10 minutes to converge on a

NVIDIA GTX 1080 Ti GPU with the dataset of 484,800
training instances.

IV. EXPERIMENTAL EVALUATION

In order to evaluate our approach, we conduct two evalua-
tion experiments:

1) winner prediction: we compare the winner prediction
accuracy on the collected dataset on 8 × 8 maps using
a test set of 15,000 game states) between the neural
network and several human-designed baseline evaluation
functions.

2) game play: we evaluate the game play strength of
a Monte Carlo Tree Search bot using our proposed
evaluation function versus using the baseline evaluation
functions on three sets of maps of different sizes: 10×10,
12× 12, and 16× 16.

A. Experimental Setup

In both experiments, we use two simple human-designed
evaluation functions and the Lanchester [18] model as the
baselines, all of which evaluate the game states by assigning
a numerical score to each player and comparing these values.
These evaluation functions work as follows:
• Simple evaluation function2: The scoring system is shown

in equation (1). Given a state s and a player p , Up is
the set of units owned by p in state s, Rp is the total
amount of resources for player p, Wp ⊆ Up is the set of
player p’s workers is s, Ru is the amount of resources
each worker unit u is carrying, Cu is the cost of unit u,
HPu the current health points of unit u, and MaxHPu

its maximum health points of u. Wres, Wwork, Wunit

are constant weights from human experience, which are
20, 10, and 40 respectively (we omit the state s in the
equations for simplicity).

ES
p =WresRp+Wwork

∑

u∈Wp

Ru+Wunit

∑

u∈Up

CuHPu

MaxHPu

(1)

2This corresponds to the SimpleEvaluationFunction function of µRTS.
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Then the state evaluation for player p (p ∈ {0, 1}) is

Simplep = ES
p − ES

1−p

• SimpleSqrt evaluation function3: The scoring system is
very similar to Simple evaluation function but takes a
square root on the term for unit health.

EQ
p =WresRp+Wwork

∑

u∈Wp

Ru+Wunit

∑

u∈p

√
CuHPu

MaxHPu

(2)
Also, the final evaluation is normalizaed between 0 to 1.

SimpleSqrtp = 2EQ
p /(E

Q
p + EQ

1−p)− 1

• Lanchester evaluation function4: The Lanchester model is
a strong heuristic evaluation model in RTS games since
it can be optimized using logistic regression according to
specific situations. In Equation 3, αu is the strength value
for the type of unit u, and o is the Lanchester attrition
order. We employ the parameters and weights trained by
Stanescu et al. [2] for our dataset which are optimized
for 8×8 maps. Then again, the state evaluation score for
player p is calculated as Lanchesterp = EL

p − EL
1−p.

EL
p = WresRp +Wwork

∑
u∈Wp

Ru+

Wbase
HPbase

MaxHPbase
+Wbarracks

HPbarracks

MaxHPbarracks
+∑

u∈Up
αu

CuHPu

MaxHPu
|Up|o−1

(3)
As for the neural network evaluation function, it calculates

the state evaluation score for player p by simply taking the
difference of winning probability of the output neurons for
the both players.

B. Winner Prediction Evaluation

In the first experiment we evaluate our model by comparing
the winner prediction accuracy with the baseline evaluation
functions. We use the trained neural network and the baseline
evaluation functions to predict the final winner of the instances
in the test set (see Section III-A). Figure 3 plots the prediction
accuracy for all the compared evaluation functions as a func-
tion of how close the game was to the end, with 0 being the
beginning of the game, and 100 being the end of the game. To
calculate this plot, we aggregated the results in 5% buckets.

First, we can see that the performance of baselines are
very close to each other, especially at the beginning. Towards
the end, Lanchester and Simple seem to edge SimpleSqrt.
Our neural network consistently outperforms the baselines,
especially at the beginning of the game, which usually has a
significant impact on the game, and it is when the prediction
task is harder. It is worth noting that we are using the same
parameters and weights for Lanchester model from Stanescu
et al.’s work [2], where they specifically optimized for the
dataset used in their experiments. In their work, they report
the Lanchester model to significantly outperform the Simple

3This corresponds to the SimpleSqrtEvaluationFunction3 function of µRTS.
4This corresponds to the LanchesterEvaluationFunction function of µRTS.

Fig. 3. Winner prediction accuracy comparison. Vertical axis shows prediction
accuracy, and horizontal axis shows game time (as a percentage of total length
of a replay).

and SimpleSqrt baselines, which we do not observe in our
evaluation. This indicates that there might be some amount
of overfitting in their training procedure towards the maps
used in that work, and that this evaluation function does
not seem to generalize well to our dataset which includes a
larger variety of maps, and AIs playing with different amounts
of computatinoal budget. Also interestingly, Simple seems to
outperform SimpleSqrt, even if in the literature of RTS games
it has been shown several times [19] that using the square root
of the hitpoints of units results in stronger evaluation functions
(as SimpleSqrt does). This does not seem to be the case in
µRTS.

C. Gameplay Strength Evaluation

The second, and perhaps more important, experiment is to
test the neural network evaluation function in actual game play
under maps of different sizes. In this experiment, we have 10
maps with different initial states for each testing size (10×10,
12 × 12, and 16 × 16). Examples of maps of each size is
given in Figure 4. Thus in total we have 30 maps for testing.
We run a round-robin tournament between the neural network
evaluation function and three baseline evaluation functions,
all of which are coupled with Naı̈veMCTS with the same
parameter configuration (the default parameters in µRTS for
this algorithm). Each pair of bots play four games against
each other in the tournament per map and are given the same
computational budgets for both. Therefore, every pair of bots
will play 10× 3× 4 = 120 games.

We performed these experiments limiting the computational
budget in two different ways: (1) the first is giving each bot
only 200 playouts per game frame, and (2) giving each bot
only 200 milliseconds per game frame. We use the win rate as
the metric for game play strength. If there is a draw, both bots
will receive a 0.5 win. The winning rate results are reported
in figures 5 and 6 and the win/draw/loss matrix for each bot
pair is reported in tables II and III.

As we can observe from the results, when limiting the com-
putation budget by the number of playouts, the neural network
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Fig. 4. Example 10× 10, 12× 12 and 16× 16 maps used in our experimental evaluation.

has a significant advantage over the baselines on gameplay
strength. We can also see that SimpleSqrt and Lanchester
perform particularly poorly when compared to the neural
network. Additionally, it might seem that the performance of
the neural network degrades when in 16x16 maps as compared
to 12x12 maps. However, notice that what happens is that in
16x16 maps there are a lot of ties, since the map is large and
some times players do not find each other. However, in 16x16
maps, as Table 5 shows, the neural network only lost 4 (out of
40) games against Simple, 1 against SimpleSqrt and 0 against
Lanchester. This is a limitation of using playouts of length
100 in Naı̈veMCTS, rather than of the evaluation functions.

Concerning limiting the computation budget by time (as
would happen in real world settings), the Simple evaluation
outperformed the neural network. This is due to two main
reasons. First, the intrinsic reason that the neural network
works less dominantly is that the time needed for neural
network to evaluate a single state is longer than that required
by the baseline evaluation functions. However, a second sig-
nificant contributing factor is that µRTS is written in Java and
the neural network model is written and trained in Python.
Thus on average the evaluation function spent around 37% of
time budget on communication between the languages, which
happens via a socket. We believe, that if this communication
time is removed, the problem can be mitigated and our model
will outperform all the baselines. In our experiments, the
average ratio of playouts completed with in the same time
budget between the neural network and baselines are around
16:1, 13:1, and 9:1, respectively for maps of size 10 × 10,
12×12, and 16×16. If the communication time is eliminated,
these ratios would go down to about 10:1, 8:1 and 5.5:1.
Possible solutions to address this problem are discussed below.

V. CONCLUSION AND FUTURE WORK

This paper presents a convolutional neural network archi-
tecture designed for the task of game state evaluation in real-
time strategy games, and specifically to address the problem
of training a network that can be used (without retraining)
in arbitrarily sized maps. Our proposed neural network state
evaluation function can be trained on size-independent data
and can perform well on maps that are more complex than

10x10 12x12 16x16 Overall
0

20

40

60

80

W
in

 R
at

e

Neural Network
Simple
SimpleSqrt
Lanchester

Fig. 5. Gameplay strength results with playout budget
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Fig. 6. Gameplay strength results with time budget

those used for training (notice that although we tested the
network in maps up to 16 × 16, all training data came from
8×8 maps). Structurally, replacing the traditionally used fully
connected layers by a global average pooling layer allows the
neural network to take varied-sized inputs. Moreover, we only
employ one convolutional layer to learn generalizable features
and prevent overfitting on the training map size.

Our empirical results showed that we have successfully
learned features from game replays collected under simple
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TABLE II
GAMEPLAY STRENGTH RESULTS (WIN/DRAW/LOSS OF THE ROW AGENT)

WITH PLAYOUT BUDGET.

Result Matrix for 10× 10 Maps
Neural Network Simple SimpSqrt Lanchester

Neural Network N/A 19/12/9 29/5/6 22/12/6
Simple 9/12/19 N/A 28/3/9 26/11/3

SimpSqrt 6/5/29 9/3/28 N/A 17/6/17
Lanchester 6/12/22 3/11/26 17/6/17 N/A

Result Matrix for 12× 12 Maps
Neural Network Simple SimpSqrt Lanchester

Neural Network N/A 21/9/10 35/2/3 35/3/2
Simple 10/9/21 N/A 28/4/8 36/2/2

SimpSqrt 3/2/35 8/4/28 N/A 30/3/7
Lanchester 2/3/35 2/2/36 7/3/30 N/A

Result Matrix for 16× 16 Maps
Neural Network Simple SimpSqrt Lanchester

Neural Network N/A 13/23/4 12/27/1 40/0/0
Simple 4/23/13 N/A 22/14/4 40/0/0

SimpSqrt 1/27/12 4/14/22 N/A 38/2/0
Lanchester 0/0/40 0/0/40 0/2/38 N/A

TABLE III
GAMEPLAY STRENGTH (WIN/DRAW/LOSS OF THE ROW AGENT) RESULTS

WITH TIME BUDGET

Result Matrix for 10× 10 Maps
Neural Network Simple SimpSqrt Lanchester

Neural Network N/A 14/4/18 22/6/12 20/14/6
Simple 18/4/14 N/A 28/6/6 22/14/4

SimpSqrt 12/6/22 6/6/28 N/A 16/8/16
Lanchester 6/14/20 4/14/22 16/8/16 N/A

Result Matrix for 12× 12 Maps
Neural Network Simple SimpSqrt Lanchester

Neural Network N/A 12/12/16 22/8/10 20/8/12
Simple 16/12/12 N/A 22/6/12 24/8/8

SimpSqrt 10/8/22 12/6/22 N/A 20/4/16
Lanchester 10/8/22 24/8/8 16/4/20 N/A

Result Matrix for 16× 16 Maps
Neural Network Simple SimpSqrt Lanchester

Neural Network N/A 10/18/12 16/14/10 12/18/10
Simple 12/18/10 N/A 10/20/10 16/20/4

SimpSqrt 10/14/16 10/20/10 N/A 6/26/8
Lanchester 10/18/12 4/20/16 8/26/6 N/A

maps that can be transferred to larger maps. Specifically,
the result of gameplay strength under time budget showed
promise, but also showed that there are still challenges to be
addressed. The main challenge is that the evaluation of the
neural network is slower than the baseline evaluation functions
used in our experiments. Possible solutions involve using
smaller networks (we are currently using 512 filters, which
could be reduced trading accuracy by speed). Another idea
to explore further is to better exploit the parallel power of the
GPU, for example, exploiting existing work on parallelizations
of the MCTS search algorithm [20], the evaluation function
could be executed in batches, rather than state by state,
shortening the speed gap between neural networks model and
human-engineered evaluation functions. Finally, we would like
to study how to extend our ideas to more realistic partially

observable settings.
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Imitation Learning with Concurrent
Actions in 3D Games
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Abstract—In this work we describe a novel deep reinforcement
learning architecture that allows multiple actions to be selected
at every time-step in an efficient manner. Multi-action policies
allow complex behaviours to be learnt that would otherwise be
hard to achieve when using single action selection techniques.
We use both imitation learning and temporal difference (TD)
reinforcement learning (RL) to provide a 4x improvement in
training time and 2.5x improvement in performance over single
action selection TD RL. We demonstrate the capabilities of this
network using a complex in-house 3D game. Mimicking the
behavior of the expert teacher significantly improves world state
exploration and allows the agents vision system to be trained
more rapidly than TD RL alone. This initial training technique
kick-starts TD learning and the agent quickly learns to surpass
the capabilities of the expert.

I. INTRODUCTION

IN recent years the field of reinforcement learning (RL)
[Sutton and Barto, 1998] has undergone a renascence,

due to the transformative powers of deep neural network
architectures. A key strength of these architectures is their
ability to be used as arbitrary function approximators. This
ability has allowed neural network based model free RL
techniques to solve a number of challenging tasks that were
previously intractable. The techniques described by Mnih et al.
[2015] demonstrate the power of this, in their work they
develop an algorithm (DQN) that employs a neural network to
estimate the value of high dimensional input states and use a
bootstrapping technique to train it. Put simply, this algorithm
minimizes the difference between the networks estimate of the
value of the current state and that of a target value, where
the target value is simply the networks predicted value of
the next state plus any rewards that were received in-between
the two states. The target value is more grounded in reality
than the initial guess because it is partly made up of rewards
gained through an agents interactions with the environment,
and as such they show that these updates allow the network to
learn an accurate value function. They further demonstrate the
capability of this algorithm by training agents to play Atari
2600 video games using high dimensional raw pixel values
as the input state. Due to the success of this work and a
renewed interest in the field, a large number of improvements
to this algorithm have now been suggested in the literature,
including but not limited to: A modification that reduces the

Correspondance to jharmer@ea.com
1Electronic Arts, SEED, Stockholm, Sweden
2Electronic Arts, DICE, Stockholm, Sweden
∗These authors contributed equally

bias of the value function estimate (DDQN) [van Hasselt et al.,
2015], a technique for improving the data efficiency of the
algorithm, by adding a type of prioritisation to the experience
replay memory sampling scheme [Schaul et al., 2015], adding
noise to specific layers to improve exploration [Fortunato et al.,
2017], breaking the action value function into two components,
one that models the value of the state and one that models the
per-action advantage [Wang et al., 2016], and also modeling
the state value function as a distribution [Bellemare et al.,
2017].

Unlike these previous off-policy techniques, Mnih et al.
[2016] propose an algorithm that moves away from an ex-
perience replay based training regime. Instead, they describe
an architecture (A3C) that performs updates using data from
a large number of simultaneously running agents. They show
that training using multiple agents, each with their own version
of the environment, decorrelates updates in a similar manner to
memory sampling in DQN, with the added benefit of improved
exploration, training speed and stability.

Despite these advances, algorithms based around temporal
difference (TD) RL are computationally expensive and can
take a significant amount of time to train. Training using TD
RL is only effective if the target value is more grounded
in reality than the current estimate. This condition is only
satisfied when there is a net accumulation of reward between
states, otherwise training simply updates one guess towards
another. Thus training using TD RL is particularly problematic
in reward sparse environments where it might require many
specific consecutive actions to receive a reward. Consider a
racing car game where the reward is scaled inversely with lap
time and received after completing a lap. This task is extremely
difficult to solve when using TD RL. To receive a reward and
thus perform one useful update, an agent would have to select
the correct action for many thousands of steps at a stage when
the agent has no understanding of the world.

The technique known as reward shaping [Ng et al., 1999]
can alleviate some of the problems with reward sparse environ-
ments. When using this technique the reward function of the
task is changed by an expert, who understands the objective,
in order to encourage behaviours that help the agent solve
the task. However, great care has to be taken because it is
not always trivial to tweak the rewards without significantly
altering the nature of the task at hand. It is also often difficult
to break down a complicated task into a number of smaller
sub-tasks amenable to shaping.

Tasks where large action spaces are required are also
difficult to train when using TD RL, because the probability
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of selecting the correct action, in order to receive a reward,
decreases as the size of the action space increases. Further,
credit assignment also becomes more problematic [Sutton and
Barto, 1998].

When training agents to interact in complex environments
with large action spaces, the behaviour associated with having
a single action per time step (SAPS) policy, as is almost
always the case in RL, is often undesirable. For example,
running forward whilst strafing and shooting in a video game
is an effective strategy that is impossible to achieve when
using SAPS architectures. When solving problems where
multiple actions per time step are required, most networks
architectures rely on modeling all possible combinations of
actions as separate distinct actions [Mnih et al., 2015, Wang
and Yu, 2016]. However when using large actions spaces, the
dramatic increase in the number of possible action combina-
tions severely limits the applicability of such techniques. For
example, a typical modern video game controller might have
around 20 controls, modeling all possible combinations of
these inputs would require a policy which outputs ∼ 106 (220)
probabilities. Joint action representations in such a large action
space make it much harder for the agent to learn the value of
each of the true actions, and do not take advantage of the
underlying relationships between different sets of individual
actions. For these reasons, an algorithm that allows multiple
output actions per time step (MAPS) should improve the
performance of such an agent.

A powerful technique that can be used to speed up training
is to teach by example. The idea being that instead of using a
domain expert to break down rewards into more fine-grained
rewards, an expert can be used to demonstrate the desired
behaviour. Then, the network is left to determine how to
change its policy in order to match the expert behaviour. This
technique is known as imitation learning (IL) [Subramanian
et al., 2016, Hester et al., 2017a, Le et al., 2018, Andersen
et al., 2018, Nair et al., 2017, Zhang and Ma, 2018, Gao
et al., 2018]. Imitation learning provides the agent with prior
knowledge about effective strategies for behaving in the world.
Combining TD RL with IL allows an agent to learn from it’s
own experiences, and helps to avoid situations where the skill
of an agent is limited by the skill of the teacher. Learning via
imitation can either be the goal itself, or an auxiliary task that
is used to help achieve another goal by bootstrapping off the
behaviour of an expert

II. CONTRIBUTIONS

Motivated by the goal of adding neural network controlled
AI agents to future games, in order to increase levels of player
immersion and entertainment, we describe a technique for
training an agent to play a 3D FPS style game. In comparison
to 2D games such as those on the Atari 2600 platform, 3D
FPS games are a particularly challenging problem for RL.
This is mainly due to the factors described previously but also
because of the partially observed nature of such games, and the
challenges related to exploring large state spaces. We develop
an in house FPS game using a modern game engine in order
to test the performance of agents in scenarios with high visual
fidelity graphics.

We present an A3C derivative algorithm that combines
supervised imitation learning (learning via guidance from an
expert teacher) with temporal difference RL (learning via trial
and error), throughout training; using only a small amount of
expert data. Imitation learning is used as an auxiliary task in
order to help the agent achieve it’s primary goal, playing the
game.

We describe a neural network architecture that outputs
multiple discrete actions per time step without having to model
combinations of actions as separate actions, and describe a loss
function that allows the policy to be trained. Combining multi-
action per time step RL with imitation learning in this manner
allows higher quality expert data to be used, as it circumvents
the difficulties associated with recording expert data when the
expert is limited to single action per time step interactions with
the environment. We call the resulting model Multi-Action per
time step Imitation Learning (MAIL).
• We present a neural network architecture that outputs

multiple discrete actions per time step (MAPS), as well
as a loss function for training the multi-action policy.

• We describe a technique for training this algorithm using
a combination of imitation learning and temporal differ-
ence reinforcement learning (MAIL).

• We describe how these techniques can be used to teach an
agent to play a challenging fully 3D first person shooter
(FPS) style video game, an important milestone on the
way to training neural networks to play modern AAA
FPS games.

III. RELATED WORK

Training using IL is by definition off-policy and as such is
typically limited to off-policy training techniques [Hester et al.,
2017b], which tend to be less stable than on-policy algorithms
[Mnih et al., 2016], or to being carried out as a pre-training
step [Silver et al., 2016, Schaal, 1997]. Indeed in one of the
earliest examples of this Schaal [1997] use imitation learning
as a pretraining step during which they train the value function
and policy, after which they continue to train the network
using reinforcement learning alone. However, they found that
even for simple nonlinear tasks task-level imitation based on
direct-policy/value learning, augmented with subsequent self-
learning, did not provide significant improvements to learning
speed over pure trial-and-error learning without demonstration.
When imitation learning is used as a pre-training step, the
policy is also often prone to collapse due to the limited state-
space coverage of the expert data; that is, models tend to over-
fit to the data instead of learning a general solution. This can
be mitigated by using a large amount of expert training data,
as in the work by Silver et al. [2016]. However, the time,
effort and cost associated with collecting such data is often a
limiting factor in the effective deployment of these techniques.
Ross et al. [2010] develop a technique called DAGGER that
iteratively generates new policies based on polling the expert
policy. However, DAGGER requires additional feedback dur-
ing training and therefor requires the expert to be available,
as such it is impractical for long training runs or when
access to the expert is limited. Another example of work in
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this category, i.e. combining expert data and reinforcement
learning, is Approximate Policy Iteration with Demonstration
(APID) [Kim and Pineau, 2013]. Here an expert’s trajectories
are used to define linear constraints which are used in the
optimization made by a Policy Iteration algorithm.

Wang and Yu [2016] look at the problem of performing
multiple actions per time step in a Q-learning setting by
modeling combinations of actions as separate actions and
estimating the value for each of these. However as previously
mentioned this technique is problematic when using large
actions spaces, due to the rapid increase in the number
of possible action combinations that have to be accounted
for. Moreover, their results are only contextualized in Least
Squares Policy Iteration (LSPI) and TD learning with linear
value function approximation, rather than an actor critic deep
reinforcement learning approach. Sharma et al. [2017] attempt
to reduce the combinatorial explosion by reducing the action
space into a number of sub-actions that are mutually exclusive
for a given scenario, such as the actions representing left and
right in a video game. However, this requires specific prior
knowledge of the action space and only partly offsets this
effect. Furthermore, they still have to evaluate each possible
combination separately to select a joint action, which is
not efficient for large action spaces. Lillicrap et al. [2015]
describe a technique for selecting multiple actions per time
step in a continuous action setting, however such techniques
are notoriously difficult to train due to their brittleness and
hyperparameter sensitivity [Haarnoja et al., 2018].

IV. PRELIMINARIES

We consider a Markov Decision Process (MDP) described
by the tuple 〈S,A,P, r〉, where S is a finite set of states,
A is a finite set of actions containing N possible actions,
P : S × A × S → [0, 1] is the transition probability kernel
and r : S → R is the reward function. In the standard SAPS
context the action space is:

Asa = {A1, A2, ..., AN} . (1)

Consequently, the action at ∈ Asa at each timestep t is
limited to be one of the available actions. Each action is
selected using a stochastic policy π : S × A → [0, 1], so
that at ∼ π(at|st). When using high-dimensional state spaces,
these policies are typically parametrized by a deep neural
network of weights θ; that is, p(at|st) = πθ(at|st).

In a MAPS setting, we allow the agent to select multiple
actions at each timestep. Hence, the action space becomes the
space of all possible subsets of different elements of Asa.
We can easily see we can represent those combinations with
binary vectors of dimension N , i.e., elements of ZN2 , where
each component ai indicates whether the action Ai ∈ Asa was
taken or not:

Ama = {(a1, a2, ..., aN )|ai ∈ {0, 1}} . (2)

Here, we have added the zero action to indicate that none of
the possible actions was taken. Clearly under this framework
Asa ⊂ Ama, since the SAPS space could just be defined as

Asa = {a ∈ Ama|
∑N
i=1 ai = 1}. We denote the marginal

probability of a single component ai with p(ai).
We let Rt =

∑∞
k=0 γ

krt+k denote the total cumulative dis-
counted reward. We also let V π(s) = E [Rt|st = s] denote the
state value function, Qπ(s, a) = E [Rt|st = s, at = a] denote
the action value function, and Aπ(s, a) = Qπ(s, a) − V π(s)
denote the advantage function corresponding to policy π.

In value-based deep reinforcement learning methods, the
action value function is approximated by a deep neural
network of parameters φ, this is, Qπ(s, a) ≈ Qπφ(s, a). In
some cases it is a direct estimate of the value function that
is approximated V π(s) ≈ V πφ (s). The parameters of the
policy are updated to minimize the loss over each batch of
experiences to approximately satisfy Bellman’s equation:

Lv(φ) =
1

K

K∑

k=1

‖rk + γV πφ′(s′k)− V πφ (sk)‖2, (3)

where φ′ denotes the parameters of a separate target network,
which are clamped in the loss function, and k indexes each ex-
perience (sk, ak, rk, s

′
k) on a batch containing K experiences.

In policy-based methods, by contrast, it is the policy network
πθ that is updated following estimates of the policy gradient

∇θE[Rt] = −E
[∑

τ

∇θ log πθ(aτ |sτ )Ψπ
τ

]
, (4)

where the expectation is taken accross the set of all possible
paths and Ψπ

τ can be a variety of choices, among which the
advantage function Aπτ is one of the most common, since
it yields almost the lowest possible variance of the gradient
estimator [Schulman et al., 2015]. In actor-critic frameworks,
the advantage function is estimated using a value network as
in value-based methods; this is, At = R̂t − V πφ (st), where
R̂t is a TD estimate of Rt. Hence, the estimate of the policy
gradient over a set of M independent rollouts B1, ..., BM is:

∇θE[Rt] ≈ −
1

M

M∑

i=1

(∑

t∈Bi

∇θ log πθ(at|st)At
)
. (5)

V. ALGORITHM

In a discrete multi-action setting it can easily be seen that
the cardinality of the space grows exponentially with the
number of available actions as O

(
2N
)
. As a consequence,

a policy which models the the probability of all possible set
of event becomes intractable as N becomes large. In order to
circumvent this problem, in this paper we make the following
structural assumption for the policy:

Assumption 1. Under the policy π, each component ai of
a ∈ Ama is conditionally independent given the state s. That
is

p (a|s) =
N∏

i=1

p(ai|s). (6)

This assumption simplifies the problem to the one of
modeling N parameters instead of 2N , making it tractable,
at expense of losing representation power and all conditional
dependencies. In theory this can be restrictive, since a high
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probability of a joint action would necessarily imply high
marginal probabilities of single actions, and vice versa. How-
ever, we find that in practice the flexibility of this family
of policies is enough to outperform single-action policies.
The relaxation of this assumption and the exploration of the
tradeoff between flexibility and performance is left for future
work.

We hence model our policy as a set of Bernoulli random
variables whose probabilities p(ai) = φi;θ(st) ∈ [0, 1] are
outputs of a deep neural network. This is

πθ(at|st) =
N∏

i=1

ai;tφi;θ(st) + (1− ai;t)(1− φi;θ(st)), (7)

where ai;t denotes the ith component of at. To sample
from this distribution we just have to sample each action
independently, relying on assumption 1.

As discussed in section IV, an estimate of the policy
gradient is

ĝ = − 1

M

M∑

i=1

(∑

t∈Bi

∇θ log πθ(at|st)At
)
, (8)

where At is an estimate of the advantage function at time t. In
our case, we can easily particularize this expression following
equation (7):

log πθ(at|st)

= log

(
N∏

i=1

ai;tφi;θ(st) + (1− ai;t)(1− φi;θ(st))
)

=
N∑

i=1

log (ai;tφi;θ(st) + (1− ai;t)(1− φi;θ(st)))

=

N∑

i=1

ai;t log(φi;θ(st)) + (1− ai;t) log(1− φi;θ(st))

= −H(at, φθ(st)),

(9)

where for convenience we use H to denote the standard cross-
entropy formula; although we remark that it is not cross-
entropy in an information-theoretic framework, since at is not
sampled from a categorical distribution. Our proposed gradient
update for rollouts B1, ..., BM is thus

ĝ =
1

M

M∑

i=1

(∑

t∈Bi

∇θH(at, φθ(st))At

)
. (10)

A. Imitation Learning

TD RL can be highly inefficient when training agents to
perform tasks in complex environments with sparse reward
and/or high dimensional action spaces. A powerful yet simple
technique for improving pure TD learning is to train the
network to imitate the behaviour of an expert in the domain,
be it another algorithm or a human expert. Silver et al. [2016]
describe an effective technique for this and manage to train
neural network controlled agents to play the game of Go
to superhuman performance levels. They perform imitation
learning as a pre-training step before RL. They sample from
a large repository of expert human data (30 million examples)

and use the data to train a deep neural network to maximise
the likelihood of selecting the expert action, given the same
input.

One of the major problems associated with pre-training
with imitation learning, is over-fitting to the expert data. The
network remembers exactly what actions to perform for a
specific input image in the expert training data set, instead of
learning a robust and general solution to the problem. Then,
when new states are encountered during TD learning, the agent
is incapable of selecting an action intelligently. Silver et al.
[2016] work around this by training using a very large expert
data set and are helped by the fully observed nature of the
task.

Due to the difficulties involved in collecting a large amount
of expert data, we take a different approach. Instead of
applying imitation learning as a pre-training step, we apply
it at the same time as TD RL as a way of regularizing the TD
learning. Each batch update is comprised of both expert and
live agent data. At every update step, the network predicts the
action of the expert, from a sample of the expert data, whilst
learning a policy that maximises the discounted future reward
of the live agent stream. Training the network in this way
allows the network to maintain a valid TD learning compatible
state, throughout training.

To encourage generalisation, we add Gaussian noise to the
expert data inputs and apply dropout after every layer, except
the outputs. Dropout is only used for the expert data. To
prevent the final performance of the agent from being limited
by the quality of the expert data, the IL loss weighting factor,
λE , is linearly decayed from the start of training.

We found that training the value function using the expert
data reduced the performance and stability of the agent. As
such the expert data was only used to train the policy whereas
the value function was trained using pure TD RL alone.

Our final policy update for the MAIL network for a set of
M independent rollouts of live experiences B1, ..., BM and
M independent batches of expert data BE1 , ..., B

E
M is thus:

ĝ =
1

M

M∑

i=1

∇θ


∑

t∈Bi

H(at, φθ(st))At

+ λE
∑

e∈BE
i

H (ae, φθ(se))


 .

VI. EXPERIMENTAL METHODS

All agents were trained using a batched version of the
A3C algorithm (A2C), similar in design to Babaeizadeh et al.
[2016], with the addition of the modifications described pre-
viously.

The performance of the following algorithms were evalu-
ated:
• SAPS with TD learning

• MAPS with TD learning

• MAIL without TD learning

• MAIL with λE decay over 15M steps
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Fig. 1: The environment. A: Top down overview of the play area. B: Enemy. C: Region-of-interest (light blue region) and
agent. D: Health. E: Ammo

• MAIL with λE decay over 50M steps
In the MAIL experiments, each training batch consisted of
approximately 50% on-policy live agent data and 50% expert
data. Salient information for the expert data is provided
in Table I. Expert data was generated prior to training by
recording episodes of human play. At each time-step, the
following information was stored in a memory buffer: input
observation, expert action vector, reward, terminal state and
game features vector. The game features vector contained the
agents health and ammo to simulate the on-screen text that a
human player can read.

TABLE I: Expert data statistics

Observations ∼ 40000

Episodes 30
Mean score 47
Score std 33

An in-house developed 3D FPS video game was used as
the training environment. In the game, rewards are received
for eliminating enemies, collecting health and ammo and for
finding and occupying a region-of-interest on the map. The
location of the health, ammo boxes and region-of-interest
change at regular intervals throughout each episode to a ran-
dom location. Enemies spawn in waves and navigate towards
the agent, attacking once within range. Figure 1 provides a
visual overview of the environment and demonstrates the key
features of the game.

At each time step, the agent observes a 128x128 pixel RGB
image (see Figure 2) of the agents first-person view. A small
short range radar is visible in the bottom left corner of the
agents input image. The agent is also provided with a game
features vector that contains information related to the agents
health and ammo. Experiments indicated that using 128x128
RGB image observations improved the agents performance
relative to 84x84 observations, due to the high visual fidelity
of the environment.

The range of actions that the agent can perform include
13 distinct actions that control: translation (x, y, z), head tilt,
rotation (multiple torque settings), firing, no-op (SAPS tests).
In the MAPS experiments, any combination of the actions in
the action set can be selected at every step.

TABLE II: Network Architecture

Layer N Details

Conv. 1 32 5x5 kernel, stride 2
Conv. 2 32 3x3 kernel, stride 2
Conv. 3 64 3x3 kernel, stride 2
Conv. 4 64 3x3 kernel, stride 1
Linear 256 + 2 2 input features
LSTM 256
Policy 13
Value 1

We used the base network architecture that is shown in Table
II for all experiments. The high level input features (ammo and
health) were concatenated to the output of the linear layer,
prior to the LSTM (see Figure 3). The inputs were normalised
by their maximum possible value. Training parameters that
were global to all experiments are shown in Table III.

For the IL experiments, Gaussian noise was added to both
the input observations (mean 0, std 0.1) and high level features
vector (mean 0, std 0.3) Dropout was applied to all hidden and
convolutional layers. We used dropout values of 60% and 50%
for the convolution and hidden layers respectively. Dropout
was not applied when processing live agent data. Dropout was
chosen over L2 weight regularisation, to reduce the risk of the
network finding non-optimal local minima [Goodfellow et al.,
2016], instead of more general solutions with larger weights.
For the experiments using IL decay, the expert prediction loss
factor, λE , was linearly decayed from 1.0 to 0.0 over the
number of decay steps for the experiment.

The main results are shown in Figure 4. SAPS A3C (red
curve) reaches a final score of ∼ 40. MAPS A3C (blue curve),
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TABLE III: Global parameters

Image size [128,128,3]
Input features size 2
Batch-size 80
Roll-out length 20
Gradient norm clipping 0.5
Optimiser Adam
Initial learning rate 1e-4
Final learning rate 1e-5
training steps 75e6
λE 1

reaches a final score of ∼ 25. MAIL (green curve) reaches a
final score of ∼ 100.

Fig. 2: Example input observations. Left: The agent can see a
red health box and some buildings in the main view. The agent
can also see a number of red enemies and the blue region-of-
interest marker in the radar view. Centre: An example of a
green ammo box. Right: The agent has reached the region
of interest, indicated by blue lighting on the floor around the
agent.

Fig. 3: MAIL Neural network architecture. Solid black lines
represent the flow of data during inference. Dashed lines
represent the flow of data during training. Red lines represent
the flow of expert data.

When using RL alone MAPS A3C is more difficult to
train than SAPS A3C due to the difficulties associated with
credit assignment when training using multiple actions (see
Introduction). The main problem of training using a SAPS
agent however, is that the policy imposes a hard limit on

the maximum capability of the agent. This capability is lower
than that of an optimal MAPS agent because SAPS policies
are a subset of MAPS policies. Indeed, in the best case sce-
nario, a very simple environment where there is no advantage
associated with carrying out multiple actions simultaneously,
this capability can at best only match that of a MAPS agent.
However, the relatively high update frequency of the agent
(∼ 15 actions per second) offsets some of the problems
associated with single action per time step updates in this
game. Running forward whilst strafing can, to a limited extent,
be approximated by selecting the forward action in one frame
and then the strafe action in the next.

During the early stages of training, the MAPS agent trains
more rapidly than the SAPS agent. In the SAPS agent case,
firing limits its opportunity to move which in turn adversely
affects its ability to pick up boxes and get to the region-of-
interest. In the MAPS case, because firing has no effect on
locomotion, and allows the agent to hit enemy targets, the
agent quickly learns that firing is generally a positive action.
However, this initial advantage disappears halfway through
training, at which point the SAPS agent learns the benefits
of interleaving fire actions and locomotion actions (see red vs
blue line in Figure 4). The performance of the SAPS agent
eventually surpasses that of the MAPS agent since it is less
affected by credit assignment issues.

VII. ANALYSIS

Fig. 4: Multi-action A3C, MAPS (blue). MAIL (green).
MAIL without TD RL (purple). Single Action A3C, SAPS
(red). The mean and standard deviation over 5 runs are shown
for each result.

In this environment, the absolute magnitude of the theoret-
ical performance difference between MAPS A3C and SAPS
A3C is difficult to determine because, due to the difficulties
of training using TD RL, the SAPS and MAPS agents never
reach an optimal policy (see Introduction).
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MAIL significantly outperforms both SAPS A3C and
MAPS A3C, reaching a final score ∼ 2.5 x higher than
SAPS A3C and 4x higher than MAPS A3C. It allows an
effective policy to be learnt in far fewer steps than when
using TD RL alone, exceeding the final score of SAPS A3C
after just 17.5M steps, a ∼ 4 x reduction in training time
(see https://www.youtube.com/watch?v=LW20UbquVBU for
example agent behaviour).

This speed-up is most pronounced in the early stages of
training when reward sparsity severely limits the effectiveness
of TD learning updates; imitation learning provides useful
feedback at every training step from the very start of training.
Supervised learning allows the vision system to be trained
much more rapidly than TD RL. Further, mimicking the
behaviour of the expert significantly improves the exploration
of state-space in comparison to the unguided random actions
in the early stages of TD RL. The MAIL agent quickly learns
to collect boxes whilst heading towards the region-of-interest;
this behaviour can be seen after less than one hour of training
(< 1M steps). From the point of view of the agent, this
rapid increase in agent capability significantly reduces reward
sparsity and kick-starts the next phase of training, in which
temporal difference learning dominates. During this final phase
the agent learns to surpass the capabilities of the expert. The
mean score of the expert human player was ∼ 47; significantly
lower than the final score of the MAIL agent, but significantly
higher than the other algorithms.

The trained MAIL agent takes full advantage of the MAPS
architecture, and typically performs between 1 and 4 actions
at once, learning behaviors such as running forward whilst
simultaneously moving sideways, turning and shooting. The
MAIL agent performs a similar number of actions per step
as the expert teacher taking full advantage of the ability to
perform multiple actions concurrently. The concurrent action
architecture proved critical for effective imitation learning as
it was not possible to record high quality expert human data
when limiting the expert to performing single actions at a time,
in this game.

To better understand how TD RL and IL affect the final
MAIL agents capability, we also trained a network without
using TD RL (purple curve in Figure 4). The MAPS IL-only
network achieved a final score of ∼ 15 , significantly lower
than all other training runs. This score was achieved after just
5M steps, with no further improvement during the remaining
70M training steps. The results show that, when combined
with IL, TD RL has a positive contribution in the very early
stages of training; after ∼ 2M steps the performance of MAIL
surpasses that of pure IL MAIL. At ∼ 13M steps the MAIL
agents score is twice that of a pure IL agent. It appears that
by forcing the network to learn a solution that maximises
future reward, TD RL also helps the agent find a more general
solution, which allows it to extract more useful information
from the expert data; however, testing this hypothesis is left
for future work. To asses whether the expert data eventually
starts to limit the performance of the agent we compare the
performance of a MAIL agent using two different decay rates
for the expert data loss (Figure 5). The run using IL data with
a higher decay rate reaches a higher final score, suggesting

Fig. 5: MAIL (15M) vs MAIL slow decay (50M)

that IL eventually holds back the performance of the agent.
These results also seem to indicate that IL learning reduces
the variance in agent performance across games, which can be
seen in Figure 5.

Interestingly, the behaviour of the trained MAIL agent is
distinctly modal in nature. Its behaviour changes significantly
depending upon the agents current state. Certain triggers,
such as the agent running low on ammo, cause the agent to
drastically alter its style of play. These advanced sub-behaviors
arise naturally without deliberately partitioning the network to
encourage them, i.e. without using concepts such as manager
networks. With even more efficient training techniques, deeper
networks with simple architectures might be capable of much
higher level reasoning than is currently observed. Examples of
some of the observed behaviours of the agent include: search-
ing for the waypoint, searching for ammo/health, patrolling
the region-of-interest, attacking enemies, fleeing enemies due
to low health/ammo, rapidly turning around to face enemies
immediately after finding ammo (see Figure 6) and human like
navigation around buildings. All these behaviours can be more
fully appreciated in the video.

VIII. FUTURE WORK

In future work we aim to further enhance the capabilities
of the MAIL architecture by adding continuous actions for
all rotations. This should provide a number of benefits when
combined with the current MAIL architecture. Not only will
it provide the agent with more fine grained motor control and
reduce the size of the action space, it will also allow much
higher quality expert data to be recorded by allowing data to be
acquired using a mouse and keyboard or the analogue inputs
on a game controller. These improvements should allow the
MAIL architecture to be used to train agents to play modern
AAA FPS games. Relaxing assumption 1 to more general
forms of parametric policies is also left for future work.
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Fig. 6: Example behaviours. Yellow: seeking region of interest,
while picking up boxes. Blue: Patrolling the region-of-interest.
Red: Seeking Ammo
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Abstract—The General Video Game AI (GVGAI) competi-
tion and its associated software framework provides a way
of benchmarking AI algorithms on a large number of games
written in a domain-specific description language. While the
competition has seen plenty of interest, it has so far focused
on online planning, providing a forward model that allows the
use of algorithms such as Monte Carlo Tree Search. In this
paper, we describe how we interface GVGAI to the OpenAI
Gym environment, a widely used way of connecting agents
to reinforcement learning problems. Using this interface, we
characterize how widely used implementations of several deep
reinforcement learning algorithms fare on a number of GVGAI
games. We further analyze the results to provide a first indication
of the relative difficulty of these games relative to each other,
and relative to those in the Arcade Learning Environment under
similar conditions.

Index Terms—deep reinforcement learning, general video game
AI, video game description language, OpenAI Gym, advantage
actor critic, deep Q-learning

I. INTRODUCTION

The realization that video games are perfect testbeds for
artificial intelligence methods have in recent years spread to
the whole AI community, in particular since Chess and Go
have been effectively conquered, and there is an almost daily
flurry of new papers applying AI methods to video games.
In particular, the Arcade Learning Environment (ALE), which
builds on an emulator for the Atari 2600 games console and
contains several dozens of games [1], have been used in
numerous published papers since DeepMind’s landmark paper
showing that Q-learning combined with deep convolutional
networks could learn to play many of the ALE games at
superhuman level [2].

As an AI benchmark, ALE is limited in the sense that
there is only a finite set of games. This is a limitation it has
in common with any framework based on existing published
games. However, for being able to test the general video game
playing ability of an agent, it is necessary to test on games on
which the agent was not optimized. For this, we need to be able
to easily create new games, either manually or automatically,
and add new games to the framework. Being able to create

new games easily also allows the creating of games made to
test particular AI capacities.

The General Video Game AI (GVGAI) competitions and
framework were created with the express purpose of pro-
viding a versatile general AI benchmark [3], [4], [5], [6].
The planning tracks of the competition, where agents are
given a forward model allowing them to plan but no training
time between games, have been very popular and seen a
number of strong agents based on tree search or evolutionary
planning submitted. A learning track of the competition has
run once, but not seen many strong agents, possibly because
of infrastructure issues. For the purposes of testing machine
learning agents (as opposed to planning agents), GVGAI has
therefore been inferior to ALE and similar frameworks.

In this paper, we attempt to rectify this by presenting a
new infrastructure for connecting GVGAI to machine learning
agents. We connect the framework via the OpenAI Gym
interface, which allows the interfacing of a large number
of existing reinforcement learning algorithm implementations.
We plan to use this structure for the learning track of the
GVGAI competition in the future. In order to facilitate the
development and testing of new algorithms, we also pro-
vide benchmark results of three important deep reinforcement
learning algorithms over eight dissimilar GVGAI games.

II. BACKGROUND

A. General Video Game AI

The General Video Game AI (GVGAI) framework is a Java-
based benchmark for General Video Game Playing (GVGP)
in 2-dimensional arcade-like games [5]. This framework offers
a common interface for bots (or agents, or controllers) and
humans to play any of the more than 160 single- and two-
player games from the benchmark. These games are defined
in the Video Game Description Language (VGDL), which was
initially proposed by Ebner et al. [3] at the Dagstuhl Seminar
on Artificial and Computational Intelligence in Games.

VGDL [7] is a game description language that defines 2-
dimensional games by means of two files, which describe the

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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game and the level respectively. The former is structured in
four different sections, detailing game sprites present in the
game (and their behaviors and parameters), the interactions
between them, the termination conditions of the game and the
mapping from sprites to characters used in the level description
file. The latter describes a grid and the sprite locations at the
beginning of the game. These files are typically not provided to
the AI agents, who must learn to play the game via simulations
or repetitions. More about VGDL and sample files can be
found on the GVGAI GitHub project1.

The agents implement two methods to interact with the
game: a constructor where the controller may initialize any
structures needed to play, and an act method, which is called
every game frame and must return an action to execute at
that game cycle. As games are played in real-time, the agents
must reply within a time budget (in the competition settings, 1
second for the constructor and 40ms in the act method) not
to suffer any penalty. Both methods provide the agent with
some information about the current state of the game, such
as its status (if it is finished or still running), the player state
(health points, position, orientation, resources collected) and
anonymized information about other sprites in the game (so
their types and behaviours are not disclosed). Additionally,
controllers also receive a forward model (in the planning
setting) and a screen-shot of the current game state (in the
learning setting).

The GVGAI framework has been used in a yearly competi-
tion, started in 2014, and organized around several tracks. Be-
tween the single- [4] and the two-player [8] GVGAI planning
competitions, more than 200 controllers have been submitted
by different participants, in which agents have to play in
sets of 10 unknown games to decide a winner. These tracks
are complemented with newer ones for single-player agent
learning [9], [6], level [10] and rule generation [11]. Beyond
the competitions, many researchers have used this framework
for different types of work on agent AI, procedural content
generation, automatic game design and deep reinforcement
learning, among others [6].

In terms of learning, several approaches have been made
before the single-player learning track of the GVGAI com-
petition was launched. The first approach was proposed by
Samothrakis et al. [12], who implemented Separable Natural
Evolution Strategies (S-NES) to evolve a state value function
in order to learn how to maximize victory rate and score in
10 games of the framework. Samothrakis et al. [12] compared
a linear function approximator and a neural network, and two
different policies, using features from the game state.

Later, Braylan and Miikkulainen [13] used logistic regres-
sion to learn a forward model on 30 games of the framework.
The objective was to learn the state (or, rather, a simplification
consistent of the most relevant features of the full game state)
that would follow a previous one when an action was supplied,
and then apply this model in different games, assuming that
some core mechanics would be shared among the different

1https://github.com/EssexUniversityMCTS/gvgai/wiki/VGDL-Language

games of the benchmark. Their results showed that these
learned object models improved exploration and performance
in other games.

More recently, Kunanusont et al. [14] interfaced the GVGAI
framework with DL4J2 in order to develop agents that would
learn how to play several games via screen capture. 7 games
were employed in this study, of increasing complexity and
screen size and also including both deterministic and stochastic
games. Kunanusont et al. [14] implemented a Deep Q-Network
for an agent that was able to increase winning rate and score
in several consecutive episodes.

The first (and to date, only) edition of the single-player
learning competition, held in the IEEE’s 2017 Conference
on Computational Intelligence in Games (CIG2017), received
few and simple agents. Most of them are greedy methods or
based on Q-Learning and State-Action-Reward-State-Action
(SARSA), using features extracted from the game state. For
more information about these, including the final results of the
competition, the reader is referred to [6].

B. Deep Reinforcement Learning

A Reinforcement Learning (RL) agent learns through trial-
and-error interactions with a dynamic environment [15] and
balance the reward trade-off between long-term and short-
term planning. RL methods have been widely studied in many
disciplines, such as operational research, simulation-based op-
timization, evolutionary computation and multi-agent system,
including games. The cooperation between the RL methods
and Deep Learning (DL) has led to successful applications in
games. More about the work on Deep Reinforcement Learning
till 2015 can be found in the review by J. Schmidhuber [16].
For instance, Deep Q-Networks has been combined with RL to
play several Atari 2600 games with video as input [17], [2].
Vezhnevets et al.[18] proposed STRategic Attentive Writer-
exploiter(STRAWe) for learning macro-actions and achieved
significant improvements on some Atari 2600 games. Al-
phaGo, combined tree search with deep neural networks to
play the game of Go and self-enhanced by self-playing, is
ranked as 9 dan professional [19] and is the first to beat
human world champion of Go. Its advanced version, AlphaGo
Zero [20] is able to learn only by self-playing (without the
data of matches played by human players) and outperforms
AlphaGo.

During the last few years, several authors have improved
the results and stability obtained with the original Deep Q-
Networks paper. Wang et. al. [21] introduces a new architec-
ture for the networks know as dueling network, this new ar-
chitecture uses two separate estimators: one for the state value
function and one for the state-dependent action advantage
function. The main benefit of this factoring is to generalize
learning across actions without imposing any change to the
underlying reinforcement learning algorithm.

Mnih et. al., in 2016, successfully applied neural networks
to actor-critic RL [22]. The network is trained to predict both

2Deep Learning for Java: https://deeplearning4j.org/
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a policy function and a value function for a state, the actor
and the critic. Asynchronous Advantage Actor-Critic, A3C,
is inherently parallelizable and allows for a big speedup in
computation time. The interaction between the policy output
and the value estimates has been shown to be relatively stable
and accurate for neural networks. This new approach increases
the score obtained from the original DQN paper, reducing the
computational time by half even without using CPU.

C. OpenAI Gym

RL is a hot topic for the research community of artifi-
cial intelligence. Recent advances that combine DL with RL
(Deep Reinforcement Learning) have shown that model-free
optimization, or policy gradients, can be used for complex
environments. However, in order to continue testing new ideas
and increasing the quality of results, the research community
needs good benchmark platforms to compare results. This is
the main goal of OpenAI GYM platform [23].

The OpenAI GYM platform provides a high variety of
benchmark, such as Arcade Learning Environment (ALE) [24],
which is a collection of Atari 2600 video games. OpenAI Gym
has more environments for testing RL in different types of
environments. For example, MuJoCo is used to test humanoid
like movement in 2D and 3D.

III. METHODS

While one of the main benefits for GVGAI is the ease to
which new games can be created for a specific problem, we
also feel it is necessary to place the current GVGAI games
in the context of other existing environments. This serves two
purposes: it further demonstrates the strengths and weaknesses
of the current generation of reinforcement learning algorithms,
and it allows results achieved on GVGAI to be compared to
other existing environments.

A. GVGAI-OpenAI embedding

The learning competition is based on the GVGAI frame-
work, but no forward model is provided to the agents, thus
no simulations of a game are accessible. However, an agent
still has access to the observation of current game state, a
StateObservation object, provided as a Json object in String
or as a screen-shot of the current game screen (without the
screen border) in png format. At every game tick, the server
sends a new game state observation to the agent, the agent
returns either an action to play in 40ms or requests to abort
the current game. When a game is finished or aborted, the
agent can select the next level to play, among the existing
levels (usually 5 levels). This setting makes it possible to
embed the GVGAI framework as an OpenAI Gym so that the
reinforcement learning algorithms can be applied to learn to
play the GVGAI games. Thanks to VGDL, it is easy to design
and add new games and levels to the GVGAI framework.

The main framework is described in the manual by Liu
et al. [9], as well as the default rules in the framework.
Only 5 minutes is allowed to each of the agents for learning.
It is notable that only the decision time (no more than

40ms per game tick) used by the agent is included, while
the game advancing time, game state serialization time and
communication time between the client and agent are not
included. The real execution of the learning phase can last
several hours.

B. GVGAI Games

Figure 1: Screenshot of game Superman. In this game, inno-
cent civilians are standing on clouds while malicious actors
spawn around the edge of the screen and attempt to shoot the
clouds out from underneath them. If all the clouds are gone
the civilian will fall and only Superman can save them by
catching them for 1 point. Superman can also jail the villains
for 1 point. If Superman catches all the villains, the player
wins and earns an additional 1000 points.

The GVGAI environment currently has over 160 games and
counting. To showcase the environment and the challenges that
already exist we sample a number of games to benchmark
against popular reinforcement learning algorithms.

Our criteria for sampling games was informal but based on
several considerations. Since many of the games in the GVGAI
framework have been benchmarked with planning agents, we
can roughly rank the games based on how difficult these games
are for planning. We tried to get an even distribution across the
range going from games that are easy for planning agents, like
Aliens, to very difficult, like Superman. The game difficulties
are based on the analysis by Bontrager et al. [25]. Other things
we considered were having a few games that also exist in Atari
for some comparison and including games that we believed
would provide interesting challenges to reinforcement learning
agents. Some games in VGDL contain stochastic components
as well, mostly in the form of NPC movement. GVGAI has
five levels for each game, we used the first level for each game
for all the training.

We settled on Aliens, Seaquest, Missile Command, Boulder
Dash, Frogs, Zelda, Wait For Breakfast, and Superman. The
first five mentioned are modeled after their similarly named
Atari counterpart. Zelda consists of finding a target while
killing or avoiding enemies. Frogs is modeled after Frogger
which is also similar to the Atari Freeway game. Wait For
Breakfast (Figure 2) is a strange game where the player must
go to a breakfast table where food is being served a sit there
for a short amount of time. This is not usually what people
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think of as a game but provides an interesting challenge for
bots. Finally, Superman (Figure 1) is a complicated game
that involves saving people in a dangerous environment with
no reward until the person is safe. A full version of our
implementation can be found on GVGAI GYM repository 3.

Figure 2: Screenshot of game Wait For Breakfast. In this
game, all tables are empty when a game starts. At a randomly
selected game tick, a waiter (in black) serves a breakfast to
the table with only one chair. The player (in green) wins the
game only if it sits on the chair on the table after the breakfast
is served and eats it. The player loses the game if it leaves the
chair once breakfast has been served without eating it.

C. Benchmarks

To have standardized results we decided to choose a few
popular reinforcement learning algorithms that are provided
by the OpenAI Gym baselines library. The baselines are open
implementations of these algorithms and are closely based on
the original papers [26]. The hope is that by using publicly
vetted and accessible code that our results will be comparable
to other work and reproducible.

From OpenAI’s baseline library we selected three algo-
rithms: Deep Q-Networks (DQN), Prioritized Dueling DQNs,
and Advantage Actor-Critic (A2C). These were chosen in part
because they have been well documented in similar environ-
ments such as ALE. DQN and A3C, which A2C is based on,
are the baseline for which many new RL developments are
scored against. For this reason, we felt it made sense to use
these to benchmark the GVGAI games.

For all three baselines, we used the same network first
described in Mnih et al. for playing Atari [17]. This consists
of 3 convolutional layers and two fully connected layers as
seen in Table I. GVGAI is providing screen-shots for each
game state that the convolutional network learns to interpret.
Each algorithm is trained on one million frames of a particular
game. From initial testing, it appeared that one million calls
were enough to give an indication of the difficulty of a
game for our agents while also being realistic in terms of
computational resources. It is also a step in the right direction
for the learning track of GVGAI where there are very tight
time constraints. To accommodate the smaller number of
training iterations, we changed a few training parameters.
Buffer size, the size of replay memory, was set to 50,000,

3https://github.com/rubenrtorrado/GVGAI_GYM

Layer Type Layer Parameters
Depth Kernel Stride

Convolution 1 32 8 4
Convolution 2 64 4 2
Convolution 3 64 3 1

Fully Connected 256
Fully Connected Action Space

Table I: This table represents the architecture of the network
used to play each game. For convolutional layers, depth refers
to the convolutional filters and for the fully connected layers
it refers to the output size.

the network starts learning after only 1000 initial decisions,
and the target Q-network gets updated every 500 steps.

We test both the original DQN and a modified DQN.
OpenAI Baselines has a DQN implementation that is based
on the original DQN but it also offers prioritized experience
replay and dueling networks as options that can be turned
on since they work together with the original implementation
[26]. We tested the original for comparisons and also ran DQN
with the two additional modifications to get results from a
more state of the art DQN. We used the baseline defaults for
the network with a couple of exceptions pertaining to training
time. The defaults have been tuned for ALE and should carry
over.

To test A3C, OpenAI provides A2C. This is a synchronous
version that they found to be more efficient and perform just
as well on Atari [26]. This was also tested with the baseline
defaults with the same changes made for DQN. Each baseline
was tested on every game for one million calls, resulting in a
total of 24 million calls.

IV. RESULTS AND DISCUSSION

Here we present the results of training the baselines on
each game. The results show the performance of the provided
baselines for a sample of the games in the GVGAI framework.
This provides insight into how the baselines compare to other
AI techniques and to how the GVGAI environment compares
to other environments.

Finally, this section is structured in three parts. First, the
results of training the learning algorithms on the games are
provided with some additional qualitative remarks. Second, the
GVGAI environment is compared to the Atari environment.
Third, the reinforcement agents are compared to planning
agents that have been used within the framework.

A. Results of learning algorithms

Figure 3 shows the training curves for DQN (red), Dueling
Prioritized DQN (blue) and A2C (green). The graphs show the
total rewards for playing up to that point in time. Rewards are
completely defined by the game description so they can’t be
compared between different games. This is done by reporting
the sum of the incremental rewards for the episode at a given
time step. Since this data is noisy due to episode restarts,
the 20 results are averaged to smooth the graph and better
show a trend. A2C allows running in parallel, we were able to
run 12 networks in parallel at once. To keep the comparisons
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fair, A2C is still only allowed one million GVGAI calls and
therefore each of the 12 networks is given one-twelfth of a
million calls each. This results in the training graph seen in
Figure 4. To compare this with the linear algorithms, each
time step of A2C is associated with 12 time-steps of the DQN
algorithms in Figure 3. The value for each time step of A2C
is the average of all 12 rewards.

Due to the fact that we are running experiments on different
machines with different GPU and CPU configurations, we
align the results on iterations instead of time. It is important
to note that since A2C runs its fixed number of GVGAI calls
in parallel, it runs at about 5x the speed of DQN on a machine
with two NVIDIA Tesla k80 GPUs.

Figure 4 shows the training curve in parallel for A2C
on Boulder Dash. The individual agents are chaotic which
helps A2C break out of local minima. This also points to the
importance of the exploration algorithm in learning to play
games. In Boulder Dash, as long as one of the 12 workers
found an improvement they would all gain.

The agents were able to learn on most of the games that
were sampled. A2C performed the best for most of the games
tested. Though it’s important to remember a relatively small
computational budget was allowed for these algorithms and
the others might eventually catch up. 8 games is also a small
sample for comparing which algorithm is the best. A2C seems
to benefit from sampling more initial conditions and starts with
a higher score.

DQN and Prioritized Dueling DQN were both given the
same initial seed so they had the same initial exploration
pattern. For this reason, both algorithms tended to start out
with similar performance and then diverge as time goes on.
Prioritized Dueling DQN seems to slightly outperform vanilla
DQN, but on overall they are very similar. A2C could not be
compared in this way as it intentionally is running different
explorations in parallel and then learn from all of them at the
same time. This can explain why A2C tends to start out better
right from the beginning, especially in Aliens. It is benefiting
from 12 different initial conditions in this case.

Available rewards have a big impact on the success of RL
and that is not different in the GVGAI environment. The games
where the agents performed worst were the games that had the
least feedback. For this work, we left the games in their current
form, but it is very easy for researchers to edit the VGDL file
and modify the reward structure to create various experiments.

The games sampled here vary a lot in terms of the rewards
they offer. Frogs and Wait For Breakfast only provide a single
point for winning. This is evident in their training graphs.
For Frogs, none of the agents appear to have found a winning
solution in the calls allotted. This resulted in a situation where
RL could not play the game. Wait For Breakfast has a simpler
win condition in a very static environment. The agent had to
flounder around a lot until it bumped into the correct location
for a few consecutive iterations. The environment is very static
so once a solution is found it just has to memorize it. A2C
has the exploration advantage and can find the solution sooner
but it keeps exploring and does not converge to the single

conclusion as quickly.
Missile Command shows a similar performance for the three

algorithms. Although Prioritized Dueling DQN finds a higher
value in earlier stages, The three algorithms get trapped in a
local optimum. In the game missile command, four fire-balls
target three bases. To get all 8 points the player has to defend
all three. One of the bases gets attacked by two fire-balls which
make it hard to defend. To have time to save the third base
requires very accurate play, the agents did not seem to be able
to maintain a perfect score because a few missteps led to 5
points. The reward plain is very non-linear for this game.

Superman takes this difficulty to the next level. The game
is very dynamic with many NPCs modifying the environment
in a stochastic manner. This means that any actions that the
agent takes will have a big impact on the environment in the
future. On top of this, the way to get the most points is to
capture the antagonists and take them to jail. No points are
awarded for capture, only for delivery to jail. This introduces a
delayed reward which is a barrier to discovery. Knowing this,
the results from the training on this game make sense. The
agents were occasionally able to stumble on a good pattern
but they could not reproduce the success in the stochastic
environment.

DQN and Prioritized Dueling DQN struggled to play Boul-
der Dash. In Boulder Dash, when the player collects a diamond
for points, a rock falls toward them. This means there is
negative feedback if an agent collects a diamond and doesn’t
move. Not collecting any diamonds and surviving appears to
be an obvious local optimum that the agents have a hard time
escaping. On the other hand, A2C was able to discover how to
collect diamonds and survive, with a clear trend of continuing
to improving.

Seaquest is a good example of a game that is not too hard
but has a lot of random elements. The agent can get a high
score if it can survive the randomly positioned fish, catch
the randomly moving diver, and take it to the surface. This
requires the agent to learn to chase the diver which none of
the agents appear to be doing. The high noise in the results is
most likely from the agents failing to learn the general rules
behind the stochasticity. Additionally, the player needs to go
to the surface every 25 game ticks or it loses the game, which
may be something hard to learn for the agents.

Finally, Zelda is a fairly good game for reinforcement
learning. Though, the game is not too similar to its namesake.
The player must find a key and use it to unlock the exit while
fighting enemies. Each event provides feedback which allows
the agents to learn the game well.

B. Comparison with ALE

Reinforcement learning research has been making a lot
of progress on game playing in the last few years and the
benchmark environments need to keep up. ALE is a popular
2D environment. It consists of a reasonably large set of real
games and all the games have been designed for humans. Yet,
the game set is static and cannot provide new challenges as
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Figure 3: Training reward for DQN (red), Prioritized Dueling DQN (blue), and A2C (green). The reward is reported on the
y-axis and is different for each game. As an example, Frogs only returns a score of 1 for winning and 0 otherwise. Each
algorithm is trained on one million game frames.
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Figure 4: Training reward for all 12 workers of A2C learning
on Boulder Dash

researchers experiment with the strengths and weaknesses of
different algorithms.

GVGAI currently has over twice the number of games as
ALE and with active research more are added every year.
The VGDL language also makes it possible for researchers to
design new games. Truly stochastic games can be designed and
multiple levels can be included to test how well an algorithm
can generalize. The VGDL engine also provides a forward
model that can be incorporated in the future to allow hybrid
algorithms to learn and plan.

While these games allow targeted testing of AIs, they tend
to not be designed with humans in mind and can be hard to
play. Readers are also not as familiar with the games as they
are in Atari and therefore might lack some of the intuition.
Another drawback is speed. The engine is written in Java and

communicating through a local port to Python. While still very
fast, training will run a few times slower than Atari. Currently,
there is ongoing development to optimize the communication
between the two languages.

While both environments share some games, the perfor-
mance on these games cannot be compared directly. GVGAI
has games that are inspired by Atari but they are not perfect
replicas and the author of the VGDL file can decide how close
to match the original and how to handle score. Yet, looking
at similar games in both environments seems to show that
GVGAI can have many of the characteristics of Atari: such as
fairly good performance on Aliens and poor performance on
Seaquest.

The ALE has done a lot for providing a standard benchmark
for new algorithms to be tested against. GVGAI is more fluid
and changing but it allows researchers to constantly challenge
the perceived success of new RL agents. The challenges for
computers can advance with them all the way to general video
game playing. On top of that, we provide the results here to
propose that doing well on GVGAI is at least comparable
doing well on ALE and we show that there are games on
GVGAI that still are not beaten.

C. Comparison with planning algorithms
In order to compare the performance of our learning

algorithms with the state-of-art, we have used the results
obtained in [25]. This paper explores clustering GVGAI games
to better understand the capabilities of each algorithm and
subsequently use several agents to test the performance of each
representative game. The tested agents may be classified in
Genetic Algorithms (GA), Monte Carlo Tree Search (MCTS),
Iterative With and Random Sample (RS). To compare results,
we took the agent with the high score for each category in a
target environment.
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In Table II we compare the performance of the
reinforcement-learned neural network agents with high-
performing planning agents. This is very much a case of
comparing apples and oranges: the learning-based agents have
been trained for hours for the individual game it is being tested
on whereas the planning-based agents have had no training
time whatsoever and are supposed to be ready to play any
game at any point, and the planning-based agents have access
to a forward model which the learning agent does not. In other
words, each type of agent has a major advantage over the other,
and it is a priori very hard to say which advantage will prove
to be the most important. This is why this comparison is so
interesting.

Beginning with Aliens, we see that all agents learn to play
this game well. This is not overly surprising, as all Non-
player Characters (NPC) and projectiles in this game behave
deterministically (enemy projectiles are fired stochastically,
but always takes some time to reach the player) and the game
can be played well with very little planning; the main tasks are
avoiding incoming projectiles and firing at the right time to
hit the enemy. The former task can be solved with a reactive
policy, and the latter with a minimum of planning and probably
also reactively.

Wait for Breakfast was solved perfectly by all agents except
the standard MCTS agent, which solved it occasionally. This
game is easily solved if you plan far enough ahead, but it is
also very easy to find a fixed strategy for winning. It punishes
“jittery” agents that explore without planning.

Frogs is only won by the planning agents (GA and IW
always win it, MCTS sometimes wins it) whereas it is never
won by the learning algorithm. The simple explanation for
this is that there are no intermediate rewards in Frogs; the only
reward is for reaching the goal. There is, therefore, no gradient
to ascend for the reinforcement learning algorithms. For the
planning algorithms, on the other hand, it is just a matter
of planning far enough ahead. (Some planning algorithms
do better than others, for example, Iterative Width looks for
intermediate states where facts about the world have changed.)
The reason why learning algorithms perform well on Freeway,
the Atari 2600 clone of Frogger, is that it has plenty of
intermediate rewards - the player gets a score for advancing
each lane.

Two of the planning agents and all three learning agents
perform well on Missile Command; there seems to be no
meaningful performance difference between the best planning
algorithms (IW) and the learning agents. It seems possible
to play this game by simply moving close to the nearest
approaching missiles and attacking it. What is not clear is
why MCTS is performing so badly.

Seaquest is a relatively complex game requiring both shoot-
ing enemies, rescuing divers and managing oxygen supply.
All agents play this game reasonably well, but somewhat
surprisingly, the learning agents perform best overall and A2C
is the clear winner. The presence of intermediate rewards
should work in the learning agents’ favor; apparently, the
learning agents easily learn the non-trivial sequence of tasks

as well.
Boulder Dash is perhaps the most complex game in the

set. The game requires both quick reactions for the twitch-
based gameplay of avoiding falling boulders and long-term
planning of in which order to dig dirt and collect diamonds
so as not to get trapped among boulders. Here we have the
interesting situations the one planning algorithm (MCTS) and
one learning algorithm (A2C) plays the game reasonably well,
whereas the other algorithms (both planning and learning)
perform much worse. For the planning algorithms, the likely
explanation is that GA has too short planning horizon and IW
does not handle the stochastic nature of the enemies.

For Zelda, which combines fighting random-moving en-
emies and finding paths to keys and doors (medium-term
planning), all agents performed comparably. The tree search
algorithms outperformed the GA, and also seem to outperform
the learning agents, but not by a great margin.

V. CONCLUSION

In this paper, we have created a new reinforcement learning
challenge out of the General Video Game AI Framework by
connecting it to OpenAI Gym environment. We have used
this setup to produce the first results of state-of-art deep RL
algorithms on GVGAI games. Specifically, we tested DQN,
Prioritized Dueling DQN and Advance Actor-Critic (A2C) on
eighth representative GVGAI games.

Our results show that the performance of learning algorithm
differs drastically between games. In several games, all the
tested RL algorithms can learn good stable policies, possibly
due to features such as memory replay and parallel actor-
learners for DQN and A2C respectively. A2C reaches a higher
score than DQN and PDDQN for 6 of the 8 environments
tested without memory replay. Also, when trained on the
GVGAI domain using 12 CPU cores, A2C trains five times
faster than DQN trained on a Tesla Nvidia GPU.

But there are also many cases where some or all of
the learning algorithms fail. In particular, DQNs and A2C
perform badly on games with a binary score (win or lose,
no intermediate rewards) such as Frogs. Also, we observed
a high dependency of the initial conditions which suggests
that running multiple times is necessary for accurately bench-
marking DQN algorithms. Finally, some complex games (e.g.
Seaquest) show problems of stabilization when we are training
with default parameters of OpenAI baselines. This reflects
that a modification of replay memory or the schedule of the
learning rate parameters are necessary to improve convergence
in several environments.

We also compared learning agents (which have time for
learning but not a forward model) with planning agents (which
get no learning time, but do get a forward model). The results
indicate that in general, the planning agents have a slight
advantage, though there are large variations between games.
The planning agents seem better equipped to deal with making
decisions with a long time dependency and no intermediate
rewards, but the learning agents performed better on e.g.
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Games Random Agent Planning Agents Learning Agents
Genetic Algorithm Monte Carlo Tree Search Iterative Width DQN Prioritized Dueling DQN A2C

Aliens 52 80.4 72.6 80.2 75 74 77
Wait For Breakfast 0 1 0.4 1 1 1 1

Frogs -2 1 -0.4 1 0 0 0
Missile Command -2.2 2.6 -3 6.8 5 8 5

Seaquest 17.2 435 638.2 224.6 600 800 1200
Boulder Dash 1.4 3.4 16.4 8.8 2.5 5 15.5

Zelda -5.2 3.4 6.8 7.6 4.2 4.2 6
Superman 4 157 6699 130.2 500 0 800

Table II: Learning score comparison of learning algorithms (DQN, Prioritized Dueling DQN and A2C) with random and
planning algorithms (Genetic Algorithms, MCTS and Iterative Width). The results of planning and random are taken from [25]
and correspond to the best performing instance of each algorithm.

Seaquest (a complex game) and Missile Command (a simple
game).

As researchers experiment with more the existing games,
design specific games for experiments, and participate in the
competition, we expect to gain new insights into the nature
of various learning algorithms. There is an opportunity for
new games to be created by humans and AIs in an arms race
against improvements from game-playing agents. We believe
this platform can be instrumental to scientifically evaluating
how different algorithms can learn and evolve to understand
many changing environments.
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Abstract—Educational games have been used in educational 

settings for ages. The reasons behind this interest are different, 

e.g., games increase enjoyment, involvement, and motivation, as 

well as they influence emotions. In an area where competence level 

and challenge level are well balanced the so-called “flow-

experience” appears. But how can we maintain “flow-experience” 

by using serious games? Computational intelligence could be a 

pioneer answer, if the technology will be implemented in a didactic 

and meaningful manner. A serious game with emotion-based 

adaptation has been developed and described in the paper. An 

experimental study with 244 participants has been carried out 

involving the usage of the developed game. Results of the 

experiment in terms of learning outcomes, flow-experience, and 

motivation are described in the paper.  

Index Terms—educational games, learning motivation, flow, 

computational intelligence, learner-game interaction, 

experimental design 

I. INTRODUCTION 

Serious games are (computer) games that contain principles 
and mechanisms, which demonstrably influence the learning 
process and motivation in a positive manner [1, 2, 3]. In contrast 
to linear training formats, serious games provide a framework 
that supports the individual learning process by offering the 
possibility to acquire knowledge individually and exploratively 
and by using this knowledge in practice to gain experience. 
Games are considered to be beneficial for learning because they 
incorporate two fundamental aspects [4]: (1) educational aspect 
related to the learning content and strategies presented to 
learners and (2) playful aspect that allows players to act, explore, 
take rewards, etc. But the fact that learning in an occupational 
context is still perceived as hard work often hinders these 
potentials [5]. In addition, a lack of theoretical evidence for the 
successful use of serious games within companies exists and the 
clarification for whether and how they develop their full 
potential in operational practice is still missing [6, 7, 8]. A 
fundamental lack of empirical academic research is a point of 
criticism that researchers in [9, 1, 2] refer to.  

For this reason, TU Dortmund conducted a comprehensive 
qualitative requirements analysis for the development and use of 
serious games. Based on the collaborative research 
methodology, according to Hever, requirements for serious 
games from the point of view of game developers, pedagogues, 
experts and future users were raised exemplarily for the domain 

of logistics with the help of a mix of methods of qualitative and 
action research. These were mirrored, aggregated and condensed 
into generalizable requirements using findings from a 
comprehensive literature review of studies, theories and 
methodological approaches [3, 10]. 

The central insight is that a game is only as good as the user 
experiences it. Therefore, a user-centered game design approach 
is a crucial criterion for developing a valuable learning 
experience in serious gameplay. If a fundamental knowledge 
about skills, competences and previous experiences of the 
learner is gathered, the game developers are able to provide 
needs-based information, support and stumbling blocks at the 
right moments in the game situation. The direct feedback of the 
players' actions in the game situation is one of the most effective 
and revealing advantages of serious games. The fact that the 
learner always has insight into his or her abilities accompanies 
the learner on the way to self-knowledge about his or her own 
strengths and weaknesses [3].  

All these requirements relate to the individual needs of 
learners during the learning process with the serious game. So, it 
is all about learner-game interaction and its individualization. On 
the one hand, a comprehensive requirements analysis and 
continuous involvement of future users in the game design 
process can help to understand needs of users and transfer them 
into the game design. On the other hand, there is a problem that 
all contingencies have to be taken into account during the 
development process in order to ensure a certain flexibility 
during the game situation. In particular, new technologies such 
as computational intelligence offer a great potential to guarantee 
this necessary flexibility for feedback and individual support of 
the learner according to his/her needs and situation, while at the 
same time reducing the development effort. Therefore, TU 
Dortmund and Riga Technical University (RTU) pool their 
competencies and work together to find out how computational 
intelligence can individualize the learner-game interaction and 
how this affects the learning processes and motivation in a 
meaningful didactic manner. Regarding this, an adaptation 
approach supporting individualized gameplay and learner-game 
interaction has been described and implemented within the 
affective tutoring system and educational game which is 
integrated into the system. Furthermore, experimental study with 
the developed educational game has been done to evaluate its 
effect on the learning motivation, emotions, and learning results. 

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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II. RELATED WORK 

A. Serous Games and Competence Development 

In an area where competence level and challenge level are 
well balanced the so-called “flow-experience” comes into effect, 
see Fig. 1. In the flow model, the occurrence of some emotions 
like boredom or anxiety shows a mismatch between challenge 
(difficulty level) and knowledge level, therefore, an arise of such 
emotions can help to identify, for example, knowledge gaps. 

 

Fig. 1. The Flow-Experience according to Csikszentmihalyi [3]. 

A good game should keep the user’s attention and provide an 
entertaining user-experience. Moreover, to enhance motivation 
based on the flow-experience it is of particular importance to 
find the individual middle course between a challenge and a 
feeling of success. Exactly this comfort level could be used to 
promote self-regulated learning processes. Self-regulated 
learning is understood as a learning process in the sense of a 
cyclical and reflexive process in which the action steps are 
directed and managed in an individual goal-oriented manner [11, 
12]. By combining positive and negative feedback, challenges 
and interactivity level it is possible to acquire higher player's 
satisfaction and keep him/her in the flow state which is 
considered to be optimal for learning [13]. 

B. How Serious Games Affect Learning and Motivation? 

Back in 2007, Blant [14] explored the effectiveness of game-
based learning in the context of higher education in three studies. 
The students used games, which are essentially simulation 
games depicting economic correlations in micro- and macro-
economic terms. Results showed that students, who were using 
mentioned games, achieved better overall results in the exams. 

For instance, the meta-analysis of Sitzmann [15] provides a 
possible explanation, in which game-based approaches were 
used in a classroom and compared against a control group. The 
study shows positive effects on the memory performance of the 
test persons, which was shown in a better retention of 
knowledge. Results also suggest that there is a higher self-
efficacy and an increase in declarative and procedural 
knowledge compared to the considered control group. In support 
of this, Kato et al. [16] have shown a positive influence on the 
self-efficacy concept in their study. In 1997, Wolfe [17] already 
found a significant effect on the use of games at the knowledge 
level as well as on a larger increase in knowledge in the 
operational context. 

In the educational context, a meta-analysis of 67 studies by 
Randel et al. [18] in the area of mathematical competencies also 

found a significant effect on performance. These findings did not 
apply to humanities. Randel et al. [18] argue that the use of 
computer games is particularly suitable for clear goals and 
content. For the subject of mathematics, Ke [19] also researched 
the effect of strategy games to support problem-solving and 
decision-making competence. Furthermore, using a study Ke 
[19] showed an increase in motivation through serious games 
compared to classical forms of learning. The study of Yang [20] 
also found positive effects on the motivation of pupils to learn in 
fields of politics and social sciences as well as an improvement 
in problem-solving skills. 

Hays [21] concluded from 105 studies that for the effect of 
game-based learning it is fundamental that games are well 
designed and must pursue specific learning objectives. Unlike 
Randel et al. [18], Hays [21] does not argue out of the 
perspective to the subject matter, but from a didactic and 
conceptional point of view of the game with a focus on its 
learning goals. This means that the didactic goals have to be 
initially defined in the development process and based on goals 
the game design has to be embedded in a learning environment. 
Moreover, it is considered that playing games is an emotional 
process rather than a rational one [22]. Emotions are an integral 
part of the learning process since they influence perception, 
attention, decision making, acquisition and retrieval of 
knowledge, as well as motivation to learn [23, 24]. During 
gameplay, various emotional states can arise [13]. If knowledge 
assessment is carried out by using an educational game, then 
negative emotions (e.g., anxiety or even fear) can appear as well 
[25, 26, 27]. Research shows that players are not spending long 
hours playing a game just to entertain themselves since most of 
the games can be very frustrating [28]. Therefore, it is considered 
that people play games to satisfy some basic needs, e.g., a need 
to learn, need to be challenged, or need to win. In particular, 
Petko [8] addresses the aspect of embedding learning tasks in the 
game context and shows in its study that people try to reduce the 
absorption of knowledge in an explicit learning mode in order to 
switch back to the game mode as quickly as possible.  

Sitzmann [15] also notes that the success of a game is 
primarily due to the fact that participants had a repeated use of 
the teaching content and that, in comparison to classical 
methods, the subject matter was acquired actively and 
independently. While Wouters et al. [29, 30] can confirm the 
results of Sitzmann [15] regarding knowledge retention, no 
superiority of active learning in serious games could be found. 
Results with regard to motivational aspects of games are also 
inconsistent with the assumption that there is a fundamentally 
positive relationship between gaming and motivation to learn. 
Instead, a differentiated examination of the topic is necessary, 
which requires pedagogical concepts in particular. Their 
findings lead to the question, whether “we can design serious 
games in such a way that players are automatically prompted to 
reflect on their performance during gameplay?“ [30]. According 
to this question, computational intelligence could be a pioneer 
answer, if the technology will be implemented in a didactic and 
meaningful manner.  

Summarizing, to promote the flow-experience with an aim to 
support self-regulated learning the learning tasks and processes 
have to be inherent part of the game design and story on the one 
hand. On the other hand, the task`s difficulty, instructions and 
feedback need to meet the individual learner`s condition and 
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situated emotional state. These findings lead to the assumption 
that computational intelligence could be the key factor for future 
educational game development. This would allow supporting 
individual learning paths and encouraging self-regulated 
learning processes by reacting on learner`s emotions 
automatically and providing situated and need-based feedback 
to keep the learners up with the flow. Furthermore, analysis of 
existing research regarding educational games, emotions and 
gameplay individualization allows to conclude that combination 
of these three aspects have been neglected [31, 32, 33]. 
Therefore, this research supplements existing studies in this 
direction both from a theoretical and practical perspective. 

III. COMPUTATIONAL INTELLIGENCE TO SUPPORT LEARNING IN 

GAMES 

The web-based affective tutoring system called ELIA 
(Emotions for Learning and Intelligent Assessment) is 
developed at the RTU integrating emotion recognition based on 
facial expressions for the tutoring adaptation purposes. In the 
system, students can access the personal information and see 
learning and assessment results in the particular study course 
[34].  

The system is using an emotion-based adaptation method 
running on two levels: (1) macro-level and (2) micro-level. 
Adaptation at the macro-level is implemented prior to learning 
on the basis of static learner’s data available to the system (based 
on personality model, learning style, etc.). Adaptation at the 
micro-level is ensured during the learning/teaching process 
based on dynamic learner’s data acquired in real time during the 
learning (based on learner’s actions, responses, results, 
emotions, etc.). This method is implemented in the educational 
game to support game-based assessment (GBA) [35]. 

The game integrated as part of ELIA is currently used for 
teaching topics in the RTU study course “Fundamentals of 
Artificial Intelligence” and assessing knowledge in this course 
(see Fig. 2). However, it is possible to assess knowledge in other 
topics or study courses since the game is not limited by course 
topics and questions from other fields can be added. Knowledge 
assessment is implemented as a quiz following one of the most 
popular games called “Who Wants to Be a Millionaire?” in 
which players try to win $1000000 by answering series of 
multiple-choice questions with increasing difficulty. 

Although traditional assessments (e.g., multiple-choice 
questions) are considered non-motivating and not engaging for 
learners [13], as well as negatively influencing learning 
outcomes, recent research suggests that modifications of these 
traditional assessments with more engaging features (e.g., 
involving gamification) is a promising approach to GBA [36]. 
The main aim is to assess learners' knowledge through adapted 
game elements leading to increased motivation to achieve higher 
results not only in the game but also in final exams. In the last 
few years, the failure rate in the exam of the previously 
mentioned study course has increased notably up to 60%. 

To provide adaptation at the macro-level, learner’s 
personality represented as Big Five personality traits is analyzed. 
The personality traits give also information about learner’s 
default mood or tendency to some specific emotions, preferred 
learning style, teacher’s type, and teaching approach, as well as 
they allow identifying tendency towards goal achievements [34]. 
Since this information represents static learner’s data then it is 

used as a basis for macro-level adaptation to select most 
appropriate teacher’s type (friend, expert, coach, or evaluator) 
represented as pedagogical agent and teaching strategy (based 
on learner’s learning style) and achievement goal – either 
mastery or performance both in terms of approach (acquisition) 
and avoidance [37]. This influences the system’s (teacher’s) 
behavior and interaction with a learner during the learning and 
assessment process. To identify these parameters automatically, 
the personality model has been integrated into the system 
consisting of two neural network models. Both models were 
trained based on survey data (personality dimensions, learning 
style and achievement goal) to allow assigning learning style and 
achievement goal for learners based on their personality.  

Emotion detection is implemented by adopting the existing 
web-based solution Emotion API developed by Affectiva [38]. 
This company has collected more than 6 million face videos in 
87 different countries including Central and Eastern European 
countries allowing recognition of emotions across different 
nations despite people’s age, ethnicity, and gender [39]. This 
tool allows tracking movement of facial actions, engagement, 
attention, and recognizes basic emotions based on the analysis 
of facial expressions acquired from camera stream with 90% 
accuracy [39]. Since learning specific emotions (e.g., flow, 
frustration, confusion, boredom and anxiety) are recognized 
using this tool, studies regarding emotion identification were 
analyzed to identify typical facial actions for these emotions [40, 
41]. The neural network model is used for the classification of 
detected facial actions to identify mentioned emotions. 

Adaptation at the micro-level is implemented on the basis of 
dynamic parameters and emotions since they are occurring and 
changing during the gameplay and they can serve as an evidence 
of flow-experience. Each type of teacher (pedagogical agent) has 
its own reacting rules developed according to learner’s 
emotional reactions. A detailed description of the adaptation 
approach both at macro-level and micro-level is provided in 
[34]. 

Before starting the knowledge assessment, learners are 
introduced with playing rules, available additional options and 
an individual goal which is set for each learner based on 
identified achievement goal [37]. The main aim of a set goal is 
to add an extra challenge to the gameplay, for example, ‘answer 
at least to 10 questions without using additional options’ or ‘get 
in the 1st place by answering to all 15 questions in less than 
00:15:35’. During the gameplay, learners need to go through 
15 multiple-choice questions of increasing difficulty (5 easy, 
5 medium, and 5 hard questions). In addition, after each attempt, 
the system analyses provided answers (correctness, answering 
time, emotional reactions during answering) to select for the 
particular learner in the next attempt previously unseen 
questions and/or identified problematic questions. Problematic 
questions can appear in case of incorrect answers, used options 
and long answering time, as well as based on the analysis of 
emotional states registered during the question. According to the 
analysis of interaction, emotions and gameplay the system gives 
immediate feedback during gameplay and after finishing the 
game (either winning or losing). 

In the next section, an experiment is described involving 
usage of the developed game for the knowledge assessment 
during the lectures of the study course and after lectures in 
students’ free time.  
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Fig. 2. Game interface for knowledge assessment. 

IV. EMPIRICAL ANALYSIS 

The current study investigates whether differences exist 
between the paper-based assessment and the GBA in terms of 
learners’ performance (gained points) and whether GBA can 
have a beneficial effect on learners’ emotional experiences and 
motivation and therefore improve learners’ performance. Based 
on this, two research questions were defined: 

1) Whether type of knowledge assessment (paper-based or 

game-based) influences assessment results? 

2) Whether engagement in the GBA affects flow-experience 

and motivation and how this influences learning results? 
The methodology followed to accomplish the goal of this study 
is being described in the following subsections of the paper. 

A. Methodology 

1) Participants 

Participants were 244 (200 male and 44 female) third year 
RTU undergraduate students who were taking study course 
"Fundamentals of Artificial Intelligence". The participants' 
average age was approximately 22 and 84% of participants were 
from Latvia and 16% of participants were foreign students 
coming from such countries as Germany, France, Uzbekistan, 
Kazakhstan, India, Turkey, China, Korea and others. Therefore, 
the experiments were run in both languages – Latvian and 
English. Since the experiment was organized in two parts – 
knowledge assessment on the one of topics into controlled 
conditions and knowledge self-assessment on two other topics 
(during the free time) then difference exists between the 
participants' assignment to the experiment. In the first part, all 
students attending the study course were randomly assigned to 
paper-based (N=153) or game-based knowledge assessment 
(N=87) where assessment results were taken into consideration 
for the admission to the final exam and calculation of the final 
grade. In turn, the participation in the second part of the 
experiment (using only game for knowledge self-assessment) 
was on a voluntary basis. Compensation in the form of 
maximum 10% of the final grade was granted for the 
participants. In the second part of the experiment, 84 participants 
engaged including 4 students who did not participate in the first 
study. 

2) Instruments 

At the beginning of the study course, participants completed 
paper-based questionnaires, e.g., by adopting widely recognized 
NEO Five-Factor Inventory (NEO-FFI) to acquire Big Five 
personality traits representing student's personality. Moreover, 
questionnaires were used to identify student's learning style 
according to Kolb's learning styles [42] and 2x2 Achievement 
Goal Questionnaire [37] to assess students' achievement goals 
allowing identifying differences between students in terms of 
motivation to achievements and success. 

Before running the first part of the experiment (before 
knowledge assessment) students were given a questionnaire to 
answer questions regarding the preferences of assessment type 
(paper or computer), challenges and benefits experienced when 
taking a paper-based assessment and when – a computer-based 
assessment, as well as typical emotions experienced before and 
during the assessment. A part of questions were represented as 
semantic differential scale (e.g., 1 indicating "strongly prefer 
paper-based assessment" and 7 – "strongly prefer computer-
based assessment") but mostly open-ended questions were used 
(e.g., regarding challenges and benefits of assessment types and 
emotions experienced). 

After the knowledge assessment, participants were asked to 
complete one more questionnaire with open-ended questions 
regarding their affective experiences during the knowledge 
assessment and possible emotional differences when taking 
assessment in the other form, i.e., those who were writing the 
paper-based assessment were asked about possible emotions 
during a GBA. 

Other parameters, e.g., flow experience, motivation to learn 
and achieve higher results were estimated based on data 
collected using the game during the whole experiment, e.g., 
collected points, attempts done, number of times the student won 
the game, emotional data, etc. 

3) Experimental Design 

As mentioned before, the experiment was organized in two 
parts – at the university during the knowledge assessment 
activity in the study course "Fundamentals of Artificial 
Intelligence" (compulsory activity) and after classes in students' 
free time till the final exam (voluntarily activity).  
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In the first part, each students group (4 groups in total) was 
randomly divided into two groups – students writing assessment 
in the class (paper-based assessment) and students working in 
the RTU computer class using the developed game. Because of 
limited number of available computers (25 computers) 
maximum 25 students from each group (depending on group's 
size) were randomly chosen for working in the computer class. 
Assignment to one of assessment types is represented in the 
Fig. 3. In total, 153 students took part in the paper-based 
assessment and 87 students – in game-based assessment. The 
study compared the effectiveness of two different assessment 
methods and evaluated the influence of each assessment type on 
student's affective experiences. The two methods were identical 
in terms of assessed knowledge (all students were taught during 
lectures with the same learning content on the topic "Uninformed 
Search" and were informed about assessment during the next 
class), both were based on multiple choice tests with 15 
questions and all students were provided with three additional 
options (cross out two incorrect answers (50:50), add 
"correctness" percentage to answers (ask the audience) and 
provide explanation to one of student's chosen answers (phone a 
friend)). All students needed to collect at least 1.25 points (from 
2.5 points) to pass the test. 

 

Fig. 3. Assignment of students to experimental conditions. 

The main difference was that one of the experimental 
conditions was in written form with no adaptations provided, 
while the second one took place in the computer class by playing 
the game. In the second case, students needed to answer 15 
sequenced questions based on learner’s knowledge and 
difficulty level with an aim, first, to win $1000000 and, 
secondly, to follow the system's set goal depending on the 
identified achievement goal for each student. The questions on 
each attempt were adapted to student's knowledge and emotions, 
immediate feedback on achieved results was provided and 
automatic system's support was offered to a student based on 
his/her characteristics, e.g., learning style or recognized 
emotions, and actions during the gameplay. 

Before starting the experiment, all students were gathered in 
the classroom where they were asked to fill in the questionnaire 
described in previous section regarding differences in 
assessment types and students' preferences, as well as emotional 
experiences during assessments. After the completion of the 
questionnaire, students who were selected randomly for the 
game-based assessment were taken to the computer class.  

Students working in the class received a printed version of 
the multiple-choice test with 15 questions and four possible 

answers. Furthermore, students were informed about additional 
options they can use during the assessment by reducing number 
of points they could get for the particular question depending on 
the difficulty of the question (5 easy, 5 medium, 5 hard 
questions).  

During the knowledge assessment in the computer class, 
students were given instructions for logging in the web-based 
system and starting the game, as well as about possibility to see 
results of the knowledge assessment and summary of completed 
questionnaires at the first weeks of the study course. They were 
asked to play at least 5 times (not mandatory, more for data 
collection purposes) and grant access to the game to connect the 
camera for the emotion detection. Furthermore, students who 
didn't want to participate in emotion recognition activity (by 
working with turned on video camera), were allowed to 
disconnect camera and play the game without the analysis of 
their emotional data (3 participants refused to work with turned 
on camera). If game was started for the first time all instructions 
regarding the gameplay were provided to the student by the 
pedagogical agent acting as a tutor in the game. During the 
experiment, students did not have any questions regarding the 
game itself or its playing rules since most of them were familiar 
with the original game "Who wants to be a millionaire?". Under 
both experimental conditions students were not limited with the 
test completion time (they could use all 90 minutes allocated for 
the lecture). 

After the knowledge assessment in the both experimental 
conditions students were asked to complete questionnaire with 
two questions regarding their affective experiences during the 
knowledge assessment. One question was about their emotions 
during the experiment and in case of negative emotions students 
were asked to express their opinion related to the possible 
differences in emotional experiences if the assessment would 
have been offered either as computer-based assessment through 
educational game (to students taking written test) or typical 
paper-based assessment (to students working in computer class). 

Therefore, by changing assessment type and emotion 
involvement was measured changes in the assessment results 
and emotional experiences in both experimental conditions. In 
addition, various other variables were collected during the 
gameplay, e.g., number of attempts and number of answered 
questions in each attempt, time needed to answer each question, 
overall playing time per attempt, set goals and their achievement 
results, and used options. 

In the second experiment part, all students were informed 
about possibilities to assess their knowledge in two other topics 
"Heuristic Search and Game Algorithms" and "Knowledge 
representation" of the same study course. Instructions for 
logging in the system and using the game were published in the 
RTU MOODLE system. The participation was on a voluntary 
basis after classes in students' free time till the final exam.  

To motivate students in the participation they were granted 
with the maximum 10% of the final grade depending on the 
assessment results (5 points were given for each of the topic). 
The main aim of this study was to provide students with more 
possibilities to practice on topics and prepare better for final 
exam in this study course. In total, 84 students participated in the 
self-assessment activity varying from one topic to another. 
Although, it was not a requirement to carry out assessment on 
the first topic (evaluated in the first part of experiment) 
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58 students participated also in this activity. 83 students took part 
in the self-assessment on topic 2 and 71 students on topic 3. 

In this study, the collection of the data was carried out 
regarding various parameters of a gameplay, e.g., emotional data 
(if students had cameras connected to computers and used them), 
number of attempts, given correct/incorrect answers, score, time 
needed to answer questions, playing time, achievement of set 
goals and used options, as well as activities were logged (e.g., 
selected options in the game menu, clicked buttons, etc.) so that 
it was possible to synchronize emotional changes with student's 
actions during the gameplay and to analyze action sequences 
with an aim to identify typical behavioral patterns. 

4) Data Analysis 

Descriptive statistics (means, medians, and standard 
deviations), and intercorrelations of variables in the experiment 
were determined using the IBM SPSS Version 23 and the level 
of significance was set to p < 0.05. The analysis of the collected 
data (assessment results) revealed that the data did not follow 
normal distribution. Therefore, non-parametric test Mann-
Whitney U-test was conducted to compare differences between 
the results of the two conditions (paper-based and game-based) 
and Kruskal-Wallis Test for independent samples to evaluate 
differences between scores among various emotional states. 
Results of the knowledge assessment were used as dependent 
variable, while the assessment type or emotional state was 
considered as the independent variable.  

V. RESULTS AND DISCUSSION 

First, we investigated, whether differences exist between 
results of the paper-based and game-based assessment in terms 
of the students’ performance represented as gained points in the 
experiment`s first part of, as well as emotional data collected 
during the whole experiment was analyzed in terms of student's 
performance and motivation. 

A. Performance Differences 

In general, overall statistics of knowledge assessment results 
in both assessment types is the following: 

 in paper-based assessment, 92.8% (N=142) of students 
passed the test (got ≥1.25 points) and 7.2% of students 
(N=11) failed in the test; 

 in game-based assessment, 82.8% of students (N=72) 
passed the test, in turn, 17.2% (N=15) of students failed. 

Considering the fact that most of the students passed the test in 
both conditions it can be concluded that offered test was quite 
easy for most of them, however, it must be noted that everyone 
was informed about the assessment in the previous lecture. 

To compare differences between results (gained points) of 
both assessment groups, a non-parametric Mann-Whitney U-test 
was selected. After running the test, significant differences were 
found between both groups. The test indicated that assessment 
results were higher in the paper-based test (Mdn= 1.95) than in 
the game-based test (Mdn= 1.65, U= 5459 (Z= –2.32), p= .020). 
However, further analysis of the differences showed small effect 
size between both groups (r= –.149). Estimated results indicate 
that differences in the assessment type have small effects on 
assessment results. Furthermore, direction of the effect shows 
small existence of negative correlation between assessment type 
and students’ results. Therefore, it can be concluded that type of 

the knowledge assessment itself is not the determining factor 
affecting scores. These results can also be explained by done 
analysis of the question answers regarding preferences of 
assessment type (paper-based or computer-based) given by 
students before the experiment. Results showed that overall there 
is no preference regarding assessment type (M= 4.10, SD= 1.88, 
where 4 indicated ‘no preference’). 

Such differences in the assessment results can be explained 
by various reasons. Firstly, despite the fact that students writing 
the paper-based test were required to sit alone and two teachers 
controlled the process still possibility existed that students could 
find ways how to get correct answers and/or compare them with 
each other since order of the questions for paper-based test was 
the same for all students. Secondly, the same test was used for 
each group, therefore, might be a situation that offered questions 
were communicated to other students taking the test later. In 
turn, lower results in GBA can be explained by the fact that 
sequence of the questions differed, and students were more 
motivated to concentrate on their own work and not rely on 
others. All these aspects might have potentially affected the 
assessment results and differences between both conditions. 

B. Flow experience, Motivation and Influence on Learning 

Indicators for the facilitation of motivation can be 
represented as spent time on playing, number of attempts done 
in the game, as well as reaching of 15th question to win the 
game. In the first part of the experiment, after comparing times 
spent on the assessment in the classroom and computer class, 
quite significant differences were observed. Most of the students 
who were writing the paper-based test (with 15 questions) 
completed it in approximately 20-25 minutes. In turn, students 
working in the computer class needed less time to complete (or 
win) the game (average time: 00:06:41) by answering to all 
15 questions. The fastest victory was in 2 minutes (longest 
playing time: 22 minutes). Overall, even though students who 
were playing the game were asked to do at least 5 attempts for 
experimental purposes (data collection), they continued playing 
till the end of the lecture time and even longer (maximum 27 
attempts were done by one of students). In average, students 
made ~10 attempts (M= 9.91, SD= 5.96) what is more than it 
was asked at the beginning of the experiment. Therefore, 
involvement in the gameplay and willingness to get higher 
scores can be a good indicator of increased motivation and 
student’s engagement leading to better learning results. On other 
two topics the number of attempts were respectively (M= 5.55, 
SD= 4.71, maximum 25 attempts) and (M= 6.91, SD= 7.12, 
maximum 40 attempts). 

One benefit of GBA relies on positive affective outcomes 
facilitating learning outcomes. We studied the affective 
outcomes with respect to flow experience and the main question 
to answer was whether students experiencing positive emotions 
receive higher learning results? To answer to this question, 
emotional data and other parameters (e.g., points, playing 
attempts, etc.) from the system were analyzed. During the whole 
experiment, 615391 emotional states were registered using the 
system. Total number of emotional states made during the 
gameplay was as follow: flow (236288; 38%), anxious (144422; 
23%), bored (92662; 15%), neutral (54492; 9%), surprised 
(50811; 8%), frustrated (13324; 2%), happy (11851; 2%), 
confused (35; 2%), and sad (7535; 1%). The most common 
registered emotional states (flow, anxiety and boredom) can also 
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serve as an evidence of flow-experience since movement 
through these states is a result of continuous interaction between 
task difficulty (challenge) and progression of learner’s skills. 

Differences between assessment results on each topic in 
terms of emotional data (positive or negative) were considered. 
Who scored higher – those students who had positive or negative 
emotions? To answer this question descriptive statistics (see 
Table 1) regarding scores were acquired for each topic by 
emotional categories – ‘no emotional data’ if the student was not 
playing the game with emotion analysis, ‘more negative’ if the 
student experienced more negative emotions during the 
gameplay, and ‘more positive’ if positive emotions were more 
often registered by the system during the playing process. 

TABLE I.  AVERAGE SCORES BASED ON EMOTIONAL DATA 

 Descriptive statistics 

Results on Topics N 

Mean 

Statistic 
Std. 

Deviation 

Results on 

Topic 1 

no emotional data 42 1.70 0.59 

more negative 44 1.71 0.57 

more positive 41 1.73 0.57 

Results on 

Topic 2 

no emotional data 64 3.85 1.23 

more negative 6 3.92 0.52 

more positive 13 3.68 1.57 

Results on 

Topic 3 

no emotional data 54 3.16 1.42 

more negative 8 4.01 0.89 

more positive 9 3.32 1.39 

More equal sample size for each category was acquired on 
topic 1 since many students were involved in first part of the 
experiment and played the game using the emotion recognition 
functionality. Results of the analysis show that there is slightly 
higher scores for students who experienced positive emotions 
(M= 1.73, SD= 0.57) from maximum 2.5 points. In turn, 
students who were using the system without the emotional 
analysis performed a bit worse (M= 1.70, SD= 0.59). However, 
non-parametric Kruskal-Wallis Test for independent samples 
didn’t show significant differences (p>.05). 

Statistics on the other two topics, where students could get 
maximum 5 points, is quite poor regarding emotional data – 19 
and 17 students used the system with emotional analysis. Other 
students played the game without emotion involvement (for 
example, because of missing camera or just not wishing to turn 
it on). Overall, in both cases better results showed students who 
experienced more negative emotions than positive or played 
without analysis of emotional data. Also, in these two cases 
significant differences were not found (p>.05). However, more 
detailed analysis of gained scores for the last two topics allows 
concluding that topic itself has an influence on the results. If 
compared gained points on topic 2 and topic 3 (from max 5 
points) then in overall higher scores were acquired in topic 2 
(M= 4.02, SD= 1.06) compared to topic 3 (M= 3.30, SD= 1.39). 
This can also be explained by pedagogical experience in the 
particular study course that shows that the last topic has been the 
most complicated for students and similar decrease in scores can 
be observed in exams regarding these two topics for many years. 

VI. CONCLUSIONS 

A comprehensive literature review has been done in terms of 
serious games and their influence on learning, motivation, 
emotions, particularly on flow-experience. Computational 

intelligence has been discussed as a key factor for future serious 
games aiming to support individual learning paths and promote 
learner-game interaction. The developed educational game 
which uses emotion-based adaptation is described. Emotions are 
considered as one of the parameters for the tutoring adaptation 
since they are occurring and changing during the gameplay and 
can serve as an evidence of flow-experience. 

The experimental study was conducted with 244 participants 
involving usage of the developed game for the knowledge 
assessment during the lectures of the study course and after 
lectures in learners’ free time. Results of the experiment`s first 
part showed that learners using the game got lower scores, 
however, it was concluded that changes in assessment type 
(paper or game-based) have small effect on assessment results 
and it is not the determining factor affecting scores. Furthermore, 
usage of the game can be beneficial for low-performing students 
since some of them in the questionnaire given after the 
experiment mentioned that by using the game their knowledge 
level increased after the assessment. 

Further data analysis of the involvement in the gameplay 
indicated on increased motivation and student’s engagement in 
the GBA. Usage of the game facilitated motivation since most of 
the students did more than it was required and at homes playing 
attempts were also higher than required. From the pedagogical 
and psychological point of view, it can be said that further 
research is needed. On the one hand, to show exactly how serious 
game design and the combination of specific design elements 
affect learning processes and motivation. On the other hand, 
further research is needed to point out how learner-game 
interaction can influence self-regulated learning and support 
self-reflection processes.  . Only then game potential can really 
be used to design learning environments with a specific didactic 
value to promote self-regulated learning activities. 

Analysis of emotional data collected during the experiment, 
showed that slightly higher scores got students who experienced 
positive emotions. Therefore, an important step in the future 
work would be the collection of more data (particularly, 
emotional data) to find stronger evidence for supporting 
relationship between positive emotions and higher performance. 

Furthermore, observations show that fear still exists from 
new technologies and not all students are open to the analysis of 
their emotional data and usage of cameras. Therefore, possible 
other methods for the emotion identification which do not 
influence learner’s attitude negatively towards the game should 
be considered for the development of not only educational games 
but other learning environments. Regarding this issue, a possible 
solution can be an integration of emotion recognition approaches 
which are not based on the classification of sensor data, e.g., data 
from camera. However, additional research is required in this 
direction since current approaches do not provide sufficient 
accuracy of emotion recognition [43] and thus can crucially 
decrease accuracy of the system’s behavior adaptation. 

Moreover, it is necessary to extend the target group to non-
academic learners and people with little experience in using 
specific learning strategies and self-regulated learning. Attention 
will be drawn here, especially, to support this kind of learners by 
using serious games. 
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Abstract—The design of serious games requires developers to
tackle pedagogical challenges calling for advanced solutions that
the entertainment industry might deem too risky to pursue. One
such challenge is the creation of autonomous socially intelligent
characters with whom players can practice different social skills.
Although there are several architectures in the field of virtual
agents that are designed specifically to enable more human-like
interactions, they are still not widely adopted by game studios
that develop serious games, in particular for learning. In this
paper, we present a virtual agent toolkit that was specifically
developed with the intent of making agent-based solutions more
accessible and reliable to game developers. To this end, a
collaborative effort was established with a game studio that has
used the toolkit to develop two different serious games. Among
other advantages, the toolkit facilitated the inclusion of a dynamic
model of emotions that affects not just how the character looks
and acts but also how the player’s performance is determined.

Index Terms—serious games, virtual agents, authoring tools,
interactive storytelling, affective computing

I. INTRODUCTION

The industry of video games has seen tremendous growth
to the point that the budget for highly anticipated games
can surpass the cost of big Hollywood films [7]. This led
to extensive development times and quite large development
teams and corresponding high expectations from the players
[13]. On one hand, this state of affairs has enabled the creation
of very detailed game worlds with stories and characters that
players find very engaging to interact with. But, on the other
hand, the huge risk that is now associated with failing to meet
the expectations of players has led the industry to primarily
focus on what has been known to work in the past. This is also
then reflected in the available development tools, with popular
game engines like Unity1 being primarily designed to support
the typical requirements and methods used in entertainment
games that were previously successful. As a result, game
developers that are interested in developing games with more
unique characteristics or requirements, which is often the case

1https://unity3d.com/

for pedagogical games, usually find themselves having to
spend a significant amount of time in developing their own
tools and methods.

The serious games industry is growing as well, supported
by the continuous research on the potential in using games for
other purposes than just entertainment [10], [12], [21]. Serious
games can be used to train and teach players on various
subjects (e.g. math fractions [14], logic operators [16]) or raise
awareness on social issues (e.g. sustainability [17], cultural
diversity [4], bullying [20]). In fact, one of the more interesting
aspects in developing games that are designed to teach is that
their design is centered around pedagogical challenges. As
such, even if the game is very engaging for players it will still
fail to achieve its purpose if it does not have a pedagogical
outcome. But, in turn, the game might have great pedagogical
content but fail to deliver it in an engaging manner. One of
the important aspects that make players engaged in a game
world is the appeal of its characters. Particularly, non-player
characters provide the opportunity for the player to engage
in social interactions in a safe environment and within the
confines of the game rules and structures. From a training
perspective, players are free to experiment and observe the
effects their actions have on simulated others in order to obtain
and practice certain social skills. However, the range of social
interactions that are typically offered to players is still quite
limited when compared to real human interaction.

With the goal of expanding the range and complexity of
social interactions between characters and humans, there has
been a substantial amount of research dedicated to the creation
and study of virtual agents. These are embodied characters that
are designed to be able to interact with humans in a natural
manner [8]. The architectures that have been developed for
these characters can be rather complex, having to deal with
the challenges of interpreting and synthesizing both verbal and
non-verbal actions as well as modeling cognitive and affective
processes related to decision making.

Although researchers have been able to successfully apply

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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virtual agent architectures in the development of serious games
(e.g. [1], [9], [11]), such architectures have not yet been widely
adopted by game studios. While the accessibility of these
architectures can be improved through the creation of better
graphical user interfaces and more extensive documentation,
there are also technical and conceptual issues that must be
addressed [18]. A virtual agent architecture relies on a type of
authoring that is oriented towards cognitive concepts such as
goals and beliefs, which are quite familiar for AI researchers
but not necessarily so for game developers. Also, an agent
model will promote a type of storytelling experience that
is distributed or character-centric [2] whereas popular game
developer tools like Articy:draft2 or Twine3 are designed
towards a plot-centric approach with branching dialogues.
While these tools can be used to create complex narratives
they make a strong distinction between the player and the
other characters, by giving dialogue options to the former but
not the latter. In the proposed toolkit, while certainly possible,
it is not necessary to tie dialogue options to a specific character
or the player.

In this paper, we present a novel toolkit that aims to
promote the adoption by game developers of virtual agent
tools for creating game characters that are more socially and
emotionally intelligent (e.g. are able to adapt to the situation
and to the players). The toolkit is based on the existing
FAtiMA Modular architecture [5], which is an architecture
that was has been successfully used in the past in several
research applications [1], [3], [4]. These improvements were
derived from a close collaboration with game developers at
the company PlayGen4 that used the toolkit to develop two
games for learning. The first one is named Space Modules
Inc and is being developed for an educational institute in
the Netherlands named Stichting Praktijkleren5. The game is
designed to teach its players how to provide better customer
service in technical support. The second game is named Sports
Team Manager and is being developed for OKKAM6, a spinoff
company of the University of Trento in Italy. It is a single
player game where players assume the role of a sailing team
manager. Players must hire, fire and communicate with their
team members in order to succeed and, therefore, learn some
personel managemnet skills.

This collaboration is part of the ongoing RAGE project7,
which is an EU-funded project with the goal of developing and
promoting new technologies for directly supporting applied
game developers at creating better applied games and in a
manner that is more cost-effective [19].

II. FATIMA TOOLKIT

FAtiMA Toolkit is an open-source project8 that contains a
collection of tools and libraries with the aim of enabling the

2https://www.nevigo.com/en/articydraft
3http://twinery.org
4http://playgen.com/
5https://www.stichtingpraktijkleren.nl
6http://www.okkam.it/
7http://rageproject.eu
8https://github.com/GAIPS-INESC-ID/FAtiMA-Toolkit

creation of interactive storytelling scenarios with non-player
characters that can interact socially with human players in a
variety of contexts.

Storytelling can bring multiple benefits to serious games
[15]. Not only are people more likely to remember what
they learned if the content is integrated in the context of a
narrative, but also, an emotionally engaging story will greatly
motivate players to achieve the intended learning goals of
the game. This form of storytelling centers on the ability
of players to shape how the story unfolds according to their
actions, as participants rather than as observers. This feeling
of agency increases player engagement and encourages them
to reflect more deeply on the consequences of their choices.
However, the more freedom given to players, the more difficult
it becomes to use a traditional scripting approach to author
the scenarios. This is because the branching factor of possible
narrative paths quickly becomes intractable.

Our proposed storytelling framework deals with this issue
by following a character-centered approach rather than a
plot-centered one. The authoring is thus focused around the
different roles that the characters might play in the game and
the narrative emerges from how the characters behave in their
given roles. The challenge then becomes to author these roles
in a way that characters act in a believable manner but also
serve the intended learning goals of the scenario.

As previously mentioned, the toolkit is the result of sev-
eral improvements that were made to the FAtiMA Modular
architecture [5]. For example, the code was ported from the
Java language to C# in order to streamline the integration with
game engines, such as Unity3D. Also, each component within
the toolkit is able to fully load and save its internal state to
a JSON file. As such, it is possible for the game developer
to use his or her text editor of choice to do any kind of
authoring task. However, the toolkit contains some complex
data structures that refer to one another, such as emotions,
an autobiographical memory, appraisal rules, among others.
For this reason, each component has an authoring tool with
a graphical user interface that help users’ in the creation of
content in a declarative way preventing syntactical errors. The
fact that the entire internal state of each component within
the toolkit can be written to a file also works as a logging
mechanism.

Many agent-based tools are designed to function as a
framework or as a stand-alone application that the game must
communicate with, using a specific protocol. In both of these
cases, the game developer has to accommodate the game
to how the agent tool specifies its communication protocol,
its execution cycle and its extensions points, instead of the
other way around. Moreover, given their opinionated nature,
agent-based frameworks are difficult or even impossible to
compose together. It was based on these limitations that we
applied a functional library design pattern in the development
of the toolkit. Consequentially, all the different components
were developed as libraries, i.e. a collection of functions with
well defined inputs and outputs, that the game developer can
directly import and explore more easily without having to
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Fig. 1. Diagram of the Role Play Character Component.

worry about future compatibility issues with other tools.
The main functionality of FAtiMA Toolkit is divided in two

main components, the Role-Play Character and the Integrated
Authoring Tool.

A. Role-Play Character

The Role-Play Character (RPC) is the name given to the
component (see Figure 1) within the toolkit that manages
each character’s reasoning and emotional state based on a
perception-action mechanism, which can be described in the
following manner. Firstly, the events that occur in the game
world are sent as input to the Emotional Appraisal component,
which is based on a formalization of the OCC cognitive theory
of emotions [6]. This component then determines if the event
will trigger a new emotion for the character. Each character can
be configured with different appraisal rules that will result in
having different emotional outcomes for the same events. After
the emotional appraisal process is done, any resulting emotion
is added to the Emotional State. Events are also stored in the
character’s Autobiographical Memory along with any emotion
associated to them. The character’s Knowledge Base keeps
track of what the character believes as logical predicates such
as Weather(Outside) = Raining. These beliefs are also updated
according to the events sent by the game world.

After all the internal structures are updated, the RPC uses
the Emotional Decision Making component to select the next
action of the character. This is done using a rule-based mech-
anism that considers both the beliefs of the character as well
as its emotional state. In addition to regular beliefs that are
directly stored in the Knowledge Base, the decision-making
process also takes into account meta-beliefs, which are added
by Reasoning Components such as the Dialogue Manager
or the MCTS. Syntactically, meta-beliefs are expressed in
the same manner as regular ones. The key distinction is
that, rather than being stored, the values of these beliefs
is determined dynamically by the algorithm specified in the
reasoning component. This allows the combination of multiple
decision-making strategies into a unified rule-based system.
Developers can also register their own modules as additional
reasoning components and the meta-beliefs they introduce
will become available in the conditional rules of all other
components. For instance, consider a game with a specific

scoring mechanism for the player and the developer wants
to create a decision rule for NPCs to congratulate the player
whenever the player’s score reaches a certain threshold. This
could be achieved by registering the scoring mechanism as a
new Reasoning Component that would add Score(Player) =
[x] as a new meta-belief.

Game characters should have believable emotional re-
sponses to give the illusion of life. For applied games that rely
heavily on social interaction, it quickly becomes impractical to
manually script all the emotional reactions of each character
for each possible event. The RPC asset tackles this issue by
allowing game developers to create general profiles of how
characters respond emotionally in their games. They can test
and configure these profiles outside of the game and they can
naturally switch between profiles without having to recompile
the game source code.

B. Integrated Authoring Tool

The Integrated Authoring Tool is the other main component
of the toolkit that is designed to be the central hub for
game developers when creating a new storytelling scenario
or adapting existing ones. It allows the configuration of the
general aspects of the scenario and provides quick access to
the authoring tools of the Role-Play Character component.
However, the main feature of this component is that it contains
a dialogue editor that allows the developer to specify the
dialogue acts that are available for both the player and the
characters.

For the purpose of dialogue management, the author must
define the interaction state where each dialogue may occur as
well as define the next state if a certain dialogue is selected.
During runtime, all characters are informed about the existing
dialogue acts as well as dialogue states. Characters are then
able to use this information to decide what to say according
to their internal state and decision-making mechanisms. To
give an example, consider that the integrated authoring tool
informs a character that at the start of the interaction there
are two valid dialogues, one to greet the player respectfully,
another to greet the player in an angry manner. If the character
is angry, the emotional decision making asset will select the
second option. If not, then the first greeting will be selected
instead.

III. CASE STUDY 1 - SPACE MODULES INC

Space Modules Inc is a single player game where the player
takes on the role of a customer service representative for a
spaceship part manufacturer “Space Modules Inc”. The virtual
characters in the game play the role of customers that call
the player (see Figure 2) about hardware and software faults
they are experiencing. Some characters will be angry, others
uncooperative or stressed, and it’s up to the player to manage
the situation and decide how best to respond.

Players have to respond to situations by engaging in con-
versation with customers. This is done by having the player
pick one of the available dialogue options in response to the
character’s chosen dialogue. The process is repeated until the
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Fig. 2. Space Modules Inc. Game Flow.

Fig. 3. Space Modules Inc - Dialogue Screen (left image) and Result Screen
(right image) Flow.

final state of the conversation is reached and then the player’s
score is passed to the review screen to be shown to the player
(see Figure 3). The customer satisfaction score depends on
how the player affected the emotional state of the character.
The idea is that each customer can have a different emotional
profile, thus providing a different challenge to the player.
From a pedagogical perspective, players must learn how to
manage intense emotions and how to respond to customers
in a professional manner in the best way. In other words,
the pedagogical goal of the game is to train players in being
able to identify a person’s emotional state through verbal and
nonverbal feedback and gain further experience in providing
effective emotional responses.

The emotional reactions of the customers in Space Mod-
ules are determined by the Role-Play Character component.
According to the selected emotional profile, this component
initializes the overall mood of the character to a given value
between -10 to 10. The component then updates this value
based on how it evaluates the option selected by the player. If
the player decides, for instance, to give the wrong solution for
the problem that the customer has, the component will gener-
ate a “Distress” emotion and the overall mood decreases. The
player can then repair the mood of the character by selecting
a dialogue that shows empathy for the character’s distress.

Fig. 4. Sports Team Manager Game Flow.

However, if this dialogue is selected when the character is not
feeling distressed, then it will be judged negatively instead and
the mood of the character decreases accordingly. The amount
by which the mood decreases or increases is also another
parameter that is possible to configure in the RPC component.

IV. CASE STUDY 2 - SPORTS TEAM MANAGER

Sports Team Manager is an applied game also developed
by PlayGen with the assistance of the FAtiMA Toolkit. The
overall goal of the game is to have the player be able to
assemble together the most optimally performing sailing team
by resolving conflicts and managing the team’s interactions.
The player interviews virtual characters to identify their skills
and personalities. The team has a set of roles, each with
overlapping skill requirements. A successful sailing team is
not solely based on skill, but also on the social relationships
between team members. Players must communicate with their
team, deciding which members are placed into each position
per race and resolve conflict situations as they arise. Figure 4
shows the game flow during an individual race session.

The players must first review the positions they need to
fill on the boat, taking note of the required skills for each.
Next, they must meet with their NPC team members, taking
into account the skills and inter-team relationships already
known, asking questions where further information is needed.
Using this information they should, if required, recruit new
members into the team and place individuals into positions.
After racing with the selected line-up, players will occasionally
have to handle events with team members. After the event
stage concludes, using the result and pieces of feedback from
the race session, players begin the gameplay loop again, but
now with additional information to assist in their decision
making.

The Role-Play Character component is used here to model
the emotional state and decision making of each team member
based on their belief set. The component analyses the actions
of the player and determines their effect on the emotional state
of each NPC based on their current state and the emotional
weighting of the event in their perspective. To give an example,

335



Fig. 5. Sports Team Manager - Post-Race Event.

after each race session, it is possible for a team member to
come to the player in order to talk to them. The character
might for instance, ask why she was not picked (see Figure 5).
Players can then reply back to the team member by selecting
from a list of dialogue options. If the player selects an overly
aggressive reply, the character is likely to feel angry, affecting
its next response.

As mentioned previously, the Role-Play Character compo-
nent stores the beliefs of every NPC and saves these beliefs
over multiple play sessions. These beliefs are related to
information such as their last position in the team, skill ratings,
opinion ratings and event states. Furthermore, the events sent
to the characters are saved, meaning a history of events can
be preserved. This allows a history of every team selection to
be stored. As all of this information is stored regularly, it can
be also be reloaded in further play sessions, allowing for the
possibility of a persistent game.

Concerning the Integrated Authoring Tool, this component
is used to manage the configuration of the scenario, which
contains a list of all possible role-play characters that are
dynamically created at the beginning of and during each game.
The component also contains all of the dialogue options for
the player and the NPCs during various parts of the game,
such as team member meetings and post-race events.

V. GAME DEVELOPERS FEEDBACK

Game developers from PlayGen were independent in the
integration of the FAtiMA toolkit in their game code and were
successfully able to use the toolkit to support the intended
gameplay in the two games. They relied on the documentation
and examples created for the community and had full access to
the toolkit source code. We conducted an informal interview
to get their impression regarding the technical integration
and the usefulness of the toolkit. Contacts were made by
email and face to face. The conversation was around three
main questions: (1) How was the FAtiMA toolkit used in the
development of the game?, (2) What were the main benefits
of using the FAtiMA toolkit? and (3) What were the main
difficulties of using the FAtiMA toolkit?

Game developers reported that “the integration was not
difficult, but that a proper use of the toolkit requires a steep

initial learning curve”. The toolkit facilitated the creation of
mechanisms “to determine the change in emotional state and
mood depending on the dialogue chosen by the player” and
was also useful “to calculate the NPC response to the provided
piece of player dialogue, depending on their emotional state
and the type of player dialogue selected.” and to “decide how
a NPC should greet the player depending on their current
relationship with the player.”. They highlighted two main
benefits regarding the pedagogical value that the FAtiMA
toolkit provided. First, the use of the toolkit was “good because
players get immediate implicit (contextual) feedback”. They
mean that the emotional responses of the characters were
potentially very good cues for the players to assess if they
were playing well without the need to show explicit numeric
score. The second benefit, was the “ability to dictate the course
of conversation indirectly through using the toolkit’s dialogue
and NPC emotions systems, as these have made setting up
and controlling scenarios a much easier process as a result.”.
What is relevant, in the pedagogical sense, is the fact that the
definition and setting up of the scenarios was made directly
by the trainers who will apply the games. Hence, the game
can be configured and adapted by the people who have the
most knowledge about the content to be delivered in order to
achieve the learning goals of the game.

VI. STUDENTS GAME AI PROJECTS

The toolkit was also put to test in a course on Game AI at
IST, University of Lisbon in the fall semester. It was used in
the final project of the course (out of 4) that constituted 30%
of the grade. Sixty-eight students, working in groups of three,
were engaged. They had a workshop on the FAtiMA Toolkit
(of about 2 hours) before tackling the problem. They used a
version of the toolkit that is integrated with the Unity game
engine and uses components to realise the body and expression
of the characters developed by other members of the RAGE
project.

Each group was given the task of using the FAtiMA
toolkit to create two conversational scenarios, one with a
single character interacting with the player and another with
two characters engaging in conversation with the player at
the same time. Students were free to select any theme for
the conversation as long as the non-player characters had
believable emotional responses and could be configured to
have different personalities. All groups managed to finished
the project. Some of the scenarios created had quite interesting
and surprising themes. For instance, one group chose to create
a scenario where players were at the gates of heaven and had
to convince the gatekeeper to let them in. To be successful,
players had to avoid upsetting the gatekeeper too much. Other
groups opted for a more serious theme such as a job interview
(see Figure 6) or a shopping scene with a father, his son, and a
shopkeeper. With the student’s permission, these scenarios will
be publicly available as examples that are part of the toolkit.
From a software quality perspective, given the wide range of
scenarios explored by the students, we were able to identify
some issues with the toolkit, which were promptly fixed.
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Fig. 6. Students’ Job Interview Demo.

VII. CONCLUSION

In this paper, we argued that the development of serious
games is faced with additional challenges that are related to
the pedagogical goals that the designers have in mind. For
instance, in games that are about teaching conversational skills,
developers have to figure out how to offer a rich interaction
space that supports the exploration and failure of different
communicative actions and their associated socio-emotional
effects.

In the mainstream gaming industry, dialogues are typically
handled through branching structures that limit the set of
possible interactions, by offering little flexibility in the way
characters respond to what the players say to them. Alterna-
tively, in the research field of virtual agents, researchers have
developed and proposed tools for the creation of conversational
agents that have rich socio-emotional models driving their
behavior. These agents have great potential for being applied
in serious games that teach soft skills, as their behaviors are
more procedural and less scripted. However, so far, agent
architectures are still far from being widely used in the serious
games industry due to, in large part, accessibility issues.
With those issues in mind, we took an existing virtual agent
architecture, FAtiMA Modular, and adapted it to a new toolkit
with the goal of making it more appealing to game developers.
For that effect, we adopted a functional library pattern instead
of a framework-based approach. Moreover, the functionality
was divided in two main components, the Role-Play Character
and the Integrated Authoring Tool. The first is responsible
for managing the character’s beliefs, memories and emotional
state as well as running a decision-making process for each
character according to its ascribed role. The second component
allows the developer to manage the list of all the characters
that are available in each game scenario as well as the available
dialogues that the characters, including the player’s avatar, can
select from at any given state of the interaction.

The resulting toolkit was then applied successfully by a
game studio, PlayGen, in the development of two serious
games. The first game was designed to teach players how to
properly communicate with emotional customers in a customer
service setting. The second game has the player managing a

sport sails team composed by multiple characters with different
role preferences. Both of these games benefited from the use
of the toolkit in adding emotional dynamics to their characters
that is reflected in their decisions. Additionally, a group of 68
students successfully developed projects for a Game AI course
using the toolkit. This experience was a good stress test on
the toolkit given the wide variety of scenarios explored by the
students.

As future work, we plan to conduct more formal user study
centered around the authoring capabilities of the toolkit. The
main idea will be to have participants watch a video tutorial
about how the toolkit works and then be instructed to change
an existing game scenario according to a set of predefined
goals. The feedback obtained will then be used to further
improve the toolkit.
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Abstract— This study examines the effect of choosing versus 
being assigned critical feedback on performance and on the choice 
to revise digital posters. Participants were North American 
University students (n = 125) randomly assigned to one of two 
conditions, Choose and Receive. In both conditions, participants 
designed three posters in Posterlet, an assessment game with an 
embedded intelligent feedback system that assessed their learning 
processes and poster performance. In a yoked experimental study 
design, participants in the Choose condition (n = 71) could choose 
to receive either critical or confirmatory feedback, while 
participants in the Receive condition (n = 54) were assigned the 
same amount and order of critical feedback chosen by their 
Choose condition counterparts. Results revealed no differences 
between conditions in performance and students’ choices to revise 
their posters. Implications for designing intelligent feedback-rich 
learning and assessment environments are discussed. 

Index Terms—intelligent feedback, choice, assessment game, 
performance, revision 

I. INTRODUCTION 

This study explores the impact of feedback-seeking choice 
on students’ performance and on their learning behaviours (i.e., 
choice to revise their artifacts). This topic is of increased 
relevance, as more and more emphasis in education is placed on 
pedagogical approaches such as personalized learning, as well 
as on differentiated instruction and attention to students. These 
approaches aim to “increase learner choice and voice” [1].  

Thus, this research has an immediate impact on designing 
curricula that increase learners’ locus of control, enabling 
students to make more decisions about their learning. Despite 
this, most research focuses on situations in which feedback is 
assigned to students, rather than on situations in which students 
proactively seek feedback. The latter is a more naturalistic 
scenario to examine, as the ability to recognize when to seek 
feedback and what type of feedback is most useful is essential 
for supporting independent, innovative learners. 

As feedback fills a gap between what learners know and 
what they desire to know, there are reasons to believe that 

critical (constructive) feedback influences learning, but there is 
no clear evidence that the choice of critical feedback is more 
important than simply assigning critical feedback to learners as 
a result of their performance. However, individuals often need 
to seek critical feedback to improve their performance or to learn 
a new concept [2, 3], especially as most new ideas need critical 
constructive feedback to become successful [4]. 

The mechanisms of critical feedback seeking and processing 
are not yet understood, as research scrutinizing the link between 
feedback and performance has yielded mixed results [5, 6, 7]. A 
study found that novices sought confirmatory (positive) 
feedback more often, whereas experts sought critical (negative) 
feedback more often [8], but performance was not measured.  

Other factors, such as mindset, may interfere with both the 
decision to choose critical feedback and the heeding of critical 
feedback [9-15]. Another important aspect of delivering 
feedback is timing. In most cases, immediate feedback can 
improve learning. For instance, peer feedback delivered within 
24 hours in a massive open online course was more effective for 
learning than feedback delivered after 24 hours [16]. 

Previous research showed that choosing critical feedback 
was associated with better performance and more revisions [18]. 
The current study explores if this result persists when students 
are being assigned critical feedback instead of choosing it.  

This experiment was designed to elucidate this matter by 
answering three research questions: 

1) Do learning behaviours correlate with performance by 
condition? 

2) Does condition moderate the relation between learning 
behaviours and performance? 

3) Are there any outcome differences between choosing and 
receiving feedback? 

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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II. METHOD 

A. Participants, Procedure, and Data Sources 

Participants were n = 125 students from the Faculty of 
Education Research Participation Pool Program at a large North 
American university (see Table 1). They were informed about 
the study and they provided online informed consent for their 
participation. Participants were randomly assigned to one of two 
conditions, Choose and Receive. 

TABLE I.  PARTICIPANT AND STUDY INFORMATION 

Cond. 
Gender Total Mage 

(SD) in 
Years 

Mduration 
(SD) in 
Minutes Female Male 

Choose 44 27 71 
24.48 
(5.03) 

11.39 
(5.41) 

Receive 31 23 54 
25.54 
(6.04) 

10.41 
(4.03) 

Total 75 50 125 
24.94 
(5.49) 

10.97 
(4.87) 

 

Two versions of an online game assessment instrument, in 
which students designed posters and learned graphic design 
principles from feedback, were employed to collect data. In the 
Choose condition (see Figure 1), the player clicks on one box (“I 
like” or “I don’t like”) above each character to choose either 
confirmatory or critical feedback.  

 

 
Fig. 1. In the Choose condition, the player chose critical feedback from the 
lion and then confirmatory feedback from the elephant. (Reprinted from 
Cutumisu & Schwartz, 2018.) 

In the Receive condition (see Figure 2), the player clicks on 
the “Click for feedback” box to reveal feedback of a valence that 
is assigned by the game. According to a one-to-one yoked 
experimental design protocol, each Receive condition 
participant was assigned the same amount and order of critical 
feedback as that chosen by a matched Choose condition 
participant. 

 

 
Fig. 2. In the Receive condition, the player first clicked on the elephant and 
received critical feedback, then on the ostrich and received confirmatory 
feedback. (Reprinted from Cutumisu & Schwartz, 2018.) 

In contrast to the previous correlational research conducted 
using Posterlet, the current research proposes an experiment 
based on the original Posterlet version where students chose 
their feedback (Figure 1) and our modified version where 
students are assigned feedback (Figure 2). 

B. The Posterlet Assessment Instrument 

This experimental study employed the Posterlet assessment 
instrument [18]. Posterlet is an assessment game that has an 
intelligent feedback system which parses each digital poster and 
produces a performance score and a set of feedback phrases for 
each of the graphic design principles used correctly as well as 
incorrectly on that poster. The feedback system also keeps a trail 
of which principles were used on each of the three posters and 
determines dynamically the kind of feedback message to display 
to each student depending on their current performance and the 
performance on the previous posters across the game.  

The game’s feedback system generates feedback according 
to a priority scheme that is based on three broad categories of 
graphic design principles: crucial information (e.g., the date, 
time, and location of the poster fair need to be included on the 
poster), readability (e.g., the contrast between the colour of the 
poster canvas and the colour of the text must be high), and space 
use (e.g., the text must not be placed too close to the edge of the 
poster). The feedback system generates feedback by selecting 
feedback messages successively from these categories [19].  

In the Posterlet game, students follow the steps illustrated in 
Figure 3 three times. Each time, they choose a booth (Step 1) 
and design a poster for it (Step 2). Then, they select three virtual 
animal characters from a focus group (Step 3), choose either 
critical or confirmatory feedback from each of them about the 
poster and read the feedback (Steps 4 and 5). Then, they choose 
to revise (Step 6) or submit (Step 7) their poster. Posterlet tracks 
the number of critical feedback and revisions students make, and 
it computes an overall poster performance. 
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Fig. 3. The Posterlet game flow used to create three posters. (Reprinted from 
Cutumisu, Blair, Chin, & Schwartz, 2015.) 

C. Measures 

The study focuses on three main classes of measures: 
behaviours (Critical Feedback and Revision), poster 
performance (Poster Quality), and condition (Choose versus 
Receive). These measures together with the relations among 
them are illustrated in Figure 4. 

 
Fig. 4. The three classes of measures employed in the study. The outer arrows 
indicate associations between measures, while the inner arrows indicate 
whether the experimental condition moderates the relations between measures. 
Solid arrows indicate significant relations. 

1) In-game learning behaviours 
 

Critical Feedback measures the number of times students 
encountered (i.e., chose or received) critical feedback (i.e., “I 
don’t like…”). As there were three posters with three pieces of 
feedback per poster, this measure ranged from zero to nine.  

Revision measures the number of posters a student chose to 
revise.  As there were three posters with one opportunity to 
revise per poster, this measure ranged from zero to three. 

 

2) In-game performance 
 

Poster Quality measures students’ performance based on 21 
design principles summed across the game. The quality of each 
poster is the sum of 21 feature scores: 1 if a feature is always 
used correctly on a poster, 0 if not included, and -1 if used 
incorrectly on a poster.  

Pretest measures the quality of the first poster, before 
revision. 

III. RESULTS 

This section describes the results of the statistical analyses 
conducted to answer the three main research questions of this 
study. 

A. Do learning behaviours correlate with performance by 
condition? 

Spearman correlations were conducted per condition 
between performance and behaviours (critical feedback and 
revision), as these variables were not normally distributed. The 
results of these analyses are shown in Table 2 and Table 3. In 
both conditions, Critical Feedback correlated with Poster 
Quality and with Revision. A t-test analysis comparing the 
strength of the correlation coefficients between conditions  [20, 
21] indicated that Critical Feedback and Revision were 
associated significantly stronger in the Choose than in the 
Receive condition (z-score = 2.92, p < .01).  

Moreover, Poster Quality correlated with Revision only in 
the Choose condition. This suggests that the experimental 
condition may moderate the relation between poster quality and 
the choice to revise, as well as between the two learning 
behaviours (choosing or receiving critical feedback and 
revising). As the choice to revise follows students’ interaction 
with feedback, this suggests an interaction of critical feedback 
with revision to predict performance. The next research 
questions aims to test this hypothesis. 

TABLE II.  CORRELATIONS BETWEEN LEARNING BEHAVIOURS AND 
PERFORMANCE FOR THE CHOOSE CONDITION (**P < .01, *P < .05) 

Measures 
(n = 71) 

Revision Poster Quality 

Critical 
Feedback .68** .29* 

Revision -- .37** 

 

TABLE III.  CORRELATIONS BETWEEN LEARNING BEHAVIOURS AND 
PERFORMANCE FOR THE RECEIVE CONDITION (**P < .01, *P < .05) 

Measures 
(n = 54) 

Revision Poster Quality 

Critical 
Feedback 

.29* .33* 

Revision -- .17 

 

A two-way repeated measures analysis of variance showed 
a significant growth of Poster Quality [F(1.79, 219.73) = 31.51, 
p < .001 , η2 = .20]. As participants improved their poster 
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performance across the game, Poster Quality was considered a 
learning measure, as shown in Figure 5.  

There was no main effect for condition [F(1, 123) = .98, p = 
.32, η2 = .008] and no significant interaction between condition 
(although Choose participants achieve slightly better 
performance than Receive participants) and poster levels 
[F(1.79, 219.73) = .33, p = .70, η2 = .003]. In the Choose 
condition, participants improved their average performance 
from round1 = 11.41 (SD = 4.07) to round2 = 13.70 (SD = 3.91) 
to round3=13.97 (SD = 3.41). In the Receive condition, 
participants also improved their average poster performance 
from round1=10.76 (SD = 4.88) to round2=12.85 (SD = 4.07) to 
round3 = 13.70 (SD=4.03). Moreover, this growth did not vary 
by condition.  

Post Hoc tests revealed that, for both conditions, there was a 
significant increase in poster quality from round1 to round2 and 
round3, but the increase from round2 to round3 was significant 
only for the Receive condition.  

 

 
Fig. 5. A two-way repeated measures analysis of variance used the 
independent categorical variable Poster (with three levels that correspond to 
the three posters) and condition (Choose versus Receive) to predict the 
dependent variable, Poster Quality. Results showed a significant growth of 
Poster Quality, but no main effect for condition and no significant interaction 
between the experimental condition and poster levels. The increase from 
round2 to round3 was significant only for the Receive condition. 

 

Finally, given the association of learning behaviours with 
performance, standard multiple regression analyses were 
conducted to investigate whether Critical Feedback and 
Revision were independent predictors of performance (Poster 
Quality) in each condition.  

In the Choose condition, the model composed of the two 
learning behaviours, Critical Feedback and Revision, predicted 
Poster Quality significantly [F(2,68) = 4.94, p < .05, R2 = .13, 
Adjusted R2 = .10] and Revision [Beta = .33, B = 2.67, SE = 
1.22, t = 2.19, p = .03] was a significant predictor, but Critical 

Feedback [Beta = .03, B = .18, SE = .79, t = .22, p = .82] was 
not a significant predictor.  

In the Receive condition, the model was significant [F(2,51) 
= 4.29, p < .05, R2 = .14, Adjusted R2 = .11]. Moreover, Critical 
Feedback was a significant predictor: Beta = .29, B = 1.65, SE 
= .77, t = 2.12, p = .04, but Revision was not: Beta = .17, B = 
1.72, SE = 1.41, t = 1.22, p = .23. 

B. Does condition moderate the relation between learning 
behaviours and performance? 

Because revision occurs after receiving feedback, it seemed 
possible that critical feedback would determine whether students 
chose to revise due to constructive criticism. To find out whether 
the experimental condition interacts with critical feedback in 
predicting the choice to revise, we conducted two-way analyses 
of variance.  

Participants were divided into two percentile groups 
according to the amount of critical feedback they encountered 
(Group 1: zero to five pieces of critical feedback; Group 2: six 
to nine pieces of critical feedback).  

Then, critical feedback and condition were used as 
independent categorical variables to predict the dependent 
variable, Revision.  

Results yielded a significant interaction between the Critical 
Feedback Group and the experimental condition: F(1,121) = 
10.41, p < .01, η2 = .08. Specifically, participants who 
encountered more critical feedback also chose to revise 
significantly more but only in the Choose condition (see Figure 
6 and Figure 7). 

 

 
Fig. 6. A two-way analysis of variance used the independent categorical 
variables Critical Feedback Group (low versus high levels) and condition 
(Choose versus Receive) to predict the dependent variable, Revision. A 
significant interaction between Critical Feedback Group and condition showed 
that students who encountered more critical feedback in the game also chose to 
revise significantly more, but only in the Choose condition. 
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Fig. 7. Condition moderates only the relation between critical feedback and 
revision (i.e., solid inner arrow pointing from Condition to the relation between 
Critical Feedback and Revision). This reveals that students who encounter high 
levels of critical feedback in the game also revise more, but only in the Receive 
condition (i.e., only when they are assigned their feedback). 

Finally, two-way analyses of variance examined the effect of 
condition (Choose versus Receive) and behaviours (critical 
feedback levels and revision levels, respectively) on poster 
performance, controlling for the pretest.  

Participants were divided into two percentile groups 
according to the amount of revisions they made (Group 1: zero 
or one revision; Group 2: two or three revisions).  

Results revealed a main effect for pretest (i.e., students who 
revise more often also design better posters), but no main effect 
for critical feedback or condition, and no interactions of critical 
feedback and condition for performance.  

Similar results yielded for revision and condition predicting 
performance (controlling for the pretest). This shows that 
condition does not moderate the relations between behaviours 
and performance, as illustrated by the two empty inner arrows 
of Figure 7. 

C. Are there any outcome differences between choosing and 
receiving feedback? 

Non-parametric Mann-Whitney independent-samples tests 
were conducted to determine whether there were any learning 
outcome differences between the two groups (i.e., participants 
who had a choice over feedback and those who did not).  

Figure 8 and Figure 9 illustrate each outcome measure 
computed across the game as a function of critical feedback 
(from zero to nine) by condition. The x-axis shows the range of 
critical feedback.  

Analyses revealed no differences in Poster Quality (Mean 
RankChoose = 65.53, Mean RankReceive = 59.68, Z = -.90, p = .37; 
see Figure 8) but significant differences in Revision (Mean 
RankChoose = 56.44, Mean RankReceive = 71.62, Z = -2.43, p < .05; 
see Figure 9) between conditions. Thus, students in the Receive 

condition revised significantly more than students in the Choose 
condition. 

 
Fig. 8. Poster performance as measured by Poster Quality for each level of 
critical feedback by condition (Choose versus Receive). The Choose condition 
is represented by a blue dotted line, while the Receive condition is represented 
as a solid red line. Error bars represent +/- one standard error. 

 

 
Fig. 9. Revision choices for each level of critical feedback by condition 
(Choose versus Receive). The Choose condition (i.e., students choose between 
critical and confirmatory feedback following the design of a poster) is 
represented by a dotted blue line, while the Receive condition (i.e., students are 
assigned a schedule of critical or confirmatory feedback following the design 
of a poster) is represented as a solid red line. Error bars represent +/- one 
standard error. 
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IV. DISCUSSION AND SIGNIFICANCE 

A. Do learning behaviours correlate with performance by 
condition? 

The associations between learning behaviours and 
performance were similar in the two conditions. However, the 
relation between learning behaviours was stronger in the Choose 
than in the Receive condition. This may be due to a motivational 
factor related to having a choice over one’s learning.  

Moreover, in the Choose condition, Revision was more 
important than Critical Feedback for performance. However, in 
the Receive condition, this situation was reversed (i.e., Critical 
Feedback was more important than Revision in predicting 
performance).  

To date, this is a first demonstration that choosing and 
receiving critical feedback show similar patterns of influencing 
performance (students learn at a similar pace regardless of 
condition, as their poster performance improved gradually), but 
that condition influences the relation between learning 
behaviours (critical feedback and revision), corroborated by the 
mediation analyses of the next section.  

These findings have multiple implications for personalized 
learning curricula that may consider choice as a behaviour 
motivator that would not affect the learners’ performance, as we 
found that feedback valence choice did not make a difference in 
students’ performance. 

B. Does condition moderate the relation between learning 
behaviours and performance? 

Analyses examining interactions between condition and 
choices to predict performance indicated that condition was not 
a moderator of these relations. However, condition moderated 
the relation between critical feedback and revision, showing that 
different levels of critical feedback did not make a difference for 
the revision behaviour of students in the Receive condition, but 
it did for students in the Choose condition who revised 
significantly more when they chose higher levels of critical 
feedback.  

This finding supports the importance of choice in nudging 
students’ revision behaviours given an appropriate level of 
critical feedback encountered after solving a task (e.g., poster 
design in the case of Posterlet). 

C. Are there any outcome differences between choosing and 
receiving feedback? 

Results showed no differences between conditions in 
performance, except for differences in Revision. Students in the 
Receive condition revised more than their Choose condition 
counterparts. This finding supports the previous two results. It 
also suggests that students are likely to revise more when they 
are assigned their feedback valence.  

Consequently, this suggests that when students are assigned 
critical feedback without exercising a choice about their 
feedback valence, they may revise more not because of 
exercising their usual learning behaviours, but because of 
reconciling their expectations with the unwelcomed feedback 
message, as supported by prior research [17, 18].  

This experiment examined the associations between learning 
behaviours (critical feedback and revising) and performance in 
two different conditions (choosing the valence of the feedback 
versus being assigned that feedback valence). The yoked study 
design enables a better understanding of the processes unfolding 
when students interact with critical feedback by controlling for 
the decision to seek critical feedback.  

Moreover, as the experiment demonstrated that performance 
is not related to students’ decision to seek critical feedback but 
to simply encountering more critical feedback, future research 
can focus on discovering why some students seek critical 
feedback more often than others and why they decide to revise 
their work more often.  

In the near future, this research will investigate the effect of 
choosing versus receiving critical feedback on learning and 
mindset, as well as the effect of choosing versus receiving 
critical feedback on students’ memory for critical feedback, to 
gain an insight into the underpinnings of critical feedback 
processing for performance improvement.  

These results have implications for designing instructional 
materials and ways of delivering feedback. Findings suggest that 
personalized learning would benefit from a focus on the content, 
the amount, and the valence of feedback, more than on the 
feedback choices that students exercise in learning 
environments. 

V. CONCLUSIONS AND EDUCATIONAL IMPLICATIONS 

This experiment constitutes a novel empirical examination 
of the impact of both the agency (choosing versus receiving) and 
the valence (critical versus confirmatory) of feedback on 
performance. Results suggest that critical feedback is associated 
with better performance and increased willingness to revise 
digital posters in a game-based behavioural assessment, 
regardless of being chosen or assigned.  

Thus, the design of feedback-rich learning and assessment 
environments may benefit from facilitating students’ interaction 
with higher levels of critical feedback with the aim to improve 
student performance and learning behaviours (e.g., frequency of 
revising their work), regardless of whether students choose 
critical feedback or receive it. 
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Abstract—The digital games are consolidating as one of the
biggest entertainment industries in the latest years, as well as
their use for educational applications. However, some educational
games do not provide satisfactorily a pleasurable and engaging
game experience. This issue compromises the learning process of
the content approached by the game. This paper introduces the
puzzle game ”A Plot from the Stars”, whose goal is to incorporate
basic mathematical function concepts through a fun gameplay.
During the game, the player has the role of a cadet within a
space station and must use mathematical graphs as laser beams
to destroy enemy ships. The first version of the game is introduced
here as well as the results achieved after its initial evaluation by
a group of students.

Index Terms — serious games, educational games, math-
ematical function, learning process.

I. INTRODUCTION

The digital game market has grown a lot since its inception
in the 1960s. The first electronic game in history, Spacewar,
was made just as a student experience at one of the MIT
labs in 1961 [1]. More than 50 years later, the video game
industry is already surpassing the film and music industries
[2] in values involved. The consumers spent a total of $30.4
billion on electronic games in the United States [3] during
2016.

The use of electronic games as an educational tool is
recent and it was leveraged by the emergence of modern and
affordable gaming development tools. The electronic gaming
appears as an alternative to develop new learning opportunities
[4]. The present paper introduces the educational computer
game “A Plot from the Stars“, which is composed by a
series of logical challenges. To complete all the puzzle levels
successfully, the student has to learn the correlation between
different mathematical functions and their graphs.

Our approach aims to find a balance between a highly
engaging and fun game as well as an educational tool that
works effectively for student groups. Our contribution lies in
the proposition of a suitable solution to this issue by making
gameplay and educational content completing each other. The

basic concepts of the gameplay are described in this paper to
show precisely how the game works. The Unity game engine
was chosen since it is widely used in the development of
professional games [5].

Finally, we report preliminary results achieve evaluating the
first version of our game by a set of players. This is done
using strategies such as pre-test, post-test and IMI (Intrinsic
Motivation Inventory). These results were collected from a
beta version of the game with a reduced set of levels. However,
the set of levels is sufficient to represent and evaluate the main
concepts of the proposed game.

The paper is organized as follows. Section II reviews some
related works, while the gameplay concepts is described in
section III. The results achieved from a beta version of the
game are reported in section IV. The conclusions are in section
V.

II. RELATED WORK

In this section, we present some works related to the use of
electronic games as an educational tool over the last few years,
as well as some important titles in the area of educational
games. First, we will focus on a brief history of educational
game evolution. One of the first games to stand out was “The
Oregon Trail“ in 1971. The game sought to teach content from
the history of the United States, specifically about the life of
American settlers in the mid-nineteenth century. It became a
major success in classrooms across the country at the time of
launch [6].

In the early 1980s, the popularization of personal computers
facilitated the growth of the educational gaming market. One
of the main icons of this growth was the game series with
the character Carmen Sandiego, a woman wanted for various
crimes. In her debut game, “Where in the World is Carmen
Sandiego“, the player had a series of missions to accomplish
and the main clues to unravel the mysteries were the player
geographical knowledge about countries of the world [7].

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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The computers were a great home for electronic educational
games success until the late 20th century with other big
names such as the “Reader Rabbit“ series, produced by The
Learning Company, and the game “Math Blaster“, developed
by Davidson [7]. The latter was the first electronic games to
have prominence in the teaching of Mathematics. However, its
main mechanics relied only on solving a series of equations
by shooting at generic targets [8]. These targets appears on the
screen with numbers attached to them, without effectively in-
troducing educational concepts during the gaming experience.

The market begins to decline for educational games in 2000
due to the lack of new products and innovative experiences on
the side of developers [7]. This market has remained modest
since then and educational games for mobile applications arise
as a contemporary alternative. The authors in [9], [10] and [11]
discuss the educational approach using classroom tablets.

The effectiveness of educational electronic games was al-
ready subject of discussion even when this market was at
its peak. The work in [8] evaluates several big companies
games already cited as ”drill and practice” software. In such
approaches, the authors in [8] argue that teaching does not
become fun or attractive. It is only done in a traditional and
”sweetened” way with failed game mechanics. However, the
author also believes that ”teaching can be fun on its own” and
argues favorably to this approach with the use of educational
games. This concept is one of the pillars for the development
of ”A Plot from the Stars”.

One of the most addressed areas in the development of edu-
cational electronic games is Mathematics, since the beginning
of this market, as the aforementioned “Math Blaster“. Another
contemporary game, “Logical Journey of the Zoombinis“,
brings interesting mechanics based on mathematical logic,
combinations and arrangements of data and function graphs.
The game provides a playful and intriguing environment with
relevant use of feedbacks from the player during matches [12].
These playful and feedback aspects are also present in the
online adventure game “Lure of the Labyrinth“, which uses
interactive and interesting puzzles to teach basic math concepts
such as proportions, quantities, fractions and distance [13].

The educational approaches shown in [12] and [13] present
a desired balance between fun and teaching, but they do
this through small mini-games with simpler and different
mechanics between each level. Our goal with ”A Plot from the
Stars” is to expand similar concepts of game design producing
complex and solid mechanics. The idea is to allow a robust
and complete experience to the player with an efficient use of
the mathematical contents.

Another educational approach can be seen in games like
“Decimal Point: The Fantastically Fabulous World of Frac-
tional Fun“, whose focus is to introduce concepts about
decimal numbers to elementary school students [14]. Unlike
the previous works mentioned and the game proposed by our
paper, ”Decimal Point” uses a generic way to introduce educa-
tional concepts, bringing them only in the form of questions.
It is similar to traditional methods of educational evaluation
Our proposal follows another path by incorporating effectively

contents into gameplay. Thus, we try to become gameplay
and content two inseparable elements of game design, where
”learn” and ”play” are almost synonyms for the player.

Some works discuss possible approaches that can be used to
help achieve the desired goal with this game design approach.
Some concepts for improving the quality of educational elec-
tronic game to attract students are reported in [8]. These
concepts talk about how to get the attention of the player
and to help the learning in a beneficial way. On the other
hand, a game design methodology is presented in [15] for the
development of educational games. It consists of designing
an educational game supported by three pillars: what contents
will be addressed, what resources and mechanics will be used
to address these contents and how the game will know that an
effective learning is going on.

III. GAMEPLAY CONCEPTS

This section describes the concepts and mechanics of the
game “A Plot from the Stars“, with focus on its main elements
and how they are related to the learning of mathematical
function.

A. Game Overview

The objective of the game is to complete a series of levels
compounded by mathematical challenges. These levels have
enemy spaceships that need to be destroyed to avoid the planet
Earth invasion. The player must correctly position curves by
using mathematical functions across the playing area. The
changes in the coefficients of the mathematical functions will
allow the player designing the best graph. Each graph plays
the role of a high-energy light beam which is able to destroy
the enemy spaceships. Figure 1 presents a typical view of a
game level.

Fig. 1. Typical view of a ”A Plot from the Stars” level. In the bottom, the
inventory with the satellite tab opened.

To position and calibrate these functions, the player has at
her/his disposal an inventory of items that will be discussed in
subsection III-B. Each level has a different inventory, allowing
the game designers to control what information the player will
have to solve a certain level. The aim is to encourage the player
to learn specific features of the functions from the available
information.

The level has asteroid figures which are specific spots to
place graphs. These points are considered as the possible
centers of Cartesian systems in which a graph can be drawn.
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We choose to limit the positions where the graphics are
positioned instead of allowing them to be placed in any
position of the screen. This will allow the player to focus
on specific elements, while the entire screen as an available
option could divert the attention of the player. In addition,
this technique allows the player not to ”break” levels, i.e., to
find an easier or simpler solution for a level by eliminating the
challenge present in the puzzle. Each Cartesian system present
in an asteroid is shown only within a reduced domain, as can
be seen in the Figure 2. Only those part of the graphs closest
to the center of the system are shown, and the players have
to combine different graphs to arrive at their solution to the
level.

Fig. 2. A satellite with a Pharabulum Ruby attached, generating a parabola
light beam.

The enemy ships can be destroyed (or not, if the player’s
solution is not valid) only when the Fire button is triggered,
after the positioning of graphs. Before pushing the Fire button,
a sketch of the graph is shown to the player providing a
visual feedback to the student. At this moment, the student
has the opportunity to evaluate how the graph will behave
after changing coefficients in the function. This draft serves
as a game element to help the player learning when looking
for a valid solution.

Each level receives the title of ”mission” since it refers to
the role of the player in the game universe. The player is
a cadet in a space defense station and, for a mission to be
completed successfully, all enemy ships must be destroyed
without exception when pressing the Fire button. If the player
achieves this goal, the next mission becomes available. How-
ever, if she/he wishes, the player can repeat missions that
have already been completed. If the mission fails, the player
has two options. The level can be completely by bringing the
player to the original state. The other option is just retry to
correct the previous solution. In this case, all ships return to
their original positions, but the configuration of the previous
solution remains unchanged to be improved.

B. Inventory and Items

All the manipulation of mathematical formulas, their cor-
responding graphs and the light beams governed by them are
based on three types of items: satellites, crystals and modules.
Each of them abstracts a different concept from the light beam,
allowing the player to have a more precise and modular control
of the mechanics. There is a finite and different collection of
those type of items in each level, named as ”inventory.” This
area of the game, shown in Figure 3, gives information about
how the puzzle can possibly be solved, acting as a starting
point when looking for solutions. Different inventories provide
variability for levels and new challenges for players.

Fig. 3. The game inventory, with the module tab opened.

1) Satellites: A satellite, shown in Figure 2, represent a
technology installed on an asteroid in the game universe,
which allows light beams to be created. One of its main
purposes within the gameplay is to become the player able to
select the main characteristic of the light beam. The selected
characteristics will define how the player will interact with the
enemy ships and other screen elements.

For instance, the ”Attack Satellite” and the ”Attack Satellite
EX”, both Attack-type satellites, give to the light beam the
possibility of destroying all the common enemy ships touched
by them. It is worth mentioning that the interaction of the
light beam is independent of the mathematical function that
generates its format. Thus, straight lines or parabolas can be
used to destroy ships since generated from an Attack-type
satellite. The separation between light beam and mathematical
function allows a higher density mechanic and gives the player
more strategies to create his own solution to the problem.

For a satellite to be used, its icon must be dragged from
the inventory area to an asteroid. Only one satellite can be
incorporated into each asteroid, so there is only one light beam
from such satellite interacting with the other objects on the
screen. The number of satellites available in the inventory does
not need to be the same of asteroids in the level. An amount of
satellites smaller than asteroids challenges the player to select
the most suitable satellites and light beams configurations.

An important detail is the ability of satellites to store
modules. Modules are another type of item, giving the player
access to certain constants of the mathematical formula as
it will be described in subsection III-B3. Each satellite has
two or three spots for modules that add one more layer of
density to the gameplay. If you have more modules, it means
more coefficients in the mathematical functions that can be
manipulated by the player. Moreover, complex graphs and
formulas can be designed as part of the solutions.
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2) Crystals: This type of item has an important role in the
universe of the game. The discovery of these alien crystals
allows building the new defense technologies. In the gameplay,
the crystals are responsible for defining which mathematical
function will design the light beam placed on the satellites. For
instance, the ”Lihne Emerald” generates the light beam as a
green straight line from the mathematical formula y = ax+b,
while the ”Pharabulum Ruby” generates the light beam as a
red parabola from mathematical formula y = ax2 + bx+ c.

The concept of defining an item to represent the mathe-
matical function in each asteroid, instead of typing directly
such function in a text box, aims to keep the coherence
and consistency of the game mechanics. Also, by defining
previously the type of functions, it becomes possible to create
a sequence of levels that shows, one by one, the particular
behavior of each mathematical function. The idea is to make
the learning process of mechanics and educational content
more natural and smooth. The concepts related to the design
of the levels and the establishment of their sequences are
discussed in subsection III-D.

Only one crystal can be present in one asteroid at a time
and the asteroid already has to contain a satellite. To do this,
the player must drag the crystal icon present in the inventory
to the desired asteroid. It is not necessary that only one type
of crystal becomes available in the level inventory. In more
advanced levels, it is common to have more than one different
type of crystal. This strategy also increases the variability of
possible puzzles to be handled during the game, and allows
the same challenge to be completed using different types of
crystals or even combinations of them. Like satellites, crystals
also influence the type of modules in an asteroid. The crystal
defines the mathematical function that will be addressed in an
asteroid, thus, it is natural that only the coefficients present in
this function can be accessed and manipulated by the player.

3) Modules: A module is designed as a device that can
be attached to a satellite and connected to a crystal. This
device allows the player to control one of the coefficients of
the mathematical function, defining the light beam shape. Dif-
ferent modules executes specific changes in the mathematical
formulas. The player will have access to one of the coefficients
of a specific function that will change within a predefined
interval. For instance, in the ”Motor”-type modules, if a Lihne
Emerald is attached to an asteroid, the light beam generated
has the shape of a straight line. In this case, the player can
change the angular coefficient of the line. The ”Hybrid Motor”
module allows the player to choose positive values for the
coefficient, ”Mirrored Hybrid Motor” allows negative values,
and the special golden module ”Hybrid Motor EX” allows
setting both negative and positive values. The use of these
Motor-type modules can be seen in Figure 4, in which they are
used to achieve an optimal solution, with only four satellites,
even if there are six asteroids.

Modules designed for a certain type of crystal can be
attached only to an asteroid having this crystal, except for
the ”Antenna”-type modules. This module allow the addition
of an independent constant to any mathematical formula by

Fig. 4. The optimal solution for the level 2 of the beta version of ”A Plot
from the Stars”. Only four Attack Satellites and four Lihne Emeralds can be
used to complete the level thanks to the Motor-type modules.

vertically shifting the graph that rules the light beam. The
”Transmitter Antenna +” allows positive values to be added,
”Transmitter Antenna -” allows negative values and the special
golden module ”Transmitter Antenna EX” allows both positive
and negative values.

An asteroid can contain two or three modules attached on
it, depending on the capacity determined by the satellite. The
only rule is that two modules of the same type cannot be
present in the same asteroid. Thus, two modules that act on
the same constant present in the same mathematical formula
are not allowed. At more basic levels, the student is introduced
to specific behaviors where only one type of module is use.
This will allow him/her to understand the changes in graph
behavior as a result of several changes in the coefficients.

To attach a module to an asteroid, the player must drag its
icon from the inventory to the desired asteroid where a satellite
and a compatible crystal are already present. If a module of
the same type is already present, the game replaces it with the
newly attached module. If there is not enough space on the
satellite for a new module, the player must click on one of the
modules already present to replace it.

C. Medals and Extra Objectives

In addition to the main objective of the player - to destroy
all the enemy ships present on the screen -, some levels also
present extra goals to the player. They consist of restrictions
regarding the use of the items from the inventory to find a
solution to the puzzle. For instance, restrictions to use only a
small number of satellites, a specific crystal or module type.
It is also possible to impose or forbid the use of a specific
item. A level can have up to two extra goals that can be seen
by the player at any time in the level.

The player receives a medal when regular or extra goals
are fulfilled. Medals work as a record of the player’s perfor-
mance and they are cumulative, based on the type of levels
satisfactorily completed. A level can lead the player to get one
(without extra goals) to three medals (with two extra goals).
If the player fails to complete the main goal on one level,
she/he will not be able to obtain medals for extra goals, even
if she/he meets the requirements for that goal.

After to reach a predefined number of medals, the player
”rises of a patent”. She/he gains access to a new set of levels
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where new satellites, crystals and modules will be introduced
and used to the puzzles. The amount needed to reach a new
set of levels is never equal to the number of levels present in
the previous set, i.e., if the player only completes the main
goal at all levels of a set, getting only one medal per level,
the access to a new set of levels is not granted.

In this way, the medal system plays a double role during
the player’s engagement process. First, the medals show the
evolution of a player, rewarding the player when he/she
reaches more complex and interesting solutions instead of
simpler ones. Second, the concept of ”set of levels” leads
medals to play a key role. It will encourage the player to try
out new strategies and solutions to problems already known
by her/him from previous levels, since the only way to achieve
a new set of levels is completing some extra goals.

D. Level Design Guidelines

The level design plays an important part in the gameplay of
A Plot from the Stars. They are built to support an important
concept related to the player’s experience: ensuring that the
player has all the information necessary to solve the puzzles.
The strategy we use to achieve this goal is to focus on the
learning curve of the player. This is done not only about the
educational content present in the game, but also taking into
account the game interface itself. The first levels present in
the first set of missions has the role of showing the player
how to perform simple actions, such as setting up an asteroid
or checking the medals present on the level, as shown in the
Figure 5. They also introduce the player through the concepts
of satellite, crystal and module.

Fig. 5. The beta version of the tutorial system of ”A Plot from the Stars”.
The fictional character ”Help Bot” is the player guide to learn about the game
interface and mechanics.

In addition, presenting new features of the graphs should
also be done gradually from specific levels within a controlled
environment. To improve and facilitate the assimilation about
how a new type of module can handle a graph, a specific
level is available where all its elements are basic and already
known by the player. The only concern of the player will be to
understand the new concepts aiming to use it at more advanced
levels, step by step.

The way that objects in a level are disposed reflects how
players will try to identify patterns in the level, when setting a
laser beam. For instance, if two enemy ships are very close in
a straight line and an asteroid is near them, it is likely that the

players understand that a line graph should be placed there.
The decision about when using this type of pattern and when
subverting it, while game designers, lead us to generate levels
that encourage and surprise the player. The levels must guide
the player to a creative thinking, which is essential to teach
different perspectives from the educational content addressed.

E. Education and Gameplay Together

The main guideline for all the gameplay mechanics pre-
sented in this section is to reach a balance between the fun of
a conventional digital game and the teaching effectiveness of
an educational tool. As presented in section II, it is common
the lack of integration between the scope of the game and
the scope of education in the educational game context. In
”A Plot from the Stars”, this balance is the focus of the
whole gameplay. The content of mathematical functions does
not stay with the game mechanics, but they have been effec-
tively transformed into the mechanics themselves. Crystals and
modules are, as presented in subsections III-B2 and III-B3,
the very implementation of mathematical functions made in
a ludic way with logical challenges through levels. Figure 6
shows the constant change panel, one example of the union
between gameplay and content. The proposed game aims to
present itself as an interesting tool for teachers who can
make the transition between the playful and the traditional
environments. This can be done by teachers that will define
more effectively parallels between the content presented in
the game with the related ones in the books.

Fig. 6. The constant change panel. This panel is activated when at least one
module is attached to a satellite, allowing the player to change the constants
of the mathematical formula that governs that light beam.

The gameplay and the user interface are designed to allow
an environment conducive to experimentation. The player has
to test the different modules and see how they act in the
light beams to understand how the constants influence the
behavior of the functions. The goal is not to give the player,
separately, the abilities to learn to play the game and to learn
the educational content. Both concepts are self-contained and
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inseparable in our proposal, so we expect that ”learn to play”
and ”learn the content” have almost an equivalence. If the
player understands how light beams work, it is intended that
he also understands how mathematical function graphs work
with the gameplay proposed here.

IV. RESULTS AND DISCUSSION

This section presents preliminary exploratory results ob-
tained from an experiment made with a beta version of the
game.

A. Game Beta Version

The beta version of ”A Plot from the Stars” has 12 levels,
where the first 6 levels are dedicated to teaching the game
and presenting the items already discussed in subsection III-B.
The other 6 levels have puzzles where such concepts are
applied. The inventory at these levels is also reduced in
comparison to the number of items expected to be in the
final version of the game. The Attack Satellite is the only
one available and the levels focus on the use of straight
lines and parabolas. Therefore, only the crystals and mod-
ules related to them are now available. Other mathematical
functions such as sine and cosine, among others, will be
available in the final version. The beta version is on the Web,
https://toschi.itch.io/plotfromthestars, for Linux and Windows
operating systems.

B. Research Form

The form submitted to survey participants is available online
at https://goo.gl/forms/zc2QRqcVphh0J1pc2. There are ques-
tions related to demographic profile, pre-test session, Intrinsic
Motivation Inventory (IMI) [16], and a post-test session. The
demographic profile evaluates some characteristics of the par-
ticipants by collecting data such as age, geographic location,
sex, educational level and preferencess in the area of games
and mathematics. The pre-test and post-test sessions consist of
questions about basic math functions, all of them focused on
the relationship between the function formula and its graphs.
The idea is to measure the learning of participants during their
test with the game. The use of the IMI questionnaire aims to
evaluate variables related to the participant’s experience with
the activity of playing.

C. IMI Reliability Analysis

Prior to performing the statistical analysis related to the
student’s motivation, a factorial analysis and reliability test
were conducted in the IMI survey to validate it as an instru-
ment to measure the student motivation. From the collected
data of 50 participants, we removed a careless responder who
answers the survey with a number of repeated sequential value
greater than the half of items, and the reliability analysis was
conducted with 49 participants. The participants are a sample
of a general audience, ranging in age from 12 to 34, with
more people between ages of 17 and 20 (more than 50% of
the total). 72% of the participants are men, while 28% are
women. A total of 71% of the participants are undergraduate

students, while 21% are students from high and elementary
school and 8% are graduate students.

Table I shows the result of the exploratory factorial analysis.
According to the cumulative variances (> 0.70) and proportion
explained (25% for the first component) returned in the factor
analysis, our version of IMI questionnaire is consistent with
the psychometric validation of original IMI questionnaire [16],
[17]. Table II shows the result of the reliability test in the IMI
survey. The Cronbach’s alpha (α) found for this study has the
relevant consistency of 0.90s for all factors.

TABLE I
EXPLANATORY FACTOR ANALYSIS IN THE ADAPTED PORTUGUESE

VERSION OF IMI QUESTIONNAIRE

Scale and Items F3 F2 F1 F4

Perceived Competence
I was quite skilled 0.929 0.202 0.044 −0.241

Satisfied with performance 0.836 0.026 0.194 −0.249

I’m good at this activity 0.808 0.006 0.321 −0.094

I could not do it well −0.791 0.182 −0.180 0.029

I feel competent 0.687 0.321 0.159 −0.280

Good compared to others 0.675 0.394 −0.157 −0.109

Value/Usefulness
Beneficial activity 0.138 0.940 0.102 0.027

Use for learning 0.019 0.840 0.135 −0.042

Some value to me 0.238 0.802 0.281 −0.009

Activity is important −0.086 0.798 0.339 0.029

Helps to learn functions 0.129 0.781 0.222 0.024

Interest/Enjoyment
Activity was fun 0.201 0.207 0.876 −0.020

Interesting activity 0.023 0.367 0.755 −0.071

I really enjoyed doing 0.109 0.369 0.778 −0.328

Very nice activity 0.417 0.207 0.707 −0.269

I reflected about how much I liked 0.058 0.234 0.524 −0.263

Relaxed activity 0.130 0.025 0.704 −0.174

Perceived Choice
I had no choice −0.187 −0.012 −0.088 0.908

I felt obliged −0.167 0.000 −0.177 0.912

I had no choice −0.245 −0.047 −0.148 0.806

I did it because I had to −0.123 0.125 −0.370 0.809

Cumulative Variance 0.203 0.405 0.591 0.756

Proportion Explained 0.268 0.267 0.246 0.219

TABLE II
RESULT OF RELIABILITY ANALYSIS FOR THE ADAPTED PORTUGUESE

VERSION OF IMI QUESTIONNAIRE

Total

Intrinsic Motivation 0.920

Perceived Competence 0.922

Value/Usefulness 0.935

Interest/Enjoyment 0.910

Perceived Choice 0.942

D. Data Analysis and Discussion

The objective of this analysis is to investigate if there are
significant differences in the learning gain, motivation and time
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Fig. 7. Perceived Choice IMI scale data by the group of participants that
likes puzzle games

spent in the game for the different types of audience classi-
fied through the demographic profile. The statistical methods
Kruskal [18] and Wilcoxon–Mann–Whitney [19] were used to
look for significant differences. The choice for non-parametric
methods was due to the reduced sample size and lack of
normality in the data collected. Among all the results of the
analysis, some interesting aspects could be observed from
the IMI questionnaire and demographic profile data results as
reported next.

1) Perceived Choice to People That Likes Puzzle Games:
By means of a Kruskal-Wallis test, it was possible to observe
that there was a statistically significant difference between the
value of the Perceived Choice scale for the group of partic-
ipants who enjoys puzzle games (p = 0.016). The Wilcoxon
Signed-Ranks Test indicated that, for this scale, the median
ranks for those who enjoy puzzle games (M.Ranks = 25.24)
were significantly higher than the median ranks for participants
who did not like this genre (M.Ranks = 16.97). This rejects
a null hypothesis that ”there is no difference in the Perceived
Choice scale for those who prefer puzzle games”. This allows
us to infer that a group preferring puzzle games reveals the
tendency to enjoy playing our game. The Figure 7 shows this
relationship. Thus, the game being developed tends to attract
people who are already familiar with this genre of game.

2) Value/Usefulness and Intrinsic Motivation to People that
Like the Domain Content: Another Kruskal-Wallis test reports
a statistically significant difference in the ”Value/Usefulness”
scale of the IMI. This happens for the group of partici-
pants that likes the content covered by the game domain:
mathematic functions (p = 0.034). A Wilcoxon Signed-Ranks
Test indicates that the median ranks (M.Ranks = 29.59) were
significantly higher for those who enjoy the content covered.
The value is higher than median ranks for participants who
dislike mathematical functions (M.Ranks = 20,94). Therefore,
it is possible to reject the null hypothesis that ”there is no
difference in the Value/Usefulness scale for those who have
appreciation or not in the field of content display by the game”.

Fig. 8. Value/Usefulness IMI scale data by the group of participants that
already likes to know about mathematical functions

Thus, for the group that already likes to learn and know about
mathematical functions, we can infer a tendency to give more
value and importance for the gaming experience. The Figure
8 represents a relationship between these two concepts. This
result is interesting to validate the use of the game in a real
educational context.

The third Kruskal-Wallis test reports that there is also
a significant difference between the value of the ”Intrinsic
Motivation” scale of the IMI, and the group of participants
that like the content covered by the game domain (p = 0.041).
A new Wilcoxon Signed-Ranks Test indicated that for this
other scale, the median ranks for those who enjoy the content
(M.Ranks = 29.43) were also significantly higher than the
median ranks for participants who did not like mathematical
functions so much (M.Ranks = 21.08). This rejects the null
hypothesis that there is also ”no difference in the scale of
Intrinsic Motivation for those who have appreciation or not,
for the domain of the content shown in the game”. Thus, we
can infer that there is a tendency in players, which already
like to learn and to know about mathematical functions, to
become more motivated by taking part in the game activity.
Figure 9 shows the relationship between these two concepts.
This new result, together with those already reported, states
again the potential of the gameplay to motivate and catch
the players attention. This mainly happens for those who are
already interested in the content addressed, increasing their
chances of improvement during the learning process.

V. CONCLUSION

This paper featured an educational game project for math-
ematics learning, ”A Plot from the Stars”. We presented its
gameplay concepts and preliminary results from an evaluation
done by a group of 49 students/players over the beta version
of the game. The results indicate that the intrinsic motivation
increases when those participants have some knowledge about
puzzle games and/or math. This finding is important since
it gives information that helps to tailor the game mechanics
and features to meet the needs of this type of student. Also,
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Fig. 9. Intrinsic Motivation IMI scale data by the group of participants that
already likes to know about mathematical functions

it can help us to develop new versions of the game aiming
to motivate those people who are not interested in math or
puzzles. As future work, the gameplay mechanics are expected
to be improved as well as more content for the game will
be produced. This includes new enemy ships, new items and
new mathematical functions such as the sine, cosine and
the exponential functions. In addition, new experiments will
be conducted within educational environments for the game
validation.
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Abstract—Raising awareness among young people and chang-
ing their behavior and habits concerning energy usage and the
environment is key to achieving a sustainable planet. The goal
to address the global climate problem requires informing the
population on their roles in mitigation actions and adaptation of
sustainable behaviors. Addressing climate change and achieve
ambitious energy and climate targets requires a change in
citizen behavior and consumption practices. IoT sensing and
related scenario and practices, which address school children via
discovery, gamification, and educational activities, are examined
in this paper. Use of seawater sensors in STEM education,
that has not previously been addressed, is included in these
educational scenaria.

Index Terms—IoT, STEM, educational scenarios, behavioral
change

I. INTRODUCTION

Wireless Sensor Networks have seen a tremendous devel-
opment, leading to the realization of the Internet of Things
(IoT). Today, there is a large variety of hardware and software
to choose from that is easy to set up and use in an increasing
number of real-world applications [1]. One such application
is education: the deployment of a variety of sensors (e.g., for
monitoring electricity consumption, environmental conditions,
be them indoor or outdoor, etc.) across school buildings
or across different natural water reserves, during different
seasons, can produce real-world data to be directly used in
STEM educational activities.

This is a crucial period for the future of our planet as
it becomes evident that human activities inflict irreversible
damage on the environment and on critical resources. One
approach for addressing the climate change problem is through
the development and transfer of green technologies. Emphasis
is given to Environmental awareness via STEM education.
This is achieved by sensor experiments, utilizing off the shelf
IoT sensors, and educational activities planned specifically for
school children, as part of their Science class. Gamification
elements are inseparable in such approaches: discovery and
adventure are intemperate elements in childs play that leads

them through knowledge. Gamification via the internet and
social activity mechanisms, on the other hand, is multiplying
the impact of the children engagement.

This paper deals with energy and environmental awareness
as a part of STEM school educational activities. This is
handled in two ways: a) by addressing energy footprint and
energy consumption, via individual and group class activities,
by using IoT sensors and gamification elements using real
sensor data from familiar environments and recording changes
in behaviour that affect directly energy consumption. And b)
To raise environmental awareness of the systemic nature of
changes, (affecting the sustainability of ecosystems, climate,
etc) via a quest for inquiry and knowledge using data from sea
water sensors. The latter has not been previously addressed
due to the difficulties imposed by the nature of such IoT
infrastructure that can be used for getting data in sea water.

Reinforcing the educational community on educating the
new generations will create a multiplier on the overall energy
reductions: promoting sustainable behaviours at school will
also reflect behaviours at home. Several studies document the
ability of students to influence choices made by their families
related to environmental issues [2]. The research interviews
conducted in [3] made clear that energy conservation insights
learned in school can be applied at home by students and their
families. Since about 27% of EU households include at least
one child under the age of 18 [4], targeted efforts of reaching
families of children and young people will scale further to
reach a large portion of the EU population and multiply the
benefits towards sustainability of the planet.

The rest of the paper is structured as follows. In Sec. II
relevant literature is presented and in Sec. III a platform
for using data collected from IoT deployments at schools in
STEM is presented in details. In Sec. IV a set of educational
actions is presented that uses the data collected from the IoT
infrastructure to focus on promoting behaviour change. In
Sec. V a new set of educational scenarios are proposed for
examining the aquatic sector and how to educate students on
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sustainable behaviours. The paper concludes in Sec. VI where
future research directions are also provided.

II. RELATED WORK

The approach of promoting sustainable behavioural change
through activities targeting the educational sector falls within
the scope of several research projects. [5] focuses on 4 public
university sites with pilot hardware installations, combined
with software aimed either at desktop users or mobile users,
for promoting energy consumption awareness and engagement.
Focused on school buildings are the Veryschool [6] and
Zemeds [7] projects, producing recommendation and optimiza-
tion software components, or methodologies and tools. [8]
produced several guidelines and results regarding good energy
saving practices in an educational setting.

The procedures proposed (see sections IV and V) include
the users monitoring data and drawing subsequent conclusions
- as a part of games or school education assignments- as a
first step towards raising awareness. The concept of users in
the loop of monitoring is central in the area of participatory
sensing [9] in which personal mobile phones of users are used
to collect relevant data for a number of applications such as
urban planning, public health, cultural identity and creative
expression, and natural resource management. This approach
has been employed by the Cornell Laboratory of Ornithology
[10] in a science education project on bird biology, while in
[11] the authors describe trials for air quality, water quality
and plant disease monitoring. Similarly to our context, [12]
presents a solution combining a deployed and participatory
sensing system for environmental monitoring.

Therefore facilitating the development of diverse application
scenaria and supporting the different requirements in terms
of data interpretation and analytics is a crucial aspect. In
[13] look into people-centric applications for facilitating the
educational sector towards improving the energy efficiency of
school buildings. In a broader context, in [14] people-centric
scenaria are examined at a smart city level.

Other related approaches are reporting on IoT enabled
gamification, targeting reduced energy consumption in public
buildings [15] and [16].

An integration of an IoT data management platform and a
serious game, whereby users compete in energy-related actions
is reported in: [17]. In the past several approaches have been
proposed in order to address the potentially huge number of
sensor data arriving from the IoT domain, each one of them
applied in different parts of the network architecture [18]–
[21]. In the GAIA project approach, a platform is used for
sensor reading related gamification activities, referred to as
”the GAIA challenge”, which can be seen in [22].

In [23] the authors discuss the value of participating to
project like these for students, concluding that “Students are
gaining deep domain-specific knowledge through their citizen
science campaign, as well as broad general STEM knowledge
through data-collection best practices, data analysis, scientific
methods, and other areas specific to their project”

III. IOT AND REAL-WORLD DATA IN STEM

One approach for addressing the climate change problem is
through the development and transfer of green technologies.
In the context of reducing the energy spent in residential
buildings, new technologies have been introduced that im-
prove the energy efficiency of buildings. In fact, till now the
dominant approach was to use energy-efficient infrastructure
and materials to reduce the energy consumption of buildings.
Unfortunately, the rates of construction of new buildings as
well as the rates of the renovation of existing buildings are
both generally very low [24] to expect a significant effect
on the total amount of energy spent in our everyday life
at a global level. Similarly, the approach for reducing the
energy consumption in transportation focuses on improving
the energy efficiency of motor engines. Also here, given the
rate of change of existing fleets with energy efficient one, it
is very challenging to save energy in this sector through this
approach [25].

An alternative approach, that has recently received em-
phasis, is the promotion of energy consumption awareness,
sustainability and behavioural change on people. The main
concept is that to address the global climate problem requires
informing the population about their roles in mitigation actions
and adaptation of sustainable behaviours. In other words,
addressing climate change and achieve ambitious energy and
climate targets requires a change in citizens’ behaviour and
consumption practices [26]. Reports indicate that citizens
making efficient use of energy in their everyday life can lead
to large energy and financial savings and potentially to a
substantially positive environmental impact [26].

A key challenge for achieving sustainability and trans-
forming people’s behaviour towards energy consumption is
the need to educate them on such issues. An interesting
starting point is the educational sector. Raising awareness
among young people and changing their behaviour and habits
concerning energy usage is key to achieving sustained energy
reductions. At EU level, people aged under 30 represent
about a third of the total population [27]. Thus, by targeting
this group of citizens we affect a large part of the EU
population. Additionally, young people are very sensitive to
the protection of the environment so raising awareness among
children is much easier than other groups of citizens (e.g.,
all attempts made to achieve behavioural change and establish
new environment-friendly habits to children regarding recy-
cling have had very high success rates).

The GAIA platform [28] is among the very few IoT systems
that have focused on the educational community. A real-
world IoT deployment is spread in 3 countries (Greece,
Italy, Sweden), monitoring in real-time 18 school buildings
in terms of electricity consumption and indoor and outdoor
environmental conditions. The data collected is used as part
of series of education scenarios whose goal is to educate,
influence and attempt to transform the behaviour of elementary
school students through a series of trials conducted in the
educational environment and in homes. Feedback mechanisms
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notify the students on current energy consumption at school
and in this way assist towards raising awareness regarding
environmental effects of energy spending and promote energy
literacy by educating the users.

GAIA is based on the principle that continuously monitors
the progress of students positively contributes towards reduc-
ing the energy consumption and successful behaviour change.
Since the IoT deployment is multi-site and multi-country
can motivate, for example, to identify energy consumption
patterns in different countries and across different climate
zones. This can be used to make comparisons or competitions;
for instance, students of school A compete with students
of school B inefficiency. This could also help understanding
cultural differences with respect to energy efficiency awareness
and sustainability.

The deployed devices provide 880 sensing points organized
in four main categories: (1) classroom environmental comfort
sensors (devices within classrooms); (2) atmospheric sensors
(devices positioned outdoors); (3) weather stations (devices
positioned on rooftops); and (4) power consumption meters
(devices attached to the main breakout box of the buildings,
measuring energy consumption). Given the diverse building
characteristics and usage requirements, the deployments vary
from school to school (e.g., in number of sensors, hardware
manufacturer, networking technology, communication proto-
cols for delivering sensor data, etc.). The IoT devices used are
either open-design IoT nodes (based on the Arduino popular
electronics prototyping platform, see [29]) or off-the-shelf
products acquired from IoT device manufacturers.

The platform also incorporates participatory sensing tech-
nologies for semi-automatic periodical collection of energy
usage to acquire information in buildings where no IoT sensing
elements are available, e.g., utilizing web/smartphone/social
networking applications for acquiring information on room oc-
cupancy, usage of conditioning or special machinery, opening
of windows, etc. The goal of GAIA is to include the users in
the loop of monitoring the energy consumption in the buildings
they use daily, thus making the first steps towards raising
awareness, connecting the educational activities carried out at
schools with their activities at their home environment and
also engaging the parents and relatives at home. The teacher
can initiate participatory sensing sessions during the courses
so that students can use phones and tablets to gather data in
real time and then review them in class (for more information
see Sec. IV).

The integrated sources of input are utilized to continu-
ously provide direct feedback, custom-tailored to each par-
ticular learner/audience (i.e., kindergarten, school, university,
parents). Direct feedback is provided via real-time displays
(RTDs) installed at central locations in the buildings, published
on school websites, posted to social media, and also dis-
played on the users’ smartphones and tablets. Direct feedback
mechanisms are developed to address the immateriality of
energy [30] and make it a visible entity by connecting it to
the daily activities of students. Visual analytics are combined
with recent advances in IoT sensing and pervasive computing

technologies to provide an interactive environment that stim-
ulates behavioural change on a frequent basis. The energy
consumption topic is included in the pedagogical activities
of the schools incorporating educational aspects to promote
energy literacy, convey information regarding historical data
and comparative information with other buildings of similar
characteristics (for more information see Sec. IV).

A series of social-networking applications are provided
to set community-based incentives for pro-environmental be-
havioural change and promote collective consuming of re-
sources. These applications utilize the already established
relationship between users of the same school/department to
provide community-based initiatives to reduce their overall
environmental footprint and increase environment-friendly ac-
tivities. A series of game-based competitions further engage
the students in learning how to improve the energy effi-
ciency, and to encourage them to actually follow the learned
practices. Research suggests that competitions can be effec-
tive in promoting environmentally responsible behaviour [31].
Historical data collected from the IoT infrastructure allows
students to compete with each other on periodic intervals
(e.g., per week/month/season) to further motivate eco-friendly
behaviours. A combination of direct competition among other
groups of similar size, climate zone, socio-economic charac-
teristics and past years (e.g., class 2016 vs recordings from
class 2015) and indirect competition against each group’s
own performance is followed. These competitions encourage
spreading the word to larger groups, allowing related persons,
such as parents, friends, or neighbours, to participate and also
appeal to positive emotions, such as hope and enjoyment, as
ways to changing individuals behaviours.

Bringing IoT into the sea. Most of the works in the IoT
domain focus on terrestrial applications. Even when offshore
infrastructures or vessels are considered, IoT devices are
mostly deployed in “dry” surfaces and only some specific
transducers are actually deployed into the water. The underwa-
ter environment is hostile, and consequently, underwater IoT
devices are very expensive. If you only consider a reliable
water-proof housing for shallow water, it costs at least 2
or 3 order of magnitude more than terrestrial solutions and
much more if you consider deep water scenarios. Underwater
operations are complex and challenging. As an example, the
fast growth of algae or microorganisms can suddenly affect
the quality of sensors readings that have to be often cleaned.
Underwater communications are still extremely difficult and
energy-hungry; RF propagates only a few centimetres and only
acoustic or optical communications can be used for longer
distances. The energy cost of underwater communications
strongly limits the device lifetime, that is usually in the order
of few months at best and requires frequent replacements of
the batteries, an annoying, time-consuming and difficult task.
Finally, communication standards are emerging only in the
last years. Due to these reasons, the availability of underwater
IoT data is still very limited. One of the few attempts to
provide a federation of underwater testbeds for the Internet
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of Underwater Things is the EU project SUNRISE [32].
While SUNRISE clearly showed us the potential of exploring
underwater data, it was not originally conceived for STEM
educational activities, and both the complexity of the tools and
the costs of the equipment are not yet suitable to be operated
by students. Despite these difficulties, there are already some
efforts for more affordable tools for underwater investigations
[33], [34] and is, however, possible to design significant STEM
activities (see section V) that focus on shallow water and/or
surface sampling that significantly lower the above-discussed
difficulties. Indeed, the focus on the shallow water and/or the
sea surface allow us to a) engage students in participatory sam-
pling (i.e. they are directly involved in the sampling procedure
at sea), b) deploy relatively simple networking infrastructures
capable to deliver the data acquired by possible underwater
traducers employing standard wireless technologies (e.g. Lora,
Sigfox or even WiFi). In the latter case, the transducers can
be placed underwater and the collected data are delivered by
a cable to a wireless device on the surface that makes them
available in the cloud.

IV. ENERGY EFFICIENCY EDUCATION

A main objective of environmental sustainability education
in terms of raising awareness towards energy efficiency is to
make students aware that energy consumption is largely influ-
enced by the sum of individual behaviours (at home, school,
etc.) and that behaviour changes and simple interventions in
the building (e.g., replacing old lamps with energy-efficient
ones) can have a great impact on achieving energy savings.
IoT technologies can support these initiatives by mediating
people’s interaction with the environment in order to provide
immediate feedback and actually measures the impact of
human actions while automating the implementation of energy
savings policy and at the same time maintaining the comfort
level perceived by people.

Teachers can use collected data and analytics during class
to explain to pupils basic phenomena related to the parameters
monitored and organize student projects, where each student
monitors specific environmental parameters at their home. In
Monitoring school buildings situated in different countries can
help, e.g., to identify usage or energy consumption patterns.
This, in turn, can be utilized to make comparisons or realize
competitions through social networking and game applications
(e.g., students of school A compete with students of school B
in answering energy awareness questions).

Including the users in the loop of monitoring their daily en-
ergy consumption is a first step towards raising awareness. In
an educational environment, this step can be further enhanced
and capitalized in the framework of educational activities with
the support of the IoT infrastructure. The educational activities
in each school are based on data produced within the respective
buildings, while the effects of changing certain behaviours
can be detected and quantified. E.g., teachers can complement
existing educational activities on sustainability with simple
actions with immediate IoT-enabled feedback, such as turning
off the lights in parts of the building and monitoring the drop in

Fig. 1: Indoor temperature histogram for three classrooms
during Sep/17 to Oct/17

consumption or using thermal cameras to discover problematic
areas combined with data showing the effect of incomplete
building insulation.

Scenario 1: The Importance of Building Orientation is
the practice of facing a building so as to maximize certain
aspects of its surroundings, such as street appeal, to capture
a scenic view, for drainage considerations, etc. With rising
energy costs, it is becoming increasingly important for builders
to orient buildings to capitalize on the Sun’s free energy. In
this scenario, the students are introduced to basic notions
of building orientation and how to take advantage of the
sun warmth to increase indoor comfort and reduce energy
consumption. IoT sensors that monitor indoor temperature
and humidity are used to observe how indoor conditions vary
throughout the day. Data collected from the other classrooms
of the school are used for comparing the indoor conditions of
rooms with a different orientation. The educational scenario
provides information on how to reconstruct the surroundings
of the building in order to affect the effects of the sun. As
example trees are an important factor in passive solar design
because they can provide shade during hot summer days.
Data collected from classrooms of similar orientation where
however there are different trees located on the outside are
used to observe how indoor conditions vary.

In Fig. 1 a histogram is provided for the indoor temperature
of the three classrooms (facing south, south-west and south-
east) examined during a period of 2 months. Lower tempera-
tures are observed in the room facing South-East in contrast to
the other two rooms. Examining the classrooms temperature
is a measure of understanding the conditions under which
students and teachers operate. Hot, stuffy rooms—and cold,
drafty ones—reduce attention span and limit productivity.

Scenario 2: Insulation Materials have a critical impact on the
indoor conditions of classrooms during the daily educational
activities. Evaluating the indoor conditions of a building also
requires considering other factors related to the construction
materials used, the location of the windows and the heating
and ventilation technology used. The GAIA platform includes
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Fig. 2: Classroom temperature during 30/Sep (Saturday)

school buildings located in different climatic zones, con-
structed in different years ranging from 1950 to 2000, using
diverse materials and with different heating and ventilation
systems. The education scenario uses the data collected from
separate buildings in order to demonstrate the behaviour of
temperature and humidity across buildings located in similar
climatic zones which however have different construction
methodology.

Given the above considerations, the temperature of each
room is examined to identify poorly performing classrooms. In
Fig. 2 two specific performance issues regarding two schools
located in the same city are depicted. The first issue is related
to the bottom figure, where room R1 achieves very poor
performance with temperature starting at the very low level of
20oC and increasing up to 32oC within 8 hours. The second
issue is related with the top figure, where the south-west
facing classroom (R5) and the south-east facing classroom
(R4) have an increase of 2 degrees during the day while all
the other rooms are not affected. Even the south-west facing
room R2 of the bottom figure does not have such an increase
during the day. After contacting the school building managers
it was reported that (a) room R1 (bottom school) is located
outside the main building, within a prefabricated iso box where
insulation is very poor and (b) rooms of top school have no
window blinds installed in contrast to the bottom school where
window blinds are installed in all rooms. These are just two
examples of the results of the analysis conducted. It is expected
that such an analysis can provide strong evidence on how to
improve the performance of schools.

During spring 2017, a set of preliminary testing was con-
ducted over several weeks to get feedback regarding the educa-
tional scenaria that promote energy efficiency and sustainabil-
ity. A total of 944 students and teachers had the first interaction
with the GAIA platform, while we conducted a form-based
survey focusing on the gamification component (196 high-
school students in Sweden and Italy) and the Educational Lab
Kit (132 6th graders in Greece). With respect to the game, 78%
of the students found the content interesting (21% extremely,
26% very, 31% moderately) and 89% the activity user-friendly

(38% extremely, 29% very, 22% moderately). Regarding the
acceptance of the tools from educators, the direct response
gathered through workshops has been positive and several
schools have provided their own schedules for integrating
GAIA tools in classes. Thus, in terms of overall acceptance
of both the tools and the infrastructure inside buildings and
the schools curricula, the results indicate that the educational
scenaria had a quite positive response.

V. SEA POLUTION EDUCATION

Most of the planet’s surface is covered by the sea. Specif-
ically, about 79% of the surface of the Earth is covered
by water and only 21% of the land. Today, we know the
great importance of the sea for life on the entire planet and
especially for humans. The sea has a multiple importance
as being a “source of life” for Earth. It provides the ability
to produce food, minerals and energy, is a key factor for
the renewal of the oxygen we breathe, and the means of
transporting goods (trade, energy transfer/information). Mar-
itime trade routes have also been cultural bridges, integrating
culturally large and disperse geographic areas and allowing
the development of cultures. However, in order to achieve
better use of the potential of the sea and at the same time
to effectively protect it, a detailed study is required [35].

In the educational scenarios proposed, a series of sensors are
used to measure physical and chemical marine parameters. As
already observed in section III, bringing the IoT into the sea
is still very difficult, for this reason, we will focus on surface
sampling activities that are more affordable in the context of
STEM educational activities.

The steps of the pedagogical activities we follow are aware-
ness, observation, experimentation and action. School students
located in Europe’s coastal areas use portable equipment to
carry out relevant measurements and submit them to a database
they have access to. Depending on the teaching needs and
priorities, students can collect and analyze the following:

• current values and any fluctuations of them during the
observation period of the activity,

• changing values for longer periods of time, e.g. making
comparisons between different times of the day, between
months, seasons, or years,

• the variance of the phenomena between different areas.
The mathematical and scientific thinking developed in the

above process can be exploited in various ways by the tutor,
in the context of teaching mathematical and scientific skills,
not only in the science courses but also in cross-thematic
approaches that combining such observations and analyzes the
economic, social and other aspects of our effort for clean seas.

Scenario 1: Observation of Sea Water Temperature is
achieved via water temperature sensors positioned at the sur-
face of sea level. Surface water temperature has a natural daily
(diurnal) and seasonal variation due to weather conditions and
thermal exchanges with the atmosphere. Students use the IoT
infrastructure during the school year to observe the tempera-
ture of the surface water of the sea, examining measurements
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Fig. 3: Surface temperature of the seas of Europe

at different times of the day and at different depths (up to 10m)
and experimentally confirm their theoretical predictions.

Given that GAIA platform is deployed across different
countries, the data collected can accommodate the study of
the surface temperature of the sea in relation to latitude.
The surface temperature distribution fully corresponds to the
distribution of the solar radiation entering the sea. The global
ocean surface temperatures (for water depths up to 5m) show
a bandwidth in terms of latitude. Near the Equator, the waters
have high temperatures throughout the year. On the contrary,
in the areas near the poles, the temperatures of the surface
layers are almost always very low. In the temperate climate
zone, the temperature values obtained by the surface water
mass, are lower than those of tropical waters and higher than
the corresponding polar waters and change significantly during
the year [25].

Students in the Mediterranean coastal regions will record
the higher surface temperature on the same day of the year
than pupils in the Baltic or Atlantic coastal regions, due to
the different latitude and hence to different amounts of solar
radiation that the region receives.

The historic records collected from the IoT infrastructure
also enable to study the temperature of the sea-surface during
the course of a year. Students using the measurements they
recorded during the year will be able to explain the seasonal
variation of surface temperature. In winter, the waves of the sea
are more intense and the surface layer is being mixed while
the temperature is low and uniform. In the summer, where
the atmospheric temperature is high and the wave intensity
is small, water mixing is minimal and the temperature of the
surface layer increases strongly due to heat build-up. From

March to August, the temperature on the surface of the sea
is constantly increasing due to the absorption of heat from
the atmosphere. So, in the spring, the sea surface begins to
create seasonal thermocline, which has a small thickness and
small temperature range. In summer, the surface temperature
is constantly increasing due to the high temperatures prevail-
ing in the atmosphere, resulting in the seasonal thermocline
becoming thicker and higher in the temperature range. From
September to February, the surface layer is constantly losing
heat. The temperature of the atmosphere is smaller than the
sea, and the intensity of the waves is constantly increasing so
that it is fully agitated. So in autumn the thermocline thickness
increases, but its width decreases relative to summer. In winter,
the decrease of the surface layer continues, with the result
that the temperature becomes uniform up to the ceiling of the
permanent thermocline.

The annual range of surface temperatures is maximal at the
intermediate latitudes, while at the small and large geograph-
ical heights the range is minimal. School pupils in medium
latitudes, due to the high fluctuations in atmospheric temper-
ature and other atmospheric phenomena, expect to record a
higher time variation in the temperature of the surface layer.

The educational scenario can be extended to include mea-
surements in shallow coastal areas, where seasonal variation
may be absent from the general rule, particularly if there is a
significant effect of brackish waters. The students conclude
that local water mass inflows and the resulting mixing of
different water types, a phenomenon particularly common in
coastal waters, may lead to deviations from the general rules.

Finally, the capability of the IoT infrastructure to continu-
ously collect data in real-time allows the study of the surface
temperature of the sea during the day. Apart from the seasonal
thermocline in the middle latitudes, there is also the daily
thermocline (diurnal), which is particularly pronounced in the
spring, summer and autumn. Groups of students from schools
in different coastal regions of Europe collect daylight surface
temperature data, record the values in the database, process the
data, and arrive at scientific conclusions about the variation in
surface sea temperature.

Scenario 2: Observation of Sea Water Acidity-Alkalinity
is achieved by deploying pH sensors1 across different coastal
sites. pH plays a major role in the marine ecosystem because
it determines the solubility and chemical form of most of the
substances present in it. The reduction or increase in pH is
directly related to the photosynthesis and respiration of the
marine ecosystem organisms and therefore is related to the
productivity of the biomass. On the surface of the sea the
pH ranges from 8.0 to 8.3 and depends on the atmospheric
pressure of the CO, the temperature and the salinity of the
water. Students find that the chemical properties of seawater
differ from those of the sweet because of the presence of
salts. The less acidic salts contained in seawater (such as
carbonates, bicarbonates and borates) reduce the high acid or
alkaline composition of any liquid waste. So the toxicity of

1Gravity: Analog pH Sensor / Meter Kit For Arduino
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the wastewater is high in the freshwater and decreases in the
sea. pH measurement is the best way to assess the effects of
acid or alkaline waste disposal on the marine ecosystem.

An additional goal of this activity is for students to under-
stand that the critical survival limit for life in lakes and water
streams does not depend on the average value of pH (degree of
accelerating) over a year but on the lowest value of pH. Such
short but dangerous periods with low pH values occur, mainly
in the spring during the melting of the ice (acidity shocks).
Fluctuations in pH may result in the death of many organisms
(e.g., plankton at 6.5 and perch and eel at 6.4 and 6.3 − 6.5
respectively). If the pH value is below 6.5, the adverse effects
on all living organisms begin and below pH 5 all animals and
plants die.

Scenario 3: Observation of Sea Water Salinity and Con-
ductivity is achieved by deploying salinity sensors2 (S) and
conductivity sensors3 (STD) across different sites of the IoT
deployment. Students in different coastal regions of Europe
record sea salinity values and conclude that the total mass
of dissolved salts varies from one sea to another, exceeding
36grams in the Mediterranean Sea and falling below 10
grams of salt per kg of water in some areas of the Baltic
Sea. Students conclude that surface salinity is greatest at lati-
tudes where annual evaporation is greater than annual rainfall
and minimum salinity values are found at latitudes where
rainfall is greater than evaporation. River water also affects
salinity values, for example, the Baltic Sea is a basin with
limited communication with the Atlantic, where large rivers
are poured, while evaporation is minimal. On the contrary,
the Mediterranean and the Red Sea are two basins where the
exhaust is large and the discharge of river water is minimal,
resulting in large amounts of salinity. In addition, melting and
ice formation plays a role in Polar Regions.

Scenario 4: Observation of Sea Water Turbidity is achieved
by deploying turbidity sensor4 (T) across different sites of the
IoT deployment. Students using the turbidity sensor record
physical parameter values that determine the ability of sunlight
to pass through the water. Turbidity is caused either by natural
causes (erosion or decomposition of organisms after their
death) or by the colloidal and fine-grained suspended solids
contained in sewage and industrial waste and precipitating
at the bottom with great difficulty and directly affecting
ecosystem species with increased need light for their develop-
ment. The depth of penetration of light in seawater is critical
for primary production (photosynthesis) and depends on the
clarity of seawater and the wave of light radiation.

Scenario 5: Observation of Dissolved Oxygen Sensor is
achieved by deploying dissolved oxygen sensors5 (DO) across
different sites of the IoT deployment. Wastewater from our
houses contains organic substances that can be used as feed
by other organisms, particularly microbes. These organisms

2Vernier Salinity Sensor
3Vernier Conductivity Probe
4Vernier Turbidity Sensor
5Vernier Dissolved Oxygen Probe

with oxidative reactions metabolize organic substances by
consuming for this process the oxygen dissolved in the water.
Because oxygen has relatively little water solubility, it is
quickly consumed when there is a high organic load result-
ing in anaerobic conditions. Concentration less than 7mg/lt
means oxygen deficiency resulting in the non-survival of fish
and other aerobic organisms. Physiological values of DO range
above 7mg/lt. Sensors of turbidity and dissolved oxygen will
be used to study the phenomenon of eutrophication on closed
shores - gulfs where water circulation is limited, near coastal
rural areas or in areas near ports or in areas where sewage
flows into the marine environment without being biologically
cleaned. Apart from the areas where eutrophication affects
the environment, students will also identify areas such as
river estuaries, which tend to be naturally eutrophic, because
they transport nutrients to the open sea, giving increased
productivity and food to fish and other organisms. It is not
by chance that important sea fishing grounds are located near
estuary areas (North Aegean, Thracian Sea, etc.).

VI. CONCLUSIONS

This paper reports on the use of IoT sensors as a basis
for educating children in environmental awareness and STEM.
A number of educational scenarios are presented based on
sensors readings from school buildings as well as seawater
measurements. The paper raises the subject of early awareness
of environmental issues based on real-world data and the use
of motivating / gamified scenarios.

An education-focused real-world IoT deployment in schools
in Europe can help promote sustainable activities. By using
this infrastructure and the data it produces, it is easier and
more effective to build tools that better reflect the everyday
reality in school buildings and provide a more meaningful
feedback. The development of educational activities focusing
on energy awareness in schools has received very positive
feedback from the educational community. We believe that
recent technological developments allow us to extend the IoT
infrastructure in order to monitor additional environmental
parameters apart from energy consumption. Towards this end,
we propose the deployment of sensors in the sea to form
underwater sensor networks for monitoring the aquatic sectors
of our planet. A series of educational scenaria that utilize
the collected data to further promote sustainability awareness
and behavioural change. This can be achieved via educational
activities in schools as well as gamification, facilitated by
platforms such as the one realized in the GAIA project.
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M. Leggieri, D. Pfisterer, K. Römer, and C. Truong, “True self-
configuration for the iot,” in 3rd IEEE International Conference on the
Internet of Things IOT, 2012, pp. 9–15.

[21] I. Chatzigiannakis, A. Kinalis, and S. E. Nikoletseas, “Power
conservation schemes for energy efficient data propagation in
heterogeneous wireless sensor networks,” in Proceedings 38th Annual
Simulation Symposium (ANSS-38 2005), 4-6 April 2005, San Diego,
CA, USA. IEEE Computer Society, 2005, pp. 60–71. [Online].
Available: https://doi.org/10.1109/ANSS.2005.37

[22] “The GAIA Case,” 2017, https://iot.ieee.org/newsletter/november-
2017/green-awareness-via-iot-infrastructure-educational-labs-and-
games-in-schools-the-gaia-case.

[23] S. Heggen, “Participatory sensing: Repurposing a scientific tool for
stem education,” interactions, vol. 20, no. 1, pp. 18–21, Jan. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2405716.2405722

[24] “Europe’s buildings under the microscope: A country-by-country review
of the energy performance of buildings,” Buildings Performance Institute
Europe (BPIE), Tech. Rep., 2011, iSBN: 9789491143014.

[25] P. Capros, L. Mantzos, V. Papandreou, and N. Tasios, “European energy
and transport trends to 2030,” Institute of Communication and Computer
Systems of the National Technical University of Athens (ICCS-NTUA),
E3M-Lab, Greece prepared for the Directorate-General for Energy and
Transport, Office for Official Publications of the European Communities,
Tech. Rep., 2008, iSBN 978-92-79-07620-6.

[26] “Achieving energy efficiency through behaviour change: what does it
take?” European Environment Agency (EEA), Tech. Rep., 2013, iSSN
1725-2237.

[27] “Key data on education in europe 2012,” Education, Audiovisual and
Culture Executive Agency (EACEA P9 Eurydice, EUROSTAT), Tech.
Rep., 2012, iSBN 978-92-9201-242-7.

[28] D. Amaxilatis, O. Akrivopoulos, G. Mylonas, and I. Chatzigiannakis,
“An iot-based solution for monitoring a fleet of educational buildings
focusing on energy efficiency,” Sensors, vol. 17, no. 10, p. 2296, 2017.
[Online]. Available: http://www.mdpi.com/1424-8220/17/10/2296

[29] L. Pocero, D. Amaxilatis, G. Mylonas, and I. Chatzigiannakis,
“Open source iot meter devices for smart and energy-efficient
school buildings,” HardwareX, 2017. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S2468067216300293

[30] J. Pierce and E. Paulos, “Materializing energy,” in Proceedings of the
8th ACM Conference on Designing Interactive Systems. ACM, 2010,
pp. 113–122.
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Abstract—This paper presents the IoT ready platform of the 
MaTHiSiS H2020 EU project. Sensing devices are used to capture 
the affect of learners during their interaction with learning 
material, which comes in the form of serious games although 
other forms are also considered. This interaction may use mobile 
devices such as smart mobile phones and tablets, but also robots. 
Within the context of MaTHiSiS, a learning process is broken 
down into “learning atoms”, i.e., pieces of knowledge that may 
not be further divided. A set of learning atoms leads to a 
“learning goal”, which is set by the tutor. The process of learning 
is non-linear, i.e., the order of learning activities that are 
presented to a user and are connected with a learning atom may 
be different per user. This personalization process may also have 
an influence in the difficulty of the learning actions and is 
modeled using the concept of the “learning graph”. The overall 
system architecture complies to the IoT paradigm. A set of 
representative serious games developed for different use cases 
that exploit the available IoT infrastructure to personalize the 
learning experience is also presented.  

Index Terms—IoT, learning, affect recognition, serious games 

I. INTRODUCTION 
During the last few years, advances in several research 

areas such as electronics, telecommunications and informatics 
have led to the so called "revolution" of the Internet-of-Things 
(IoT) [1]. The main idea of IoT is that daily used physical 
objects (i.e., the "things") are enhanced with the embodiment of 
short-range and energy efficient mobile tranceivers, which 
allow them to connect to the Internet. IoT derives from such an 
extensive networking and is expected to find numerous 
applications within a broad range of heterogeneous areas. 
Industry, logistics, building and home automation, smart cities 
and smart manufacturing are only few of the areas that have 
benefitted from the limitless opportunities [2] offered by this 
new research area which has been considered by some as the 
"next industrial revolution" [3].  

IoT ecosystems typically adopt a service-oriented architecture 
(SoA) [4]. This means, that every part of the ecosystem 
whether being a hardware object (e.g., a measuring device) or 
some kind of software (e.g., an algorithm that processes the 
measurements of the device) is exposed to the outer world as a 
web service. More specifically, by web service we denote a 
self-contained unit of functionality, which offers its services to 

other "things" via the Internet. Such services may be typically 
categorized into three distinctive categories, based on their 
role within the ecosystem. More specifically, a) sensing 
services are used to capture some physical property (-ies) of 
the real world. In few cases they slightly process these 
measurements before they broadcast them; b) processing 
services whose role is to process and/or analyze the acquired 
measurements of the sensing services. Upon processing, they 
expose the inferred results; c) actuating services that enable 
certain actions, using as input the results of the processing 
services. Typically, applications that are designed with the 
goal to be deployed within an IoT ecosystem conform to the 
aforementioned SoA paradigm, involving distributed sensor 
networks at various scales, distributed processing modules and 
actuation elements.   
On the other hand, serious games [5] within the classroom are 
considered to be the the next step in the educational/training 
environments. Recent developments mainly in the fields of 
informatics and hardware have made equipment such as a 
robot or even a tablet affordable to the masses. Although the 
ideas of serious games used for training exist for the last few 
decades, only recently they have been actually used within the 
classroom in mass education. Their main idea is to provide an 
attractive and motivating environment for their users so that 
the learning process becomes more effective.  
Apart from the fact that students may prefer them over the 
traditional learning processes, they also have several 
significant advantages. Firstly, it is easier to acquire an 
assessment of the users’ achievements. Secondly, they may 
adapt to the user’s special needs, competences and 
performance more easily. Finally, in many situations they may 
be used efficiently even outside the classroom/training 
environment, since no special equipment is required. Since the 
aforementioned serious games typically require some kind of 
equipment to interact or observe (i.e., sense) their user, they 
may be developed to be compatible with IoT ecosystems, as 
previously described.  
In this work we present the IoT-ready approach of the 
MaTHiSiS project, which is based on a platform that supports  
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personalized, non-linear learning based on the users’ affect 
state as collected by one or more sensors. The user is presented 
with some kind of learning material. A learning goal is set and 
the road to the achievement of this goal is divided into several 
tasks, which will be referred to as learning actions and are 
materialized as serious games. The user’s affect state is 
continuously monitored by devices such as cameras, 
microphones etc., depending on the materialization. 
The rest of this paper is organized as follows: Section II 
presents related work in the fields of personalization within 
serious games in education. Next, Section III describes the 
idea of personalization based on learning graphs, section IV 
presents the technical architecture of the MaTHiSiS systems 
that capitalizes on IoT to implement the personalization 
approach. In section V we present the serious games that adapt 
to the cognitive and affect state of the learner, while section VI 
provides valuable conclusions.  

II. RELATED WORK 
The main innovation of our approach is personalization of 
serious-games based education based on affect detection in the 
wild. Existing solutions show a rapid development of the 
market. The most representative ones are: the personalized e-
learning system using item response theory [15], adaptive i-
Learning Management Systems based on standards (aLFanet) 
[16] and Tsal’s progressive attentional training [17]. They 
offer a combination of machine learning techniques and user 
modelling for adaptive learning with multiple scenarios taking 
into consideration various personalization sources like 
previous knowledge, learners cognitive abilities and progress 
through the course. Likewise, a number of commercially 
available adaptive learning technologies on the market like 
Knewton, DreamBox Learning, Smart Sparrow are the 
examples of systems that capture learner’s data and use 
learning analytics to facilitate tailoring of the learning paths. 

Although the solutions have already proven their effectiveness 
in terms of academic achievement of the learners as well as 
their users’ satisfaction, they come with certain deficiencies: 
first and foremost they do not capture the temporal status of 
the learner, i.e. whether they are bored, engaged, frustrated, 
which has direct impact on the learning process evolution and 
relevant satisfaction leaving significant potential for 
improvement. Second, the majority of them requires the 
investment of significant amount of time for training the 
system and parameterization (which is not yet automated), still 
requiring a lot of manual and sometimes intensive design and 
codification tasks, which impedes rapid uptake of the adaptive 
learning systems in the teaching and learning communities. 
Another limitation is the fact that they are offered to a limited 
range of customer segments (due to limitations of technology 
to address specific needs of a wider group of segments, lack of 
domain knowledge).  
 
In MaTHiSiS, we extend personalization to also take into 
account the learner’s affect state using different IoT devices 
including cameras (available in laptops or robots), inertia 
sensors (available in tablets and smartphones) and micro-
phones among others. Exploiting the camera recordings, facial 
expression analysis can be achieved. The facial expressions 
are often considered as the strongest indicator communication 
tool of human emotions. It displays people’s feelings and 
mood state, from simple spontaneous emotions like happiness 
and disgust to time-dependent affective expressions states like 
anxiety, boredom and engagement in during a current task 
and/or a situation. The graph-based method’s algorithm 
presented by D. Antonaras, et. al. in [6] exploits the ability of 
face facial image to be represented as a graph. A facial 
landmark detection algorithm locates specific areas of the 
faces using points of interest that are therefore used also to 
create the graph. Different emotions invoke different 

Figure 1: A learning graph 
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movements of facial muscles and, thus, different positions of 
the points on the image yielding dissimilar graphs during an 
image sequence. Using this variation of the graphs, the 
algorithm predicts the different emotions per certain 
timeframes. The main steps of this algorithm are the face 
detection in the input image, the landmark (point of interest) 
detection, the feature extraction and finally, the facial 
expression classification. The performance of this algorithm 
using Cohn-Kanade [7] dataset to predict affective state 
reached a classification score that rounds up close to 100% 
accuracy. 
With respect to inertia sensors, many recent studies support 
the potential usage of recognizing users’ emotional states 
through various inertia sensors such as accelerometer and 
gyroscope [8][9][10][11]. Inspired by the research performed 
by Coutrix [12], an affect recognition system which exploits 
the expression through 2D and 3D gesture using 
aforementioned sensors can be implemented. In MaTHiSiS we 
expand this method focusing on the recognition of 
engagement, boredom and frustration. This three-dimensional 
and continuous space can be accurately mapped to affective 
states from the theory of flow. The features extracted are 
analysed in order to detect common patterns which can allow 
the system to infer the affect state of the user. Ideally, these 
features will help in the identification of erratic movements or 
unexpected behaviors such as the lack of motion or 
interactions with the devices. This information could denote 
frustration or boredom respectively. Emotion recognition 
based on gaze and speech cues have also shown to lead to high 
accuracy [13],[14] and are employed in MaTHiSiS system 
capitalizing on the relevant IoT services and the 
implementation of relevant algorithms in cloud infrastructures.  

III. THE MATHISIS PROJECT 
MaTHiSiS is an H2020 project that aims to promote a 

holistic approach to education, enabling seamless learning in a 
variety of learning environments and for different learner styles 
and needs. The learning vision is to provide a system that 
would be able to fit the needs of several educational/training 
contexts, ranging from mainstream education to vocational 
training. Moreover, it would be able to support both 
neurotypical learners, as well as learners with learning 
disorders. The pilot activities of MaTHiSiS cover both formal 
and informal education. Also, heterogeneous learning 
environments are supported. Users may interact with the 
MaTHiSiS platform inside the classroom, at home or even 
while commuting and may use a typical personal computer, a 
tablet, or even a smart mobile phone.  

MaTHiSiS aims to provide a whole new ecosystem that will 
facilitate non-linear learning processes, which may be 
personalized in real-time and by considering the users’ 
affective state. It consists of a fully integrated multi-agent, 

interactive platform, which is complemented by a set of re-
usable learning components. The platform is also able to 
automatically provide feedback and to assess a learner’s 
progress and behavioral state. Games play a significant role 
within the whole process.  

More specifically, a teacher (or tutor, in general) is 
responsible to define a non-linear learning experience. For such 
an experience, several learning objectives may be required. The 
platform is able to adapt the whole learning experience to the 
personalized needs of each user. The personalized process takes 
place into real-time, during the learning process. A learning 
goal is firstly set by the teacher. As learning goal, we denote 
the piece of knowledge, skill or competence, which should be 
acquired upon the learning process.  In the context of 
MaTHiSiS, a learning goal may be divided into learning atoms, 
each comprising an atomic, yet complete piece of knowledge, 
skill or competence, which may not be further divided. Thus, a 
learning goal is the most primitive piece of knowledge towards 
a given learning goal. Note that a learning atom is reusable; a 
tutor may associate each with one or more learning goals. 

The whole approach is graph-based (i.e., learning atoms 
comprise a graph) and allows the tutor to a) define the 
importance of the achievement of a given learning atom 
towards the ultimate learning goal, by setting the corresponding 
edge weights; b) to associate each learning atom with different 
learning actions and/or materials; and c) to adapt the weights of 
the nodes per user. Note that these weights reflect the 
personalized aspect of learning per user and are set based on 
her/his affect which is recognized by specialized sensors and 
processing units, as will be discussed in section IV. Overall, a 
learning graph may be seen as a learning scenario. Tutors are 
allowed to design their own learning graphs and are able to 
reuse learning atoms and learning actions, or define their own.  

Adaptation (i.e., personalization) to a specific user is 
automatically performed. Her/his affect state is continuously 
captured while tutors are able to intervene at any time. Of 
course, personal needs such as disabilities or any kind of 
preferences are also stored in the users’ profiles. Their 
emotional state is used to trigger the change of stimuli/learning 
activities provided. This way, for example, when a user is 
recognized to be in the state of “frustration,” she/he may a) be 
guided to overcome the difficulty that may be the cause of this 
emotional state; b) be given the option to start a collaborative 
learning experience; or c) a different learning material may be 
presented to her/him. The overall goal is to keep the user 
engaged within the whole learning process.  

An example of a learning graph is illustrated in Fig. 1. The 
learning goal is “Numbering.” A tutor has defined that the goal 
may be achieved through a set of three learning atoms, namely: 
a) counting (Counting); b) association of numbers to quantities 
(Assoc. Quant.); and c) distinguishing between the notions 
“greater-than” and “less-than” (Discrim. Great-Less). As it may 
be observed, the largest weight is the one that corresponds to 
the discrimination, thus it is considered to have the most 
significant importance towards the learning goal. Note that in 
the presented case, each of the three learning atoms may be 
achieved by a single activity, which is actually a mini game. 
Given the competence level of the learner, a level of difficulty 
for the materialization of a learning action is decided by the 
platform. A personalized instance of the graph is therefore 
computed each time and weights may adapt to the competence 
achieved and the current affect state of the user.  
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IV. THE MATHISIS ARCHITECTURE 

The architecture of the MaTHiSiS platform has been 
carefully selected in order to realize the aforementioned vision 
which is based on the graph concept. It mainly consists of two 
sets of components that interact: a) components that are 
implemented within user devices which shall be referred to as 
platform agents (PAs); b) components that are implemented in 
the cloud, which shall be referred to as Cloud-based Learner 
Space  (CLS). Within the pilot activities of MaTHiSiS, the 
PAs are laptop/desktop computers, smart mobile phones, 
interactive robots and robots. Through the PAs, users 
(depending on their role and the PA) may have access to 
authoring tools, platform configuration components, execution 
of learning experience and a simple UI for managing user 
accounts. The core elements of MaTHiSiS are depicted in Fig. 
2. 

 
Figure 2: The architecture of MaTHiSiS 

 
The core component of the MaTHiSiS ecosystem is the 

cloud learning space. More specifically, the learning 
experience, i.e., the execution of a learning graph and the 
materialization of the learning actions take place in the 
experience engine. The generated interactive content may take 
multiple forms, according to the location of the users. The 
decision support system provides and collects learning 
analytics as well as information regarding the users’ affective 
state, so as to adapt and personalize to the users. The learning 
graph engine is responsible for the instantiation of the learning 
graph depending on the output of the decision support system. 
Finally, all information is stored within the repository.  

The platform agent layer is instantiated into each device 
used, comprising by a UI between the user and the cloud-
based learner space and also a component that is responsible 
for the execution of the learning materials; both consist the 
experience service. All sensors that are embedded within the 
user devices and are used for the detection of the affect state 
comprise the sensorial component. Their readings are sent to 

the cloud, and upon the detection of the affect, the graph may 
adapt to reflect the affect’s new state.  

The user roles within MaTHiSiS are tutors, learners and 
caregivers. Tutors are those that select the learning graph, 
define the learners and select the appropriate device for each, 
while the learning materialization is selected by the platform. 
Learners interact with the learning action materialization 
(while in the case of individual learning they also take the role 
of tutors). Finally, the role of caregivers is complementary to 
the previous two. They are responsible to prompt learners to 
interact with the learning material in cases where this is 
needed. 

We should herein emphasize the analogy of the MaTHiSiS 
architecture to the one of a typical IoT ecosystem, as it has 
been described in section 1. Our system has sensors, which 
may be either integrated within the devices that host the 
learning experience (e.g., integrated cameras of laptop 
computers, accelerometers of tablets/smart phones) or are 
placed within the learning environment (e.g., 
cameras/microphones). Each sensor corresponds to a sensing 
service and is used as input to a processing service, i.e., the 
detection of the user’s affect state, which is implemented in 
the decision support system. Actuation takes place by 
dynamically personalizing learning graphs and adapting to 
each user based on her/his affect and performance. Since all 
processing services run in the cloud, we consider the 
MaTHiSiS ecosystem as an example of an IoT-ready platform, 
which is planned to evolve to ensure scalability and provide 
seamless interconnection with any kind of sensing devices.     

V.  SERIOUS GAMES WITHIN MATHISIS 
 In this section we will present the implemented learning 
materials that have been developed in the context of the 
MaTHiSiS project and have been tailored to suit the specific 
needs of the devices that are available for the pilot actions. 
Currently, materializations that make use of a robot (i.e., the 
robotic layer) and also mobile devices (i.e., the mobile layer).  

 
Figure 3: A happy avatar congratulates the user 

A. The Robotic Layer 
1) Games that are based on the Turtlebot robotic platform 

 A Turtlebot1 robotic platform is used along with learning 
goals which aim to improve the students’ mathematical skills, 
literacy or language comprehension. More specifically, the first 
learning materialization, i.e., the improvement of mathematical 
skills uses the robot to ask the learner to identify the 
largest/smallest number between a series of numbers that are 
presented in the screen and given on cards. An avatar depicted 

                                                             
1 https://www.turtlebot.com/  
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on the robot’s screen asks the learner which of a set of three 
numbers (which may be five/eight based on the difficulty set by 
the tutor) is the largest and which is the smallest one. The 
learner shows one of the cards, which corresponds to her/his 
answer. If the answer is correct, then a cheerful sound is 
played, the robot moves horizontally and the avatar’s face 
changes to a happy one (Fig. 3). When the answer is wrong, a 
sound indicative to a failure is played. The robot moves 
rotationally and avatar’s face changes to a sad one. The same 
series of events takes place in case the user does not respond, 
within a predefined amount of time (timeout). The interaction 
continues for a number of times, based on the difficulty and 
upon the completion the score is sent to the decision support 
system.  Another similar application is also used to improve the 
learners’ mathematical skills, by asking them to provide a 
series of number in order. The third application is used to 
associate numbers to quantities.  

 
a. b. 

Figure 4: Learner showing a card representing a syllable and a 
screen of the Turtlebot guiding the word composition activity. 

 
Figure 5: Turtlebot guiding the word recognition activity 

 

 
Figure 6: Turtlebot following the learner during the word 

recognition activity 
 

As for the improvement of literacy, the goal is to teach learners 
about word composition or association of words with the 

characteristics of objects. This application allows the learners 
to construct words with cards that depict syllables. The robot 
shows a picture of an object (Fig. 4b) and provides the learner a 
set of syllables, which should be used to compose the word that 
represent the object. The learner shows the card (Fig. 4a) in 
some order and the avatar then provides positive or negative 
feedback after each card is shown. When a correct syllable is 
shown, the word to be represented is built accordingly on the 
screen to guide the learner. When the word is finished, 
feedback is provided and the kid is congratulated by the robot. 
Another application is used for word recognition. The robot 
shows a letter and then the learner is asked to pick up the 
picture of the object starting with that letter among the 
provided cards (Fig. 5). The objects can be located in different 
parts of the class and the learner will look for them. During this 
activity, the robot follows the learner (Fig.6). QR coded are 
attached to objects, so that the robot will be able to confirm 
them. Another activity consists in finding what two pictures 
have in common, the solution is chosen among given options 
(available cards). Firstly, the robot shows two pictures. 
Meanwhile, the learner has several cards with words available 
and chooses the one that represents a term that both pictures 
have in common. Feedback is provided by the robot, which in 
case of success, congratulates the learner at the end. 

Another set of activities aims at improving the language 
comprehension of the learners, in addition to reading skills. 
Firstly, the robot shows a sentence, asks the learner to read it 
and to show the corresponding picture among those provided. 
In order to perform the activity, the learner should visit the 
picture where the situation described in the sentence is 
represented. The pictures are placed in the walls of the class. 
An initial learning activity is included to evaluate reading and 
comprehension skills. During this phase, the learner is asked to 
read the sentence in the screen and then, the robot notifies if the 
learner read the sentence correctly, based on teachers’ 
evaluation. Then, the learner has a set of pictures available in 
the walls of the class and one of them represents the situation 
described in the sentence. In case of success, the avatar 
congratulates the learner at the end. A “fill the gap” activity has 
also been implemented as part of the same learning goal. The 
robot first asks the learner to complete the sentence choosing 
the correct word among those provided, by showing an 
incomplete sentence. The learner has a set of cards with words 
to complete the sentence. Furthermore, an activity to associate 
words to a concept is available. The robot shows pictures and 
written words and asks the learner to match them and read the 
word while it used. 

 
a. b. 

Figure 7: Turtlebot’s avatar representing a feeling and a card 
shown by the learner as part of the learning material 
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Emotion recognition is a challenging task for children and 
especially for people suffering from autism spectrum disorder. 
To this goal, two different activities have been designed, 
aiming to aid on the improvement of this skill, by training the 
learner to differentiate among different emotional states based 
on face expressivity. The first activity allows learners, 
especially those with autism, to train their emotional skills and 
improve their capabilities to recognize emotions. First, the 
robot displays pictures of people/cartoons expressing different 
emotions to the learner. Under each picture, the name of the 
emotion appears (Fig. 7a). Then, the robot randomly shows one 
of these pictures (without the corresponding label). The learner 
has cards with the possible emotions (the ones which were 
initially shown) and has to select the correct one (Fig. 7b). 
Feedback is provided by the robot, which congratulates the 
learner at the end, in case of success. A variant of the previous 
activity has also been implemented. In this activity, the learner 
has to recognize the emotion without previous help. First, the 
robot displays a picture of a person/cartoon expressing a 
concrete emotion.  The learner has a set of cards with the 
possible emotions and has to select the correct one.  Feedback 
is provided by the robot, which in case of success congratulates 
the learner at the end. Finally, a set of activities have been 
designed to improve motor/coordination skills. In that case, the 
applications defined require functionalities which are not 
available in this platform agent. However, taking advance of 
the re-usability of learning material that has been implemented 
in MaTHiSiS, this can be materialized through learning 
materials that have been developed to be used in other platform 
agents. These applications are web-based games that can be 
deployed in computers, tablets and smartphones. TurtleBot uses 
these applications and enriches them by providing an added 
value, including visual feedback through the movements of the 
robot. 

2) Games that are based on the NAO robot 
A NAO robot 2  has also been used in the context of 

MaTHiSiS. Most learning materials that are used with the 
NAO as platform agent depend on verbal or visual interaction 
of the robot with the learner. 
Within the Emotion Recognition learning goal, the robot asks 
the learner to pick a number of cards depicting faces, to show 
them to it one by one and say the corresponding emotion. The 
cards that are placed in front of the learner depict faces with 
distinct expressions. Depending on the level of difficulty the 
faces may be sketches, drawings or photographs of people. 
The robot verbally explains the game to the learner, if she/he 
has not played it before. The learner taps the robot on the head 
and the game begins. The learner picks a card and shows it to 
the robot. The robot asks for the name of the emotion that the 
card shows. The robot gives feedback to the learner and after 
three iterations the game finishes and the robot responds 
accordingly. Similarly, an activity used for the identification 
of emotional facial expressions slightly differentiates than the 
previous one; the robot says an emotion and the emotion and 
the learner has to pick the card that depicts this emotion. 
 

                                                             
2 https://www.ald.softbankrobotics.com/en/robots/nao  

The first activity designed to improve the learner’s math skills 
requires comparison of numbers. Note that the range of the 
numbers depends on the level of difficulty. Firstly, the robot 
explains the game to the learner, if she/he has not played it 
before. Then, the learner taps the robot on the head and the 
game begins. The robot says two random numbers, asks which 
is smaller or greater and the learner responds verbally. The 
robot gives feedback to the learner and after three iterations the 
game finishes and the robot responds accordingly. The second 
activity consists of sorting the numbers. The robot says five 
random numbers and asks the learner to repeat them one by one 
in ascending order. Again, the range of the numbers depends on 
the level of difficulty. 

Another goal is to improve the learner’s motor skills. The first 
activity requires the imitation of motor sequences. The robot 
performs a sequence of gestures and asks the learner to repeat 
them in the same order. Note that due to the lack of action 
recognition of the NAO robot, this material is assisted by the 
tutor. Again, the robot explains the game to the learner, if 
she/he has not played it before. The learner taps the robot on 
the head and the game begins. The robot performs an action. 
The complexity of the action depends on the level of difficulty. 
The learner performs the action, imitating the robot. The tutor 
taps the robot on different sensors depending on the learner’s 
response. Finally, the robot verbally gives feedback. The 
second activity aims to train the spatial perception of the 
learner. First, the robot asks the learner to touch a part of its 
body and with the use of its sensors, it then recognizes the 
response and gives appropriate feedback to the learner. 

A series of activities has been designed to improve the learner’s 
language skills. Within the first activity the learner has to find a 
synonym of a word that is said by the robot. The options are 
also given verbally by the robot, but only one of them is 
correct. As the difficulty level rises, the words that are chosen 
are conceptually harder. The robot explains the game to the 
learner, if she/he has not played it previously and the learner 
taps the robot on the head and the game begins. The robot says 
the word and also says the three possible synonyms of the first 
word. The learner responds verbally and the robot gives 
feedback to the learner. After three iterations the game finishes 
and the robot responds accordingly. A slight variation uses 
antonyms instead of synonyms. Another activity aims to 
improve the learner’s skills regarding semantics. In brief, the 
robot talks about a topic and then it asks the learner to say a 
word that is relevant to this topic. A tutor-assisted activity aims 
to improve spelling skills. The robot asks the learner to write 
down a word. As it is not possible for the robot to recognize 
different handwriting styles, the tutor responds if the learner 
spelled it correctly or wrong. An activity to improve the 
learner’s vocabulary begins with the robot saying the names of 
various objects and asking the learner to match the names with 
the pictures that are laid in front of her/him. The difficulty level 
defines the number of cards used. More specifically, upon 
verbal explanation of the game by the robot, the learner taps the 
robot on the head and the game begins with the robot saying 
the name of an object. Then, the learner picks a card from the 
pool and shows it to the robot. The robot recognizes the marker 
on the card and gives feedback to the learner. After three 
iterations the game finishes and the robot responds accordingly. 
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A variation of this activity requires matching objects to pictures 
and repetition of their name. This learning material is actually 
the same as the one previously described, with the addition that 
the learner is asked to repeat the name of the object after 
showing the card to the robot. Within another variation, the 
robot says the name of an action, e.g., “wake up” and the 
learner has to pick and show the correct word card to match it. 
Alternatively, the robot says a word and then asks the learner to 
pick the card that has the word written on it. An activity to 
evaluate the pronunciation of the learner starts with the robot 
saying a word and then asking the learner to repeat it. As the 
difficulty level increases, the number of syllables in the 
requested word increases accordingly. Finally, in a variation 
the robot says an incomplete sentence and the learner has to say 
the missing word. 

To improve the learner’s attention skills, the first activity 
requires matching sounds to emotions. The robot plays a sound 
that expresses a basic emotion (e.g., laughter, crying etc.) and 
then it asks the learner to say the name of this emotion. Then, 
the learner has to say the name of the basic emotion that the 
sound represents and the robot responds accordingly, 
depending on the correct or wrong answer of the learner.  

 
a. b. c.  

Figure 8: NAO asking the learner during the interaction and 
examples of two cards corresponding to the learner’s answers 

 
In order to improve sequencing skills, another activity requires 
sorting of pictures into logical order. Cards depicting various 
actions are placed in front of the learner and the robot asks 
her/him to show them to it in the correct logical order (Fig. 8a); 
e.g., the cards may show a child waking up, dressing, eating 
and leaving the house (Figs. 8b, 8c). The level of difficulty 
defines the number of cards in the sequence. When the learner 
shows the cards, the robot gives feedback after each card by 
recognizing the marker on each. A variation requires the 
learner to pick cards that are placed on the floor one by one in 
order to construct a correct sentence. Each card has one word, 
and the number of cards is dependent on the difficulty level. 

Finally, navigation is another skill that the designed activities 
are planned to improve. The first activity aims to the 
identification of left and right. The robot raises one of its hands 
and then it asks the learner which hand was the one that it 
raised. The robot stands up. Depending on the difficulty level 
the robot may turn its back to the learner or keep facing 
her/him. The learner has to reply verbally and the robot gives 
feedback to the learner. Recognition of left and right direction 
is similarly materialized. In this case, the robot points to a 
direction and then asks the learner to say which direction it 

pointed to. In case of learning to turn left or right, the robot 
asks the learner to make it turn, using an external application 
that is provided, to the left or to the right side. This learning 
material requires the tutor to place one marker to each side, 
next to the robot. The learner performs this action using the 
external application and the robot recognizes the marker and 
provides feedback. A more advanced activity requires the 
learner to match pictures to rooms. More specifically, the robot 
says the names of various rooms that exist in a house and asks 
the learner to match the names with the pictures that are laid in 
front of her/him. The difficulty level defines the number of 
pictures that are placed in the pool. The learner picks cards 
from the pool and shows them to the robot, which then  
recognizes the marker on each card and provides feedback to 
the learner. The last activity requires the learner to navigate it, 
so that she/he finds a certain location, which is asked by the 
robot (e.g., table, backboard, etc.). Navigation is performed 
using an external application Markers need to have been placed 
in advance at the desired locations. When navigation is 
finished, the robot gives feedback to the learner 

B. The Mobile Layer 
Within MaTHiSiS, the role of mobile devices such as smart 
mobile phones and tablets is crucial, since, contrary to the 
aforementioned robots, they provide an economical solution 
for schools and as well as for individual learners. Moreover, 
they are equipped with gyroscope and accelerometer, which 
may be used to sense the learner’s affect during interaction 
with the learning material. Finally, they may be easily 
connected with the cloud, where processing takes places. 
Therefore, in the context of MaTHiSiS, several learning 
activities have been designed to exploit the specific properties 
of mobile devices as platform agents. 

 
a. b. 

 
c. d. 

Figure 9: Examples of learning materials that use mobile 
platform agents 

 
An activity for enriching vocabulary and object recognition, 
prompts the user to name the object that is depicted on the 
screen and provides instructions to fill in the word describing 
the picture (Fig. 9a). Further variations offer the selection of 
the appropriate picture among those that are proposed that 
matches the words on the screen. Apart from correct/wrong 
answer, the time it took to complete the tasks is recorded. For 
the learning goal of memory improvement, a set of cards are 
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shown to the learner while they must turn them over one by 
one finding the pairs with same images (Fig. 9b). This activity 
is provided in three difficulty levels, with an increasing 
number of cards. Score and number of correct guesses are 
recorded. As for the learning goal of motor skills and memory, 
the learner is presented a sequence of interactions on piano 
keys and the goal of the game is that she/he would repeat the 
sequence playing a melody (Fig. 9c). The game starts with the 
challenge pressing one key at a time gradually increasing the 
number of keys to repeat based on the difficulty at which the 
game is played. The recorded result falls into one of the 
following categories: failed, passed or mastered. In use cases 
of autism and learning disabilities, a labyrinth game activity 
helps learners to develop hand-eye coordination. The game 
levels are based on the difficulty of the labyrinths the learner 
must navigate using navigation buttons on the screen, through 
adding more complex turns (Fig. 9d). The learners’ aim is to 
move a “monster” along the obstacles/walls of the labyrinth 
and make the monster eat the cookie placed at the exit of it. 
Success and time taken are recording.  
Finally, we should herein emphasize that we have developed a 
learning material that assumes the interaction between two 
learners, situated in different classrooms using tablets or one 
using tablet and another using a computer. Emphasis is on 
collaboration therefore a home screen that emphasizes this is a 
team effort and not a competition between two “players” is 
required. For a collaborative game, the two learners may well 
come into the game with various levels of competency. Their 
level at the end could be separately calculated, by taking into 
account their individual performance and how much help they 
had from or gave help to their partner. If both learners have 
similar affect profiles at the end of the game, next presentation 
of collaborative material could be the same for both. The 
alternative scenario is that one ends the game in a different 
affect state. We assume here that if a learner is bored, it is 
because the level is too easy for her/him, so the bored learner 
should be prompted to help the other one. This also makes the 
assumption that when a learner helps someone who is less 
competent, she/he becomes more engaged. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper we presented the IoT ready platform of the 

MaTHiSiS project which relies on several heterogeneous 
devices, which host the learning materials. It is able to provide 
from low-cost solutions to sophisticated interaction using 
robots. Overall, MaTHiSiS may be characterized as a system 
that provides individualized and personalized pedagogical 
contents, adapting in real-time to the emotional response and 
intellectual level perceived by sensors, in a way that cannot be 
implemented by a teacher alone. 

Initial driver pilots in diverse use cases of Education (i.e., 
mainstream, learners with PMLD and within the autistic 
spectrun) and in 3 countries (i.e., Italy, Spain and UK) have 
shown the effectiveness of the overall approach, they system's 
usability and performance. Currently,  a second round of pilots 
(assisted pilots) reaches its end. These pilot activities make use 
of a prototype integrating the aforementioned technologies and 
the goal is to work in almost real-life conditions and assess the 

user experience and the suitability of offered services. Initial 
results mainly from tutors indicate the effectiveness and the 
potential of the MaTHiSiS approach. 
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Abstract - During the last 10 years, gamification has received 
increasing attention targeting a variety of people including 
children, students, youngsters and employers. In addition, great 
progress has been also observed in the Internet-of-Things (IoT) 
triggering various researchers’ interest. In this paper, we present 
the core integration architecture and a serious game use case that 
are both implemented by the InLife project to drive new learning 
scenarios. InLife is European funded project that focuses on an 
innovative gamification framework targeting both typical as well 
as special education and social inclusion activities based on 
Serious Games. The core concept leverages on the potential of the 
IoT paradigm to link closely actions, decisions and events 
happening in real-life with in-game educational progress and 
modern gaming technologies. This bridge strengthens the 
infusion of gamification into non-leisure contexts, boosting at the 
same time the creation of new educational methodologies as well 
as new business opportunities.  

Index Terms—Internet-of-Things, gamification, sensors, 
serious games 

I. INTRODUCTION 

Games are changing the way people learn, helping them 
think differently, and stimulating new ways in which people of 
all ages can use their minds. From empirical studies, Serious 
Games have proved to be effective in changing user behaviour 
models in real life [1]. Research is showing that games 
constitute a more interactive and participatory way to enable 
people of all ages better understand almost anything – from a 
history lesson to the dramatic change a flood can have on a 
specific community. They are increasingly used whether in 
formal education or at home, and also for vocational training. 
One can use a “virtual world” as a safe environment to try out 
certain behaviour and train repeatively that behaviour until the 
best approach to reach a certain objective has been learned. 
Simulation serious games have been widely used in many 
different fields, even in military or medical environments in 
order to train the behaviour of learners in specific situations 
[2]. 

The realisation of the potential benefits of serious gaming 
when used as educational tools in a sound pedagogical or 
social inclusion framework has recently started to be 

appreciated by the traditional computer gaming industry, now 
eager to branch out into new market segments [3]. Certainly, 
there has been a significant increase in activity within the 
research community but also within the enterprise sectors, with 
a wide number of companies starting to emerge in serious 
game market. Indicatively, the serious games industry was 
valued at slightly more than $2.5 billion in 2015, and is 
expected to more than double, reaching almost $5.5 billion by 
2020 [4]. However, any company targeting the development of 
non-leisure games faces significant practical and pedagogical 
challenges. The most critical issue is that the modular tools 
currently available to the gaming industry are almost 
exclusively based around leisure-based gaming and do not 
support, or cannot be easily integrated, into educational 
contexts. Simultaneously, tailoring serious games to specific 
learning objectives poses a challenge for educators, as existing 
serious games generally do not allow easy adaptation of the 
content to the educators’ own purposes. 

In the frame of InLife, the focus is to facilitate the 
integration of real-world information into the game world and 
validate how this approach helps towards creating immersive, 
pervasive serious games that can have a significant impact in 
their intended educational character efficacy. This will be 
examined on the basis of the implementation of a gamification 
platform and the accompanied development of serious games, 
in which users can progress by completing specific tasks in real 
life, such as switching off a light when leaving a room or 
cooperate with other persons in simple actions, granted 
monitoring infrastructure by sensory devices implementing the 
Internet-of-Things (IoT) paradigm. InLife defines a 
hierarchical, multidisciplinary design approach (Fig. 1), 
bringing together research and applied expertise from several 
scientific fields, including gamification, pedagogical and 
sociological approaches, multimedia, computer graphics, 
human computer interaction for providing a comprehensive 
pervasive gamification development and integration 
environment. 

InLife aims at producing, piloting, validating and 
demonstrating a novel, event-driven serious gamification 
framework for educational and social inclusion purposes, 
which directly links in-game progress and user experience to 
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real-life actions and decisions, detectable through an IoT 
infrastructure. The central novelty of the emergent concept is 
that serious gaming will be directly associated to the real 
world. The real-life actions will be detected by processing 
information coming from smart environments (smart metering 
and smart sensors installations) creating a bridge between the 
emerging IoT world on one hand, and Gamified virtual worlds 
on the other, enabling a multitude of educational, motivational 
and social inclusion applications. 

 

Fig. 1. InLife in a nutshell 

It is essential to highlight that the InLife framework will be 
open and reusable, so that third-parties will also be able to 
create and/or configure their own ‘in-life based’ serious games, 
without having to start from scratch. Hence, through its work, 
the project will enable an ecosystem of InLife-based serious 
games and solutions multiplying the impact of the initial 
investment. 

In the next sections, a high-level overview of the system 
components is presented herein, while a detailed presentation 
of the technical parts is out of the scope of the present paper. 
The rest of this paper is organized as follows. In Section II, 
related work is analyzed. In Section III, we describe the 
architecture of the proposed system, while in Section IV we 
present a use case Serious Game that was implemented. 
Finally, the paper is concluded in Section V.  

II. STATE OF THE ART 

The InLife system intersects with several research areas 
and industrial sectors including (indicatively): Future Internet 
and the Internet of Things, sensor networks, especially using 
wireless protocols, social networking, gamification and serious 
games development. In the following sub-sections, we 
elaborate on these fields. 

A. Social Media and Gamification in the context of INLIFE 

Social Media and online Social Networks in particular, 
have a major impact in everyday life. Facebook [5] and Twitter 
[6] are the most popular ones, but other types of social media 
are growing, focusing on a variety of themes, including 
reviews and ratings, blogging and conversations, location, 

DIY, wikis and business networking. Social media have been 
used in (serious or not) gaming platforms, mainly as a means to 
report gameplay progress in order to increase motivation and 
competition among players. This enhances the playing 
experience of users and contributes to the overall success of a 
game.  

An example of using social media in a serious game 
involves taking into account the level of participation of the 
player in a social network (such as counting shares, likes, 
friends, commits, etc.) and allowing progress only if a 
checkpoint has been reached. In an educational serious game 
for instance, it could be asked that the player completes a task 
and then uploads a corresponding video on YouTube, where it 
gathers views by other players. The game engine could check 
that the user has indeed uploaded a video on their account and 
it has enough views to consider the task as fulfilled, providing 
the relevant reward. 

In the context of InLife, social media have a much more 
significant role. InLife allows the tighter integration of social 
media into the gameplay, considering them not just another 
means to disseminate the results of playing the game, but also a 
source of information and a major parameter that affects the 
progress of the game. This notion is based on the fact that 
social networks are inherently collective and can therefore play 
a quite supportive role in games which focus on collaboration 
between users. The InLife framework will facilitate the 
effortless development of games that are tightly linked to social 
media, allowing these concepts to be used in practice. 

B. IoT Management & Control 

When building an IoT architecture, one of the major design 
choices to be made that affects usability and control is whether 
the platform should be local or cloud-enabled. These two 
approaches are depicted in Fig. 2 [7]. 

 

Fig. 2. Typical IoT Platform architectures (Source: [7]) 

In the InLife concept, wireless sensor networks provide a 
basis for the IoT layer. Because sensors are a major input to the 
overall system, it is highly important that versatile, proven and 
effective technologies are used for the communication of 
sensor measurements. Two of the most popular wireless 
connectivity protocols deployed in this context are Zigbee [8] 
and Bluetooth Low Energy [9]. 

Sensors provide the required inputs to the system that can 
be used to detect events or confirm events registered into the 
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system manually by the users, in order to ensure that users are 
fair. This concept suggests a tight integration of usersourced 
information and sensor-based data. A simple example for this 
would be a kindergarten where the teacher asks the children 
not to make a lot of noise. Wireless sensors placed in the 
facility could monitor noise levels created by the children and 
objectively give feedback to them and the teacher in a game-
like manner. This approach to enforcing the desired behaviour 
would be not only effective, but also entertaining for children, 
which would act collectively in order to achieve a certain 
group goal. IoT research and technology currently available 
present a solid basis for InLife to build upon, allowing us to 
create successful value-added services for IoT platforms. 

C. Using serious game concepts to influence behaviour 
change 

Gaming started out as a branch of children’s play. 
Throughout history, children’s games have brought up 
generations and have been widely recognized as a vital aspect 
of the development of one’s personality, social skills, 
knowledge and other characteristics. However, playing games 
has not always been considered an educational activity and in 
the past was predominantly focused on young people as 
opposed to adults. This has changed in the recent past, where 
the concept of “serious games” was introduced. Serious games 
started out as a concept focused on [10] education through 
experimenting and investigation, having entertainment as a 
secondary purpose. Board and card games are two examples of 
serious games which have been around long before the 
introduction of electronic games. 

One of the greatest challenges in the creation of serious 
games is to find the right proportions between efficacy and 
pleasure. A game of this kind should be effective in building 
skills, knowledge and competences for its players, while at the 
same time providing an acceptable but not excessive reward 
level. The effectiveness of such games has been proven [11] in 
the domain of industrial and military role-playing training 
games, and they have recently made their way into the 
educational domain. The success of serious games in education 
is based on some fundamental and inherent characteristics they 
possess; they are well-structured, highly motivational, they 
have a well-defined set of rules that are accepted by all 
participants etc. Of course, one of the most important aspects 
of serious games is the gameplay, which is what keeps the 
players interested in it. It should therefore be able to adapt to 
each participant’s interest and time they spent playing the 
game, providing the necessary rewards, just as a traditional 
game would do. The importance of game design is further 
analysed below. 

Behaviour modification, also known as applied behaviour 
analysis (ABA), refers to empirically derived techniques 
designed to influence the occurrence or frequency of certain 
behaviours. The research of behaviour modification dates back 
to 1911, when E. Thorndike frequently mentioned “modifying 
behaviour” in his article Provisional Laws of Acquired 
Behaviour. Since 1940s and 1950s, J. Wolpe [12] had adopted 
this term to describe psychotherapeutic techniques derived 
from empirical research. Common methods used in behaviour 
modification include increasing the adaptive behaviour through 

reinforcement, and decreasing the maladaptive one through 
techniques such as extinction, punishment or satiation, with 
emphasis on reinforcement measures.  

In contrast to behaviour modification that imposes or 
removes stimuli to affect a behavioural change, gamification 
attempts to achieve the same result by creating an entertaining 
and engaging experience using the elements of a game or 
contest [13]. According to [14], gamification has four major 
elements that significantly increase its acceptance: increase of 
user satisfaction, conveyance of optimism, facilitation of social 
interaction and provision of meaning. In this way, compared to 
traditional behaviour modification methods (such as 
punishment), gamification relates behavioural or habit change 
to positive emotional feedback. InLife exploits gamification as 
a “technology” which aims to create entertaining experiences 
while accomplishing serious personal, social, or business goals. 
Gamification usually includes game elements such as leader 
board, rankings and points system, to create entertaining and 
engaging experiences. In addition, InLife uses advanced 
artificial intelligence algorithms based on ant-colony 
optimization in order to adjust the players’ rewards based on 
their actions.  

III. GENERIC CONCEPT ARCHITECTURE 

InLife introduces a robust, integration and development 
framework providing the necessary ICT tools and services for 
building, simulating and validating interactive serious games 
and formal learning programs. InLife aims to implement an 
event-driven framework, where serious game evolution is 
tightly bound to real-life actions and conditions. To achieve 
this, it forces towards the following directions: 

• Leverage on a reliable, modular and flexible IoT platform 
providing bi-directional interaction between gameplay 
activities and the surrounding real-space, taking advantage 
of IoT technology.  

• Integrate data analytics, artificial intelligence and 
automation mechanisms, able to closely follow and analyse 
behavioural improvement and learning progress for each 
individual player and make decisions about triggering 
special learning actions when necessary.  

• Realize a modular, flexible and open architecture that is 
able to i) integrate Serious Games in a wide range of 
educational learning and social inclusion contexts with zero 
or minimum external intervention and ii) operate under 
several different logics by adjusting critical serious game 
parameters, e.g. activate on demand audio/visual support, 
record and analyse players’ information trails, formulate on 
the fly completion/cooperation clusters of players for 
certain purposes, etc. 

The InLife architecture, depicted in Fig. 3, defines two 
major layers, namely the IoT-based Data Adaptation Layer, 
which establishes communication with smart devices and takes 
over data aggregation and adaptation, and the Gamification 
Layer, which coordinates InLife’s services provision and 
gamification control. In InLife, trainees are able to access and 
play Serious Games through their portable smart devices, e.g. 
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smartphones and tablets, after they have been registered by the 
IoT platform.  

In the following two subsections, the two major layers of 
InLife’s open framework are thoroughly described both in 
technological and operational aspects. 

A. IoT-based and Data-Adaptation Layer 

Data aggregation in InLife is built on top of an open and 
flexible IoT Platform, which facilitates registration, 
communication, data flow and smart device management 
providing the core IoT infrastructure and services. The IoT 
platform implements both vertical and horizontal functions to 
support Gamification Layer applications. The essence of 
InLife’s IoT platform is to enable the secure connection of a 
multitude of heterogeneous sensing and actuating devices, 
having different constraints and capabilities. This includes the 
interaction with the hardware infrastructure, including the 
control of smart meters, smart plugs and sensors. Indicatively, 
collected information will track peoples’ or objects’ mobility, 
lighting, temperature, room  occupancy, pressure forced on 
objects/surfaces, location/acceleration measurements, 
interaction with smart objects, etc. The IoT platform provides 
the required scalability through its distributed message queue-
based architecture for interfacing and collecting metering data 
from a large number of deployed meters. Also, it employs 
cloudification, service discovery and sophisticated data chain 

technologies, in order to define credible data adaptation and 
flexible data management mechanisms able to enable powerful 
administrative tools exploited by subsystems of the 
Gamification Layer. InLife’s architecture also inherently 
supports different communications standards (mainly IEEE-
based such as WiFi and ZigBee, etc.). 

B. Gamification Layer 

Gamification Layer is responsible to monitor and control 
Serious Game evolution and players’ progress timeline 
integrating in a smooth and interoperable way the developed 
ICT-enabled automation and modelling components and 
services of the InLife open framework. It is built on a modular 
design, the main blocks of which and their corresponding 
responsibilities and functionalities are the following: 

Context Information Modelling: The first step to 
demonstrate a successful Serious Game is to develop a 
comprehensive context design capturing all aspects of the (IoT-
equipped) smart environment, within which the educational or 
social inclusion activity is unfold. Context information 
modelling (CIM) aims at identifying the firm and meaningful 
entities of the educational/social inclusion ecosystem and how 
each one supports the overall educational objectives. Further, it 
specifies what exact variations and degrees of freedom are 
available for each entity or part, as well as the relations 
between them both in a qualitative and quantitative aspect.  

 

Fig. 3   InLife platform architecture 
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Game logic engine: In the context of Serious Games, this 
engine drives the development and integration of modules not 
traditionally associated with computer gaming but vital for 
non-leisure gaming contexts. Among others, this includes 
modules that provide support for bridging between the physical 
and digital world, interactive educational narratives, 
neurostimulation to promote learning and integration of haptic 
feedback into the learning experience, etc. The ultimate 
objective of the game logic engine is to define a number of 
alternative options for game structure and logic.  

Serious Game Analytics integrates a number of artificial 
intelligence mechanisms and powerful analytics tools to 
understand in-game player behaviour and better measure 
overall Serious Game business success. The main goal is to 
provide advanced game analytics, while assuring functional 
consistency, data transparency and hiding any heterogeneity 
issue. The framework is able to seamlessly define and integrate 
sophisticated behavioural models for (group of) trainees by 
employing effective classification, feature extraction, 
clustering and time-series analysis over the collected data and 
discovering hidden relationships and inherent 
interdependencies. Based on these models and on regression 
and extrapolation techniques, the aim is to provide a better and 
more effective gaming environment for (group of) players by 
recommending both in-game adjustments and real-life actions, 
according to player’s skills, response level in set 
challenges/goals and style of learning process. Apart from 
player-centric analytics, Serious Games Analytics will provide 
(actionable) insights on critical KPIs and welldefined metrics 
that outline the success of Serious Games, as a valuable means 
for all stakeholders to drive specific strategies/policies that 
improve their effectiveness, and to (re)train or remediate play-
learners for performance improvement. 

Game Rewards Fine-tuning fulfils two central needs: 
firstly, the serious game’s need for optimizing its reward 
scheme to increase its effectiveness, and, secondly, the player’s 
need for information that helps him/her to orientate, achieve 
goals and solve problems. Feedback about player’s progress 
evolution and state is individualized (per player) leveraging on 
Serious Game Analytics and on three different mechanisms of 
feedback provision. Through intermittent and immediate 
feedback during the learning progress, the trainee will get 
reflections on what has been reached so far during game play. 
It is a key aspect of interaction that influences player’s 
motivation and provides guidance and assistance when 
necessary. Based on serious games’ Graphical User Interfaces 
(GUIs), text and texture objects are simple mechanisms to 
provide this type of feedback. Another kind of feedback would 
be the assessment and measurement of overall progress, which 
informs players about their overall level of performance and 
possible correlate it with other (group of) players, e.g. by 
showing scores tables, leader-boards etc. Finally, the third 
mechanism will utilize competitions and rewards to increase 
trainees’ motivation and replayability. 

Multi-language support which allows the quickly and 
easily change of language, as well as adding new languages to 
the user interface, to broaden the spectrum of potential users 
from different countries (also especially useful when 
addressing children of small ages). 

Push notifications module that is responsible for 
broadcasting push messages to trainees, asynchronously 
announcing that new milestones have emerged or that certain 
milestones have been achieved. It may also be possible to 
display the achievements of peers / competitors in the serious 
game. 

Social Media module that is responsible to activate 
interaction between Serious Game world and the social media. 
Hence, this module establishes a link able to upload 
information from Serious Game to the social media (e.g. 
leader-boards reports or rewards), whereas in the future (after 
the project completion) this link can be made bidirectional and 
also transfer actions caught from players’ profiles in social 
media, public profiles or local news aggregators into the 
serious game in a context-aware manner. 

InLife Native Plugins module that defines code libraries 
executed by Unity during the development process of Serious 
Games and allow developers to integrate particular middleware 
libraries of the platform or have access in context-specific 
features and attributes. 

It is worth mentioning that InLife, through its open APIs, 
enables third-party developers to create and/or configure their 
own ‘in-life based’ serious games, without having to start from 
scratch.  

IV. USE CASE – SERIOUS GAME 

In this Section we present the ICEBERG serious game 
which was implemented as a first use case scenario in InLife. 
ICEBERG is a combination of an online Role Playing Game 
(RPG) and a strategy game, which evolves on earth, but in the 
lost world of ice. The main creatures that live there are the 
Yetis, but other animals exist as well, like penguins, polar 
bears, albatrosses, whales. Each player has a Yeti to interact in 
the ice world and an “ICEBERG”, which is the place where the 
Yeti lives. There are various types of resources in ICEBERG. 
The most important of them are the ice blocks, which are 
produced by penguins. The rate of this production per penguin 
will be configurable. It will also be possible to get access to 
various technologies and materials in order to erect buildings 
on the available space of the “ICEBERG”. The screenshot 
below presents an indicative view of the ICEBERG graphical 
user interface. 

 
Fig. 4   ICEBERG game interface.  

When your behaviour is environmentally friendly and you 
are trying to be energy-efficient as suggested by the ICEBERG 
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game, then the area of your ICEBERG increases in the virtual 
world and at the same time you obtain more friends, namely 
penguins, polar bears, albatrosses, whales, that are coming to 
your ICEBERG and are willing to help you. For example, 
penguins are able to produce ice blocks, polar bears are able to 
create bridges and buildings, etc. A polar bear might become 
your friend when you complete a specific mission or achieve a 
target in the desired period of time. Similar settings will exist 
for the other animal friends as well. On the other hand, if the 
behaviour of the user is the opposite of what is expected, this 
can be depicted in the virtual world as well, e.g. the ICEBERG 
might start to melt, some penguins might get disappointed and 
leave, etc.  

ICEBERGs can also be joined according to a set of rules. A 
hierarchical categorization of the ICEBERGs will be 
supported; the various levels can correspond to: individual 
player, room (office), floor, building, where e.g. a room-level 
ICEBERG represents the joining of all players in the same 
office room. Only ICEBERGs of the same level can be joined. 
The creation of such groups, i.e. local communities, is expected 
to be a very helpful feature for keeping the interest of the 
involved people to the game at high levels. Moreover, joining 
ICEBERGs at floor level could be done for distant buildings as 
well, since in the virtual world, distance is not a problem. 
Joining will be implemented as a game procedure that needs 
time and resources, e.g. ice blocks, in order to make a bridge. 
This can be used as a way to keep the players focused on a 
target at least for some period of time, which is something 
important, as new behaviour needs time (typically, a minimum 
period of three (3) weeks) and repetition in order to be 
established. 

Central to ICEBERG is the notion of a gameplay directly 
linked to the real world. The main way to gain the necessary 
resources (animal friends, ice blocks, additional “ICEBERG” 
surface, etc.) for expanding within the game will be through 
specific actions in real life. 

An extended list of example user actions that are of interest 
to InLife and can be rewarded, negatively or positively, is the 
following: 

• Turn off the lights when leaving an empty room behind.  

• Shut down the computer and other devices when they 
are not necessary.  

• Use the stairs instead of the elevator, especially when 
going down.  

• Close the windows when leaving the office, especially 
when heating or air-conditioning is required.  

• Misuse the window shutters or blinds, by having them 
closed in a sunny winter day or open in a hot summer 
day, making the heating or cooling of the room more 
difficult.  

• Select a room temperature as close to the external one 
as possible for heating or air-conditioning.  

• Excessively use paper for printing.  

• Throw paper, glass or plastic material to the regular bin 
instead of the recycle bin.  

• Use of optical disks instead of a network to transfer data 
or instead of a cloud service to store data.  

• Leaving the coffee machine always on, even if there is 
very little quantity of coffee inside. 

• Borrow an e-book and not a paper book. 

An initial beta version of the ICEBERG game has been 
released in Google Play (Fig. 4), accessible only from 
registered testers [15]. After the conduction of the foreseen 
trials, the final version will be distributed via Google Play, to 
all users. 

 

Fig. 4   ICEBERG game in Google Play 

V. CONCLUSIONS 

To summarize, the present paper presented the work 
conducted within the InLife project, which focuses on taking 
advantage of IoT technology and combine it with Serious 
Games. The core architecture was presented, as well as a 
serious game use case. The realization of the InLife vision will 
ultimately pave the way for the proliferation of new innovative 
IoT-based serious games, created also by third parties, 
featuring enhanced gameplays and educational efficacy, thus 
establising new market opportunities for involved stakeholders.  
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Abstract—The competitive scene in online video games is
becoming more and more prominent and player satisfaction is
of key importance when it comes to a good user experience and
a successful game. As such it is important to have efficient skill
rating and matchmaking systems in order to provide a proper
match experience. We propose a mathematical framework for
the analysis of matchmaking systems. The mathematical model
addresses the estimated skill or rating, calculation of winning
probabilities based on the estimated skill, and the updating
of the estimated skill upon completion of a game. We will
briefly apply the framework to the ELO skill rating system.
Next we will use the framework to analyse the robustness of
the TrueSkill algorithm and discuss some of the findings. We
have used simulated data to test the robustness of the TrueSkill
algorithm. All of the data processing has been done in Python
using our own code, built-in functions and Python packages. The
code has primarily been used to make the simulations of matches
and customise updating functions.

Index Terms—matchmaking, mathematical model, player sat-
isfaction, online video games, skill rating, framework

I. INTRODUCTION

The online gaming community has grown steadily since
the commercialisation of the computer and today, the most
popular online game, League of Legends, has 100 million
people playing every month and at peak times they have 7.5
million players playing at once [1].

The large amount of players who want to play a game for
fun or even to become good enough to compete in e-sports
– the professional side of online gaming – has given rise
to the idea of matchmaking; since different players have
different skills, a game between two players of widely
different skills is not considered interesting. It is thus the
primary goal of matchmaking to ensure an entertaining match.

In competitor-versus-competitor games, this translates to
finding two players of equal or close-to-equal skill, making
the match both mathematically fair and also entertaining.
However, in teams, the interplay between these two aspects of
game quality can sometimes be opaque. An entertaining match
is dependent on some kind of mathematical fairness, but

how that fairness is defined can lead to very different matches.

We did a limited search for a formalised framework
that was capable of analysing matchmaking algorithms, but
only found a partial one in the TrueSkill paper [2]. In this
article we will thus separate a matchmaker into three parts:
A skill rating part, a winning probability calculation part
and a matchmaking part. The skill rating part must satisfy
the conditions of being able to represent a player’s skill,
updating the skill, and placing this skill on a leaderboard
that determines a ranking of players. The winning probability
calculation part should be able to use the estimated skill
ratings to calculate the winning probability of any kind of
match-up, such that the matchmaking part can match players
to provide entertaining matches. To exemplify our work we
will apply it to two well-known skill rating systems, the ELO
rating system and the TrueSkill rating system.

II. FRAMEWORK

We will now define a framework for a skill rating system
based around a single match. The skill rating system will
represent a player’s skill, update a player’s skill and place the
player on a leaderboard. Let us first define some terms. Let n
be the number of unique players and let the set U = {1, ..., n}
be the set of these players. Let ρ be the number of players
involved in a single match and the set of these players be
Z ⊂ U . Let k be the number of unique teams involved
in the match and let the set M = {1, ..., k} refer to each
of these teams. Any team Qj , j ∈ M is of arbitrary size
where the teams are subsets of the whole, Qj ⊂ U , such
that Qi ∩ Qj = ∅ when i 6= j and ∪i∈MQi ⊂ U . Finally,
we define the function |·| as the cardinality of the set – how
many elements the set contains.

With these definitions in hand, we will now present the
framework, starting with the representation of a player’s skill.
Here, we let the random vector S denote a random variable of
some distribution that is the player’s skill. Our best estimate
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of that player’s skill before the match is then denoted Eb.
The best estimate of that player’s skill after the match is
similarly denoted Ea.

With the available players in U and their estimated
game skills, Ebi , we must now create k teams of players
from the subset, Z. These can be denoted as teams
Eb1 =

{
Eb11, E

b
12, ..., E

b
1x

}
through Ebk =

{
Ebk1, E

b
k2, ..., E

b
ky

}

as long as
∣∣∪j∈MEbj

∣∣ = ρ. Note here that team 1 has x
players and team k has y. This is merely to indicate that
some games incorporate a lopsided number of players such
as the game ’Evolve’, which has 4 players on one team
and 1 player on the other team [3]. In the ordinary case,
x = y, that is, there is an equal amount of players on each
team. The process of creating the teams also transforms the
estimated individual skill ratings into estimated team game
skills, Dj = l(Ebj) where l is called the matching function
and j ∈M .

We can now estimate the quality of the match through
a winning probability calculation. The closer the teams are
to having an estimated equal chance of winning the game,
the higher the quality of the match. This calculation can
be expressed as W = c(D), where W is the estimated
game outcome also called the ranking of the teams, c is the
function that calculates this estimated game outcome given
the estimated team game skills and D is the matrix containing
the random vectors of estimated team game skills.

When we create the teams that gives rise to this estimated
game outcome, several other elements of the framework
come into play. For one, we must take into account that
despite a player having a certain underlying skill Si,
that player does not necessarily perform optimally in the
current match. We therefore introduce the individual game
skill, Gi, a random vector with a conditional distribution
based on the underlying individual skill parameters. The
conditional density can be expressed mathematically as
fG(gi|S = si). Next, we gather the chosen players into their
teams G1 = {G11, ..., G1x} through Gk = {Gk1, ..., Gky},
thereby calculating the actual team game skill as Tj = h(Gj).
Note that l is the matching function that uses the estimated
skills to calculate the estimated team game skills, but h
is the matching function that calculates the actual team
game skills given the player’s actual in-game performance
(the individual game skills). Finally, the actual comparison
of the Tj’s then gives the actual game outcome, the ranking R.

We can now come back to calculating the updated estimated
individual skill ratings with the new information gathered from
the game outcome. For each player i ∈ Z, we can then express
the update as Eai = Ψ

(
Eb1, ..., E

b
ρ, R

)
with Ψ being the update

function. Ψ could potentially be used to alter the influence of
the ranking in the update of individual player skills in team
games. With the notation for the framework defined, we can

now redefine the core property of a skill rating algorithm as
an update of the estimated individual skill parameters based
on the ranking of games, that is the conditional distribution
f(ea|Eb = eb, R). This posterior will then function as the
prior for the next match. We will now apply these concepts to
some known skill rating systems.

III. THE ELO RATING

The ELO rating system is a well-known skill rating system.
It was invented by Arpad Elo and implemented as early as
1960 in games of chess. An ELO rating is a number usually
between 0 and 3000 [4] – although theoretically it could
be higher – that describes a player’s estimated skill. Note
that we do not call the ELO rating system a matchmaker,
but a skill rating system, since it does not directly involve
matchmaking.

The ELO rating system builds on the assumption that a
player’s skill is a normally distributed random variable [4]. In
our framework, that means S is a normally distributed random
vector of length 1. For notation, we will use X ∼ N(µ, σ2),
where X is the normally distributed variable and µ and σ2

are parameters, the mean value and the variance respectively.
We can then say that S ∼ N(µ, σ2). The estimation of this
skill, Eb, is then the ELO skill rating.

The individual skill parameters then gives rise to that
individual player’s game skill, G – that player’s performance
in one particular game – as another normally distributed
random vector of length 1. We can express that G has the
distribution G ∼ N(S = s, β2). Here, the mean value is
the particular realisation of that player’s individual skill s.
β2 is a variance parameter that is unique to which game
is being played and determines the length of the so-called
’skill chain’, that is, how much of a change in skill is
necessary for a better player to have a much higher chance of
winning a particular game. Going forward we will abbreviate
the name – such as [2] has done – as the ’skill chain variance’.

In our framework, the next step would be to apply the
mapping that moves the estimated individual skills of all
players Ebi , i ∈ U onto teams 1, Eb1 =

{
Eb11, ..., E

b
1x

}
,

through k, Ebk =
{
Ebk1, ..., E

b
1y

}
, to get the estimated team

game skills Dj = l
(
Ebj
)
, j ∈ M . However, since ELO is

designed only for competitor-versus-competitor matches [5],
there are only two teams with one player on each team, which
means ρ = 2 and x = y = 1. Further, the mapping l is just
the identity function, which means D1 = E11 and D2 = E21

– the estimated team game skills is the ELO rating as well.
This also means that the estimated ranking would be one of
three possible outcomes; player 1 defeats player 2 (denote
this event W = 1), player 2 defeats player 1 (denote this
event W = −1) or the two players draw (denote this event
W = 0) [2]. This range of W replaces the estimated ranking
vector in our framework.
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There is one more simplification to consider. The event
W = 0 is pushed to the side as a special case when it
comes to determining probabilities. This relates to the way
the ELO rating system updates the individual skill parameters,
where a draw is treated as half a win and half a loss [6].
This treatment means we can simply calculate the conditional
probability that given player 1 and 2’s skill parameters eb1 and
eb2, player 1’s individual game performance exceeds player 2’s
individual game performance and vice versa [2]. Denoting Φ
as the standard cumulative distribution function of the normal
distribution, this corresponds to the probability of the event
W = 1 and W = −1, which can be calculated as

P
(
W = 1|Eb1 = eb1, E

b
1 = eb2

)
=

P
(
G1 > G2|Eb1 = eb1, E

b
2 = eb2

)
= Φ

(
eb1 − eb2√

2β

)
(1)

P
(
W = −1|Eb1 = eb1, E

b
2 = eb2

)
=

P
(
G2 > G1|Eb1 = eb1, E

b
2 = eb2

)
= Φ

(
eb2 − eb1√

2β

)
(2)

In this distribution, the event W = 0 has probability 0. We
denote the number between 0 and 1 that comes from equation
1 as the expected score of player 1. The value from 2 is then
the expected score of player 2 and the reciprocal value such
that the sum of the two scores equals 1. An expected score
is defined as the long-term ratio of games that that player
will win. An expected score of 0.5 is thus an expression
of a mathematically fair game, where each player will win
every other game on average. If we now denote the difference
between the observed score and the expected score as ∆ we
can calculate the exchange of ELO rating between a winning
player and a losing player as

∆ = αβ
√
π

(
r + 1

2
− Φ̃

(
eb1 − eb2√

2β

))
(3)

where r = 1 if player 1 wins, r = −1 if player 2 wins and
r = 0 if the game ends in a draw, α is a number between
0 and 1 that determines the weighting of newer matches
compared to older estimates – with a small α leading to few
fluctuations in skill and large α the opposite. The two player’s
skill parameters can then be updated as

ea1 = eb1 + ∆ (4)

ea2 = eb2 −∆ (5)

Although it is outside of our framework, it should be
mentioned that there are many different ways to tackle the
initial prior of the population in ELO. Some systems simply
assign an initial ELO rating to a player, whereas other systems
give a provisional rating for the first 10 to 20 games before
using these games to estimate an initial ELO rating [4]. Finally,
we note that the ELO skill rating system mostly relates to the

representation of a player’s skill with the possibility of having
a leaderboard. The only part that can be related to the winning
probability is the expected score as calculated through equa-
tion 1. This equation could be used for estimating the winning
probability of players with the intention of matching them.
However, as mentioned, ELO has no dedicated matchmaking
part. We will now turn to the TrueSkill algorithm.

IV. SIMULATION

We will do a practical application of the framework for the
TrueSkill algorithm. We use a player pool of 1200 players
and assign each player a TrueSkill rating with values µ = 25,
σ = µ

3 = 8.33, β = σ
2 = 6.25 and τ = σ

100 = 0.125 along
with a match counter and number of wins (at first, both of
these are set to zero). The value of µ = 25 and σ = 8.33 is
the default and recommended value by Microsoft [7], but it
can potentially be set to any value – it all comes down to the
tweaking of the skill and how it fits the game. We also set
the draw probability to 0.0% as in our simulations we do not
allow draws to happen.

Next, we sample the players’ real skill from a normal
distribution with µ = 25 and σ = µ

3 . These are then
used when we calculate the winning probability, but we
match based on the estimated skill. This fulfils TrueSkill’s
assumption of the player base being normally distributed
and we can now test whether TrueSkill can recover the real
skill with the TrueSkill matching function l1. This matching
function works on the principle that the average of one team’s
estimate game skill should be as close as possible to the
other team’s average. We play out matches with two teams of
six players each. To simulate that these matches play out in
real time, we disallow any player to have played more than
2 matches more than the player that has played the lowest
amount of matches. As an example, say that a player has
played 0 matches, then the player pool cannot contain any
player that has played 2 matches.

After creating the two teams, we use an estimated winning
probability calculation to ensure that the match quality is
high enough. This is taken from Moser [8], despite TrueSkill
not ordinarily having a winning probability calculation. If
the estimated winning probability for one team is above 55
percent, we throw away the teams and create two entirely new
teams. Writing up all the steps of this simulation as a list of
bullet points we get:

1) We put together an optimal team by using the l1 match-
ing function

2) We check the quality of the match by using the estimated
winning probability

3) If the quality is good enough, we determine which team
wins based on their true underlying skill

4) The estimated skill rating of the twelve players are
updated

5) We stop the simulation when all players have played
more than 200 matches
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Fig. 1. Scatterplot with the normal data.
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Fig. 2. Scatterplot with the log-normal data.

To compare the estimated skill and the ’real’ skill, we
can use a scatterplot, see Figure 1. Next, we calculate the
correlation between the estimated skill and the real skill of the
figure. The correlation of the scatterplot in Figure 1 is 0.98.
This correlation and the shape of the scatterplot confirms that
the estimated skill rating and the real skill ratings are close.

To assess the robustness of the TrueSkill algorithm, we
next tried to change the underlying player base as having a
log-normal distribution. This can be likened to a player base,
such as the game of Overwatch, which has a slightly skewed
distribution with a long tail that resembles a log-normal
distribution [9]. As such, we next tested the TrueSkill
algorithms’ robustness to a log-normal player base. Using
the same methodology of playing matches and checking
the quality, we can compare the ’real’ skill distribution and
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Fig. 3. Evolution of correlation between real and estimated skill distributions.

the estimated skill distribution of the player base after 200
matches via the scatterplot, see Figure 2. The correlation
of this scatterplot is 0.99 after 200 matches. We have
also tracked the evolution of the correlation for both the
log-normal and the normal distributions as the matches are
played as seen in Figure 3. Note that the x-axis is the total
amount of matches played. It appears that the log-normal
data actually outperforms the normally distributed data for
this seed in the simulation.

From this example, we can see that TrueSkill is relatively
robust to the log-normal distribution. The above example can
be considered an example of how to analyse the distributions
of S and G and how they relate to the rest of the skill rating,
winning probability and matchmaking systems.

V. CONCLUSION

In conclusion, we have begun work on a formalised frame-
work for analysing skill rating systems. We managed to fit
it with the ELO rating system, but we can also see that
the framework requires additional work to fit more complex
systems such as TrueSkill by comparing it to the partial
framework presented in [2]. For the future, the framework
could be expanded upon such that these more complex systems
are also able to fit into the framework.
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Abstract—The behavior of autonomous characters in virtual
environments is usually described via a complex deterministic
state machine or a behavior tree driven by the current state of
the system. This is very useful when a high level of control over
a character is required, but it arguably does have a negative
effect on the illusion of realism in the decision making process
of the character. This is particularly prominent in cases where
the character only exhibits idle behavior, e.g. a student sitting in
a classroom. In this article we propose the use of discrete time
Markov chains as the model for defining realistic non-interactive
behavior and describe how to compute decision probabilities to
normalize by the length of individual actions. Lastly, we argue
that those allow for more precise calibration and adjustment for
the idle behavior model then the models being currently employed
in practice.

Index Terms—DTMC, AI, animation, virtual agents

I. INTRODUCTION

Games and simulations often require autonomous decision
making on the level of non-player characters (NPC) that
would create an illusion of independent thought. The result
of such a decision then manifest itself via an animation that
is constructed based on the underlying simulation strategy, as
illustrated in e.g. [1]. This is usually governed by a decision
making system, which based on a certain strategy selects
an action, executes the given action, waits until it finishes,
selects the next action and so on [2]. This decision process is
typically modeled either as a state machine, a behavior tree,
or a utility function [3]. This is arguably a good solution for
a sequence of actions with effects, e.g. walk to a door, open
the door, walk through the door, close the door. However, we
would argue that for situations where the NPCs are idle, this
might yield a sub-optimal result. This is given by the fact
that the decision systems expect the NPC to mostly execute
non-repetitive activities, even in the case where the animation
would be looped, e.g. during walking, there is still a non-
repeating action of transportation from one point to another.
This allows for a high degree of control, which is however
usually detrimental to the naturalness of the behaviour [4].

Contrary to that, when animating an NPC that is inherently
idle, e.g. waiting in a queue, sitting in a class, sleeping, etc., we
would like the characters to stay in a loop for a period of time
and only occasionally switch to a different action. To this end
we present an approach based on discrete time Markov chains

(DTMC) which are commonly used for decision making under
uncertainty [5]. For our purpose DTMC can be viewed as a
direct extension of a state machine, but allows for probabilistic
choice of a next state. We show how to use the probabilistic
decision making to specify, on average, how long should an
NPC stay in a single state, preventing unrealistically fast state
switching between possible actions.

Naturally, many other authors considered adding probability
to the decision process, e.g. on the level of the state ma-
chine [6], [7], the behavior tree [8], by introduction of fuzzy
logic [9], etc. These however always only provide a non-
deterministic selection to the next selected activity and do
not reflect the time of the activity itself. To the best of our
knowledge our approach is the only published one that reflects
length of an activity directly on the level of decision making
process.

II. METHODOLOGY

A. Discrete Time Markov Chains

The DTMC [10] is given as a pair (X ,P) where X =
{x1, . . . , xn} for n ∈ N∗ is a set of states and P ∈
Pn×n, s.t. P = [0, 1] is a square transition probability matrix.
We denote pi,j the probability of transition from xi to xj . The
evolution of the systems is then given as a sequence of random
variables X1, X2, X3, . . . , that take on values from X . The
sequence is said to have the Markov property, meaning that
in any state the selection of the next state does not depend
on any of the previous states, i.e. P (Xk = x | Xk−1 =
xk−1, . . . , X1 = x1) = P (Xk = x | Xk−1 = xk−1).
Understandably the probabilities of outgoing transitions need
to sum to one, i.e. ∀i ∈ {1, . . . , n} :∑j∈{1,...,n} pi,j = 1.

For illustration consider the following system:

X = {A,B,C}

P =

A B C
A .1 .6 .3
B .1 .2 .7
C 0 .5 .5

This system can be visualized as a labeled oriented graph:
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B. Animation State Machine

Obviously, the DTMC can be interpreted as a state machine
by an animation engine, e.g. the Unity Mecanim system [11].
Consider for example a character sitting in a classroom who
can look at a teacher, out of a window, or on a laptop. We
could the assign the states such that:

A = look at a teacher,
B = play with a laptop,
C = look out of a window,

we then obtain a state machine whose transitions are guarded
by probabilites of taking the transition.

However, in the usual scenario we are less interested in
the probability of individual transitions but rather in the
probability of a certain action. For example we expect that a
student in class spends considerably more time looking at the
laptop than focusing on a speaker. We can therefore simplify
the construction by assigning probabilities to states directly:

P ( look at the teacher ) = .1,

P ( play with a laptop ) = .6,

P ( look out of a window ) = .3.

This is then interpreted by each incoming transition being
assigned the probability of the respective state, i.e.:

look at the teacher play with a laptop

look out of a window

.1

.6

.3

.1

.6

.3.1

.6
.3

We are now in a situation where a character can be driven
between its states and we control the probability of the
transition happening. However in the case of idle behavior
we are usually having shorter loops of singular activity that
we would like to keep repeating at least for certain time. In the
classroom scenario imagine that each loop is exactly 1 second
long, we would then focus on the speaker mostly just for that
second as we leave the state with probability of .3 + .6 = .9.
To prevent this behavior we need to adjust the probabilities
on the transitions.

C. Time-adjusted DTMC

First note that we at this point expect each loop to take 1
second. Therefore we need to make sure that if we want to
stay for at least t seconds, the probability of the state must
be equal to the probability of still being in the state after t
random samples.

Lemma 1. Have P (x) the probability of persisting in s state
x for t ∈ N consecutive random samples. Then the probability
of the a self transition is:

ptx,x = e
ln(P (x))

t .

Proof. We require that the probability P (x) is equal to the
probability of ptx,x being repeated t times in a row, i.e. (ptx,x)

t

[10]. Then:

(ptx,x)
t = P (x)

ln((ptx,x)
t) = ln(P (x))

t · ln(ptx,x) = ln(P (x))

ln(ptx,x) =
ln(P (x))

t

ptx,x = e
ln(P (x))

t

Now we need to set the probabilities of the outgoing
transitions. This can be derived from the previous expression
in the following way:

Lemma 2. Have P (x) the probability of persisting in s state
x for t ∈ N consecutive random samples and a state y 6= x
with the probability P (y) of being selected when exiting x.
Then the probability of entering y from x is:

ptx,y = (1− e
ln(P (x))

t ) · P (y)

1− P (x)
.

Proof. As the outgoing probability from each state needs to
sum to 1 we can see that if the probability of transition to self
is ptx,x, then the probability of exiting the state through any
of the exit transitions is in total its complement, i.e.:

∑

y∈X\x
ptx,y = 1− ptx,x.

Now we need to distribute this probability over the outgoing
transitions. We know that the sum of probabilities of all the
other states but x is also its complement, i.e.:

∑

y∈X\x
P (y) = 1− P (x)

For a state y 6= x we therefore know that the under the
condition that we exit the state x the probability of entering
any y ∈ X \ x is:

P (Xk = y | Xk−1 = x ∧Xk 6= x) =
P (y)

1− P (x)
.
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Then if we remove the condition Xk 6= x we obtain our final
equation:

ptx,y = (1− e
ln(P (x))

t ) · P (y)

1− P (x)
.

Having derived the transition probability for each state and
thus completed the transition matrix it remains to be proven
that the transition matrix is sound, i.e. the sum of probabilities
out outgoing transitions is 1.

Lemma 3.

∀t ∈ (0,∞),∀x ∈ X :
∑

y∈X
ptx,y = 1.

Proof. This can be observed already from Lemma 2, however
for completion we will derive the proof here:

1 = e
ln(P (x))

t +
∑

y∈X\x
((1− e

ln(P (x))
t ) · P (y)

1− P (x)
)

= e
ln(P (x))

t + (1− e
ln(P (x))

t ) ·
∑

y∈X\x
(P (y)) · 1

1− P (x)

= e
ln(P (x))

t + (1− e
ln(P (x))

t ) · (1− P (x)) · 1

1− P (x)

= e
ln(P (x))

t + (1− e
ln(P (x))

t )

= 1

In this form we can obtain a DTMC that has a specific
expectation about how long, on average, each individual state
persists. However, up till now we placed an expectation that a
single loop animation has the length of exactly 1 second. We
now extend the method to arbitrary lengths.

Theorem 1. Have the states x, y ∈ X s.t. x 6= y, time t ∈
N, and l ∈ R+ the length of the animation in x. Then the
following holds:

pt,lx,x = e
ln(P (x))

t·l−1 ,

pt,lx,y = (1− e
ln(P (x))

t·l−1 ) · P (y)

1− P (x)
.

Proof. Follows by replacing t for t · l−1 in Lemma 1 and
Lemma 2. As we have proven in Lemma 3 that the process
is sound for any t ∈ (0,∞) and l itself is in (0,∞) then
t · l−1 ∈ (0,∞) and the above is a simple substitution.

To illustrate the method we put the requirement on average
length to 10 second, i.e. t = 10, and consider the length
function L : X → R+ that provides the length of the animation
in each state and the following valuation of our example:

L( look at a teacher ) = 10,

L( play with a laptop ) = 5,

L( look out of a window ) = 1.

Then we have, e.g.:

p10,5B,A = (1− e
ln(.6)

10·5−1 ) · .1

1− .6

= (1− e
ln(.6)

10·5−1 ) · .25
= (1− e

ln(.6)
2 ) · .25

= (1−
√
eln(.6) · .25

= (1−
√
.6) · .25

.
= .225 · .25
.
= .056

Note that if the length of the state is equal to the expected
time, i.e if l = t then we get:

pt,lx,y = (1− e
ln(P (x))

t·l−1 ) · P (y)

1− P (x)

= (1− e
ln(P (x))

1 ) · P (y)

1− P (x)

= (1− eln(P (x))) · P (y)

1− P (x)

= (1− P (x)) · P (y)

1− P (x)

= P (y)

meaning the probability remains without any adjustment as we
would expect.

The final state with the length-adjusted states then is as
follows:

look on the teacher focus on a laptop

look out of window

.1

.6

.3

.056

.775

.169.016

.097
.886

Note that for the states with a shorter length the self-transition
probabilities are greatly increased.

III. CONCLUSION

We have implemented our state machine using the Unity
Mecanim system with a set of animations given provided in
our running example. An example project is available at [12].
Note that the lengths of individual animations differ from our
running example where we selected values better illustrating
the mathematical properties of the system.

As our solution can be implemented in just a few lines of
code we believe that it presents a useful, novel tool for creation
of state machines of non-interactive idle characters, or can be
potentially combined with a different NPC control system to
take control of the behavior in the time the character is idle.

Additionally, it should be noted that our approach can be
easily composited with additional elements typical to realistic
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character simulation like eye motion, breathing etc. [13].
Conversely, the approach is not limited to virtual characters
only, any animated entity could be modeled in this way.

Lastly, the DTMCs have been very thoroughly studied
for their properties. Hence using this well-known framework
allows for application of the methods of the field to this use
case and further analysis or fine-tuning of this system.
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Abstract—Video-game players generate huge amounts of data,
as everything they do within a game is recorded. In particular,
among all the stored actions and behaviors, there is information
on the in-game purchases of virtual products. Such information is
of critical importance in modern free-to-play titles, where gamers
can select or buy a profusion of items during the game in order
to progress and fully enjoy their experience. To try to maximize
these kind of purchases, one can use a recommendation system
so as to present players with items that might be interesting for
them. Such systems can better achieve their goal by employing
machine learning algorithms that are able to predict the rating of
an item or product by a particular user. In this paper we evaluate
and compare two of these algorithms, an ensemble-based model
(extremely randomized trees) and a deep neural network, both
of which are promising candidates for operational video-game
recommender engines. Item recommenders can help developers
improve the game. But, more importantly, it should be possible
to integrate them into the game, so that users automatically
get personalized recommendations while playing. The presented
models are not only able to meet this challenge, providing
accurate predictions of the items that a particular player will
find attractive, but also sufficiently fast and robust to be used in
operational settings.

Index Terms—recommender systems, ensemble methods, deep
learning, online games, user behavior

I. INTRODUCTION

The aim of a recommender system is to provide suggestions
to a set of users on items that might be interesting for them.
Recommendation systems are commonly found in e-commerce
[20], [18] (where users purchase goods like books, clothes or
games online), usually implemented through collaborative fil-
tering methods [5]. These work by comparing similar items or
similar users based on user ratings. If two users like the same
items they are likely similar, and if two items are liked by the
same users, those items are probably similar as well. However,
as this method does not take into account the contents, new
items cannot be recommended. Content-based recommenders
can be used to overcome some of these issues by looking
at the item in question and finding similarity between items
based on inherit properties [24]. A hybrid approach can also
be taken, to combine e.g. collaborative information, content
features and demographics [11]. A more detailed study into the
current limitations and possible extensions of recommendation
systems can be found in [1].

The integration of recommendation systems into video
games is a relatively new area of research. Previous work
has mostly focused on game recommendation engines, which

present players with suggestions on alternative titles based
on the games they have already played [2], [22]. But it
is also possible to use recommendation systems to increase
player engagement in a game. In modern free-to-play games,
users can buy a wide range of virtual items with real money
(in-app purchases, IAPs). However, sometimes they can be
overwhelmed by the number of items offered and the diversity
of playstyles, and this can lead to an increase in the churn
rate—as players start to find the contents too difficult and
are unable to progress within the game. Item recommendation
systems can help prevent this problem by offering players a
more direct route to the items that could be appealing or useful
for them, thereby improving their purchasing and general in-
game experience. This may ultimately result into increased
revenue [17] by increasing player retention, IAPs and the
conversion rate from free to paying users.

To achieve these goals, it is essential to recommend each
player the right item—one that fits both their current state
and their playing behavior—at the right time. And this is
possible because (in contrast to other applications where very
limited information is available) every action performed by a
player within the game gets recorded. This offers a unique
opportunity not only to obtain accurate predictions on the
player’s in-game behaviour (for example on when and at what
level they will leave the game, see [19] and [4]) but also to
offer them personalized recommendations of items that are
likely relevant to them.

There are previous papers related to item recommenda-
tion systems. [23] introduces a recommendation system for
the massively multiplayer online first-person shooter game
Destiny, where players get suggestions on those items that
best fit their play style and might improve their performance.
They apply similarity measures to global descriptors like total
kill count or kill/death ratio. Clusters for the player “base”
and “cooldown” stats were derived through k-means clus-
tering, whereas archetypal analysis [7], [21] (which clusters
by extreme values rather than centroids [3]) was used to
find distinct playstyles. Similar analyses were done for the
massively multiplayer online role-playing game Tera and the
multiplayer strategy game Battlefield 2: Bad Company 2 [9]
or the game Tomb Raider: Underworld [8]. In all these cases,
players were clustered by their playing behaviour; although
no recommendation system was built, behavioral profiling via
clustering may be very useful in offering recommendations
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based on similarity between users.
However, unsupervised clustering methods remains a chal-

lenge. In particular, a significant amount of game-specific
knowledge, is required to find adequate features that can
separate players into the right number of clusters.

A. Aim

While there are several approaches to the problem of
developing recommendation systems, here we will explore a
different avenue: our aim is to provide a method that predicts
the next items a player will purchase, and use this information
to recommend them other items. This approach differs from
traditional methods as we explicitly use a predictive model.

Such a model allows us to predict, both for new and existing
users, the items they are likely to find most appealing based
on their playing behaviour. Additionally, it must be robust for
operational implementation, to be able to recommend game
products automatically, in a variety of game genres, namely
different game data distributions.

II. BACKGROUND

A. Extremely Randomized Trees

Extremely randomized trees (ERTs) [10] extend the ran-
domization of original random forest [13], [6] algorithms by
choosing the splitting points randomly instead of computing
the ones that are more correlated with the output (which
makes random forest an easy biased approach). ERTs are
computationally efficient, reducing the variance of the model
and preventing overfitting. However the bias can also be larger
with this method when the randomization is increased above
the optimal level, due to the decrease in the variance.

Breiman implementation of random forest builds an en-
semble of decision trees, each of which is fit on a random
subset of features [6]. This randomization in the feature
selection, combined with the bagging of multiple decision
trees, reduces the correlation between trees and increases the
overall accuracy of the ensemble.

One of the main advantages of ensemble models is that they
are trivially parallelizable, either using multicore processors
(as each tree could potentially be trained on a single core) or
across multiple machines. This makes them more practical in
operational settings, where training and inference have to be
completed in a relatively short time, and thus better suited for
developing a commercial recommendation system.

B. Deep Neural Networks

Deep neural networks (DNNs) [16] are artificial neural
networks with multiple hidden layers. By using nonlinear
activation functions (the functions that transform the output
at each layer before passing it to the next), DNNs are able
to learn highly nonlinear dynamics. Multiple iterations, i.e.
epochs, are run to optimize the DNN during the learning
process. Rectified linear units (ReLU) are among the most
commonly used activation functions nowadays. DNNs that
combine ReLU with dropout—a strategy consisting in ran-
domly dropping out some of the units at each layer—have

been shown to provide state-of-the-art accuracy in domains
such as image classification [15] or speech recognition [12].
Additionally, for sequential data, recurrent neural networks
(RNN) or long short-term memory (LSTM) networks [14]
have achieved similarly high accuracies in sequence prediction
and language modeling.

III. ITEM RECOMMENDATION MODEL

While RNNs and LSTM networks are able to learn tem-
poral dependencies and eliminate the need for manual feature
engineering, they also slow down the training significantly, as
they have to learn the relevant features of the time series that
lead to an increase in prediction accuracy. On the other hand,
by manually calculating general statistics of the time-series
data together with other descriptors one can efficiently create
a single vector describing the player’s behavior and use it in
nontemporal models like DNNs or ensemble-based methods
such as ERTs.

These are the main challenges related to our approach:
• The model should be able to train and provide inference

in production environments scaling to millions of users.
• It should be trainable on mini-batches so that it fits in

the memory (ensemble models usually work on the full
dataset).

• The time-series data needs to be converted into a single
feature vector that accurately represents the player’s be-
havioural patterns (as commented above, tree ensembles
and DNNs use static feature vectors, not time series).

• As players make multiple purchases over their lifetime in
the game, we must extract their next purchase from mul-
tiple time points. Thus the training dataset may become
huge if e.g. players remain in the game for several years.

The following sections elaborate on the dataset used and on
the way the model was constructed to solve these challenges.

A. Dataset

The data used in our analysis comes from the Japanese
card-game Age Of Ishtaria, developed by Silicon Studio, and
contains daily time-series data for each paying user within
the period from 2014-09-24 to 2017-05-08 (totaling 33,488
players). It contains information on the number of purchases
per item and total sales per item for each user. Players can
purchase in-game currency with real money and use it to buy
different card-packs (known as gacha) containing a random set
of cards that can be employed in the game. The data contains
8 different types of items and also has information on e.g. the
player’s daily level progression, playtime and lifetime.

B. Feature calculation

To convert our time-series into a single static vector we
calculate general statistics over the full time-series data for
each of the temporal features (e.g. daily playtime or sales).
The process is as follows: First we compute the derivative
of the time series in order to get its variations (for in-
stance, if we are tracking total level, the derivative gives
us the number of level-ups per day). Then we calculate the
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mean/variance/skew/kurtosis/maximum over the time series
for each of the temporal features. Additionally, to capture
behavioral changes of the player between the beginning and
end of their lifetime, we also compute the distance for all
temporal features over the first and last days in which they
logged in. Finally, all these features get concatenated into
our final feature vector. By using such a method, the feature
calculation can be generalized to any type of temporal data.

C. Sampling to handle multi-label outputs

Players usually make multiple purchases, which means we
can have multiple prediction targets (multiple labels) per user.
One way of dealing with this is taking some subsample until
time t from each player’s time series and then find their next
purchase after t. This results in a single label we can train on,
and allows us to take multiple subsamples to enlarge our train-
ing set. Since players could be playing for several years and
have hundreds or even thousands of days of playing activity, by
using subsampling we can generate different training samples
for each player, increasing our effective training dataset and
reducing overfitting.

D. Scalability using minibatches

Additionally, the model should be able to scale to millions
of players; however, if we generate very large feature vectors
(with thousands of features) and sample multiple labels per
user, we could end up with datasets with over a billion samples
(a thousand samples per user). An efficient way of coping
with such huge data sets is to train an ensemble model on
subsamples of the total set. Hence, we can train a small subset
of trees (∼20) on a small sample of a few thousand users and
generate the labels directly during training, so that we do not
need to store all samples. The final ensemble is formed by
combining many such subsets of trees, where each tree was
trained on different features, different samples, and different
target labels, producing an extremely robust model.

E. Model Specification

1) Output: For each player and item, we generate the
probability that they will buy that item on their next purchase
day. As the model is trained over all players, once players are
in a similar state the model can learn to predict and recommend
the right item at the right time for each individual player.

2) Input: We take the full time-series patterns for each
user to convert them into a single vector that represents their
playing behavior. This conversion is done for all users in a
single mini-batch. Multiple mini-batches are generated per
epoch (one epoch goes over the entire dataset), and the model
is trained on each of these batches.

3) Parameters: The ERT model was trained on subsets of
20 trees for 30 iterations, resulting in a total ensemble size of
600 trees. Each iteration was performed on a subset of ∼10k
users, which means that a full single epoch was completed
after 3 iterations (as the total set has 33,488 players), therefore
we had 10 epochs.

For the DNN model, we used two hidden layers of 2048
units and set a dropout probability of 0.5. Additionally, as

there were many correlating features, dropout was also applied
to the input layer. By randomly dropping some inputs, we
reduce overfitting on single features, thereby increasing the
robustness of the model. (Recall this was achieved by random
subsampling of features in the ERT model.) The network was
trained for 30 iterations as well, but each iteration was repeated
5 times, resulting in a total of 50 epochs. Both DNN and ERT
are trained on the same data.

IV. MODEL EVALUATION

In order to evaluate the effectiveness of the proposed model,
we study the prediction accuracy within an upcoming time
window. Predictions are made at a time point t and evaluated
at time t+50 (where t is measured in days). The training was
performed using data up to 2017-03-19, and predictions were
verified in the window from 2017-03-20 to 2017-05-08.

Several measures are calculated:
1) isOnNextPurchaseDate: Checks whether the predicted

item was actually acquired by the player throughout their next
purchase day (our training objective).

2) isNextPurchase: Checks whether the item that was
predicted to be purchased by a certain player was actually
acquired by the player on their very next purchase.

3) isWithinWindow: Checks whether the predicted item was
actually acquired by the player at some point within the time
window considered (between t+ 1 and t+ 50).

For all three measures, the accuracy for the top (predict-
edMax), top 2 (withinTop2) and top 3 (withinTop3) predicted
items is calculated, i.e. we check whether the player actually
purchased the item that had the highest probability, any of the
two items with the two highest probabilities or any of the three
items with the three highest probabilities, as per the prediction.

V. RESULTS

Fig. 1. Predicted probability, for a sample of players and a series of items,
that the item will be bought by the player on their next purchase, using
the DNN (left) and ERT models (right). (Darker colors correspond to higher
probabilities.)

Figure 1 shows the predictions for a subset of users. The
DNN (left panel) and ERT (right panel) results exhibit similar
patterns (with only slight variations). We see that different
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users have different purchase probabilities for each item, which
shows that the models are capable of providing personalized
predictions for each player based on their playing behaviour.

The accuracy results for both models can be found in Table
I. When considering the top 2 and top 3 predictions, both
models present similar accuracies, but the ERT is slightly
better at identifying the item with the highest probability of
being acquired on the next purchase, for all three measures.

TABLE I
ACCURACY RESULTS FOR THE NEXT-PURCHASE

PREDICTION IN THE DNN AND ERT MODELS

(DNN) predictedMax withinTop2 withinTop3

isOnNextPurchaseDate 44% 68% 81%
isNextPurchase 34% 59% 74%
isWithinWindow 69% 85% 90%

(ERT) predictedMax withinTop2 withinTop3

isOnNextPurchaseDate 47% 68% 81%
isNextPurchase 37% 59% 74%
isWithinWindow 71% 85% 91%

VI. DISCUSSION

An item recommendation system for games is essential
to provide players with individual rewards or incentives to
increase engagement, to maximize in-app purchases and to
increase cross-selling and up-selling. We have presented two
models to predict which items players will be more attracted to
buy in their next purchases. The results show that the predict-
ing performance of the DNN and ERT is similar. However the
ERT model yields slightly better results (as shown in Table I)
and also scales up more easily in a production environment.

While predictions were made only for a small set of items,
the model is trivially extendable to run on hundreds of items,
and can be used both for items purchased with real money and
for in-game virtual purchases. Future works in this direction
will include an evaluation of the recommendation system in
terms of total game sales for live video-games.
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Abstract—First-person shooter (FPS) video games play an im-
portant role in game artificial intelligence (AI). In this paper, we
present an effective deep reinforcement learning (DRL) method
to learn battles in ViZDoom. Our approach utilizes the actor-
critic with Kronecker-factored trust region (ACKTR), a sample-
efficient and computationally inexpensive DRL method. We train
our ACKTR agents in two battle scenarios, and compare with
the advantage actor-critic (A2C) baseline agent. The experimental
results demonstrate that DRL methods successfully teach agents
to battle in these scenarios. In addition, the ACKTR agents
significantly outperform the A2C agents in terms of all the
metrics by a significant margin.

Index Terms—reinforcement learning, deep learning, game AI

I. INTRODUCTION

In the last few years, we have witnessed massive progresses
of game artificial intelligence (AI) with deep reinforcement
learning (DRL) [1] [2]. These DRL agents have achieved
impressive performances in various games, including Atari [3],
Go [4], Poker [5], and StarCraft [6] [7]. It has been proven
that DRL is a general and effective architecture for game AI.

In this paper, we present DRL methods to teach agents
to learn battles in ViZDoom [8], which is a first-person
perspective 3D environment for visual reinforcement learning
research, as shown in Fig. 1. Agents in ViZDoom have many
challenges. They have to navigate in high dynamic partially
observable maze environment, recognize different objects, and
shoot accurately at the enemy targets. All of these behaviors
come from high-dimensional image inputs. We apply the state-
of-the-art DRL methods to tackle these challenges in two
battle scenarios. To evaluate the performance of our agent,
we compare the results with the baseline method in terms
of some metrics. The organization of the remaining paper is
arranged as follows. In Section II, we describe the related work
of ViZDoom. Then we present the DRL methods in Section
III, and introduce ViZDoom battle scenarios and the learning
model in Section IV. In Section V, we present the experimental
setup details and the results. Finally, we draw a conclusion of
our research.

This work is supported by National Natural Science Foundation of China (NSFC)
under Grants No.61573353, No.61603382 and No. 61533017.

Fig. 1. Game sample of the battle scenario in ViZDoom from the first-person
perspective.

II. RELATED WORK

In recent years, deep reinforcement learning has been widely
used in game AI, showing superior performance to traditional
methods. Here we focus on related work of ViZDoom with
DRL methods, especially for battle scenarios.

Kempka et al. propose ViZDoom as a novel test-bed for
reinforcement learning from visual information. There are
various tasks in ViZDoom, and agents have to interact with
the 3D world in a first-person perspective. In some simple
tasks, e.g., the basic and the health gathering, the deep Q-
Network (DQN) agent achieves acceptable performances [8].
Kulkarni et al. use the successor representations to decompose
the value function into a reward predictor and a successor map,
and generalize it in the end-to-end DRL architecture. This
method has the increased sensitivity to distal reward changes
and the ability to extract bottleneck states in ViZDoom [9].
Lample et al. present a method to augment the deep recurrent
Q-network (DRQN) model to exploit game feature informa-
tion during training, which improves the training speed and
performance dramatically. This model bases on the proposed
action-navigation architecture, and outperforms built-in agents
as well as average humans in the deathmatch battle scenarios
[10]. The agent, named Arnold, wins the first place for track
2 in the ViZDoom AI competition 2017. Tian et al. propose a
framework that combines the asynchronous advantage actor-
critic (A3C) model and curriculum learning [11]. This agent
learns to move and shoot via playing against built-in agents
in a progressive manner and wins the first place for track
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1 in the ViZDoom AI competition 2016. Dosoviskiy et al.
propose the direct future prediction (DFP), which utilizes
a high-dimensional sensory stream and a lower-dimensional
measurement stream as the inputs to provide a rich supervisory
signal, and trains a sensorimotor control model by interact-
ing with the environment [12]. DFP successfully generalizes
across environments and goals, and outperforms state-of-the-
art DRL methods on challenging deathmatch tasks. This agent
wins the first place for track 2 in the ViZDoom AI competition
2016.

III. DEEP REINFORCEMENT LEARNING

A. Reinforcement Learning and Actor-Critic Methods

In the reinforcement learning paradigm, an agent learns
by trial and error, and determines the behavior from its own
experiences with the environment [13]. Here we consider an
agent interacting with a discounted Markov decision process
(MDP) (S,A, γ, P, r). At time t and state st, the agent chooses
an action at according to the policy π(at|st). After receiving
the action, the environment produces a reward rt+1 and
transitions to the next state st+1 according to the transition
probability P (st+1|st, at). The process continues until the
agent reaches a terminal state. The goal of the agent is to
maximize the expected discounted cumulative rewards under
the policy π with discount factor γ ∈ (0, 1]

Eπ[Rt] = Eπ[

∞∑

i=0

γirt+i]. (1)

Policy gradient methods parameterize the policy πθ(at|st)
directly and update parameter θ to maximize the objective
function J(θ). In its general form, J(θ) is defined as

J(θ) = Eπ[

∞∑

t=0

Ψt log πθ(at|st)]. (2)

Based on policy gradient methods, actor-critic reinforce-
ment learning methods use a value function to approximate
Ψt. Mnih et al. propose the asynchronous advantage actor-
critic method, which asynchronously executes multiple agents
on multiple instances of the environment [14]. With multi-
ple agents playing concurrently and optimizing the networks
through asynchronous gradient descent, A3C decorrelates the
training data into a more stationary process and improves the
performances of a number of tasks.

As the synchronous version of A3C, A2C optimizes the
learning model synchronously and uses the GPU to accelerate
learning process [15]. In A2C, the objective function is defined
as

R′t =
k−1∑

i=0

γirt+i + γkVθv (st+k), (3a)

Aθ,θv (st, at) = R′t − Vθv (st), (3b)

J(θ) = Eπ[
∞∑

t=0

Aθ,θv (st, at) log πθ(at|st) + βHθ(π(st))].

(3c)

θv are the parameters of the value network, and Hθ(π(st))
is an entropy term used to encourage exploration during the
training process.

B. Actor Critic using Kronecker-Factored Trust Region

A2C and other DRL methods are usually trained using
simple variants of stochastic gradient descent (SGD), which
are inefficient first-order methods. Natural gradient descent can
perform gradient updates efficiently, which follows the steepest
descent direction and uses the Fisher metric as the underly-
ing metric. More recently, Kronecker-factored approximated
curvature (K-FAC) is proposed as a scalable approximation
to natural gradient, which can be used to the Fisher matrix
to perform approximate natural gradient updates efficiently.
Wu et al. combine the actor-critic, trust-region policy opti-
mization (TRPO) and K-FAC, and introduce the actor-critic
using Kronecker-factored trust region (ACKTR) [16]. ACKTR
extends the framework of natural policy gradient and optimizes
both the actor and the critic using K-FAC. For the actor, we
use the policy distribution to define the Fisher matrix

F = Ep(τ)[∇ log π(at|st)∇ log π(at|st)T ]. (4)

For the critic, the output of the critic v is defined to be a
Gaussian distribution, and we define the Fisher matrix with
respect to this Gaussian output distribution.

p(v|st) ∼ N (v;V (st), σ
2) (5)

When actor and critic share lower-layer representations,
we define the joint distribution as p(a, v|s), and apply K-
FAC to approximate the Fisher matrix to perform updates
simultaneously.

p(a, v|s) = π(a|s)p(v|s) (6a)

F = Ep(τ)[∇ log p(a, v|s)∇ log p(a, v|s)T ] (6b)

Moreover, ACKTR adopts the trust region formulation of K-
FAC, choosing the effective step size η. The natural gradient
is performed with the following updates.

η = min(ηmax,

√
2δ

∆θTF̂∆θ
) (7a)

θ ← θ − ηF−1∇θL (7b)

where ηmax is the learning rate and δ is the trust region radius.
ACKTR is the first scalable trust region natural gradient

method for actor-critic DRL, and improves the sample ef-
ficiency of current methods significantly. In the following
experiments, we will use this method to train our agents.

IV. LEARNING MODEL FOR BATTLES IN VIZDOOM

A. Battles in ViZDoom

We consider two battle scenarios in ViZDoom as the test-
beds for our deep reinforcement learning agents, as shown
in Fig. 2. In each scenario, the agent is armed and is under
attack by enemies in a maze. The enemies spawn abundantly,
move around in the environment, and shoot at our agent. In the
second task, apart from enemies, health kits and ammunition
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Fig. 2. Examples of the ViZDoom battle maps in the experiment, left: the map of the first battle; right: the map of the second battle.

Fig. 3. The architecture of the actor-critic DRL model for battle scenarios
in ViZDoom. The model takes in recent four frames visual inputs st, game
variables healtht, ammot, and produces policy π(a|s), value function V (s).

are sporadically distributed throughout the environment and
can be collected by the agent.

We will train the agent to learn battles with complex visual
inputs in these two scenarios. The agent has seven actions:
move forward, move backward, move left, move right, turn
left, turn right, and attack. An episode comes to an end when
the agent is dead or reaches the maximum game steps. The
measurements that the agent can access in these scenarios are
the health point, the ammo, and the kill count. The objective
of the agent is to kill as many enemies as possible.

We use the reward shaping method in these scenarios.
Basically, when the agent is dead, it will receive a penalty of
-100. Furthermore, to accelerate the learning process, we give
additional rewards for gathering a health kit and a ammo kit,
which are set to +10. If our agent is attacked by the enemies,
it will receive a penalty of -10. And we add a penalty for
wasting ammo, which is set to -2. In the training process, we
reshape the total reward and divide it by 100. Each episode
finishes after 4200 steps.

B. Learning model for Battles

We follow the architecture of the Facebook F1 bot that uses
the actor-critic deep reinforcement learning model to tackle the
battle scenarios in ViZDoom. The actor-critic method used in

our experiment learns both a policy πθ(at|st) and a value
function VθV (st). The model receives a state observation st,
game variables healtht, ammot, and uses deep convolutional
neural networks as the encoder. The resolution of the original
grey-scale visual image is 160×120. We stack four recent
observations as the inputs to track historical traces of the agent.
In the data preprocessing, we resize the visual observation to
84×84.

The neural network used in the experiment follows a similar
architecture in the DQN paper. The network uses a convolu-
tional layer with 32 filters of size 8×8 with stride 4, followed
by a convolutional layer with 64 filters of size 4×4 with stride
2, followed by a convolutional layer with 64 filters of size 3×3
with stride 1, followed by a fully connected layer with 512
hidden units. All four hidden layers are followed by a rectifier
nonlinearity. Thereafter, we concatenate the game variables
tensor and use the softmax function to output the policy
πθ(at|st), and use one linear output for the value function
VθV (st). We share all the non-output layers in the actor
network and the critic network. This layer-sharing mechanism
can stabilize the training process. To balance exploration and
exploitation in reinforcement learning, we use the Boltzmann
exploration method to select actions. The details of the actor-
critic DRL model for ViZDoom battle scenarios are depicted
in Fig. 3.

V. EXPERIMENTS

A. Experimental Setup

The experiments are performed on the two presented ViZ-
Doom battle scenarios with the following setup. We refer to
the hyperparameters of DRL model in the OpenAI baseline
[17]. In each experiment, we open 128 processes running
on a single machine with one Nvidia P100 GPU. The DRL
methods perform updates after every 20 action steps. The
discount factor is set to 0.99. We use the standard non-centered
RMSProp optimizer to update the A2C agent, and the K-FAC
optimizer to update the ACKTR agent.

B. Experimental Results

We present the experimental results of our ACKTR agent
and the A2C agent in Fig. 4. In both battle scenarios, the
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Fig. 4. Episode rewards achieved by DRL agents in the two battle scenarios during training. These rewards are averaged among 128 processes.

TABLE I
TEST RESULTS OF DRL AGENTS IN TWO BATTLE SCENARIOS.

Battles Agents Rewards LivingSteps KillCounts

Battle-1 A2C 27.8±6.9 1287.7 ±530.1 23.3±5.6
Battle-1 ACKTR 32.1 ± 7.2 1303.5±514.2 26.2±5.7

Battle-2 A2C 60.7±19.8 3758.5.7±890.8 20±7.6
Battle-2 ACKTR 66.1±21.6 3975.7±580.1 24±6.6

curves of episode rewards increase very fast in the early stage,
and the models converge at the end of training. In the first
battle scenario, we train the agents for 150 million steps. In
the second battle scenario, the training process ends after 100
million steps.

After training, we test the agents in each battle scenario
for 100 games. We record the episode rewards, the living
steps and the killcount, which are presented in Table I. From
the killcount results, we can see that both DRL agents can
successfully learn how to battle in these scenarios. Compared
with the A2C agent, the ACKTR agent has better performances
in terms of all the metrics. In particular, the ACKTR agent
achieves 12.4% and 20% higher killcount scores than the
A2C agent in the two battles. Moreover, the ACKTR agent
significantly outperforms the A2C agent in terms of sample
efficiency by a significant margin. And the performance of
ACKTR agent is more stable than the A2C agent, since the
A2C agent has several obvious declines during training.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present the efficient ACKTR deep rein-
forcement learning method to learn battles in ViZDoom. The
experimental results show that the DRL agents can success-
fully tackle these battle scenarios after training. The ACKTR
agent significantly outperforms the A2C agent in terms of all
the metrics. In the future, we will introduce auxiliary tasks
to improve the performance and generalization of our model.
And we will train an agent to play the full deathmatch scenario
with DRL methods.
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Abstract—Real-time heuristic search methods are used when
planning time available per agent’s move is severely limited
(e.g., while pathfinding in a video game). Such agents interleave
planning and plan execution. As the agent has to move before
a complete plan is computed, it is prone to be misguided by
inaccuracies in its heuristic. To get out of heuristic depressions,
such agents update their heuristic over time. The usual update
process requires multiple state revisits which can make the
agent appear irrational to the player. To alleviate such map
“scrubbing” we propose a new learning mechanism inspired by
the psychological notion of anxiety. Our agent maintains a level of
anxiety which increases due to state revisits and decays naturally
over time. Agent’s anxiety causes it to update the heuristic
more aggressively thus filling heuristic depressions quicker. Such
anxiety-accelerated learning can be used on top of other real-time
heuristic search techniques. Empirical evaluation on video-game
pathfinding benchmarks demonstrates benefits for the average
solution quality when the new mechanism is used by itself or in
combination with expendable state marking.

Index Terms—artificial intelligence, heuristic search

I. INTRODUCTION

Artificial Intelligence (AI) in video games is often used
to control non-playable characters (NPCs) in real-time, as
the game progresses. Such AI needs to be responsive to the
player’s actions as well as other events in the game. In the
context of NPC pathfinding, this means that often an NPC
move is due before a complete path can be computed. Real-
time heuristic search (RTHS) algorithms [1] are specifically
designed for such problems, interleaving planning and plan
execution by computing only a few next moves. Such reactivity
and locality [2] comes at the cost of suboptimal actions – the
myopic nature of their planning can easily guide the agent into
a deadend. To get out of such traps an RTHS agent updates
its estimates of the distance to the goal (called heuristic).
Traditionally, learning rules based on the Bellman optimality
equation are used. They keep the heuristic locally consistent by
keeping updates small. Such conservative learning can result
in state revisits [3], [4] which look bad in a video game.

Various mechanisms have been suggested to alleviate such
map “scrubbing”. In this paper we consider a recent technique
that reduces the search space by pruning some states while
preserving graph connectivity [5]. This technique has been
found powerful in practice [6] but is limited by the fact that
the pruning is permanent and thus states that critically connect
regions of the map can never be pruned. Suppose an agent
wanders into a maze and gets lost there due to an inaccurate
heuristic (a la [7]). Should the agent prune the entrance to the

maze to prevent re-entry? What if going through the maze is
the only way to get to the goal? Pruning is binary and does
not afford the agent a way to keep the state in the map but
remember its bad experience in it.

We propose an alternative to pruning states. Instead of
removing them from the map entirely, we have the agent
merely make them less attractive by aggressively increasing
their heuristic. To do so we introduce the notion of anxious
learning which increases the heuristic of the agent’s current
state more rapidly than an update rule based on the Bellman
optimality equation would. The extra learning amount is con-
trolled by the agent’s current level of anxiety. In psychology,
anxiety is defined as a state of heightened awareness signalling
a potential threat or negative outcome [8]. An agent’s revisiting
states (“walking in circles”) indicates inaccuracies in the
heuristic and the possibility of costly detours, so we increase
the agent’s anxiety level when this happens. The anxiety level
naturally decays over time.

The new mechanism is the primary contribution of this
paper. We evaluate its effectiveness on top of a basic RTHS
algorithm as well as in combination with marking expendable
states. We find that the two techniques are competitive but their
combination outperforms either one of them individually.

II. PROBLEM FORMULATION

In this paper we are tackling the standard real-time heuristic
search problem [9]. The agent is traversing an undirected
search graph G = (S,E) comprised of a finite set of
vertices/states S connected by a finite set of edges E ⊂ S×S.
Each edge is weighted by a cost function c : E → R. All
costs are positive. There are no self-loops in the graph. Time
proceeds in discrete steps. At time t the agent occupies a single
state st which it changes to a neighboring state st+1 ∈ N(st)
by traversing the edge (st, st+1) ∈ E. Neighbors of state s are
denoted by N(s). The agent starts in a start state s0 and at time
T arrives in the goal state sg (s0 6= sg). The agent’s solution
is the path (s0, s1, . . . , sg). The cumulative cost of all edges in
that path is the solution cost. The solution suboptimality is then
the ratio of the solution cost to the smallest possible solution
cost. For instance, solution suboptimality of 1 indicates an
optimal solution while solution suboptimality of 2 indicates
that the path found is twice as long as needed.

In real-time heuristic search, solution suboptimality on a
single problem is rarely of interest. Instead, an algorithm is
evaluated in terms of its average performance over a set of
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benchmark problems. The problems differ from each other in
terms of the search graph and/or the start and goal states.
Solution suboptimality has a long-tailed distribution with very
large suboptimality on a few problems. The usual arithmetic
mean is sensitive to such high values. Consequently, in this
paper we will primarily use the geometric mean defined as
n
√∏

xi to be less sensitive to such data points.∗ To indicate
variance in the data, we will use geometric standard deviation
factor y which is multiplicative relative to the geometric mean
x, denoted by x×/÷ y.

In its search, the agent has access to the entire graph as
well as a heuristic function h : S → R which estimates the
remaining cumulative distance between a state and the goal.
The search is, however, real-time and the agent is allowed to
consider only up to M states in the graph before it is required
to traverse an edge and M is independent of the graph size
|S|. Since the agent is required to act before it can compute
a complete solution, state revisits and backtracking are likely.
To avoid looping forever, the agent updates its heuristic as
it traverses the graph. The initial, and usually inaccurate,
heuristic is given to the agent as an input.

III. RELATED WORK

Computational models of emotions have long been used in
the design of NPC agents regarding both their appearance [10]
and their actions [11]. More recently researchers applied a
computational model of emotions to pathfinding [12]. In doing
so the agent felt a positive valence when the goal was within
its line of sight and it was moving farther away from the start
state. The positive valence would then be used to increase
the agent’s rewards in the context of reinforcement learning.
However, the results show learning performance comparable to
that of valence-free learning. Other researchers have injected
internal rewards based on flow [13] and learning progress [14]
into the stream of external rewards.

Even more recent work used RTHS as a vehicle to study
unscripted and seemingly irrational behavior in which an agent
avoids areas of the map where it had bad experience [7]. To
do so, the authors replaced the agent’s usual heuristic with the
agent’s solution cost if it were to reach the goal from each state
using the basic heuristic. They discovered that such knowledge
of one’s own behavior reliably led to worse results as the
agent would avoid areas of the map not because they were
objectively bad (i.e., far from the goal) but because the agent
would get lost there due to inaccuracies in its heuristic. While
curious, the work used an impractical heuristic. We realize the
idea of anxiety in a practical fashion which also happens to
improve solution suboptimality.

IV. OUR APPROACH

Intuition. The Learning Real-Time A* (LRTA*) algorithm [1]
used a learning rule based on the Bellman optimality equation
(called minimin) to make the heuristic of the current state
consistent with that of neighboring states. While this allows

∗For log-normally distributed data geometric mean is equal to median.

for convergence to an optimal solution over repeated trials,
the updates to the heuristic function are necessarily low and
force the agent to revisit states repeatedly before it can escape
a heuristic depression (known as scrubbing) [4].

We use a more aggressive learning rule to fill the heuristic
depressions faster. Unlike prior work which uniformly acceler-
ated learning [15], [16], our learning acceleration is dynamic
and only activated by state revisits. Other work has used
expendable states a way of preventing state revisits and filling
heuristic depressions [5], but when heuristic depressions have
obstacles in them, marking expendable states results in maze-
like structures whose heuristic still needs to be updated as
the agent moved around the maze. Anxious learning improves
upon this by reducing scrubbing and allowing the agent to
escape such mazes faster.

Algorithmic Details. Our approach to anxious learning is
presented as Algorithm 1. The agent starts with no anxiety
in line 3. As the agent traverses the graph (line 4)† it tracks
its state revisits via the function L. When in the state st,
the loop distance L(st) is defined as the cost of all edges
traversed by the agent since its previous visit to st.‡ The
loop distance relative to the agent’s current estimate of the
remaining distance to goal (i.e., L(st)/ht(st)) is then compared
against the memory span Lmax and it is reset to 0 if the loop
is too long (line 6). The agent’s anxiety level a is increased
proportionally to the relative loop length in line 8 with the
anxiety rate α. It is reduced by the anxiety decay ∆a in
line 7. Anxious learning then happens in line 9 where the
agent additionally increases its heuristic by a.

If a state is expendable (i.e., E(st) holds) and its heuristic
has been increased then a state is removed from the graph
in line 11. The expendable mechanism [5], [9] is controlled
by a switch E. Note that while in the original formulation,
the heuristic increase requirement (ht+1(st) > ht(st)) meant
that states are expended only around pathfinding obstacles, our
agent can increase the heuristic even in open areas if the agent
is anxious (a > 0) so states can be expended in the open too.

Finally the agent selects the neighbor greedily according to
its updated heuristic in line 12 and the cycle repeats.

V. EMPIRICAL EVALUATION

We have an empirical evaluation setup similar to recent
work [9] and use their set of 493298 pathfinding problems
from MovingAI benchmarks [17]. The problems were dis-
tributed over 342 video-game maps found in the repository
and originating from the video games StarCraft, WarCraft
III, Baldurs Gate II (maps scaled up to 512× 512 cells) and
Dragon Age: Origins. The maps were treated as 8-connected
grids. Each grid cell is a vertex/state in the search graph. Edges
between cardinally (diagonally) neighboring cells cost 1 (

√
2)

to traverse. The initial heuristic is octile distance which ignores
walls but otherwise is accurate.

†We exit the while loop when the travel cost accumulated so far makes
the solution suboptimality exceeds an priori specified cutoff.
‡L(st) = 0 if it is the agent’s first visit to st.
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Algorithm 1: Anxious Real-time Heuristic Search

input : search problem (G, c, s0, sg, h); anxiety control
parameters α, ∆a, Lmax; expendable pruning switch E

output: path (s0, s1, . . . , sT ), sT = sg
1 t← 0
2 ht ← h
3 a← 0
4 while st 6= sg do
5 if L(st)/ht(st) ≥ Lmax then
6 L(st)← 0

7 a← max{0, a−∆a}
8 a← a+ α · L(st)/ht(st)

9 ht+1(st)← max

{
ht(st), a+ min

s∈N(st)
(c(st, s) + ht(s))

}

10 if E & ht+1(st) > ht(st) & E(st) then
11 G← G \ {st}
12 st+1 ← arg min

s∈N(st)
(c(st, s) + ht(s))

13 t← t+ 1

14 T ← t

Many problems in the set were fairly easy even for basic
LRTA* (e.g., if the start and goal states are within the same
open space on a map, the initial heuristic offers perfect
guidance). Averaging suboptimality over such problems re-
duces the distinction between competing algorithms. Thus, we
excluded all problems which basic LRTA* solved with subop-
timality below 5, leaving 282064 problems (i.e., approximately
57%) in the set. To have a smaller set, we used the same
removal technique on a subset of the original scenario which
originally contained 1000 problems selected from the 493298
problems. The removal procedure left 563 problems in the set.

Effects of Anxiety. Our anxious learning mechanism is con-
trolled by three parameters as described above. We conducted
a sweep of the parameter space to determine the most suitable
combination. We tried all combinations of the anxiety rate
α ∈ {1, 50, 100, 500, 2000, 3000, 4000, 5000, 10000}, anxiety
decay ∆a ∈ {0, 1, 3, 5, 10, 15, 20} and the memory span
Lmax ∈ {0.005, 0.07, 0.13, 0.19, 0.25, 0.31, 0.38, 0.44, 0.5}.
For each of the 567 parameter combinations, we ran the
resulting algorithm twice (once with expendable-state marking
turned on and once with it turned off) on each problem from
the 563-problem set described above. Among the algorithms
that could solve all problems in the set under the 104 sub-
optimality cutoff, the best geometric mean suboptimality was
achieved with the anxiety rate of 5000, anxiety decay of 15
and the memory span of 0.44 (when expendable-state marking
was off). With expendable-state marking on, the best anxiety
parameters found were 5000, 10, 0.07 respectively.

Table I compares the two resulting algorithms with the
baseline LRTA* as well as LRTA* with expendable-state
marking, both of which do not have any anxiety. The cutoff
was set to 105; all algorithms solved all problems. Marking
expendable states by itself brings a substantial boost to the
LRTA* performance. Anxiety by itself yields a better geomet-
ric mean yet. Finally, the combination of expendable states

and anxiety yields the best performance. LRTA* with anxiety
but without marking expendable states has a tremendous per
move anxiety, adding approximately 1.18×106 to its heuristic
on an average step. With expendable states enabled, the per-
step anxiety add-on drops to approximately 4.6 × 103. This
difference is largely due to the different memory span values
0.07 versus 0.44. Furthermore, expended states are removed
from the map and cannot be revisited thereby affecting the
evolution of the agent’s anxiety level.

TABLE I
ALGORITHMS COMPARED ON THE 563-PROBLEM SET.

Base E Anxiety Suboptimality Anxiety/move

LRTA* off 0, 0, 0 171.87×/÷ 7.05 0
LRTA* on 0, 0, 0 19.31×/÷ 4.30 0
LRTA* off 5000, 15, 0.44 17.35×/÷ 4.64 1180028.6
LRTA* on 5000, 10, 0.07 13.03×/÷ 3.27 4622.9

Portability of Anxiety Parameters. We then tested the
anxiety parameters tuned for the 563-problem set on the set
of 282064 problems. We substituted basic LRTA* with a
previously published algorithm known for high performance
on MovingAI problem sets [9]. The algorithm is denoted by
2.654 ·median0.153(2.486 · c + h)+da+E and uses additional
algorithmic blocks of depression avoidance (da) [18], non-
minimum learning operator and learning weights [9], [15],
[16]. The results are found in Table II with the previously
published algorithm denoted by “[9]”. The suboptimality cutoff
was 106; all algorithms solved all problems.

TABLE II
ALGORITHMS COMPARED ON THE 282064-PROBLEM SET.

Base E Anxiety Suboptimality Anxiety/move

[9] on 0, 0, 0 14.99×/÷ 3.45 0
LRTA* on 0, 0, 0 18.76×/÷ 4.22 0
LRTA* off 5000, 15, 0.44 19.56×/÷ 5.07 1421233.7
LRTA* on 5000, 10, 0.07 13.52×/÷ 3.41 6067.0

The combination of anxiety and marking expendable states
once again wins against either of them individually. More
surprisingly, LRTA* with anxiety and marking expendable
states outperforms even an algorithm that uses other building
blocks such as weighted learning and depression avoidance.

When to Be Anxious. Results in the previous section indicate
that using anxious learning on top of expendable state marking
is beneficial overall. There are, however, problems where
anxious learning makes the solution worse. If one knew which
problems to use anxiety on, further performance gains could
be had. For instance, on the 563-problem set, using anxiety
only on problems where it helps reduces mean suboptimality
from 13.03×/÷ 3.27 to 11.83×/÷ 3.01.

To analyze when anxiety is beneficial, we ran LRTA*+E
(second row in Table II) and LRTA*+E with anxiety (last row
in Table II) on each of the 282064 problems. We defined the
benefit of anxiety as the difference of the solution subopti-
mality without anxiety and the solution suboptimality with
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anxiety. We computed the (arithmetic) mean and (arithmetic)
standard deviation of the benefit and removed 189 problems
whose benefit was more than 2 standard deviations away from
the mean as outliers. We then clustered the remaining benefit
values into k = 3 clusters using k-means.We ran the clustering
process three times and obtained the same three clusters. The
largest cluster contained 268060 problems and the (arithmetic)
mean benefit of using anxiety was 11.8. Cluster 2 contained
12032 problems and the (arithmetic) mean benefit was 383.4.
The final cluster contained 1783 problems and the (arithmetic)
mean benefit was −546.1 (i.e., anxiety degraded solution
suboptimality on average). We discarded the largest cluster
(where anxiety had least effect on average) and considered the
two clusters where anxiety effects were more pronounced. We
then visualized each problem from each cluster as an image,
similar to recent work [19], [20]. Each open grid cell became
a single white pixel. Wall cells were black pixels. The agent’s
start/goal states became a 9×9–pixel red/green square centered
in the start/goal cell (Figure 1).

Fig. 1. Two sample problems: where anxiety on top of LRTA*+E is helpful
(left) and where anxiety is detrimental (right).

We then trained AlexNet [21] on the images in the two
clusters and used it to turn anxiety on and off on a per-problem
basis. While the test binary classification accuracy reached
87.5%, the resulting suboptimality was slightly worse than
leaving anxiety always on with LRTA*+E.

VI. CURRENT SHORTCOMINGS AND FUTURE WORK

Similar to recent work on automated RTHS algorithm
selection we investigated only a subclass of algorithms with
the lookahead depth of one. Future work will generalize
our definition of anxious learning on algorithms with deeper
lookahead such as LSS LRTA* [22] or PALMA [6]. It will
also be of interest to compare weighted learning [15], [16]
and lateral learning [23] to our anxiety mechanism. The latter
has a potential advantage by being activated only when the
agent revisits states. It will also be of interest to see if the
number of revisits (i.e., the degree of scrubbing) is a useful
input to the anxiety level of the agent.

It has been recently argued [7] that self-reflection in RTHS
can make NPCs pathfind in a more natural, human-like fash-
ion. It will be of interest to run a user study to see if adding the
anxious-learning mechanism we presented here indeed makes
the NPCs more visibly human. Can the anxiety be used with
tactical pathfinding (e.g., via influence maps)?

VII. CONCLUSIONS

This paper suggested a new learning mechanism for real-
time heuristic search agent. It allows the agent to escape
heuristic depressions faster without permanently removing
states from the search graph. Empirical evaluation on video-
game pathfinding benchmarks demonstrates benefits for the
average solution quality when the new mechanism is used by
itself or in combination with expendable state marking.
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Abstract—A purpose of General Video Game Playing (GVGP)
is to create agents capable of playing many different real-
time video games. Instead of using a fixed general strategy, a
challenging aspect is devising strategies that adapt the search
to each video game being played. Recent work showed that on-
line parameter tuning can be used to adapt Monte-Carlo Tree
Search (MCTS) in real-time. This paper extends prior work on
Self-adaptive Monte-Carlo Tree Search (SA-MCTS) by further
testing one of the previously proposed on-line parameter tuning
strategies, based on the N-Tuple Bandit Evolutionary Algorithm
(NTBEA). Results show that, both for a simple and a more
advanced MCTS agent, on-line parameter tuning has impact on
performance only for a few GVGP games. Moreover, an informed
strategy as NTBEA shows a significant performance increase only
in one case. In a real-time domain as GVGP, advanced parameter
tuning does not seem very promising. Randomizing pre-selected
parameters for each simulation appears to be a robust approach.

Index Terms—Monte-Carlo tree search, self-adaptive search,
general video game playing, on-line parameter tuning

I. INTRODUCTION

In GVGP [1] there is the need to devise general search
approaches able to deal in real-time with many heteroge-
neous video games. Moreover, such approaches cannot exploit
game-specific and prior knowledge. MCTS with its variations
and enhancements [2] is one of the most commonly used
techniques in GVGP. MCTS is often controlled by many
parameters and the best parameter settings vary across games.
A problem when using MCTS in GVGP is that parameters
cannot be tuned in advance for the game at hand and have to
be set to values that are generally good (i.e. perform overall
well on a reference set of games, possibly heterogeneous).

Recently, methods to tune search parameters on-line have
been investigated. Sironi and Winands [3] propose on-line
parameter tuning for General Game Playing and show that
on-line tuned agents almost reach the same performance of
off-line tuned agents. Sironi et al. [4] apply on-line parameter
tuning to obtain a Self-adaptive MCTS (SA-MCTS) strategy
for GVGP and show that, when SA-MCTS is implemented
in the SAMPLEMCTS agent of the General Video Game AI
framework (GVGAI) the win rate in a few games is increased.

This paper extends prior work on SA-MCTS. It considers
one of the allocation strategies that performed best in [4],
the one based on the N-Tuple Bandit Evolutionary Algorithm
(NTBEA). This is compared with a less informed allocation
strategy based on a Multi-Armed Bandit (MAB) and with
a random allocation strategy. These allocation strategies are

tested both on a simple and a more advanced MCTS agent.
The effect of increasing the search budget is also investigated.

The paper is structured as follows. Section II describes
the SA-MCTS approach and the tested allocation strategies.
Section III discusses the results obtained by the experiments.
Conclusion and future work are presented in Section IV.

II. SELF-ADAPTIVE MONTE-CARLO TREE SEARCH

This section describes how parameters can be tuned on-
line to obtain a self-adaptive behavior of the search. Subsec-
tion II-A describes how on-line parameter tuning is integrated
with MCTS, while Subsection II-B describes three strategies
that decide how to allocate the available samples to evaluate
different parameter value combinations.

A. Integration of On-line Parameter Tuning with MCTS

Figure 1 gives an overview of SA-MCTS. The central box
shows the four phases of standard MCTS: selection, expansion,
play-out and backpropagation. To tune parameters on-line two
more phases are added to the search: (i) an initial phase where
an allocation strategy chooses which combination of parameter
values will control the next simulation, and (ii) a final phase
where the reward obtained by the simulation is used to update
statistics about the chosen combination of parameters.

B. Allocation Strategies

An allocation strategy decides how to allocate the available
samples to the feasible parameter values that need to be eval-
uated. This section describes the three considered allocation
strategies: Random, Multi-Armed Bandit (MAB) [5], and N-
Tuple Bandit Evolutionary Algorithm (NTBEA) [6].

1) Random: before each MCTS simulation this allocation
strategy selects a parameter combination uniformly at random
from a set of manually pre-selected feasible values. This means
that it does not need to collect any statistics about the per-
formance of the combinations. This study includes a random
strategy to verify how the other more informed allocation
strategies would compare to one that uses no information
collected on-line to select parameter values. Note that by pre-
selecting the set of values we are still giving information to
the strategy, and its performance will depend on how good
these values are.

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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Fig. 1. Interleaving on-line tuning with MCTS

2) MAB: this allocation strategy considers the problem as
a Multi-Armed Bandit [5], where each arm corresponds to one
of the combinations of parameter values. Before each simu-
lation a combination of parameter values ~p ∗ = 〈p1, ..., pd〉 is
selected with UCB1 as follows:

~p ∗ = argmax
~p∈P

{
Q(~p ) + CMAB ×

√
lnN

N~p

}
.

Here, P is the set of all combinations of parameters, Q(~p ) is
the average reward obtained by all simulations controlled by
combination ~p (normalized in [0, 1]), CMAB is the exploration
constant, N is the total number of simulations performed so
far, and N~p is the number of simulations performed so far
that were controlled by the parameter combination ~p. When
selecting the combination that maximizes the UCB1 value,
unexplored combinations are assigned a predefined value fpu
(i.e. first play urgency). For the experiments presented in
Section III CMAB is set to 0.7 and fpu is set to 1.0.

A limitation of this strategy is that it ignores the combina-
torial structure of the search space. When choosing parameter
values, it does not consider that good values in a combination
might be good in general or in other combinations.

3) NTBEA: this allocation strategy is based on the algo-
rithm proposed by Lucas et al. [6]. Two main components
of NTBEA can be distinguished: an evolutionary algorithm,
and an N-Tuple fitness landscape model (LModel). The evo-
lutionary algorithm considers each combination of parameters
as an individual and each single parameter as a gene. It starts
with a randomly generated parameter combination and evolves
it over time using statistics collected in LModel (e.g. average
reward and number of visits of tuples of parameters) to decide
which combination should be evaluated next. More precisely,
the evolutionary algorithm repeats the following steps:

1) Use the current combination ~p to control an MCTS
simulation.

2) Use the reward obtained by the MCTS simulation to
update the statistics for parameter tuples in LModel.

3) Generate x neighbors of ~p, each by mutating the value
of a randomly selected parameter in ~p.

4) Evaluate each of the x neighbors using LModel to
compute an estimate of their UCB1 value.

5) Set the neighbor with the highest estimated UCB1 value
as the current combination.

More details on how to use LModel to compute the estimate
of the UCB1 values can be found in [6]. For the experiments
presented in Section III x is set to 5 and the exploration
constant CNTBEA used to compute UCB1 values is set to 0.7.

III. EXPERIMENTS

This section presents an analysis of SA-MCTS under dif-
ferent conditions. Subsection III-A describes the experimental
setup and Subsection III-B reports and analyses the results.

A. Setup

SA-MCTS is evaluated in the single-player track of the GV-
GAI framework [1]. The allocation strategies tune feasible pre-
selected parameters on-line for the following MCTS agents:
• SAMPLEMCTS: the MCTS agent provided in the

framework. This agent implements a simple version
of MCTS that uses UCB1 as selection strategy and a
random play-out strategy. For this agent we tune the
UCB1 exploration constant C with values in {0.6, 0.7,
0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0},
and the maximum search depth D with values in
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}. When this
agent is not tuned on-line it uses the following fixed
parameter setting: C = 1.4, D = 10.

• MAASTCTS2: the winner of the 2016 GVGAI Single-
Player Planing Championship [7]. It implements MCTS
with UCB1 selection strategy and a series of enhance-
ments, among which the use of Progressive History in
the selection strategy and the N-Gram Selection Tech-
nique (NST) as play-out strategy. For this agent we
tune the UCB1 exploration constant C with values
in {0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0},
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the Progressive History weight W with values in
{0.1, 0.25, 0.5, 1, 3, 5, 7.5, 10, 20, 50}, the NST proba-
bility of playing a random action ε with values
in {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, the
minimum number of visits for an N-gram to be con-
sidered in the computation K with values in {1, 3, 5,
7, 10, 15, 20, 30, 50}, and the maximum used N-gram
length N with values in {1, 2, 3, 4, 5}. When this agent
is not tuned on-line it uses the following fixed parameter
setting: C = 0.6, W = 1, ε = 0.5, K = 7, N = 3.

All agents do not keep any knowledge between game runs,
so both the game tree built by MCTS and the parameter
statistics collected by the allocation strategies are reset.

Four series of experiments were performed. The first series
of experiments tests the SAMPLEMCTS agent with fixed
parameter values, and three SAMPLEMCTS agents with values
tuned on-line by each of the allocation strategies. The game
tick is set to 40ms as in the GVGAI competition, and the
agents are tested on 20 single-player games. The second
series of experiments tests the MAASTCTS2 agent with fixed
parameter values, and three MAASTCTS2 agents with values
tuned on-line by each of the allocation strategies. The game
tick is set to 40ms and the agents are tested on the same
20 single-player games. The third series of experiments is the
same as the second, but the game tick is set to 100ms and
only 10 of the initial 20 games are used. Games for which
MAASTCTS2 is performing close to 100% are excluded.
Only games for which there is more room for improvement
when given more search time are kept. The fourth series
of experiments tests the performance of SAMPLEMCTS and
MAASTCTS2 when their parameters are set to fixed values
expected to be sub-optimal for the games. These values are
C = 0, D = 1 for SAMPLEMCTS, and C = 0, W = 0,
ε = 0, K =∞, N = 1 for MAASTCTS2.

Results presented below always report the win percentage of
the agent with 95% confidence interval. The win percentage is
computed by playing all 5 levels of each game for 100 times,
obtaining a total of 500 samples per game per agent.

B. Results

Tables I, II, III and IV show results obtained with the first,
second, third and fourth series of experiments, respectively.

What is more interesting to observe for the first two series
of experiments is that the random strategy seems to achieve
in most of the games the same performance as the agent with
fixed parameters. In addition, for almost all the games neither
the MAB nor the NTBEA allocation strategy seem to perform
better than the random strategy.

A combination of three factors might explain these results.
Firstly, the manually constructed sets of parameter values
might be mostly reasonable for all the games and might not
contain particularly bad values. This means that for games
for which the fixed parameter settings are sub-optimal, ran-
domization will instead be able to control most of the search
with optimal values. This is probably what happens in Table I
for Chase and Crossfire, for which SAMPLEMCTS with the

TABLE I
WIN PERCENTAGE OF SAMPLEMCTS WITH FIXED PARAMETERS AND
SAMPLEMCTS WITH PARAMETERS TUNED ON-LINE BY EACH OF THE

ALLOCATION STRATEGIES. GAME TICK IS SET TO 40ms

Game SAMPLEMCTS
Fixed parameters Random MAB NTBEA

Aliens 100.0(±0.00) 100.0(±0.00) 99.6(±0.55) 100.0(±0.00)
Bait 6.6(±2.18) 8.0(±2.38) 7.6(±2.33) 6.8(±2.21)

Butterflies 95.2(±1.88) 94.4(±2.02) 95.2(±1.88) 95.6(±1.80)
CamelRace 4.2(±1.76) 5.6(±2.02) 5.8(±2.05) 3.8(±1.68)

Chase 3.2(±1.54) 6.6(±2.18) 6.6(±2.18) 6.2(±2.12)
Chopper 91.4(±2.46) 86.2(±3.03) 86.0(±3.04) 89.2(±2.72)
Crossfire 4.2(±1.76) 8.8(±2.49) 8.6(±2.46) 14.2(±3.06)
DigDug 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)
Escape 0.2(±0.39) 0.8(±0.78) 4.2(±1.76) 0.2(±0.39)

HungryBirds 5.4(±1.98) 4.6(±1.84) 5.6(±2.02) 4.4(±1.80)
Infection 97.0(±1.50) 97.6(±1.34) 98.0(±1.23) 97.8(±1.29)

Intersection 100.0(±0.00) 100.0(±0.00) 100.0(±0.00) 100.0(±0.00)
Lemmings 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)

MissileCommand 60.4(±4.29) 63.0(±4.24) 61.6(±4.27) 60.0(±4.30)
Modality 27.0(±3.90) 27.0(±3.90) 27.4(±3.91) 28.2(±3.95)

PlaqueAttack 91.8(±2.41) 93.4(±2.18) 87.6(±2.89) 92.8(±2.27)
Roguelike 0.0(±0.00) 0.0(±0.00) 0.2(±0.39) 0.0(±0.00)
SeaQuest 55.0(±4.37) 50.4(±4.39) 49.6(±4.39) 51.6(±4.38)

SurviveZombies 41.0(±4.32) 42.6(±4.34) 37.6(±4.25) 42.2(±4.33)
WaitForBreakfast 15.4(±3.17) 17.6(±3.34) 15.8(±3.20) 13.2(±2.97)

Avg Win% 39.9(±0.96) 40.3(±0.96) 39.9(±0.96) 40.3(±0.96)

TABLE II
WIN PERCENTAGE OF MAASTCTS2 WITH FIXED PARAMETERS AND
MAASTCTS2 WITH PARAMETERS TUNED ON-LINE BY EACH OF THE

ALLOCATION STRATEGIES. GAME TICK IS SET TO 40ms

Game MAASTCTS2
Fixed parameters Random MAB NTBEA

Aliens 100.0(±0.00) 100.0(±0.00) 99.6(±0.55) 100.0(±0.00)
Bait 31.8(±4.09) 30.4(±4.04) 22.0(±3.63) 31.6(±4.08)

Butterflies 98.6(±1.03) 99.2(±0.78) 99.4(±0.68) 100.0(±0.00)
CamelRace 44.4(±4.36) 41.0(±4.32) 39.2(±4.28) 42.4(±4.34)

Chase 28.0(±3.94) 30.4(±4.04) 20.2(±3.52) 26.8(±3.89)
Chopper 99.8(±0.39) 99.8(±0.39) 99.6(±0.55) 99.6(±0.55)
Crossfire 31.8(±4.09) 27.4(±3.91) 17.2(±3.31) 28.4(±3.96)
DigDug 1.6(±1.10) 1.2(±0.96) 1.8(±1.17) 1.2(±0.96)
Escape 93.4(±2.18) 94.6(±1.98) 80.4(±3.48) 92.2(±2.35)

HungryBirds 100.0(±0.00) 100.0(±0.00) 100.0(±0.00) 100.0(±0.00)
Infection 100.0(±0.00) 99.8(±0.39) 99.8(±0.39) 100.0(±0.00)

Intersection 100.0(±0.00) 100.0(±0.00) 100.0(±0.00) 100.0(±0.00)
Lemmings 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)

MissileCommand 96.8(±1.54) 96.6(±1.59) 92.6(±2.30) 94.6(±1.98)
Modality 25.6(±3.83) 24.6(±3.78) 32.0(±4.09) 41.0(±4.32)

PlaqueAttack 94.8(±1.95) 95.0(±1.91) 94.2(±2.05) 95.8(±1.76)
Roguelike 4.6(±1.84) 4.8(±1.88) 0.8(±0.78) 3.2(±1.54)
SeaQuest 58.4(±4.32) 53.6(±4.38) 53.8(±4.37) 54.6(±4.37)

SurviveZombies 42.4(±4.34) 42.8(±4.34) 38.2(±4.26) 40.8(±4.31)
WaitForBreakfast 99.0(±0.87) 98.4(±1.10) 98.0(±1.23) 98.0(±1.23)

Avg Win% 62.6(±0.95) 62.0(±0.95) 59.4(±0.96) 62.5(±0.95)

random allocation strategy seems to have a better performance
than SAMPLEMCTS with fixed parameters. Secondly, the
number of simulations that the agents can perform might be
too small (usually a few dozen of simulations per tick, with
a 40ms tick duration). A small number of simulation might
have two implications: (i) the allocation strategies cannot find
optimal values early enough in the game to make a difference
in the performance, and (ii) even if there are sub-optimal
values among the feasible ones, the number of simulations
controlled by them is not high enough to be detrimental.
Thirdly, the continuous change of parameter values selected by
the allocation strategies, especially by the random one, might
cause more diversity in the simulations. A more diversified
search might actually be beneficial to tackle GVGP games.

From the third series of experiments (Table III) we can see
that a longer search time significantly increases the perfor-
mance of MAASTCTS2 in many of the games. With more
search time there are a few games (Bait, Chase and Survive
Zombies) for which the performance of the agent tuned with
the random strategy seems to decrease. Also the overall per-
formance of the agent tuned with MAB seems inferior to the
other agents, as we would expect. The MAB allocation strategy
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TABLE III
WIN PERCENTAGE OF MAASTCTS2 WITH FIXED PARAMETERS AND
MAASTCTS2 WITH PARAMETERS TUNED ON-LINE BY EACH OF THE

ALLOCATION STRATEGIES. GAME TICK IS SET TO 100ms

Game MAASTCTS2
Fixed parameters Random MAB NTBEA

Bait 51.8(±4.38) 40.4(±4.31) 31.2(±4.07) 36.6(±4.23)
CamelRace 95.8(±1.76) 92.2(±2.35) 85.4(±3.10) 90.8(±2.54)

Chase 56.2(±4.35) 50.4(±4.39) 43.0(±4.34) 51.6(±4.38)
Crossfire 84.8(±3.15) 83.2(±3.28) 68.2(±4.09) 81.8(±3.39)
DigDug 0.0(±0.00) 0.2(±0.39) 0.4(±0.55) 0.0(±0.00)

Lemmings 0.0(±0.00) 0.0(±0.00) 0.0(±0.00) 0.0(±0.00)
Modality 26.2(±3.86) 25.6(±3.83) 38.8(±4.28) 40.4(±4.31)
Roguelike 32.6(±4.11) 30.6(±4.04) 28.4(±3.96) 32.0(±4.09)
SeaQuest 58.6(±4.32) 56.0(±4.36) 61.8(±4.26) 56.2(±4.35)

SurviveZombies 49.0(±4.39) 46.0(±4.37) 44.8(±4.36) 45.4(±4.37)

Avg Win% 45.5(±1.38) 42.5(±1.37) 40.2(±1.36) 43.5(±1.37)

suffers from the high overhead of computing the UCB1 value
for all parameter combinations before each simulation, and in
addition does not exploit information about the combinatorial
structure of the parameter space. However, even if we increase
the search time to 100ms, the results are still in line with what
is observed for 40ms. The random allocation strategy is still
quite robust, and MAB and NTBEA do not seem much better.

Over all the first three series of experiments, it is still
interesting to notice that there are a few games for which
on-line parameter tuning seems beneficial. For the SAMPLEM-
CTS agent, on-line tuning with NTBEA significantly increases
the performance in Crossfire, and on-line tuning with MAB
significantly increases the performance in Escape (Table I).
Moreover, for the MAASTCTS2 agent the performance in
Modality is significantly increased by NTBEA when using
40ms per tick (Table II), and by both NTBEA and MAB
when using 100ms per tick III. This suggest that the allocation
strategies that make informed decisions have the potential to
be useful even when decisions have to be made fast.

The fourth series of experiments (Table IV) seems to con-
firm that on-line parameter adaptation (whether randomly or
with an informed strategy) might still have some benefits. We
can see that the sub-optimal values for these experiments cause
a decrease in performance for many of the games if compared
with the fixed values used in previous experiments. Neverthe-
less, there are games for which the performance is higher (if
not the highest over all experiments), like Crossfire, Escape
and Wait For Breakfast for SAMPLEMCTS, and Modality for
MAASTCTS2. This suggests that for those games the fixed
values used in the first three series of experiments were non-
optimal. Moreover, some good values for those games might
have been left out of the pre-selected sets of values.

IV. CONCLUSION AND FUTURE WORK

This paper extended the analysis of SA-MCTS in GVGP by
testing on-line parameter tuning both on a simple and a more
advanced MCTS agent. The effect of increasing the search
time has also been evaluated. In addition, the performance
of NTBEA, one of the allocation strategies that performed
best in previous work on on-line parameter tuning, has been
compared with a less informed allocation strategy (MAB) and
a completely random allocation strategy.

Given the obtained results, we may conclude that the use of
on-line parameter tuning might be more suitable for domains

TABLE IV
WIN PERCENTAGE OF SAMPLEMCTS AND MAASTCTS2 WITH

SUB-OPTIMAL FIXED PARAMETER VALUES. GAME TICK IS SET TO 40ms

Game SAMPLEMCTSSUB MAASTCTS2SUB
Aliens 67.0(±4.13) 100.0(±0.00)
Bait 6.0(±2.08) 23.2(±3.70)

Butterflies 66.8(±4.13) 98.8(±0.96)
CamelRace 3.0(±1.50) 32.0(±4.09)

Chase 3.6(±1.63) 29.0(±3.98)
Chopper 0.0(±0.00) 98.4(±1.10)
Crossfire 10.2(±2.66) 20.2(±3.52)
DigDug 0.0(±0.00) 1.0(±0.87)
Escape 29.6(±4.01) 92.4(±2.33)

HungryBirds 1.8(±1.17) 99.4(±0.68)
Infection 95.0(±1.91) 100.0(±0.00)

Intersection 100.0(±0.00) 100.0(±0.00)
Lemmings 0.0(±0.00) 0.0(±0.00)

MissileCommand 32.4(±4.11) 94.2(±2.05)
Modality 17.0(±3.30) 47.0(±4.38)

PlaqueAttack 24.6(±3.78) 88.0(±2.85)
Roguelike 0.0(±0.00) 1.6(±1.10)
SeaQuest 25.0(±3.80) 58.8(±4.32)

SurviveZombies 27.4(±3.91) 36.6(±4.23)
WaitForBreakfast 58.2(±4.33) 84.8(±3.15)

Avg Win% 28.4(±0.88) 60.3(±0.96)

where a higher number of simulations can be reached, or
for domains that are more sensitive to changes in the search
parameter values. Moreover, we may conclude that in a real-
time context like GVGP, randomization of parameter values
usually gives a robust setting for a small number of parameters,
especially if we pre-select small sets of feasible values.

For future work it would be interesting to see if increasing
time constraints to achieve a few thousands simulations per
tick would make a difference. It would also be interesting to
investigate other ways of on-line self-adaptation of the search
that do not necessarily involve changing search parameters.
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Abstract—This paper describes a new implementation of
Planet Wars, designed from the outset for Game AI research. The
skill-depth of the game makes it a challenge for game-playing
agents, and the speed of more than 1 million game ticks per
second enables rapid experimentation and prototyping. The pa-
rameterised nature of the game together with an interchangeable
actuator model make it well suited to automated game tuning.
The game is designed to be fun to play for humans, and is directly
playable by General Video Game AI agents.

I. INTRODUCTION

This short paper describes a new platform for Game AI
research based on variations of the Planet Wars game. The
platform has been designed from the ground up for speed and
flexibility. The core game has a fast forward model and an
efficiently copyable game state,1 and is therefore ideal for sta-
tistical forward planning algorithms. Furthermore, it has many
options which are all bundled into a single parameter object,
so that the details of the game can be changed dynamically
within different copies of the game.

This enables the effects of inaccurate forward models to
be systematically investigated, and also makes it well suited
to research into automated game tuning. The games are
directly playable by General Video Game AI (GVGAI) agents,
therefore adding games with strategic depth to that platform.
This is particularly useful for extending the type of games
offered by the GVGAI 2-player track [1], but can also be
used for the single player tracks [2] by providing one or more
fixed opponents. Finally, the game has also been designed to
be fun for human players.

The last decade has seen increasing interest in testing AI on
Real-Time Strategy games, with StarCraft being an obvious
example. There is also an important place for simpler and
faster games, which not only offer more convenient experi-
mentation but can be easily varied to provide more general
and varied AI challenges than can be offered by a single
game. Recent examples include microRTS [3] and ELF [4].
Compared to microRTS and ELF, the game described in this
paper runs around ten times faster due to the simpler rules
of the game, and specifically due to design decisions which
limit the number of game entities in play at any one time.
Compared to the stripped down version described in [5] the
platform in this paper offers more sophisticated game play
as described below, and introduces the additional features of
spinning turrets and a gravity field.

1Some game implementations have state variables spread throughout the
code making it awkward and possibly inefficient to copy the state.

II. PLANET WARS

Planet Wars is a popular casual two-player real-time strategy
game with versions going under many names on various
platforms. The game is a simple real-time strategy game
that is fun for humans to play and provides an interesting
challenge for AI. It was used for the 2010 Google AI challenge
(http://planetwars.aichallenge.org/) run by the University of
Waterloo in Canada [6] with great success. The game was also
successfully used by Buro et al. for a Dagstuhl AI Hackathon,
who also describe the rules of the standard game [7].

A. Rules

The aim of the game is for a player to take over all enemy
planets by sending ships to invade them. Each planet is either
owned by either player or is neutral, and each non-neutral
planet spawns new ships. Good strategy involves balancing the
need to take over as many planets as quickly as possible versus
leaving currently owned planets with enough ships to deter
invasion. The game is played out on a 2D map, and ships take
time to travel between planets, hence there is an interesting
spatio-temporal planning aspect to the game. Indeed, Leece
and Jhala [8] specifically chose the game to study the ability
of q-learning agents to deal with spatial planning.

The Map specifies how the planets are laid out in 2D space.
Planets are defined by their position, their size, growth rate
(proportional to their radius), and initial ownership. Hence
the map alone already provides for immense variations: it
is easy to generate new maps at random that will require
different tactics in order to win. All aspects of the map play
an important role in the decision making process. Hence,
even in its default setting the game already offers significant
variation, and offers a more robust test of an AI system
than the individual games of the Atari 2600 platform [9], for
example, even before we consider the actions of a varied set
of adversaries.

Beyond this, the time taken for ships to travel between
planets also affects game play, making ship speed and map
size important parameters.

Further variations are possible with the user-interface. In
some versions the player selects a single source and target
(destination) planet for each move, in other versions multiple
source planets can be selected via a drag action. However,
most versions the author is aware of use the basic source /
destination mechanism as a way to specify actions.

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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B. Variations

All the above listed features are standard for the game. For
this version we introduce a number of variations. The first two
are for the purpose of efficiency. Firstly, a transporter is used
to send ships between planets, so multiple ships travel on a
single transporter. This is more efficient than sending them
individually. Secondly, each planet is restricted to having a
single transporter. This means the cost of calculating game
updates via the next state function grows only linearly with
the number of planets in the game. For comparison, the version
used for the Google AI challenge bundled multiple ships on
to a single transporter, but placed no limit on the number of
transporters that could be launched at any time, other than the
constraint that each one must carry at least one ship.

Beyond efficiency, two significant variations are introduced
to add to the game-play: the gravity field and the rotating turret
for direction selection.

The gravity field pre-computes a gravitational force that is
calculated from the position and mass of each planet with
mass being proportional to the planet’s area (since this is 2D
space). The gravity field adds significantly to the game-play:
the fact that ships now follow curved trajectories means that
players (especially when playing with the Slingshot actuator,
see below) must carefully judge the effects of gravity when
timing the release of the transporter. The curved trajectories
may be more interesting to observe than linear ones, and create
some dramatic tension around whether the transporter will
reach the targeted planet or not.

The rotating turret adds a skill aspect for human players.
Using this mechanism a player executes a long mouse press
on a planet for each action. While the mouse is pressed, ships
are loaded on to a transporter at each game tick. When the
mouse is released, the transporter leaves heading in the current
direction of the turret.

For a human player this added skill can be a source of
enjoyment or of frustration, depending on the individual player
and on how well the game is tuned for that player. For
example, if the turret rotates too quickly then it becomes
difficult to target the desired planet; if too slowly, then a long
wait may be involved for the turret to point in the desired
direction. For an AI agent, a slow turret can be a source of
challenge since it requires planning further ahead, whereas a
fast rotating turret should not make it more difficult, unless
timing noise is added to the AI agent’s actions.

C. Game Parameters

The game currently has 16 parameters which significantly
affect the game play. At the time of writing these include the
following:

• Number of planets: more planets lead to higher branching
factors and more complex game-play.

• Map dimensions: the width and height of the map in
pixels.

• Gravitational constant: multiplies planet mass to scale
gravitational force. Higher values lead to more curved
transit trajectories.

• Growth rate range: planet growth rates are sampled from
a uniform distribution in this range.

• Radial Separation: as planets are placed randomly they
must be at least this number of radii apart from the nearest
already placed planet.

• Ship launch speed: faster launch speed means ships
will tend to arrive at their destination sooner, and less
influenced by the gravity field.

• Transport tax: a subtractive amount per tick that reduces
the number of ships during transit (and may even take
them negative, hence turn them in to opponent ships.

A screenshot of the game is shown in figure 1. This version
is shown in portrait mode; the dimensions of the game can
be changed as easily as any other parameter, though there are
dependencies on other game parameters: for example, making
the screen area smaller while retaining the same planet size
will affect how many planets can be placed, and the density
of the area. Maps with denser layouts may place greater
importance on owning well-connected central planets. The
ability to easily change screen dimensions may be true of most
games with randomly generated levels, but does not hold for
games that rely on file descriptions of each level, such as Pac-
Man and Super Mario Bros. (for those games, level generation
is a topic in its own right).

D. AI Agent Considerations

AI agents can submit at most one action per game tick,
though the details depend on the actuators used, described in
section III. Currently there is no fog of war: all game states
are fully observable to the AI agents, though this is an obvious
source of future variations. An existing variation shows players
only the ownerships of each neural or opponent planet, and not
the number of ships on them. Other observability variations
are also possible, such as just showing a small window of
the map instead of the entire map. For an example of how to
explicitly vary observability in video games see the Partially
Observable Pac-Man competition [10].

The branching factor of the game (average number of legal
actions at each tick) depends very much on the actuator model:
for the source / target model, the source planet must be owned
by the player, but the destination can be any planet other
than the source. The number of the planets is a parameter
of the game, and during testing this has been varied between
10 and 100. Games may last for many thousands of ticks,
but for experiments we often limit this to between 1,000 and
5,000 ticks, which is often enough to estimate which player
is superior. Games between a strong and a weak player are
often decided (and terminated) within 1,000 ticks.

We do not have statistics to support this yet, but the game
seems to proceed in distinct phases. In the initial phase each
player owns a small number of planets and the game appears
to be finely balanced: decision on which ones to invade at
this stage are important, though we do sometimes observe AI
players throwing away an apparent lead. In the next phase
the lead frequently fluctuates with many ships in transit and
closely fought battles. This is followed by a final phase where
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Fig. 1. Planet Wars with spinning planets and a gravity field, which both
have significant effects on the game play.

one player dominates and the outcome of the game is no longer
in doubt.

The game was recently tested during a graduate level AI
Assisted Game Design course.2 During the course students
developed their own statistical forward planning agents and
also their own tuned versions of the game, by adjusting
parameters and varying the rules. All game variants were able
to clearly separate the agents in to different levels of skill,
measured by win rates in round robin leagues (leagues in
which each player plays every other player a fixed number of
times), providing evidence that the game variants have skill
depth. Interestingly, the game variants interesting produced
very different ranking of the AI agents.

2https://github.com/GAIGResearch/AIGD2

III. IMPLEMENTATION

The game is implemented in Java, and has been designed
from the ground up to run efficiently, offer flexibility for the
Game AI researcher, and also allow for easy human interac-
tion. Enabling easy human interaction enables automatically
tuned games to be tested by human players. Efficiency is
important for all aspects of the research.

Key features of the design include:
• All variable parameters are stored in a single GamePa-

rameter object, and are never declared as static variables.
A reference to a GameParameter object is passed to all
copies of the game, but can be copied and modified on
demand.

• Each planet has only a single Transporter (these are the
angular space ships shown journeying through space in
figure 1). This enables the cost of game state copying and
updating to be kept linear rather quadratic in the number
of planets. This does not seem to have a detrimental effect
on the game play.

• The game state contains no circular references and can
therefore be serialised into JSON for convenient storage
and transmission. The largest part of the game state is the
Gravity Field (which is a 2D array of Vector2D objects),
but this can be nullified for serialisation and re-created
on demand when needed.

• The actuator model has been decoupled from the game
state. This means that different ways of controlling game
actions can be plugged in.

Regarding the last of these points, so far two actuators
have been implemented. An additional actuator based on a
directional catapult is planned.

A. Source Target Actuator

Each move consists of a source planet being selected,
followed by a destination planet. The move is executed only
if the source planet’s transporter is currently at home, and the
planet is owned by the player. If these conditions are satisfied,
then the ship is loaded with a percentage of the planet’s ships,
and launched in the direction of the target planet.

AI players currently see the number of actions at each tick
as being equal to the number of planets. Low-level actions are
grouped in to source-target pairs, with illegal actions (ones
in which the player does not own the source planet) being
ignored. A video of a rolling horizon evolution agent playing
against a hand-coded heuristic agent can be viewed here:
https://www.youtube.com/watch?v=G2aoxYODs9U.

B. Slingshot Actuator

Each move consists of a user selecting a planet for a
number of game ticks. The selection only happens if the
player owns the chosen planet. When the planet is deselected,
the ship is launched at a standard speed in the direction
the turret is facing. A video of a human player (the author)
playing against a heuristic agent player can be viewed here:
https://www.youtube.com/watch?v=y2q5VW8kS8k.

403



TABLE I
SPEED OF KEY OPERATIONS IN UNITS OF THOUSANDS OF OPERATIONS PER

SECOND (IMAC WITH 3.4 GHZ INTEL CORE I5 CPU). NOTE THAT THE
GRAVITY FIELD (GF) IS JUST COMPUTED ONCE AT THE START OF EACH

GAME, AFTER THE POSITION AND SIZE OF EACH PLANET HAS BEEN FIXED.

Operation kop/s (1) kop/s (4)
nextState 870 1,640
copy 1,600 3,230
compute GF 1 2

C. Timing Results

Table I shows the timing results for a single thread and
four threads running on an iMac with core m5 processor.
The software includes the facility to run multiple games in
multiple threads, or different game agents in different threads,
enabling speeds in excess of 1.6 million ticks per second
when running four threads simultaneously. For comparison,
ELF and microRTS offer speeds of around 50k ticks per
second when running single-threaded, meaning that this game
is more than 10 times faster. The games are obviously different
so comparing timings may seem unfair, but the point of the
comparison is to highlight the speed offered by our platform
and the rapid generation of results that this enables, even on
a standard laptop or desktop computer.

IV. GENERATING AI AGENT RESULTS

The software distribution includes the following experi-
ments ready to run, including human versus AI and AI versus
AI. For human versus AI, the AI controllers are generally
superior to casual human players, but their intelligence can
easily be varied and decreased if necessary by reducing the
simulation budget or the sequence or rollout length, in order
to provide an easier challenge.

For AI versus AI, the game has been tested on the graduate
student course mentioned above, and also for this paper a small
but representative test was run using 3 different controllers,
reported in table II. RHEA is the rolling horizon agent from
Lucas et al [5], but with a sequence length of 200 and 20
iterations per move. The MCTS agent is the sample agent
from the GVGAI 2-player track, but with a rollout length set
to 100 and iterations per move set to 40. Hence both RHEA
and MCTS used an evaluation budget of approximately 4, 000
game ticks per move. Rand is a uniform random agent. Games
were limited to 2, 000 moves but often terminated with a win
before reaching the limit. Running the 60 games for this mini-
tournament took less than 5 minutes on the iMac computer
described above. A follow-up paper will investigate these
results more thoroughly, but recent experiments on this and on
some other games show rolling horizon evolution frequently
outperforming MCTS.

V. CONCLUSIONS

The Planet Wars platform described in this paper provides
a useful addition to a growing number of games designed
for AI research. The platform is efficient and well suited to
testing statistical forward planning algorithms such as Monte

TABLE II
RESULTS OF PLAYING THREE AGENTS AGAINST EACH OTHER IN A

ROUND-ROBIN LEAGUE ON 10 FIXED MAPS, PLAYING EACH MAP TWICE,
SO 60 GAMES IN TOTAL. SEE TEXT FOR DESCRIPTION OF EACH AGENT.

THE TABLE SHOWS THE ROW AGENT WINS AGAINST THE COLUMN AGENT,
WITH THE RIGHTMOST COLUMN SHOWING THE TOTAL NUMBER OF WINS

FOR THE ROW AGENT.

RHEA MCTS Rand Wins
RHEA - 18 20 38
MCTS 2 - 17 19
Rand 0 3 - 3

Carlo Tree Search and Rolling Horizon Evolution. The game
already has sixteen parameters that can be varied in order to
significantly affect the game play and provide a thorough test
of the strengths and weaknesses of the competing agents.

Future work includes introducing further variations while
retaining the speed of the game, integration with AI environ-
ments such as OpenAI Gym, and additional actuator models
such as a directional catapult. The speed of the game and its
extensive parameter set also make it well suited to automated
game tuning [11], [12].
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Abstract—Modeling and accurately analyzing human activities
plays an important role, considering the rise of modern applica-
tions in human-computer interaction and, more recently, exertion
games. Especially in serious exergames aimed at tutoring (e.g.
sports) or rehabilitation and physiotherapy, the need for accurate
detection of the human body and its motion is uncompromising.
However, modern human skeleton tracking techniques suffer
from a variety of issues, such as jittering and sensitivity to
original conditions. In this study we show how a simple yet
effective fairing pipeline on an inherently noisy dataset can
produce data capable for precise experimentation with state-of-
the-art human action modeling algorithms.

Index Terms—exertion games, skeleton tracking, human action
analysis, player actions

I. INTRODUCTION

Exertion games form a very active research field with appli-
cations of almost interdisciplinary fashion, such as interaction
design, gaming, sports, health and rehabilitation and, naturally,
entertainment [1]. Many challenges arise in the field, mainly
from the necessity of capturing and analyzing human motion,
and transferring it into the application. In that manner, we
investigate the exergames domain, mainly from the standpoint
of recognizing and categorizing human activities.

Modeling of human actions find increasing use in the field
of digital games and human-computer interaction [2], due to
the commercial success of low-cost depth sensors, such as
the Microsoft Kinect and the Intel RealSense series. Recent
applied examples of serious games utilizing human actions
can be found in the literature [3] and showcase the potential of
human motion analysis, especially in healthcare-related games.
The fact that there are many recent and prominent attempts at
modeling actions for exertion gaming applications [4] shows
the growing research interest in the field.

II. HUMAN POSE ACQUISITION TECHNIQUES AND ISSUES

One of the most widely applied methods to capture human
motion, using vision-based techniques, is to detect the human
pose in the frames of a video sequence. The pose of a subject
is usually characterized by their skeleton joints, i.e. points in
the frame that correspond to parts of the human body, such
as the ankles, the wrists, the elbows, the head and the base of
the neck.

In the context of depth sensing, skeleton joints are extracted
from depth videos, using methodologies such as the ones
documented in [5] and [6]. In [5], the authors proposed a
methodology that is based on an object recognition approach,
designing representations for intermediate body parts and
transforming the pose estimation problem into a per-pixel
classification problem. 3D proposals of body joints are then
generated, based on the classification results. Later, in [6],
a more advanced approach is proposed, based on a voting
scheme to directly infer the positions of joints.

Recent prominent techniques have focused on solving the
skeleton tracking problem in regular monocular color cameras
instead of depth sensors. In the work presented in [7], the
authors propose a deep convolutional neural network based
pipeline that detects candidate body parts in the scene, as well
as evaluated relations between them. It then proceeds to solve a
heavily relaxed graph matching problem and extract connected
skeletons for all persons detected in the scene.

A. Issues with skeleton data from depth sensors

Studies such as the one by Cosgun et al. [8] have investi-
gated the accuracy of conventional depth sensing techniques
with respect to the accuracy of extracted skeletons. In this
study, it is claimed that average joints errors have been
observed to usually be more than 5 cm. Such fluctuations in
the position of a body part can be critical in accurate sensing
of the human position and motion, especially in healthcare
applications. Another study [9] places that error at about 10cm,
especially in general, non-constrained postures. Moreover,
depth-based skeletal tracking struggles with occluding body
parts and objects in the scene.

Another issue, found both in depth-based and RGB-based
skeletal tracking, is the sensitivity of the result with respect
to initialization, especially when dealing with unconstrained
scenes [10]. In other words, the way at which we begin the
attempt of detecting skeleton joints affects the final result.
Repetition of an action, or background processing of the
sequence may leverage this issue and obtain more refined
results.

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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B. The current state of the THETIS dataset

Our work in this paper focuses on the THETIS dataset [11].
It is comprised by 31 amateurs and 24 experienced players
performing tennis shots. Data capturing was done using a
Kinect sensor placed in front of the subjects. The action
classes in the dataset are: backhand with two hands, backhand,
backhand slice, backhand volley, forehand flat, forehand open
stands, forehand slice, forehand volley, service flat, service
kick, service slice and smash.

Although THETIS includes RGB and depth videos (scaled
to grayscale), original (raw) depth information can be obtained
using the unconstrained ONI files. So skeleton tracking needs
to be handled from scratch. Another major issue, though, is
that, in some cases, other subjects interfere in the scene, as
data capturing took place mostly in a gym. Samples from the
THETIS dataset can be seen in figure 1.

Fig. 1. RGB and depth samples from the THETIS database for the backhand,
flat service, forehand flat, slice service and smash action classes.

III. DENOISING THE THETIS DATASET

When dealing with a pre-existing dataset, assumptions as
to what needs to be detected in the scene can be made, con-
sidering the specifics of the problem. In the THETIS dataset,
this refers to the detection of the skeletal joints of the tennis
player in the foreground of the scene. Joints are extracted in a
per-frame fashion, using the method by Shotton et al. [6]. As
it has already been discussed, there exist cases of individuals
interfering during the execution of the action by the subject.
However, we can expect that the tennis player will eventually
be the subject detected in the vast majority of the frames of
the sequence. We call this subject the prominent subject. Other
persons detected in the sequence are subsequently rejected.

The complete pipeline is presented in algorithm 1. Due to
the fact that a re-run of the sequence or another repetition of
the action will, in most cases, give results of varying precision
(as discussed previously), we leverage many iterations of the
same sequence to obtain the final, refined annotations. In every
iteration of the algorithm, we calculate the value of a factor
to which the current iteration will impact the final result.
This factor depicts the number of times the prominent subject
has been detected in a specific frame. Starting from 0, we
increment the factor in every iteration in which the prominent
subject has been detected in this frame.

Ultimately, in the i-th iteration, the coordinates of joint J
in a particular frame are updated using equation 1. J i

final

is the updated (final) values of coordinate vector J in the
i-th iteration, J i−1

final are the final values calculated by the

previous iteration and J i
new are the latest values in the current

iteration, before updating. Essentially, what is achieved is an
averaging scheme, tailored to the needs of a skeletal joint
dataset. The algorithm finishes when the contribution of the
latest iteration becomes negligible, i.e. 1

factor < threshold,
where threshold is a predefined value.

J i
final =

factor − 1

factor
J i−1
final +

1

factor
J i
new (1)

Algorithm 1 Pseudocode for the kinect-based skeletal infor-
mation refinement pipeline

initialize factor vector
threshold← a
repeat

repeat
detect all subjects
for all detected subjects do

increment number of occurrences
end for

until end of video sequence
determine prominent subject
for all video sequence frames do

if prominent subject present in frame then
recalculate prominent subject’s joint positions in
frame, based on equation 1
factor ++

end if
end for

until 1
factor < threshold

An alternative to this pipeline would be another averaging
filter such as median filtering. This filter is a non-linear
digital filtering technique, mainly focused on smoothing out
individual noise and spikes. However, as this is not particularly
the case in skeleton tracking, where noise is mostly uniformly
distributed, this may not have given the desired result. In figure
2, we can see a set of refined skeleton joints from a sample of
the ”backhand” action of THETIS. Finally, the complete set
of refined skeletal annotations can be found in the THETIS
website1.

IV. EXPERIMENTAL RESULTS

In order to verify the robustness of the produced anno-
tations, we used the refined skeletal data as input for two
different action analysis scenarios with wide applicability in
the world of human-computer interaction and exertion games.
The first scenario is that of generic activity recognition and is
well represented by studies such as the ones presented in [4]
and [12]. The second is the qualitative assessment of actions
in context. A typical study in the field is the one in [13],
which focuses on characterizing the level of expertise of tennis
players.

1http://thetis.image.ece.ntua.gr/
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Fig. 2. Samples of extracted and refined skeleton joints of a ”backhand” action
from the THETIS dataset, as shown in a Unity-based application window.
Viewpoint (perspective) distortions are visible.

A. Action recognition using Activity Feature Vectors
In the recent work by Cippitelli et al. [12], an action recog-

nition pipeline was implemented, based on skeleton data, as
the authors deem them as the most compact and representative
form of the human presence in a scene. The algorithm is
comprised by the following steps:

• Extraction of feature vectors representing human pos-
tures, using raw skeletal data. Essentially, a set of spatial
(distance) features is calculated and normalized, based on
the distance of the joints from the center of the torso.

• Selection of the most important postures for every activity
class, using a clustering algorithm and picking the cluster
centers as representative feature vectors.

• Computation of the final Activity Feature Vectors rep-
resenting the activity as a whole. Each activity posture
is characterized by the clustering of the previous step
and the final Feature Vector contains the most important
postures, by the order at which they appear in the activity
sequence.

This method produces relatively short feature vectors, so di-
mensionality reduction is not necessary in most cases. Finally,
a multiclass SVM is utilized to perform the classification.

In our experimental setup, we use the leave-one-person-
out cross-validation protocol described thoroughly in [4].
Using this scenario, the pipeline based on the aforementioned
technique and the refined skeleton dataset achieves an average
accuracy of 93.65%. Table I showcases class-specific perfor-
mance.

Average accuracy of the proposed pipeline is then compared
with the other published techniques tested on the skeletal
subset of THETIS [11] [4]. As we can see in table II, the
pipeline using the novel technique in [12] on the refined skele-
tal data achieves higher average performance. Most notably,
the method outperforms the novel approach presented in [4],
which is based on a 3D Trace transform of the spatio-temporal
volume of action sequences. However, this method has shown
better performance in other modalities and is therefore more
extensively applicable.

B. Assessing the level of expertise of tennis players
Although generic classification of human actions is a widely

investigated field, qualitative assessment of actions has re-

TABLE I
CLASS-SPECIFIC RESULTS OF THE ALGORITHM PRESENTED IN [12], WHEN

USED ON THE REFINED THETIS SKELETON DATASET

Action class Accuracy (%)
Backhand 0,9549
Backhand with two hands 0,9775
Backhand slice 0,9275
Backhand volley 0,9388
Forehand flat 0,9308
Forehand open 0,9678
Forehand slice 0,9147
Service flat 0,9275
Service kick 0,9275
Service slice 0,9163
Smash 0,9195
Volley 0,9356

TABLE II
AVERAGE ACCURACY COMPARISON BETWEEN FOUR PUBLISHED

PIPELINES AND THE ACTIVITY FEATURE VECTORS BASED PIPELINE ON
THE REFINED THETIS DATASET

Method Accuracy (%)
STIPs with HOG/HOF descriptors [14] 54.40
Dense Trajectories: Trajectory [15] 46.84
Dense Trajectories: MBH [15] 46.84
Dence Trajectories: Combination [15] 53.08
3D CTT - Selective STIP [16] based VTFs [4] 86.06
Activity Feature Vectors [12] on refined data 93.65

mained in relative obscurity. In the context of serious games
focusing at player tutoring, rehabilitation and other activity-
related tasks, the ability to make assumptions based on the
quality of a movement is crucial. For that reason, in the work
presented in [13], simple variance-based shape descriptors
are utilized to classify between amateurs and experienced
players in the THETIS dataset. The level of experience is self-
declared, as experienced players either have been regularly
practicing tennis or have attended tennis courses. Amateurs,
on the other hand, have seldom or never played tennis before.
For the purpose of capturing the dataset, they executed tennis
actions with the help of a tutor.

The pipeline in [13] calculates the variance of the points
in a frame from the mean point (average of all points)
and constructs a variance vector characterizing each action
sequence. These vectors are then used as input in a simple
K-NN classification scheme. However, due to the difference
in length between sequences, Dynamic Time Warping [17] is
utilized in two different classification scenarios:

• As a distance metric for the K-NN algorithm, as it
calculates the minimum distance between two sequences

• By time-aligning the input sequences and then using
Euclidean distance as a metric.

Classification was performed in an activity class specific
manner. Both scenarios showed promising class-specific re-
sults, given the simplicity of the calculated features and the
complexity of the task at hand.

Similar to [4], this method uses Selective Spatiotemporal
Interest Points [16] as input. STIPs in general, as originally
proposed by Laptev et al. [14] [18] represent, in the context
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TABLE III
PER-CLASS ACCURACY OF THE SHAPE DESCRIPTOR-BASED PIPELINE [13], WITH SELECTIVE STIPS [16] AND OUR REFINED SKELETAL JOINTS AS INPUT

Action class Selective STIPs Skeletal Joints
Not aligned, DTW metric Time-aligned, Euclidean distance Not aligned, DTW metric Time-aligned, Euclidean distance

Backhand 74.55 64.85 79.59 77.55
Backhand with two hands 70.91 66.06 61.11 62.96
Backhand slice 64.85 69.09 68.52 55.56
Backhand volley 69.09 63.64 60.42 64.58
Forehand flat 69.09 58.18 53.57 53.57
Forehand open stands 68.48 68.48 65.45 67.27
Forehand slice 66.06 61.21 70.91 54.55
Forehand volley 66.06 60.61 71.70 62.26
Service flat 63.64 63.03 63.83 61.70
Service kick 72.73 70.91 62.22 64.44
Service slice 67.88 66.67 61.54 59.62
Smash 64.85 63.03 58.49 62.26

of human motion, points on the human body that express
movement. Skeleton joints can be considered a very concise
but representative subset of these points and therefore can be
treated the same way.

In this experimental scenario, the refined skeleton dataset
is used as input for the original algorithm in [13], instead of
STIPs. Again, two classification scenarios are followed, and
the results can be found in table III. It can be noted that,
using the refined dataset, the algorithm demonstrates similar
performance with the original STIP-based implementation.
In some activity classes, the joint-based pipeline performs
better. The reasons why certain classes show better results
than others, as well as what part the difference between STIPs
and skeletal joints has to play, form legitimate investigation
directions for future studies.

V. CONCLUSION

In this work, we have noted the importance of accurate
human skeleton information extraction in human-computer
interaction related applications, such as exertion games. We
have seen the issues that plaque average skeletal joint ex-
traction techniques and we extended a published dataset with
problematic raw data, by demonstrating a simple 3D skeleton
data fairing pipeline. Experiments on two current human action
related scenarios show that the refined dataset, when used
with state-of-the-art algorithms, can form a basis for accurate
experimentation on action-related applications.
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Abstract—Hanabi is a cooperative card game with hidden
information that has won important awards in the industry and
received some recent academic attention. A two-track competition
of agents for the game will take place in the 2018 CIG conference.
In this paper, we develop a genetic algorithm that builds rule-
based agents by determining the best sequence of rules from a
fixed rule set to use as strategy. In three separate experiments,
we remove human assumptions regarding the ordering of rules,
add new, more expressive rules to the rule set and independently
evolve agents specialized at specific game sizes. As result, we
achieve scores superior to previously published research for the
mirror and mixed evaluation of agents.

Index Terms—artificial intelligence, games, evolutionary com-
putation

I. INTRODUCTION

Game-playing agents have a long tradition of serving as
benchmarks for AI research. However, traditionally most of
the focus has been on competitive, perfect information games,
such as Checkers [1], Chess [2] and Go [3]. Cooperative
games with imperfect information provide an interesting re-
search topic not only due to the added challenges posed to
researchers, but also because many modern industrial and
commercial applications can be characterized as examples of
cooperation between humans and machines in order to achieve
a mutual goal in an uncertain environment. In this paper, we
address a particularly interesting cooperative game with partial
information: Hanabi [4].

Hanabi is a cooperative card game designed by Antoine
Bauza released in 2010 where 2 to 5 players play with their
hands facing outwards, so that only the content of the other
players’ hand is seen. They can only communicate through
a limited number of hints, which allow a player to point to
all cards of a chosen value or color in another player’s hand.
The objective is to build one stack for each of the five colors
by playing cards in ascending value order (from 1 to 5). By
discarding a card or completing a stack, one hint token is
replenished to the group. The group wins if all stacks are
complete (corresponding to a score of 25). The group loses a
life when a card is played out of order. If all lives are used, the

game ends immediately. If the draw deck runs out, the game
ends after one last turn for each player. In either case, the
game does not count as a win, but a partial score is computed
by adding the size of each stack (or equivalently, counting the
number of played cards). A more rigorous explanation of the
rules can be seen in [5].

Each card has a value (also called rank or number) in the
range of {1-5}, and a color (or suit) out of {B, R, Y, W, G}.
From now on, a card will be referred to as (CV) where C
is its color and V is its value. For example (R2) denotes a
red card with value 2. If only partial information is known,
we represent only the color or the value. For example, (Y)
is any yellow card and (5) is any card of value 5. Keep in
mind that by telling a player of a color or value, all cards
not pointed are known to be of some different color or value.
We call this knowledge “negative information”. Although the
agents discussed in this work are able to reason with negative
information, we do not include it in our notation for simplicity.

We will denote the number of players in the game as
#players or game size. The starting number of cards in each
player’s hand depends on #players: 5 cards for a game size of
2 or 3, and 4 cards for a game size of 4 or 5 players.

The game was well received by the tabletop games com-
munity, winning the Spiel des Jahres award in 2013 [6], and
has also received attention by game AI researchers for being a
challenging cooperative problem with hidden information and
a limited, but well-defined communication channel.

Because both the number of hint tokens and the number of
copies of each card in the deck are limited, some challenging
decisions that often arise in a Hanabi match are wether to
play a card with only partially known information (and risk
it being unplayable) or wait for more information (using up a
hint token), whether to discard a card with partial information
(and risk it being the last copy of its kind in the deck) and,
from the other side of the table, whether to allow other players
to make these risky decisions or to use a hint token to clarify
the situation. Belief about how other players operate can be a
key factor in making such decisions.

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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In 2018, the game will feature in a two-track competition [7]
at the CIG conference. In the Mixed-Track, each agent will
play with unknown agents, while in the Mirror-Track, each
agent will play with copies of itself and so the behavior
of other players can be assumed for the most part (except
possibly for stochastic behavior and hidden information). The
competition page also provides the framework used in this
research, which includes a sample rule-based agent, and a
vast library of rules. It also features implementations of other
sample agents, such as a random agent and a MCTS agent
that can optionally be equipped with a perfect model of its
playing partners.

In this paper, we review existing literature on Hanabi-
playing agents and present our evolutionary approach to
evolving rule-based Hanabi agents. We plan to submit our best
agents to both tracks of the competition.

II. RELATED WORK
Optimal play of (generalized) Hanabi has been proven to

be an NP-Complete problem by Baffier et al. [8], even if we
remove all hidden information. Due to this complexity, most
research in Hanabi-playing agents [5], [9]–[11] focuses on one
of two methods (or a combination of both):

• Rule-based agents, which go through an ordered list
of heuristics (such as play a card that is known to be
playable, discard a random card, hint a playable card,
etc.) and play the first one that is applicable.

• Search-based agents, which use a model of the other
players’ behavior to search for the action that leads to best
results, such as Monte-Carlo Tree Search (MCTS) [12],
or to search for previous states that are consistent with
the hints received by another player.

Osawa’s [5] best performing agent enhances a sequence of
rules with a search of all possible previous states that are
consistent with the other player’s last action.

Van den Berg et al. [9] optimize a rule-based agent by ex-
haustively searching 48 possible agents obtained by selecting
one of 4 possible hint heuristics, 4 discard heuristics and 3
thresholds for playability of a card. The order of application
of the heuristics was pre-defined. Each strategy was evaluated
by their average score in simulated mirrored play. They also
implement a MCTS agent for the game, which does not
perform better than their best rule-based agent.

Eger et al. [10] propose an intentional rule-based agent that
simulates the best hint to give, assuming a model of the other
player. They also validated their agent by playing with human
players (achieving lower score than in mirrored play).

All agents described so far (other than Eger’s human
evaluation) have in common that they assume they will be
playing with agents following a similar strategy. Walton-Rivers
et al. [11] address the problem of playing with a diverse
population of agents with different strategies. They use several
rule-based agents, including reimplementations of Osawa and
Van den Berg, along with MCTS agents which either receive
a model of the other agents’ behavior or assume random play.
They evaluate their agents by pairing them with a fixed set

of baseline agents, and their best performing agent is called
Piers, which achieves a score of 11.8 with that specific test
pool. Because this paper was written by the author of the
Java framework being used and by the organizer of the CIG
competition, it is central to our work and will sometimes be
referred to as “the original paper/article”.

The best existing agents for mirrored-play are those by Cox
et al. [13]. They treat the game as a hat-guessing game. Each
hand is assigned a value by a publicly-known algorithm (e.g. 1
means ”first card is playable”, 2 means ”first card is discard-
able”) and each possible hint is encoded as a number that
is interpreted to be the sum (mod number of players) of the
values of all other players’ hands. This means they manage
to give a clear instruction (play or discard a specific card) to
every player with a single hint. Their version of hat-guessing
agent can play only games with 5 players.

Bouzy [14] generalizes hat-guessing players for game sizes
2-5. He also proposes a rule-based agent called Confidence
that achieves scores of 18.16 across all game sizes. He the uses
both his hat agents and the Confidence agents as evaluators
for and Tree Search agents, achieving even higher scores.
However, their tree search agents reportedly use 10 seconds
per move on average, which makes them unsuitable for the
competition as moves are expected to be returned in 40ms.

Table I shows a summary of the best agents in literature,
with their evaluation mode (mirror, mixed or human play)
and techniques used. These numbers give us a benchmark to
measure our results against. We consider results above 18.16
for mirror play and above 11.18 for mixed play (with the same
test pool as in [11]) to be an improvement for our purpose,
as the hat agents require a fixed convention that is unsuitable
for mixed or human play, and the Tree Search agent exceeds
our time budget per move.

Note that some agents discussed in this section are special-
ized for a specific game size, and others are able to play with
a number of cards per player different than the official rules.
Column #Players of table I denotes what games sizes the
agent is capable of playing in. We consider only the reported
scores with the standard number of cards per player and, for
agents able of playing multiple game sizes, we average the
score across all game sizes.

III. METHODOLOGY

One of the main major gaps in current research is that rule-
based agents are either hand-crafted by human experts or result
of exhaustive search in a narrow search space, such as Van
den Bergh et al. [9], who specifies a sequence of rules to be
applied and then searches for the best of 48 possible selections
of parameters. We propose to instead use an evolutionary
algorithm to determine the rules, their order and parameters
with no further human assumptions.

In this section, we rigorously define what we mean by rule-
based agents and rules, how mirror and mixed evaluation are
performed and how the genetic algorithm works, in order to
attempt to build better agents than the human-crafted ones.
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TABLE I
EXISTING RESULTS

Author Score Evaluation #Players Technique
Osawa 15.85 Mirror 2 Rule-based /

Search
Van den Bergh 15.4 Mirror 3 Rule-based
Eger 17.1 Mirror 2 Rule-based / In-

tentional
Eger 14.99 Human

Play
2 Rule-based / In-

tentional
Cox 24.68 Mirror 5 Hat-Guessing
Bouzy - Confi-
dence

18.16 Mirror 2-5 Rule-Based

Bouzy - Tree
Search with
Confidence

20.22 Mirror 2-5 Tree Search

Walton-Rivers
(Piers)

11.18 Mixed 2-5 Rule-based

A. Definitions

We define a rule-based agent as one that scans a list of
rules ordered by priority, and immediately plays the action
implied by the first applicable rule. A rule is defined as a
function that takes a game state and the current active player
and returns either a legal action, if the rule is applicable, or
null if the rule is not applicable. For example, a rule that tells a
player a random piece of information of a playable card would
fail to return a value if no other player has a playable card
or if no hint tokens are available. Otherwise, it would return
the action to hint the color or value of the playable card to
the player who holds that card. In trying to apply a rule, only
information that is available to the active player can be used.

A common pattern in all human-created agents and most of
the successful evolved agents is to execute rules roughly in
the following order:

• Play a “good” card
• Give a hint to a player about a “good” card
• Discard a “useless” card
• Tell a player about a “useless” card so they can discard

it
The specific implementation of a rule defines the meaning of
what constitutes a good or useless card, how to break ties
between two or more cards, which player to give a hint to and
which hint to give if multiple pieces of information (color and
value) are missing. Usually, a “good card” is a card that is (or
has a high probability of being) immediately playable, whereas
a “useless” card is a card that is never going to be playable
again (because the stack of that color is at a higher number
than the card, or all prerequisites were accidentally discarded).
Some rules also care whether a card is “necessary”, meaning
that discarding it would prevent players from ever completing
a stack.

Table IX in the appendix gives a short description of
each rule used. Some rules were already natively implemented
in the framework. These are classified as categories 1 and
3 in the table. Category 1 is for rules very similar to the
ones described in [11], focusing on the probability (from its
owner’s perspective) that a card is playable , or discard-able.

They were already implemented as classes in the framework.
Category 2 is for rules that also appear in [11], but are not
natively available as classes in the framework and had to be
implemented separately by using the framework’ functionality
for conditional rules. We refer to the original article for an
in-depth explanation of those rules. Category 3 is for native
rules in the framework but do not correspond to rules in [11]
and attempt to implement specific human-created strategies
discussed in a strategy forum 1. More detail on those rules
can be found in the framework documentation.

Rules in category 4 were implemented by us for the purpose
of this work and are described in detail in section IV.

B. Mirror and mixed evaluation

We propose the use of a genetic algorithm to determine
the rules as well as their number and order to play Hanabi
for different numbers of players. Agents can be evolved
using two kinds of evaluation as fitness function: mirror-play
performance and mixed-play performance. In mirror-play, an
agent is paired with copies of itself, and plays n games on
each of the 4 game sizes. The fitness of an agent is the average
score in all 4n games.

For mixed-play, we use the same test pool of seven agents
as used by [11], consisting of the following seven agents:
IGGI, Internal, Outer, Legal Random, Van den Bergh, Flawed,
and Piers. While we do not know the exact test pool that will
be used in the competition, this set of agents was used by the
authors of the competition in their previous experiments, and
it contains both well-performing agents (such as Piers) and
intentionally poor-performing agents (such as Legal Random
and Flawed). It also contains some agents that play in a totally
deterministic way and others that behave stochastically. For
this reason, we expect performance with this test set to be good
indicator of performance in the overall mixed competition.

For an explanation of how these agents work, see [11].
For each game size s ∈ {2, 3, 4, 5}, the agent being evaluated
is placed in a random starting position and plays with s − 1
copies of the same agent from the test pool. Each player plays
n games for each of the seven pairings for each of the four
possible game sizes, for a total of 28n games per generation
per agent. Once again, the fitness of an agent corresponds to
the average score of all games. Note that we do not know the
actual agents that will be used as test pool in the mixed track
of the competition, so we use performance in the test pool of
the original article as an indicator of how well our agent plays
with unknown agents.

To reduce the effects of randomness, we use the same
random seeds to determine the starting position and starting
deck configuration for all players in a population.

C. Genetic Algorithm

The main objective of our genetic algorithm is to determine
a good ordering of the existing rules in the rule set. This kind

1https://boardgamegeek.com/thread/1309490/finesse-bluff-reverse-finesse-
explained and https://www.boardgamegeek.com/article/23427635#23427635
Access:05/15/2018
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TABLE II
PARAMETERS OF THE GENETIC ALGORITHM

Parameter Value
Population size (p) 200
Chromosome size (s) 50 or 72
Mutation rate (m) 0.1
Crossover rate (c) 0.9
Elitism count (e) 20
Tournament size (t) 5
Number of generations (G) 500
Games per generation (n) 20

of problem could be categorized as a combinatorial problem.
Each rule could be represented as an integer number which
does not repeat within the chromosome.

The use of Genetic Algorithm to solve combinatorial prob-
lems has been studied deeply in the literature, [15], [16]. We
use the operators of swap mutation (with probability m) and
ordered crossover (with probability c) , which maintain the
constraints that each rule is selected only once per chromo-
some. Individuals are chosen for crossover using tournament
selection [17] with tournament size t. An elitism count of e
is enforced.

Each of the p chromosomes is initialized as a random order-
ing of s distinct rules in the rule set (we used a chromosome
size equal to the size of the rule set in our experiments: 50 for
the original rule set and 72 for the new rule set, although
smaller chromosome sizes were tested with no significant
impact in score or algorithm performance). For each of the
G generations, the fitness function is the result of playing n
games for each game size and each pairing in mirror or mixed
evaluation as described in section III.

Table II summarizes the parameters of our genetic algo-
rithm.

IV. EXPERIMENTS AND RESULTS

In this section, we describe the experiments performed. All
scores reported are obtained by averaging the score of an equal
number of games with each possible game size (2 to 5 players),
except for the specialized agents, who either play only two-
player games or only 3-5 player games. All games are played
with the standard hand sizes: 5 cards per player with 2 or 3
players and 4 cards per player with 4 or 5 players.

A. Validation results

Our first step was to reproduce the agents described in [11].
We implemented the seven rule-based agents described in sub-
section III-B. Note that the original article implements other
agents, such as MCTS variations, but the well-performing ones
do not outperform the best rule-based agent (Piers) and require
a precise model of the other players, which is not available to
us.

In the original paper, Walton-Rivers uses those seven agents
as his test pool, and six of them (all except internal) are
evaluated against this test pool. Our validation experiment
consists of pairing the six agents with the seven agents in the
pool. Table III shows the results of our validation, with most

TABLE III
VALIDATION RESULTS

Agent Their Score Our Score s.e.m
IGGI 10.96 10.98 0.06
Outer 10.2 9.70 0.05
Legal Random 4.59 4.52 0.04
Van Den Bergh 10.88 11.02 0.06
Flawed 5.02 4.46 0.04
Piers 11.18 11.28 0.06

Note: Number of games = 4*7*400 = 11200 per agent evaluated The
standard error of the mean (s.e.m.) reported here corresponds to the error in

our experiment, not theirs.

agents getting very similar results to the score reported by the
original author, leading us to believe our implementation of
the test pool is valid, which is an important initial step for the
mixed evaluation experiments below.

B. Evolution using the existing rule set

For this experiment, we ran the evolutionary algorithm (in
both mixed and mirror mode) using only the rules native to
the framework, plus the conditional rules necessary to run the
agents in the test pool. These are marked as categories 1, 2
and 3 in table IX. Since most of there rules (except category
3) correspond to rules described in [11], our objective for this
experiment was to verify if, by throwing away any human
assumptions of which order rules should be applied, but using
a very similar rule set as the original article, we could get
agents that outperformed the hand-crafted agents, in particular
agent Piers, which is the best agent described in [11].

Because fitness is calculated by a number of simulations
using random seeds, the fitness of an agent can fluctuate with
each generation, even if the chromosome is unchanged (due
to elitism). See figure 1 as an illustration of this fact. For
that reason, after running the algorithm for 500 generations
we took the agents corresponding to the 10 best performing
chromosomes and ran a second round of simulations. The best
mirror and mixed agent in this second round of simulations
are referred to as MirrorOld and MixedOld in tables V and
VI, which also shows their performance in all game sizes,
the number of games played per agent and the standard error
of the mean. We manage to beat the baseline on both mirror
(from 18.16 to 18.38) and mixed (11.18 to 11.45) modes.

Table IV shows the best evolved chromosome for mixed
play using only these “old” rules. Note that the first two rules
are redundant, as if a card is more than 80% likely to be
played, it is also more than 60% likely to be playable, but
would not be redundant if there was another rule between
them.

For space considerations, we do not show here the best
chromosomes for the other categories, but we will make them
publicly available in our repository after the competition2.

C. New rules

After establishing that the existing rule set allows us to build
better agents than our baseline, we attempted to extend the rule

2https://github.com/rubenrtorrado/hanabi
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TABLE IV
CHROMOSOME FOR MIXED PLAY USING ONLY “OLD” RULES

Rule name
IF(Lives>1) PlayProbablySafeCard(0.8)
IF(Lives>1)PlayProbablySafeCard(0.6)
TellAnyoneAboutUsefulCard
PlaySafeCard
DiscardProbablyUselessCard(0.4)
DiscardUnidentifiedCard
DiscardOldestFirst
TellDispensable
TellRandomly

Fig. 1. An illustration of how fitness of the best agent varied per generation
in one of our evolutionary runs for mixed mode with old rules

set, searching for rules that implement behaviors that are not
covered by the existing rules. The first rule we added was
PlayJustHinted. This rule will attempt to play a card that
was just hinted by another player, accounting for their likely
intentions. For example, if a player points to a card that you
just drew telling it is a (5), when a (4) has just been played,
it is likely that the hint was motivated by the fact that it is
the correct color. PlayJustHinted scans the event history for all
hints received since our last action, and attempts to play the
most likely playable card among those that were pointed at by
a hint. Optionally, we can choose to play a card only if it was
pointed as a standalone hint (a hint that tells of no other cards),
only if it is also our most recently drawn card, only if the
probability of it being playable being > p, only if the number
of lives is > n or any combination of the above criteria. In
the rule set, we included all combinations of probabilities p in
{0, 0.2, 0.4, 0.6, 0.8} and lives n in {0, 1} with and without
the restriction of standalone card or newest card .

The other rules we added attempt to give hints in a clearer,
less ambiguous way to our partners. Sometimes, out of mul-
tiple playable cards, we need to decide which to hint and
whether to tell color or value. Given that many successful
agents take risks in playing cards that are not 100% sure to
be playable, it is important not to give a hint that has the side
effect of making a player believe an actually unplayable card
to be playable. For example, a hint that points to three cards
with value (2), when only one (1) has been played, leaves the

player guessing which of them is the correct color. It might
have been better to tell the color of the correct (2), especially
if it happens to be the only card on its color. Conversely, if
all (1)s had already been played, it is probably better to tell
about all (2)s than hinting each color individually. The new
rule TellUnambiguous1 attempts to give information about
a playable card by either maximizing the number of playable
cards pointed to or minimizing the number of unplayable cards
pointing to.

TellUnambiguous2, instead of looking at the number of
pointed cards, calculates, from the other players perspective,
the probability they would assign to each of their cards being
playable. We do this for each possible hint. Each playable
card is rewarded with a certain weight w1 ∗ p, where p is
the probability that it is playable from the other player’s
perspective. Each unplayable card is penalized with a factor
of w2 ∗ p. We select the hint that maximizes the value of a
players hand in this way.

As before, we ran the evolutionary algorithm for 500
generations, then ran a secondary evaluation of the 10 best
chromosomes. The resulting best agent is referred to as
MirrorNew and MixedNew in tables V and VI. We improve
the results compared to the agents evolved from the “old” rule
set from 18.38 to 19.07 (mirror) and 11.45 to 11.65. We also
noticed that our new rules appeared at high frequency at the
start of the successful chromosomes. In particular, often many
variations of PlayJustHinted coexisted at the start of the same
chromosome. TellUnambiguous1 was often the highest priority
“Tell” rule, while TellUnambigous2 was less successful.

D. Combining specialized agents

At this point, all of our agents are evolved by playing with
game sizes from 2 to 5. We theorized that the strategy for
playing when there are two players can be different from when
there are five players. To prove this, we evolved a set of agents
specialized in 2-player games and another set specialized in 3
or more-player games. After running a secondary evaluation
on the two sets of specialized chromosomes, and finding the
best specialized agent for game size of 2 and the best for game
size of 3+, we built a situational agent that is a combination
of both. It will check the number of players, then change its
behavior to the one most suited for that game size.

We then ran an additional evaluation of the situational agent,
which increased our scores from 19.07 to 19.32 (mirror) and
from 11.50 to 11.65 (mixed), as shown in tables V and VI

V. ANALYSIS OF THE EVOLVED CHROMOSOMES

In this section, we look at the composition of the top
10 evolved chromosomes in each experiment in order to
attempt to identify which rules were most successful and any
discernible patterns that emerge in different experiments that
could help explain why some strategies might work better for
mirror or mixed play, or for specific game sizes. While we
provide the frequency in which we observe some features in
our most evolved chromosomes, we do not claim any statistical
rigor to this analysis. Our findings serve only as illustration
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TABLE V
RESULTS FOR MIRROR - NUMBER OF GAMES = 4*2000 = 8000 PER AGENT EVALUATED. BASELINE IS 18.16

Agent name avg 2P 3P 4P 5P s.e.m
MirrorOld 18.38 19.35 18.95 18.22 17.02 0.02
MirrorNew 19.07 19.61 19.68 19.11 17.87 0.02
MirrorSituational 19.32 20.07 19.58 19.36 18.29 0.02

TABLE VI
RESULTS FOR MIXED - NUMBER OF GAMES = 4*7*2000 = 56000 PER AGENT EVALUATED. BASELINE IS 11.18

Agent name avg 2P 3P 4P 5P s.e.m
MixedOld 11.45 12.13 12.05 11.08 10.55 0.02
MixedNew 11.50 12.11 12.19 11.15 10.56 0.02
MixedSituational 11.65 12.38 12.29 11.22 10.72 0.02

of our results and determining their validity could serve as a
future research question.

For the purpose of this section, we analyze only the runs
including the new rules. We picked the top 10 chromosomes
from MirrorNew and MixedNew (unspecialized), the top 10
chromosomes specialized at 2 player games in MirrorSit-
uational and MixedSituational and the top 10 specialized
crhomosomes for games with 3 or more players in Mirror-
Situational and Mixed situational.

First, we examine the success of our new rules. In ta-
ble VII, column (I), we see how often some variation of
PlayJustHinted was selected as the very first rule in a
chromosome. In total, this happens 24 out of 30 times in
mirror mode, but only 13 out of 30 times in mixed mode. This
could be due to the fact that agents such as Legal Random and
Flawed in the test pool do not favor giving playable hints over
giving random hints. Thus, in mixed mode, assuming a card is
playable just because it was hinted is a less reliable strategy.

Because most agents have a rule for playing a card as
highest priority, TellUnambiguous was not as often chosen
as first rule of the chromosome. Nevertheless, it was very
often chosen as first among the tell rules (rules that result
in giving a hint). In column (II) of table VII, we see how
often this happens for each game mode. Overall, it was the
preferred tell rule 19 out of 30 times in mirror mode, and
only 7 out of 30 times in mixed mode, most often in the
variation TellUnambiguous1. This rule attempts to maximize
the number of playable cards pointed to with each hint, or
minimize the number of unplayable cards. As such, it pairs
extremely well with PlayJustHinted, which is less popular in
mixed mode and could explain the relative lack of success
of TellUnambiguous in this scenario. A popular tell rule
for mixed mode was CompleteTellUsefulCard, which gives
complete information about a useful card and could be very
effective with the agents in the test pool that require complete
information for playing a card.

The last part of our analysis is regarding the difference in
strategy from 2 player games to games with 3 or more players.
Table VIII shows how often a play or tell rule was selected
as first of its chromosome for the specialized 2 player or 3+
player games. In games with many players, playing a card
nearly always takes precedence over giving a hint, with 19

TABLE VII
PREVALENCE OF NEW RULES BY EXPERIMENT

Game Type PlayJustHinted
as first in
chromosome (I)

TellUnambiguous
as first tell (II)

Mirror 2 players 5/10 7/10
Mirror 3+ players 10/10 10/10
Mirror unspecialized 9/10 2/10
Mirror overall 24/30 19/30
Mixed 2 players 4/10 6/10
Mixed 3+ players 4/10 1/10
Mixed unspecialized 5/10 0/10
Mixed overall 13/30 7/30

TABLE VIII
PRIORITY OF PLAY AND TELL RULES BY GAME SIZE

Game Type Play before Tell Tell before Play
Mirror 2 players 7/10 3/10
Mixed 2 players 5/10 5/10
2 players overall 12/20 8/20
Mirror 3+ players 10/10 0/10
Mixed 3+ player 9/10 1/10
3+ players overall 19/20 1/20

out of the 20 chromosomes following this pattern. In 2 player
games, there is a fairly even split between agents that prioritize
playing over telling (12 out of 20) and telling over playing (8
out of 20). We suspect that in 2 player games, it is often correct
to hold a card you know is playable in order to give a hint to
your partner, to avoid them accidentally discard a useful card,
for example. In games with more players, players who already
know a playable card should probably give higher priority to
playing it, and leave the task of giving hints to other players.
By choosing to give a hint instead of playing your card, you
would consume a hint that could better be utilized by a player
who knows little of their own hand (and would be forced to
discard if they got to their turn without an available hint token).

VI. FUTURE WORK

As future work, other than implementing other well-
performing rules, which requires human expertise, it would be
good to have a language of primitives from which the rules
themselves could be evolved. Still in the topic of evolution,
rather than have a list of rules that must be examined in
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order, a Neural Network with evolved weights could determine
which rule (or action) to take, similarly to the approach of
[18]. Alternatively, such controller could be developed by
techniques such as Deep Reinforcement Learning [19].

Another important development would be the ability to gen-
erate a model of the other players’ behavior, such as how risk-
taking they are when playing a card, their preferred discard
policy, etc. If we could accurately recognize these features
during game play, we could evolve specific chromosomes for
playing with agents with those characteristics and so improve
our mixed score. We are particularly interested in initiatives
such as [20], which attempts to build a model of unknown
partners during cooperative gameplay by interpolating between
known models. These models can also be used for non-rule-
based agents, such as MCTS [12], which require a model of
the other players.

VII. CONCLUSION

We used evolution in three steps to get better Hanabi-
playing agents than the human-created baselines: First we
evolved the order in which rules are applied, using a set of
rules very similar to the ones used in [11]. As the quality of
an agent depends not only on the ordering of the rules, but also
on the expressiveness of the rule set, we then added rules that
account for our partner’s intentions (assuming a hinted card
has high probability of being playable) and to choose which
piece of information to give about a playable card in the least
ambiguous way possible. This not only brought a quantitative
increase to our score, but we also noticed qualitatively that
the new rules were in general very effective, appearing at the
head of many of the most successful chromosomes.

Finally, we created specialized agents for specific game
sizes and using their behavior for any game size, we get an
improvement over a generic agent that is optimized for playing
all game sizes. This shows that the best strategy for Hanabi
likely depends on the number of player. We analyzed 30 of
our best chromosomes to attempt to identify patterns that make
some strategies better in each game size, and also for mirror
or mixed evaluation.

By combining evolution, new rules and specialized behavior,
we get a improvement over the best purely rule-based agents,
going from 18.16 to 19.32. While hat agents [13], [14] score
significantly better than our mirror agents, they are unsuited for
mixed or human play. To our knowledge, the only published
non-hat agent that exceeds our score is the combination of
Tree Search with a rule-based agent as evaluator, seen in
[14], with a score of 20.22 across all game sizes. However,
that agent vastly exceeds the time budget allowed in the
competition. It is also worth noting that, as future work,
we could attempt to combine our own rule-based agent with
Tree Search algorithms, or even use rule-based agents evolved
specifically for this purpose.

In mixed mode, our improvements were smaller, but still
expressive, going from 11.18 to 11.65. It is important to note
that the test pool used for the mixed evaluation consists on
some agents, such as Flawed and Random that are purposely

very bad (scoring around 5 points in average), so scores in
this mode are naturally expected to be lower. While we do not
know which agents will be used as the competition test pool,
we hope our improvements when pairing with the test pool of
[11] translates to good results in the mixed competition.
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TABLE IX
APPENDIX - RULE SET

Rule name Description Category
Play If Certain Plays a card with fully known information that is playable 1
Play Safe Card Plays a card that is known to be playable (even with partial informa-

tion)
1

Play probably safe card (p) Plays card most likely to be playable if the probability of being
playable is greater than p

1 1

If lives >1 play probably safe card (p) Plays card most likely to be playable if the probability of being
playable is greater than p and there is more than one available life

2 2

If Hail Mary play probably safe card (p) Similar to above, but also requires the deck to be empty 2 3

Complete Tell Useful Card Tells the missing information (color or value) of a partially known
playable card to a player

1

Tell About Ones Tells a player about all their cards with value of one 1
Tell Anyone About Useful Card Tells a player some new information about one of their playable cards,

prioritizing value if card is completely unknown.
1

Tell Anyone About Oldest Useful Card Tells a player some new information about their oldest playable card,
prioritizing value.

1

Tell Playable Card Tells a player some information about a playable card. Decides
randomly between value and color, even if the card is partially known

1

Tell Playable Card Outer Same as Tell Anyone About Useful Card 1
Tell Anyone About Useless Card Tells a player some information about a card that is never going to be

playable
1

Tell Dispensable Same as Tell Anyone About Useless Card 1
Tell Fives Tells a player about all their cards with value five 1
Tell Most Information Gives a hint that tells the most information, or most new information

about their hand
1 4

Tell Randomly Gives a random hint to a player 1
Tell Unknown Gives new information about a card in a player’s hand. 1
Discard Useless Discards cards whose pre-requisites have been discarded. 1
Discard Safe Discards that is no longer playable. 1
Osawa Discard Discards a card that is useless or safe. 1
Discard If Certain Discards a card that with fully known information and no longer

playable
1

Discard Highest Discards card in hand with highest known value. 1
Discard Oldest Discards oldest card in hand. 1
Discard Oldet No Info First Discards oldest card with no known information 1
Discard Unidentified Card Discards a card with no known information 1
Discard least likely to be necessary Discards card with smallest probability of being necessary for a perfect

score
1

Discard probably useless (p) Discards card with highest probability of being useless, as long as that
probability is greater than p

1 2

Play Finesse Part of the Finesse strategy. 3
Play Finesse Told Part of the Finesse strategy. 3
Tell Finesse Part of the Finesse strategy. 3
Play Unique Possible Card Part of the Finesse strategy 3
Tell Illinformed If a player is ill-informed, give them a hint. 3
Try To Unblock If there is no unblocking player between you and a blocked one,

unblock.
3

Legal Random Selects a random legal action 1
PlayJustHinted See section IV 4
TellUnambiguous1 See section IV 4
TellUnambiguous2 See section IV 4

Categories:
1: Already implemented in the framework and similar to a rule described in [11]

2: Implemented using the framework’s IF and/or CONDITIONAL rule and described in [11]
3: Implemented in the framework, but not described in [11]

4: New rules implemented for this work
Parameters:

1 - Values of p = 0, 0.2, 0.25, 0.4, 0.6 and 0.8 were used for this rule
2 - Values of p = 0, 0.2, 0.4, 0.6 and 0.8 were used for this rule

3 - Values of 0 and 0.1 were used for this rule
4 - Only the variant that tells the most information was used for this rule
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Abstract—This paper reviews an entrant to this year’s Star-
Craft: Brood War AI tournament, CUNYbot. CUNYbot makes
strategic decisions using a low-dimensional economic model
traditionally used to describe the behavior of countries, but has
applications for any real-time-strategy game (RTS) where the
capital/labor ratio (k) and technology/labor ratio (t) are critical.
CUNYbot first tunes the economic model parameters between
games using a genetic algorithm, allowing it to learn an optimal
static k for each built-in AI race. In the second step of the
project, CUNYbot models the opponent during the game and
is permitted to react to the opponent’s inferred choices in k.
The reactive model adopts a greedy “tit-for-tat” style strategy
against all three races. This paper reviews the features of the
capital-augmenting Cobb-Douglas model, the game theory behind
the reactive strategy, and demonstrates adaptation to particular
opponents in the RTS context.

Index Terms—StarCraft, genetic algorithms, economic model-
ing

I. INTRODUCTION

In this paper I explore an exotic application of a well-
used economic model, the Cobb-Douglas (CD) model, which
dates back to 1928. [1], [2], [3] This model is applied to
the modern video game StarCraft: Brood War released 70
years later. StarCraft: Brood War is played by managing
workers and a starting resource depot from one of three races,
Terran, Protoss, and Zerg. These workers collect resources,
build infrastructure, and eventually lead to the construction of
combat units. The winner of the game is the last one with a
standing structure.

To approach this game, I first use the historic CD model as
a heuristic utility function for CUNYbot, which allows for the
derivation of an optimal army/worker and technology/worker
ratio for CUNYbot (k and t, respectively). When training
CUNYbot, instead of refining the build orders or unit- and
time-specific reactions, here, I only train the CD parame-
ters which define k and t. [4] After training the economic
parameters using a genetic algorithm, the bot identifies a
significantly different ratio of k and t for each of the three
built-in opponents.

Second, I use the observed game information to evaluate
a CD model of my opponents’ expenditures in real time.
CUNYbot is then retrained with the opportunity to respond to
the current model of its opponent. Giving CUNYbot respon-
siveness leads to CUNYbot adopting a tit-for-tat style strategy

against all three races. This is indicated by CUNYbot play-
ing a passive, worker-intensive (greedy) approach whenever
possible, but reacts to the opponent’s aggressive behavior.

Both of these points suggest that the historic Cobb-Douglas
model continues to be useful describing economies in the RTS
setting. The remainder of this paper continues with a review of
relevant literature, and a discussion of CUNYbot and the CD
model. I then discuss the genetic algorithm used for tuning
CD parameters. Next, I explore the final results of training
the static CD model against each of the three built-in AIs.
Then, I show how to infer CD parameters for the opponent,
demonstrate that reactive CUNYbot plays a tit-for-tat style
strategy, and conclude.

II. LITERATURE REVIEW

Previous work on SC:BW emphasizes either the detailed
arrangement and targeting choices of individual troops, micro,
the management of the economy within the game and pur-
chasing decisions, macro. These decisions are complicated in
StarCraft: Brood War because of 3 primary features:

1) Strategic Interaction: The actions of both players directly
affects the payoffs of others.

2) Massive Action Space: StarCraft is played on a game
board several thousand pixels wide and high. Players
frequently manage 200 or more units at a time. These
units have dozens of distinct classes. By comparison,
chess manages 8 classes of pieces on an 8 by 8 board.

3) Limited Information: The actions of the opponent are
heavily obscured by the fog of war, an obscuring mist
over most of the map, and only hints of their overall
plan are available.

This work primarily explores macro, the formal macroeco-
nomics of RTS games, and the strategic interaction between
players. It is tempting to assume that economics will relate
entirely to the collection of resources, and indeed some
fundamental work has been done purely on improving mining
effectiveness. [5] This technique, mineral-locking, has already
been incorporated into CUNYbot. However, it is important
to be clear that the emphasis of the CD model is scarce re-
source management, not resource collection. Economic models
operate by evaluating a utility function, and identifying the
opportunity costs for each decision. [6]

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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Economics has a long history of studying games to derive an
optimal strategy or an equilibrium. But these economic games
are generally far more streamlined than SC:BW. While not an
exhaustive list, the literature contains extensive study of the
following game types: Prisoner’s Dilemma (where tit-for-tat
derives), Cournot Production game, and a variety of location
games. [7], [8], [9], [10], [11] These games have strategies
that involve either very few decisions for each player, or
repeated rounds of the same decisions. More complex games
are generally not suitable for evaluating equilibrium, and
therefore this type of economic literature is sparse. In games
like chess, the executional complexity leads to a distracting
emphasis on improving execution, rather than the pursuit of
an objective best solution. [12], [13]

While economists have limited ability to solve extremely
complex games, this does not prevent economists from study-
ing their virtual economies, such as those contained within
Everquest or World of Warcraft. [14], [15], [15], [16] These
virtual worlds have human participants who have served as
experiment subjects. [17] One researcher has already used
the Cobb-Douglas model to describe the economy of Diablo
3, highlighting the prevalence of this specific model. [18]
Standard macroeconomic models like Cobb-Douglas have fre-
quently been used to describe existing economies, but have not
been used to participate. In the bot participants of SC:BW, all
utility functions or economic reasoning I found was uniquely
designed or trained. To my knowledge, this is the first time a
historically established macroeconomic model has been used
to create a participant.

Much of the prior computer science work on macro focuses
on build orders, ie. choosing an opening sequence for units.
[19], [20] For most bots in the competition, this takes the form
of either a single fixed build order, or a choice among several
fixed build orders, usually taken from expert knowledge.
There is much work to be done in this field. ZZZKbot, for
example, was noted for exclusively using hard-coded builds,
often targeted for specific opponents. [21] When uncertain
about which opening to use, many bots now use reinforcement
learning techniques. [21] Some bots have been trained to
select build orders using genetic algorithms, even with an eye
towards economic victory. [22]

This approach of a fixed build order inherently is unable to
react to unorthodox decisions by the opponent. Not all bots
use explicitly hard-coded build orders, however. More adaptive
approaches have been made using case-based reasoning, deep
learning, and replay mining to determine an optimal strategy.
[23], [24], [25], [26] Others have used genetic algorithms to
find the shortest time for a particular unit composition [27],
or to assign unit tasks. [4]

I also use a genetic algorithm approach to evaluate the
strategy. My search is explicitly for the parameters of the
CD model, with an interest in the implied parameters k and
t, rather than build orders or individual unit tasks. [4], [22],
[28] The choice between workers or army composition after
the opening game has been directly explored by Oh, et al.
[29] While other bots have used customized economic models

in the past, CUNYbot is the only bot I have found that
incorporates any of the standard economic models into its
strategic choice on what and when to buy.

III. ABOUT CUNYBOT

CUNYbot (City University of New York - Bot) is an
AI that plays a complete game of StarCraft: Brood War as
the Zerg race. It is a new bot built using BWAPI 4.2.0, a
project of Adam Heinermann. [30] CUNYbot can be regularly
observed playing against other bots on the Student StarCraft
AI Tournament (SSCAIT), and participated on the StarCraft
AI Ladder (SAIL). Its rank has fluctuated between 1700 to
1900 on the SSCAIT ladder. CUNYbot is, at its heart, a state
machine, where the three primary states are determined by
the CD model of country growth. The CD model provides
a heuristic utility function. From this, CUNYbot determines
priorities for its limited resources, whether that is troops,
workers, or technologies. I discuss this model in great detail
below.

CUNYbot is almost exclusively a platform for testing
the CD model. The other systems, such as those regarding
micromanagement or building choice, are rule-based and do
not evolve between games. Changes in other systems would
interfere with the training of the CD model. I give a brief
overview of the systems that govern popular research topics
in SC:BW below.

1) Map Analysis (Inventory): A complete grid of 8x8
minitiles is recorded on game start, as well as the
possible starting locations of all players and initial map
resources. Two maps are stored, both made by fire-
filling the walkable tiles. The first map counts out from
CUNYbot’s center of base. The second counts out from
a suspected enemy base, determined by the start location
or center of buildings. Both maps are updated when new
buildings are found or destroyed.

2) Micromanagement (Fight MovementManager): If CUN-
Ybot is in the army-starved state, all troops are attracted
to its home base. Otherwise, they are attracted to the en-
emy base. This direction is easily determined by higher
or lower values in the generated maps. At every frame,
each CUNYbot unit evaluates the value of friendly units
in the neighborhood and the nearest neighborhood of
enemy units. This valuation is done by unit cost, a metric
with precedence in the literature. [31] If the value of
friendly units exceeds that of opponent units, CUNYbot
attacks. It targets enemy units using a heuristic of
distance and target characteristics (eg. nearby units with
spells first, distant buildings last). Lastly, CUNYbot will
attack everything without considering retreat if its army
is three times larger than its opponent’s.

3) Unit Choices (AssemblyManager): If CUNYbot is in the
labor-starved or the technology-starved state, it builds
workers. Otherwise, it is army-starved and builds combat
units. The choice in which units to build is based off
of a heuristic analysis of the opponent’s composition.
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CUNYbot does not build any units that cast spells, such
as Queens or Defilers.

4) Building Choices (TechManager): If CUNYbot is in
the technology-starved state, it builds more advanced
technology buildings. It emphasizes air if the enemy
lacks air defense (by cost), and ground otherwise. If it
is labor-starved, it builds additional expansions. If it is
army-starved, it builds additional production facilities, or
static defenses. Exceptions: If the opponent has military
forces nearby, and CUNYbot has inadequate defenses,
it may reflexively build anti-air technology or static de-
fenses. If the game is just beginning, CUNYbot executes
a recorded build order until a worker or building is
destroyed.

5) Learning Between Games (GeneticHistoryManager):
This records and writes important information: CD
model, build orders, and any other parameters, before
and after each game.

6) Collection of Minerals (MiningManager): This module
keeps track of workers, assigns them to collect minerals
or gas, and assigns workers to clear obstructing mineral
patches when needed.

7) Cobb-Douglas Model (Cobbdouglas): This governs
the three states: army-starved, worker-starved, or
technology-starved. The model is explained in great
detail in Section IV.

At the end of each game, CUNYbot takes note of its
build order, the map, the opponent, the CD model parameters,
and a convergence rate r using GeneticHistoryManager. In
this paper CUNYbot is restricted to only train against one
opponent, on one map, using the same build order. All other
parameters are fixed between games. CUNYbot explicitly does
not make any strategic reactions to the opponent’s race.1 This
leaves CUNYbot training exclusively on CD parameters and
the convergence rate r.

IV. THE COBB-DOUGLAS MODEL

The Cobb-Douglas (CD) model is a popular parametric
model primarily used to describe the growth rates of countries.
It is simple enough that without knowledge of its effectiveness
in other contexts, it might easily be overlooked or neglected
in modeling RTS behavior. It divides resources into a few
fundamental classes which I describe in context below:
• Capital (K): The total value of tools that directly help

win the game. ex: Hydralisks, or Terran Marines. For the
purposes of this paper, army units.

• Labor (L): The total value of workers themselves, ex.
Drones, Probes, or SCV’s.

• Technology (T ): The total value of items which augment
the capital such as research, upgrades, ex: Ranged Missile
Attacks +1, Hydralisk Den.

• Gross Domestic Product (Y ): The total output of goods
and services, utility. The value function of the player.

1CUNYbot, for example, does not change its scouting habits, unit com-
position, or building choices against particular races. Its strategies remain
unchanged.

This categorization is particularly clear for StarCraft’s Zerg
race - whose technological structures T permit construction
of new capital K but do not themselves produce it. As such
CUNYbot was designed to play Zerg. In this model, technol-
ogy is incorporated as capital-augmenting because technology
directly improves the value of the capital. Conversely, tech-
nology does not have an immediate effect on the productivity
of labor. [3] The functional form for capital-augmenting CD
is:

a) Yf = (AfKf )
αK,fL

αL,f

f

b) αL,f = 1− αK,f
c) Af = T

αT,f

f

(1)

Where f is the count of frames in the game. The normal-
ization in 1b loses no generality because Y is an ordinal utility
function. 1c is assumed because technical growth will not be
time-dependent, but instead will be chosen by the player. To
begin, I assume all three α parameters are static throughout
the game in Section V-A, and consider the flexible values of
α later in Section V-B. In order to determine the value of my
current stock of Kf , Lf and Tf , I use the stock value of the
unit or item:

mineral cost+ 1.25 ∗ gas cost+ 50 ∗ supply cost (2)

This straightforward metric was used as a baseline measure
of the value of a StarCraft force by Synnaeve and Bessière. It
was sufficient to predict the winner of combat 63% of the
time for similar forces. [31]2 There may be more precise
conversions to evaluate total stock, but this maintains a clear
connection to economic work, and has precedent in research.3

For combat units that can be damaged, I multiply their stock
value by their proportion of health remaining. Beyond combat
damage, there is no explicit depreciation in SC:BW. In fact,
the opposite occurs, most units heal over time if left alone.

At every frame f , the agent chooses how best to allocate
its limited resources to purchase additional stock of K,L
and T . The bots’ three states are then respectively capital-
starved (army-starved), labor-starved, and technology-starved.
For each of CUNYbot’s three states, the bot invests in the asset
type which has the largest gradient. This gradient measures the
expected benefit of each type of investment. The opportunity
cost (defined as the value of the next best foregone option)
for any investment in Kf , Lf and Tf is the next largest

2For upgrades and researches, the supply cost is 0. For Zerg buildings,
which consume a worker, I include the cost of the worker. I do not have a
metric for the cost of the larva.

3CUNYbot also assesses combat using this metric. If a local enemy’s force
is larger than friendly forces by this metric, it generally avoids attack.
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gradient.45 It is a trivial matter to find the gradients of
the CD function once given the parameters αK , αL, αT . In
an equilibrium CUNYbot keeps those gradients equal and
minimized, allowing us to evaluate the ratios k = K/L and
t = T/L.6 They are:

k =
αK
αL

t = αT k =
αKαT
αL

(3)

In historical economic research, these ratios were assumed
to be relatively unchanged throughout the lifetime of the
economy. In practical application, these ratios have remained
consistent for countries like the United States. [1] This simple
approach was also modestly successful for earlier versions
of CUNYbot in the SSCAIT 2017 challenge. I loosen this
assumption in Section V-B. Figure 1, shown below, illustrates
the path of CUNYbots’s economy Yf over time for a given
starting set of αK , αL, αT against StarCraft’s built-in Zerg
opponent. The value of Yf was measured every in-game
second (24 frames).

Fig. 1. CUNYbot’s economy over time winning against a built-in Zerg AI.
Parameters were: αK = 0.46, αL = 0.54, αT = 0.39.

4I note that for Zerg, production of both capital (K) and labor (L) are
mutually exclusive. New Zerg units of either type are produced through larva,
which is exhausted on use. Meanwhile, production of technology is done either
by expending workers L or through technology buildings that would otherwise
be unoccupied. As a result, expenditures on K and L do not entirely exclude
the investment in T, which will be purchased if there are left over resources.

5CUNYbot also seeks the enemy when not capital-starved. It has “enough”
army. However, the ultimate act of attacking will only happen if the bot
assesses itself as winning the fight, or its army gradient is 0, ex. it is at 200
supply and cannot build a larger army).

6There are also several discontinuities in StarCraft itself that are not
accounted for in the purely continuous CD model. For example, at the
beginning of the game, one cannot purchase military units (K) directly, and
at the end of the game, supply cannot increase beyond 200. These edge
conditions are accounted for by setting the gradient of the respective stock to
0.

The first 200 seconds represent the opening book period
where only workers are built. The CUNYbot performed a
standard 12-hatch, after which it has no army and enters an
army-starved state. When CUNYbot leaves the army-starved
state, it moves its army towards the opponent and begins to
fight. The first fight is clearly visible around 300 seconds,
and another around 400 seconds. In the first fight, players
exchanged units and typical growth was inhibited. From 350-
400 CUNYbot rebuilt its army. It attacked again at around the
400 mark. The built-in Zerg opponent resisted, but did not
successfully defend. The game ends shortly thereafter as the
base AI’s buildings are destroyed.

In sum, the CD model leaves us with a simple vector
(genome) g that needs to be optimized: g = {αK , αL, αT }.
These values allow the derivation of k and t. A RTS-specific
interpretation of these parameters is easy to manage. I provide
some stylized interpretation below:

1) Aggressive: (αK >> αL) This style of play aims to end
the game in the short run by buying a large army.

2) Safe: (αK ≈ αL) This style of play aims to grow, but
with sufficient security to protect against aggression.

3) Greedy: (αK << αL) This style of play aims to grow
the income of the player, but purchases only a trivial or
nonexistent defensive force.

4) Technical Play: (Large αT ) This style of play encom-
passes rushing to build special units to win the game.
The main units CUNYbot can use of this type are
Lurkers, which cannot be seen without the defending
player also possessing special units.

I note that these are relative interpretations of RTS game
strategies. One could evaluate the CD model to determine if
a player was more safe or more aggressive. But, there is no
explicit threshold where an opening is “safe” or “aggressive”,
they are relative to each other. Below, I outline the setup of
the experiment, and show the genetic algorithm used to train
CUNYbot’s style against the built-in AI.

V. METHODOLOGY & RESULTS

A. Training the Static Cobb Douglas Model

Training was done in parallel using 6 copies of
Chaoslauncher: MultiInstance with game speed set to 0, the
fastest possible setting. [32] This created 6 identical copies
of CUNYbot. At the start of each game, CUNYbot reads the
genome, reads win/loss information in output.txt, and executes
the genetic algorithm outlined below. At the end of each game,
CUNYbot appends the genome and game result to output.txt.
As a result, the output file is in order of game completion.7

In order to prevent delays, CUNYbot resigns if the game
goes on too long or is delayed, which happens between 1.5-
0.2% of games depending on the opponent. Otherwise no time
limit is imposed on the games and they are left alone.8

7A careful review of the file will reveal that other information is also written
to output.txt (eg, map, opponent name, lags/delays), but it has been ignored
for this exploration.

8System notes: AMD Ryzen 7 1700, 3Ghz processor, 16GB RAM, total
training time is approximately 7 hours of wall time for 1000 games.
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Algorithm 1 Genetic Algorithm (GA)
1: procedure TRAIN GA
2: P ← ∅. . Define Terms
3: g ← {αK , αL, αT } ∼ iid. U(0, 1). . Begin Test
4: αK ← αK

αK+αL
, αL ← αL

αK+αL
. . Normalize

5: CUNYbot plays training opponent.
6: if CUNYbot wins then . Keep Fit Genomes
7: Add g to the top of P .
8: else goto 3.
9: while P.size() > 50 do . Death

10: Remove bottom (oldest) element of P .
11: if P.size() = 50 then . Geometric Crossover
12: Randomly draw {gp1, gp2} ∈ P .
13: gc ← g1−ap1 gap2, where a ∼ iid. U(0, 1).
14: else goto 3.
15: if U(0, 1) > 0.95 then . Mutate Child
16: Randomly choose one element, eold ∈ gc.
17: Replace eold ← eold +m , m ∼ iid.N(0, 0.05).
18: if eold > 1 then eold ← 1.
19: if eold < 0 then eold ← 0.
20: else goto 4.
21: if less than 1000 games played then
22: goto 4.
23: else end . End Training

While in competition CUNYbot chooses from among var-
ious fixed openings. For this experiment the bot is locked
into a single, short, hard-coded build order called a 12-
hatch.9 It is important that the bot is forbidden to change
opening selection (or any other non-CD parameter) as I train
on the CD model, since any improvement in win rate could
be confounded. Beyond this fixed opening, the ratio of k
and t are determined by the CD model above. The map
chosen was (4)Fighting Spirit.scx because it is generally free
of complicating obstacles that might otherwise obstruct the
bot. The random seed provided to SC:BW was locked and
unchanged for every game.

I also experimented with arithmetic crossover (gc ← gp1 ∗
(1 − a) + gp2 ∗ a), but the convergence was noticeably
slower. It did not converge after even 2000 games. The
parallel shape shared by both the objective function and the
geometric crossover suggests geometric crossover is more
appropriate, and it does lead to a much faster convergence.
[33] As mentioned, the CD parameters change only between
games through the genetic algorithm and no other features
are altered. This process was costly in training time but was
very robust in practice, since the child genome was composed
of linear combinations along a continuum of known winning
approaches. Convergence happened quickly, even though the
setup was comparable to examples that take much longer
over rough surfaces. [34] No special techniques other than

9This opening consists of building to twelve workers as soon as possible,
then building a hatchery.

geometric crossover were utilized and fitness was evaluated
purely on the victory of the game. [4]

The results of training displayed in Figure II show the
final generation of 50 genomes after playing 1000 games
against each race of the built-in AI. CUNYbot converges
to significantly different genomes depending on the race,
suggesting that the CD model has practical merit in describing
RTS economies.

TABLE I
STATIC CD LEARNING - FINAL 50 GENOMES WITH 1000 TRAINING

ROUNDS

Mean αK αL αT k t

Static CD vs P 0.51 0.49 0.38 1.05 0.39
W:59.5% (0.01) (0.01) (0.01) (0.03) (0.01)

Static CD vs T 0.55 0.45 0.57 1.21 0.70
W:76.9% (0.00) (0.00) (0.01) (0.02) (0.02)

Static CD vs Z 0.47 0.53 0.36 0.87 0.31
W:100.0% (0.01) (0.01) (0.00) (0.02) (0.01)

Note: SD of each genome element in parentheses. Win rate is evaluated
starting from the time the first member of the final generation is added to

the end of the experiment.

The parameters of the CD model allow for easy interpreta-
tion, and I have calculated the ratios of k and t directly. For
example, the bot chooses its highest values of k and t against
Terran, suggesting smaller economies while emphasizing well-
upgraded armies. CUNYbot manifests this general preference
most visibly through its Lurker upgrade, which takes advan-
tage of the Terran’s relatively limited ability to detect them.
On the other hand, the CUNYbot chooses very low k and t
against Zerg. In observation, CUNYbot expresses low k and
t by expanding often and defending with relatively low-tech
units, such as Zerglings. High-tech units that CUNYbot is
familiar with, such as Lurkers and Ultralisks, are rarely seen
in professional Zerg vs Zerg matchups.10

Against Terran and Protoss, CUNYbot learned to play
aggressively compared to an untrained mean of about 0.5
for all parameters. The built in Zerg stands out as the only
case where it did not play aggressively, but this built-in AI
is also clearly the weakest against CUNYbot. Further training
may yield more refinements, but the distinct convergence of
CD parameters by race is clear, highlighting the bot’s unique
approach against each opponent.

B. Training the Reactive Cobb-Douglas Model

The above static approach has converged to a fixed genome
g that remains constant within each game. It found distinct
results for each of the three opponents, suggesting three dis-
tinct, but relatively aggressive styles. However, opponents do
not have to maintain a constant g, nor do they need to maintain
any sort of balanced investment pattern within a game. Indeed,
such variations are central to RTS games in general. Instead of
fixed values of αK , αL, αT , an opponent will face decisions

10I note that one advanced technical unit, the Mutalisk, is popular with
human players in this match, but CUNYbot does not have comparable mastery
over Mutalisks at this time. As the CUNYbot gets better at Mutalisk micro,
I would anticipate αT and t would increase.
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of aggression or greed that repeat continuously throughout the
game. They can be approximated to have their own values of
gopp,f = {α′K,f , α′L,f , α′T } in each frame of the game. Their
choices require a strategic and careful response by CUNYbot.

The tit-for-tat strategy is characterized by friendly play and
mild retaliation. First, one plays a friendly and non-aggressive
strategy. That is to say, it plays greedy. Second, if the opponent
plays aggressively, we begin to play safe to punish this
behavior. Otherwise, we continue to play greedy until the game
ends or there is nothing left to gain by greedy play. While
tit for tat is designed specifically for the prisoner’s dilemma
game, the characterization has been applied to strategies such
as ”live-and-let-live”, a policy describing the non-aggressive
behavior of troops in WWI trenches. [35]

One key point is that this strategy is not trying to match the
opponent’s existing army stock, K ′f . In tit-for-tat, past events
are ignored. Instead, this strategy will match the flow of new
K investments, spending the remainder on L or T . If done
successfully, the accumulated combat forces should be roughly
equal, Kf ≈ K ′f . At the same time, CUNYbot should exceed
the growth rate of its opponent: Lf > L′f . In the case of
perfect information, it is easy to infer the investments of an
optimizing opponent:

α′K,f =
k′

1 + k′

α′L,f = 1− α′K,f
(4)

Unfortunately, the opponent’s investments are frequently
obscured by the fog of war, and subject to incomplete infor-
mation. There has been research evaluating unknown enemy
expenditures during early game play, but few approaches
evaluate through the entire game. [36], [29]

Typical economic models have historically assumed an
exogenous growth rate for labor. I similarly assume an ex-
ogenous growth rate for labor in the short run. I assume all
known enemy depots (which manufacture workers) are always
working on one worker, until they reach a maximum upper
limit. This assumption works particularly well on most AIs,
and it is standard advice to new RTS players to always build
workers. [37] Initially, each player starts with four workers
and one depot, while in the late game, the maximum bound in
the literature of expert play appears to be under 85 workers.
[38] During the game it is a simple matter to subtract destroyed
workers (or workers morphed into buildings) and remove them
from the total. Thus, the enemy’s estimated stock of workers
at any time is roughly:

ŵ0 = 4

ŵf = max(ŵf−1 +
enemy depotsf

worker build time
− destroyedf , 85)

L̂f
′
= ŵf ∗ value of a worker

(5)
On the other hand, the estimated value of the opponent’s

capital, K̂f
′

is assumed to be equal to the stock of the
opponent’s known combat units, eg. nothing is hidden behind

the fog of war. This simplifying assumption is enabled by
CUNYbot’s unit movement toward the enemy if it is not army-
starved. This serves the purpose of scouting. If the units reveal
a large K̂f

′
, CUNYbot will eventually retreat or reinforce its

front line, but a better estimate of K̂f
′

is gained.
These two modest measures allow the bot to operate in

a domain of incomplete information.11 Reactive CUNYbot
then has the information to evaluate ˆαK,f

′ (and therefore
α′L,f ) every 15 game seconds. It then matches the enemy’s
investment in aggression by αK,f ← αK,f + r(α

′
K,f −αK,f ).

Here, I would expect r be the slowest possible adaptation rate,
since that would be greediest, but I do not assume its value.
So, r will begin as r ∼ iid.U(0, 1), and be chosen through
the same genetic algorithm already discussed above.12

Using this reactive structure, we begin training the starting
genomes of CUNYbot again. The final result is visible in
Table II. Once again, the bot is reactive, so the values recorded
in the genome are the starting conditions.

First and foremost, the reactive CUNYbot evolved to prefer
significant reaction rates, moving towards the opponent’s value
of α′K at a rate of roughly 30% or more for all 3 built-in
AI races. The reactive CUNYbot has a final population of
significantly higher αL and lower αK in all cases, suggesting
greedy play. Furthermore, the ratio of k is lower significantly
in nearly all cases.13 This greedier play is in keeping with
CUNYbot’s new ability to react to threats by increasing k and
building military units. In short, the reactive CUNYbot has
learned a tit-for-tat type strategy, in contrast to the aggressive
approach learned by the static CUNYbot.

One may also note that the technology level αT (and the
associated t) is lower overall for the reactive CUNYbot. The
reduction in αT was not an anticipated result since αT was not
moved in reaction to enemy decisions. However, CUNYbot’s
heuristic unit selection prefers expensive units when available,
which have long build times. It may be that keeping the tech-
nology level low is implicitly allowing CUNYbot to respond
quickly via rapidly building units, like Zerglings. The low
level of technology, therefore, may be implicitly permitting
quicker reactions to threats. Further iterations of CUNYbot
will explore this relationship between technology choice and
the tit-for-tat style strategy more carefully.

VI. PERFORMANCE AGAINST OTHER BOTS

In the CIG tournament, CUNYbot will be competing against
several other bots who are also arguably superior to the built-
in AI. Using SC-Docker [39], CUNYbot has been extensively
trained against a large cross section of bots available on SS-
CAIT. This training should be a useful gauge for the incoming
potential contestants in CIG 2018. Starting from a list of all

11Future versions may benefit from replay review to extract estimates of
worker counts and army sizes despite incomplete information. [29]

12In the case CUNYbot cannot evaluate α′
K,f (ex. the enemy has no known

living units), CUNYbot defaults αK,f , αL,f to the initial values contained
in g.

13The only race k is not significantly lower is Z. In the previous static CD
exploration, Z was by far the lowest k already, and the distribution of k will
have relatively heavy tails.
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TABLE II
REACTIVE CD LEARNING - FINAL 50 GENOMES WITH 1000 TRAINING ROUNDS

Mean αK αL αT r k t

Reactive CD vs P 0.39 0.61 0.30 0.31 0.64 0.19
W:54.3% (0.00) (0.00) (0.01) (0.01) (0.00) (0.01)

Reactive CD vs T 0.51 0.49 0.45 0.29 1.05 0.47
W:75.8% (0.01) (0.01) (0.01) (0.01) (0.03) (0.01)

Reactive CD vs Z 0.45 0.55 0.40 0.57 0.82 0.33
W:100.0% (0.00) (0.00) (0.00) (0.00) (0.01) (0.01)

Note: SD of each genome element in parentheses. Win rate is evaluated starting from the time the first member of the final generation is added to the end of
the experiment.

active bots [40], I excluded bots that had problems with SC-
Docker, for a total of 84 potential opponents.14 SC-Docker
comes with a large cross-section of maps, used frequently
on SSCAIT.15 Learning was compartmentalized by opponent,
race, and map. That is to say, if an opponent is new, CUNYbot
references its history of games on that race and map. If a map
is also new, CUNYbot references its history against the race
only. CUNYbot played against a randomly selected bot on a
randomly selected map. CUNYbot played 2000 such games
in serial at a game speed of 1. The results of these training
games are listed below in Table III, sorted by win percentage.

The overall win percentage is 28%, though the win rate
varies tremendously between opponents. CUNYbot typically
beats OpprimoBot, NUSbot and Hannes Bredburg under these
conditions with win rates 60%+. Closely matched opponents
with win rates between 40-60% include: Lukas Moravec,
KaonBot, Sungguk Cha and KillAlll. CUNYbot remains un-
able to defeat some opponents within the sample window, such
as the top-rated Krasi0. A larger portion of CUNYbot’s losses
are related to David Churchill (UAB) and its descendants (such
as Steamhammer or Arrakhammer). However, it has managed
some exceptional victories. CUNYbot boasts a substantial 31%
win rate against tscmooz, who on SSCAIT has defeated all
previous versions of CUNYbot. This result and other victories
are cause for optimism, but there is more work to be done on
CUNYbot.

VII. CONCLUSION

This paper presents a working summary of CUNYbot,
a submission to the 2018 IEEE:CIG StarCraft: Brood War
tournament. It describes the operation of CUNYbot in close
detail, in particular the functioning of the Cobb-Douglas model
underlying its behavior. This model is not specific to StarCraft:
Brood War, but has broad application to RTS games in general.
I show that the CD model allows the bot to evaluate the game
state successfully. I train CUNYbot to play the three built-in AI
races with static CD parameters, and the result is three unique
sets of relatively aggressive parameters. By contrast, when

14The list of bots is visible below in Table III. The removed bots were
Bereaver, Sijia Xu, StyxZ, Aurelien Lermant, AyyyLmao, DAIDOES, Zercg-
berht, DaleeTYC, ggBot.

15These maps were the default SSCAIT maps: (2)Benzene.scx,
(4)Andromeda.scx, (4)Icarus.scm, (2)Destination.scx, (4)Circuit Breaker.scx,
(4)Jade.scx, (2)Heartbreak Ridge.scx, (4)Electric Circuit.scx, (4)La
Mancha1.1.scx, (3)Neo Moon Glaive.scx, (4)Empire of the Sun.scm,
(4)Python.scx, (3)Tau Cross.scx, (4)Fighting Spirit.scx, (4)Roadrunner.scx

given the ability to react to the opponent’s expenditures, CUN-
Ybot attunes to primarily to greedy parameters. Encouragingly,
the greedy style of the reactive CUNYbot matches a tit-for-tat
style strategy - it plays friendly when possible, and only builds
troops in response to aggression. In each of the six training
cases, the CD parameters were significantly different from one
another, suggesting important stylistic refinements are being
made. Since this exploration has been fruitful, future versions
of CUNYbot will expand the use of formal macroeconomic
models in the RTS game domain.
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Abstract—This paper proposes a novel learning agent model
for a General Video Game Playing agent. Our agent learns an
approximation of the forward model from repeatedly playing
a game and subsequently adapting its behavior to previously
unseen levels. To achieve this, it first learns the game mechanics
through machine learning techniques and then extracts rule-
based symbolic knowledge on different levels of abstraction.
When being confronted with new levels of a game, the agent is
able to revise its knowledge by a novel belief revision approach.
Using methods such as Monte Carlo Tree Search and Breadth
First Search, it searches for the best possible action using
simulated game episodes. Those simulations are only possible
due to reasoning about future states using the extracted rule-
based knowledge from random episodes during the learning
phase. The developed agent outperforms previous agents by a
large margin, while still being limited in its prediction capabilities.
The proposed forward model approximation opens a new class of
solutions in the context of General Video Game Playing, which
do not try to learn a value function, but try to increase their
accuracy in modelling the game.

Index Terms—Forward Model Approximation, General Video
Games, exception-tolerant Hierarchical Knowledge Bases, Belief
Revision, Monte Carlo Tree Search, Breadth First Search

I. INTRODUCTION

The development of General Intelligence (i. e., intelligent
algorithms that are able to cope with multiple kinds of different
problems) is one of the key long term goals in Artificial
Intelligence (AI) research. To evaluate approaches for this
long term goal, in recent years, the General Game Playing
challenge [1] and (more recently) the General Video Game
Playing Artificial Intelligence (GVGAI) competition [2] have
been developed, where agents have to play several different
types of games which are not (concretely) known in advance.

In this paper, we present a novel approach of a learning agent
which learns to play different video games in the context of the
GVGAI competition [2]. To achieve this, we combine multiple
concepts from both the symbolic and the subsymbolic artificial
intelligence communities using machine learning together with
belief revision and action selection. More precisely, our agent
first uses statistical methods to learn the game mechanics in
form of an approximated forward model. In this study we
use exception-tolerant Hierarchical Knowledge Bases (HKBs)
[3], containing rules on multiple levels of abstraction, to learn
and store the approximated forward model. These knowledge
bases are later revised when the agent is confronted with new

or changed environments (e. g., new levels) by a novel belief
revision approach for HKBs.

Those knowledge bases can be used while playing the game
for reasoning about the value of future states. Based on previous
experiences we can partially simulate the outcome of our future
actions, enabling us to use well-known search schemes for
action selection. In this study we use Monte Carlo Tree Search
(MCTS) and Breadth First Search (BFS) to evaluate future
states. Finally, we choose the action with the highest expected
outcome and return it for execution.

The main contributions of the paper are:
• a learning approach which is able to quickly learn the

mechanics of dynamic environments (e. g., games) in form
of an approximated forward model

• representing and storing the approximated forward model
in human readable format as HKBs (i. e., rule-based knowl-
edge which is organized on multiple levels of abstraction)

• a simple belief revision approach for HKBs
• an agent architecture using the generated approximated

forward model with a flexible action selection mechanism
• an agent model to be used for the GVGAI learning-track
Section II briefly outlines related work and in Section III the

preliminaries needed for our agent model will be introduced.
After that, in Section IV, we describe the details of creating and
using an approximated forward model in context of an agent
for the GVGAI competition. In Section V, we evaluate and
compare the proposed approach with other known agents based
on several games from the GVGAI competition. A conclusion
and an outlook on future work are given in Section VI.

II. GENERAL GAME PLAYING

Next to the many efforts put into artificial intelligence
methods for various board games such as Chess, Morris, and
Go, the Stanford General Game Playing competition [1] asked
its participants to implement agents, which can compete in
a set of previously unknown games. Playing agents needed
to act based on the current state of the board and a set of
simple rules. Many attempts have been made to create similar
description languages for the definition of video games.

Thanks to the efforts of Tom Schaul, the Video Game
Definition Language [4] was created. Based on his work the
General Video Game AI (GVGAI) competition was created. It
offers a framework, in which many arcade like video games

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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were replicated. Here, an agent receives a state description
and a set of up to five possible actions. Those actions are
named after buttons of a typical game controller and map the
buttons ”Up”, ”Down”, ”Right”, ”Left”, ”Action”. However,
the outcome of each action is completely dependent on the
rules of the game, such that a suitable policy needs to be
learned for each problem individually.

In recent years the competition offered multiple tracks, which
focus on different aspects of general video game playing. The
next sections quickly summarize the single player game playing
and the learning track. In the remainder of this paper we will
focus on the study of the learning track.

A. GVGAI - Single Player Game Playing Track

The currently most popular track is the single player game
playing track. Here, a forward model is provided to the agents,
which can be used to simulate the outcome of an action.

In 2017 a total of 22 submissions entered the competition
(including 5 sample submission provided by the competition
hosts). The currently best performing agent, Yolobot [5], uses
a mix of BFS and MCTS. While the former is used in games,
which include deterministic state transitions, the latter is applied
to all non-deterministic games. Additionally, the algorithm
identifies reachable objects and rates its interest on them. Either
BFS or MCTS is used to find a suitable path to potential targets,
while avoiding any dangers.

Due to the inclusion of non-deterministic games, the applica-
tion of MCTS variants such as Open Loop MCTS (OLMCTS)
were studied in multiple works (see a summary of agents in
[6]). OLMCTS and other tree searching algorithms such as
Open Loop Expectimax Tree Search are able to quickly sample
possible action sequences and evaluate their outcome [5].

Next to tree search algorithms, the search of action sequences
based on genetic algorithms showed to be a popular choice.
Methods such as the Rolling Horizon Algorithm [7] evolve
short action sequences and evaluate their outcome based on a
scoring function similar to OLMCTS.

The overall performance of agents in the game playing
track is already very good. Despite being confronted with a
previously unknown game, the agents are often able to win
a game or at least find action sequences, which yield a high
score.

B. GVGAI - Single Player Game Learning Track

In contrast to the game playing track, the game learning
track has an increased difficulty due to the forward model
being removed as a source of information from the agent. All
previously discussed methods heavily rely on such a forward
model, which enables the agent to run simulations for all
possible actions. Therefore, new algorithms need to be found
for solving problems of this domain.

The agent developed by Ercüment İlhan [8] uses an MCTS
agent, which was enhanced with an online on-policy temporal-
difference learning method, called true online Sarsa(λ) [9].
Here, the agent optimizes its estimation of the state-action
value function by continuously revising it based on the repeated

interactions with the game environment. This agent performed
best in the training set, but only placed 5th in the evaluation
game set (slightly ahead of an adaptation of the Yolobot from
the game playing track). Not much information is available on
the other agents.

Surprisingly the random controller provided by the competi-
tion organizers performed second best in the evaluation set, just
three points worse than the first place. This shows that well-
known methods for value estimation or policy improvement do
not work at their full potential using the limited information in
this track. Short time frames for learning the games rules (≤
5 minutes) and decision-making (40ms) drastically limit the
applicability of iterative methods or long search procedures.
Hence, there is still more room for improvement.

Our work is motivated by the huge performance gap between
agents of the game playing and game learning track and
the idea that machine learning combined with methods from
symbolic knowledge representation can contribute to create
an appropriate agent model. This work will show how the
introduction of approximated forward models and efficient
learning and operation schemes can help us in developing new
kinds of agents.

III. PRELIMINARIES

This section will briefly outline the preliminaries and com-
ponents needed for our agent model introduced in Section IV
for the GVGAI learning track. We will first explain the basics
needed for our novel approximated forward model for which it
is useful to define Hierarchicle Knowledge Bases (HKB) and
how they can be learned (Subsections III-A to III-C). These sec-
tions will closely follow several preliminary works, especially
[3], [10], [11]. After that, the reasoning algorithm defined on
HKBs will be briefly summarized, following [11] (Subsection
III-D). Subsequently, we will introduce some modifications on
HKBs and the learning process (Subsection III-E) to fit the
needs of our agent model. Finally, we will propose a belief
revision approach for HKBs (Section III-F) and describe a
module for action selection (Subsection III-G).

A. Basic Agent Model for HKBs

We consider an agent which is equipped with n sen-
sors through which it can perceive its current state in the
environment (e. g., a game) and which is able to perform
actions from a predefined action space (e. g., the keys to be
pressed on the controller). Furthermore, the agent can perceive
whether the performed actions were good, in form of (numeric)
rewards. The perceived rewards can then be used to learn a
weighted state-action pair representation where the highest
weight determines which action has to be performed, given a
perceived state.

More formally, in such a representation, a state s is an
element of a multi-dimensional state space S = S1 × ...× Sn
where n is the number of the agent’s sensors and every Si is a
set of possible values of the corresponding sensor. Furthermore,
the agent selects actions from a predefined action set A and
the learned weights are stored in a multi-dimensional matrix
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Q̂ = (qs1,...,sn,a) with si ∈ Si and a ∈ A. The weights can
be learned by different machine learning approaches, provided
that the learning approach results in a representation such that
given a state, the highest weight determines the best action to
be selected (i. e., amax

s1,...,sn = argmax
a′∈A

qs1,...,sn,a′ ).

After selecting an action the environment responds
with a reward and a successor state st+1. In general a
game can be modelled as a probability distribution over
P (st+1, rt+1|s0, a0, r1, s1, a1, . . . , rt, st, at), which maps the
probability of each successor state and its accompanied reward
depending on all previous interactions. Analysing or storing
such a probability distribution is near to impossible, due to
its exponentially growing complexity. When the process to be
analysed fulfils the Markov Property, the probability distribution
reduces to P (st+1, rt+1|st, at), in which each successor state
and its reward is only dependent on the environment’s last state
and the agent’s last chosen action. Our target will be to construct
a classifier, hereinafter referred to as approximated forward
model, which approximates the distribution P (st+1, rt+1|st, at)
based on previous interactions with the environment.

Such an approximated forward model can be split into
multiple sub-components in case the multi-dimensional repre-
sentation S consists of independent components. If this is the
case a complete reconstruction of the state S can be achieved
by modelling each independent component separately.

The following subsections introduce HKBs, which will be
used for learning and revising such classifiers during continuous
interactions with the games environment.

B. Definition of HKBs

In [10], an extraction approach is proposed which is able to
extract an HKB from a weighted state-action pair representation
(where the maximum weight determines the best action, given
a state). This section only provides the main definitions needed
to understand the basic idea of HKBs and how they can be
learned from weighted state-action pairs by closely following
[3], [10], [11]. For more details on HKBs, the reader should
refer to the original literature mentioned here. An HKB consists
of rules which are organized on different levels of abstraction.

An HKB can handle multiple rules per level and the rules
also comprise weights (in contrast to Exception Lists [12]).
According to [11] two different kinds of states and two different
kinds of rules need to be distinguished:

Definition 1 (Complete States/Partial States) A complete
state is a conjunction s := s1 ∧ ... ∧ sn of all values si
currently perceived by an agent’s sensors, where n is the
number of sensors and every perceived sensor value si ∈ Si of
the corresponding sensor value set Si is assumed to be a fact
in the agent’s current state. A partial state is a conjunction
s :=

∧
s′∈S s

′ of a subset S ⊂ {s1, ..., sn} of the sensor values
of a complete state.

Definition 2 (Complete Rules/Generalized Rules) Com-
plete rules and generalized rules are of the form pρ ⇒ aρ [wρ],
where pρ is either a complete state (in case of an complete
rule) or a partial state (in case of a generalized rule). The

conclusion aρ ∈ A is an action of the agent’s action space A
and wρ ∈ [0, 1] is the rule’s weight.

Thus, complete rules map complete states to actions and
generalized rules map partial states to actions. An HKB can
now be defined as follows:

Definition 3 (Exception-Tolerant Hierarchical Knowl-
edge Base) An exception-tolerant Hierarchical Knowledge Base
(HKB) is an ordered set KB := {R1, ..., Rn+1} of n+ 1 rule
sets, where n is the number of sensors (i. e., the number of
state space dimensions). Every set Ri<n+1 contains generalized
rules and the set Rn+1 contains complete rules, such that every
premise pρ =

∧
s∈Sρ s of a rule ρ ∈ Ri of length |Sρ| = i− 1.

According to Definition 3, the set R1 contains the most
general rules (with empty premises) and the set Rn+1 contains
the most specific (i. e., complete) rules.

For the relations of rules, the term of needed exception will
be used, according to the following definition (cf. [3]):

Definition 4 (Needed Exception) A rule ρ ∈ Rj>1 is an
exception to a rule τ ∈ Rj−1 with premise pτ =

∧
s∈Sτ s,

action aτ as conclusion and weight wτ , if Sτ ⊂ Sρ and
aρ 6= aτ . The exception is needed, if no other rule υ ∈ Rj−1
exists with premise pυ =

∧
s∈Sυ s and action aυ as conclusion

where Sυ ⊂ Sρ, aυ = aρ and wυ > wτ .

C. Learning HKBs

An HKB can be extracted from a weighted state-action pair
representation Q̂ (that is learned, e. g., through a Reinforcement
Learning technique or by simply counting relative frequencies)
using the following approach originally introduced in [10],
closely following [11] here:

The approach takes a weighted state-action pair representa-
tion Q̂ as input and returns an HKB KBQ̂ which reflects the
knowledge contained in Q̂ by performing the following steps:

1) Initial creation of rule sets:
In the first step, the multiple abstraction levels
R1, ..., Rn+1 of the knowledge base are initially filled
with rules. The weights of generalized rules are created by
averaging the weights in Q̂ over the missing dimensions.1

2) Removal of worse rules:
In all sets Rj , a rule ρ ∈ Rj is removed, if there exists
another rule σ ∈ Rj with the same partial state as premise
having a higher weight.

3) Removal of worse more specific rules:
In all sets Rj>1, a rule ρ ∈ Rj with premise pρ =∧
s∈Sρ s, conclusion aρ and weight wρ is removed, if

there exists a more general rule σ ∈ Rj′<j with premise
pσ =

∧
s∈Sσ s where Sσ ⊂ Sρ = {s1, ..., sj−1} and

weight wσ ≥ wρ.
4) Removal of too specific rules:

In all sets Rj , a rule ρ ∈ Rj>1 with premise pρ =
∧
s∈Sρ

and conclusion aρ is removed, if there exists a more

1For performance reasons, only state-action pairs can be considered here that
contribute to the best policy found by the preceding learning process (see [3]
for a first attempt to a more efficient algorithm that preselects potentially
relevant rules in this step).
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general rule σ ∈ Rj′<j with the same action aσ = aρ
as conclusion and with premise pσ =

∧
s∈Sσ s where

Sσ ⊂ Sρ = {s1, ..., sj−1} and if ρ is not a needed
exception to a rule τ ∈ Rj−1.

5) Optional filter step:
Optionally, filters may be applied to filter out further
rules which are, e. g., helpful to explain the knowledge
contained in Q̂ through the optimal found policy so far,
but which are not needed for reasoning later.

After performing these steps on Q̂, the knowledge base KBQ̂
comprises all sets Rj 6= ∅ with the extracted rules representing
the implicit knowledge contained in the learned weights of Q̂
in a compact way.

D. Reasoning on HKBs

This section briefly summarizes the basic idea of the efficient
reasoning algorithm on HKBs which was first introduced in
[10]. The summary closely follows [11]:

Given perceived sensor values s1, ..., sn, the reasoning
algorithm searches an HKB upwards (starting from the bottom-
most level Rn+1) for the first rule, which premise is fulfilled.
This rule is then returned as concluding action (see [10] for
details). By this, the algorithm selects the most specific rule
that fits to the perceived sensor values and falls back to the
next more unspecific rule (which serves as a heuristic), in case
no more specific rule with a fitting premise could be found.

E. Modifications for Our Agent Model

In this section, the original HKB approach according to [3],
[10], [11] (which was outlined in the previous Sections III-A
to III-C) will be modified to fit the needs of our agent model
for the learning track of the GVGAI competition. A knowledge
representation based on exceptions which are layered on several
levels of abstraction is a rather useful approach to gain a
compact representation of the knowledge about an environment
like a game (which can also be exploited during a learning
process as has been demonstrated in [10], [11]). Nevertheless,
according to the GVGAI competition specification, our learning
agent is supposed to work in multiple levels of a game and
the agent furthermore only sees three out of five levels in
the training phase. Thus, the agent should be able to learn
the general mechanics of the game rather than optimizing its
behavior for a single level.

For this purpose, we modify the definitions of HKBs
(especially Definition 2) such that rules no longer represent
a mapping of a state to an action but a mapping of a state
and an action which was performed in that state to a resulting
subsequent state.

More formally, rules contained in the HKB are now defined
as follows:

Definition 5 (Modified Complete Rules/Generalized Rules)
The modified complete rules and generalized rules are of the
form pρ ∧ a ⇒ p′ρ [wρ], where pρ is either a complete state
(in case of a complete rule) or a partial state (in case of a
generalized rule), aρ ∈ A is an action of the agent’s action
space A, p′ρ represents one (or more) sensor value(s) of a

subsequent state (resulting from action a performed in state
pρ) and wρ ∈ [0, 1] is the rule’s weight. The sensor values of
p′ρ do not necessarily need to be of the same sensors used
for pρ.

Note that since the creation of HKBs from data is com-
putationally rather expensive (cf. [10], see [3] for a first
attempt towards a faster algorithm for HKB extraction). In
case of our agent model, we will only consider small subsets
S′ ⊂ {S1, ...,Sn} of the agent’s state space dimensions for pρ
and p′ρ in Definition 5. This results in several smaller HKBs
where every HKB represents a certain aspect of the agent’s
collected knowledge about the environment. Furthermore, a
merging technique will be used to gain an HKB for higher
dimensional state spaces by merging multiple smaller HKBs.
(For details see Section IV.)

In addition, the extraction algorithm described in
Section III-C will be extended by the following filter at the
end of Step 5: All rules ρ ∈ Rj>1, which premise does not
contain an action will be removed.

In the following, the idea of such modified HKBs will
initially be explained in the context of the game Butterflies
from the GVGAI competition framework [2].

Example 1 (Butterflies) We consider the game Butterflies
from the GVGAI competition framework [2], where an agent
has to collect butterflies by touching them (see left part of
Figure 1): Every time when collecting a butterfly, the agent’s
current score is increased by 2. To learn knowledge about
the scoring of the game, the agent’s surrounding objects and
its orientation are considered as a subset of the state space
dimensions. Furthermore, the agent’s action space is given
as usual (i. e., A := {Up,Down,Left,Right,Use (,None)}).
After a short training phase, the learned HKB regarding the
knowledge of the scoring of the game (i. e., which actions lead
to which changes regarding the agent’s current score, given a
state) is shown in the right part of Figure 1.

Fig. 1. Excerpt from the First Level of the GVGAI Game Butterflies with
Corresponding HKB of the Agent’s Knowledge About the Scoring in the
Game After a Short Training Phase

The HKB resulting from Example 1 (right part of Figure 1)
can be read as follows: According to the single rule score±0
on the most general level R1 (which has an empty premise),
the agent learned that in general (when no action is performed),
no score changes are expected. This covers most of the cases
as indicated by the high weight. According to the four rules on
level R3, the agent learned that if an object with id 5 (i. e., a
butterfly) is perceived above, below, to the left or to the right of
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the agent and the agent performs an action in the corresponding
direction of the object, then the score is increased by 2. The
weights of 1.0 indicate that this should happen in all cases
when perceiving these objects and performing these actions.
Level R2 does not contain any rules, thus there are no relevant
exceptions from the most general rule on level R1 in this
game that are only based on actions (without considering any
surrounding objects). Furthermore, level R4 is also empty, since
there are no relevant exceptions from the rules on level R3

that additionally involve the orientation of the agent.

F. Belief Revision on HKBs

Unlike relearning knowledge that is once gained by subsym-
bolic machine learning approaches (e. g., during the training
phase of a game), a much more efficient solution could be
a symbolic revision approach used on a previously learned
knowledge base. By this, the learned knowledge can be
expanded or changed immediately on a symbolic level instead
of relearning statistically on a subsymbolic level. For this
purpose, this section introduces a novel belief revision approach
for HKBs: The proposed algorithm is a first simple attempt
to realize revision on HKBs and leaves a lot of room for
improvements. Nevertheless, it allows the agent to revise
the learned knowledge represented by an HKB, in case the
environment changes.

We consider a learned HKB with the modifications described
in Section III-E and the reasoning algorithm described in
Section III-D: Given a state representation s and an action a,
and given that the representation of a subsequent state s′

inferred through the HKB is inconsistent with the corresponding
representation of the actual perceived subsequent state s′per of
the agent (i. e., s′ ≡� s′per), the basic processing of the revision
algorithm is as follows:
• Adding a new exception:

If the rule leading to the inconsistent inference is located
on a level Rj<n+1, then a new rule is added on level
Rn+1 with the updated conclusion according to the actual
perceived subsequent state.

• Exchanging an existing exception:
Otherwise, if the inconsistent inference is located on the
most specific level Rn+1, then the conclusion of that rule
is simply replaced by the correct conclusion according to
the actual perceived subsequent state.

By this, the learned knowledge about the game mechanics
can be quickly adapted to changes in the environment (e. g.,
scoring distributions, object localizations or even new kinds of
objects) in case the agent is being confronted with new levels.

G. Action Selection

After a short learning phase we use the extracted HKBs as
approximated forward model to predict the future states after
picking action a. The action selection process will be guided
by two sub-systems. MCTS is used for a broad exploration of
longer action-sequences. In case no preferable solution can be
found, we use BFS to find the shortest path to a state, which
would yield an increase in points. In the following we will

shortly review MCTS. The combination of both sub-systems
and the adaptations made will be introduced in Section IV.

1) Monte Carlo Tree Search (MCTS): In this study we will
make use of MCTS for sampling long-term action sequences.
MCTS is a heuristic search algorithm, which consists of four
phases, (1) node selection, (2) node expansion, (3) simulation,
and (4) backpropagation of the (expected) reward. The first two
steps form the tree policy, while the latter two are also known
as the default policy. The simulation during phase (3) consists
of multiple rollouts of action sequences, which are simulated
using a forward model. A rollout starts at the agent’s current
state and repeatedly chooses actions till either the end of an
episode, at which the winner of the game is known, or any mid-
game state is reached. In case the simulation is stopped before
the end of an episode a scoring function is used to evaluate
the value of the final state. The result of an action is estimated
using a forward model, which describes the transition from
state s to the next state s′ after using action a. The observed
score at the end of an episode is backpropagated to iteratively
improve the value estimation of intermediate states. After all
simulations are completed the agent uses its value estimate to
choose and execute the action with the highest expected return.

Multiple factors influence the capabilities of this search
strategy. Next to the quanity and depth of a rollout, previous
studies on card games showed that the quality of a rollout is
a critical factor for a strong playing behavior [13], [14]. This
introduces a trade-off between the depth, quantity and quality
of a rollout during the simulation phase. All three will be
limited during this study due to the short time span for action
selection and the computational overhead of the approximated
forward model. Subsection IV-B will discuss our optimizations
for MCTS, which facilitate a higher quantity of rollouts.

IV. AGENT MODEL

The agent model builds on the preliminaries described in
Section III. First, the basic composition of the concepts required
to learn the game mechanics will be summarized (Section IV-A).
Consequently, this section focuses on how the action selection
is realized based on these ideas and which modifications where
necessary to optimize the process (IV-B). An overview of the
agent model is provided in Figure 2.

A. Basics

Since the learning track of the GVGAI competition is divided
into a training phase (on three out of five levels of each
game) and an evaluation phase (on already known and two
additional levels), the basic idea is to use the training phase
to accumulate knowledge about the game mechanics in form
of modified HKBs (as described in Section III-E) and to use
planning based on the gained knowledge in the evaluation
phase. Furthermore, a belief revision approach is used during
the evaluation phase in case new experiences are contradicting
the learned knowledge of the training phase in some aspects.

1) Dividing the Learned Knowledge into Different Aspects:
Games can vary widely in their game play and the goals that
have to be reached to win the game. Thus, different aspects of
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the game mechanics are important depending on the kind of
game that is played. For this purpose, the knowledge about the
game mechanics will be stored in three different HKBs – one
HKB for one type of knowledge representing one aspect that
might be relevant for decision-making. The following three
aspects are covered:
• HKBmove, Relative Movement: The movement depending

on the relative position to other objects (e. g., obstacles
like “objects of this type cannot be passed”).

• HKBscr, Scoring: Score changes depending on inter-
actions with other objects (e. g., beneficial objects like
“collecting objects of this type increases the score by X”).

• HKBwin, Winning/Losing: Which kind of object interac-
tions lead to winning or losing the game (e. g., objects
that lead to winning the game when touching them).

The division of the forward model into multiple HKBs
can be justified in case the game’s individual components are
independent from another. In this case the complete model is
reconstructible from the outputs of each sub-model.

2) Fast Creation of HKBs for the Different Aspects: As
mentioned in Section III-C and Section III-E, creating HKBs
can be computationally expensive on higher dimensional state
spaces. To overcome this problem, for every HKB contained in
the meta knowledge base, multiple separate HKBs are created
from reduced state spaces with less dimensions. The resulting
HKBs are than merged to one final HKB representing one of
the three types of knowledge {HKBmove,HKBscr,HKBwin}.

In the following, the creation of the Scoring HKB HKBscr
will be exemplarily described (the process is very similar for
the other two types of knowledge in the meta knowledge base):
HKBscr reflects the knowledge about which action

leads to which score change, given the orientation of
the agent and the types of the objects currently sur-
rounding it. The HKB HKBscr could be created (accord-
ing to the algorithm described in Section III-C) from
the matrix Q̂scr = (qsabove, sbelow, sleft, sright,sori, a, sscr) with
sabove, sbelow, sleft, sright ∈ Sobj, sori ∈ Sori, a ∈ A and
sscr ∈ Sscr, where Sobj is the set of object types, Sori is
the set of the agent’s orientations, A is the agent’s action space
and Sscr is the set of score changes. Every element of Q̂scr

represents a learned relative frequency of how often an action
leads to a certain score change, given the agent’s orientation and
the types of objects above, below, left, and right of the agent.

However, instead of creatingHKBscr directly from the seven-
dimensional matrix Q̂scr, as a first step, the four smaller HKBs
HKBabovescr , HKBbelowscr , HKBleftscr and HKBrightscr are created
(each according to the algorithm described in Section III-C).
Each of these HKBs represents the learned knowledge about
the score change, given the orientation of the agent and
a surrounding object focussing only on one of the objects
currently above, below, left, or right of the agent. Every of the
four smaller HKBs is created from an only four-dimensional
matrix which contains the learned relative frequencies how
often an action leads to a certain score change, given the agent’s
orientation and the type of one of the objects above, below,
left or right of the agent, respectively. In case of HKBabovescr ,

random action
selection

if in training phase if not in training phase

count relative
frequencies for
observed state
changes

revision of HKBs

if current state
changes can be
explained by HKBs

if current state
changes cannot be
explained by HKBs

HKB-based
forward model
decision making

current state

next action

create HKBs
for Meta-KB:
            
         ,

if at the end of
training phase

if not at the end
of training phase

,

Fig. 2. Overview of the Agent Model Incorporating Learning, Revision, and
Action Selection

this matrix has the form Q̂above
scr = (qsabove, sori, a, sscr) with

sabove ∈ Sobj, sori ∈ Sori, a ∈ A and sscr ∈ Sscr, where
Sobj is the set of object types, Sori is the set of the agent’s
orientations, A is the agent’s action space and Sscr is the set
of score changes.

As the second step, the four smaller HKBs that have been
created before are merged to the final HKB HKBscr by adding
all rules of one level to the respective level in the merged
HKB HKBscr. If a rule with the same premise and the same
conclusion already exists on this level, then the rule with the
smallest weight is kept.

By dividing every HKB in several smaller HKBs (each
representing only a subset of the state dimensions of the
corresponding complete HKB), the computational challenge of
creating the entire meta knowledge base could be overcome
and all HKBs of the meta knowledge base can be created in
acceptable time.

B. Action Selection

After the training time expired we use and revise the
extracted HKBs during the action selection phase. Many
agents in the game playing track already based their action
selection on MCTS. Applying MCTS in the learning track
is not straightforward, since the necessary simulation for the
rollouts is not available. We use the generated HKBs to create
an approximation of the forward model. The additional time
spent on the calculation of future states limits the search depth
considerably. During our tests we aimed for 20 simulations
using a search depth of 20 actions. Using this approximation we
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are able to partially simulate future states. We use a discounted
return based on all received simulated rewards between start
and end of the rollout. The action, which yields the highest
average return is chosen as the agent’s next action.

Similar to the agent Yolobot we tested BFS as an alternative
to MCTS. However, some adaptations to vanilla breadth first
search were necessary to compensate for the additional time
spent on calculating the future states and the high number of
states to be processed in deeper layers. Since those methods
showed to be beneficial in the application of both search
procedures, we also added them to the MCTS implementation.

1) Fast Forward Prediction: Many games consist of con-
tinuous movements in which the agent needs to use the same
action multiple times in a row. We make use of this fact by
multiplying the outcome of a relative movement times the block
size of the game. This considerably reduces the simulation
steps needed for long movements and allows the agent to
explore far positions during a single rollout.

2) State Pruning: In general, we cannot be sure which states
to prune, since state transitions are only partially simulated.
As an unpruned tree grows exponentially in size, it is near to
impossible to reach higher search depths using breadth first
search in the available time. Therefore, we consider states to
be equal in case they yield the same agent position, score, and
winner. Using this pruning strategy movements such as ”first
up, then left” and ”first left, then up” are considered to yield
the same result and are only processed once.

V. EVALUATION

Our approach is evaluated and compared with other agents
using multiple games from the GVGAI framework. In Sub-
section II-B we already summarized the previous agents’
frameworks in learning and playing unknown games. Because
the implementations of other agents are currently not public, we
use the same set of games used in the CIG 2017 training set, for
which the competition web page2 offers detailed results on the
agents’ performances. For each of the 10 games we train our
agent for about 50 seconds cycling through the first 3 levels, in
contrast to a maximum of 5 minutes of training time provided
by the competition framework. After the first 50 seconds we use
the collected observation data to construct our knowledge bases,
which takes less than 1 minute in which the agent continuous
using random actions. Using the approximated forward model
we play 10 rounds on each of the two remaining levels per
game. The average score after playing those 20 rounds is
reported in Table I. Next to the results of our agent, we list the
performances of all the agents of the 2017 GVGAI learning-
track competition.

This evaluation is limited due to the unavailability of agent
implementations and the limited number of recorded results on
the competition web page. Nevertheless, the 10 chosen games
of the training set represent a well mixed set of games, which
require the agents to play well in a variety of scenarios.

Our approach is the single best agent in 5 out of 10 games
and second best in 1 game. We beat the previously best agent by

2http://gvgai.net/gvg rankings learning 1p.php

a large degree in games such as Boulderdash, Butterflies, and
Survive Zombies. In those games the agent wins by moving on
the same or neighbouring position as other objects or characters.
Here, the applied search scheme can work to its full potential,
because the extracted knowledge predicts future states with
high accuracy.

The proposed framework excels in games such as Butterflies
and Survive Zombies. After the agent learns how to move
(represented in HKBmove), he easily scores points by searching
a path to the nearest objective, which is either a butterfly or a
zombie respectively. In the game Survive Zombies he also needs
to apply knowledge about the winning and losing condition
(HKBwin). In case the player runs out of health he quickly
needs to collect a healing item while avoiding zombies. As it
was the case for chasing, the same search schemes are efficient
in avoiding the dangers while searching for an item.

In two of the remaining games (Frogs, Portals) our agent
and all other agents score zero points. This is due to the sparse
reward given in both games. For this reason, our agent is not
able to rate an action based on the return, because the score
does not change till the endpoint of our simulated episode.
Hence, we are not able to differentiate between good and bad
actions, such that our agent falls back to random behaviour.

The same effect can be observed in the game Sokoban, which
additionally to the sparse reward requires planning of a long
action sequence. Currently learned knowledge bases do not
consider movement of non-player entities, which are necessary
to solve the puzzles provided in each level. For this reason it
is impossible to plan the necessary action sequences to win
the game. Hence, the agent once again falls back to choosing
actions at random.

Despite the good performance, our agent has still much
more room for improvement in games such as Aliens and
Boulderdash. The current score could be improved by taking
the actions of non-player characters into account. For example,
in the game Alien the movement of the aliens and the fired shots
can be predicted very easily. Using this information should
allow to plan how an enemy can be hit.

To get an overview on the overall performance of our agent
we applied the Formula 1 Scoring system, which was already
used in the original competition. Here, the agents are ranked
based on their average points per game. Depending on their
ranking the agents receive 25, 18, 15, 12, 10, 8, or 6 points,
whereas the best agent receives the most points. Table II shows
the score each agent received per game and its sum over all
games. Our results show that the proposed agent outperforms
previous agents by a large margin of 32 points.

VI. CONCLUSION AND FUTURE WORK

With the help of the proposed Forward Model Approximation,
we are able to outperform other agents of the GVGAI learning
track using only about a fifth of the available learning time,
plus less than one additional minute for the creation of the
knowledge bases. Our proposed algorithm learns a prediction
of future states based on a given state and an action to be
applied. This prediction model is split into multiple individual
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TABLE I
AGENT PERFORMANCES ON THE GVGAI-LEARNING TRACK GAMES,

G1 = ALIENS, G2 = BOULDERDASH, G3 = BUTTERFLIES, G4 = CHASE, G5 = FROGS,
G6 = MISSILE COMMAND, G7 = PORTALS, G8 = SOKOBAN, G9 = SURVIVE ZOMBIES, G10 = ZELDA

AGENTS: FMA = FORWARD MODEL APPROXIMATION, DUU = DONTUNDERESTIMATEUCHIHA

Agent Name Win Rate / Average Points per Game
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

FMA 0.30 / 35.4 0.00 / 2.1 1.00 / 18.7 0.00 / 1.1 0.00 / 0.0 0.50 / -1.8 0.00 / 0.0 0.10 / 0.9 0.00 / 1.3 0.00 / 0.4

ercumentilhan 0.45 / 37.3 0.00 / 1.3 0.90 / 18.6 0.00 / 0.7 0.00 / 0.0 0.50 / -0.1 0.00 / 0.0 0.00 / 0.7 0.00 / 0.1 0.00 / -0.1
sampleRandom 0.10 / 29.8 0.00 / 1.4 0.85 / 19.3 0.00 / 0.5 0.00 / 0.0 0.50 / -0.5 0.00 / 0.0 0.10 / 0.8 0.00 / -0.1 0.00 / 0.3
sampleLearner 0.20 / 34.5 0.00 / 1.3 0.40 / 15.3 0.00 / 0.4 0.00 / 0.0 0.50 / -0.4 0.00 / 0.0 0.00 / 0.6 0.00 / 0.1 0.00 / -0.3
DUU 0.75 / 41.2 0.00 / 0.3 0.15 / 11.6 0.00 / 0.0 0.00 / 0.0 0.50 / -0.5 0.00 / 0.0 0.00 / 0.0 0.00 / -0.1 0.00 / 0.0
kkunan 0.35 / 35.6 0.00 / 0.7 0.10 / 11.4 0.00 / 0.0 0.00 / 0.0 0.50 / 0.4 0.00 / 0.0 0.00 / 0.0 0.00 / -0.2 0.00 / -0.3
YOLOBOT 0.45 / 32.3 0.00 / -0.3 — / — 0.00 / 0.0 0.00 / 0.0 0.00 / 0.0 0.00 / 0.0 0.10 / 1.0 0.00 / 0.0 0.00 / -0.5

TABLE II
AGENT SCORE USING THE FORMULA-1 SCORE SYSTEM BASED ON AN AGENT’S AVERAGE POINTS PER GAME

Agent Name G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Total

Forward Model Approximation (FMA) 10 25 25 25 25 8 25 18 25 25 211

ercumentilhan 18 15 18 18 25 18 25 12 18 12 179
sampleRandom 6 18 15 15 25 12 25 15 10 18 159
sampleLearner 8 15 12 12 25 15 25 10 18 10 150
DontUnderestimateUchiha (DUU) 25 8 10 10 25 12 25 8 10 15 148
kkunan 12 10 8 10 25 25 25 8 6 10 139
YOLOBOT 15 6 6 10 25 6 25 25 12 6 136

sub-models, which are first trained on sample interactions with
the game and later revised in case of contradictory observations.
Using the extracted model we apply MCTS and BFS to find
the best possible action at each game tick. The used search
procedures were optimized by applying a state pruning, which
reduces the number of evaluated states during the search phase.

We evaluated our approach in 10 games of the GVGAI
competition. The developed agent overall outperforms previous
algorithms. Our evaluation shows the enormous potential
of forward model approximation. However, there is still
much room for improvement, since the current version only
considers the agents movement during future states. Complex
interaction with other game elements are not yet modeled.
Further improvements could be achieved by generalizing the
prediction to many other attributes. Future work could focus
on analyzing the capabilities of forward model approximation
by increasing the number of predicted variables, while keeping
the computational expense as low as possible.

Additional project files and the detailed evaluation can be
found at: https://doi.org/10.17605/OSF.IO/VN3ZS
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Abstract—In this paper, we propose a method for implementing
a competent fighting game AI using Hybrid Reward Architecture
(HRA). In 2017, an AI using HRA developed by Seijen et
al. achieved a perfect score of 999,990 in Ms. Pac-Man. HRA
decomposes a reward function into multiple components and
learns a separate value function for each component in the
reward function. Due to reward decomposition, an optimal
value function can be learned in the domain of Ms. Pac-Man.
However, the number of actions in Ms. Pac-Man is only limited
to four (Up, Down, Left, and Right), and till now whether
HRA is also effective in other games with a larger number of
actions is unclear. In this paper, we apply HRA and verify its
effectiveness in a fighting game. For performance evaluation, we
use FightingICE that has 40 actions and has been used as the
game platform in the Fighting Game AI Competition at CIG since
2014. Our experimental results show that the proposed HRA AI,
a new sample AI for the competition, is superior to non-HRA
deep learning AIs and is competitive against other entries of the
2017 competition.

Index Terms—deep learning, Hybrid Reward Architecture,
muti-head agents, fighting game AI, FightingICE

I. INTRODUCTION

Reinforcement learning (RL) successfully works in many
games, but sometimes it is very slow and unstable to learn the
optimal value function in other some games. Atari 2600 game
Ms. Pac-Man was also one of the games where the optimal
value function is difficult to learn, but Seijen et al. [1] applied
Hybrid Reward Architecture (HRA) to their proposed game
AI, which won a perfect score of 999,990. This result showed
the effectiveness of HRA for RL. In HRA, a reward function
is decomposed into multiple components, and HRA learns a
value function for each component reward function. Because
each component typically only depends on a subset of all the
features, the overall value function is much smoother and can
be easier approximated by a low-dimensional representation,

enabling more effective learning. However, the number of
actions in Ms. Pac-Man is only four (Up, Down, Left, and
Right), and there has been no work showing whether HRA is
also effective in other games with a large number of actions.
We focus on fighting games, which in general have a much
higher number of actions, apply HRA to a fighting game AI
and propose a method for implementing a competent game
AI.

Mnih et al. [2] achieved a big breakthrough by their
Deep Q-Network (DQN). Their AI using DQN outperformed
humans on a large number of Atari 2600 games, by learning
a policy directly from pixels. Justesen et al. [3] showed
how macromanagement decisions in StarCraft can be learned
directly from game replays using deep learning. However,
deep learning has not yet been successfully applied to fighting
games in terms of performance. Yoon and Kim [4] applied
DQN to a fighting game, but their result, against a non-moving
opponent AI, only showed the potential of the DQN approach
in this game genre. Nguyen [5] also applied a combination
of RL and a Convolutional Neural Network, but the resulting
AI was not able to defeat the champion of the Fighting Game
AI Competition (FTGAIC) held at CIG 2015. Therefore, we
consider it is worth examining if a competent fighting game
AI can be implemented using HRA.

In this work, we use FightingICE which has been used as
the platform in FTGAIC1 at CIG since 2014 [6]. There are a
number of existing studies using FightingICE in research as
shown in the following.

Ishihara et al. [7] applied Monte-Carlo Tree Search (MCTS)
to FightingICE and improved the AI performance by perform-

1http://www.ice.ci.ritsumei.ac.jp/˜ftgaic/
https://github.com/TeamFightingICE/FightingICE
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Fig. 2. HRA for FightingICE where the output layer combines the results from each of the two heads

Fig. 1. A screenshot of FightingICE

ing roulette selection in MCTS’s play-out and introducing a set
of rules to work with MCTS. Demediuk et al. [8] proposed and
examined a variety of MCTS-based AIs whose aim is to adjust
their difficulty level according to the player’s level. Neufeld et
al. [9] applied Hierarchical Task Network in their AI, an entry
in the 2017 FTGAIC. However, their AI called HTNFighter
came in 8th out of 10 entries in the competition. And more
recently, Ishii et al. proposed a method for implementing a
game AI with a persona using MCTS [10] while Ishihara
et al. [11] not only considered difficulty adjustment but also
believability in their game AI research where their AI was
compared with an AI proposed by Demediuk et al. [8]. Figure
1 shows a screenshot of FightingICE.

II. PROPOSED METHOD

In this section, we describe a method for implementing a
competent fighting game AI using HRA for FightingICE.

A. Hybrid Reward Architecture

We separate the reward function into n reward functions to
learn the optimal Q-value function. The reward function of
HRA is defined as follows:

RHRA(s, a) =
n∑

i=1

wiRi(s, a), for all states s, and actions a,

(1)

where wi is the weight of the each reward function. Each agent
i of HRA, i.e., head i and its lower-layer structure, is trained
using the respective reward function Ri(s, a).

Because of individual reward function, each agent i, has
its own Q-value function,. The Q-value function of HRA is
defined as the weighted sum of all agents as follows:

QHRA(s, a; θ) =

n∑

i=1

wiQi(s, a; θ), (2)

where θ are training parameters. Each head can be viewed
alternatively as a single DQN agent, and all the heads share
multiple lower-level layers of DQN.

B. HRA for FightingICE

Figure 2 shows HRA for FightingICE. We propose using
two heads: offense head and defense head. We call this multi-
head AI. In FightingICE, to win the AI (self) has to give more
damage to the opponent (opp) than the damage its receives.
Thereby, we define the reward function as follows:

RHRA
t = Rewardoffenset +Rewarddefenset (3)

Here, we simply set the weight w of each head to 1. Each
term on the right-hand side corresponds to the respective head
and is described below where t and t+1 are the starting time
of the current action and the subsequent action, respectively,
by the AI.

1) Offense head: The offense head’s role is to learn how
to effectively give a damage to the opponent AI. The head
obtains a reward when the AI gives a damage to the opponent
AI. The reward function is defined as follows:

Rewardoffenset = HP opp
t −HP opp

t+1 . (4)

2) Defense head: The defense head’s role is to learn how
to effectively avoid opponent attacks. The head is penalized
when the AI is hit by an opponent attack. The reward function
is defined as follows:

Rewarddefenset = HP self
t+1 −HP self

t . (5)
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C. Network Architecture

The network in this work is determined based on empirical
results and consists of (1) an input layer with 141 units
representing game information, (2) two hidden layers each
with 80 units using the ReLU activation function, and (3) a
head layer with two heads and 40 units per head, and (4)
an output layer consisting of 40 units; in this network, the
adjacent layers are fully connected. Because we can obtain
the game information such as HP, Energy and coordinates
of the AI and the opponent from FightingICE, we use 19
types of game-state information, leading to in total 141 input
features. Note that game states can be reconstructed based
on the 141 input features. FightingICE has 40 actions for
controlling AIs, so each head in the head layer and the output
layer have 40 units, each representing a different action. The
aforementioned game information can be separated into self
information, opponent information, and projectile information.
We describe these features in detail below.

1) Self information: The self information consists of self
HP, self Energy, self x coordinate, self y coordinate, self
motion, self speed in the x direction, and self speed in the
y direction; most of them are normalized to [0, 1]. However,
only motion is represented as a one-hot vector of 56 units
because the number of motions in FightingICE is 56.

2) Opponent information: Likewise, the opponent informa-
tion consists of opponent HP, opponent Energy, opponent x
coordinate, opponent y coordinate, opponent motion, opponent
speed in the x direction, opponent speed in the y direction, and
remaining frame (the number of remaining frames to complete
the current action); accept for motion, they are normalized to
[0, 1]. As done in the self information, motion is represented
as a one-hot vector having 56 units.

3) Projectile information: The projectile information is
composed of a projectile’s x coordinate, y coordinate, and hit
damage. Because there can be at most four projectiles at the
same time, there are four sets of this information.

III. EXPERIMENTS

In this section, we describe the details of FightingICE and
the two experiments to verify the performance of the multi-
head AI.

A. FightingICE

FightingICE is a real-time 2D fighting game platform. In
this platform, one game consists of 60-second rounds, and
one frame is set to 1/60 seconds. An AI has to decide and
input its action in one frame. To make decision making by
AIs challenging, they are given a game state by the system
with a delay of 14 frames. Each of the two characters has two
parameters: HP and Energy. Each character’s initial HP is set
to HPmax and will decrease when the respective character is
hit; the initial Energy is set to 0. After 60 seconds elapse or
HP of either character reaches 0, the game will proceed to the
next round, and both characters’ HP will be reset to HPmax.
The character with the larger remaining HP at the end of round
is the round winner. The value of HPmax is set to 10,000 in

TABLE I
LIST OF HYPERPARAMETERS

Hyperparameter Value
minibatch size 32
replay memory size 50000
target network update frequency 300
discount factor 0.9
learning rate 0.001
initial exploration 1
final exploration 0.1

the first experiment to ensure the round length is fixed to 60
seconds and it is set to 400 in the second experiment according
to the rule of Standard League of FTGAIC. The 2018 version
of FightingICE is used in our experiments.

As described above, AIs cannot obtain game states with
no delay in FightingICE. However, to construct tuples of
state, action, reward, and next state used for DQN training, a
mechanism is introduced, by which it is possible to determine
whether an action of interest can be actually executed (in other
words there are no other actions waiting to be executed) at a
given – thus delayed – game state; if so, a tuple containing the
action is created together with the other elements and added
to a memory. We note that this mechanism is not used in any
other parts in both experiments.

B. Hyperparameters

We set the hyperparameters according to our empirical
results. Their details are given in Table I.

C. Training against Machete

In the first experiment, we compare the proposed multi-head
AI with a normal (single-head) DQN. We train both AIs for
1400 rounds against Machete that won the 2015 competition.
Nguyen [5] also trained their AI against Machete, but their AI
could not outperform Machete. Here, we are curious to see the
performance of the multi-head AI against both single-head AI
and Machete. We then analyze the learning process using the
score, eqn. (6), over the number of training steps (rounds).

scoreself =
HPself

HPself +HPopp
× a (6)

where a is set to 1000, so the score above 500 indicates that
the AI wins the opponent at the current round.

D. Comparisons with other AIs

In the second experiment, we compare the multi-head AI,
the single-head AI, Machete, Ishihara’s AI (ACEMctsAi) [7],
and the AIs from the 2017 competition, including a sample
MCTS AI (MctsAi). Here we focus on their performances in
Standard League, a round-robin competition where there are
two games – three rounds per game – switching sides for each
pair of AIs, using a character called ZEN and its character data
in the 2018 FTGAIC. Because a combo system introduced in
the 2017 version has been removed, HTNFighter [9], utilizing
the combo system, could not be run.
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TABLE II
RESULT OF THE COMPETITION

IV. RESULTS AND DISCUSSIONS

In this section, we show the experimental results and our
discussions in terms of whether the multi-head AI outperforms
the single-head and other AIs.

A. Training against Machete

Fig. 3. Score Transitions against Machete

Figure 3 shows the average, sampled every 100 rounds, of
five trials conducted in the first experiment. Both of the AIs
using DQN start to defeat Machete from the 150th round, and
this is the first time that DQN, to the best of our knowledge,
was successfully applied in FightingICE and was able to
defeat a former champion AI. The multi-head AI obtained
the maximum score above 700, which outperforms the single-
head. In addition, the score of the multi-head AI is more stable
than that of the single-head one.

B. Comparisons with other AIs

The result of the competition is shown in Table II, where #
of wins shows the number of winning rounds. The multi-head
AI is the 4th among 13 AIs in Standard League. Video clips
showing typical fights of the muti-head AI and the single-head
AI in this competition are also available2.

2http://www.ice.ci.ritsumei.ac.jp/˜ruck/HRA-cig2018.htm

V. CONCLUSIONS AND FUTURE WORK

According to the experiment results, the multi-head AI
obtained a higher score than the single-head AI in the training
phase. In addition, the former was ranked higher than the latter
in the conducted competition. The said results indicate that
HRA is also effective in fighting games, where AIs conduct
decision making to select their next actions from a large
number of available actions. In this paper, we used only two
heads. It is possible that using more heads will lead to a
better performance. In addition, Machete was only used as
the training opponent. The competition performance of the
multi-head AI might be improved by switching the training
opponents from a set of properly selected ones.
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Drexel University

Philadelphia, Pennsylvania, USA
pk398@drexel.edu, so367@drexel.edu

Christopher W. Geib
SIFT LLC

Minneapolis, Minnesota, USA
cgeib@sift.net

Abstract—This paper presents a Combinatory Categorial
Grammar-based game playing agent called µCCG for the Real-
Time Strategy testbed µRTS. The key problem that µCCG tries
to address is that of adversarial planning in the very large
search space of RTS games. In order to address this problem, we
present a new hierarchical adversarial planning algorithm based
on Combinatory Categorial Grammars (CCGs). The grammar
used by our planner is automatically learned from sequences of
actions taken from game replay data. We provide an empirical
analysis of our agent against agents from the CIG 2017 µRTS
competition using competition rules. µCCG represents the first
complete agent to use a learned formal grammar representation
of plans to adversarially plan in RTS games.

Index Terms—adversarial planning, RTS games, combinatory
categorial grammars

I. INTRODUCTION

Real-Time Strategy (RTS) games are particularly useful in
AI research because they provide a way to test AI that solve
real world problems in a controlled environment. Since the
call to research by Michael Buro in 2003 [1], RTS games have
been used to solve challenging real-time AI problems such as
decision making under uncertainty, resource management, op-
ponent modeling, and adversarial planning. This work focuses
on the problem of adversarial planning in deterministic and
fully-observable RTS games by using Combinatory Categorial
Grammars [2]. Combinatory Categorial Grammars (CCGs)
are a well known grammar formalism developed for Natural
Language Processing. Recent work by Geib [3] and Geib
and Goldman [4] used probabilistic Combinatory Categorial
Grammars to represent plans in a number of domains for the
problem of plan recognition [5].

This work focuses on the domain of RTS games. Game
tree search does not apply well to RTS games due to the
enormous search space that needs to be traversed. Ontañón
et al. describe a scenario where a 128x128 size game map
with 400 units result in 16384400 possible game states [6].
Approaches to deal with this complexity in the literature range
from hard-coding manually defined scripts (as is common
in the StarCraft AI competition [6], to using abstraction in
the action or state space [7]–[9], portfolio approaches [10],
[11], or search strategies that attempt to scale up to the
large branching factors of RTS games [12]. A promising
approach to addressing this problem was work by Ontañón and
Buro [13] who used an adversarial Hierarchical Task Network

[14] (AHTN) planner to generate sequences of actions for
playing µRTS. By integrating HTN planning with adversarial
search, the advantages of domain-configurable planning, in
terms of reduction of the search space, can be brought to RTS
games. However, the HTN definitions used by the AHTN had
to be hand authored.

This paper outlines two contributions. First, we present an
alternative hierarchical planning formulation based on CCGs
in the form of a µRTS agent called µCCG. Second, we show
that we can learn a CCG plan representation from sequences
of actions collected from game replay data. This is done by
using a known CCG lexicon learning algorithm LexLearn by
Geib and Kantharaju [15] to learn common sequences of action
triples used by different µRTS agents. We limited ourselves
to sequences of action triples because we wanted to model
reactive behavior in RTS gameplay.

This paper is structured as follows. In section II, we provide
a brief background of CCGs. In section III, we provide a
brief overview of LexLearn. In section IV, we provide a
description of µCCG and the hierarchical adversarial planner.
In section V, we provide an empirical analysis of our agent
against agents from the CIG 2017 µRTS tournament. In
section VI, we provide a brief description of related work.
Finally, in section VII we provide concluding remarks and
future work.

II. COMBINATORY CATEGORIAL GRAMMARS

This section briefly describes plan CCGs following the
definitions used in the work of Geib et al. [3], [4]. Each
action in a planning domain is associated with a set of CCG
categories that can be thought of as functions and are defined
recursively. We define a set of CCG categories C as follows.

Atomic categories are defined as a finite set of base
categories denoted by {A,B,C...} ∈ C. Complex categories
are defined as Z/{W,X, Y, ...} ∈ C and Z\{W,X, Y, ...} ∈ C
where C is a set of categories, Z ∈ C, {W,X, Y, ...} 6= ∅,
and {W,X, Y, ...} ∈ C. Atomic categories can be thought
of as a zero-arity function that transitions from any initial
state to a state associated with the atomic category. Complex
categories define curried functions from states to states [16]
based on the two left associative operators “\” and “/”. These
operators each take a set of arguments (the categories on
the right hand side of the slash, {W,X, Y...}), and produces
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the state identified with the atomic category specified as its
result (the category on the left hand side of the slash, Z). The
slash also defines ordering constraints for plans, indicating
where the category’s arguments are to be found relative to
the action. Forward slash categories find their arguments after
the action, and backslash categories before it. We assume
that all complex categories must be leftward applicable (all
leftward arguments must be discharged before any rightward
ones), and we only consider leftward applicable categories
with atomic categories for arguments. A category R is the
root or root result of a category G if it is the leftmost atomic
result category in G. For example, for a complex category
(C\{A})\{B}, the root would be C.

Using the above definition, a plan lexicon is a tuple,
Λ = 〈Σ, C, f〉, where Σ is a finite set of action types, C
is a set of possible CCG categories, and f is a function
such that ∀ai ∈ Σ : f(ai) → {(ci,j : P(ci,j |ai))} such
that ci,j ∈ C and ∀ai, ci,j ,

∑
j P(ci,j |ai) = 1. The function

f maps each observable action, ai, to a non-empty set of
pairs {(ci,j : P(ci,j |ai))} each made up of a category, ci,j ,
and the conditional probability that the action is assigned the
category, P(ci,j |ai). The definitions of actions and categories
are extended to a first-order representation by introducing
parameters for actions and atomic categories to represent
domain objects and variables. The CCG learning algorithm
LexLearn will learn a lexicon containing parameterized ac-
tions and categories, but the current version of the adver-
sarial planner presented in this paper will not make use of
any parameters during the planning process. We provide an
explanation for this in Section IV. However, we still provide
an example lexicon to illustrate the representation LexLearn

generates:

f(Train(U1, T ))→ {train(U1, T )) : 1}
f(Attack(U2, U3))→

{((WrkRush)/{harvest(U4, R)})\{train(U1, T )} : 1}
f(Harvest(U4, R))→ {harvest(U4, R)) : 1}

Note that Train(U1, T ), Attack(U2, U3), and Harvest(U4, R)
each have two parameters representing different units
U1, U2, U3, U4, unit type T , and resource R. Since each action
has only a single category, P (ci,j |ai) = 1. A full discussion
of a CCG lexicon with parameterized actions and categories
can be found in Geib [17].

III. LexLearn

This section briefly describes Geib and Kantharaju’s CCG
learning algorithm LexLearn [15]. Interested readers are re-
ferred to the full paper for more information. LexLearn

is a supervised domain-independent CCG lexicon learning
algorithm that generates lexicons for the ELEXIR framework,
a CCG-based plan recognition algorithm [3]. LexLearn was
built on prior work by Zettlemoyer and Collins [18] on CCG
lexicon learning for Natural Language Processing (NLP). This
is the first work that applies the learned CCG lexicon to the
problem of adversarial hierarchical planning.

Fig. 1. µCCG Architecture Diagram

LexLearn takes as input an initial lexicon Λinit and a
training dataset, {(Ti, Gi) : i = 1...n}, where each Ti refers to
a plan trace, a sequence of of observed actions that achieves a
goal state Gi. Λinit contains parameterized actions each paired
with a single parameterized atomic category, and all actions
in each Ti are contained in Λinit. For each Ti, Gi pair in the
training dataset, LexLearn incrementally updates Λinit using
two interleaved processes: category generation and parameter
estimation.

Category generation is the process of generating new com-
plex categories for actions in Λinit. Given a plan trace Ti,
the category generation process exhaustively enumerates the
set of all possible categories for each action aj ∈ Ti using
a set of predefined category templates. In the original work,
pruning was used to limit the set of learned categories for
actions that occurred more than once in Ti. However, in this
work, we do not prune any generated complex categories for
these actions. Λinit is then updated by adding all constructed
complex categories to action aj .

The second process, parameter estimation, estimates the
conditional probabilities P (cj,k|aj) of all the action cate-
gory pairs in the updated lexicon using stochastic gradient
ascent [18]. Intuitively, each P (cj,k|aj) represents a weighted
frequency of how often the category cj,k is assigned to the
action aj during plan recognition. A full definition of the
gradient used for gradient ascent can be found in the original
paper [15].

IV. µCCG AGENT

This section describes our µRTS game-playing agent,
µCCG. Figure 1 provides an architecture diagram of our agent.
There are two main components to µCCG as seen in the
diagram: adversarial CCG planner and µRTS game client inter-
face. The game client interface contains three subcomponents.
The µRTS simulator is used to simulate a µRTS game state for
planning, and the planner interface provides a bridge between
the adversarial CCG planner and the µRTS environment. We
describe the adversarial CCG planner and the parameter policy
components from Figure 1 below.

At each game frame, the agent generates the best possible
set of actions it can find for a given game state, given an
allotted time. As per the CIG 2018 µRTS tournament rules,
our agent is time constrained to 100ms per game frame. Our
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procedure ACCG(s, T+, T−, t+, t−, d)
if ¬canIssueActions(s ′,+) ∧ d ==MD then

return
end if
s′ = simulateUntilNextChoicePoint(s)
if GameEnd(s′) ∨ d ≤ 0 ∨ both trees traversed then

return (T+, T−, reward(s
′))

end if
if T+ is traversed then

Complete planning for min, ignore max
end if
if T− is traversed then

Complete planning for max, ignore min
end if
if canIssueActions(s ′,+) then

if t−,c is complex ∧ root of t+,c is next then
return ACCG(γ(t+,a, s

′), T+, T−, t+, t−, d− 1)
end if
return ACCGMax (s′, T+, T−, t+, t−, d)

end if
if t−,c is complex ∧ root of t−,c is next then

return ACCG(γ(t−,a, s
′), T+, T−, t+, t−, d− 1)

end if
return ACCGMin(s′, T+, T−, t+, t−, d)

end procedure
procedure ACCGMAX(s, T+, T−, t+, t−, d)

if t+,c is atomic then
t = Update(T+)
return ACCG(γ(s, t+,a), T+, T−, t, t−, d− 1)

end if
T ∗+ = ⊥, T ∗− = ⊥, r∗ = −∞
if t+ == nil then

t+ = T+

end if
cnext = NextCat(t+,c)
C = AllDecompWithRoot(cnext)
C′ = N action, category pairs from C with highest UCB1 score
for all t ∈ C′ do

T ′+ = AddToStack(t)

(T
′
+, T

′
−, r

′) = ACCG(s, T ′+, T−, t, t−, d)
if r′ > r∗ then

T ∗+ = T
′
+, T

∗
− = T

′
−, r

∗ = r′

end if
end for
return (T ∗+, T

∗
−, r

∗)

end procedure

Fig. 2. Pseudocode for CCG Adversarial Planner

adversarial planner, motivated by Ontañón and Buro [13], uses
a variant of minimax for RTS games.

Complex CCG categories represent a temporal relationship
between states of a world. Given the complex category G/C\A,
the sequence of actions resulting in state A must be completed
and successful before executing the action(s) resulting in state
G and state C. However, in the case of RTS games, actions can
be executed in parallel in a given game state by multiple units.
This requires us to relax the temporal restrictions defined by
CCGs. For example, let A represent the state in which the
agent executed the action Train for a base to train a worker
unit and C represent the state in which the agent executed the
Attack action for a heavy unit to attack an enemy unit. If both
of these actions can be executed in a given game state, and

Fig. 3. Example Execution of Adversarial CCG Planner For Max Player

Fig. 4. Example Execution of Adversarial CCG Planner For Min Player

Train fails to execute, that should not result in Attack failing
as both actions are executed on different units. Therefore,
during the planning process, if such a situation arises, instead
of backtracking, the whole plan is still considered, and Train
is replaced by an empty action.

In the current version of µCCG, our planner does not
generate action parameters. Parameters for each action are
generated using a hand-authored Parameter Policy. Although
our planner can, in theory, generate action parameters, we
don’t currently use the planner to define parameters for actions
because some of the parameters require information beyond
what the state representation received by our planner currently
contains, such as terrain and resources. For example, the attack
command uses both unit and map layout, which the state
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representation we currently provide to our planner ignores.
Future work will look into augmenting the state representation
with this information.

We define CCG decomposition as the process of expanding
an atomic category c to a set of action category pairs whose
root is the same as c. For example, if we have the category
Win, a possible decomposition would be the action category
pair (Attack, (Win/({harvest}))\{train}) (representing a plan
where we first want to Train, then Attack, and then Harvest).
It is possible the the number of decompositions for c might be
very large (in this particular example, we might have a very
large number of decompositions for how to Win in the learned
lexicon). Thus, we select only a subset of N decompositions
(N = 5 in our experiments). To select the subset, we currently
use the Upper Confidence Bound (UCB1) [19] policy. In order
to use UCB1, the planner keeps track of how many times each
decomposition has been selected so far during planning, and
the number of time c is decomposed (these counts are global
for each player and are not reset throughout a whole game).
We currently use the conditional probability P (cj,k|aj) of an
action category pair (aj , cj,k) from the lexicon as the reward
value for UCB1. Notice that this probability never changes
throughout the planning process, since it’s only determined
during category learning. Thus, the effect of UCB1 here is just
to vary the subset of decompositions that are considered during
planning, so that the planner does not always just consider the
highest probability pairs. As part of our future work, we would
like to use the actual achieved reward of each decomposition
during gameplay instead, making our planner one step closer
to a CCG-based MCTS planner, which would be the end goal.

Our planner generates plans using three actions from µRTS,
Attack, Harvest, and Return, and a modified Produce action.
The Produce action is modified to additionally include the
unit being produced, such as ProduceWorker or ProduceBar-
racks, allowing the planner to determine build order instead
of hard-coding it. This is done, since, as mentioned above, our
planner does not currently generate action parameters. Thus,
this encodes the unit type parameter to produce units without
actually having any parameter. We assume the planner does not
plan any movement actions. Initial experimentation resulted
in our agent always choosing to move instead of any other
action due to how frequent the movement action is in actual
gameplay. Therefore, to prevent this, if Attack, Harvest, or
Return need to move in order to succeed in a given game
state, then a move action is issued.

Figure 2 provides pseudocode for our CCG adversarial plan-
ning algorithm. We provide pseudocode for only ACCGMax
in Figure 2, but ACCGMin is a mirror definition. We refer to
T+ and T− as the max and min player’s plan stack. Action,
category pairs are added to a plan stack based on when they are
found during plan search. Figures 3 and 4 provide an example
of plan stacks for both the max (left stack) and min (right
stack) player. We define t+ and t− as pointers to the current
decomposition in the stack, and d, MD, and s as current depth,
maximum depth, and current game state.

There are four functions in the planner that inter-

face with µRTS (seen in Figure 2). The first function
simulateUntilNextChoicePoint provides the µRTS frame-
work with a game state s, and simulates until either player min
or max can issue an action. However, given that the learned
CCG lexicon cannot ensure that actions would be issued to all
units in a given game state, it might be the case that even after
exhausting plan search for the max player, max can still issue
actions. This would result in the min player never getting a
chance to perform search. To avoid this situation, we currently
simulate the game state for one game frame before checking
whether any player can issue an action to ensure that the game
state advances and does not get stuck, and thus giving the
planner a chance to search for actions for both players. This
would not be an issue with hand-crafted lexicons that could
be defined in such a way that this situation never arises, but
our planner needs to be robust with respect to learned lexicons
that do not necessarily ensure actions will be produced for all
units in the game.

The next function canIssueActions provides the µRTS
framework with game state s and a player (either +, −, or
? referring to player max, min, or either) to determine if the
player is ready to execute actions. If the player is ?, then
player max is prioritized over player min. The next function
γ applies a given action from a decomposition, t+,a or t−,a,
to a state s, returning the next game state. The final function
reward computes a reward using a reward function based on
the given state.

The next four functions are specific to CCG adversarial
planning. First, NextCat takes a category c, and returns
the leftmost atomic category that is not the root cleft.
If c is atomic, then c is returned. For example, if c is
Win/{prod}\harvest as seen in max’s plan stack in Figure 3,
the leftmost atomic category cleft would be harvest. Second,
AllDecompWithRoot decomposes cleft and returns the set
of action category pairs that have cleft as a root (C in
Figure 2). Third, AddToStack pushes a given action category
decomposition pair to a given stack.

The fourth and final function Update propagates down the
stack to find and return the next complex category to search.
This function is called only when an action is generated by the
planner. Until a complex category with at least one argument
is found, the function pops off any atomic categories. If the
function finds arguments from complex categories that have
been fully reduced to a sequence of actions, it removes the
argument and removes the category if the result of removal
makes the category atomic.

Figures 3 and 4 provide a small example of the planner’s
execution tree where Figure 4 follows directly after Figure 3,
so we first look at Figure 3. Each node in the execution tree
represents a call to ACCG . At each game frame, the planner
is given top-level goals which, in the case of the example,
is Win for both the min and max player, and game state s.
These top-level goals are added to the min and max plan
stack T− and T+ as the action, category pair (nil,Win), and
ACCG(s, T+, T−, nil, nil, 2) is called.

Next, the planner simulates s using simulateUntilNext−
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ChoicePoint until at least one player can execute an action,
and checks the available player using canIssueActions . In our
example, this is the max player so the max player’s function
ACCGMax is called. Since t+ is nil, the planner sets this
to the first action category pair in the stack (nil,Win). Win
is already the leftmost atomic category, so NextCat just re-
turns Win. Next, using the function AllDecompWithRoot , the
planner decomposes Win to two action category pairs, but we
focus on one: (Harvest,Win/harvest\prod). Finally the planner
adds the action category pair to max’s plan stack, assigns the
pointer t+ to it and calls ACCG(s, T+, T−, t+, nil, 2).

Since the max player can still issue actions, the function
simulateUntilNextChoicePoint returns the next state and
the planner calls ACCGMax to decompose the complex
category pointed to by t+. In ACCGMax , NextCat returns
the leftmost atomic category harvest, and calls AllDecom-
pWithRoot returning one decomposition, (Harvest, harvest).
The planner adds this decomposition to the plan stack,
points t+ to it, and calls ACCG(s, T+, T−, t+, nil, 2). Next,
simulateUntilNextChoicePoint again returns the next game
state, and calls ACCGMax as the max player can still issue
an action.

Calling ACCGMax again, the planner decomposes harvest to
the action Harvest. The planner applies the action to the game
state s, and calls Update to traverse down the stack. Since
the planner already decomposed harvest, it pops the action
category pair from the stack and its occurrence in the complex
category Win/prod\harvest.

Next, as illustrated in Figure 4 the planner calls
ACCG(s, T+, T−, t+, nil, 1). Note that the depth is only
decremented when an action is issued by either player. Af-
ter calling simulateUntilNextChoicePoint , planner detects
that the max player can no longer issue actions, and the
min player can. Similar to the max player, the planner
calls ACCGMin to decompose the min player’s Win cate-
gory into (Train,Win/prod/harvest), point t− to it, and call
ACCG(s, T+, T−, t+, t−, 1).

Because this entire category is rightward-looking, the first
leftmost category is actually the root, Win. This means that
the next action to issue in the plan is Train. Therefore,
instead of calling ACCGMin , the planner adds the action
Train from the action category pair, and applies that action to
the game state s. Finally, calling ACCG(s, T+, T−, t+, t−, 0),
completes planning.

Next, we look at the parameter policy, defined as follows.
Any distance computation in our policy is computed using
Euclidean distance. Given the Attack action, all produced
offensive units are ordered to attack their closest enemy unit.
We define offensive units as Ranged, Heavy, and Light. Worker
units are not offensive because, from initial experiments, the
agents would use the workers to attack instead of harvesting
and building an army. Given the Harvest action, the agent
finds the closest resource to a random base, and finds the
closest worker to that resource. If the agent is within range
of the resource, it harvests, and moves towards the resource
if not. Given the Return action, the agent finds the closest

base to a random worker. The agent then checks whether the
worker is close to the base and moves if not.

The Produce action works differently. To prevent any
resource contention when producing units, we only allow a sin-
gle producing action to execute at a time. The planner dictates
what units are constructed. However, in order to improve the
game play strength of our agent for the competition setting, we
impose some constraints on the planner output (this basically
encodes our human domain knowledge of what a µRTS agent
should do). The first restriction is that worker unit production
is limited to a maximum of 2*(width of the map)/8 + 1 units
to prevent over construction of workers in some maps. We
wanted the agent to create at maximum three workers for the
minimum map size of 8x8, and add two workers each time the
game map quadrupled in size. We only used the width because
most of the maps were squares. This limit will most definitely
be changed for the competition. The second restriction is that
we only allow a single worker unit to construct Barracks and
Base to prevent the agent from constantly having to decide
who should create these units. If the worker dies, another
worker is chosen as the constructor.

V. EMPIRICAL EVALUATION

The objective of our experiments is to test the effectiveness
of a learned CCG lexicon and the adversarial CCG planner by
evaluating it in the µRTS environment. In order to do this, we
generated a dataset of plan traces from µRTS game replays
using agents from last years’s µRTS competition. Recall from
Section III that a plan trace is defined as a sequence of
observed actions. We then learned a CCG lexicon based on
this dataset, and used it to play the game. We then evaluate
game playing strength in the eight open maps that will be used
for the 2018 µRTS competition, and compare against all the
bots that participated in such competition.

We used the CCG lexicon learning algorithm LexLearn

by Geib and Kantharaju [15] to generate a CCG lexicon for
adversarial CCG planning. LexLearn’s parameters were tuned
to the same values as Geib and Kantharaju’s experiments.
Recall from Section IV that the CCG adversarial planner only
plans using four actions: Attack, Harvest, Return, and a
modified Produce action. Below is the initial lexicon provided
to LexLearn:

f(Attack)→ {attack : 1}
f(Harvest)→ {harvest : 1}
f(Return)→ {return : 1}
f(ProduceBarracks)→ {produce : 1}
f(ProduceBase)→ {produce : 1}
f(ProduceWorker)→ {produce : 1}
f(ProduceLight)→ {produce : 1}
f(ProduceHeavy)→ {produce : 1}
f(ProduceRanged)→ {produce : 1}

We note that Attack, Harvest, and Return have separate
atomic categories, and each Produce action is given the same
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TABLE I
TOURNAMENT RESULTS (WINS / LOSSES / TIES)

POLightRush POWorkerRush RandomBiasedAI NaiveMCTS PVAIML ED StrategyTactics µCCG Total Win Ratio

POLightRush - 45-20-15 76-2-2 59-18-3 35-35-10 30-35-15 64-7-9 309-117-54 0.7000

POWorkerRush 20-45-15 - 71-0-9 32-39-9 35-35-10 31-38-11 64-10-6 253-167-60 0.5896

RandomBiasedAI 2-76-2 0-71-9 - 1-56-23 10-53-17 5-73-2 9-62-9 27-391-62 0.1208

NaiveMCTS 18-59-3 39-32-9 56-1-23 - 46-31-3 18-59-3 36-34-10 213-216-51 0.4969

PVAIML ED 35-35-10 35-35-10 53-10-17 31-46-3 - 18-54-8 53-15-12 225-195-60 0.5313

StrategyTactics 35-30-15 38-31-11 73-5-2 59-18-3 54-18-8 - 70-1-9 329-103-48 0.7354

µCCG 7-64-9 10-64-6 62-9-9 34-36-10 15-53-12 1-70-9 - 129-296-55 0.3260

TABLE II
MAP RESULTS FOR µCCG (WINS / LOSSES / TIES)

Maps POLightRush POWorkerRush RandomBiasedAI NaiveMCTS PVAIML ED StrategyTactics

FourBasesWorkers8x8 5-5-0 0-10-0 5-5-0 0-10-0 0-10-0 1-9-0

TwoBasesBarracks16x16 0-10-0 3-8-0 10-0-0 7-3-0 3-7-0 0-10-0

NoWhereToRun9x8 2-7-1 5-0-5 8-0-2 1-9-0 4-0-6 0-2-8

DoubleGame24x24 0-2-8 0-9-1 3-0-7 0-3-7 1-4-5 0-10-0

basesWorkers8x8A 0-10-0 0-10-0 6-4-0 1-9-0 7-2-1 0-10-0

basesWorkers16x16A 0-10-0 0-10-0 10-0-0 8-2-0 0-10-0 0-10-0

BWDistantResources32x32 0-10-0 1-9-0 10-0-0 7-0-3 0-10-0 0-9-1

(4)BloodBath.scmB 0-10-0 1-9-0 10-0-0 10-0-0 0-10-0 0-10-0

TABLE III
CIG 2018 µRTS TOURNAMENT MAPS AND GAME CYCLES

Maps Number of Game Cycles
FourBasesWorkers8x8 3000

TwoBasesBarracks16x16 4000
NoWhereToRun9x8 3000
DoubleGame24x24 5000
basesWorkers8x8A 3000

basesWorkers16x16A 4000
BWDistantResources32x32 6000

(4)BloodBath.scmB 8000

atomic category. This relegated the decision of unit production
to the adversarial planner. If each Produce action was given
different atomic categories, then LexLearn would embed build
information directly into the generated lexicon.

Our training dataset consists of plan traces derived from
replay data of µRTS games. Specifically, we generated replay
data by running a five-iteration Round Robin tournament on
each of the open maps from the CIG 2018 µRTS tournament,
shown in Table III with agents POWorkerRush, POLightRush,
PVAIML ED, and StrategyTactics [20], where each agent
played as Player 1 and Player 2. Games on each map were
limited to the number of game cycles stated in Table III. Next,
we used the replay data to generate a set of 50,000 training
instances, pruning any Move actions as we do not wish to
learn any movement actions. While there were more training
instances that could be generated (three action sequences with
nine possible actions would require at minimum 729 instances
to cover all possible permutations of three action sequences),
we believe that 50,000 instances was enough for training. Each

training instance corresponds to a 3-action behavior employed
by the agents. The sequences of actions were limited to three
to allow our agent to plan within the 100ms time limit as per
the CIG 2018 tournament rules.

The adversarial CCG planner has three tunable parameters.
The first parameter is the constant for UCB1, which was set
to 20. The second parameter is the number of searched action
category decompositions, N , which was set to 5. The third and
final parameter is the maximum depth, which we set to 6 as
that is the maximum number of actions that could be planned
by both the max and min player in our adversarial planning
search. These parameters were set to get results for the paper,
but will be optimized for the competition.

We tested µCCG against six baseline agents: RandomBi-
ased, POWorkerRush, POLightRush, NaiveMCTS, Strategy-
Tactics [20], and PVAIML ED using the eight open maps from
the CIG 2018 µRTS tournament provided in Table III. We
ran a five-iteration Round-Robin tournament where each agent
played as both Player 1 and Player 2. Our experiments used
all of the rules stated in the CIG 2018 tournament, except that
we gave our agent a 30ms extra grace period per game frame
to produce an action, since the purpose of these experiments
was just to compare the agents.

Table I provides “Wins-Losses-Ties” and Win ratio (# wins
+ 0.5 × # ties) from our five-iteration Round-Robin tourna-
ment. Overall, our agent placed second-to-last in terms of Win
ratio. Looking at Table II, which provides per-map results
for µCCG, we were able to easily beat the RandomBiased
agent, even winning more games than PVAIMIL ED and
NaiveMCTS. Additionally, we see that against the POWork-
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erRush, RandomBiasedAI, and PVAIML ED agents, µCCG
didn’t lose a single match on the NoWhereToRun9x8 map.
µCCG did come close to outperforming NaiveMCTS, with

a win-loss difference of two. Table II indicates that for the
first four maps, NaiveMCTS significantly outperformed our
agent. However, for the last three maps µCCG outperformed
NaiveMCTS. Specifically for the last two maps, µCCG never
lost a single match against NaiveMCTS. Additionally, µCCG
was able to win a few games against the two top performing
agents in the CIG 2017 µRTS competition, StrategyTactics,
and POLightRush. We believe that with an improved param-
eter policy, µCCG could potentially win more games against
these agents.

We believe that µCCG may have won on the last two
maps against NaiveMCTS and RandomBiased because the
maps were relatively large with (4)BloodBath.scmB being the
largest map in the set at 64x64. As the size of the map
gets larger and the number of units increases, NaiveMCTS
has to search a larger search space. We believe that this
search space explosion resulted in NaiveMCTS losing games
against µCCG. We believe that the ties between µCCG and
NaiveMCTS in BWDistantResources32x32 may have been
due to the game reaching the maximum number of cycles.
µCCG may have destroyed most of NaiveMCTS’ units, but as
a result caused NaiveMCTS to start playing optimally because
the state space decreased.

We believe most of our losses were due to a few fac-
tors related to the parameter policy and planning. First, we
speculate that µCCG may have delayed constructing barracks
and offensive units because we only allowed a single unit to
construct units at a time. Thus, if µCCG was creating workers,
it wouldn’t be able to construct barracks or any offensive units.
Second, we believe that not allowing workers to attack enemy
units may have caused µCCG to lose on small maps. On
small maps, µCCG would not have time to construct offensive
units and a group of offensive workers would immediately
overwhelm us. Third and finally, we believe that coupling
the attack action with build order planning may have stopped
offensive units from attacking. Offensive units could only
attack if the attack action was administered by the agent. If
the planner didn’t generate an attack action, all offensive units
would stop attacking (even mid-assault on the enemy).

Although µCCG still does not outperform state of the art
bots, our experiments show that the idea of using an adversar-
ial CCG planner with a learned CCG lexicon generated from a
domain-independent CCG lexicon learning algorithm is viable
for RTS games. As part of our future work before the 2018
competition, we would like to optimize our parameter policy,
as well as the training set and planning algorithms to maximize
game-play performance, which was not a priority at this point.

VI. RELATED WORK

There are several areas of research that are closely related
to our work: 1) RTS game-playing agents, 2) Adversarial
Planning, and 3) Plan Learning. There is a plethora of work
in the scientific literature on creating agents to play RTS

games such as Starcraft and µRTS. Synnaeve and Bessière
present BroodwarBotQ which uses a Bayesian model for unit
control in Starcraft [21]. Uriarte presents Nova, a Starcraft
agent that combines several techniques used to solve different
AI problems [22]. Churchill and Buro present UAlbertaBot
which optimizes build order planning using action abstractions
and heuristics [23]. Other Starcraft agents include Skynet and
Berkeley’s Overmind [24].

There is also a large amount of prior research on adversarial
planning, but we state a few here. Stanescu et al. present an
approach to hierarchical adversarial search motivated by the
chain of command employed by the military. Specifically, they
employ game tree search on two layers of plan abstractions
[25]. Willmott et al. [26] presents GoBI, an adversarial HTN
planner for the game of Go that uses α-β search with a
standard HTN planner. α uses the HTN planner to generate
an action, and passes the game state to β to generate their
action while attempting to force α to backtrack its search.
In recent years, Ontañón and Buro used Hierarchical Task
Networks (HTNs) [13] and minimax to adversarially plan
against an opponent in RTS games. This work builds off this,
but uses CCGs instead of HTNs for planning, and learns the
plan representation instead of hand-authoring one.

The last ares of related research is plan learning. Hogg et al.
present HTN-Maker which learn HTN methods from analyz-
ing the state of the world before and after a given sequence
of actions [27]. Zhuo et al. [28] present HTNLearn which
builds an HTN from partially-observable plan traces. Nejati
et al. [29] present a technique for learning a specialized class
of HTNs from expert traces. Finally, Li et al. [30] present a
learning algorithm that successfully learns probabilistic HTNs
using techniques from probabilistic Context-Free Grammar
induction. The two main differences of our work is that we
learn a plan CCG representation and we learn this for an RTS
domain.

VII. CONCLUSION

This paper presents initial work on a CCG-based game
playing agent for µRTS called µCCG. This paper provides
two main contributions. First, we presented an alternative
hierarchical planning formulation based on CCGs. Second,
we show that we can learn a CCG plan representation from
sequences of actions collected from game replay data. We
also provided initial results of µCCG against against other
µRTS agents. Our results seem promising and demonstrate
that µCCG can use a learned representation generated by a
domain-independent learning algorithm to play against other
agents. We are currently in the process of improving the agent
for the CIG 2018 µRTS tournament, specifically the parameter
policy.

There are a few directions for future work. First, we
want to look into interweaving other RTS problems such as
terrain analysis and resource management into the planner
to improve the planning process. Second, we want to look
into improving hierarchical learning of CCGs by incorporating
RTS domain knowledge into the learning process as LexLearn
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is a general CCG plan learning algorithm. Third, once our
agent is able compete against other µRTS agents, we want
to apply our CCG adversarial planner to the commercial RTS
game, Starcraft. Fourth, we trained LexLearn on sequences
of three actions due to the time constraint defined in the
µRTS tournament rules, but plans can be larger than three
actions. Thus, we want to learn from larger sequences of
actions. Finally, for the current version of our planner, we
relaxed the temporal restrictions of CCG lexicons in order
to accommodate parallel actions. However, we would like to
investigate this issued further and design a general framework
to deal with concurrent actions in the context of CCGs.
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Abstract—We investigate the impact of supervised prediction
models on the strength and efficiency of artificial agents that
use the Monte-Carlo Tree Search (MCTS) algorithm to play a
popular video game Hearthstone: Heroes of Warcraft. We overview
our custom implementation of the MCTS that is well-suited for
games with partially hidden information and random effects.
We also describe experiments which we designed to quantify
the performance of our Hearthstone agent’s decision making.
We show that even simple neural networks can be trained and
successfully used for the evaluation of game states. Moreover,
we demonstrate that by providing a guidance to the game state
search heuristic, it is possible to substantially improve the win
rate, and at the same time reduce the required computations.

Index Terms—MCTS, Hearthstone, machine learning, neural
networks, heuristic

I. INTRODUCTION

Hearthstone: Heroes of Warcraft is a free-to-play online
video game developed and published by Blizzard Entertain-
ment. Its simple rules and appealing design made this game
successful among casual players. According to Blizzard’s data,
in 2017 the player-base of the game was about 70 million
and it grows with each of the released expansions. The game
is also popular within the eSport community, with cash-prize
tournaments and many international events every year.

Hearthstone is an example of a turn-based collectible card
game. During the game, two players choose their hero with a
unique power and compose a deck of thirty cards. They spend
mana points to cast spells, weapons and summon minions to
attack the opponent, with the goal to reduce the opponent’s
health to zero or below. Due to a large number of distinct
cards which implement various game mechanics, and spe-
cial in-game effects which often have randomized outcomes,
Hearthstone is an example of a game where actions may have
non-deterministic results. Moreover, during a game each player
is unaware of cards that the opponent holds in hand, nor the
ordering of yet-to-be-drawn cards in his deck. Finally, since a
player may perform several actions in each turn of the game
and ordering of those actions is pivotal to player’s success,
Hearthstone features great combinatoric complexity. All the

This research was co-funded by the Smart Growth Operational Programme
2014-2020, financed by the European Regional Development Fund under
a GameINN project POIR.01.02.00-00-0150/16, operated by The National
Centre for Research and Development (NCBiR), and by the Silver Bullet
Labs company.

above properties make Hearthstone a demanding challenge for
AI-controlled bots that are designed to play this game. One
objective of this article is to explain how our implementation
of the Monte Carlo Tree Search (MCTS) algorithm deals with
those problems. We also aim to discuss the means by which
MCTS can be facilitated by machine learning algorithms and
provide experimental evaluation of its performance.

The paper is organized as follows. In the next section, we
continue with providing context of the research and show
related initiatives. In Section III, the MCTS algorithm is dis-
cussed with the focus on problems encountered in Hearthstone
such as randomness, hidden information and combinatorial
complexity. We also shed some light on the game simulator
used for this research. The subsequent section is devoted to
methods of combining MCTS with machine-learning-based
heuristics. Finally, the last two sections contain a description
of empirical experiments which we conducted to evaluate our
Hearthstone agents and conclusions, respectively.

II. RELATED WORK

In recent years, Hearthstone has become a testbed for AI
research. A community of passionate players and developers
have started the HearthSim project (hearthsim.info) and cre-
ated several applications that allow simulating the game for the
purpose of AI and machine learning experiments. A few spin-
offs of that project, e.g., MetaStats (metastats.net), provide
tools for the players, which facilitate gathering data from their
games. These portals obtain and aggregate users’ data, such
as game results, deck compositions, card usage statistics and
provide this information to the community.

Several groups of researchers from the field of machine
learning and AI have already chosen Hearthstone for their
studies. In [1], authors used evolutionary algorithms to tackle
the problem of building good decks. They used the results
of simulated games performed by simple AI bots as fitness
function values. Even though this study was described by
the authors as preliminary, the developed method was able to
construct reasonable decks from a basic set of cards. However,
one drawback of this method is the fact that it strongly depends
on the performance of the AI bots used for the evaluation of
the decks.

A few research groups were also considering a problem
of constructing an artificial agent able to play Hearthstone.

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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In particular, [2] used Monte-Carlo Tree Search (MCTS)
algorithm to choose an optimal action policy in the game.
Furthermore, [3] used deep neural networks to improve per-
formance of a MCTS-based Hearthstone bot, called Silverfish.
The combination of MCTS with prediction models make those
approaches similar to early versions of DeepMind’s AlphaGo
program [4]. It is worth noticing, however, that unlike Go,
in Hearthstone players do not have full information about the
game state and many actions have non-deterministic outcomes.
These two properties make this game much more challenging
for the game state tree search algorithms, such as MCTS [5].

There were also attempts at constructing models for pre-
dicting cards that are likely to be played by an opponent
during a game. For instance, in [6] the author used data from
45,000 Hearthstone games to extract sequences of played cards
and represent each record as a bag of card bi-grams. By in-
vestigating co-occurrence probabilities, the method described
in that study was able to correctly predict opponent’s card
which will most likely appear during the following turns of
the game, in over 50% of cases. Such a high predictability
can be explained by the fact that even though the number
of possible Hearthstone decks is enormous, players tend to
build their decks in accordance to certain archetypes and their
composition is often inspired by the decks used by other
influential players.

Hearthstone was also a topic of international data mining
competitions. The first one, AAIA’17 Data Mining Challenge:
Helping AI to Play Hearthstone1, was focused on developing
a scoring model for predicting win chances of a player, based
on detailed description of a single game state [7]. Although the
data in this competition was generated using very simple bots
which were choosing their moves at random, the best models
created by participants were able to achieve AUC scores
above 0.80. The winner used an ensemble of 1-dimensional
convolutional neural networks to extract features from each
combination of both players’ cards on the board [8]. A year
later, the second edition of this challenge was launched. The
task in AAIA’18 Data Mining Challenge was to predict win-
rates of Hearthstone decks, based on a history of match-ups
between AI bots playing with similar decks.

Various other card games were also studied in the literature
related to machine learning and AI. For instance, in [9] authors
consider heads-up no-limit poker as an example of a game
with hidden information. They describe a DeepStack algorithm
which aims to handle the information asymmetry between
players by combining recursive reasoning with learning from
self-played games. As a different example one can give the
game Magic: The Gathering, studied, e.g., in [10]. Due to
the notable similarity to Hearthstone, these games pose many
similar challenges. In our work, however, we focus only on
Hearthstone. The growing interest of the machine learning
community in applications related to video games stems from
the fact that solutions to many game-related problems could be

1Competition’s web page: https://knowledgepit.fedcsis.org/contest/view.
php?id=120

easily transfered to real-life issues, such as planning [11], real-
time decision making [12], [13] and, ultimately, general AI.

III. PLAYING HEARTHSTONE WITH MONTE-CARLO TREE
SEARCH

A. Game Simulator

The access to a game simulator allows game-playing agents
to perform dynamic reasoning about the game. The idea is to
run separate simulations that do not affect the actual (main)
state of the played game. This is a reason why a simulator is
often called a “forward model” as it enables forward planning.
Its performance, i.e., how many states it can visit per second,
is crucial for all methods that are based on searching the space
of the game such as MCTS, min-max or MTD(f). Therefore,
we have written a simulator for Hearthstone with the aim of
achieving the highest run-time performance. The main features
of our simulator are: (1) written entirely in C++ for high-
performance, (2) it performs 10K full games per second, in
average, and 30K when limiting to basic cards only, (4) makes
big use of inheritance and polymorphism (e.g., Secret : Spell
: Card), (5) effects such as hero powers are modeled as (non-
collectible) cards, (6) the total number of implemented cards =
483, (7) the implemented cards allow for making staple decks
from the standard meta-game.

The simulator calculates legal moves in each state of the
game, updates the state after a move is chosen, tests whether
the game reached a terminal state and calculates scores in a
finished game. States and actions are comparable and hashable.
We have divided complex game actions into atomic simple
actions, e.g., when the “SI-7 Agent” card is played, up to
three simple actions are generated: (1) Choose a card from
your hand (SI-7 Agent), (2) Choose a target on the battle-field,
where the minion is about to be placed, (3) Choose a target
for the battle-cry: deal 2 damage, provided that the required
combo condition was met. Similarly, an attack move consists
of two simple actions - choosing a character, which will attack
and choosing a target to attack.

B. Monte Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [14] has become the
state-of-the-art algorithm for game tree search. It is the algo-
rithm to go in domains such as Go [15], Hex [16], Arimaa [17],
General Game Playing (GGP) [18] or General Video Game
Playing (GVGP) [19]. This technique is a natural candidate
for universal domains such as GGP or GVGP, because given
only the way (interface) to simulate games, the same imple-
mentation of MCTS will work for any game. It has also been
increasingly successful in board games such as Settlers of
Catan [20] or 7 Wonders [21].

In essence, the MCTS is a combination of three ideas:
storing statistics in the game tree, random sampling by means
of simulations to gather statistics and the Upper Confidence
Bounds method to select nodes based on the statistics gath-
ered so far. The Upper Confidence Bounds applied to Trees
(UCT) addresses the exploitation-exploration problem and it
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is a generalization of the Upper Confidence Bounds (UCB-1)
method. The UCT formula is as follows:

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
ln [N(s)]

N(s, a)

}
(1)

where A(s) is a set of actions available in state s, Q(s, a)
denotes the average result of playing action a in state s in
the simulations performed so far, N(s) - a number of times
state s has been visited in previous simulations and N(s, a) -
a number of times action a has been sampled in this state in
previous simulations. Constant C controls the balance between
exploration and exploitation. It has to be tuned, but provided
that scores of games are confined to the [0, 1] interval, the
sensible starting value is

√
2.

The algorithm typically consists of four phases: selection,
expansion, simulation and backpropagation. Algorithms (1)
and (2) describe the usage of these phases.

(1) Selection. Traverse the nodes, that are already stored in
the tree. At each level, the next node is chosen according to
the selection policy - the UCT method, by default.

(2) Expansion. A certain number of new nodes is added
to the tree. In the classical MCTS variant, only one node is
added by each iteration, which is a good trade-off between the
algorithm’s efficiency and memory usage.

(3) Simulation. Starting from the last visited state in the
tree, play (simulate) the game till the end. No nodes are
added to the tree in this phase. Actions for each player are
chosen randomly, however, there are extensions of the MCTS
algorithm that introduce heuristics in the simulation. This
phase is also called “Monte-Carlo phase”.

(4) Back-propagation. Starting from the last visited node
in the tree, which is the one the simulation started from, all
the way up to the root node, update the Q(s, a) values based
on the result of the simulation.

1) Handling Imperfect Information: The majority of suc-
cessful applications of the MCTS algorithm have been done in
the realm of perfect information games, i.e., games in which
each player has complete information about the current state
of the game. Games with hidden information have been proven
to be difficult for any combinatorial method such as game-tree
search. There have been many variants and extensions to the
MCTS proposed to deal with imperfect information. However,
they can be clustered into two types of approaches:

1) Perfect Information Monte Carlo Tree Search
(PIMC) - this method determines (guesses) all infor-
mation that is hidden and, from that point, treats the
game as perfect information one. Variants of PIMC
differ in the way how many distinct determinizations
they perform and how the knowledge obtained from
running the algorithm with different determinizations is
combined. The two major problems related to PIMC [22]
are strategy fusion and nonlocality [23].

2) Information Set Monte Carlo Tree Search (ISM-
CTS) [23] - this variant uses the concept of information
sets, which are abstract groups of states that are indis-
tinguishable from a particular player’s perspective. In

ISMCTS, a node in the game tree is associated with
an information set rather than a single state. There-
fore, the decisions of a player are made based upon
what the player actually observes. ISMCTS is much
less susceptible to the problems of strategy fusion and
nonlocality. However, ISMCTS is typically much harder
to implement as it requires to simulate games under
imperfect information or deal with partially observable
moves.

We propose an algorithm, which is a combination of
ISMCTS and PIMC. From the first concept, we borrow
the idea of information sets. However, they are not used to
simulate games under hidden information. Instead, they serve
as keys in the so-called transposition table. The transposition
tables are a way to model the “game-tree” without duplicated
nodes, which would occur if there is more than one way to
reach the same state. The “tree” effectively then becomes a
directed acyclic graph (DAG). Transposition tables are also
often used to combine symmetric states in order to reuse
calculations. In the transposition table we used, the values
are nodes and there is a unique key-value mapping between
information sets and nodes. Each node contains a hashmap
of edges with key being a player’s move. Each edge contains
the statistics of the particular move and a pointer to the next
node as observed in the current iteration of MCTS. The next
node pointer might vary in subsequent iterations if the same
move can have multiple outcomes (non-determinism) and thus
lead to various information sets. From the PIMC concept,
we borrow the idea of determinizations. At the beginning
of each MCTS iteration, a copy of a hidden information
state is determined into a perfect information state. This
is not to be confused with information set. The default
solution to determinization is to sample the state randomly
among possible legal states. However, when generating games
for machine learning experiments, we used the “cheater”
approach that can determinize the correct state. Such an
approach is often used in teaching sessions. In particular, in
card games, human experts teach beginners how to play with
open cards. In our case, the justification is that the “cheater”
allows for generating stronger games quicker.

In our implementation, there are two interfaces for the
concept of the game state:
Game state for simulations (GS) - this is the only interface
used to apply the logic of the game such as determining legal
moves, applying moves, checking whether the game has ended
or getting the result of the game. This interface is used both in
the selection and simulation phases. However, in the selection,
the other interface (information sets) is used as well.
Information Set Game state for statistics (IS) - this is
an abstraction of a state with possible hidden information. It
represents all kind of information, based on which a player will
take actions. The idea is to use only a subset of the simulation
game state in order to group states. Such a separate interface
not only allows for ignoring hidden information but also for
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reducing the resolution of the state. For instance, states that
are similar in terms of some arbitrary measure can be grouped
together. The information sets in our approach are plain data
storage objects. The only methods the IS interface contains are
hash and equals, what enables efficient equality comparisons.

After the GS has been determined, the selection phase starts
from the root node. In each visited node during that phase,
the set of currently legal moves is computed and intersected
with the set of all moves observed in the node so far. Each
move is associated with an edge. Active edges are the ones
that correspond to moves that are currently available. The
active edges are scored according to the selection formula
(c.f. Equation 1) and the best scored edge is chosen. Next,
the GS interface is used to apply the selected edge’s move
and compute the resulting state. This state is then used to
generate an information set. We call this process capturing
the information set and the GS requires an implementation of
the capture() method that returns the IS from a given player’s
perspective. The perspective is decided based on which player
is active in the current state. Once the IS is created, it is used
to query the transposition table for the next node to traverse.
If no such node exists, it is added to the transposition table
with the key equal to the current IS and the selection phase is
terminated. The selection phase is repeated for the next node
until the termination condition (a node visited for the first time)
is not satisfied. Because nodes are matched with information
sets, this statistics of actions performed within the same IS
are clustered together. Moreover, this allows to significantly
reduce the combinatorial size of the game tree in comparison
with using regular game states as nodes. When the selection
phase ends, the last seen GS is passed to the simulation phase
as the starting state. The result of a simulation is propagated
to all edges chosen in the selection phase.

Algorithm 1 Pseudocode of the main MCTS loop.
The simulation method starts from the movingState and
performs a quasi-random simulation and returns the result of
the game. It can be replaced by another evaluation procedure
as discussed later in the paper.

1: procedure ITERATE(state)
2: rootNode← createRoot(state)
3: node← rootNode . current node
4: while elapsedT ime < allotedT ime do
5: movingState← determinize(state)
6: while mcts.selection 6= finished do
7: if movingState.terminal 6= true then
8: node← node.select(movingState)
9: end if

10: end while
11: propagate(simulation(movingState))
12: end while
13: end procedure

2) Handling Randomness: Non-determinism in games can
quickly increase the combinatorial complexity to enormous
levels. For example, there are 5.36 ∗ 1028 different deals

Algorithm 2 Pseudocode of the inner MCTS loop. The
findOrCreate method accepts an information set and returns
the corresponding node from the transposition table.

1: procedure NODE.SELECT(movingState)
2: moves← movingState.getMoves()
3: currentEdges← []
4: for each move in moves do
5: edge← allEdges[move]
6: if edge not found then
7: edge← new edge(move)
8: allEdges[move]← edge
9: end if

10: edge.N ← +1 . incr. observed count
11: currentEdges.push(edge)
12: end for
13: chosenEdge← selection(currentEdges) . UCT
14: chosenMove← chosenEdge.getMove()
15: chosenEdge.V ← +1 . incr. visit count
16: if chosenEdge.V == 1 then
17: mcts.selection← finished
18: end if
19: movingState.apply(chosenMove)
20: is← capture(movingState) . create IS
21: tt← mcts.getTranspositionTable()
22: chosenEdge.nextNode← tt.findOrCreate(is)
23: return chosenEdge.nextNode
24: end procedure

possible in the game of Bridge. Randomness is also prevalent
in Hearthstone, with effects such as “discover a random spell”
or “deal from X to Y damage”. Each unique random outcome
would most likely result in a different state, and therefore,
would require its own node in the tree.

The novelty of our MCTS implementation is complete
exclusion of nature moves. This makes the game modeling
and simulating significantly easier using our library. Actions
may include any non-determinism. This is possible, because
we do not store game-states directly in the tree as results
of actions. As shown on Algorithm (2), each time a move
is played, we compute the resulting state dynamically,
even if the move has been already sampled in previous
iterations. The resulting state is used to create the information
set, which then is used to fetch the next node to visit. In
consequence, statistics of moves are averaged according to the
probability distribution of various random effects. If a move is
good in average, the score will be high and it will be chosen
more frequently in the selection phase of the MCTS algorithm.

3) Handling Combinatorial Explosion: We have already
introduced the idea of the separation of “virtual game states”
modeled as Information Sets and the regular game states for
simulations. This allowed us to gather statistics in a much
more coarse-grained representation of state-space. However,
the combinatorial complexity of the game is still very high
due to the number of possible attacks, the fact that attacks can
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be done in chosen order and the options to intertwine playing
cards between the attacks. The authors of [24] have calculated
that, in the pessimistic case, there are approximately 1010

possible ways of performing the attacks. Quite often, however,
lots of permutations of attacks will result in the same state in
the end and there is no need to examine all of them. To tackle
this problem, we have developed the so-called “board solver”
- a heuristic that generates a sequence of attack actions in
a given state. In general, the heuristic first checks if it can
kill the opponent in one turn and does it if possible. If not,
the heuristic will check whether the opponent is likely to
win during their next turn and if so, the attacks will focus
on killing the most threatening opponent minions. If no of
these cases appear, the heuristic will score all possible single
attacks based on the gain − loss of the board potential. A
single attack is a pair (attacker, defender). In Hearthstone,
there are at most 8 attackers and 8 defenders, so, in the
pessimistic case, 64 scores need to be calculated. The attacks
are applied in a greedy fashion, i.e., the best scored attack
is applied first (if possible), next the second best and the
process continues until there are no more legal attacks. An
application of an attack may render some of the following
attacks illegal, for example when they use an attacker that
has already attacked or defender that has already been killed.
The heuristic for attacks is used as an artificial action in the
game: “use solver”. The MCTS is allowed to choose this
action at any point during the turn, but only once per turn.
Once the action is chosen, the attack moves are generated
and applied, to there will not be any attacks move anymore
during the turn for the minions that are already on the board.

4) Interfacing heuristics with MCTS: The MCTS algorithm
is quite powerful on its own, but it can still benefit from
domain-specific optimizations. It has been proven that, in more
complex games such as Go [4] with huge branching factor and
delayed rewards of taking actions, the vanilla method needs
to be enhanced by some form of heuristics.

This weakness has motivated us to combine this algorithm
with heuristics represented by prediction models. Such pre-
diction models can be trained to either predict the outcome of
the game by looking at a potential next state (candidate state)
of the game or at a potential action (candidate action). In the
scope of this paper, we will use the terms “machine learning
prediction models” and “heuristic evaluation” interchangeably.

There is a couple of ways to combine external heuristics
with the MCTS algorithm. The authors of paper [25] give
a nice review of four common methods: Tree Policy Bias,
Simulation Policy Bias, Early Cutoff and Move Ordering. We
use the first three of them:

(1) Tree Policy Bias - here the heuristic evaluation function
is included together with the Q(s, a) in the UCT formula (see
Eq. 1) or its equivalent. A typical implementation of this idea
is called Progressive Bias [26], in which the standard UCT
evaluation is linearly combined with the heuristic evaluation
with the weight proportional to the number of simulations.
The more simulations are performed, the more statistical

confidence, and therefore, the higher weight is assigned to
the standard UCT formula.

(2) Simulation Policy Bias - here the heuristic values affect
probabilities of certain actions in the simulation phase to make
simulated players stronger and, therefore, each simulation a
better approximation of a potential future game. The two most
common implementations are pseudo-roulette selection with
probabilities computed using Boltzmann distribution (where
the heuristic evaluation is used) or the so-called epsilon-greedy
approach [27]. In the latter, the action with the highest heuristic
evaluation is chosen with the probability of ε or a random one
with the probability of 1− ε.

(3) Early Cutoff - terminate the simulation earlier (e.g.,
with some probability or at fixed depth) and return the heuristic
evaluation of the last reached state instead of the terminal one.
In [25], this enhancement is reported to achieve the best results
among the tested methods.

The aforementioned AlphaGo program employs both, Tree
Policy Bias and Simulation Policy Bias. Motivated by its suc-
cess, we decided to apply a similar approach for Hearthstone.

IV. AUGMENTING MCTS WITH MACHINE LEARNING

The state of the art implementations of MCTS, such as
AlphaZero, use deep neural networks for providing heuristic
evaluations of states and actions. Two main approaches are
used – so called value network is a deep neural network that
provides the predictions of a game outcome given a state of the
game. The predictions are usually provided as scores which
can be interpreted as probabilities of winning the game by each
player. Such predictions may be used by MCTS to foresee an
outcome of a playout without simulating it until the terminal
state, or even to entirely replace the simulation phase. A policy
network is another type of a neural network that given the state
of a game provides values of each action available in that state.
Policy network may thus provide information about which
actions should be chosen in a state. As shown in [4], [28],
the use of value and policy network heuristics significantly
improves the performance of MCTS methods, enabling them
to beat humans in very complex games.

In our solution we will focus on the value network heuristic
for Hearthstone. We will use an iterative approach to neural
network training, which uses large amount of hearthstone
games, generated by self-playing bots.

A. Game-state vectorization with embeddings

Heuristic functions for evaluating game states require a
vectorized representation of the state. It is common to use
hand-crafted attributes to represent particular aspects of the
state and then, using some weighted combination of those
attributes, derive a value representing the utility of a state.
While this approach works for games such as chess, it may be
difficult to engineer such attributes for much more complex
games such as Go or Hearthstone. As we use deep learning
methods for obtaining heuristic functions, it is possible to
represent Hearthstone states by large vectors composed of
values of low-level features such as: attributes of each minion
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on the board (HP, attack, taunt, charge etc.), attributes of
each player (HP, weapons, mana, hero type, etc.), attributes
of cards in hand (type, mana cost, etc.) and general attributes
(turn number, cards in deck, etc.). Moreover, as most cards
in Hearthstone have custom descriptions that define special
effects, it is necessary to extend the vectors by meaningful
representations of particular cards.

One way to represent the cards in a relatively low-
dimensional vector space is by using a word2vec model [29]
to learn the embeddings from cards’ textual descriptions.
It can be done either by aggregating vector representations
of words from the texts or by training a paragraph vector
model [30], where each paragraph corresponds to a single
card. Since descriptions of Hearthstone cards are relatively
short and use a limited vocabulary, it is expected that a
dimensionality of our embeddings should be much lower than
in other common applications of the word2vec model. We
experimentally checked that using more than 16 dimensions
brings negligible improvements, and thus we used embedding
size 10 in our further experiments. To learn the embeddings,
we used the skip-gram model implemented in TensorFlow.
Apart from the embedding size, standard parameter values
were used, i.e. context size was set to 10 and the batch size was
256. The model was trained for 300 epochs using a stochastic
gradient descent optimizer, with a learning rate 0.1, decreased
by a factor of 10−1 after every 100 epochs.

In our final solution, we used a vectorizer that had 750
elements, including all low-level features for both players and
utilized embeddings to represent all cards and minions.

B. State evaluation with value network

Our state evaluation heuristic uses a fully connected neural
network for providing the win probabilities of each player. The
network consists of three dense layers with 256, 128 and 64
neurons respectively and uses tanh activation function. The
input is a vector of size 750 (as described in the previous
section), while the output consists of two neurons with a
softmax activation. The network thus solves a classification
task: given a state predict the winner.

The training data for the network is generated by recording
games played between bots. During a simulation, the state
of the game is vectorized to vector ~S at each step, and the
final score of the game is stored as a two-element vector:
~score = [p1score, p2score]. Next, the vectorized states are

sampled randomly with some probability p and pairs [~S, ~score]
are added to the training dataset. Random sampling is required,
as consecutive states are highly correlated. Finally the network
is trained to provide score given a state vector. We used ADAM
optimizer with learning rate = 0.001

Value networks are trained to predict scores of games
that were played with different decks as well as from the
perspective of any of the two players. However, the accuracy of
the predictions are better if there are separate networks trained
for particular decks and even for particular player positions
(first or second player).

In our preliminary tests we created a dataset with over 3.5M
samples from games played by strong MCTS bots (cheater
MCTS with 1 second per move) playing with 400 different
decks. The network were trained to predict outcomes of the
games played with any of the available decks and for any of
the players. The accuracy of the value network trained using
this dataset was evaluated on a separate validation set and
reached 0.76.

We have used the trained value network for early termina-
tion of random simulations. The termination was done after
the last move of a player in turn, but not earlier than after
k=20 steps. After termination, the statistics in MCTS tree were
updated with probabilities of winning obtained from the value
network.

C. Iterative learning - mastering Hearthstone

To further improve the performance of our solution, we have
prepared an environment for continuous, iterated learning of
our machine learning models. The main idea is that MCTS
with a heuristic may be used to generate games of progres-
sively better quality. Those games may then be used to create
more accurate heuristics, which may be used to generate games
of even better quality. This process may be repeated many
times for better optimization of the heuristics.

In our approach to iterative learning, we have started with
plain MCTS to generate over 20000 games. Next, those games
were used to generate an initial dataset consisting of randomly
selected states and corresponding scores. Models for value
networks were trained and used to generate the next version
of the bot. Then, in each iteration, the bot played 3000 games,
from which new state-score pairs were sampled and added to
the training dataset. The training dataset length was clipped to
1M samples, so that after a few iterations older samples were
removed and most recent samples were appended as in a FIFO
buffer. The state-score pairs were sampled with probability
p = 0.5. In each iteration, value networks were retrained from
scratch using 80% of the training dataset. Remaining 20% was
used for validation of the network.

Using iterated learning, we were able to achieve an accuracy
of 0.775 for the first player and 0.794 for the second player,
when training for one type of deck only. In the next section
we describe in details the performance of particular bots.

V. EXPERIMENTS

We have conducted a series of experiments to measure the
skill of various Hearthstone bots based on MCTS and different
heuristics. Due to the high complexity of Hearthstone, mainly
caused by the large number of possible decks and the impact
of random effects on the game outcome, we have restricted our
test cases to only two decks: ZooWarlock and CubeWarlock.
Moreover, we have fixed the positions of both players, so that
ZooWarlock deck was always played by the first player, while
CubeWarlock by the second.

In order to obtain the best possible version of the value
network, we have run iterative training for 64 iterations. Next,
we have created a hearthstone bot for each version of the
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TABLE I: Evaluation results - 0.5 second per move

P1 P1
wins

P2
wins

P1
win %

P2
win % P2

mcts 735 265 73,5% 26,5% mcts

mctsVS 500 0 100,0% random
mctsVS 391 108 78,4% mcts
mctsV 410 90 82,0% mcts
mctsS 395 105 79,0% mcts

random 0 500 100,0% mctsVS
mcts 219 280 56,1% mctsVS
mcts 249 251 50,2% mctsV
mcts 266 234 46,8% mctsS

TABLE II: Evaluation results - 1 second per move

P1 P1
wins

P2
wins

P1
win %

P2
win % P2

mcts 705 294 70,6% 29,4% mcts

mctsVS 500 0 100,0% random
mctsVS 364 135 72,9% mcts
mctsV 380 120 76,0% mcts
mctsS 358 143 71,6% mcts

random 0 500 100,0% mctsVS
mcts 224 276 55,2% mctsVS
mcts 220 279 55,9% mctsV
mcts 263 236 47,3% mctsS

value network obtained during the iterative learning. Finally,
we have used 64 versions of the bot to play over 50k matches
between themselves and assigned a glicko2 rating [31] to each
bot. Based on the glicko2 rating, we have selected the best bot,
and thus the best value network, for the first and second player
(obtained from 21st and 33rd iteration respectively).

For our final evaluation, we have compared plain MCTS
(denoted by mcts) with two different heuristics: a) previously
selected, best value networks from iterative learning - denoted
by V; b) board solver described in section III-B3 - denoted
by S. We have measured the impact of the value network,
board solver and both of those combined together. Each con-
figuration of the bot was used to play 500 games against plain
MCTS bot. Moreover, we have also compared our solution
with a randomly playing bot. To have a baseline for the
performance, a 500-game match between only plain MCTS
bots was played as well. The games were played with two
time limits per move used by MCTS: 0.5 and 1.0 second. The
results are presented in tables I and II. The strength of each
bot is measured by the percentages of won games.

The baseline win-rates are 73.5% for the first player and
26.5% for the second in case of 0.5 second per move time
limit. Increasing the time limit improves the strength of the
second player, resulting in win-rates 70.6% for the first player
and 29.4% for the second. The evaluation results show that
each heuristic has a noticeable impact on the strength of the
bot. As the first player has already a high win-rate, adding
heuristics improves the win-rate by up to 9 percentage points.
However, in case of the second player, adding heuristics may

TABLE III: A summary of results obtained in games between AI
agents and human opponents.

P1 P1
wins

P2
wins

P1
win %

P2
win % P2

Regular 7 7 50% mctsVS-1s
Legend 12 9 43% mctsVS-1s
mctsVS-1s 9 6 60% Regular
mctsVS-1s 3 15 17% Legend

even double the win-rate.
It is important to note here that the type of deck used has

a huge impact on the strength of the bot. The deck used by
the first player has an aggressive, but fairly straightforward,
style of play. The deck used by the second player, has on the
other hand, a lot of complex strategies and needs to be played
carefully; yet used by a skillful player, it has a much greater
winning potential compared to the first deck. This fact may
help to understand why the strength of the second player is
increased so dramatically when using well-crafted heuristics.

Moreover, heuristics provide a larger advantage, when play-
ing with lower time per move limit as MCTS performs a fewer
number of iterations. A combination of a value network and
board solver, when only 0.5 seconds per move are available
for the MCTS to perform simulations, provide the greatest
boost to the bot’s strength. With 1 second per move available,
the difference between using only value network and the
combination of value network and board solver is minimal.

Finally, we have arranged matches between a few hearth-
stone players and our bot. The results are presented in table
III. Games were played by two regular players (Hearthstone
rank > 15, which is held by approx. 75% players) and two
players with a Legendary rank (the best one with less than
0.5% of players).

VI. CONCLUSIONS

In this paper, a fully-fledged approach to constructing a
Hearthstone playing bot was presented. Some novel features
of the approach include modification of the MCTS algorithm
to handle randomness without explicitly defined nature moves,
a combination of the PIMC and ISMCTS methods to tackle
imperfect information, and a heuristic solver for calculating
attacks in Monte Carlo simulations. In addition, we designed
and conducted machine learning experiments aimed at learning
game state evaluation functions. Finally, an iterative learning
loop aimed at creating the “ultimate bot” was proposed.

We can conclude that the resulting agent is likely to be
among the strongest Hearthstone bots at the moment. Although
Hearthstone has become a testbed for AI, there has not been
yet proposed any universal benchmarking methods, so it is dif-
ficult to assess the strength other than by human observation,
self-play between various versions of the agent or a random
player. However, in all cases, the proposed solution shows
its upper hand. The bot is able to win, with an impressive
consistency, 100% games against the random player. It is also
capable of winning games against Legend rank players, which
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alone can be regarded as very promising. The human players
reported that in many situations they felt the bot played really
well. Finally, we have shown the progressive improvement of
the bot’s skills by sparing it against previous versions. We
designated two decks for this experiment, but the approach
can be generalized for any number of decks easily, e.g., as an
ensemble that chooses the right model (or even blends a few
of them) for the deck on the fly.

In order to benchmark our agent against other Hearthstone
bots, we plan to submit it to the 2018 Hearthstone AI Com-
petition held under the CIG (Computational Intelligence in
Games) conference. Our submission to this competition will
differ with the approach described in this paper in several
details. It will work with the SabberStone (https://github.com/
HearthSim/SabberStone) simulation engine as this is the offi-
cial engine to be used during the competition. This simulator
is only able to simulate approximately 200 games per second,
on a modern high-end consumer PC, whereas our simulator
performs 10000 games, on average. Because of this fact, we
choose to limit the depth of the Monte Carlo simulations to the
end of a single turn. At the end of the turn, the state evaluation
function powered by machine learning will be used. We hope
that the solutions adopted for the CIG competition will help us
in designing even more cunning artificial Hearthstone agent,
and as a consequence, move us one step further in the pursuit
of the Grail of video games – smarter and challenging AI.
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T. Davis, K. Waugh, M. Johanson, and M. Bowling, “Deepstack: Expert-
level artificial intelligence in heads-up no-limit poker,” vol. 356, no.
6337, pp. 508–513, 2017.

[10] P. I. Cowling, C. D. Ward, and E. J. Powley, “Ensemble determinization
in monte carlo tree search for the imperfect information card game
magic: The gathering.” IEEE Transactions on Computational Intelli-
gence and AI in Games, vol. 4, no. 4, pp. 241–257, 2012.

[11] R. Munos et al., “From bandits to monte-carlo tree search: The opti-
mistic principle applied to optimization and planning,” Foundations and
Trends® in Machine Learning, vol. 7, no. 1, pp. 1–129, 2014.

[12] D. Lee, “Game theory and neural basis of social decision making,”
Nature neuroscience, vol. 11, no. 4, p. 404, 2008.

[13] M. Buro and T. Furtak, “Rts games as test-bed for real-time ai research,”
in Proceedings of the 7th Joint Conference on Information Science (JCIS
2003), vol. 2003, 2003, pp. 481–484.

[14] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
2012.

[15] S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver, C. Szepesvári,
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Abstract—StarCraft is a Real-Time Strategy game, which has
a large state-space, is played in real-time, and commonly features
two opposing players, capable of acting simultaneously. One of
the aspects of the game is building walls. In this paper, we present
an algorithm that can be used for wall building for an agent
playing the game of StarCraft: Brood War.

Index Terms—StarCraft, Wall building, Real-Time Strategy
game

I. INTRODUCTION

One of the aspects of Real-Time Strategy (RTS) games is
wall building. The general strategy of wall building is placing
down structures such that you are safe from an attack at a
given position. Usually this is done to protect your base and
production facilities without having to rely solely on combat
units.

This topic is not unique to StarCraft. Previous work has
been done in the game Empire Earth [1], where the developers
used Graham Scan to decide where to place a wall. A generic
wall-building algorithm was also presented in [2].

In StarCraft: Brood War, wall building requires an extra
property, which these algorithms do not take into account.
Namely, buildings have gaps between them (see Figure 2).
Depending on the size of the unit, walls might not be closed
off for all units. This sometimes is desirable as well, in case
you want your own (small) units to pass through, but do not
want the enemy units to pass your wall.

For wall building specifically for StarCraft, there has been
an approach that uses answer set programming to add this extra
constraint [3]. By specifying the gaps and other constraints
through a declarative language, Certicky was able to use the
ASP solver clingo to create wall while considering building
gaps. This approach has been improved by Richoux et al. [4].

The problem with these approaches is that none of them
address the gap between buildings and the terrain (mainly cliffs
and other natural obstacles). Because of this, some of the walls
created with these methods will still have gaps in them that
let enemy units through. We propose an algorithm based on
the pathfinding algorithm A∗ to ensure that the wall from our
algorithm will stop whichever enemy unit it is supposed to
stop. The advantage of this method is that the constraints are
checked by checking if a path exists in the game itself, thus
ensuring that a wall found by our algorithm is tight. With
an extra calculation step, our algorithm can also create walls

where smaller units can pass through, but the larger units of
the opponent cannot.

This paper is structured as follows. First, Section II gives
the problem definition of wall building. Next, Sections III and
IV discuss the wall-building algorithm. Section V describes
the pseudocode implementation of the wall-building algorithm.
Section VI describes the experimental setup and the results of
the experiments. Finally, Section VII draws conclusions from
the results and presents future work.

II. PROBLEM DEFINITION

In the RTS game of StarCraft: Brood War, a wall is a set of
structures and units placed in such a way that no enemy unit
can pass from one side of the wall to the other. In this section
we describe the problem that our algorithm tries to solve.

The StarCraft map consists of two grid types: the walk grid,
where each cell is an 8 × 8 pixels square, and the build grid,
where each cell is a 4 × 4 walk tile square (hence 32 × 32
square of pixels). Some of these build tiles are buildable, and
others are not due to natural obstacles (e.g., cliffs) or due to
the game rules (buildings cannot overlap).

Each building has a build size and a real size. The build
size indicates the height and width of the building in terms of
building tiles. For example, a Terran supply depot has a build
width of 3 and a build height of 2. The real size indicates
how much walkable space the building takes up. In the case
of StarCraft: Brood War, the actual space taken up by some
of the buildings is less than its build size × 32 pixels, leaving
some additional space for passing it. This causes gaps to be
created between buildings placed next to each other and to
natural obstacles (cliffs have these gaps as well).

Thus the wall-building problem is about finding locations
for buildings such that a given enemy unit (given in pixel width
and height) cannot pass through the wall. An extra constraint
can be that another smaller unit has to be able to pass through
while the given enemy unit still cannot pass through (this allow
for hit & run tactics where ranged units can retreat behind a
wall after shooting).

The algorithm presented in this paper is specifically for
checking if a given set of buildings can satisfy these con-
straints. The problem of determining the minimum number
of buildings required for building a wall is beyond the scope
of this paper. This however can be easily added by having an
algorithm generating a list of buildings and using the algorithm
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presented in this paper to check if those buildings can form a
wall, until a suitable combination of buildings is found.

III. APPROACH

Fig. 1. Example of a wall found using the wall-building algorithm. Choke
point is indicated with a red line and a purple circle.

In our approach we use a wall to seal off a choke point. A
choke point is a location on the map (terrain) that connects
two regions [5] (see also Figure 1). If a wall is built near
this choke point, then the two regions of the choke point are
separated (no longer reachable by ground units).

Since both buildings and units can be used in a wall, we
use the term structure to indicate a part of a wall (either a
building or a unit). The first part of the wall-building algorithm
requires a way to generate a set of structure locations, which
can potentially form a wall. In the game of StarCraft, units
and buildings cannot overlap, buildings cannot overlap with
unsuitable ground and units cannot overlap with unwalkable
ground. We use a depth-first search algorithm to determine
possible structure locations. At the initial depth, the algorithm
places a structure close to the choke point. After selecting
a location for the first structure, the next depth includes a
new structure that is placed adjacent to any of the structures
already placed. This is done because a wall should not contain
a gap. Therefore each building and unit is adjacent to at least
one other building or unit. This process continues until all
structures have been placed.

Each time that the placement algorithm placed all structures
(reached maximum depth), the validation algorithm checks if
the placement of the structures forms a wall. Determining if
a set of structures forms a wall requires checking if there is a
path that goes from one side of the choke point to the other
side that passes through the choke point that is supposed to
be walled of. For this we compare two different methods. In
both methods we limit the search to a 16×16 build grid around
the choke point to ensure that all possible paths have to go
through the choke point that is supposed to be walled of. The

first method that we use is a flood fill starting from one side of
the choke point. If the flood fill reaches the other side of the
choke point then the algorithm will generate the next set of
possible structure locations which can potentially form a wall.
The second method is the A∗ algorithm. The A∗ algorithm
tries to reach the other side of the wall based on heuristic
search instead of a brute force approach like flood fill.

IV. WALL-BUILDING ALGORITHM

The wall-building algorithm used to calculate a wall is based
on a depth-first search approach to find possible structure
placements combined with flood fill or A∗ to check if a struc-
ture placement is a wall. Just like the declarative programming
approach from Certicky [3], we construct a 16×16 grid around
a choke point (see Section III for the definition of a choke
point). Besides the choke point location, the algorithm also
requires the list of buildings and units available to create the
wall.

The wall placement algorithm starts off with no structures
placed (depth-first search at a depth of 0). At this point (depth)
the algorithm will pick one of the possible structures and place
it down at a location close to the choke point. Determining
a possible location is performed by checking if every tile
occupied is buildable (if it is a building) or walkable (if it is a
unit). After the initial placement, the wall placement algorithm
places the next structure adjacent to the initial structure. This
adjacency is 8-ways (horizontal, vertical, and diagonal). Every
next structure from this point is then placed adjacent to at least
one of the structures already placed. This process continues
until all available structures have been placed.

Once all structures are placed (at the leaf node), the algo-
rithm starts a flood fill or A∗ from a tile on one side of the
wall. Both the flood fill and A∗ algorithm try to reach a tile
on the other side of the choke point by passing through the
choke point. If successful, the current placement of structures
is not a wall. In this case the depth-first search backtracks
and tries a different placement of structures. Besides walkable
gaps on the tiles not covered by the structure, the flood fill
and A∗ can also pass between gaps formed by buildings (see
also Figure 2). Each building has a certain number of pixels
as a gap on each side (top, bottom, left, and right). When a
side of a building is adjacent to the side of another building,
the corresponding sides combine the pixel values.

The algorithm used by Certicky et al. [3] did not take into
account that two buildings placed diagonally also create a gap.
Thus this algorithm sometimes misses a possible wall, because
it does not take the gap into account (see also http://wiki.
teamliquid.net/starcraft/Walling).

The algorithm from Richoux et al. [4] does not take the
terrain (cliffs and other natural obstacles) into account. These
terrain features have gap values as well. Although the gap
values of buildings are known, it is not yet known what the
exact gap values of all terrain features are. Therefore, our
algorithm uses the walk grid to calculate if a unit can fit
through the gap of a building and a cliff or other terrain feature.
Even though the gap size is not known, the Brood War API
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Fig. 2. Gaps between Terran buildings in pixels. The numbers indicate the
size of the gaps in pixels. Picture taken from teamliquid wiki.

does give information about which tile can be walked on. Thus
instead of calculating the gap between a building and a cliff,
we instead take the total number of walkable tiles between a
building and a cliff. This is then multiplied by the pixel size
of a walkable tile (8 × 8, see Section II). This estimation is
an upper bound to the gap size, so the walls created with this
estimation will stop the unit it is supposed to stop. However,
if the actual gap is smaller than the estimation, our algorithm
might miss a possible wall. Determining the exact gap size
when terrain is involved is left for future work.

The exact details of this process is an implementation detail.
The code for the wall building can be found at https://github.
com/MartinRooijackers/LetaBot.

V. IMPLEMENTATION

The wall-building algorithm requires a choke point, a tile
on one side of the choke, a tile at the other side of the choke
and a list of structures. The other information about buildable
and walkable locations can be derived from the BWAPI. This
pseudocode gives a high level overview of the implementation
for a StarCraft agent.

The wall-building algorithm requires the following input:
• S: a list of structures, each containing its width and height
• B: a list of structures already placed, each containing its

width and height and (x, y) position
• choke: tile location of a choke point
• sTile: start location of the flood fill
• eTile: end location of the flood fill

• Enemy: (width, height) tuple indicating the size of the
unit that should not be able to pass through the wall

The algorithm is split into two components: the wall placement
algorithm that determines valid structure locations and a wall
validation algorithm that checks if these locations form a
wall. The second step can be performed by either A∗ or
flood fill. The wall placement algorithm is given in the
pseudocode below (see Algorithm 1). The algorithm starts with
calling the WALLIN function with the parameters mentioned
above. This function calls STRUCTUREPLACEMENT, which
uses depth-first search to place the structures. As long as a
structure needs to be placed, the algorithm uses the VALIDLOC
function to determine a place to put the building or the unit.
This process is repeated until all structures are placed. Once
all structures are placed, the algorithm checks whether the
structure placement is a wall with the CHECKWALL function.
Two variants of this function have been implemented by either
using a flood fill or A∗.

Algorithm 1 WallPlacement
1: procedure WALLIN(S, choke, sT ile, eT ile)
2: StructurePlacement(0, S, ∅, choke, sT ile, eT ile, Enemy)
3: end procedure
4:
5: procedure STRUCTUREPLACE-

MENT(depth, S,B, choke, sT ile, eT ile, Enemy)
6: if size(S) = 0 then . all structures placed
7: for all x ∈ {chokex − 8, . . . , chokex + 7} do
8: for all y ∈ {chokey−8, . . . , chokey +7} do
9: Visited(x, y) ← False . clear last flood fill

10: end for
11: end for
12: isWall← CheckWall(sT ile, eT ile, V isited,Enemy)
13: if isWall = false then
14: return . This is not a wall in, generate a new

structure location
15: end if
16: if isWall = true then return
17: Output/Store current structure locations and

end algorithm
18: end if
19: end if
20: for all x ∈ {chokex − 8, . . . , chokex + 7} do
21: for all y ∈ {chokey − 8, . . . , chokey + 7} do
22: if ValidLoc(x, y, S0, depth) then
23: StructurePlacement(depth+ 1, S \ S0, B ∪
{(S0, x, y)}, choke, sT ile, eT ile, Enemy)

24: end if
25: end for
26: end for
27: end procedure

The VALIDLOC function (see Algorithm 2) checks whether
a building can be placed at a certain location. Since a wall
requires all buildings to be adjacent, this function also checks
whether the build location is adjacent to another location

455



already occupied. The only exception is the first building, since
it cannot be adjacent to anything yet.

Algorithm 2 ValidLoc
1: procedure VALIDLOC(x, y, struct, depth)
2: Adjacent← False
3: for all xT ile ∈ {x, . . . , x+ (structw − 1)} do
4: for all yT ile ∈ {y, . . . , y + (structh − 1)} do
5: if Occupied(x, y) = True then . BWAPI

function
6: return False
7: end if
8: if Tile adjacent to other structure then .

8-way
9: Adjacent← True

10: end if
11: end for
12: end for
13: if Adjacent = False ∧ depth 6= 0 then . adjacency

check
14: return False
15: end if
16: return True
17: end procedure

There are two ways to implement the CHECKWALL func-
tion used in the wall placement algorithm. The first option is
to use the flood-fill algorithm. The second option is to use
the A∗ algorithm. Both algorithms use information from the
BWAPI to determine if a position is invalid. If a position is
invalid, it cannot be traversed. An invalid position is a position
where:

• The x or y position is outside of the map.
• The x or y position is outside of the 16×16 grid.
• The gap between buildings is not large enough (see Figure

2).
Hence, a valid position is a position on the map that does
not have these characteristics. The flood-fill algorithm uses 8
directional movements. For the implementation of A∗, we use
the Manhattan distance heuristic. Since the standard variant
of the algorithms are used, the pseudocode is not reproduced
here. The implementation details can be found in the source
code.

VI. EXPERIMENTS

A. Setup

In the first experiment of this paper, we investigated the
computing time of the wall-building algorithm. For this, we
have used the standard “1 barracks + 2 supply depots” to wall
off the starting location. This configuration is the standard
build order that is used in professional games where the
Terran player wants to protect the starting location from
rush strategies. We picked four CIG maps from the 2017
tournament and one from the general CIG map pool. The maps
we selected are:

• Hitchhiker 1.1
• Tau Cross 1.1
• Neo Aztec 2.1
• Andromeda 1.0
• Python 1.3
We have run the test on each map 20 times. The mean

running time of the flood fill and A∗ variant of the algorithm
can be found in Table I. The table reveals that A∗ decreases
the computation time considerably. The standard deviation can
be found in Table II. It shows that if our algorithm finds a
wall, it will do so quickly. However, if a wall does not exist,
our algorithm will try all possibilities, which causes the high
deviation.

Map/Algorithm Flood Fill A∗

Hitchhiker 1.1 11.6s 6.5s
Tau Cross 1.1 2.6s 1.7s
Neo Aztec 2.1 0.6s 0.7s
Andromeda 1.0 4.3s 3.3s
Python 1.3 15.3s 11.4s

TABLE I
RUNNING TIME OF EACH ALGORITHM VARIANT IN SECONDS. AVERAGE OF

20 EXPERIMENT RUNS.

Map/Algorithm Flood Fill A∗

Hitchhiker 1.1 11.0s 5.8s
Tau Cross 1.1 1.3s 0.6s
Neo Aztec 2.1 0.07s 0.7s
Andromeda 1.0 2.6s 0.2s
Python 1.3 14.4s 9.5s

TABLE II
STANDARD DEVIATION FROM THE RUNNING TIME OF EACH ALGORITHM

VARIANT IN SECONDS.

We have used this algorithm to give our StarCraft agent
LETABOT the capability to build a wall in order to stop a
rush build. Such rush builds are used by professional StarCraft
player and bots. Our wall-building algorithm was first used in
the CIG 2014 tournament. It has been used in every major
StarCraft AI tournament ever since. The effect of the wall
placement is especially notable when our agent plays against
a rush build, which is a popular strategy in the StarCraft AI
tournament. We got the following notable tournament results
with the help from this wall-building algorithm:

• CIG 2014: 3rd place
• CIG 2016: 3rd place
• CIG 2017: 4th place
• AIIDE 2014: 3rd place
• AIIDE 2016: 4th place
• SSCAI 2014: 1st place mixed+student
• SSCAI 2015: 1st place student division
• SSCAI 2016: 1st place mixed+student
• SSCAI 2017: 2nd place student division
In the last series of experiments we also tested what would

happen if LETABOT did not use the wall-building algorithm.
For this we disabled the wall-building algorithm in LETABOT
and put it up against two rush bots (CARSTEN NIELSEN and
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WULIBOT) on the 5 maps from the first experiment. The
results of that can be seen in Table III, winning only 51%
(±9.8%) of the games. If the wall-building algorithm is turned
on, our bot scores a 100% win rate against these bots.

What is noticeable, is that the wall-building algorithm does
not add much when playing on a large map like “Andromeda”,
where the size alone makes rush strategies less effective. Maps
where you start on the high ground and have a ramp that can
be used as a choke point, help in the defensive without walls
as well (“Hitchhiker” and “Python”). But with the exception of
large maps like “Andromeda”, LETABOT benefits from using
a wall-building algorithm to deter rush strategies.

Map/Bot CARSTEN NIELSEN WULIBOT

Hitchhiker 1.1 4-6 3-7
Tau Cross 1.1 5-5 0-10
Neo Aztec 2.1 10-0 0-10
Andromeda 1.0 10-0 10-0
Python 1.3 7-3 2-8
Total 36-14 15-35

TABLE III
WIN RATE OF LETABOT WITHOUT USING A WALL-BUILDING ALGORITHM

(FORMAT: WINS-LOSES).

VII. CONCLUSIONS & FUTURE RESEARCH

In this paper, we have shown two variants of an algorithm
that can be used for building walls in StarCraft. Unlike
other methods, this algorithm guarantees that a wall can be
used to ensure that a given unit cannot pass through it.
The downside compared to other methods is that iterating
through the possibilities to ensure that the wall is tight, is
a costly calculation. The A∗ heuristic search improves this,
but this algorithm is still mainly recommended to be used
for pre-calculating building positions to ensure a tight wall.
Because the map of StarCraft is static, this information can
be calculated and stored, such that it can be retrieved next
game and be used immediately. Thus this algorithm becomes
a tool, like the terrain analysis tool BWTA, which is used by
our StarCraft agent for choke point analysis and splitting the
map in regions.

One of the things still missing from the pathfinding is
the exact data on gaps created by the terrain. For now our
algorithm used the walkable data given by the BWTA. The
walls created by this are tight, but the criteria are stricter than
they have to be. Thus our algorithm sometimes report that
there is no wall possible, even though one exists. This explain
the large variance of running time between maps, since our
algorithm takes less time if it finds a wall (because then it can
terminate the search). Most of the time, an alternative wall
(further away from the starting position) will be found at the
cost of extra running time. This is especially the case on maps
like “Python”.

A way to improve the running time is to have some extra
checks in place for the structure placement to reduce the
number of placement choices that can be trivially calculated
not to be walls.
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Abstract—Growing interest in eXplainable Artificial Intelli-
gence (XAI) aims to make AI and machine learning more
understandable to human users. However, most existing work
focuses on new algorithms, and not on usability, practical
interpretability and efficacy on real users. In this vision paper,
we propose a new research area of eXplainable AI for Designers
(XAID), specifically for game designers. By focusing on a specific
user group, their needs and tasks, we propose a human-centered
approach for facilitating game designers to co-create with AI/ML
techniques through XAID. We illustrate our initial XAID frame-
work through three use cases, which require an understanding
both of the innate properties of the AI techniques and users’
needs, and we identify key open challenges.

Index Terms—explainable artificial intelligence, mixed-
initiative co-creation, human-computer interaction, machine
learning, game design

I. INTRODUCTION

With the swift development of artificial intelligence (AI) and
machine learning (ML) in recent years, their applications (dig-
ital games included) have become more sophisticated. With the
rise of algorithmic complexity, however, it is becoming in-
creasingly difficult for humans to understand these algorithms
and hence to have trust in them. For instance, while recent
development of deep learning techniques produced impressive
results, it is notoriously difficult for humans (programmers
included) to gain full insights into the system’s function.

In this vision paper, we focus on one group of human
users. We propose a new research area of eXplainable AI
for Designers (XAID) and specifically for game designers.
The increase in game AI sophistication opens up a new
creative design space for potentially new gameplay and/or
more efficient production. However, game designers (such as
rule designers, level designers and artists) often find these tech-
niques inaccessible and difficult to explore their full creative
potentials without a deep understanding of how they function.
To the best of our knowledge, there has been a lack of XAI
research to address this particular problem.

By focusing on a specific user group, their needs and tasks,
we provide the basis of a human-centered XAID approach
which facilitates game designers to co-create with AI/ML

techniques. XAID can enhance game designers’ capabilities
to co-create playable experiences with AI, including but not
limited to ML, agent control, procedural content generation,
and planning. We believe that, although fundamental under-
standings of the properties of different AI/ML techniques are
essential, the goal of XAID includes investigating the actual
usability of XAI in terms of how it supports game designers
in specific design tasks.

Below, Section II presents related work on XAI and mixed-
initiative human-AI co-creativity. We present our framework
on explainability and the three axes of XAID in Sections
III and IV. Through three use cases, we illustrate our initial
framework for XAID, requiring understanding both the innate
properties of the AI/ML techniques and users needs. Finally,
we identify key open challenges for future XAID research.

II. RELATED WORK

Current XAI research can be classified by the types of tech-
niques being illuminated (e.g. black-box techniques, white-
box techniques). Given the limited research on XAI for game
design, we also provide background on mixed-initiative co-
creation systems where AI and human designers work to-
gether, an interaction model we envision XAID to extend.
Finally, we review current evaluation methods of XAI.

A. Black-Box XAI approaches

Current XAI approaches for black-box systems such as
neural networks can be roughly divided into approaches that
aim to (a) visualize features, and (b) elucidate the relationship
between neurons. Visualizing hidden layers’ features [1]–[4]
can give insights into what network inputs would cause a
certain reaction in an internal neuron or in the network output.
In contrast to optimizing the network’s weights, as normally
done through gradient to train the network, a researcher
can use the same process to optimize an image that would
maximally activate a certain neuron. These techniques can help
to identify what certain neurons in a DNN pay attention to.

While these feature visualization techniques can offer in-
sights into particular neurons, other approaches aim at under-
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standing how multiple neurons in a network interact to reach a
decision. Techniques that aim to explain relationships between
neurons are known as attribution and a variety of different
approaches exists [2], [5], [6]. One of the simplest attribution
examples is the saliency map, which is a heatmap highlighting
which areas of the input image are most responsible for
reaching a certain output classification.

These approaches—especially when combined—offer some
insight into the inner workings of a neural network, making
DNNs more of a grey than a black box. While earlier work
tried to address this problem by e.g. creating decision rules or a
decision tree out of a neural network [7], how these approaches
will scale to modern DNNs is an open problem.

In a recent article [8], Olah et al. demonstrate how these
interpretability building blocks can be combined in a unified
interface to gain a deeper understanding of the workings of
a neural network. We believe these techniques could help in
creating compelling interfaces for designers.

B. White-Box XAI approaches

There is a large body of work in helping human users better
understand white-box AI techniques, whose inner workings
are transparent (e.g., simple decision trees). Earlier work of
XAI can be traced to expert systems and Bayesian networks
[9]. In a review, Lacave and Dı́ez [10] categorized existing
approaches into three main types: explanation of evidence,
explanation of the model, and explanation of the reasoning.
Notably, they pointed out a serious limitation in research which
focused mainly on theoretical models of explanation without
empirically validating these approaches with human users. We
argue that the current state of XAI, including both white- and
black-box AI, shares a similar limitation.

In the domain of planning, research in plan explanations
attempts to make the systems’ output more understandable
through a more understandable representation of plans [11]
and by generating explanations using natural language [12].
More recently, the focus has shifted from explaining the plans
themselves to explaining how the planner produces its output
[13]. There is growing interest in explaining the planner’s
behavior through verbalization [12], [14].

Specifically for games, limited work exists on explaining the
underlying white-box systems. As an example, the graphical
representation of behavior trees has made it easier for game
designers and artists to understand how the underlying AI
functions. Another loosely related work is on explaining utility
AI: [15] annotates positions in a 3D shooter game based on
their strategic value (e.g. at the right distance to an enemy with
coverage from secondary threat). However, there is very little
work on explaining white-box AI techniques for the purpose
of facilitating design tasks.

C. Mixed-Initiative Co-Creative Systems

We envision XAID as a useful way to facilitate game
designers in their work. Interfaces intended to help designers
create content and, more broadly, design games have long been
challenged to provide appropriate, informative feedback to

their end-users. Game engines and their editors offer a variety
of intuitive interfaces for simplifying a user’s tasks. Through
the use of AI, these computer-aided design tools are elevated
to mixed-initiative co-creative systems [16] where ‘both the
human and the computer proactively make contributions to
the problem solution, although the two initiatives do not need
to contribute to the same degree’. Likening the design process
to a dialog between colleagues [17], computational initiative
can refer to the task initiative (i.e. who initiates the dialog),
speaker initiative (i.e. when each actor will speak, and whether
actors can interrupt each other), and outcome initiative (i.e.
who decides when the dialog is finished or the problem is
solved). The dialog analogy clarifies how explainable AI is
vital in conveying to the user its reasons in taking any of task,
speaker or outcome initiatives mentioned.

Numerous mixed-initiative co-creative tools have been de-
veloped over the last decade for game design, although for
the most part as academic rather than commercial endeavors.
Many of these tools focused on explaining the properties of
game design artifacts that the computational designer pro-
duced for direct use or for further editing by the human
designer [18]–[20]. For example, Sentient Sketchbook [18] au-
tonomously creates levels as alternatives to what the designer
is currently doing, and there is no explanation regarding such a
task initiative. If the designer stops and observes each compu-
tational suggestion, the interface displays numerically which
functional level properties (e.g. area balance or exploration)
improve or decrease compared to the current human sketch.
Through fairly simple visual feedback (e.g. plus and minus
signs), the tool attempts to explain why this suggestion could
be desirable or undesirable to the designer.

Numerous mixed-initiative tools have focused on visualizing
such properties of their specific artifacts for each user (and
in the case of Danesh [20], properties of a large sample of
artifacts). However, there is little research in explaining the
creative process (rather than the final artifact) in co-creative
tools, and all attempts to date have focused on visualizations
rather than on natural language generation of the explanation.
On the other hand, there have been several interesting attempts
at explaining autonomously creative processes (without a
designer involved either as a co-creator or as a consumer of the
explanation) both in game generators such as Angelina [21]
and in broader creative software such as The Painting Fool
[22]. Many of the positions in this article, especially in Section
VI-A, borrow from these white-box generative systems.

D. Measuring Explanations

While there is no established definition of explainability and
how to measure it, ultimately explanations serve to build un-
derstanding and possibly trust between the AI and the user or
beneficiary of the AI. Testing understanding of software has a
long history in human computer interaction and education. For
complex mechanisms of AI and ML, understanding requires
testing model induction: how does the induced mental model
a person holds match or differ from the actual model?
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The typical route for model testing is through instance
testing: given a specific instance, can a human predict or
determine how the model will act? Complex instances may
be decomposed into sub-instances or competencies and tested
in smaller measures to determine the level of model match and
understanding. The learning rate, precision, and recall of the
process and the induced model are important factors. Expla-
nations that improve these can lead to a qualitative measure
for comparison between explanations. Some explanations may
require more mental processing to learn, so task loading is
also a consideration. Measuring trust in machines is a complex
issue and still an active area of research in psychology [23].

III. EXPLAINING EXPLAINABILITY

Developing XAID to facilitate design tasks first requires a
thorough understanding of explainability and how it connects
to the properties of different AI/ML techniques. Interest has
been increasing in better understanding some of the learned
AI models, specifically in the field of machine learning. Tech-
niques that are reduced into networked structures of weights
with complex topologies and varying transformation functions
embedded in them are notoriously difficult to understand by
humans. Yet, with the recent advances in deep learning, these
models are being used in a broadening and critical set of
everyday life applications. Reliance on ML for critical tasks
and especially those involving human-life requires trust, which
is typically gained through some level of transparency that
facilitates a comfortable level of model understanding for the
person giving that trust [24].

Explainability is not just needed in opaque, machine-learned
models, but in many facets of AI. We define explainability as
being clear of obscurity and understandable in all aspects. This
means that to truly understand something, we must be able to
introspect all of its mechanisms. Some argue that this a white-
box view of explainability; we maintain that this is the only
true explainability: the ability to answer why questions.

Axiom 1: Explanation without introspection is not
explanation.

An argument can be made that some reactive (black-box)
techniques are fully understandable from observation of all
potential combinations of input and their related outputs. This
black-box view does provide an understanding of behaviors,
but does not address the obscurity of the underlying model, and
thus we call this Observable AI, which is valuable and may
suffice for proper model induction in humans. Observation,
however, is not an explanation: it cannot truly answer why it
does what it does. It is also important to note that black-box
testing of complex models may be intractable, so observable
behavior may have a level of uncertainty that matches the
inconsistencies and incompleteness of the observations made.

Axiom 2: Understanding through external probing is
observation.

If we look at the spectrum of AI techniques as shown in
Fig. 1, we can reduce them to a dimension of reactive to
deliberative—or through Daniel Kahneman’s lens [25], fast

Trained Classifier
Deep Learning 

Policy Performer
Neural Network

Reflex Reinforcement
Learned Policy 
Performer

Reinforcement Learning

Planner

Classifier Trainer
Min-Max

Reasoner

Reactive (Fast)
<1sec

Deliberative (Slow)
≥1sec

Fig. 1. AI/ML Techniques on a reactive to deliberative Scale.

and slow thinking1. Performing thinking as a reflex, which
is a stimulus-driven control policy, is something that an agent
may have been created with. Such a thought (which came into
existence as a black box) can not be inspected and may never
be truly explainable.

Axiom 3: Reactive elements that have always been
reactive from inception are not explainable, but may be
observable.

Many reactive elements are created through deliberative
training processes as shown in Fig. 2. Deliberative processes
have the property of all being inspectable and procedural. This
is not to say that all deliberative techniques are explainable, but
their obscurity comes from complexity (e.g., processes with
many steps, stages, or interoperable rules), not reduction.

Conjecture 1: Deliberative elements may require explain-
ability due to complexity.

Trained Classifier
Deep Learning 

Policy Performer
Neural Network

Reflex Reainforcement
Learned Policy 
Performer

Reinforcement Learning

NN Trainer
Planner

DNN Trainer

Classifier Trainer
Min-Max

Reasoner

Reactive (Fast)
<1sec

Deliberative (Slow)
≥1sec

Fig. 2. Mapping deliberative AI/ML techniques to reactive processes.

Obscurity in reactive elements comes from dimensionality
reduction of the state space or the data. This reduction is the
condensation of training data into a model, by transforming
data and state space topology from the deliberative process to
the reactive.

Conjecture 2: Reactive elements may require explain-
ability due to reduction of training into a model through
data and topology transforms.

If we want to understand and inspect a reactive model,
the explanation lies in the deliberative portion that created
the model. This typically has a temporal aspect to it. The

1For a complex agent, such as humans, the line between how much of what
an agent uses for decision-making exists in the reactive versus the deliberative
scale is an open area of research.
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exception may be one-shot learning techniques, which is a
topic for another paper.

Axiom 4: The explanation of a reactive model lies in the
deliberative process that created it.

For reactive processes, the ways in which eXplainable AI
(XAI) techniques may manifest themselves is via injection
of explainable notes to the reactive process; these notes are
created by the deliberative process(es) that led to the reactive
process, and provide a surface for post-hoc analysis of the
training of the reactive model in the deliberative process(es).
Alternatively, the deliberative process(es) may generate a sep-
arate explanation in the process of creating the reactive model.
These explanations serve to illuminate the reduction process
and the impact of what is learned that drives the reactive model
behavior. These aim to largely answer the what and why details
of decisions the model will make based on perception or who,
what, when, and where influenced the behavioral response. It
may also answer the more mechanistic how.

For deliberative processes (such as those shown in Fig. 2),
the ways in which XAI techniques may manifest themselves
is by making the complex tractable for human understanding.
It is a reduction, reorganization, or reframing of the complex
into something understandable that maintains the transparency
and introspection of the model.

IV. EXPLAINABLE AI FOR DESIGNERS (XAID)

It is generally agreed upon that the goal of XAI is to increase
users’ trust, their ability to interact with the systems and with
their decisions, and improve the transparency of the system
[13]. However, most existing work focuses on new algorithms
of XAI rather than on usability, practical interpretability and
efficacy on real users [26]–[28]. Although we believe that
fundamental understandings of the properties of different AI
algorithms are an essential part, XAI techniques should be
developed with specific users and their needs in mind if they
are to fulfill their promise.

We propose a new area of research in eXplainable AI for
Designers (XAID) who create interactive digital products built
on AI components. As AI and ML techniques are mature
enough to reach commercial products (e.g. computer games,
virtual assistants, smart objects), designers need to understand
how the AI component works in order to devise desirable ways
for the end-users to interact with the systems. Unlike the end-
users of an AI system, designers constitute a unique user group
because they not only consume the results of AI systems, but
also co-create with them. To the best of our knowledge, no
XAI work focuses on designers and co-creation.

In the rest of this paper, we focus specifically on game
designers (such as rule designers, level designers and artists)
who do not have a strong technical background in AI. The key
purpose for XAID is to (a) provide designers with sufficient
understanding of the underlying AI system and its behavior,
and hence (b) facilitate their design tasks through co-creation.
Our positions are the following:

1) Work in XAID needs to build on understanding of the
nature of underlying AI techniques. As argued above,
different AI techniques afford explanations with intro-
spection while others afford only observations. Although
both can be useful for designers, understanding the
option of explanation and/or observation can help shape
how XAID can support the co-creative process between
designers and AI.

2) Work in XAID needs to center on specific human users
(e.g. game designers) and their specific needs and tasks.
Compared to more general XAI research, XAID as
proposed here has the advantage of a more concrete
if narrow scope. Through the three specific use cases
in Section VI, we argue that work in XAID should be
designed for and evaluated with specific users.

V. MAPPING THE SPACE OF XAID

In a broad stroke, we describe the XAID space along three
main axes, each one spanning its own spectrum.

A. Spectrum of Explainability

We first identify the XAID spectrum of explainability,
ranging from explanations that provide introspection into the
operation of AI techniques to observations that offer insights
of the input-output pattern. Explanations can provide designers
with information such as the chain of actions and why the
algorithm takes a specific decision. Observations, for instance,
can be used to inform game designers of all the possible
actions an AI-controlled non-player character (NPC) will take
at a given game state and the likelihood of each action.

Although the decision between offering explanations or ob-
servations relate to the properties of the underlying algorithms,
as argued above, it also depends on the needs of the designers
and their tasks. For example, observations may be the best
choice for level designers working with a white-box NPC
AI because understanding the exact operation of the AI is
not necessary to their design task and may cause information
overload. By contrast, a game designer tasked with game
balancing in the same project may need to know exactly
why the NPC performs certain actions—especially if they are
unexpected—in case the game attributes themselves (which
may influence these decisions) need to be corrected.

B. Spectrum of Initiative

A crucial aspect of any AI-assisted design system is the
degree and type of initiative that it can take in performing its
tasks. The spectrum of initiative traces the limits of a system’s
intervention, and it determines the kind of explanations that it
may be expected to provide. We can distinguish three bands in
this spectrum, corresponding to the level of system initiative,
each with its typical kind of explanation.

At the lowest level, the system passively waits for the
designer to request assistance, e.g. some on-demand analysis.
For this, a typical explanation can include a simple description
of the task performed, possibly with a number of meaningful
parameters used to yield its output.
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At the next level, we can devise AI assistance that requires
a higher degree of autonomy. Correspondingly, the kind of
explanations involved in their execution has an increasing
complexity. Some examples of these (together with a possible
explanation) are:

• explore how to proceed (e.g. describe the space of
possible alternatives, sampling methods used, evaluation
criteria);

• sketch a range of choices (e.g. characterize the extreme
points of a range of options, to give insight into what it
involves);

• warn a designer regarding some risk ahead (e.g. look
ahead for what-if analysis, to identify and describe con-
flicts or risks)

The explanations mentioned in these examples require a con-
siderable understanding of the processes and goals at hand.

Going even higher on the spectrum of autonomy and
initiative, we can devise an AI system working on par with
the human designer, taking on activities more as a colleague
than as an AI assistant. At this level the tasks, outcomes and
explanations are currently only expected from a human co-
designer, not an AI assistant. Examples of these could be:

• making informed design choices (e.g. based on the aware-
ness of the goals of the design task);

• intervene to suggest the best way to proceed, e.g. switch
focus to another task, attempt some alternative solution
or try to avoid an early commitment (justifying such
suggestions requires a much deeper understanding of both
the design situation, its history and the available options);

• signal and correct a ‘mistake’ made by the designer
(this requires explaining why it is perceived as a design
mistake, e.g. violating some previously stated intent, and
finding out alternatives with a better outcome);

• propose a sensible task division (explaining such a pro-
posal will likely need a formidable amount of knowledge;
in addition to the above, this typically human activity
requires meta-knowledge on both the nature of each sub-
problem, their relation to the ultimate goal sought and
the competences of team members, AI or otherwise).

For some more down-to-earth activities, one can imagine
them taking place at any level of the spectrum above. For
example, the creation of a specific type of content could be
either explicitly issued from a procedural content generation
(PCG) algorithm by a designer, suggested by the system at
some appropriate stage, or autonomously performed as a fitting
complement to whatever else the designer is doing. However,
explanations on that same activity will likely have to vary
according to the level of initiative being taken.

C. Spectrum of Domain Overlap

Another aspect of XAID is the amount of overlap between
the tasks performed by the designer and the tasks performed by
the AI. To a certain degree, this can be considered the degree
of co-creativity that is needed, and can similarly affect how
(or how much) each task by the AI needs to be explained. The

spectrum of domain overlap ranges from the scenario that AI
and a human designer making use of the same tools applied
to the same task (on-task co-creative activities) to the scenario
that a human designer is working on an aspect of the game
while the AI handles another that only tangentially be affected
by the designer’s input (off-task co-creativity).

Let us consider how the explanations differ between on-
task and off-task AI co-creativity. If an AI and a designer
work on the same domain, e.g. changing the same game
level using the same tile-based structure as is the case in
Sentient Sketchbook, the explanations provided by the AI
should be fairly specific as the designer (a) is very aware of
the terminology and current problems of the work in progress,
(b) can directly observe the elements that the AI refers to, and
(c) must be able to take immediate decisions regarding the
AI suggestions, e.g. to accept or reject them. In an example
of an off-task collaborator, we consider a designer who is
creating a level which an AI agent playtester attempts to
solve, similarly to Roppossum [29]. In such a case, the human-
made artifact (level) directly affects the AI agent, but the
explanations provided by the playtester should focus on level-
specific concerns (e.g. “this platform is 90% likely to cause
me to overshoot, if the player has poor reflex time”), rather
than explanations of its behavior. The level designer may not
be knowledgeable of (or interested in) the AI agent’s internal
decision-making priorities, but instead may be interested why
the level is deemed unplayable by the AI agent.

VI. THREE USE CASES

In order to illustrate the human-centered perspective on
XAID described so far, we discuss three different use cases.

A. Use Case 1: White-Box PCG System

The first use case tackles the problem of a level designer
who is using a computer-aided design (CAD) tool to create
the perfect overworld map for a free-roaming car-racing game
similar to Mad Max (Warner bros 2015). Apart from typical
CAD functionality such as texture brushes, mesh placement
and camera movement, the tool can generate the entire level
(or parts of the level) on command. The algorithm for this
generative component is based on grammars, which have been
inserted into the system not by this level designer, but by a tool
programmer who may not be working in the same company.

The above instance is one of on-task collaboration (the two
designers literally work on the same map), and the level of
initiative is on-demand. Due to the deliberative steps that
a grammar generator takes, the algorithm can narrate its
generative process as textual output, which is in the form
of explanation. Given the fact that the generative grammars
follow a fairly transparent process, we could conceive that
the explanation generator could be included within the pro-
cedural generator with a sentence produced after relevant
commands, function calls or choices: in this particular case,
grammar expansions. This goes beyond a simple log of steps
and decisions taken, e.g. it may also carry information on
the context influencing those decisions. Generative grammars
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have an ideal generative architecture for such an explanation
because it is, in many respects, a pipeline: each expansion
produces an intermediate output that is passed on as input to a
further expansion [30]. Presenting to the designer a compelling
and intuitive narrative regarding the choices taken by the PCG
system can be done in a variety of ways, including:

• sequentially in the order that the system makes decisions.
This explanation can follow some form of story structure
which simulates e.g. the generative pipeline [22]. In order
to enhance (e.g. via natural language processing) how
the connections are made between different steps of the
generation, we can investigate work on story generation
so that the narrative is coherent and causal links are
made obvious. This can be achieved, for example, by
post-processing the generated sequence of sentences to
introduce throwbacks to past generative decisions which
affect future outcomes, or to foreshadow how one early
decision affects the final outcome.

• summary of highlights of the generative process, by
filtering out and omitting less interesting points in the
generated sentence structure. For this to happen, a number
of evaluation mechanisms are needed, defining criteria
to assess each sentence on its relevance (will this be
interesting to a human user?), clarity (will this be under-
standable by a human user?), or creativity (will this step
be a creative milestone [16] where the design shifts?).

• non-sequentially, summarizing the explanation starting
from the most important points regardless of when they
were performed in the generative process. Indeed, it
is possible to start by presenting a description (visual,
textual, or otherwise) of the final artifact and backtracking
some of its most interesting elements on points in the gen-
erative process where those happened. Moreover, tropes
such as sports game summaries can be used as inspiration,
presenting the main outcomes of the generative process
first (as non-sequential highlights) followed by a longer
form of the sequential narrative regarding how generation
progressed from unformed to fully formed content.

B. Use Case 2: Black-box PCG System

In a black-box PCG system such as a level generator or
world builder, the AI assistant needs to (a) share a common
language of design with the human designer, (b) communicate
its current understanding of this language, and (c) update this
understanding in response to designer feedback. Essentially,
this is the notion of establishing ‘common ground’ as for-
warded and explored by Herb Clark [31]. The designer will
provide input into the black-box AI assistant with the goal of
receiving a full or partial design from the system. For example,
assume that the AI assistant aims to generate the 3D geometry
for a city similar to CityEngine [32]. The input will be a size
of the land with topology on which to generate the city and
a set of parameters that are used in the construction of the
road and transit structures, building designs, and placement
of buildings in blocks along streets (as this is how humans
build cities). There is a lot of information to convey and

a nearly infinite way to construct cities; however, cities are
created all the time—even virtual ones. The black-box PCG
system will need to be clear about how it takes that input and
ultimately how that connects to and affects the output. It is the
transformation by the AI from input to output that needs to
be explained and this is where common ground is leveraged.

A designer first working with an AI assistant could spend
a great amount of time probing the system with variations
and developing a mapping (or model) of how changes in
input impact output (learning by observation). However, that
is quite tedious and a more abstract, explained transformation
process would be faster to comprehend and work with for a
designer. A human may direct an AI assistant to build a city
in the ‘American style’; knowing that this means a city laid
out in generously-sized square blocks with most streets having
simple intersections is an easy and powerful way to produce
a desired design. Ultimately, this is a direction for an agreed
concept in the transformation process of the technique. There
are a lot of details needed to produce that design, which are
encapsulated in a specific design concept. Mechanisms that
build and update that common ground language and mapped
meaning need to be added to the techniques inside the black-
box. For reactive techniques, the artifacts of training data and
the process of machine learning may need to be included in
some form to facilitate explanation of the internal mechanisms.

Imagine a black-box AI assistant using a DNN to recognize
ideal topology for road placement, which is then placed by
a set of construction rules biased by a provided set of city
road layout examples filtered by design language labels. In
order to build common ground, the AI assistant will need to
interactively show the designer how the provided land and
topology are perceived and how its prior examples are used
to generate roads based on the language provided, as well as
how these concepts may roll-up hierarchically in the system.
This may involve keeping connections to the training data used
in the deliberative creation process of reactive techniques in
the system. Thus, the system reveals enough information to
allow the induction of a model of the AI in the designer.
When a mapping of the designer’s internal model is connected
to a correct induction of the AI assistant’s internal model,
common ground is established by sharing a language, an
understanding, and the ability to update both sides easily. The
key challenge is how and what to share to build that model in
the designer’s mind without exposing them to the potentially
massive amounts of data used to train the network and used by
the system for making decisions. Induced models in humans
can be tested by predictive capability and accuracy.

On the XAID spectra, black-box PCG AI assistants for
designers require the most explainability as they involve
learning, recognizing, and extending patterns to create content
the subtleties of which a designer will want to understand and
work on together with the AI. On initiative, these systems
are likely to be on-task colleagues or have high-functioning
autonomy. On domain overlap, as the example given in Section
V-C, creating content with an AI will have high overlap, but
on-demand and often turn-based. The PCG AI assistant and
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the designer work closely together, refining until the desired
content is produced. The designer provides the vision, the AI
provides capabilities, and they merge that into the creation.

C. Use Case 3: Black-box NPC Behavior System

In a third use case, imagine an enemy NPC behavior
controlled by a trained DNN. The goal of the game designer
is to see whether the NPC behaves as intended in a new game
level (in our case, an infirmary). Since the network encodes
complex NPC behaviors in an opaque way, an XAID system
should be able to help the designer to better understand the
NPC AI. We design this XAID task to be observable and
passively awaiting the designer’s request to provide insights
on how the NPC will behave.

Two types of information are of particular importance to
the designer. First, given the layout of the level, what is the
likely distribution of actions the NPC will take? For example,
at the entrance of the infirmary, how often will the NPC
walk straight inside, turn left to interact with another NPC,
or turn right and avoid the level altogether? This distribution
can be approximated through sampling, i.e. letting an NPC
play a certain level multiple times with slight variations in
starting position, etc.. If it is crucial for the player to encounter
this NPC and the latter has a high chance of leaving, the
designer needs to be informed and be provided with a reason
why this happens and how to correct it. Through a mixed-
initiative approach, the system could also suggest changes
to the environment that would make the desired behavioral
outcome more likely.

Second, given a particular NPC action, what are all the
possible situations that can lead to this action? If the NPC
sometimes has the unexpected behavior of shooting at a
window, it would be helpful for the XAID to show all the
situations where this will happen. By providing a full list of
scenarios that will lead to a particular action, this feature will
make the NPC behavior system more predictable and thus may
increase designer’s trust in the behavior system. Methods such
as feature visualization and attribution (Section II-A) can give
insights to what stimulus the network will react to. To the best
of our knowledge, however, there is currently no approach that
can do all of this in an automated way.

Given the large number of possible actions and/or situations,
similar to highlights in white-box PCG systems, a good design
guideline for XAID is to highlight the unexpected and reduce
the visibility of the common ones. A key open challenge to
providing both types of information to a human designer is
how to design the reward function for the NPC.

VII. OPEN CHALLENGES

In this section we point out some of the open challenges
in providing useful XAID in relation to both white-box and
black-box systems, as well as their combination.

A. White-Box Systems

An open challenge in providing useful XAID is how to
fit the entire process of the white-box system into something

that is compact and yet sufficient for designers. Similar to
how a black-box ML model can show all of the training data
(Section VII-B), a white-box model can explain (i.e. narrate)
the sequence of all actions that it takes (including iterations
within loops). The challenge is how to cluster or omit activity
reports that are less relevant for the designer to know. Some
of the actions reported may be too ‘esoteric’ (i.e. tied to
the system’s internal method of understanding the world or
producing new artifacts) for the user to understand. In order
to create ‘highlights’ as noted in Section VI-A, the challenge
of evaluating subjective notions such as interestingness or
relevance may require a computational model of the individual
designer [33]. Moreover, such criteria might need to operate
beyond the horizon of a single sentence; the whole narrative
(sequence of sentences) must be produced before the most
interesting points within it are chosen in a post-processing
step. In addition, the concrete features of the final artifact (be
it game content, NPC behavior, etc.) may also be relevant for
this post-processing.

B. Black-Box Systems

While different techniques are now emerging that can give
some insights into the working of black-box systems such as
neural networks (surveyed in Section II-A), they can currently
only help to interpret a model but lack full explainability. The
more complex these models become, one can wonder if it will
ever be possible to fully explain their inner workings.

Meaningful abstraction from base provenance can be dif-
ficult. While it is possible to show all the training data or
even clusters of training data for explanation, this process may
overwhelm a user and fail to induce a model of understanding.
Providing proper, meaningful and likely hierarchical abstrac-
tions of training data and the transformation into learned
models is an open challenge. While the core question that leads
to understandable AI is ‘why?’, the answer should come from
introspection, which is an open challenge for many techniques,
especially black-box methods.

C. Combined approaches

While explaining white-box and black-box systems is dif-
ficult in the context of XAID, understanding complex AI
systems with many parts and multiple techniques becomes an
even more challenging problem; understanding the sum is not
the same as understanding the parts. An important future direc-
tion will be the development of dialog and concept grounding,
building common ground between AI and designers.

VIII. CONCLUSIONS

In conclusion, we proposed the new research area of eX-
plainable AI for designers (XAID), to help game designers
better utilize AI and ML in their design tasks through co-
creation. Our position is that, in order to make usable and
efficient XAID systems, we need to build on understandings
of both algorithmic properties of the underlying AI techniques
and the needs of human designers. We mapped the space of
XAID with three axes—the spectra of explainability, initiative,
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and domain overlap—and illustrated our approach through
three specific use cases. Based on a deeper analysis into use
cases, we identified key open challenges.
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Abstract—General Video Game Playing (GVGP) has become
a popular line of research in the past years, leading to the
existence of a wide range of general algorithms created to
tackle this challenge. This paper proposes taking advantage of
this research to help in game design and testing processes. It
introduces a methodology consisting of using a team of Artificial
General Intelligence agents with differentiated goals (winning,
exploring, collecting items, killing NPCs, etc.) and skill levels.
Using several agents with distinct behaviours that play the
same game simultaneously can provide substantial information
to influence design and bug fixing. Two methods are proposed
to aid game design: 1) the evaluation of a game based on the
expected performance in the behaviour of each of the agents,
and 2) the provision of visual information to analyse how the
experience of the agents evolves during the play-through. Having
this methodology available to designers can help them decide if
the game or level under analysis fits the initial expectations.
Including a Logging System can also be used to detect anomalies
while the development is still at an early stage. We believe this
approach allows the flexibility and portability to be easily applied
to games with different characteristics.

Index Terms—methodology, General Artificial Intelligence,
automatic testing, game design, team of agents

I. INTRODUCTION

Games evolve during their development process, both in
terms of implementation and design. New ideas are put into
practice during the production phase and need to be tested
quickly and efficiently. While using human play-testing is
a broad practice, there is no denying that this impacts the
company in terms of resources (human and technological),
time and money. Agent-based testing is a suitable alternative
for automatic game testing, and there is a prolific body of
work (as described later in this paper) that uses game specific
agents to evaluate content and agent behaviour. Although this
can provide some advantages for fast and reliable testing, the
design and implementation of these specific agents may not
be adaptable enough to the changes designers and developers
are regularly introducing. The use of general algorithms, on
the other hand, provides a level of generalisation, portability
and flexibility that cannot be matched by game-specific ones.

This paper proposes a methodology consisting of a team of
Artificial General Intelligence (AGI) agents with differentiated
goals to aid the design and testing processes during the devel-
opment of a game. Each of the agents forming the team has
its own objective (winning, exploring, collecting items, killing

NPCs, etc.) and skill level. This set up provides a flexibility
that would not be possible using just one. The designer can
choose the agents to run and set their expected targets of
performance. Each of the specialists selected plays the game
under evaluation focusing on its own goal and, as a result, a
Logging System and two types of reports are generated. The
first one gives information about how accurate the estimated
performance for each of the behaviours is, compared to the
actual results. The second one shows a graph that provides
visual feedback of how certain information of the game is
retrieved by the agents and evolves during the play-through.

This team of general agents is meant to respond to changes
and updates across multiple dimensions of game design:

1) Rules: The base of every game. Making any change to
the rules can trigger unexpected outcomes and affect other
rules in a way the designer did not plan to. General agents are
independent of the rules so they do not need to be adjusted
when they change to be able to check that everything is
working as it should be. It grants the possibility of carrying out
immediate testing to detect anomalies as soon as they appear.
It provides flexibility to the methodology, and it is one of the
core ideas of the approach proposed in this paper.

2) Levels: Where the action takes place. They shape how
the game is presented to the player. It includes increasing
the level of difficulty, reachable areas and distribution of the
elements of the game: the proportion of enemies by stages,
collectable items dispersed uniformly, etc. Reports from each
one of the general agents after they have played a certain level
can provide the information needed to check that these points
are covered as expected. An example would be analysing the
evolution of the number of Non-Player Characters (NPCs)
eliminated by the Killer (III-B8). The designer should be able
to notice peaks and an abrupt increase in the numbers in those
stages where they expect a big confrontation. If the play-
through graph does not present those peaks, the level should
be reviewed and fixed to work as desired.

3) Non-Player Characters (NPCs): NPCs’ performance
and interactions with the player have a big impact on the
experience while playing the game. Any update on their
implementation should be tested and their impact on player
experience analysed and measured. Analysing the general
agents’ reports and behaviour could provide an insight of this.
For example, checking the number of deaths vs. kills of the
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Killer after a change is done to the NPCs, comparing the
difference on percentage of life lost between two Killers with
known disparate level of mastery, or tracking the whereabouts
of the NPCs (logging similar information to the one measured
for the team) for behavioural checking.

4) Game Parameters: Even small updates in the parame-
ters can have a big impact in the game. An example is updating
the height of the jump of the avatar: if it is set to a very low
value, they might not be able to reach some areas of the game,
affecting the exploration. Analysing the information provided
by the agents can give a clue to know if the parameters are
set properly. In this example, the percentage of the exploration
reached by the Map explorer (III-B2) when the height of the
jump is modified could increase or decrease abruptly.

The proposed methodology works within the game. If using
algorithms specific to the game, every time any of its elements
is changed the algorithms would need to be updated as well.
Having general algorithms, with general goals independent
from the rules, implies that they do not have to be modified
every time a change is done. This is considered to be one of
the biggest strengths of the method proposed in this paper.
Another discussed benefit is being able to use the same
algorithms, without modifications, in different levels of the
same game as they are being created. Because of the general
goals, the heuristics would not need to be updated to fit
the specifications of a new level. It would allow checking
if it fulfils the expectations almost immediately after being
included in the game. Finally, as Section II-A states, there are
many types of GVGP algorithms, which provide a wide range
of options depending on the technology, characteristics and
implementation of the game considered. An example would
be the availability of a forward model or not.

The use of General AI does not mean that some game-
specific tweaks should not be added to improve the heuristics
performance, as long as the main general goals are not
changed. The strength of the proposed approach is based on
the generality, flexibility and robustness concepts of general
AI, which can adapt to significant changes in the game design.

This paper provides an overview of General AI frameworks
and automatic testing approaches in Section II, followed by
the description of the proposed methodology in Section III.
Section IV describes the limitations of this approach, and
conclusions and possible extensions are detailed in Section V.

II. BACKGROUND

A. General Video Game Playing

General Video Game Playing (GVGP) aims to develop
algorithms capable of playing video games without having
prior knowledge about them, with mere access to the state
of the game and the available actions [1]. The interest in the
research in this area has grown in recent years.

The most common techniques to tackle the problem, with
different implementations, are the use of Reinforcement Learn-
ing (RL), Tree Search and Evolutionary Algorithms. In order
to provide the resources to be able to develop and study
these different approaches, a series of frameworks have been

created. The main open-source frameworks available to the
research community are the Arcade Learning Environment
(ALE) [2], the General Video Game AI Framework (GVGAI)
[3], OpenAI Gym [4] and Project Malmo [5], among others.
These frameworks share the desire of encouraging the study
of the Artificial General Intelligence (AGI) but have different
characteristics, leading to the creation of numerous types of
algorithms, which keep growing and being improved.

One of the first general frameworks is ALE, a testbed for
comparing and evaluating planning and learning algorithms,
providing an interface to Atari 2600 games, like Space In-
vaders and Ms Pac-Man [2]. Most of the research carried out
using this framework has focused on Reinforcement Learning,
as Mnih et al. work [6]. They showed how using Deep Q-
Networks (DQN) receiving only a screenshot and the game
score as inputs through a set of 49 games it was possible to
achieve a level of performance comparable to a professional
human player in many of the games tested. The environment
also allows the use of planning algorithms, but the research in
this area using this framework is very rare. A reason for this
could be the complexity in finding heuristics general enough
to have good performance over all the games [7].

The GVGAI Framework has been used for the ongoing
GVGAI Competition since it was run in 2014 [3]. The
games used to benchmark the algorithms are described in the
Video Game Description Language (VGDL) [8], originally
implemented in Python by Tom Schaul [9]. It allows the
implementation of single and two-player 2D Arcade games.

Providing a forward model that allows agents to foresee
the possible states originated by taking any of the available
actions, the first competition encouraged the submission of
single player planning algorithms. Over the years, the compe-
tition has been expanded to cover other novel areas of general
AI, releasing two-player [10], level [11] and rule generation
[12], and a learning track [13], which removes the availability
of the forward model and provides a screen capture to promote
research on other learning algorithms.

The algorithms developed to work in this framework and
submitted to the competition are very assorted: several vari-
ations of Monte Carlo Tree Search (MCTS) [14], including
its Open-Loop variations (OLMCTS) that works better in
stochastic environments, and evolutionary algorithms, like
Rolling Horizon Evolutionary Algorithm (RHEA) [15] and
Random Search (RS). Two algorithms that, so far, have shown
best overall performance, and therefore, have been claimed
winners of some of the competitions, are Adrien Couëtoux’s
Open Loop Expectimax Tree Search (OLETS) [3] and Joppen
et al.’s YOLOBOT [16]. An insight of the framework, its wide
use, algorithms implemented and a complete list of the winner
algorithms per year can be found in a recent survey [17].

Another popular toolkit is OpenAI Gym, oriented to test
Learning approaches providing a common interface for a col-
lection of environments based on pre-existent RL benchmarks
[4]. It includes, among others, Atari, which uses ALE. This
collection grows over time.

In contrast with other frameworks, it provides an abstrac-
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tion for the environment instead of the agent and does not
provide a hidden test set. OpenAI encourages peer review
and collaboration by sharing the code and a description of
the approach followed, instead of arranging a competition
between the algorithms. The framework focuses on both the
performance of an algorithm and the amount of time it takes
to learn. It keeps a strict version number scheme every time a
change is made in an environment.

Finally, Project Malmo is a platform built on top of
Minecraft designed to support AGI research in reinforce-
ment learning, planning, multi-agent systems, robotics and
computer vision [5]. In this framework, agents are exposed
to a 3D environment with complex dynamics that provides
the experimenters with the tool to set complicated tasks. In
2017, the Malmo Collaborative AI Challenge1 was run using
this environment to encourage the research in collaborative
Artificial Intelligence. The goal of the competition was to
create agents capable of learning to achieve high scores when
working with a range of both artificial and human partners.

The existence of these (and other) frameworks implies that
there is a huge variety of algorithms with different character-
istics, weaknesses and strengths, at everyone’s disposal. There
is a large and active community of researchers working on
improving those general algorithms and creating new ones.

B. Automatic Testing and AI Assisted Game Design

When creating a game or adding new levels to it, they should
go through a testing process to make sure their characteristics
are aligned with the expectations and that no bugs are affecting
the gameplay. The Quality Assurance (QA) of the games is
usually carried out manually by members of the development
team or game testers. Automated testing aims to facilitate
the QA by using automatic processes. They are generally
game-dependent, which is a big limitation as they should be
implemented specifically for the game under development.
This paper proposes a methodology general enough to be
easily adaptable to any game, without having to invest much
time in game-specific setting ups.

Intrinsic motivation refers to a series of physical needs that
motivates a certain behaviour without the direct existence of
an external reward like the score. S. Roohi et al. state how the
emerging field of simulated-based game testing looks promis-
ing [18]. Being able to use simulated agents instead of human
players to provide feedback during the game design process
can increase the speed and reduce the costs. These authors
review the existing literature on intrinsic motivation in player
modelling, focusing on simulation-based game testing. They
come to the conclusion that its application to automatic testing
is sparse and hope that their work would provide new ideas
to the research community. This paper takes this inspiration
and suggests using a series of agents (not necessarily just
intrinsically motivated) for simulation-based game testing.

In [19] Holmgård et al. present an approach for automated
playtesting using archetypal generative player models called

1https://www.microsoft.com/en-us/research/academic-
program/collaborative-ai-challenge/

Procedural Personas. In this work, they use a variation of
Monte Carlo Tree Search (MCTS) where its Upper Confidence
Bound (UCB) equation is adapted by evolution to be able to
create players with differentiated goals and behaviours. They
create four Procedural Personas (Runner, Monster Killer,
Treasure Collector and Completionist) to play their test game
Minidungeons 2 focused on four different primary objectives.
These are, in order, reaching the exit, killing enemies, collect-
ing items and consuming any game object that is possible to
be collected or killed. All of them were also given a secondary
goal: reaching the exit as quickly as possible for the Runner
or just being able to reach it, for the rest of them.

The authors ran a series of experiments to compare the
performance between the evolved personas and the baseline
algorithms and to test how different they interact with the
environment. The results show how all these evolved per-
sonas perform better than baseline UCB1 ones regarding the
computational time required to reach the exit and, therefore,
finishing the levels. They notice how these evolved personas,
even when all managed to reach the end of the level, had
differentiated play-styles depending on their primary goal and
were affected by the patterns of the level played. They discuss
how these personas with differentiated behaviours can be used
for level evaluation, either providing feedback to a human
game designer or assisting the improvement of automatically
generated levels, driven by their distinct play-traces. Because
they are oriented to provide useful feedback to the game or
level designer, they argue how they should define the utility
functions to fulfil the priorities of the design.

The methodology presented in this paper is inspired by this
work but aims to have a more general and portable approach,
capable of being applied to several different games without
having to design specific types, or utility functions to fit the
game under consideration. We believe that extending the idea
to use general agents, developed with general goals that can
be applied to several different games, can provide significant
advantages. A team of pre-defined types with general goals
and approaches gives the designer the chance to choose which
agents fit the characteristics of the game.

S. Nielsen et al. used the Relative Algorithm Performance
Profile (RAPP) approach to estimate the quality of a certain
game based on the performance of general agents [20]. They
compared the performance between known algorithms in a
range of hand-designed, mutated and random generated VGDL
games. Their premise argued that a game that has a high skill
differentiation is likely to be a good one. Despite the results
backing their hypothesis, complexity does not necessarily infer
quality and, by its own, this approach is not able to provide
further information about the game under evaluation.

The evaluation that this paper proposes is based on the
performance of the general agents, but using a different ap-
proach. Although RAPP can be used to make the methodology
stronger, there are some important differences to highlight.
Firstly, in [20] they used seven different general algorithms,
including an explorer, but they only based their performance
on the winning rate and difference of score. In our case, the
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agents used, if with distinct goals, are not compared between
them. However, they provide particular information about their
own play-through and performance based on each of their
objectives. Also, our methodology is expected to provide
deeper feedback and richer information than a mere state of
the good/bad quality of the game.

T. Machado et al. built the Computationally Intelligent
Collaborative EnviROnment (Cicero) [21], which is a general-
purpose AI-assisted tool for 2D tile-based game design. It was
built on top of the GVGAI framework, assisting in the creation
and development of VGDL games. It provides a game editing
mechanism to add the sprites and rules that form the game
and includes a mechanics recommender. It suggests certain
sprites and rules based on the ones added. It also grants an
automatic testing feature that shows game rule statistics in
real time and a level visualisation. To test the game, it is
possible to either play it manually or select one of the general
agents available in the framework. Running the game with a
general agent provides heat-maps of the player and the NPCs.
Also, during the automatic gameplay, a list with the different
rules and the stats for each of the interactions of the game
are shown. Cicero was expanded to include SheekWhence,
a retrospective analysis tool for gameplay session [22]. This
extension includes a recording of the gameplay to analyse the
sequence of events, being able to go forward and backwards
in the session. Its limitation is that it is very oriented to VGDL
and the GVGAI framework, impeding its application to a
wider range of games. Also, although general algorithms are
used for evaluation, it is not taking advantage of most of the
information that could be extracted from their play-through to
provide richer information to the designers. Moreover, these
agents’ ultimate goal is winning, so their behaviour is not as
assorted as including a team with different objectives.

III. GENERAL AI TEAM TO ASSIST GAME DESIGN

A. Overview

This paper proposes a methodology capable of assisting the
design and testing process during the development of a game.
The evaluation uses a team; a series of General AI algorithms
with differentiated goals (Section III-B). Each one of the
agents plays and behaves differently within the same game.
Extracting certain information from their play-through, and
having the right tools to interpret it can help the designer. They
can check if they are on the right path, or if a change needs
to be carried out to get aligned with the expected outcome.
In contrast with meta-heuristic approaches, where a heuristic
is involved in deciding which type of agent is run depending
on the state of the game, in our case, all the agents play the
game simultaneous and independently.

The methodology needs a series of entities to work. The
Designer is the final user and responsible for the game. They
want to make sure that the content (game or level) under
development fits the expectations of the design without errors.
They would provide the part of the Game and set up the
processes required for its evaluation. Three types of outputs
are generated after the methodology is applied to evaluate the

game, two of which are reports. Firstly, the Target Reports
provide the results of evaluating the game based on each of
the agents’ behaviours, compared to expected targets. These
targets are set before the tests are run. Next, the Visual
Reports provide visual information about the evolution of the
information retrieved by each of the agents during their play-
through. This information is presented in a series of graphs.
Lastly, the Logging System records the logs resulting from
the algorithms’ play-through to provide support for testing and
debugging (Section III-D).

The main steps of this methodology are as follows:
1) Setting up the team: There is a range of general

agents of different types and with a range of skills. The
designer can choose, and optimise, the ones they believe fit
the characteristics of the game and design expectations. They
can also set an expected performance for each of the agents.

2) Integrating the game: The methodology focuses on
being portable and flexible enough to be used with different
games. However, it is needed to set it up to be able to run the
algorithms, extract information from their play-through and
record the metrics in the Logging System.

3) Evaluation process: The types of agents and skills
picked by the designer are run a certain number of times in
the game provided. Each of the agents’ gameplay logs a series
of metrics and errors triggered to be able to have detailed
information about what happened.

4) Generating reports: The information provided by each
of the agents (Section III-B) is processed to generate the two
different type of reports presented in Section III-C.

B. The Team

This paper proposes using a series of general algorithms
with differentiated goals, capable of playing a game focusing
on their specific objectives. Differentiating the heuristics in
General Video Game Playing was introduced by C. Guerrero-
Romero et al. in [23], and some of the members of the
suggested team have been inspired by their work.

The inspiration also comes from R. Bartle’s player types
[24]. This work presented four approaches to play MUD
games, showing how the same game can be played in various
ways based on the motivation of the players, leading to distinct
behaviours. Even when this work is specific for MUDs, it has
been a reference to find types applicable to different games.
Recently, N. Yee has developed a player motivation profile
based on data from more than 250.000 players, coming up
with 6 main differentiated clusters of gaming motivations [25].

A team of agents focused on different tasks provides a
flexibility that would not be possible using just a specific
one. The general objectives presented in this section cover
different aspects, which could be present, or not, in a game.
The designer can accommodate the methodology to adapt
their intentions and needs by including the agents to fit its
characteristics. The following is a non-exclusive list of agents
proposed to form the team, their targets and the information
to provide:
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1) Winner: Focused on winning the game; maximising the
score when a winning state is not immediately reachable. The
information provided by an agent of this type can be the
number of wins, game ticks to victory, or strategy followed
when there is more than one option available.

2) Map explorer: Focused on covering the reachable areas
as much as possible. The information provided by an agent
of this type can be the number of different positions of the
map visited, the total percentage of the map explored, or game
ticks required to finish the exploration.

3) Novelty explorer: An alternative for an exploratory
agent is considering states instead of positions; going through
as many different game states as possible and providing this
number as a result. It is related to the Novelty appraisal
common in intrinsically motivated agents in AI [18]. Also, the
inspiration for this kind of agent comes from the work done
by M. Bellemare et al. in [26]. The authors proposed con-
necting the information gained through the learning process
and count-based exploration, which guides agents’ behaviour
to reduce uncertainty. This approach is designed to explore the
environments more practically and efficiently.

4) Curious: Focused on interacting as much as possible
with the elements of the game, always prioritising those
that have not been interacted with before. The information
provided can be the number of elements interacted with,
actions triggered when they happened, or game ticks required
to interact with the different elements of the game.

5) Competence seeker: Based on the model of empower-
ment of intrinsic agents, which denotes the degree of control
the agent feels having over the environment [18]. It is related
to the amount of information the agent is capable of collecting
when a series of actions are performed. It can provide informa-
tion about the level of expertise gained during its play-through.

6) Record breaker: Focused on maximising the score and
solving puzzles, without paying attention to the chances of
winning the game. The information provided can be the
number of points obtained, puzzles solved or game ticks
required for these.

7) Collector: Focused on collecting the items available in
the game. The information provided can be the number of
items collected, counts per type of item, or game ticks required
to collect the different items present in the game.

8) Killer: Focused on removing from the game as much
Non-Player Characters (NPCs) as possible. The information
provided by an agent of this type can be the number of NPCs
killed, the number of times killed by an NPC, counts per type
of NPC encountered, or game ticks required to kill all the
enemies present in the game.

9) Risk analyst: Focused on analysing the level of risk
during the play-through and taking actions to maintain it at a
certain level chosen by the game designer. A low-risk agent
would tend to avoid situations where the chances of losing
the game are high, like bumping into a hoard of enemies or
complex areas. A high-risk agent would tend to do the opposite
and jump into dangerous situations. The information provided
by an agent of this type can be the risk percentage predicted at

every moment, the number of deaths, NPCs killed, obstacles
overcame or game ticks until losing the game.

10) Semantic: Focused on tasks related to linguistics, as
coaching the dialogue of the game or making sure the narration
flows and is consistent. The information provided by an agent
of this type can be the estimated quality of the dialogues, the
number of possible outcomes depending on the choices and
the level of consistency of the narrative.

11) Scholar: Focused on learning the outcome of the
actions available, taking as much knowledge about the game
as possible. The information provided by an agent of this type
is the percentage of accuracy of the knowledge gained during
the duration of the gameplay. As it is needed to have concrete
information about the rules and outcomes of the interactions
with the game to be able to check the quality of the predictions,
the generality of this type of agent is improbable. However, an
agent with this kind of objective is an interesting addition to
the team as it can be used to detect anomalies during gameplay.
There is a high chance that an agent focused on this kind of
task finds unexpected rules or bugs on the existent ones that
should be fixed.

C. Assisting Game Design

Two different types of reports are provided in order to check
the validity of the design of the game.

The first kind is Performance-target based reports,
thought to evaluate the game based on the expected per-
formances in the behaviour of each of the agents. In the
experiments carried out in the GVGAI framework for the
work presented in [23], results for same heuristics algorithms
showed a clear distinction depending on the type of game.
A clear example is the results obtained using the Exploration
Maximization Heuristic (EMH). Algorithms using this heuris-
tic focused on maximising the exploration of the level. Their
performance was calculated by obtaining the percentage of
the level explored dividing the number of different positions
visited, by the total. In completely accessible maps in games
like Butterflies, the agents using the EMH ended up with an
average percentage of performance higher than 80% in most
of the cases. Whereas, in games with large maps, or where a
series of steps were needed to unlock the access to the different
areas, like Roguelike, any of those agents got an average higher
than 45%2. The presence of these differences on performance
can be used in designer’s benefit, providing an estimation of
performance that agents should achieve depending on the type
of game designed.

Before running the team, the designer would be able to
choose the agents considered appropriate for the game under
evaluation and to set an estimated desired percentage of
performance for each of them. After a series of runs carried out
by each of the agents, an error for the expected values would
be obtained and returned, to inform if there is an agreement
between the ideal values and the reported ones. For example, if

2This percentage was not explicitly mentioned in the paper, but it has been
taken from the same results obtained in those experiments
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a designer plans a game to be easily accessible but challenging
to win, they would assign a high desired value to the Map
explorer and a low value to the Winner. After several runs
of the agents, the errors would be reported by calculating the
difference between the targets and the real values. With this
information, they would be able to check if the design matches
the expectations, or how distant the values are.

The second type of information retrieved can be easily
interpreted by the designer in the form of Visual reports.
These are meant to provide graphs that analyse how the infor-
mation retrieved by the agents (number of different positions
or states visited, number of elements interacted with, etc.)
evolves during the play-through. The designer should be able
to extract and conclude interesting information about their
game by analysing the shape and evolution of the plotted
values. A continuous trend means that the agent is capable
of getting information without many impediments, improving
uniformly. On the contrary, if the growth is stuck for a period
of time, it either means that there is nothing more to be
discovered, all targets of the agent have been reached, or that
there is an obstacle (or a series of obstacles) blocking the agent
to achieve its goals. Let’s take a possible play-through graph
obtained for the Map explorer as an example. It could show a
uniform growth to a certain point, keep still for a while to end
up increasing uniformly again. This shape could be interpreted
as follows: the map of the game is divided into two areas and
an action from the player is required to progress in the game.

This method could also be used to analyse the distribution
of different elements of the game. In the example of the
Collector, the growth of the graph would show peaks in those
areas where there are several items to collect.

D. Logging System

The Logging System keeps track of the information resulting
from running each of the agents: position by time, actions,
elements interacted with, responses triggered, etc. These logs
can help to detect anomalies and broken states of the game.

M. Nelson proposed seven strategies to extract information
from the game [27]. In [28], V. Volz et al. gather a list of
measures envisioned to be included in the GVGAI framework
to extract information from the gameplay. They differentiate
between agent-based, interpreted and direct and indirect log-
gable measures. Because of the generality of the framework
this list was collected for, it could be taken as a reference to
use in this methodology. Having a team of agents, instead of
a unique one, can cover more game states, allowing to trigger
errors that would be difficult to catch otherwise.

E. Variations

Same algorithms with different parameters have different
strengths. The team can include several versions of the algo-
rithms with same objectives, but different levels of mastery,
based on those parameters. There are several existing methods
to be able to arrange a series of algorithms by measuring
their performance, used for several competitions and online
rankings. The most distinguished ones are the Bayes Elo

system [29], Glicko [30] and TrueSkill [31], the skill rating
system used in Xbox Live and recently extended. The designer
can be given the opportunity to choose between differentiated
skilled agents and even perform Relative Algorithm Perfor-
mance Profiles checks (II-B). This enlargement allows an even
bigger range of choices and richer information available.

Another possible extension can be to take into considera-
tion the information retrieved by all agents as a whole and
study the correlations between them. The designer can choose
which agents’ information combine to obtain greater levels of
granularity.

IV. LIMITATIONS

The approach proposed in this paper has a clear strength,
but there are a series of limitations, presented in this section.

The time needed to perform the evaluations should be
taken into consideration to arrange enough time to analyse
the reports and to plan the actions to be taken as a result. The
more complex the game is, the more time the evaluation would
take, as the agents would need more time to run and finish the
play-through to provide feedback. A feasible solution would
be presenting the game split into stages or levels; analysing
small chunks each time. Also, the complexity of the game
affects the performance of the algorithms as General AI has
some limitations in solving complicated environments.

The methodology presented here would obviously be
strengthened if these limitations would not exist or should
they be minimised. Thus, it is also an aim of this paper to
motivate and encourage research on these areas:

A. Reinforcement Learning

One of the limitations when working with Reinforcement
Learning (RL) algorithms, is that they need off-line training
and their performance depends on the size and intricacy of the
system. They must explore the environment, having to decide
between exploitation and exploration as it learns which actions
lead to rewards [32]. The more complex the game is, the more
they struggle as more the rewards are delayed in time.

There have been clear advances in RL methods, showing
good performance in well-defined problems. An example is
AlphaGo mastering Go [33]. Although the rules of the game
are simple, it has certain characteristics that impeded AI to
master it for a long time: deep games, large branching factor
and, above all, lack of a good state evaluation function. Other
examples showing the progress in RL, applied to video games,
come from the work done by Mnih. et al. [6] (see Section II)
and the research on the VizDoom platform [34].

Despite this progress, RL has not yet provided world
winning approaches for more complex games, such as Star-
craft [35]. Not only games like this require multiple levels
of abstraction and reasoning but also include many real-world
features that limit the application of these techniques. Exam-
ples are, in this and other games, the presence of a continuous
state and action space, stochasticity, partial observability (fog
of war is present in multiple strategy games) and multi-agent
systems.
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B. Planning Algorithms

These algorithms do not require off-line training (setting
aside the parameters optimisation discussed in the next sec-
tion) and therefore have a quick set-up. However, they require
a forward model to be able to simulate possible future states
to choose the best action available. Hence, there exists the
challenge of having to create a forward model from scratch to
include it in the game or working with abstract or not precise
forward models available.

Moreover, the number of roll-outs (that depends on process-
ing time and resources) have a big impact on the behaviour
and performance, as the more simulations they are allowed to
see, more information they get about the future. In [36], the
authors compare the differences in performance in the Physical
Travelling Salesman Problem when a budget of 40ms or 80ms
is provided to MCTS, RHEA and RS. It has an impact on the
number of roll-outs available per turn for the MCTS and the
number of individuals for the Genetic Algorithms (GA). In the
General AI scope, M. Nelson [37] ran a series of experiments
through 62 games that form the GVGAI framework. The goal
was checking how the performance of the MCTS is affected
when varying the time budget provided to return an action,
which influences the number of roll-outs it gets to take.

C. Parameter Optimisation

General AI algorithms use a series of parameters that have
a big impact on their performance and behaviour and, in
most of the cases, need to be optimised. As mentioned in
the previous section, if the number of roll-outs available to
the planning algorithm is modified, the number of predictions
will be reduced or extended and, therefore, the information
available to take a decision will be affected, influencing the
results. In evolutionary algorithms, the size of the population
has an impact on the performance. Gaina et al. compared how
the winning rate of the RHEA was influenced by the size of
the population and individual length [15], so the optimisation
of the parameters is important indeed.

Optimising the parameters to the game under evaluation
could take time. If not enough time is allowed, their ex-
pected performance could drop, which would end up providing
misleading reports. The optimisation has usually been done
off-line to provide enough time to reach a certain level of
performance. However, there has been some recent progress,
and an online adaptive parameter tuning mechanism for MCTS
has been implemented in GVGP, with promising results [38].

The N-Tuple Bandit Evolutionary Algorithm (NTBEA)
shows ways to mitigate some of the limitations presented by
this parameter optimisation. Lucas et al. describe the NTBEA
as a simple, informative and efficient model capable of being
applied to numerous optimisation-related problems [39]. In
the referenced work they show how to apply this approach
to optimise the parameters of RHEA. In [40] Kunanusont
et al. use this algorithm to evolve the game parameters of
Space Battle, affecting its design. They argue how the results
obtained in the experiments carried out show how NTBEA
could be used for AI-Assisted Game Design.

The team should be well-tuned to allow the agents to
recognise and carry out the actions expected to reach their
goals, in order to obtain proper results that fit the expectations
and interpret the feedback accordingly.

D. The Challenge of General AI

Developing algorithms capable of working through different
games is a challenging task as it is not possible to use any
game-specific information to guide them. Because of the dif-
ficulties of the problem, several approaches have been created
and are being investigated to tackle it. Thus, General AI is an
ongoing research. Even considering the latest improvements,
the results of the GVGAI Competition3 show how it is still not
good enough to generalise to every kind of game. Even when
the agents perform well in some games, there are games with
a very low percentage of success; and any algorithm manages
to perform uniformly good through all of them.

Furthermore, general algorithms can be applied to several
areas in games: from one player simple games to multi-player
collaborative games, where they need to work together to
achieve a common objective. The variety of the problems to
tackle increases the complexity of the generalisation.

V. CONCLUSION

This paper proposes a new methodology using General AI
for assisting game design and testing and explains its features.
It presents a series of differentiated goals to be applied to the
general agents to play the game in different ways. Having
agents focusing on targets that go beyond simply winning
the game leads to specialists with distinct gameplay styles
to use to extract information. The two type of reports and
logging system generated can help the designer to check
if their game under evaluation fulfils the expectations. The
information retrieved can be used to detect bugs, balance the
game or tweak its parameters. Because of the independence of
the rules given by the generality of the AI, this approach allows
an early integration in a game under development without
requiring major modifications when it is extended or modified.

This proposed methodology is rooted in previous work
on the field of general game AI, automatic playtesting and
AI-assisted game design. It takes into account the needs of
the games industry for efficient and accurate game testing
and highlights interesting areas of future research. Several
extensions in the methodology are possible, as including
agents with different levels of skill, players tackling multiple
objectives or adding collaborative and social-oriented profiles
that can fit multi-player games. Also, it can create reports
considering the objectives of the different specialists at once,
combining the results obtained to analyse the information of
multiple agents outputs, study their correlations and provide a
greater level of granularity.

We believe that using general algorithms is the next step
for automatic game design and testing in order to provide a
portability non-existent in the approaches followed to date.

3http://www.gvgai.net/
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Furthermore, introducing the option to choose between sev-
eral algorithms with differentiated behaviours and skills adds
flexibility to adapt the methodology to the characteristics of
the game under evaluation.
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Abstract—The current AI revolution provides us with many
new, but often very complex algorithmic systems. This complexity
does not only limit understanding, but also acceptance of e.g.
deep learning methods. In recent years, explainable AI (XAI)
has been proposed as a remedy. However, this research is rarely
supported by publications on explanations from social sciences.
We suggest a bottom-up approach to explanations for (game)
AI, by starting from a baseline definition of understandability
informed by the concept of limited human working memory.
We detail our approach and demonstrate its application to two
games from the GVGAI framework. Finally, we discuss our
vision of how additional concepts from social sciences can be
integrated into our proposed approach and how the results can
be generalised.

Index Terms—explainable AI, working memory, super-sensors

I. INTRODUCTION

The dream of intelligent machines has inspired research for
decades. Currently, intelligent agents are starting to surpass
human level performance in many areas that where originally
dominated by humans. One of the most prominent examples is
image recognition, where machines achieved lower error rates
compared to human experts [1], [2].

Unfortunately, this trend does not only reward us with
higher performance, but also entails increased complexity, and
in many cases lower understandability of models used for
artificial intelligence applications. All of the currently known
best performing methods for image recognition, for example,
are based on deep convolutional neural networks, a special
form of artificial neural networks [2]. These models tend to
be extremely complex and it seems to be virtually impossible
for humans to understand them directly.

The lack of understandability of these models turns out
to be a huge problem for many practical applications. This
is especially true whenever models make decisions involving
humans, as envisioned in many medical applications. It is
thus very important to understand the decisions suggested by
medical expert systems in order to avoid taking risks that
could jeopardize a patient’s health. This is the reason why non-
transparent models are seldom applied in medical areas [3].

The General Data Protection Regulation (EU) became
effective in May 2018 and further complicates this problem.
It grants all EU citizens the right to receive explanations
for all algorithmic decisions that have been made concerning

them [4]. This will render black-box models useless for many
applications if we fail to develop appropriate and understand-
able explanations.

Generally, it is a widespread claim that users do not trust
algorithmic systems [5], [6] if they do not understand how
they work. Incidentally, studies suggest that the public would
be much more willing to accept algorithmic decision support
if they did [7], [8], [9]. Additionally, one expects that the
debugging [10] and also improvement of AI methods would
be easier for explainable models.

As a result, the topic of eXplainable AI (XAI) resurged
and regained traction in 2016, when the United States De-
fence Advanced Research Projects Agency (DARPA) started
a funding line for XAI1. However, there is a lack of ap-
proaches that incorporate findings from social sciences [11]
instead of the author’s notion of understandability. With this
paper, we therefore follow a bottom-up approach to generating
explanations for AIs, based on the social sciences concept
of working memory. We also demonstrate and envision how
further concepts suggested in [12] can be applied to a practical
example. To the best of our knowledge, this has not been done
before.

For our proof of concept, we choose to focus on games. This
is because games are designed for human players and should
thus generally be understandable for humans. Additionally,
XAI is also an important concern in the context of games,
specifically in deceptive games [13] where short- and long-
term rewards are conflicting [14]. Game designers should have
at least a basic understanding of the behaviour of an AI in
a game in order to be able to predict the agent’s actions in
untested environments, such as new levels. This is essential
for planning the game and identifying unintended behaviour,
but also for fine-tuning a given AI. From the perspective
of the player, understanding AI behaviour is necessary for
immersion, as well as for efficient collaboration with AI
players.

In section II, we provide background information on ex-
planations and understandability, the concept of working
memory, as well as a survey of related work on explainable
(game) AI. In section III, we describe our proposed bottom-
up approach to generating explanations for the behaviour

1http://www.darpa.mil/program/explainable-artificial-intelligence
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Fig. 1. Dortmund’s flying rhinoceros by Josef Lehmkuhl. To interpret a model
you do not need to know if it is correct or where it came from.

of (game) AIs based on the assumption of limited working
memory. We provide a proof-of-concept application of our
approach in section IV. Finally, in section V, we discuss our
findings, and describe our vision for incorporating more social
science concepts into XAI research.

II. BACKGROUND

A. On Explanations and Understandability

First, we provide working definitions for the two terms expla-
nation and understandability.

To explain an event is to provide some information
about its causal history. In an act of explaining,
someone who is in possession of some information
about the causal history of some event – explanatory
information, I shall call it – tries to convey it to
someone else. [15, p. 217]

Naturally, a successful explanation needs to be understood by
the recipient.

Someone can be said to understand a formal con-
struct if he can relate it to the corresponding real-
world entities and propositions and reason about the
implications. [16, p. 12]

It is important to distinguish between the understandability
of a model and its correctness or applicability. This is nicely
illustrated by Rüping in [16] with the following example.
The claim ”Rhinoceroses can fly.” is incorrect. However, it is
generally understandable according to the above definition, as
one could imagine winged rhinoceroses (figure 1) and reason
about the resulting implications, e.g. for air safety.

Given this definition, the understandability of an explanation
is still subjective. It depends on prior knowledge as well as
the information processing and deduction capabilities of the
human recipient on the one hand, but also on the presentation
of the information on the other. Both aspects have been
investigated in research fields such as philosophy, cognitive
psychology/science, and social psychology. [12] gives a de-
tailed overview of the current state-of-the-art as well as their
potential applications to explanations of AI agents.

B. Capabilities and Limitations of the Human Mind

In order to understand an explanation, the information
conveyed needs to be processed and stored for a short period
of time. This process is limited by the working memory of
the human brain, i.e. the capacity for ”short-term storage and

manipulation of sensory information lasting on the order of
seconds” [17]. It is widely believed that working memory
is limited, but the exact nature of these limitations are still
debated [18].

The classical model of working memory is that it is of
limited capacity, i.e. it holds a fixed, small number (K) of
items, as famously suggested by G.A. Miller in [19]. This
modelling approach is called a slot model, where every item
is either recalled fully or not at all [18]. Newer approaches,
so called resource models, understand working memory as
a limited resource that is distributed among the information
entities that need to be stored. According to these models, the
higher the amount of resource allocated to some information,
the more precisely it can be recalled [18]. In this paper, we will
however be working with the slot model, as it is commonly
used as a summary statistic [18] and easily applicable to our
use case.

In his meta-study, G.A. Miller analyses the capability of
the human mind to process information from an information
theoretical perspective [19]. The presented results indicate that
an average human brain is able to distinguish between 3 and
15 values for a one-dimensional variable. A one-dimensional
variable can be, for example, the loudness of a tone or the
intensity of a color. The tested participants were, for example,
able to correctly match tones to up to 5 classes (such as
very low, low, medium, high and very high). From 6 classes
upwards they started to make mistakes and the amount of
information that they were able to process quickly reached
a limit. Interestingly, Miller observed this kind of limit on the
human mind for a wide range of stimuli without exceptions.
Furthermore, the observed limits turned out to be surprisingly
low and very rarely higher than 15 classes.

According to the study, multi-dimensional information (such
as faces) can be distinguished more easily, as the brain
focuses on distinctive characteristics instead of storing all
information. These observations match the subjective expe-
rience that multidimensional representations of variables, like
colored plots and diagrams, are easier to understand than one-
dimensional representations. However, the dimensionality can
not be increased indefinitely, as the study finds that a human
brain can only handle between 5 and 9 cognitive entities at
the same time [19]. Thus, humans are strongly limited in their
ability to observe multiple variables in relation to each other.

C. Related Work
Generating explanations for complex models to increase

their transparency is an important topic in various fields
of research, such as business process modelling [20] and
object-oriented software [21]. (Deep) Neural networks are very
prominent targets for explanation, with research published
on feature visualisation, attribution, dimensionality reduction
and rich user interfaces (see [22] for a survey and study on
combining multiple approaches ). An overview of general
approaches to explanation and justification can be found in
[23]. See also 2 for a recent overview over the current state

2https://medium.com/@jschwiep/the-state-of-explainable-ai-e252207dc46b

475



of XAI. According to [23], explanation approaches can be
categorised as follows:

1) Inherently interpretable models: The agent makes deci-
sions according to an inherently explainable model, such
as rule-based systems or decision trees. However, there
is still no consensus on whether these models are in fact
generally interpretable [24].

2) Model-specific approaches: Model-specific characteris-
tics are utilised to explain behaviour. Typical examples
are methods that identify prominent composite features
in neural networks as well as their attribution to the
outcome [22].

3) Model-agnostic approaches: The agent is treated as a
black-box. Approaches in this category can thus be
applied independently of the agent or usecase [25], [26].

As the objective of this paper is to explain the behaviour of
a given video game AI agent, only model-agnostic techniques
are suitable. With our overview of related work, we thus focus
on model-agnostic approaches to explanations.

While there is a considerable interest in explainable AI3,
studies confirm that published research is rarely informed
from knowledge acquired in fields like social and behavioural
sciences [11]. In fact, 11 out of 17 publications deemed
important by the XAI community did not even include any
references to papers on explanation from social sciences ac-
cording to a study [11]. Most explanation approaches focus on
identifying characteristic behaviour or instances, and require a
human to interpret these examples and draw conclusions [27],
[28]. Other approaches, such as [29], use strictly data-driven
methods to imitate explanations by human experts.

While most of these publications are verified using sur-
veys, these approaches can not guarantee or formally mea-
sure whether the resulting explanations are understandable.
Based on these observations, in [12], the author calls for
more interdisciplinary collaboration and provides a survey
of suitable work from social science along with potential
applications in AI. However, due to the generality of the work,
the recommendations in [12] stay very abstract. By providing
a specific use case, we hope to be able to demonstrate one
such interdisciplinary approach as a first step in this direction.

In [16], Rping suggests a concept of interpretability that,
like ours, is based on the famous study on working memory
by Miller [19]. However, in contrast to our work, the proposed
concept does not include Miller’s findings on the capability
of a human brain to distinguish classes. Additionally, [16]
addresses classification models exclusively and specifically
support vector machines, which of course have different prop-
erties than general AIs. We also provide additional insights on
how other concepts from social sciences can be applied on top
of the heuristics based on Miller’s study.

A commonly observed weakness of explanations is, that
they are only provided for a very narrow context of the
application [26]. It is thus impossible to generate explanations
on different levels of abstractions. In comparison, by relying

3http://home.earthlink.net/∼dwaha/research/meetings/ijcai17-xai/

on indicators defined by a human, our approach is suitable for
multiple levels of abstraction.

III. AI EXPLANATIONS LIMITED BY WORKING MEMORY

In the following, we propose an approach that incorporates
insights on explanations from social sciences into a generally
applicable algorithm to generate explanations of black-box AI
agents. The explanations are intended to convey why a specific
action was chosen over other available actions. The algorithm
is informed only by intentional and observable actions [30]
from the perspective of a single agent. We demonstrate that
the explanations are understandable according to our definition
based on the concepts on working memory described in section
II-B.

A. Heuristics for Understandability

In [12], the author finds that explanations are selected, i.e.
the information taken into account by the human recipient is
a subset of the complete causal chain. Empirical studies also
agree that simpler explanations are considered to be better,
sometimes even regardless of their accuracy [31]. While there
are many ideas on how exactly the explanations are selected
to improve understandability, we first focus on the amount of
information humans are able to process to provide a baseline
for understandability.

Based on the study from Miller detailed in section II-B, we
derive the following four heuristic rules for understandable
models.

Definition 1 (Heuristics for understandable models): The
following heuristics can be applied to all variables contained
inside a given explanatory model. This includes inputs, outputs
and intermediate results.

1) All variables should be understandable. This means that
they need to have clear semantics the user can interpret.

2) One-dimensional variables should not take more than 3
to 15 values.

3) Multidimensional variables should also not take consid-
erably more than 3 to 15 values.

4) The number of variables observed at the same time
should never exceed 5 to 9.

The first heuristic rule takes into account the individual
user’s prior knowledge and level of abstraction. The second
and third rules are based on the observed limits on the human
mind to process information. The fourth rule takes into account
the discussed limits on the human working memory. The last
three heuristic rules are also closely related to what is often
casually referred to as ”model complexity”.

We want to stress that these heuristics are aimed at neces-
sary conditions for understandability, because they limit the
information that needs to be processed according to the find-
ings by Miller [19]. Additional concepts from social sciences
should also be incorporated in order to express sufficient
conditions for understandability, as discussed in section V.
Furthermore, these heuristics are based on [19], but they
should nevertheless be validated with a survey, especially
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given that the model proposed in [19] has been called into
question [18].

Given new findings, these heuristics can of course be
adapted accordingly. For the purposes of this paper, we will
use them in order to identify how they can be enforced on
models used to generate explanations for AIs.

B. Super-Sensors

According to our first heuristic, all variables in the ex-
planation should be understandable. To ensure this, we use
super-sensors, which are mappings from raw sensory data to
understandable concepts. Similar ideas have been proposed
in [26], [32]. Another related idea is the identification of
understandable features, such as an ear in context of explaining
neural networks for picture classification [22].

Definition 2 (super-sensor): More formally, let I denote a
set of possible inputs. A super-sensor for I is a function
s : I 7→ B with B = {0, 1}.

Super-sensors map the original inputs to values b ∈ {0, 1}.
They represent the presence or absence of features in the
original inputs. We have chosen a binary mapping here, as it is
clearly within the limitations defined by our understandability
heuristics (definition 1). However, mappings could be extended
to allow for multiple classes. Even using fuzzy logic to express
something like proximity is conceivable.

The explanation is framed in terms of the super-sensors.
This way, they can also be used to adjust to the desired
level of abstraction, the specific question posed or to the prior
knowledge of the human user. As a consequence, this step
has the potential to induce implicit bias in the explanation.
Additionally, a given set of super-sensors might not be able
to capture all observed agent behaviors. They should, thus,
be defined carefully and based on a given use case. In the
following, we list some research that may be helpful in this
regard.

The simulation heuristic [33], for example, can be used
to develop several guidelines for the selection of super-
sensors. The hypothesis they propose is that humans, when
asked about past events, simulate alternative cases in order to
improve their own understanding. According to this theory,
explanations are framed based on the facts that are mutated
in these simulations, similarly to how super-sensors frame our
explanation approach. Research has found that the mutated
facts are recent rather than distal [34]. Additionally, facts that
are deemed more controllable by the actor are mutated more
frequently [35]. Super-sensors should, thus, describe current
or more recent states as well as states that can be actively
influenced by the AI agent.

Furthermore, explanations are categorised as either func-
tional or mechanistic. Functional explanations take into ac-
count the purpose or function of a behaviour, while mecha-
nistic explanations address more the circumstances and me-
chanics that cause the behaviour [36]. Functional explanations
are of course very important in the context of explainable AI.
However, research has also discovered that mechanistic expla-
nations are often preferred when explaining failed behaviours

A

S1
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S3 S4
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S6 S7
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Fig. 2. Example for a Bayesian network model as described in subsection
III-C. The node A without outgoing edges represents the agent’s actions. The
other nodes represent the super-sensors used to predict the agent’s actions.

[37]. For this reason, super-sensors should on the one hand
include information that is available to the AI agent and thus
likely used for its reasoning (functional). But on the other
hand, some sensors should also contain information on events
and obstacles that could hinder the execution of a strategy,
such as e.g. enemies (mechanistic).

C. A Bayesian network model

In this paper, we use Bayesian network models (see e.g. [38]
for detailed description) to generate explanations. Bayesian
networks are probabilistic graphical models represented by
directed acyclic graphs. The graph’s nodes represent random
variables and the directed edges between them represent
correlations between the variables. Parents and children are
modelled to be in a causal relationship where the parent’s
value influences the child’s value.

There exists extensive work on the understandability of
Bayesian networks, as surveyed in [39]. Additionally, because
Bayesian networks are probabilistic models, they identify
explanations that are true or likely, which is one objective
of explanations [40].

In order to use Bayesian networks for our purposes, we
create a random variable Si for each super-sensor si and
another random variable A for the agent’s possible actions.
These random variables represent the nodes of the Bayesian
network to be trained. Figure 2 shows an example for such a
network. The random variables for the super-sensors take on
the values true or false depending on whether the super-sensor
values are 1 or 0. The domain of the random variable A is the
set of possible actions A.

Structure and parameters of the Bayesian network can be
learned based on pairs of super-sensor values and actions.
Super-sensor values, in turn, can be calculated based on
game states. Therefore, we can generate training data for
the Bayesian network simply by observing an agent’s actions
along with the gamestate while playing the game.

However, we need to ensure that the trained Bayesian net-
work is understandable according to our heuristics (definition
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1). To do this, we first restrict the structure of the network in
such a way that only incoming edges are allowed for action
node A. This a legitimate application of domain knowledge,
as we want to investigate the causal history of an action for a
given gamestate.

Then, we utilise the property of Bayesian networks that each
node is conditionally independent of its non-descendants given
its parents. In figure 2, given S1 and S5, A is conditionally
independent of all other sensor values. Because of our imposed
structural restriction, node A will never have any descendants
and the probability distribution can thus be fully expressed
given its parent nodes. If we now limit the number of parent
nodes for A (to 7 as suggested in [19]), we ensure adherence
to heuristic 4.

IV. PROOF OF CONCEPT

In the following, we demonstrate how the approach de-
scribed in the previous section can be applied to a specific
use case. As a practical example, we have chosen computer
games and agents from the General Video Game AI (GVGAI)
competition [41]. More specifically, two games involving
vertically traversing projectiles. The first is the game Aliens
similar to the Atari classic Space Invaders. The second one
is Eggomania, where a chicken throws eggs which the player
needs to catch before they hit the ground.

In each time step, the agent can observe the latest
game state and has access to a forward model to sim-
ulate possible future game states. Based on this infor-
mation, it then chooses one of the 6 possible actions
A = {ACTION LEFT, ACTION RIGHT, ACTION UP,
ACTION DOWN, ACTION USE, ACTION NIL}. The first
four actions are used to navigate the avatar. ACTION USE
can be used to let the avatar interact with its environment
and ACTION NIL indicates no action. As only 6 actions are
possible, no further abstraction is required in order to fulfil
heuristic 2.

A. Super-Sensors

We manually defined 19 super-sensors for the game Aliens
and 14 super-sensors for Eggomania. They represent features
with plain semantics that we assumed to be relevant to an
agent’s behaviour. One of the super-sensors for the game
Aliens, for example, is true iff an enemy is in range and can
be shot. Another one of the super-sensors for Aliens is true iff
the player’s avatar is about to get hit by an enemy projectile.

To adhere to the guidelines discussed in section III-B, all
super-sensors correspond to current events or ones in the near
future. The sensors also exclusively express states that can be
influenced by the agent by either moving or shooting.

B. Training the model

We used 100 play traces per agent and game for training.
The structure and parameters of the Bayesian networks have
been learned via the R package bnlearn [42]. We employed
the improved hill climbing algorithm [38], [42] for structure
learning and Bayesian parameter estimation [38] for parameter

TABLE I
WIN RATES FOR THE ORIGINAL AGENT, MAXAGENT AND STOCHAGENT.

testcase Agent maxAgent stochAgent

Aliens-Agent 100% 99,5% 98,5%
Eggomania-Agent 100% 100% 100%
MaastCTS2 Aliens 30,66% 0% 0%
MaastCTS2 Eggomania 97,66% 12,33% 97,17%
YOLOBOT Aliens 99,83% 0% 6%
YOLOBOT Eggomania 99,66% 85% 20,5%

learning. For inference in the learned networks we used the
R package grain [43] because it allows exact inference in
Bayesian networks.

C. Evaluation Approach

We evaluate the generated explanations regarding the three
following aspects:

1) How accurately are causal structures captured?
2) Does the explanation generalise to other situations?
3) Which causal structures are detected?

All evaluations are based on 500 play traces per agent and
game.

In order to assess the degree to which agent behaviour is
explained (aspect 1), we assess the accuracy of the repre-
sentation by the Bayesian network. To do this, we measure
how accurately our explanation model predicts the agent’s
actions given super-sensor input. In this context, the prediction
accuracy is called action agreement ratio (AAR) [44]. It is the
ratio between the number of correctly predicted actions and
the number of all actions. The AAR, therefore, takes on the
value 1 if the agent’s actions have been predicted perfectly.

However, a perfect AAR often is not achievable. One
potential issue is the suitability of the specification of super-
sensors. E.g, some crucial information might be missing in the
abstract representation of the gamestate via the super-sensors.
Additionally, agent behaviour is not necessarily deterministic,
causing lower action agreement because the Bayesian network
model is. In order to assess the gravity of the latter, we also
compute the best possible AAR, i.e. the AAR achieved by
the best possible hypothetical model, given the super-sensors,
that always predicts the action that is taken in the majority
of observations. This value is then used in order to normalise
the AAR. The best possible AAR thus also provides means to
measure the quality of the super-sensor set.

If the explanations are able to capture an abstraction of
agent behaviour, this should be generalisable to different
situations in both games (aspect 2). We thus test the in-game
performance of agents that use the Bayesian network as a
decision guideline. The observed win rates are then compared
with the results of the original agents. We use two types
of agents: maxAgent, which for any given state will always
choose the action with the highest probability according to
the Bayesian network, and stochAgent, which will randomly
choose an action from the probability distribution encoded in
the network.
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Finally, we also address which of the super-sensors are
identified as parent nodes in the Bayesian network (aspect 3).

D. Results

We first conduct an experiment in order to find out if our
approach is generally able to model agent behaviour, while ad-
hering to the understandability heuristics defined. To this end,
we implement deterministic agents for both games (Aliens-
Agent and Eggomania-Agent, respectively), that choose their
actions based on subsets of the implemented super-sensors.
Therefore, it should be possible to learn the correct explanation
model for these agents and to predict their actions perfectly
based on the super-sensors. In our tests, the Bayesian networks
indeed achieved almost perfect action agreement ratios. The
win rates of the Bayesian network-based and original agents
are also very similar (cf. table I).

We further compare the super-sensors in the Bayesian
network with the ones we chose to implement the Aliens-
Agent and Eggomania-Agent. We find that either the same or
equivalent sensors were selected. Additionally, the set of super-
sensors also contains a sensor that randomly returns values
as a sanity check that only sensible sensors are selected. We
confirmed that none of the trained networks picked the random
sensor. With these results, we conclude that the approach
can produce sensible explanations where we know appropriate
solutions exist.

Next, we evaluate our approach for two arbitrary black-
box agents for both games. We elected to choose one agent
that relies on unknown heuristics, and another one that does
not contain obvious domain knowledge. For the heuristics-
agent, we modified MaastCTS2 [45], the winning agent of the
GECCO GVGAI competition 2016, such that only its heuris-
tics are used without the Monte Carlo tree search (MCTS)
component. The second agent was YOLOBOT [46], the winner
of the CIG GVGAI competition 2016. This agent uses MCTS,
as well as a range of heuristics and a knowledge base that is
built during game play to decide on its actions. The achieved,
best possible and normalised AARs for all combinations of
agents and games are visualised in figure 3.

For the game Aliens, we reach a normalised mean AAR
of above 0.7 and for Eggomania, of above 0.9. That means
that the Bayesian networks are successful in explaining the
data. However, except for MaastCTS2 and Eggomania, the
best possible AAR values are relatively low (between 0.4
and 0.5). This indicates that the chosen super-sensor set was
not sufficient to fully inform on the behaviour. However, the
identification of super-sensors was not the main component of
this paper, but should be investigated in future work.

A similar conclusion can be drawn from the results of
the win rates (table I). It seems that if the super-sensors
are defined appropriately, the explanation model is able to
accurately imitate the original agent and produce similar win
rates. In this case, the explanation generated also aligns with
the interpretations of playthroughs by a human observer (e.g.,
in Aliens, sensors related to bomb and shield locations are
chosen).

V. VISION

A. Summary and Conclusions

In this paper, we have investigated explanations for AI be-
haviour that adhere to limitations of working memory accord-
ing to research in social sciences [19]. We have developed a
general approach to generating explanations that respect these
limitations and demonstrated its application for two games.
The proof-of-concept shows that the proposed approach is
generally suitable. However, there are still several potential
improvements.

For example, as discussed in section II-B, the slot model for
working memory has been challenged recently. It therefore
should be investigated how models can be created that take
memory limits into consideration following a resource model
instead. Furthermore, ideally, understandable super-sensors
adhering to the concepts described in III-B could be identified
automatically, in order to make the approach more easily
generalisable. Additionally, the measure used in our example
to express explanatory accuracy is very limited. The action
agreement ratio can only assess explanations on a very low
level, i.e. regarding actions. However, in many cases, more
interesting questions would address the intentions and goals
of the AI [12]. Finally, besides measures to assess accuracy,
the method should also be evaluated in terms of its explanatory
power, e.g. via a survey or using concepts from related
research in social sciences. Some of these improvements are
discussed in detail in the following.

B. Beyond Causal Attribution

Bayesian network models are very suitable in order to
attribute observable causes to recorded outcomes. However,
beyond strict causal attribution, social sciences also investigate
how humans explain behaviours. One of the most important
concepts in this regard is intentionality [12]. The main dis-
tinctive factor between intentional and non-intentional actions
is that the former are equifinal [47], i.e. if an actor fails
to achieve a certain state in a certain way, it will attempt
to find another one. This characteristic could be utilised in
order to identify intentions automatically, in order to enable
explanations on a more abstract level. The importance of the
respective goals should correspond to how consistently they
are pursued. Measuring this persistence, however, requires
measures for partial fulfillment of goals as well as correlations
between different goals.

Alternatively, explanations could of course also be improved
by information on how decisions are made is obtained from
the acting AI agent. This would reduce the information (actor-
observer) asymmetry [48]. Information that would be specif-
ically suitable in this regard are the fitness functions popular
search-based algorithms (such as MCTS, EAs) use. Further
AI-specific information, e.g. on decisiveness, would also be
useful.

Furthermore, in this paper, we have restricted the amount
of information that needs to be processed simultaneously by
configuring a Bayesian network accordingly. As a result, the
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Fig. 3. Achieved, best possible and normalised AAR for MaastCTS2 and YOLOBOT on Aliens and Eggomania

super-sensors that explain most of the observed behaviour will
be selected. However, while this is a positive property for an
explanation [40], explanatory power is also influenced by other
properties, which are discussed in the following.

One aspect is that humans often restrict their explanations to
abnormal behaviour [49], [40], [50]. In this case, it is assumed
that all parties involved have some common understanding of a
norm. The implicit foil to a question on reasons for unexpected
actions is thus the behaviour considered to be normal. These
insights could be used to specifically target AI behaviour
that differs from human agents. Given suitable playtraces
from human and AI players, unexpected behaviour could
be identified based on the differences between the observed
actions following all possible combinations of super-sensors.
This information could then be used to explicitly explain
unexpected behaviour, by training the Bayesian network only
on abnormal observations. Alternatively, nodes in a Bayesian
network corresponding to super-sensor combinations related
to unexpected behaviour could be highlighted to improve
understandability.

There are several other characteristics, that could be in-
corporated into the training process as detailed above. For
example, humans also prefer highly contrastive explanations
[50], [51], i.e. instances, where the action taken and its
foil are very distinctive. These actions could be identified
using information criteria or by identifying super-sensors that
produce very lopsided distributions of actions taken. Humans
are also specifically interested in necessary causes [51]. In
our example, super-sensors could be identified that are always
true or always false when a specific action is taken. Especially
in games, necessary causes are very meaningful, as they can
explain multi-stage games like Pac-Man. A further interesting

property is responsibility, i.e. how large the influence of a
super-sensor is on the action taken by the agent [52]. An
assessment of responsibility can be provided by computing
how many super-sensor values need to be mutated to change
the action chosen.

Another aspect of explanations, which has not been ad-
dressed in this paper, is that they are a form of conversation
[53]. It is thus also important how they are communicated.
In [29], the authors, for example, use natural language and
imitate how human players communicate.

C. Beyond Aliens and Eggomania

In this paper, we test the application of the proposed
approach using the games Aliens and Eggomania from the
GVGAI framework. However, it is important to question
whether it can also be generalised to other games. While we
have given a general description in section III and the trained
Bayesian networks will always be understandable according
to the heuristics in definition 1, the main problem will be to
define appropriate super-sensors. This was also demonstrated
by our experimental results in section IV-D. As discussed in
the previous section, further work on abstracting strategies
from actions is needed here. The results could also be helpful
when implementing intentional, believable and strategic AI.
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[16] S. Rüping, “Learning interpretable models,” Ph.D. dissertation, TU
Dortmund University, 2006.

[17] A. Baddeley, “Working memory: looking back and looking forward,
journal = Nature Reviews Neuroscience, volume = 4, pages = 829–839,
year = 2003, publisher = Nature Publishing Group.”

[18] W. J. Ma, M. Husain, and P. M. Bays, “Changing concepts of working
memory,” Nature neuroscience, vol. 17, no. 3, pp. 347–356, 2014.

[19] G. A. Miller, “The magical number seven, plus or minus two: Some
limits on our capacity for processing information,” The Psychological
Review, vol. 63, no. 2, pp. 81–97, 1956.

[20] H. A. Reijers and J. Mendling, “A Study Into the Factors That Influence
the Understandability of Business Process Models,” Transactions on
Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 41,
no. 3, pp. 449–462, 2011.

[21] M. Nazir and R. A. Khan, “An empirical validation of understandability
quantification model,” Procedia Technology, vol. 4, pp. 772–777, 2012.

[22] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye,
and A. Mordvintsev, “The Building Blocks of Interpretability,” Distill,
2018, https://distill.pub/2018/building-blocks.

[23] O. Biran and C. Cotton, “Explanation and justification in machine
learning: A survey,” in IJCAI-17 Workshop on Explainable AI (XAI),
2017, pp. 8–13.

[24] Z. C. Lipton, “The Mythos of Model Interpretability,” in ICML Workshop
on Human Interpretability in Machine Learning, 2016, pp. 96–100.

[25] M. T. Ribeiro, S. Singh, and C. Guestrin, “Model-Agnostic Interpretabil-
ity of Machine Learning,” in ICML Workshop on Human Interpretability
in Machine Learning, 2016, pp. 96–100.

[26] ——, “Why should I trust you?: Explaining the predictions of any
classifier,” in International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 1135–1144.

[27] R. Turner, “A model explanation system,” in International Workshop on
Machine Learning for Signal Processing, 2016, pp. 1–6.

[28] P. Tamagnini, J. Krause, D. A., and B. E., “Interpreting black-box
classifiers using instance-level visual explanations,” in Workshop on
Human-In-the-Loop Data Analytics, 2017.

[29] U. Ehsan, B. Harrison, L. Chan, and M. Riedl, “Rationalization: A
Neural Machine Translation Approach to Generating Natural Language
Explanations,” in Artificial Intelligence, Ethics, and Society, 2018.

[30] B. F. Malle and G. E. Pearce, “Attention to Behavioral Events During
Interaction: Two ActorObserver Gaps and Three Attempts to Close
Them,” Journal of Personality and Social Psychology, vol. 81, no. 2,
pp. 278–294, 2001.

[31] T. Lombrozo, “Simplicity and probability in causal explanation,” Cog-
nitive Psychology, vol. 55, no. 3, pp. 232–257, 2007.

[32] S. Lundberg and S.-I. Lee, “An Unexpected Unity Among Methods
for Interpreting Model Predictions,” in NIPS Workshop on Interpretable
Machine Learning in Complex Systems, 2016.

[33] D. Kahneman and A. Tversky, “The simulation heuristic,” in Judgment
under Uncertainty: Heuristics and Biases, D. Kahneman, P. Slovic, and
A. Tversky, Eds. Cambridge University Press, 1982, pp. 201–208.

[34] D. T. Miller and S. Gunasegaram, “Temporal Order and the Perceived
Mutability of Events: Implications for Blame Assignment,” Journal of
Personality and Social Psychology, vol. 59, no. 12, pp. 1111–1118, 1990.

[35] V. Girotto, P. Legrenzi, and A. Rizzo, “Event controllability in coun-
terfactual thinking,” Acta Psychologica, vol. 78, no. 1, pp. 111–133,
1991.

[36] T. Lombrozo, “Explanation and categorization: How ”why?” informs
”what?”,” Cognition, vol. 110, no. 2, pp. 248–253, 2009.

[37] ——, “Causalexplanatory pluralism: How intentions, functions, and
mechanisms influence causal ascriptions,” Cognitive Psychology, vol. 61,
no. 4, pp. 303–332, 2010.

[38] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

[39] C. Lacave and F. J. Dı́ez, “A Review of Explanation Methods for
Bayesian Networks,” Knowledge Eng. Review, vol. 17, no. 2, pp. 107–
127, 2002.

[40] D. J. Hilton, “Mental Models and Causal Explanation: Judgements of
Probable Cause and Explanatory Relevance,” Thinking & Reasoning,
vol. 2, no. 4, pp. 273–308, 1996.

[41] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas,
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Abstract—We propose the following question: what game-
like interactive system would provide a good environment for
measuring the impact and success of a co-creative, cooperative
agent? Creativity is often formulated in terms of novelty, value,
surprise and interestingness. We review how these concepts
are measured in current computational intelligence research
and provide a mapping from modern electronic and tabletop
games to open research problems in mixed-initiative systems and
computational co-creativity. We propose application scenarios
for future research, and a number of metrics under which the
performance of cooperative agents in these environments will be
evaluated.
Index Terms—artificial intelligence, cooperative systems, games

I. INTRODUCTION

Designing intelligent agents characterized by a co-creative,
cooperative behavior would mark a major breakthrough in the
age of industrial man-machine interaction. Exchanging rele-
vant information with suitable time frequency and enriching
the partner (human or machine) with novel perspectives and
solution strategies on the problem are key factors for desirable
results (considering the value of the output and the effort
required). Cooperative games offer the valuable opportunity
to realize an interactive environment for developing and eval-
uating computational methods used by these agents.

In this paper we review concepts and implementations of
cooperative games in the light of their capability to im-
pact development processes in (industrial) environments with
co-evolution and co-creativity as important expressions for
cooperation. Having a working definition of computational
creativity, and how creative systems and their outputs are
judged in terms of their value, novelty, interestingness, and
surprise, will help us understand cooperatively creative agents
and might help us build them as well. Computational creativity
and AI-assisted design are important application areas for
computational intelligence techniques such as neural networks,
reinforcement learning and evolutionary computation; further,
the conceptualization of creativity as search in a design space
fits well with design applications of evolutionary computation.

Essentially, this paper tries to answer the following question:
what game-like interactive system would provide a good
environment for measuring the impact–and success– of a co-
creative, fully cooperative agent?

We begin with a survey of the definition of computational
creativity-related terms in the literature, how they relate to
each other and how they apply to future work on our own co-
creative agents in Section II. When considering cooperation
between multiple actors (be they human or machine), in
addition to the abilities and characteristics of each individ-
ual, the attributes of the relationships between individuals
and the surrounding environment also impact the success of
the endeavor. Section III explores some of these relational
or environmental attributes of creative efforts, such as the
exchange of information and the share of responsibility. In
section IV we propose a set of metrics under which to evaluate
cooperative agents in game-like environment, and section V
gives our vision of how cooperative agents integrating all
discussed techniques should operate in the long term.

II. COMPUTATIONAL CREATIVITY

Creativity is often understood as the production of novel and
valuable concepts [1]. Computational creativity is a subfield
of Artificial Intelligence (AI) that focuses on computational
systems whose behavior can be deemed creative [2]. While
much theoretical and practical work exists on systems that
aim to be creative in their own right, with little or no human
intervention [3]–[6], there are also many systems designed to
cooperate with humans to achieve better results than either
can presently do alone [7]–[9]. We focus on concepts of
computational creativity and how they map to game-based
tasks to further propose a number of concrete game-based
metrics for co-creativity in a computational setting.

A. Novelty, Interestingness, Surprise

In his CSF framework [10], Wiggins says an artifact pro-
duced by a system is novel if there are no previously existing
similar or identical artifacts in the context in which the artifact
is produced. Ritchie [11] builds upon Wiggins’ work and
introduces the notion of the inspiring set as the “knowledge
base of known examples which drives the computation within
the program”. Ritche calls an artifact generated by the program
novel if it is not part of the inspiring set (or not too similar to
its members). Both authors admit the possibilities of Novelty
being either an absolute assessment (based on the existence of
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Fig. 1. A simple polynomial regression model trained on the dataset I =
[(0, 0), (1, 1), (2, 4), (3, 9)] (in red) would perfectly predict the point x =
(10, 100) in blue, even though the Euclidean distance to the inspiring set is
large

identical artifacts) or, more flexibly, to depend on some metric
that establishes degrees of similarity between objects.

Reehuis et al. [12] provide an overview of Novelty metrics
used by researchers, and propose dividing them between
distance-based metrics and learning-based metrics. Distance-
based metrics depend only on the distance, in a specified
metric space, between a candidate solution and the archive
of earlier solutions (what Ritchie would call the inspiring set).
They define uniqueness as the minimum distance between a
solution and a member of the archive, as used by [13] and [14].
Sparseness is defined as the average distance from a candidate
solution to its k nearest neighbors in the archive, as used by
Lehman and Stanley [15]. Reehuis et al. note that uniqueness
is equivalent to sparseness with a value of k = 1.

Learning-based metrics take the agents expectations into
account. Formally, let an agent (or an external viewer) be
imbued with a model of the world, which ascribes probabilities
to certain events. High novelty, or surprise occurs when the
agent comes into contact with examples which contradict
the model. Reehuis et al. provide the prediction error, dis-
persion in predictions and predictive variance of the model
as examples of learning-based novelty. Itti and Baldi [16]
provide a bayesian denition of surprise using the relative
entropy, or Kullback-Leibler (KL) divergence [17]. Since the
KL divergence depends on a prior probability distribution, we
could also classify it as learning-based novelty.

B. Analysis of distance- and learning-based novelty metrics

We provide a simple example of the distinction between
the two kinds of novelty in figure 1. The points in red are
part of the inspiring set I = [(0, 0), (1, 1), (2, 4), (3, 9)] and a
candidate solution x = (10, 100) is shown in blue. A naive
Euclidean distance-based metric would ascribe high novelty
to x, while a simple learning model based on polynomial
regression could might ascribe zero novelty to x, since it is a
perfect fit to the parabola y = x2. Thus, under learning-based
novelty, what is novel to one observer might not be to another.

It is clear to us that the distinction between distance and
learning-based novelty is didactic only. A high novelty value
in a distance-based metric such as sparseness or uniqueness is
equivalent to a low probability in a simple model that takes
only the Euclidean distance from the points in the inspiring set
into account (with more distant points being less probable).

Fig. 2. A Wundt Curve, as shown in [13]

On the other hand, a more complex learning model can be
abstracted as a distance metric in a sufficiently high dimension.

Thus, the choice of novelty metric to use depends on the
problem. If one must describe a model being refined over time,
or multiple agents with individual models making different
predictions, a learning-based metric might be ideal. If there
is no explicit model, or a single static model and a distance
metric is readily available, it might be preferred. Richter [18]
defines a “neighborhood structure” as an integral part of a
fitness landscape, so we believe evolutionary computation is a
good environment for distance-based metrics.

Whatever the kind of metric used, is important to note
that a higher value of novelty is not necessarily desirable. As
a simple example, consider a set of observations consisting
entirely of random noise, such as a “poem-generator” that
simply generates long strings of random characters. These
would have high novelty (either in the distance or learning
sense), but it could hardly be called a poem generator. It
is clear that both low-novelty and extreme-novelty can be
undesirable to a system, which is why some authors define the
interestingness of an object as a function relating its novelty to
some desirability metric. A Wundt curve [19] is a hedonistic
function commonly used to express this relationship [13] [12]
[20]. In this sense, interestingness might be characterized by
just the right amount of novelty - not too much, not too little.

Learning-based interestingness is also defined in a way to
avoid excessively high novelty (unpredictability). Schmidhu-
ber, as part of his theory of artificial curiosity, provides a
comprehensive framework [21] for characterizing the learning
progress of an agent by noting the intimate relationship
between prediction and compression. An observation is termed
interesting if it enables the agent to learn some previously
unknown irregularity, that is, further compress the available
data. Rehuis et al. [12] discuss a number of different learning-
based interestingness metrics, which attempt to maximize the
learning progress induced by including a new observation
in the model: Actual Learning Progress, Previous Learning
Progress, Previous Competence Change and Reducible Error.
These are all based on the difference between the prediction
error in a region of the problem space at two points in time.

The use of these terms (novelty, interestingness, value) is
not entirely consistent across all literature. For this reason,
we find it convenient to settle on some definitions for our
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purposes, which lean closer to the way the terms are used in
[12]. These definitions are:

Novelty: any measure of dissimilarity between a sample
concept and a collection of concepts (distance-based novelty)
or an expression of the prediction error of a surrogate model
(learning-based novelty).

Interestingness: a function of how desirable a solution is
based on its novelty. This will typically assign a low score
both to low-novelty and excessive-novelty solutions.

Surprise: synonymous with learning-based novelty, that is,
a measure of how much a candidate solution deviates from a
model’s expectation.

C. Value

Wiggins defines Value as “The property of an artifact (ab-
stract or concrete) output by a creative system which renders
it desirable in the context in which it is produced”. Given that
we also defined interestingness with regards to desirability,
a closer look at the relationship between interestingness and
value is necessary.

We define value as any measure of desirability, possibly
domain-specific, while interestingness will be used solely as
a more domain-agnostic measure of desirability that depends
only on the underlying novelty metric and possibly the agent’s
internal state, but not on any externally assigned goals. To
make the distinction clear, we propose an example inspired the
space probe described in [20]. Imagine a space probe designed
for mining some kind of ore in a distant planet. It has a number
of sensors to measure some features of the world and is able
of movement in four different directions. Via reinforcement
learning, it uses data from its sensors to build a model that
predicts the concentration of ore in parts of the world.

Consider now two regions of the world R1 and R2. At
some point in time the model predicts a high concentration of
ore in R1 and low concentration in R2. After exploring both
regions, R1 is found to have low concentration of ore, R2 is
found to have a high concentration and the model is updated.
From a pure learning perspective (that is, in terms of learning
progress), both observations can be equally useful. From a
value perspective, it is clear that R2 has more value. R1 is
only useful to the extent that, by exploring similar regions, the
probe might eventually learn a new pattern that enables it to
avoid such low-value regions in the future.

As Graziano puts it, a reinforcement learning agent can
be given an “internal or curiosity reward”, which directs its
learning, and an “external reward”, defined to achieve some
pre-defined goal. These must be balanced against each other,
as, unless the agent is provided with an accurate model from
the start, it first needs to learn where the high-value regions
are by exploring unknown (possibly low-value) regions. This
is known as the exploration and exploitation problem.

A more classic formulation of the exploration and exploita-
tion problem is given by the Multi-Armed Bandit (MAB)
problem, in which a gambler is faced with N slot machines
(also known as “one-armed bandits”) with unknown reward
distributions and must decide which machine to play at each

point in time. An in-depth study of the MAB problem is out-
side the scope of this article. For more information, see [22].
In a Reinforcement Learning context, we will take novelty
or interestingness (depending on the formulation of the prob-
lem) to be related to an agent’s internal reward, encouraging
exploration, and value to be related to an agent’s external
objective, encouraging exploitation. For a pure learning agent,
an external definition of value might not be necessary.

Another interesting application of the relationship between
novelty and value is seen in Lehman and Stanley’s novelty-
based evolution [15]. They implement novelty search as an
extension of the NEAT method [23], using sparseness as metric
for novelty, where distance is a domain-dependent measure of
behavioral difference. Sparseness is, in turn, measured against
the current population plus an archived set of high-novelty
solutions. The novelty of a solution is used as selection factor
for the evolving population, and the external objective is only
used as a stopping condition test. By not using a fitness
function based on the external objective, they outperform
traditional methods in some deceptive environments, that is,
where the fitness function leads too often to local optima. This
indicates that when a good heuristic for the desired objective is
unavailable, search through novelty alone can still lead to good
results. Another possibility is a combined approach, where
both novelty and traditional fitness are rewarded concurrently
in a multi-objective formulation of the problem [24].

III. GAMES AS MIXED-INITIATIVE RESEARCH
PLATFORMS

The recent years have seen advancements both in systems
that facilitate human creation and systems able of autonomous
creation. However, researchers have noted a gap in systems
that can work in tandem with one or more human agents, and
achieve similar levels of initiative and responsibility as would
be expected from a human partner. These are known as mixed-
initiative systems. Some authors also use the term human-
computer co-creativity, or mixed-initiative co-creativity, when
emphasizing the creative nature of the output of such systems.

Carbonel [25] defines mixed-initiative systems as ”one in
which both humans and machines can make contributions
to a problem solution, often without being asked explicitly”.
This notion is developed by Burstein and Mcdermott [9],
who investigate how humans and machines can ”best share
information about and control of plan development” in a
mixed-initiative system so that each agent works in areas
where they perform best, use the appropriate representation for
the communication of plans and have the means of acquiring
and transferring authority over tasks. They identify six areas
of AI research that needed to be addressed to enable their
proposed model of mixed-initiative planning systems: plan-
space search control management, representations and sharing
of plans, plan revision management, planning and reasoning
under uncertainty, learning and inter-agent communications
and coordination.

Yannakakis et al. [7] identify “mixed-initiative co-creation
(MI-CC) as the task of creating artifacts via the interaction of a
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human initiative and a computational initiative”, emphasizing
the proactivity of the contributors, and differentiating it from
“non-proactive computer support tools (e.g. spell-checkers or
image editors)”. They also argue that, if such a system is able
to foster human creativity, then it can be called mixed-initiative
co-creativity.

Krüger et al. [8] classify interaction between human and
machine system in three levels of cooperation complexity:
tools, adaptive tools and cooperative assistants. With a “tool”
the human user has complete responsibility for the success of
the operation and adaptation to different tasks. An “adaptive
tool” has a model the environment to adapt to different situa-
tions, but has no capability to resolve possible mismatch be-
tween its goals and the humans goals. “Cooperative assistants”
have a model not only of the environment, but of the human
user, and are equipped with a transparent interface enabling
the negotiation of responsibilities and goals. Although they
do not use the term mixed-initiative, it is our view that such
a cooperative assistant would qualify as mixed-initiative.

A similar distinction is drawn by Davis et al. [26], between
what they call Creativity Support Tools (which support a
creative person), Computational Creativity systems (which au-
tonomously create products) and Computer Colleagues, which
are “Co-creative agents (that) collaborate with humans in real-
time improvisation to enrich the creative process”. Davis [27]
previously defined human-computer co-creativity as “a situ-
ation in which the human and computer improvise in real
time to generate a creative product”, where “the contributions
of human and computer are mutually influential” and that
“introduces a computer into this collaborative environment as
an equal in the creative process”. (Though one can of course
think of useful co-creative processes where the computer is
not an equal.)

Games have been considered the “killer app” for com-
putational creativity [28], due to being multifaceted , con-
tent intensive, benefiting greatly from procedual generation
techniques and rich (highly interactive and engaging). Games
have also traditionally been used as benchmarks for AI.
Of particular interest are general game-playing algorithms,
which can in principle be applied to any games and better
generalize to other real-world problems. For example, the
GVGAI competition offers a set of 2D arcade-like games [29].
The use of games as AI benchmarks has received recent
media attention due to the success of DeepMind’s success
at the game of Go with AlphaGo [30], AlphaGo Zero [31]
by combining reinforcement learning and Monte Carlo tree
search. This paradigm has also yielded success in other games
by Anthony et al. [32] and by DeepMind’s AlphaZero [33].
Games are also fun. Perez et al. [29] suggest that this leads to
higher interest in AI research by the general public, and a 2014
review of gamification studies by Hamari et al. [34] concludes
that, although some methodological issues were found, most
studies yielded positive effects of gamification. We would like
to investigate whether the use of game-like techniques can
lead to the design of better co-creativity tools for real world
problems.

Finally, we have identified several modern games where
we believe a good AI controller, especially one designed for
co-operative play with humans, would benefit from address-
ing many specific issues listed by mixed-initiative and co-
creativity researchers as research topics for the development
of the field. Tables I and II illustrate a mapping between
these research topics and games that would serve as interesting
problems for those research topics. We further detail the
correspondence between research topics and games below:

Agent modeling: A lot of research in mixed-initiative
systems and co-creativity is concerned with building a good
model of the other agent’s behavior and goals. For Burstein
and Mcdermott [9], intent recognition (e.g. filling in the gaps
of a plan that is not specified to the degree of atomic actions)
and learning user preferences are important tasks of mixed-
initiative planing systems. The ability to build a model of the
user is one of the factors that distinguish a cooperative assistant
from an adaptive tool for Krüger et al. [8].

Hadfield-Menel et al. [35] introduce Cooperative Inverse
Reinforcement Learning (CIRL), a framework of cooperation
between a Human H and a robot R, where both players
are rewarded by the same reward function, which is known
only by H . R tries to infer the reward function from H’s
actions. They show that when H tries to greedily maximize
its own rewards, R might learn a poor approximation to the
real reward function and achieve suboptimal results, so optimal
solutions may involve active instruction by the human. The use
of Generative Adversarial Networks (GANs) [36] to generate
novel artifacts based on the design objectives of a user [37]
or emulating a specific art style [38] is also a recent and
promising approach to this problem.

The amount of time or data available for learning can also
impose constraints on the techniques used. If a behavior must
be learned over the course of a single game session, for
example (rather than over a large number of games), one
approach used by Barret et al. [39] is to pre-compute a set
of strategies S and assume the other player is using strategy
Si with probability pi, using Bayesian reasoning to update
the probability of each strategy whenever the other player
makes an action. The value of a prospective action with each
possible paired strategy is weighted by their probability to
determine the best action. They show this can lead to better
results than simply mirroring the other player, even when the
actual strategy is not one of the strategies contained in S.

Another useful technique is empowerment maximiza-
tion [40], [41]. Empowerment is an information-theoretic,
intrinsic motivation metric that formalizes how much potential
causal influence an agent has upon the world it can perceive.
An artificial agent motivated to maximize its human partner’s
empowerment could sidestep the issue of creating a complex
model of the other agent’s intentions by simply acting to leave
their partner’s options open.

In games, the need to predict the other player’s actions
and objectives arises naturally in competitive environments,
especially those involving simultaneous action selection (like
Race for the Galaxy (Tomas Lehmann, 2007) and other forms
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TABLE I
RESEARCH TOPICS AND GAMES

Agent Modelling Changing Environment Nontrivial Goals
Emerging goals Hidden Goals Dynamic Goals

Poker
Race for the Galaxy
Hanabi
Magic Maze

Pandemic
Flashpoint
Overcooked

Minecraft
Roleplaying Games

Mafia
Werewolf
The Resistance
Shadows over Camelot*
Dead of Winter*

Ticket to Ride
Terra Mystica
Pandemic Legacy: Season 1

Mapping of research topic to games. Games in italics are cooperative. Games with an asterisk are cooperative with an optional traitor mechanic.
Underlined games are electronic games

TABLE II
RESEARCH TOPICS AND GAMES (CONT.)

Asymmetric responsibilities Communication
Unconstrained Constrained

Pandemic
Magic Maze
Can’t Drive This

Pandemic
Flashpoint

Hanabi
Magic Maze
Real-Time Games (in general)
Competitive Games (in general)

of bluffing (like Poker). In cooperative games, the need for
agent modeling is alleviated if players are allowed to freely
coordinate their actions. However, some cooperative games
like Hanabi (Antoine Bauza, 2010) and Magic Maze (Kasper
Lapp, 2017) enforce communication restrictions, which makes
agent agent modeling a key factor for success.

Changing environment: Referring to traditional AI plan-
ning systems, Burstein and Mcdermott [9] state “the worlds
in which these planners worked tended not to change much,
fight back at all”, and regards plan revisions and reasoning
under uncertainty as two major areas of necessary research.
For Krüger et al. [8], the ability to“change one or more of
its own parameters in response to environmental variations”
separates regular tools from adaptive tools, and is one of the
requirements for cooperative assistants.

Many modern tabletop games excel in thematically repre-
senting environment changes inspired in real world uncertain-
ties. In Pandemic (Matt Leacock, 2008), in during the Infection
phase, cards are drawn from and infection deck to randomly
add disease cube to cities in the board. If not treated timely by
the players, these might induce chain reactions and defeat the
players. Flashpoint: Fire Rescue (Kevin Lanzing, 2011) has
the Advance Fire phase, where smoke and fire can be added
to the board, which can cause explosions, structural damage
to a collapsing building and knock down player-controlled
Firefighter units. These phases usually occur in between player
action phases to randomly provide either resources or obstacles
to the players, and we term them environment phases for
generality. In Overcooked, an electronic cooperative cooking
game, the ingredients each player has access to changes with
shifts in the map layout.

In some games, the goal of the game itself (that is, the
scoring function) may change unpredictably during the course
of the game (for example, limited-time scoring opportunities).
We investigate these and other goal-related features below.

Nontrivial goals: Real-life goals are often nontrivial. They
might be unknown to some of the agents, as in [35]. The

goal might change during the execution of a project or parts
of it may be implicitly specified [9]. The goal might be
complex and broken into subtasks, and the responsibility for
each subtask must be properly assigned, which could involve
negotiation [8], [9]. In short, Davis et al. [26] characterize
goals as “socially negotiated, dynamic and emergent”.

In some “games”1, such as Minecraft (Mojang, 2008) and
roleplaying games, there is no overall objective stated by the
rules, although the players might still define objectives for
themselves based on what is fun for them, negotiate it with
other players and attempt to achieve them via cooperation or
competition. We term these games with regards to their goal
as Emerging, due to their emergent nature as a product of the
interaction between players and the environment.

Modern tabletop also employ many variations of secret
objectives. Although we could not find a fully cooperative
game with hidden goals, social deduction games such as
Werewolf (Davidoff, Plotkin, 1986) and The Resistance (Don
Eskridge, 2009) feature competition between two or more
factions (whose members cooperate among themselves), where
each player typically only know the allegiance of a small
fraction of the other players (and thus, their objectives).
Shadows Over Camelot (Cathala, Laget, 2005) and Dead of
Winter: A Crossroads Game (Gilmour, Vega, 2014) are semi-
cooperative games with a random probability of one player
being assigned a traitor role. The mere possibility of a traitor
encourages players to second-guess other player’s reasons.
Dead of Winter features a fairly unique mechanic where, even
if no traitor is present, each player’s goal is composed of
a public objective, shared by all non-traitor players, and a
secret objective, where a player only wins if the group fulfills
the public objective and they personally fulfill their secret
objective (so that one or more players might still lose even

1At this point, we want to acknowledge the controversy in calling these
activities games. In Rules of Play [42], Salen and Zimmerman’s definition of
game involves there being a quantifiable outcome. We sidestep this discussion
and call them games for simplicity and consistency with common usage.
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if the group achieves success). This adds another layer of
complexity where seemingly strange behavior by a player can
be justified either by their secret objective or by a traitor role,
and a non-traitor player’s need to fulfill their secret objective
might lead to the failure of the entire group.

Dynamic goals (where the scoring function itself changes
over the course of a game) are also common: in Ticket to
Ride (Alan Moon, 2004), players have the option of drawing
extra objective cards, achieving extra score if they manage to
fulfill these new objectives, at the risk of score penalties if
they fail. In Terra Mystica (Drögemüller, Ostertag, 2012), a
unique scoring tile is randomly drawn for each turn, enabling
limited-time scoring opportunities for all players. A coopera-
tive example is Pandemic Legacy: Season 1 (Daviau, Leacock,
2015), a variation of Pandemic where players play missions
in a persistent and evolving world, and a mission’s objective
may be altered mid-course by specific storyline events.

Asymmetric responsibilities and areas of expertise: For
Burstein and Mcdermott [9], two of the high-level goal are to
enable proper communication between agents with different
areas of expertise, and that each agent works in areas where
they perform best. Krüger et al. [8] gives an example of a
cleaning robot that is able to identify areas where it cannot
access (e.g. due to being blocked by an object) and proactively
request assistant from the human user (who has a different set
of skills and is able to e.g. move the object away). Different
responsibilities (such as teaching and learning) can also be a
result of asymmetric information, such as in [35].

In Pandemic and many other games, each player controls a
unique character with special abilities, such as performing one
specific type of action more efficiently. Some games are more
radical in the variability between player powers. In Magic
Maze, players share control of a group of character pawns, but
each player can only move a pawn in one specific cardinal
direction. In Can’t Drive This (Pixel Maniacs, 2016), one
player takes the role of a driver while the other dynamically
builds the road on which the first player must drive.

Communication: Researchers highlight the need for a
shared representation [9] or interface [8] in which communi-
cation can happen. Burstein and Mcdermott [9] also implicitly
acknowledge a cost to associated with communication when
stating “it is almost necessarily the case that details will be left
out, if the communication is to be succinct enough to make it
worth defining the task for another to carry out”. Lu et al. [43]
use a cooperative co-evolutionary approach to demonstrate
how the frequency at which communication occurs impacts
cooperative performance under different communication costs.
Finally, the problem definition itself might disallow certain
forms of communication, or allow no communication at all,
in which case agents still can gain information by reasoning
about other agents’ actions [35].

Games offer an avenue for exploring all of these problems.
In games that allow unrestricted communication, such as
Pandemic and Flash Point, complex communication involving
conditional logic and algorithm building can emerge, as shown
by Berland [44]. Designing a communication scheme with

comparable expressive power for effective human-AI and AI-
AI cooperation is an open problem. In the Tiny Coop environ-
ment [45] communication actions are available, allowing each
agent to signal the direction it would like its partner to move in
the immediate future. However, human communication often
happens not at the level of individual actions, but in terms
of higher level goals and their dependencies. The need for
communication can also be triggered by specific events, such
as the completion of a goal or a change in environment. A
recent example of development in this direction are by Schrodt
et al. [46], whose agent is able to establish cooperative goals
in a variant of Super Mario Bros. while thinking out loud its
current intentions and state.

In other games, the communication is restricted by the game
rules. In Hanabi, players can only communicate by expending
a limited number of hints, which can only state the color
or value of cards in another player’s hand. In Magic Maze,
players can freely communicate, but only at specific points
in time. As a real-time game, time spent elaborating the plan
comes at the cost of time for execution of the plan.

In some competitive games, the rules allow full commu-
nication, including negotiation and partnerships, but it must
occur in full view of other players. In this scenario, the cost of
communication is the information that is leaked to antagonist
players, and so communication is a strategic decision.

IV. METRICS FOR CO-CREATIVE AGENTS

We propose the following types of metrics for co-creative
agents in game environments:

• Value: For any game with fixed objectives stated by
the rules, a natural way to measure value is the game’s
scoring function. For games with emerging or hidden
goals, explicit feedback from the user, if available, can
also be used as a value metric. For procedurally generated
content, value could be measured by a pre-determined
fitness function of the generated artifact’s features (as
seen in [7]), by results of simulation [47] or by sub-
jective evaluation of the human player, who selects their
preferred generated artifact [7].

• Learning-based metrics: An agent might attempt to
build a model of the other agents over the course of a
game session or multiple sessions. A model of the user’s
behavior can be used to predict their action in a tree
search algorithm. A model of the user’s preferences can
be used to predict the probability of acceptance of an
artifact by the user. The accuracy of these predictions
is a metric of learning-based novelty, and the higher the
confidence of the model in a result, the higher the surprise
if the prediction fails.
For an agent attempting to gradually build a model of a
player, care must be taken to isolate gains in performance
(either in terms of value or in terms of accuracy of
predictions) due to improvements on the part of the agent
and improvements on the part of the human. After all,
a human player could play with a simple, non-learning
agent, and the agent could still report an increase in
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performance due to the human player better learning to
play the game or play matching the agent’s expectations.
A statistical analysis of player improvement over time is
given in [47].
To avoid this confounding factor, it is important im-
plement baseline agents, with statistically unchanging
behavior, who would serve as proper control groups when
paired with learning agents and humans, so that the
impact of an agent’s learning on performance cannot be
overestimated.

• Distance-based metrics: In some scenarios, the product
of each decision by the agent will not be a single, atomic
action, but a number of options for the other agents to
choose from, such as a number of action plans or a
number of in-game artifacts for use of the human player.
In these cases, distance-based metrics of novelty and
interestingness can be used to make sure the suggestions
offer a varied sample of the decision space, rather than
small variations of a single idea. That way, the user is
most likely to find a suggestion they identify it, and tweak
some finer details to their own preference.

• Empowerment metrics: Empowerment ”grows when
different actions lead to different perceivable outcomes”,
and is a form of intrinsic motivation [41]. As such, it
can be used in the absence of explicitly stated goals.
We believe empowerment can also be used to maximize
chance of acceptance of a suggestion, similar to distance-
based metrics, by providing many relevant choices to the
user.

• Communication metrics: The most direct way to
measure the effectiveness of a communication scheme
is simply to measure the difference in value (or in
accuracy of predictions) achieved by cooperating under
different schemes (or with no communication), as is done
in [45]. The frequency of communication [43] can also
be an important metric in scenarios where there is a
communication cost or where player experience could be
negatively impacted by a high-frequency stream of low-
level communication actions.

The proposed metrics pose an initial approach to quantify
the success of co-creative agents in cooperative games and
similar environments.

V. THE WAY FORWARD

In tables I and II, we listed some characteristics of games
that provide interesting research topics for human-computer
cooperation. In our view, the most promising application
scenarios are those focused on agent modeling and communi-
cations and are the biggest gap in current cooperative systems.
They are at the core of co-creative cooperative activities,
while the remaining entries of the table serve as challenges
to be addressed by better cooperative systems (which include
agent modeling and communication as core components): how
will the other player react by a change in the environment?
How to infer an unknown goal from a player’s actions?
How to communicate a change of plans due to a change in

the environments? How to communicate (or predict) which
activities are to be performed by each agent, especially under
time constraints?

Going forward, we believe communication and agent mod-
eling can also feed off each other. On one hand, an agent
can use its ability to communicate to build more accurate
models, either by directly asking for missing information or by
picking up on cues from information provided by its peers. On
the other hand, having an accurate model can help determine
what information to share or ask for. A very clear example of
this dynamic is in the game Hanabi, where different players
are comfortable operating under different levels of implicit
information (e.g. how willing are they to risk playing a card
with incomplete information?). Observing the hints given by
a player can help us infer how much information they need
for their own actions, while knowing how they act under
uncertainty helps us determine what hints to give.

While section III provides many examples of application
scenarios to achieve progress in human-machine cooperation
in the short term, our long term view is that this research can
lead to applications where high-level goals and plans can be
negotiated between human and artificial agents, taking into
account their specific abilities and knowledge. The artificial
agents will then be able to fill in small gaps in the plan
by reasoning about a model of the world and of the other
agents. Alternatively, the agent can proactively request any
information it is missing if the gaps are too large to be filled.

It will be able to detect events that require a change of plans
(such as a change in environment, available resources or goals
of the group) and once again communicate and negotiate the
new plan. All along the process, novel and valuable artifacts
will be produced through computational creativity techniques,
where novelty and value are judged in regards to a model of
the knowledge and preferences of the target audience.

CONCLUSION

We started this paper by asking what game-like environ-
ments would be ideal for measuring the impact and success
of co-creative cooperative agents. We answer that question
by proposing several types of metrics, based on a thorough
research on computational creativity and metrics used in the
computational intelligence community for the related concepts
of novelty, value, interestingness and surprise. We have shown
how research in these scenarios, and similar games, can help
shed light on open questions of the field and provided a vision
of how these systems could operate in the long term.

We hope that this can lead to the development of better
mixed-initiative, co-creative systems for a variety of domains,
including industrial applications, where human and machine
can cooperate working in areas where they perform best,
communicating efficiently to achieve nontrivial goals under
a changing, uncertain environment.
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Abstract—Games potentially provide a wealth of knowledge
about our shared cultural past and the development of human
civilisation, but our understanding of early games is incomplete
and often based on unreliable reconstructions. This paper de-
scribes the Digital Ludeme Project, a five-year research project
currently underway that aims to address such issues using
modern computational techniques.
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I. INTRODUCTION

The development of games has gone hand-in-hand with
the development of human civilisation [1]. However, our
knowledge of early games is incomplete and based on often
unreliable interpretations of available evidence.

There has been a wealth of traditional game studies over re-
cent centuries, from historical, anthropological, archæological
– and more recently ethnological and cultural – perspectives.
There is now also a wealth of computational game studies;
games have always been a driving factor behind artificial
intelligence (AI) and machine learning (ML) research since
the inception of these fields in the 1950s [2], and now Game
AI is maturing as a research field in its own right [3].

However, there has been little overlap between computa-
tional and historical studies of traditional games. This paper
outlines a newly launched research project aimed to address
this gap, so that our historical understanding of games might
benefit from current advances in technology.

A. The Digital Ludeme Project

The Digital Ludeme Project1 is a five-year research project
being conducted at Maastricht University over 2018–23,
funded by a European Research Council (ERC) Consolidator
Grant. The objectives of the project are to:

1) Model the full range of traditional strategy games in a
single, playable digital database.

2) Reconstruct missing knowledge about traditional strat-
egy games with an unprecedented degree of accuracy.

3) Map the development of traditional strategy games and
explore their role in the development of human culture
and the spread of mathematical ideas.

An ultimate goal of the project is to produce a “family
tree” of the world’s traditional strategy games, with which

Funded by a e2m European Research Council (ERC) Consolidator Grant.
1http://www.ludeme.eu

the dispersal of games and related mathematical ideas might
be traced throughout recorded history. This will pioneer a
new field of study called digital archæoludology (DA) which
will involve the use of modern computational techniques for
the analysis and reconstruction of traditional games from
incomplete descriptions, to provide new tools and techniques
for improving our understanding of their development.

This paper describes the project’s research context, scope
of games to be covered, the methodology used, and some
potential benefits.

II. RESEARCH CONTEXT

While there is much archæological evidence of ancient
games, the rules for playing them are usually lost [8] and
must be reconstructed by modern historians according to their
knowledge of the cultures in which they were played [9], [10].
The rules for ancient and early games were typically passed
on through oral tradition rather than being transcribed, which
may have contributed to their variation and embellishment into
the range of games that we see today [8], but means that
our understanding of early games is largely based on modern
reconstructions. The following examples demonstrate some of
the issues involved.

Fig. 1. Ancient Egyptian hieroglyphic art showing Senet being played.

A. Missing Knowledge

Many boards and sets of playing pieces have been found for
the ancient Egyptian game of Senet dating back to c.3500BC,
some in pristine condition, allowing historians to deduce with
reasonable certainty what type of game it was [11]. However,

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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the only known clues as to how Senet was played are found
in hieroglyphic art dating back to c.3100BC, such as Fig. 1),
which shows stylised characters playing the game.

Game historian H.J.R. Murray declined to propose a com-
plete set of rules for Senet in his classic 1952 book [8]. Kendall
did so in 1978 [12], but his version is based on snippets of
information from sources spanning thousands of years and
remains questionable. For example, Murray interpreted board
squares marked with certain sacred Egyptian symbols as entry
points for pieces, while Kendall interpreted these as points of
departure from the game [13].

B. Loss of Knowledge

Even when records of the rules for ancient games are found,
interpretation can be problematic. For example, the earliest
known record of a game’s rule set is for the Royal Game of
Ur. Game sets were uncovered in Iraq dating back to 2600–
2400BC, but it was not until Irving Finkel’s 1990 study of two
Sumerian stone tablets dating from 177–176BC [14] that the
game’s (probable) rules were found.

Fig. 2. Sumerian tablet showing game rules destroyed in World War II.

The first tablet was found by Finkel among 130,000 such
tablets held in the British Museum. The second tablet (Fig. 2)
was luckily photographed shortly before its destruction in a
Parisian studio during World War II and recognised by Finkel
half a century later [14]. Note that Finkel’s interpretation of
the game was made thousands of years after the tablets were
made, which was itself thousands of years after the game was
originally played.

In addition to wanton destruction caused by war, vandalism,
looting, desecration, etc., more benign forces such as erosion
and urban development can also take their toll on archæologi-
cal evidence. For example, Crist describes the case of ancient
game boards etched into rock surfaces in Azerbaijan [15],
which were destroyed to make way for a housing development
between one research trip and the next.

C. Translation Errors

Translation errors are another issue. Consider the game
of Hnefatafl, played by Vikings from c.400BC and spread
wherever they travelled, for which no known documentation
of the original rules exists. A modern set is shown in Fig. 3

In 1732, Swedish naturalist Carolus Linnæus observed the
related game Tablut being played in Lappland, and recorded
its rules in Latin in his travel diary [16]. This account was
translated by E. L. Smith in 1811, who mistook the phrase

Fig. 3. A modern version of the Viking game Hnefatafl.

“likewise the king” to mean “except the king”, to produce a
biased rule set that greatly favoured the king’s side [17]. Mur-
ray used this translation as the basis for his 1913 reconstruction
of Hnefatafl [18], making it the definitive rule set for many
years [8], until players and researchers subsequently corrected
this flaw to give the many versions of the game played today.

D. Reconstruction Errors

Often the archæological evidence of games provides little
clue as to their rules, which must be deduced almost entirely
from context. For example, the rock etching shown in Fig. 4
(left) was unearthed in Assos, Turkey, and estimated to be
around 2,300 years of age [19]. This design (right) is listed
as design #88 in Uberti’s census of Merels boards [20], which
revealed around 100 designs from more than 2,500 examples
across 43 countries.

Fig. 4. Engraving found at Assos (Turkey) and a Small Merels board.

It is assumed that this board was used to play Round
Merels,2 which seems to be the default assumption for boards
of this design, location and epoch. German historian Carl
Blümlein proposed a plausible reconstruction of the rules in
1918, which became the accepted standard and was not ques-
tioned for almost 100 years, when a 2014 analysis revealed a
critical flaw that allowed players to exploit infinite cycles [21].
It is now questioned whether this design was used for a
different type of game or was not even a game at all.

E. Transcription Errors

Transcription errors can be an issue even with the records of
more recent games. For example, the design shown in Fig. 4

2A miniature version of the traditional Merels or Nine Men’s Morris.
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(right) – a wheel with eight spokes – is also used for the
18th century Maori game Mu Torere from New Zealand, even
though its rules are quite different to Round Merels.

Ethnomathematician Marcia Ascher noted in her 1987 study
of Mu Torere [22] that at least two historians’ transcriptions
of its rules simplified out an apparently trivial starting rule,
without which the game became unplayable. A full game tree
expansion by mathematician Philip Straffin [23] (Fig. 5) shows
that either player can win on the first move if this rule is not
used, which is obvious from even the simplest analysis.

Fig. 5. Full game tree expansion of Mu Torere showing trivial wins (dotted).

F. Reinvention Estimates

The discovery of similar game boards in India and ancient
Mexico – Pachisi and Patolli (Fig. 6) – was used in 1879
as evidence of early pre-Columbian contact between Asia
and South America [24], even though the rules for each
game are quite different [25]. This claim was disputed half
a century later due to the notion of “limited possibilities” in
design making coincidental reinvention more plausible [26],
even though Murray [8] points out that such independent
reinvention is generally unlikely.

Fig. 6. Similar boards for Pachisi (left) and Patolli (right).

Which view is more likely to be correct? Such analyses
will remain speculation until methods are developed to pro-
vide quantitative evidence for such cases. A more accurate
and complete knowledge of the development and spread of

traditional games could help clarify such cases, and shed new
light on trade routes and points of contact between cultures.

G. Partial Evidence

A challenging task facing historians is to reconstruct the
rules of games when only some of the equipment is known.
For example, Fig. 7 shows a game board and pieces dated to
375AD and found in 2006 in Poprad, Slovakia, in the tomb of a
Germanic chieftain who served in the Roman army [27]. This
equipment has no clear precedent in Europe, and historian
Ulrich Schädler describes the reconstruction of the game’s
original rules as “impossible”, as the board is incomplete and
only a few playing pieces survived.3

Fig. 7. Partial game set found in a Slovakian tomb.

These examples – and many others from around the world
– highlight the difficulty of compiling reliable knowledge of
traditional games. What little evidence does exist is fragile
and easily lost, and attempts to reconstruct missing rule sets
have so far relied heavily on historical context rather than
mathematical evaluation, but once accepted into the canon
become the de facto standards. Thus, our knowledge of this
important part of our cultural heritage is at best partial, or
skewed by unreliable reconstructions.

While much attention has been paid to ensuring the his-
torical authenticity of reconstructions, there has been to date
no systematic approach to evaluating the quality of proposed
reconstructions as games. This project aims to develop tools
and methods for improving our understanding of traditional
games with unprecedented mathematical rigour.

III. SCOPE

The Digital Ludeme Project deals with traditional games of
strategy, i.e. games with no proprietary owner [4, p.5] that ex-
ist in the pubic domain,4 and in which players succeed through
mental rather than physical acumen. This category includes

3Conversation at the Board Game Studies Colloquium, Athens, April 2018.
4The more precise distinction between traditional games and those invented

by known individuals and distributed by games companies [5] can lead to
ambiguous cases [6].
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most board games, some card games, some dice games, some
tile games, etc., and may involve non-deterministic elements
of chance or hidden information as long as strategic play is
rewarded over random play. It excludes dexterity games, social
games, sports, video games, etc.

This study will cover the full range of traditional strategy
games throughout recorded human history, i.e. from around
3500BC, from all countries and cultures worldwide. Within
this context, it is useful to distinguish the approximate time
periods shown in Fig. 8:

• Ancient: before 500AD.
• Early: 500AD – 1500AD.
• Modern: after 1500AD.

4000 3000 2000 1000    0 1000 2000BC BC BC BC AD AD AD

Ancient Early Modern

Recorded Human History

Fig. 8. Timeline of key periods in recorded human history.

In general, the older a game is, the less is known about it.
The original rules are known for most modern games, some
early games, but few ancient games.

A. Influencers

It would be unrealistic to attempt to model every traditional
strategy game. For example, of the thousands of known
Chess variants,5 hundreds could fall under the umbrella of
“traditional”. There also exist over 800 known variants of
Mancala, let alone the undocumented ones [7].

It is difficult to even estimate the number of known tra-
ditional strategy games. The BoardGameGeek (BGG) online
database6 lists around 100,000 known board games with
(probable) invention dates and details regarding designer and
publisher. However, entire families of games, such as the
hundreds of Mancala variants, are typically collapsed into a
few representative entries, making the total number of BGG
entries a gross underestimate of the number of actual games,
possibly by orders of magnitude.

Instead, the Digital Ludeme Project will investigate a rep-
resentative sample of 1,000 of the world’s traditional strategy
games, which include the most influential examples throughout
history. Such influencers might be identified by:

• Appeal: Estimated total number of players.
• Impact: Number of similar games that follow.
• Importance: Footprint in the literature.
The idea is to focus on those games that are most important

to the evolution of traditional strategy games. Games that are
known to have existed, but which might have only been played
within one community or even one family, and for which there
is no evidence of any influence over later games, constitute
evolutionary dead ends that are of less interest for this task.

5http:// www.chessvariants.com
6http://www.boardgamegeek.com

IV. LUDEMES

Games will be modelled as structures of ludemes, i.e. game
memes or conceptual units of game-related information [28].
These constitute a game’s underlying building blocks, and
are the high-level conceptual terms that human designers
use to understand and describe games. Previous work on
evolving board games [29] demonstrated the effectiveness of
the ludemic model for the automated generation of games.

Table I shows how the game of Tic-Tac-Toe might be de-
scribed in ludemic form. This description is simple, clear, and
encapsulates key concepts and labels them with meaningful
names. Breaking games down into ludemes makes them easier
to model, compare and manipulate digitally, and makes it
possible the model the full range of traditional games in a
single playable database.

TABLE I
LUDEMIC DESCRIPTION OF TIC-TAC-TOE

(game Tic-Tac-Toe
(players White Black)
(equipment

(board (square 3) diagonals)
)
(rules

(play (add (piece Own) (board Empty)))
(end (win All (line 3 Own Any)))

)
)

A. Stanford GDL

Table II shows the same game described in the Stanford
Logic Group’s game description language (GDL), which has
become the standard method for describing games in general
game playing (GGP) research [30]. GDL offers benefits of
transparency (the game description itself contains the instruc-
tions for updating the game state) and correctness checking
(that the rules are well-formed).

By contrast, the ludemic approach hides the implementation
details to provide simplicity, encapsulation, efficiency and ease
of use. For example, if we wish to modify Tic-Tac-Toe so that
players aim to make a line-of-4 on a 5×5 board, or play on
a hexagonal grid, or aim for some other winning condition
altogether, then each of these changes would involve a trivial
parameter adjustment or swapping of keywords in ludemic
form. Implementing these changes in GDL format, however,
would require a significant amount of the code to be rewritten
and retested. The encapsulation of concepts makes ludemic
descriptions easier to modify and more evolvable than GDL
descriptions.

V. LUDII SYSTEM

A complete general game system (GGS) for modelling,
playing, analysing, optimising and generating the full range of
traditional strategy games is being developed for this project.
This system, called LUDII, is based on similar principles to
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TABLE II
GDL DESCRIPTION OF TIC-TAC-TOE

(role white)

(role black)

(init (cell 1 1 b))

(init (cell 1 2 b))

(init (cell 1 3 b))

(init (cell 2 1 b))

(init (cell 2 2 b))

(init (cell 2 3 b))

(init (cell 3 1 b))

(init (cell 3 2 b))

(init (cell 3 3 b))

(init (control white))

(<= (legal ?w (mark ?x ?y))(true (cell ?x ?y b)) (true (control ?w)))

(<= (legal white noop) (true (control black)))

(<= (legal black noop) (true (control white)))

(<= (next (cell ?m ?n x)) (does white (mark ?m ?n)) (true (cell ?m ?n b)))

(<= (next (cell ?m ?n o)) (does black (mark ?m ?n)) (true (cell ?m ?n b)))

(<= (next (cell ?m ?n ?w))(true (cell ?m ?n ?w)) (distinct ?w b))

(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k)) (true (cell ?m ?n b))

(or (distinct ?m ?j) (distinct ?n ?k)))

(<= (next (control white))(true (control black)))

(<= (next (control black))(true (control white)))

(<= (row ?m ?x)(true (cell ?m 1 ?x))(true (cell ?m 2 ?x))(true (cell ?m 3 ?x)))

(<= (column ?n ?x)(true(cell 1 ?n ?x))(true(cell 2 ?n ?x))(true(cell 3 ?n ?x)))

(<= (diagonal ?x)(true (cell 1 1 ?x))(true (cell 2 2 ?x))(true (cell 3 3 ?x)))

(<= (diagonal ?x)(true (cell 1 3 ?x))(true (cell 2 2 ?x))(true (cell 3 1 ?x)))

(<= (line ?x) (row ?m ?x))

(<= (line ?x) (column ?m ?x))

(<= (line ?x) (diagonal ?x))

(<= open (true (cell ?m ?n b))) (<= (goal white 100) (line x))

(<= (goal white 50) (not open) (not (line x)) (not (line o)))

(<= (goal white 0) open (not (line x)))

(<= (goal black 100) (line o))

(<= (goal black 50) (not open) (not (line x)) (not (line o)))

(<= (goal black 0) open (not (line o)))

(<= terminal (line x))

(<= terminal (line o))

(<= terminal (not open))

the previous LUDI system [31], but improved in almost every
way to be more general, extensible and efficient.

The core of LUDII is a ludeme library consisting of a
number of Java classes each implementing a particular ludeme.
Games are described as structured sets of ludemes, as per
Table I, according to an EBNF-style grammar automatically
generated from the ludeme library’s class hierarchy using a
class grammar approach [32]. Game descriptions can then
be compiled directly to Java byte code according to their
underlying ludeme classes.

A. Plausible AI

AI move planning will be performed using Monte Carlo tree
search (MCTS) [33] with playouts biased by strategies learnt
through self-play. MCTS has become the preferred approach
for general game playing over recent years, due to its ability
to devise plausible actions in the absence of any tactical or
strategic knowledge about the given task. Although it can
prove weaker for some games than others, it provides a good
baseline level of AI play for most games.

The combination of deep learning with MCTS has recently
had spectacular success with Go [34]. However, this level
of superhuman performance is not required for this project,
where a more modest level of play pitched just beyond average
human level is preferable, in order to estimate the potential of
games to interest human players. Superhuman AI that plays
differently to humans could actually bias evaluations; instead,
we want an AI that makes moves that human players would
plausibly make.

1) Lightweight Local Features: To elevate MCTS to a
sufficient level of play for all games, playouts will be biased
with domain-dependent information in the form of lightweight
features that capture geometric piece patterns, learnt through
self-play. For example, the pattern shown in Fig. 9, which
completes a threatened connection in connection games played
on the hexagonal grid, improves MCTS playing strength when
incorporated into the playouts of such games [35].

+

Fig. 9. A strong pattern for connection games on the hexagonal grid.

Such patterns represent local strategies that human players
typically learn to apply. They will not capture more complex
global strategies, but should serve to improve MCTS to
plausible levels of play, and – importantly – could give an
indication of a game’s strategic potential.

B. Game Evaluation
When evaluating rule sets, it is important to consider the

quality of the resulting games, which is the vital element
missing from many historical studies of games. If a rule set is
flawed, or does not have potential to interest human players,
then it is unlikely that is how the game was actually played.

Previous work [31], [37] has outlined robust indicators of
flaws in games that can be easily measured through self-play:

1) Length: Games should not be too short or long.
2) Fairness: Games should not unduly favour either player.
3) Drawishness: Games should not end in draws too often.
The question of what makes a game “good” in players’ eyes

is much more difficult; there are no universal indicators of
game quality, and preferences can differ between individuals,
cultures, and across time. However, it would make sense that a
key quality for strategy games should be their strategic depth,
indicated by the number and complexity of potential strategies
that players can learn.

Lantz et al. propose the notion of the strategy ladder [38].
Fig. 10 shows three plots that represent three different games,
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with dots indicating relevant strategies that players can learn.
The leftmost game (white dots) is uninteresting as it has a
simple winning strategy that is easy to learn. The rightmost
game (white dots) is uninteresting as it has difficult strategies
that are too hard to learn. The middle game (black dots) has
a variety of strategies of linearly increasing complexity; the
player can immediately see some simple strategies, but learn
more complex strategies as the game is played more.

Fig. 10. Linear acquisition of strategies in an interesting game (black) [38].

Strategic depth should be considered relative to a game’s
complexity. For example, Mu Torere (46 legal positions [23])
could be expected to involve fewer strategies than Go
(≈2.08×10170 legal positions [39]). Other ways to estimate
the strategic depth of a game might include comparing relative
win rates over a range of AI agents of varying strength.

C. Strategy Learning, Transfer and Explanation

If these lightweight features based on piece patterns rep-
resent local strategies, then the number and complexity of
learnt features could give an indication of a game’s strategic
depth. Basing local piece patterns on the adjacency of a
game’s underlying graph (Fig. 9, right) rather than the board
itself (Fig. 9, left) provides geometric independence that
allows learnt features to be transferred between different board
types. Keeping the feature attributes as simple and abstract
as possible makes it more likely that features might also be
transferrable to other game types.

The fact that ludemes are labelled with meaningful names
raises the possibility of automatically explaining learnt strate-
gies in human-comprehensible terms. For example, the strat-
egy encoded in Fig. 9 might be explained as “complete threat-
ened connections between your pieces”. The strategy encoded
in Fig. 11, effective for the recent game Quantum Leap [36],
might be explained as “make thin groups of your pieces”,
by encouraging the growth of singletons and the extension of
adjacent pieces except at mutually adjacent points.

VI. GENETICS OF GAMES

In order to map the dispersal of traditional strategy games,
it is useful to cast the mechanism for their evolution into a
biological genetic framework. Anthropologist Alex de Voogt

Fig. 11. Patterns that constitute a “make thin groups” strategy.

has stated: There is nothing genetic about board games. There
are no genes or mental parameters that only change with a
new generation of people as in linguistics or in biology [7,
p.105]. However, I would argue that the ludemic model allows
us to distinguish between the form of a game defined by its
ludemic makeup of rules and equipment (i.e. genotype) and the
function of a game defined by the behaviour it exhibits when
played (i.e. phenotype). Ludemes are the “DNA” that define
each game, and the ludemic approach has already proven to
be a valid and powerful model for evolving games [31].

A. Computational Phylogenetics

Once a genetic framework has been established, com-
putational phylogenetics techniques such as those used to
create phylogenetic trees mapping the dispersal of human
language [40] can be applied. Such techniques allow ancestral
state reconstruction for estimating the likelihood of given traits
occurring in “ancestor” games, and the inference of possible
missing links in the form of unknown games suggested by the
phylogenetic record for which no evidence exists.

Phylogenetic techniques have previously been applied to
subsets of Mancala games [41] and Chess-like games [42].
However, phylogenetic analyses of such cultural domains tend
to confuse the genotype and phenotype of artefacts, yielding
classifications of questionable value based on superficial traits
rather than meaningful underlying structures [43]. List et al.
provide guidelines for correctly casting cultural domains in a
biological framework [44].

B. Game Distance

Games do not contain the traces of genetic heritage that
biological organisms do; rule sets are typically optimised
and superfluous rules stripped out, making their heritage
hard to trace. In lieu of a metric for genetic distance, the
ludemic distance between games will be used, given by the
weighted edit distance (WED) between ludemic descriptions,
i.e. the number of removals, insertions and edits required to
convert one into the other, weighted according to the relative
importance of each attribute. This is similar in principle to
the Hamming distance used to quantify the similarity between
DNA sequences in bioinformatics [45]. Care must be taken to
detect and handle homologies [46] that occur when different
ludeme structures produce the same behaviour in play.

C. Horizontal Influence Maps

Morrison points out that phylogenetic networks may be
more suitable than trees for modelling the evolution of cultural
artefacts [47]. This seems especially relevant for games, which
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are more likely to have evolved through distributed polygen-
esis from multiple sources than monogenesis from a single
common ancestor [48], and in which rules can pass from one
to another through ethnogenesis (i.e. horizontal gene transfer)
rather than classic inheritance. The prevalence of ethnogenesis
in the spread of games could warrant the use of horizontal
influence maps (HIM) [49] (Fig. 12) rather than standard
phylogenetic approaches based on vertical gene transfer.

Fig. 12. Horizontal influence map (from [49]).

VII. CULTURAL MAPPING OF GAMES

To facilitate the cultural mapping of games, ludemes and
game descriptions will be tagged with relevant metadata:

• Mathematical: Ludeme classes will be tagged with the
underlying mathematical concepts that they embody.

• Historical: Game descriptions will be tagged with details
regarding when and where they were played (among other
cultural details).

Each game will therefore have a mathematical profile based
upon its component ludemes and a historical profile. The
game database will be data-mined for common ludemeplexes
that represent important game mechanisms. The associated
metadata will be cross-referenced to create knowledge graphs
that give probabilistic models [50] of the relationships between
their geographical, historical and mathematical dimensions.

The cultural location of games will be achieved using a
geo-location service such as GeaCron.7 GeaCron maintains
a database of geo-political world maps for every year from
3000BC to the present day, which can be queried to specify
which empire, nation, civilisation or culture was dominant at
any given geographical location in recorded history.

GeaCron also provides details of known trade routes, expe-
ditions, and other key historical events, for example Fig. 13
shows the Viking route from Denmark to Paris in 845AD. This

7http://geacron.com

Fig. 13. Viking route from Denmark to Paris in 845AD (image by GeaCron).

provides a mechanism for correlating the spread of games,
ludemes and associated mathematical ideas with the spread of
human civilisation.

VIII. DIGITAL ARCHÆOLUDOLOGY

With these ideas in mind, I propose a new field of study
called digital archæoludology (DA), for the analysis and
reconstruction of ancient games from incomplete descriptions
using modern computational techniques. The aim is to pro-
vide tools and methods that might help game historians and
researchers better understand traditional games.

Traditional game studies have tended to focus on the authen-
ticity of reconstructions (as cultural artefacts) rather than their
actual quality as games. DA seeks to redress this imbalance
by searching for plausible reconstructions that maximise both
quality and historical authenticity, hopefully leading to better
reconstructions, a better understanding of ancient and early
games, and a more accurate and complete model of the
development of traditional strategy games throughout history.

A. Forensic Game Reconstruction

A key application of DA is the forensic reconstruction of
games from partial descriptions, such as the Poprad game
shown in Fig. 7. The following equipment is known:

1) Rectangular board with 17×15 or 17×16 square grid.
2) Pieces of two colours.
3) Pieces of two sizes (possibly).
The LUDII system could perform a search of the ludeme

space constrained to these requirements, to find plausible rule
sets that maximise both game quality and historical authentic-
ity based on what is known about the game, in this case the
historical and cultural context of the tomb in which the game
was found and its inhabitant. LUDII could fill in the “missing
bits” such as finding historically accurate combinations of
rules that provide interesting games, what number of pieces
provide better results, how they are best arranged to start the
game, and so on. The aim is to provide tools for the plausible
reconstruction of such missing knowledge, so such tasks no
longer seem impossible.
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Reviewing the complete set of traditional game reconstruc-
tions modelled in the database – to identify implausible cases
and optimise them where possible – has the potential to
improve our understanding of traditional games. The intention
is to create a positive feedback loop in which better reconstruc-
tions lead to better historical and cultural mappings, which
lead to even better reconstructions, and so on.

IX. CONCLUSION

Games offer a rich window of insight into our cultural
past, but early examples were rarely documented and our
understanding of them is incomplete. While there has been
considerable historical research into games and their use as
tools of cultural analysis, much is based on the interpretation
of partial evidence with little mathematical analysis. This
project will use modern computational techniques to help fill
these gaps in our knowledge empirically, establishing a new
field of research called digital archæoludology.
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Abstract—Recently, StarCraft AI has been very actively 

researched, largely via analysis of human replay data. However, 

such data are difficult to evaluate visually because they represent 

information from a limited environment, that of the game client. 

To solve this problem, we created an environment in which game 

screens are displayed on the web, allowing game progression to 

be evaluated at a glance. This allows the performance of more 

diverse and efficient experiments than conventional human 

testing. We show that human players label macro decisions (e.g., 

main force operations) during supervised StarCraft learning 

using a web-based interface.   

Index Terms—human test, StarCraft AI, visualizer, replays  

I. INTRODUCTION 

 StarCraft, which was released in 1998 by Blizzard, is a 
game of three races. Many experts and optimized strategies are 
available. A large set of complex replays has attracted AI 
researchers. For example, the Facebook AI team released 300G 
of data extracted from about 65,000 games [1].  

BWAPI can be used to hack StarCraft clients to obtain the 
information needed for a game (units, buildings, and 
statements) and to control certain units via code. BWAPI is 
also used for StarCraft AI development. StarCraft AI 
competitions are held every year. 

 
Fig. 1. The screen of StarCraft 

Compared to other video games released with the latest 
forms of learning reinforcement, StarCraft is of the Real Time 
Strategy (RTS) genre; various environments and conditions 
that greatly affect game flow are available. Especially, unit 
combinations and interactions determine the flow of the game 
and the difficulty of decision-making. In each situation, it is 
essential to read the flow to predict the future and make the 
optimal choice. The use of deep/reinforcement learning to 

make game decisions remains at an early stage of development 
[2]. In fact, even the existing bots choose StarCraft strategies 
using a finite state machine (FSM) [3] 

Previous research has shown that macro decision-making 
requires human labeling (e.g., in what direction will the main 
force move?). The game can turn on the basis of that decision. 
Also, it is important to predict where the main enemy force is 
and what actions it will take. The AI model searches every 
frame for the main force and makes the best possible decision. 
The real question is as follows: ‘Where is the main force and 
where will it move to in five seconds?’ Professional players 
chose the five-second window. As viewing long games 
remains difficult, we sought to solve the problem by watching 
only one scene. 

We built a Web-based environment because of the limited 
functionality of the StarCraft client. As shown in Figure 1, the 
client views the game screen locally, rendering it difficult for 
another to evaluate the situation at a glance. Although a mini-
map is available, this is not very helpful because the unit type 
is not shown. In the original StarCraft replay (provided by 
Blizzard), it is not possible to rewind the game or jump to 
specific scenes or times. Because of these inconveniences, we 
created our Web environment. Previously, StarCraft AI 
performance was evaluated using human players [4]. However,  
the work was performed offline and time and space constraints 
were in play. Here, we sought to deal with these issues. 

II. A WEB-BASED STARCRAFT DATA LABELING SYSTEM 

 Environments such as described here typically provide 
four functions (TABLE I.  A single scene is studied, but it is 
possible to view past scenes when evaluating changes in 
successive scenes. Also, the small units in the resized map are 
now easily identified by color-coding, reducing the time 
required for evaluation. 

We used JSON software to move StarCraft data to the 
Web environment. StarCraft does not support conversion of 
replay files to JSON, but BWAPI allows data-writing in any 
desired format. The data required here are: 

• Map, player, and unit information for each frame 
(position, type, health level, shield level [a Protoss race 
property], and fog of war in game) 

978-1-5386-4359-4/18/$31.00 ©2018 IEEE CIG’18
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This information defines only one scene and identifies 
only the main force, but it shows a second scene about 3 
minutes into the future. The method is implemented in Python 
and extracts and compresses only the required data when the 
user solves the problem employing the JSON file. The data 
created are distributed via a Web socket. The server submits 
the problem to the user in real time after considering the 
submission situation. The interface creates an HTML5 canvas 
of the problem dataset. We constructed the game screen using 
available game data and implemented a function sending 
human answers to the server. 

TABLE I.  FUNCTIONS OF ENVIRONMENT 

Function Description 

Rewind Watch future scences like a video. 

Colorization 
Learn the distributions of units (allies, 

enemies). 

Coordinate 
selection 

Mark the position on the image. 

Option selection Additional questions can be posted. 

Time 

measurement 

Measuring the time it takes to solve a 

problem. 
 

The system collects data from human players in the following 

format: 

 

• Replay name, human tester ID, frame count (scene 
number), elapsed time, main force position, and 
decision. 

The file name and frame count are used both to match the 
scene in question and for AI prediction. Performance is 
measured by the differences between the co-ordinates selected 
by the human and the AI, the main force-detection algorithm. 
If the positional difference is within a given error range, the 
behavioral performance can be scored.  

III. CONCLUSION AND FUTURE WORKS 

Unlike existing human tests [4], the human evaluator 

provides customized functions by moving from the limited 

environment of a game client to a Web-based environment. If 

the game client lacks the necessary interface for 

experimentation, or if it is felt that use of such an interface 

would waste time, our approach improves productivity (saving 

time and expanding knowledge). For example, not only is it 

possible to evaluate a given scene it is also possible to add an 

item and evaluate the previous scene, allowing interpretation 

of the experiment. 

Our work was based on StarCraft I, but it is extensible to 

various interfaces and problem types as required. Our 

interfaces can be applied to study other RTS games where 

flow is important, including Warcraft and StarCraft II. 

ACKNOWLEDGEMENTS 

This research was supported by the Basic Science Research Program 

through the National Research Foundation of Korea (NRF) funded by the 

Ministry of Science, ICT & Future Planning (grant no. 2017R1A2B4002164). 
*: corresponding author 

REFERENCES 

[1] Z. Lin, G. Jonas, K. Vasil, and G. Synnaeve, “STARDATA: A StarCraft 
AI Research Dataset,” AIIDE 2017.  

[2] I. S. Oh and K. J. Kim, "Testing reliability of replay-based imitation for 
StarCraft," 2015 IEEE Conference on Computational Intelligence and 
Games (CIG), Tainan, 2015, pp. 536-537. 

[3] B. G. Weber, P. Mawhorter, M. Mateas and A. Jhala, "Reactive planning 
idioms for multi-scale game AI," Proceedings of the 2010 IEEE 
Conference on Computational Intelligence and Games, Dublin, 2010, pp. 
115-122. 

[4] M. J. Kim, K. J. Kim, S. Kim and A. K. Dey, "Performance Evaluation 
Gaps in a Real-Time Strategy Game Between Human and Artificial 
Intelligence Players," in IEEE Access, vol. 6, pp. 13575-13586, 2018. 

 

 
Fig. 2. Web Interface of Environment ( https://cilab.sejong.ac.kr/sc/evalution ) 
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Świechowski, Maciej . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

504



CIG’18 Keyword Index

Keyword Index

3D games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

abstract puzzle game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
action analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
action recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
actor-critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
AdaBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
adaptive algorithm selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
adversarial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
adversarial planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
affect recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
affective computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
agent control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
agent representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
agent simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
AI benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
AI competitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
altruistic punishment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ancient games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
antagonist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
applied economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
applied games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
artificial general intelligence (AGI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 466
artificial intelligence (AI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 94, 285, 381, 409, 490
artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
assessment game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
authoring tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
automated game design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 277
automated playtesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
automatic testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466
autonomous drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269

balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
beginner heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
belief revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
believability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
believable behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
believable characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
breadth first search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

card games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
cellular automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
CIG data mining competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213
co-creativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

505



CIG’18 Keyword Index

collectible card games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
combinatory categorial grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
computational creativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 277
computational intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277, 324, 482
computational models of emotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
computer Chess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
computer games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
continuous control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
convolutional neural network (CNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 301
cooperative games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410, 482
creativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
curriculum learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293

data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
deck building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 277, 383, 394, 433
deep Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
deep Q-network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
deep reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149, 293, 316, 387
design assistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
deterministic finite automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
digital archaeoludology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
digital games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
discrete-time Markov chain (DTMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
dynamic difficulty adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46, 261

edit games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
educational games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324, 346, 354
empowerment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
enemy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Ensemble Decision System (EDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
ensemble methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197, 385
evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
evolutionary methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86, 102, 110, 221, 245, 277, 409, 417
exception-tolerant hierarchical knowledge bases (HKB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
exertion games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
expertise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
explainable AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458, 474

fighting game AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46, 54, 433
FightingICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
first person shooter (FPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261, 389
flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
forward model approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .425

506



CIG’18 Keyword Index

framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
fuzzy controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

game AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133, 387, 417, 474
game analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
game control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
game design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
game design assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466
game environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
game theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
game tree search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
game usage data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213
game-playing agent analysis/metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
gamification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
gaze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
general game playing (GGP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78, 110, 490
general video game AI (GVGAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 62, 285, 315, 397, 425
genetic algorithms (GA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189, 269, 417
genetic programming (GP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
graph grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Hanabi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Hearthstone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Heroes of Might and Magic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445
heuristics design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
history of mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
human computer interaction (HCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405, 458
human pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
human test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
hybrid reward architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .433

imitation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
imperfect information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
influence maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
information theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
intelligent feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
interactive storytelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
internet-of-things (IoT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354, 362, 370
intrinsic motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157, 165, 293

joint training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405

Kingdomino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

learner-game interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117, 362

507



CIG’18 Keyword Index

learning by observing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
learning motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
learning platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
learning process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
level generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277
ludemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391, 458
map generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
matchmaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
math functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
mathematical games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
micro management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
mixed-Initiative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205, 482
mixed-initiative co-creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
multi-player online battle arena (MOBA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
Monte Carlo tree search (MCTS) . . . 33, 46, 54, 62, 141, 165, 197, 253, 301, 397, 425, 445, 490
Ms. Pac-Man . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
multi-agent search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
multi-agent systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
multi-task learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70, 221, 445
non-dominated sorting genetic algorithm (NSGA-II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
non-player character (NPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157, 261, 393
novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

online games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377, 385
online optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
online parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
opponent exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
opponent modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269
options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Pac-Man . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
pathfinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173, 394
performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
personas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
phylogenetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
physically-based simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
planar graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Planet Wars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
player modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

508



CIG’18 Keyword Index

player satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
player commitment/engagement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
player modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
player usage metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
playtesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Poker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
potential fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
probabilistic computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
procedural animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
procedural content generation (PCG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 86, 101, 245, 277
procedural level generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
public goods game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
puzzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 149

random search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
real-time strategy game (RTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149, 205, 221, 229, 301, 401, 437
real-time heuristic search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173, 394
recommender systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
regular language inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
reinforcement learning (RL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229, 261, 285, 308, 391
repeated games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
replays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
reward shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
rolling horizon evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62, 401
RTS Micro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

scale-free networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
sea water scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
search-based PCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
self-adaptive search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
serious games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332, 362, 370
simplified boardgames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
simulated car racing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
skeleton tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
skill acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
skill matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
skill rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
social dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

509



CIG’18 Keyword Index

social interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
sparse rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293
spectators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
StarCraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453, 498
StarCraft: Brood War . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
state evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
strategy games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86, 253
supervised machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
surrogate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

team of agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466
The Open Racing Car Simulator (TORCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
tree search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
upper confidence bounds for trees (UCT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
user behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

value network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
video games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125, 269
video game streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
virtual agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
virtual character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381
virtual human . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
visualizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
ViZDoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

wall building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
win prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
working memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

510


