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Preface

In the last decade Go has been an important part of my life. As a student in
Delft I became fascinated by the question why, unlike Chess, computers played
this game so poorly. This fascination stimulated me to pursue computer Go as a
hobby and I was fortunate to share my interests with some fellow students with
whom I also founded a small Go club. In the final years of my study applied
physics I joined the pattern recognition group where I performed research on
non-linear feature extraction with artificial neural networks. After finishing my
M.Sc. thesis I decided to pursue a Ph.D. in the fields of pattern recognition,
machine learning, and artificial intelligence. When the Universiteit Maastricht
offered me the opportunity to combine my research interests with my interest
in Go, I did not hesitate. The research led to several conference papers, journal
articles, and eventually this thesis. The research presented in this thesis has
benefited from the help of many persons, whom I want to acknowledge here.

First, I would like to thank my supervisor Jaap van den Herik. His tireless
efforts to provide valuable feedback, even during his holidays, greatly improved
the quality of the thesis. Next, many thanks to my daily advisor Jos Uiterwijk.
Without the help of both of them this thesis would have never appeared.

I would like to thank the members of the search and games group. Levente
Kocsis gave me the opportunity to exchange ideas even at the most insane hours.
Mark Winands provided invaluable knowledge on searching techniques, and kept
me up to date with the latest ccc-gossips. I enjoyed their company on various
trips to conferences, workshops, and SIKS courses, as well as in our cooperation
on the program Magog. With Reindert-Jan Ekker I explored reinforcement
learning in Go. It was a pleasure to act as his advisor. Further, I enjoyed the
discussions, exchanges of ideas, and game evenings with Jeroen Donkers, Pieter
Spronck, Tony Werten, and the various M.Sc. students.

I would like to thank my roommates, colleagues, and former colleagues
(Natascha, Evgueni, Allard, Frank, Joop, Yong-Ping, Gerrit, Georges, Peter,
Niek, Guido, Sander, Rens, Michel, Joyca, Igor, Loes, Cees-Jan, Femke, Eric,
Nico, Ida, Arno, Paul, Sandro, Floris, Bart, Andreas, Stefan, Puk, Nele, and
Maarten) for providing me with a pleasant working atmosphere. Moreover I
thank Joke Hellemons, Marlies van der Mee, Martine Tiessen, and Hazel den
Hoed for their help with administrative matters.

Aside from research and education I was also involved in university poli-
tics. I would like to thank my fraction (Janneke Harting, Louis Berkvens, Joan
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Muysken, Philip Vergauwen, Hans van Kranenburg, and Wiel Kusters), the
members of the commission OOI, as well as the other parties of the Univer-
sity Council, for the pleasant cooperation, the elucidating discussions, and the
broadening of my academic scope.

Next to my research topic, Go also remained my hobby. I enjoyed playing
Go in Heerlen, Maastricht, and in the Rijn-Maas liga. I thank Martin van Es,
Robbert van Sluijs, Jan Oosterwijk, Jean Derks, Anton Vreedegoor, and Arnoud
Michel for helping me neutralise the bad habits obtained from playing against
my own program.

Over the years several people helped me relax whenever I needed a break
from research. Next to those already mentioned, I would like to thank my
friends from VFeeto, Oele, TN, Jansbrug, Delft, and Provum. In particular
I thank, the VF-promovendi Marco van Leeuwen, Jeroen Meewisse, and Jan
Zuidema, ‘hardcore-oelegangers’ Arvind Ganga and Mark Tuil, and of course
Alex Meijer, with whom I shared both my scientific and non-scientific interests
in Go (good luck with your Go thesis).

More in the personal sphere, I thank Marie-Pauline for all the special mo-
ments. I hope she finds the right answers to the right questions, and, when time
is ripe, I wish her well in writing her thesis. Finally, I am grateful to my parents
and sister who have always supported me.
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Chapter 1

Introduction

1.1 AI and games

Since the founding years of Artificial Intelligence (AI) computer games have
been used as a testing ground for AI algorithms. Many game-playing systems
have reached an expert level using a search-based approach. In Chess this
approach achieved world-class strength, which was underlined by the defeat of
World Champion Kasparov in the 1997 exhibition match against Deep Blue

[158]. Go is a notable exception to this search-based development.
Go is a popular board game, played by an estimated 25 to 50 million players,

in many countries around the world. It is by far the most complex popular board
game, in the class of two-player perfect-information games, and has received
significant attention from AI research. Yet, unlike for games such as Chess,
Checkers, Draughts, and Othello, there are no Go programs that can challenge
a strong human player [126].

1.2 Computer Go

The first scientific paper on computer Go was published in 1962 [144]. The first
program to defeat an absolute beginner was by Zobrist in 1968, who in 1970
also wrote the first Ph.D. thesis [204] on computer Go. Since then computer
Go became an increasingly popular research topic. Especially in the mid 1980s,
with the appearance of cheap personal computers, and a million-dollar prize for
the first computer program to defeat a professional Go player offered by Mr.
Ing, research in computer Go received a big boost. Unfortunately Mr. Ing died
in 1997 and despite of all efforts the prize expired at the end of 2000 without
any program ever having come close to professional or even strong amateur level
[126].

After Chess, Go holds a second place as test bed for game research. At recent
conferences such as CG2002 [157] and ACG10 [85] the number of publications
on Go was at least at a par with those on Chess. Yet, despite all efforts invested

1



2 CHAPTER 1. INTRODUCTION

into trying to create strong Go-playing programs, the best computer programs
are still in their infancy compared to Go grandmasters. Partially this is due to
the complexity [115, 147] of 19×19 Go, which renders most brute-force search
techniques useless. However, even when the game is played on the smaller 9×9
board, which has a complexity between Chess and Othello [28], the current Go
programs perform nearly as bad.

It is clear that the lessons from computer Chess were in its own not sufficient
to create strong Go programs. In Chess the basic framework is a minimax-type
searcher calling a fast and cheap evaluation function. In Go nobody has as yet
come up with a fast and cheap evaluation function. Therefore, most top Go
programs are using a completely opposite approach. Their evaluation functions
tend to be slow and complex, and rely on many fast specialised goal-directed
searches. As a consequence chess programmers are often surprised to hear that
Go programs only evaluate 10 to 20 positions per second, whereas their chess
programs evaluate in the order of millions of positions per second.

Although computers are continuously getting faster it is unlikely that chess-
like searchers alone will suffice to build a strong Go program at least in the near
future. Nevertheless, searching techniques should not be dismissed.

A direct consequence of the complexity of the evaluation functions used
in computer Go is that they tend to become extremely difficult to maintain
when the programmers try to increase the playing strength of their programs.
The problem is that most programs are not able to acquire the Go knowledge
automatically, but are instead supported by their programmers’ Go skills and
Go knowledge. In principle, a learning system should be able to overcome this
problem.

1.3 Problem statement and research questions

From the previous sections it is clear that computer Go is a domain which has
several elements that are interesting for AI research. Especially the fact that
after more than thirty years of research the best computer programs still com-
pete at only a moderate human amateur level, underlines the challenge for AI.
Our main problem statement therefore is:

How can AI techniques be used to improve the strength of Go programs?

Although many AI techniques exist that might work for computer Go, it is
impossible to try them all within the scope of one Ph.D. thesis. Restricting
the scope we focus on two important lines of research that have proved their
value in domains which we believe are related to and relevant for the domain of
computer Go. These lines are: (1) searching techniques, which have been applied
successfully in games such as Chess, and (2) learning techniques from pattern
recognition and machine learning, which have been successful in other games,
such as Backgammon, and in other complex domains such as image recognition.
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This thesis will therefore focus on the following two research questions.

1. To what extent can searching techniques be used in computer Go?

2. To what extent can learning techniques be used in computer Go?

1.4 Thesis outline

The thesis is organised as follows. The first chapter is a general introduction
to the topics of the thesis. Chapter 2 introduces the reader to the game of Go.
The following eight chapters are split into two parts.

Chapters 3, 4, and 5 form the first part; they deal with searching techniques.
Chapter 3 starts by introducing the searching techniques. In chapter 4 we
investigate searching techniques for the task of solving the capture game, a
simplified version of Go aimed at capturing stones, on small boards. In chapter
5 we extend the scope of our searching techniques to Go, and apply them to
solve the game on small boards.

Chapters 6, 7, 8, 9, and 10 form the second part; they deal with learning
techniques. Chapter 6 starts by introducing the learning techniques. In chapter
7 we present techniques for learning to predict strong professional moves from
game records. Chapter 8 presents learning techniques for scoring final positions.
In chapter 9 we extend these techniques to predict life and death in non-final
positions. Chapter 10 investigates various learning techniques for estimating
potential territory.

Finally, chapter 11 completes the thesis with conclusions and provides di-
rections for future research.
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Chapter 2

The game of Go

In this chapter we introduce the reader to the game of Go. First we provide a
brief overview of the history of Go. Second, we explain the rules of the game.
Third, we give a glossary explaining the Go terms used throughout the thesis.
Readers who are already familiar with the game may skim through the text or
even continue directly with chapter 3.

2.1 History of Go

The game of Go originates from China where it is known as Weiqi. According
to legends it was invented around 2300 B.C. by an emperor to teach his son
tactics, strategy, and concentration. The game was first mentioned in Chinese
writings from Honan dating back to around 625 B.C. [12].

Around the 7th century the game was imported to Japan where it obtained
the name Igo (which later gave rise to the English name Go). In the 8th cen-
tury Go gained popularity at the Japanese imperial court, and around the 13th

century it was played by the general public in Japan. Early in the 17th cen-
tury, with support of the Japanese government, several Go schools were founded
which greatly improved the playing level.

In the late 16th century the first westerners came into contact with Go. It
is interesting to note that the German philosopher and mathematician Leibniz
(1646 to 1716) published an article entirely on Go even though he did not know
all the rules [6, 114]. In the beginning of the 20th century the inclusion of Go in
a book by Edward Lasker [113], a well-known chess player (and cousin of chess
world champion Emanuel Lasker), stimulated popularity in the West.

By 1978 the first western players reached the lowest professional ranks, and
recently, in 2000, Michael Redmond was the first westerner to reach the highest
professional rank of 9 dan. Worldwide, Go is now played by 25 to 50 million
players in many countries, of which several hundreds are professional. Although
most players are still located in China, Korea, and Japan, the last decades have
brought a steady increase in the rest of the world, which is illustrated by the

5



6 CHAPTER 2. THE GAME OF GO

fact that Europe nowadays has over one thousand active players of amateur dan
level, and even a few professionals.

2.2 Rules

The game of Go is played by two players, Black and White, who consecutively
place a stone of their colour on an empty intersection of a square grid. Usually
the grid contains 19×19 intersections. However the rules are flexible enough to
accommodate any other board size.
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Figure 2.1: Blocks.

Directly neighbouring (connected) stones of the
same colour form blocks. Stones remain fixed
throughout the game unless their whole block is
captured. In Figure 2.1 eight numbered blocks are
shown as an example. (Notice that diagonal con-
nections are not used.)

The directly neighbouring empty intersections
of (blocks of) stones are called liberties. A block
is captured and removed from the board when the
opponent places a stone on its last liberty. For
example, a white move in Figure 2.1 on the empty intersection marked a captures
block 1. Moves that do not capture an opponent block and leave their own block
without a liberty are called suicide. An example of suicide in Figure 2.1 would
be a black move on the empty intersection marked b. Under most rule sets
suicide is illegal, however if suicide is legal the own block is removed.

At the start of the game the board is empty. Normally the weaker player
plays Black and starts the game. When the difference in strength between the
players is large this can be compensated for by allowing Black to start with
some additional stones (called handicap stones) placed on the empty board.
For amateur players, the difference in grades of their rating (in kyu/dan) di-
rectly indicates the number of handicap stones that provides approximately
equal winning chances between two players.

As the game progresses, by the alternating placement of black and white
stones, the players create stable regions that are either controlled by Black or
by White. A player is allowed to pass. In the end the player who controls most
intersections of the board wins the game.

Although all major rule sets agree on the general idea stated above there
exist several subtle differences [33]. The main differences deal with the ko rule
(repetition), life and death, suicide, and the scoring method at the end of the
game, which will all be discussed in the next subsections.

2.2.1 The ko rule

Since stones can be captured (removed from the board) it is possible to re-
peat previous board positions. However, infinite games are not practical, and
therefore repetition of positions should be avoided. The most common case of a
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repeating position is the basic ko, shown in Figure 2.2, where Black captures the
marked white stone by playing at a after which White recaptures the black stone
by playing a new stone at b. The basic-ko rule says that a move may not capture
a single stone if this stone has captured a single stone in the last preceding move.
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Figure 2.2: Basic ko.

As a consequence White can only recapture
at b in Figure 2.2 after playing a threatening
move elsewhere (which has to be answered
by the opponent) to change the whole-board
position. Such a move is called a ko threat.

Repetition in long cycles

The basic-ko rule applies under all rule sets and effectively prevents direct recre-
ation of a previous whole-board position in a cycle of two moves (one move by
Black, and one move by White). However, the basic-ko rule does not prevent
repetitions in longer cycles. A simple example of repetition in a longer cycle is
the triple ko (three basic kos), but more complex positions with cycles of arbi-
trary length exist. Although such positions are quite rare (a reasonable estimate
is that they influence the result of strong 19×19 games only once every 5,000
to 50,000 games [95]) they must be dealt with if they occur in a game.

In general there are two approaches for dealing with long cycles. The first
approach, which is found in traditional Asian rule sets, is to prevent only unbal-
anced cycles, where one side is clearly abusing the option to stay in the cycle.
(This typically happens when one side refuses to pass while the other side is
passing in each cycle.) For balanced cycles the traditional Asian rules have sev-
eral possible rulings such as ‘draw’, ‘no result’, or adjudication by a referee. The
second approach prevents long cycles by making any repetition illegal. Rules
that make any repetition illegal are called super-ko rules. In general super-ko
rules are found in modern western rule sets. Unfortunately, there is no agree-
ment (yet) among the various rule sets on the exact implementation of super-ko
rules, or even if they should be used at all.
In practice there are two questions that must be answered.

1. When is a position a repetition?

First of all, for a position to be a repetition the arrangement of the stones
must be identical to a previous position. However, there are more issues
to consider than just the stones. We mention: the player to move, the
points illegal due to the basic-ko rule, the number of consecutive passes,
and the number of prisoners. When only the arrangement of stones on the
board is used to prevent repetition the super-ko rule is called positional,
otherwise it is called situational.

2. What are the consequences of the repetition?

The first approach does not use super ko. Here we consider the Japanese
Go rules. The Japanese Go rules [135] state that when a repetition occurs,
and if both players agree, the game ends without result. In the case of
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‘no result’ humans normally replay the game. However if time does not
permit this (for instance in a tournament) the result of the game can be
treated as a draw (jigo). If players play the same cycle several times but
do not agree to end the game, then as an extension to the rule they are
considered to end it without result [94].

For most purposes in computer Go ‘no result’ is not an option. Therefore,
if such repeated positions occur under traditional rules, they are scored
drawn unless one side captured more stones in the cycle. In that case the
player that captured the most wins the game. This is identical to scoring
the cycle on the difference in number of passes. The reason is that, since
the configuration of stones on the board is identical after one cycle, any
non-pass move must result in a prisoner, and if both sides would repeat the
cycle sufficiently long one player could give away the whole board while
still winning on prisoners, which count as points under the Japanese rules.

The second approach uses super ko and declares all moves illegal that
recreate a previous position. The effect on the game tree is equivalent to
saying that the first player to repeat a position directly loses the game
with a score worse than the maximum loss of board points (any other
move that does not create repetition is better).

The simplest super-ko rule is the positional super-ko rule, which only con-
siders the arrangement of the stones on the board to determine a repeti-
tion. It has an elegant short rule text, and for that reason mathematically
oriented Go enthusiasts often favour it over the traditional Asian approach.
Unfortunately, however, simple super-ko rules can create strange (and by
some considered unwanted) side effects. An example of such a side effect,
on a small 5×5 board using positional super ko, is shown in Figure 2.3a
where White can capture the single black stone by playing at the point
marked a, which leads to Figure 2.3b. Now Black cannot recapture the ko
because of the positional super-ko rule, so White is safe. If however Black
would have had a slightly different position, as in Figure 2.3c, he1 could
fill one of his own eyes (which is normally considered a bad move) only to
change the position and then recapture.
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(b)
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(c)

Figure 2.3: A rare side effect of positional super-ko.

1Throughout the thesis words such as ‘he’, ‘she’, ‘his’, and ‘her’ should be interpreted
gender-neutral unless when this is obviously incorrect from the context.
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In general, using a more complex situational super-ko rule can avoid most
(unwanted) side effects. It should however be noted that even situational
super ko is not free of unwanted, or at least unexpected, side effects (as
will be shown in chapter 5).

It is interesting to note that repetition created by a pass move is never
declared illegal or drawn because passing at the end of the game must be
legal. As a generalisation from this kind of repetition some people have
proposed that the pass move could be used to lift the ko-ban [165], i.e.,
repetition of a position before one player’s pass then becomes legal for that
player. Although this idea seems promising it is not yet clear whether it
solves all problems without introducing new unexpected side effects that
may be at odds with traditional rulings.

Ko rules used in this thesis

In this thesis we use the following three different compilations of the ko rules
mentioned above.

1. Basic ko only prevents direct repetition in a cycle of length two. Longer
cycles are always allowed. If we can prove a win (or loss), when analysing
a position under the basic-ko rule, it means that all repetitions can be
avoided by playing well. (Throughout this thesis the reader may safely
assume as a default that only the basic-ko rule is relevant, unless explicitly
stated otherwise.)

2. Japanese ko is an extension of the basic-ko rule where repetitions that
are not handled by the basic-ko rule are scored by the difference in number
of pass moves in one cycle. For Japanese rules this is equivalent to scoring
on the difference in prisoners captured in one cycle (since the configuration
of stones on the board is identical after one cycle any non-pass move in
the cycle must result in a prisoner). Repetition takes into account the
arrangement of stones, the position of points illegal due to the basic-ko
rule, the number of consecutive passes, and the player to move. In this
ko rule the Japanese rules most closely transpire, translating ‘no result’
to ‘draw’.

It should be noted that the Chinese rules [54] also allow repetitions to be
declared drawn. However, that process involves a referee and is internally
inconsistent with other rules stating that reappearance of the same board
position is forbidden.

3. Situational super ko (SSK) declares any move that repeats a previous
whole-board position illegal. A whole-board position is defined by the
arrangement of stones, the position of points illegal due to the basic-ko
rule, the number of consecutive passes, and the player to move.
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2.2.2 Life and death

In human games, the life and death of groups of stones is normally decided by
agreement at the end of the game. In most cases this is easy because a player
only has to convince the opponent that the stones can make two eyes (see section
2.3), or that there is no way to prevent stones from being captured. If players
do not agree they have to play out the position. For computers, agreement is
not (yet) an option, so they always have to play out or prove life and death.
In practice it is done by playing until the end where all remaining stones that
cannot be proved dead statically are considered alive. (If computer programs
or their operators do not reach agreement and refuse to play out the position
this can cause serious difficulties in tournaments [178].)

2.2.3 Suicide

In nearly all positions suicide is an obvious bad move. However, there exist some
extremely rare positions where suicide of a block of more than one stone could
be used as a ko threat or to win a capturing race. In such cases it can be argued
that allowing suicide adds something interesting to the game. A drawback of
allowing suicide is that the length of the game can increase drastically if players
are unwilling to pass (and admit defeat). In most rule sets (Japanese, Chinese,
North American, etc.) suicide is not allowed [33]. So, in all our experiments
throughout the thesis suicide is illegal.

2.2.4 The scoring method

When the game ends positions have to be scored. The two main scoring meth-
ods are territory scoring and area scoring. Both methods start by removing
dead stones (and adding them to the prisoners). Territory scoring, used by the
Japanese rules [135], then counts the number of surrounded intersections (ter-
ritory) plus the number of captured opponent stones (prisoners). Area scoring,
used by the Chinese rules [54], counts the number of surrounded intersections
plus the remaining stones on the board. The result of the two methods is usually
the same up to one point. The result may differ when one player placed more
stones than the other, for three possible reasons; (1) because Black made the
first and the last move, (2) because one side passed more often during the game,
and (3) because of handicap stones. Another difference between the rule sets for
scoring is due to the question whether points can be counted in so-called seki
positions where stones are alive without having (space for) two eyes. Japanese
rules do not count points in seki. Most other rule sets, however, do count points
in seki.

In all experiments throughout the thesis area scoring is used as the default
and empty intersections surrounded by stones of one colour in seki are counted
as points. This type of scoring is commonly referred to as Chinese scoring.
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2.3 Glossary of Go terms

Below a brief overview of Go terms used throughout the thesis is presented. For
the illustrations we generally assume the convention to hold that outside stones
are always alive unless explicitly stated otherwise.

Adjacent On the Go board, two intersections are adjacent if they have a line
but no intersection between them.

Alive Stones that cannot be captured are alive. Alive stones normally have
two eyes or are in seki. Examples are shown in Figures 2.4 and 2.9.
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Figure 2.4: Alive stones, eyes marked e.

Atari Stones are said to be in atari if they can be captured on the opponent’s
next move, i.e., their block has only one liberty. (The marked stone in
Figure 2.2 is in atari.)

Area A set of one or more intersections. For scoring, area is considered the
combination of stones and territory.

Baduk Korean name for the game of Go.

Block A set of one or more connected stones of one colour. For some examples,
see Figure 2.1.

Chain A set of blocks which can be connected. An example is shown in Figure
2.5.
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Figure 2.5: A chain of 6 blocks.

Connected Two adjacent intersections are connected if they have the same
colour. Two non-adjacent intersections are connected if there is a path of
adjacent intersections of their colour between them.

Dame Neutral point(s). Empty intersections that are neither controlled by
Black or by White. Usually they are filled at the end of the game.
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Dan Master level. For amateurs the scale runs from 1 to 6 dan, where each
grade indicates an increase in strength of approximately one handicap
stone. If we extrapolate the amateur scale further we get to professional
level. Professional players use a more fine-grained scale where 1 dan pro-
fessional is comparable to 7 dan amateur, and 9 dan professional is com-
parable to 9 dan amateur.

Dead Stones that cannot escape from being captured are dead. At the end of
the game dead stones are removed from the board. The marked stones in
Figure 2.6 are dead (they become prisoners).
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Figure 2.6: Marked stones are dead.

Eye An area surrounded by stones of one colour which provides one sure liberty.
Groups that have two eyes are alive. The intersections marked e in Figure
2.4 are eyes.

False eye An intersection surrounded by stones of one colour which does not
provide a sure liberty. False eyes connect two or more blocks which cannot
connect through an alternative path. The intersection marked f in Figure
2.6 is a false eye for White.

Gote A move that loses initiative. Opposite of sente.

Group A (loosely) connected set of blocks of one colour which usually controls
one connected area at the end of the game. The example in Figure 2.7
shows a white group that most likely controls the corner at the end of the
game.
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Figure 2.7: A group.

Handicap Handicap stones may be placed on the empty board by the first
player at the start of the game to compensate the difference in strength
with the second player. The difference in amateur grades (in kyu/dan)
between two players indicates the number of handicap stones for providing
approximately equal winning chances.
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Jigo The result of a game where Black and White have an equal score, i.e., a
drawn game.

Ko A situation of repetitive captures. See subsection 2.2.1.

Komi A pre-determined number of points added to the score of White at the
end of the game. The komi is used to compensate Black’s advantage of
playing the first move. A commonly used value for the komi in games
between players of equal strength is 6.5 . Fractional values are often used
to prevent jigo.

Kyu Student level. For amateurs the scale runs from roughly 30 kyu, for
beginners that just learned the rules, down to 1 kyu which is one stone
below master level (1 dan). Each decrease in a kyu-grade indicates an
increase in strength of approximately one handicap stone.

Liberty An empty intersection adjacent to a stone. The number of liberties of
a block is a lower bound on the number of moves that has to be made to
capture that block.

Ladder A simple capturing sequence which can take many moves. An example
is shown in Figure 2.8.

������������
�������������
������Æ������
�������������
��������	����
�
���	�������
�
�
��������
��
�������

Figure 2.8: A ladder.

Life The state of being safe from capture. See also alive.

Miai Having two different (independent) options to achieve the same goal.

Prisoners Stones that are captured or dead at the end of the game.

Seki Two or more alive groups that share one or more liberties and do not have
two eyes. (Neither side wants to fill the shared liberties.) Examples are
shown in Figure 2.9.

Sente A move that has to be answered by the opponent, i.e., keeps the initia-
tive. Opposite of gote.

Suicide A move that does not capture an opponent block and leaves its own
block without a liberty. (Illegal under most rule sets.)
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Figure 2.9: Marked stones are alive in seki.

Territory The intersections surrounded and controlled by one player at the
end of the game.

Weiqi / Weichi Chinese name for the game of Go.



Chapter 3

Searching in games

This chapter gives an introduction to searching in games. First, in section 3.1
we explain the purpose of searching. Then, in section 3.2 we give an overview
of the searching techniques that are commonly used in game-playing programs.
Finally, in section 3.3 we discuss some fundamental questions to assess the
importance of searching in computer Go.

3.1 Why search?

Go is a deterministic two-player zero-sum game with perfect information. It
can be represented by a directed graph of nodes in which each node represents
a possible board state. The nodes are connected by branches which represent
the moves that are made between board states. From a historic perspective, we
remark that in games such as Go and Chess it has become common to call this
directed graph a game tree. It should, however, be noted that the term game
tree is slightly inaccurate because it ignores the fact that some nodes may be
connected by multiple paths (transpositions).

The search tree is that part of the game tree that is analysed by a (human
or machine) player. A search tree has one root node which corresponds to the
position under investigation. The legal moves in this position are represented
by branches which expand the tree to nodes at a distance of one ply from the
root. In an analogous way, nodes at one ply from the root can be expanded
to nodes at two plies from the root, and so on. When a node is expanded d
times, and positions up to d moves1 ahead have been examined, the node is
said to be investigated up to depth d. The number of branches expanding from
a node is called the branching factor (the average branching factor and depth
are important measures for describing the game-tree complexity). When a node
is expanded the new node(s) one ply deeper are called child nodes or children.

1In Go the placement of a stone on the turn of one of the players is called a move. Therefore,
unlike in Chess, one ply corresponds to one move.

15
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The node one ply closer to the root is called the parent. Nodes, at the same
depth, sharing the same parent are called siblings.

When nodes are not expanded, they are called leaf nodes. There are at least
three reasons why leaf nodes are not expanded further: (1) the corresponding
position may be final (so the result of the game is known) and the node is then
often denoted as a terminal node, (2) there may not be enough resources to
expand the leaf node any further, (3) expansion may be considered irrelevant
or unnecessary.

The process of expanding nodes of a game tree to evaluate a position and
find the right moves is called searching. For simple games such as Tic-Tac-Toe it
is possible to expand the complete game tree so that all leaf nodes correspond to
final positions where the result is known. From this it is then possible to reason
backwards to construct a strategy that guarantees optimal play. In theory this
can also be done for games like Go. In practice, however, the game tree is
too large to expand completely because of limited computational resources. A
simple estimate for the size of the game tree in Go, which assumes an average
branching factor of 250 and an average game length of only 150 ply (which is
quite optimistic because the longest professional games are over 400 moves),
leads to a game tree of about 250150 ≈ 10360 nodes [3] which is impossible to
expand fully.

Because full expansion of game trees is impossible under nearly all circum-
stances, leaf nodes usually do not correspond to final positions. To let a search
process deal with non-final positions evaluation functions are used to predict
the value of the underlying tree (which is not expanded). In theory, a perfect
evaluation function with a one-ply search (an expansion of only the root node)
would be sufficient for optimal play. In practice, however, perfect evaluations
are hard to construct and for most interesting games they cannot be computed
within a reasonable time.

Since full expansion and perfect evaluation are both unrealistic, most search-
based programs use a balanced approach where some positions are evaluated
directly while others are expanded further. Balancing the complexity of the
evaluation function with the size of the expanded search tree is known as the
trade-off between knowledge and search [16, 84, 97, 156].

3.2 Overview of searching techniques

In the last century many techniques for searching game trees have been de-
veloped. The foundation of most game-tree search algorithms is minimax [133,
134]. Although minimax is theoretically important no modern game-playing en-
gine uses minimax directly. Instead most game-playing engines use some form
of αβ search [105] which comes in many flavours. Probably the most successful
flavour of αβ is the iterative deepening principal variation search (PVS) [118],
which is nearly identical to nega-scout [20, 31, 143]. We selected αβ as the basis
for all searching techniques presented in this thesis, because it is the most devel-
oped framework for searching game trees. It should however be clear that there
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are many other interesting searching techniques such as B* [15, 17], BP [8], DF-
PN [130], MTD(f) [139], OM [60, 91], PDS [129], PDS-PN [197], PN [3], PN2

[31], PN* [162], PrOM [60], and RPS [174], which may be worth considering for
building a strong Go program.

In the following subsections we will discuss the standard searching techniques
that are used in this thesis. We start with minimax search (3.2.1), which pro-
vides the basis for understanding αβ search discussed in subsection 3.2.2. Then
in the subsequent subsections we discuss pruning (3.2.3), move ordering (3.2.4),
iterative deepening (3.2.5), the transposition table (3.2.6), enhanced transposi-
tion cut-offs (3.2.7), null windows (3.2.8), and principal variation search (3.2.9).

3.2.1 Minimax search

In minimax there are two types of nodes. The first type is a max node, where the
player to move (Max) tries to maximise the score. The root node (by definition
ply 0) is a max node by convention, and consequently all nodes at an even ply
are max nodes. The second type is a min node, where the opponent (Min)
tries to minimise the score. Nodes at an odd ply are min nodes. Starting from
evaluations at the leaf nodes, and by choosing the highest value of the child
nodes at max nodes and the lowest value of the child nodes at min nodes, the
evaluations are propagated back up the search tree, which eventually results in
a value and a best move in the root node.

The strategy found by minimax is optimal in the sense that the minimax
value at the root is a lower bound on the value that can be obtained at the
frontier spanned by the leaf nodes of the searched tree. However, since the
evaluations at leaf nodes may contain uncertainty, because they are not all final
positions, this does not guarantee that the strategy is also optimal for a larger
tree or for a tree of similar size after some more moves. In theory it is even
possible that deeper search, resulting in a larger tree, decreases performance
(unless of course when the evaluations at the leafs are not uncertain), which
is known as pathology in game-tree search [131]. In practice, however, pathol-
ogy does not appear to be a problem and game-playing engines generally play
stronger when searching more deeply.

3.2.2 αβ search

Although minimax can be used directly it is possible to determine the minimax
value of a game tree much more efficiently using αβ search [105]. This is achieved
by using two bounds, α and β, on the score during the search. The lower bound,
α, represents the worst possible score for Max. Any sub-tree of value below α
is not worth investigating (this is called an α cut-off). The upper bound, β,
represents the worst possible score for Min. If in a node a move is found that
results in a score greater than β the node does not have to be investigated
further because Min will not play this line (this is called a β cut-off).
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3.2.3 Pruning

When a search process decides not to investigate some parts of the tree, which
would have been investigated by a full minimax search, this is called pruning.
Some pruning, such as αβ pruning, can be done safely without changing the
minimax result. However, it can also be interesting to prune nodes that are
just unlikely to change the minimax result. When a pruning method is not
guaranteed to preserve the minimax result it is called forward pruning. Forward
pruning is unsafe in the sense that there is a, generally small, chance that the
minimax value is not preserved. However the possible decrease in performance
due the risk of missing some important lines of play can be well compensated
by a greater increase in performance due to more efficient and deeper search.
Two commonly used forward-pruning methods are null-move pruning [61] and
multi-cut pruning [21, 198].

3.2.4 Move ordering

The efficiency of αβ search heavily depends on the order in which nodes are
investigated. In the worst case it is theoretically possible that the number of
nodes visited by αβ is identical to the full minimax tree. In the best case, when
the best moves are always investigated first the number of nodes visited by αβ
approaches the square root of the number of nodes in the full minimax tree.
(An intuitive explanation for this phenomenon is that for example to prove a
win in a full game tree we have to investigate at least one move at max nodes,
while investigating all moves at min nodes to check all possible refutations. In
the ideal case and assuming a constant branching factor b, this then provides
a branching factor of 1 at even plies and b at odd plies, which results in a tree
with an average branching factor of

√
b compared to b for the minimax tree.)

Another way to look at this is to say that with a perfect move ordering and a
limited amount of time αβ can look ahead twice as deep as minimax without
any extra risk.

Due to the enormous reduction in nodes that can be achieved by a good
move ordering much research effort has been invested into finding good tech-
niques for move ordering. The various move-ordering techniques can be charac-
terised by their dependency on the search and their dependency on game-specific
knowledge [106]. Well-known search-dependent move-ordering techniques are
the transposition table [32], which stores the best move for previously investi-
gated positions, the killer heuristic [2], which selects the most recent moves that
generated a cut-off at the same depth, and the history heuristic [155], which
orders moves based on a weighted cut-off frequency as observed in (recently)
investigated parts of the search tree. In principle, these techniques are indepen-
dent of game-specific knowledge. However, in Go it is possible to modify the
killer heuristic and the history heuristic to improve performance by exploiting
game-specific properties (as will be discussed in the next chapters).

Search-independent move-ordering techniques generally require knowledge
of the game. In practice such knowledge can be derived from a domain expert.
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One possible approach for this is to identify important move categories such
as capture moves, defensive moves, and moves that connect. It is also possible
to use learning techniques to obtain the knowledge from examples. For games
like Chess and Lines of Action such an approach is described in [107] and [196],
respectively. For Go this will be discussed in chapter 7.

3.2.5 Iterative deepening

The simplest implementations of αβ search investigate the tree up to a pre-
defined depth. However, it is not always easy to predict how long it takes to
finish such a search. In particular when playing under tournament conditions,
this constitutes a problem. Iterative deepening solves the problem by starting
with a shallow search and gradually increasing the search depth (typically by
one ply per iteration) until time runs out. Although this may seem inefficient
at first, it actually turns out that iterative deepening can improve performance
over plain fixed-depth αβ [164]. The reason for this is that information from
previous iterations is not lost and is re-used to improve the quality of the move
ordering.

3.2.6 The transposition table

The transposition table (TT) [132] is used to store results of previously inves-
tigated nodes. It is important to store this information because nodes may be
visited more than once during the search, because of the following reasons: (1)
nodes may be investigated at previous iterations, (2) the same node may be
reached by a different path (because the game tree is actually a directed graph),
and (3) nodes may be re-searched (which will be discussed in the next subsec-
tion). The results stored in the TT typically contain information about the
value, the best move, and the depth to which the node was investigated [31].

Ideally one would wish to store results of every investigated node. However,
due to limitations in the available memory this is generally not possible. In
most search engines the TT is implemented as a hash table [104] with a fixed
number of entries. To identify and address the relevant entry in the table a
position is converted to a sufficiently large number (the hash value). For this
we use Zobrist hashing [205], which is the most popular hashing method among
game programmers. Modern hash tables usually contain in the order of 220 to
226 entries, for which the lowest (20 to 26) bits of the Zobrist hash are used to
address the entry. Since a search may visit many more nodes it often happens
that an entry is already in use for a different position. To detect such entries
a so-called lock is stored in each entry, which contains the higher bits from the
Zobrist hash.

The total number of bits of the Zobrist hash (address and lock) limits the
number of positions that can be uniquely identified. Since this number is always
limited it is important to know the probability that a search will visit two or
more different positions with the same hash, which can result in an error. A
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reasonable estimate of the probability that such an error occurs is given by

P (errors) ≈ M2

2N
(3.1)

for searching M unique positions with N possible hash values, assuming M is
sufficiently large and small compared to N [31]. For a search of 109 unique
positions with a Zobrist hash of 88 bits (24 address, 64 lock) this gives a proba-
bility of about (109)2/(2 × 288) ≈ 1.6 × 10−9 which is sufficiently close to zero.
In contrast, if we would only use a hash of 64 bits the probability of getting
error(s) would already be around 2.7%.

When a result is stored in an entry that is already in use for another posi-
tion a choice has to be made whether the old entry is replaced. The simplest
approach is always to (over)write the old one with the new result, which is
called the New replacement scheme. However, there are several other possible
replacement schemes [32] such as Deep, which only overwrites if the new posi-
tion is searched more deeply, and Big, which only overwrites if the new position
required searching more nodes.

In this thesis we use the TwoDeep replacement scheme which has two table
positions per entry. If the new position is searched more deeply than the result
in the first entry the first entry is moved to the second entry and the new result
is stored in the first entry. Otherwise the new result is stored in the second
entry. The TwoDeep replacement scheme always stores the latest results while
preserving old entries that are searched more deeply, which are generally more
important because they represent larger subtrees.

3.2.7 Enhanced transposition cut-offs

Traditionally, the TT was only used to retrieve exact results, narrow the bounds
alpha and beta, and provide the first move in the move ordering. Later on it was
found that additional advantage of the TT could be obtained by using enhanced
transposition cut-offs (ETC) [140]. Before starting a deep search, ETC examines
all successors of a node to find whether they are already stored in the TT and
lead to a direct β cut-off. Especially when the first move in the normal search
does not (directly) lead to a β cut-off, while another move does, investigating
the latter move first can provide large savings. However, since ETC does not
always provide a quick β cut-off it can create some overhead. To make up for
the overhead ETC is typically used at least 2, 3, or 4 plies away from the leaves,
where the amount of the tree that can be cut off is sufficiently large.

3.2.8 Null windows

In αβ search the range of possible values between lower bound α, and upper
bound β, is called the search window. In general, a small search window prunes
more nodes than a large search window. The smallest possible search window,
which contains no values between α and β, is called the null window. For a
null-window search β is typically set to α + ε, with ε = 1 for integer values. In
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the case of floating point values any small value for ε may be used, although
one has to be careful for round-off errors.

Searching with a null window usually does not provide exact results. Instead,
a null-window search provides the information whether the value of a node is
higher (a fail-high) or lower (a fail-low) than the bounds. In the case that a null-
window search returns a value greater than α this often suffices for a direct β cut-
off (value ≥ β). Only in the case that an exact result is needed (α < value < β)
a re-search has to be done (with an adjusted search window). Although such
a re-search creates some overhead the costs are usually compensated by the
gains of the reduced searches that did not trigger a re-search. Moreover, the
re-searches are done more efficiently because of information that is stored from
the previous search(es) in the transposition table.

3.2.9 Principal variation search

In this thesis we use principal variation search (PVS) [118] as the default frame-
work for αβ search. PVS makes extensive use of null-window searches. In
general it investigates all nodes with a null window unless they are on the prin-
cipal variation (PV), which represents the current best line assuming best play
for both sides. Although it may be possible to improve the efficiency of PVS
further by doing all searches with a null window, using MTD(f) [139], we did
not (yet) use this idea because the expected gains are relatively small compared
to other possible enhancements.

The pseudo code for PVS, formulated in a negamax framework which re-
verses the bounds with the player to move, is shown in Figure 3.1. We note
that small enhancements such as Reinefeld’s depth=2 idea [143], and special
code for the transposition table and move-ordering heuristics as well as various
tricks to make the search slightly more efficient, are left out for clarity.

3.3 Fundamental questions

Our first research question is to what extent searching techniques can be used
in computer Go. It has been pointed out by many researchers that direct ap-
plication of a brute-force search to Go on the 19×19 board is infeasible. The
two main reasons are the game-tree complexity and the lack of an adequate
evaluation function. It therefore seems natural first to try searching techniques
in a domain with reduced complexity. In Go there are two important ways to
reduce the complexity of the game: (1) by decreasing the size of the board, or
restricting a search to a smaller localised region; (2) by simplifying the rules
while remaining to focus on tasks that are relevant for full-scale Go. For (2)
there are several possible candidate tasks such as capturing, life and death, and
connection games. Our investigations deal with both ways of reduction.

In the next chapter we will start with the capture game, also known as
Ponnuki-Go or Atari-Go. We believe that it is an interesting test domain be-
cause it has many important characteristics of full-scale Go. This is underlined
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PVS( alpha, beta, depth ){
// Look up in Transposition Table
...
// Narrow bounds / return value

if( is_over() ) return( final_score() ); // Game over
if( depth <= 0 ) return( heuristic_score() ); // Leaf node

// Enhanced Transposition Cutoffs
...

best_move = get_first_move(); // First move
make_move(best_move);
best_value = -PVS( -beta, -alpha, depth-1 );
undo_move();
if( best_value >= beta ) goto Done; // Beta cut-off

move = get_next_move(); // Other moves
while( move != NULL ){

alpha = max( alpha, best_value );
make_move(move);
value = -PVS( -alpha-1, -alpha, depth-1 ); // Null window
if( ( alpha < value ) // Fail high?

&& ( value < beta ) ) // On PV?
value = -PVS( -beta, -value, depth-1 ); // Re-search

undo_move();
if( value > best_value ){

best_value = value;
best_move = move;
if( best_value >= beta ) goto Done; // Beta cut-off

}
move = get_next_move();

}

Done:
// Store in Transposition Table
...
// Update move ordering heuristics
...
return( best_value );

}

Figure 3.1: Pseudo code for PVS.
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by the fact that the capture game is often used to teach young children the first
principles for Go. Following up on our findings for Ponnuki-Go we will then,
in chapter 5, increase the complexity of the domain, by switching back to the
normal rules of Go, and extend our searching techniques in an attempt to solve
Go on small boards.

In both chapters our main question is:

To what extent can searching techniques provide solutions at various degrees
of complexity, which is controlled by the size of the board?

Furthermore, we focus on the question:

How can we apply domain-specific knowledge to obtain an adequate
evaluation function and improve the efficiency of the search?

We believe that solving the game on small boards is interesting because
it is an objective way to assess the strengths and weaknesses of the various
techniques. Moreover, the perfect play on small boards may later be used as a
benchmark for testing other searching and learning techniques.
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Chapter 4

The capture game

This chapter is based on E. C. D. van der Werf, J. W. H. M. Uiterwijk, H. J.
van den Herik. Programming a computer to play and solve Ponnuki-Go. In
Q. Mehdi, N. Gough, and M. Cavazza, editors, Proceedings of GAME-ON 2002
3rd International Conference on Intelligent Games and Simulation, pages 173–
177. SCS Europe Bvba, 2002. Similar versions appeared in [185] and [186].1

The capture game, also known as Ponnuki-Go or Atari-Go, is a simplified version
of Go that is often used to teach children the first principles of Go. The goal of
the game is to be the first to capture one or more of the opponent’s stones. Two
rules distinguish the capture game from Go. First, capturing directly ends the
game. The game is won by the side that captured the first stone(s). Second,
passing is not allowed (so there is always a winner). The capture game is simpler
than Go because there are no ko-fights and sacrifices,2 and the end is well defined
(capture). Nevertheless, the game still contains important elements of Go such
as capturing stones, determining life and death, and making territory.

From an AI perspective solving the capture game is interesting because per-
fect play provides a benchmark for testing the performance of the various search-
ing techniques and enhancements. Moreover, the knowledge of perfect play may
be used to provide an absolute measure of playing strength for testing the per-
formance of other algorithms. Since capturing stones is an essential Go skill,
any algorithm that performs well on this task will of course also be of interest
for computer Go.

In the following sections we present our program Ponnuki that plays the
capture game using a search-based approach. The remainder of the chapter is
organised as follows. Section 4.1 presents the search method, which is based

1The author would like to thank the editors of GAME-ON 2002, and his co-authors for
the permission of reusing relevant parts of the articles in this thesis.

2It should be noted that the capture game is sometimes made more complex by setting the
winning criterion to be the first player to capture n or more stones with n > 1. This allows
the game to be changed more gradually towards full-scale Go because small sacrifices become
possible in order to capture a big group of stones. In this chapter, however, we do not use
this idea, and any capture directly ends the game.

25
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on αβ with several enhancements. Section 4.2 introduces our evaluation func-
tion. Then in section 4.3 we show the small-board solutions. It is followed by
experimental results on the performance of the search enhancements and of the
evaluation function. Section 4.4 presents some preliminary results on the perfor-
mance of our program on larger boards. Finally, section 4.5 provides conclusions
and some ideas for future work.

4.1 The search method

The standard framework for game-tree search is αβ (see 3.2.2). We use PVS
[118] (see Figure 3.1 and 3.2.9) with iterative deepening (see 3.2.5).

The efficiency of αβ search usually improves several orders of magnitude by
applying the right search enhancements. Of course, we selected a transposition
table (see 3.2.6), which stores the best move, the depth, and the information
about the score of previously encountered positions using the TwoDeep replace-
ment scheme [32]. Moreover, we selected enhanced transposition cut-offs (ETC)
[140] (see 3.2.7) to take extra advantage of the transposition table by looking
at all successors of a node to find whether they contain transpositions that lead
to a β cut-off before a deeper search starts. Since the ETCs are expensive we
only test them three or more plies from the leaves.

4.1.1 Move ordering

The effectiveness of αβ pruning heavily depends on the quality of the move
ordering (see also 3.2.4). The move ordering used by Ponnuki is as follows:
first the transposition move, then two killer moves [2], and finally the remainder
of the moves are sorted by the history heuristic [155]. Killer moves rely on the
assumption that a good move in one branch of the tree is often good in another
branch at the same depth. The history heuristic uses a similar idea but is not
restricted to the depth at which moves are found.

In Go it is quite common that a move on a certain intersection is good for
both Black and White, which is expressed by the Go proverb “the move of my
opponent is my move”. This idea can be exploited in the move ordering for both
the killer moves and the history heuristic. For the killer moves this is done by
storing (and testing) them not only at their own depth but also one and two ply
deeper. For the history heuristic we employ one table, with one entry for each
intersection, which is used for ordering both the black and the white moves.

4.2 The evaluation function

The evaluation function is an essential ingredient for guiding the search towards
strong play. Unlike in Chess, no good and especially no cheap evaluation func-
tions exist for Go [28, 126]. Despite of this we tried to build an appropriate
evaluation function for the capture game. The default for solving small games
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is to use a three-valued evaluation function with values [∞ (win), 0 (unknown),
−∞ (loss)] (cf. [4]).

The three-valued evaluation function is usually quite efficient for solving
small games, due to the narrow window which generates many cut-offs. However,
it can become useless for strong play on larger boards when it cannot guide play
towards wins that are not (yet) within the search horizon. Therefore we also
developed a new heuristic evaluation function.

Our heuristic evaluation function aims at four goals:

1. maximising liberties,

2. maximising territory,

3. connecting stones, and

4. making eyes.

Naturally these four goals relate in negated form to the opponent’s stones. The
first goal follows directly from the goal of the game (capturing stones). Since the
number of liberties is a lower bound on the number of moves that is needed to
capture a stone, maximising this number is a good defensive strategy whereas
minimising the opponent’s liberties directly aims at winning the game. The
second goal, maximising territory, is a long-term goal since it allows one side
to place more stones inside its own territory (before filling it completely). The
third goal follows from the observation that a small number of large groups is
easier to defend than a large number of small groups. Therefore, connecting
stones, which strives toward a small number of large groups, is generally a good
idea. The fourth goal is directly derived from normal Go, in which eyes are
the essential ingredients for building living shapes. In the capture game living
shapes are only captured after one player has run out of alternative moves and
is thus forced to fill his own eyes.

Since the evaluation function is used in a search tree, and thus is called in
many leaves, speed is essential. Therefore our implementation uses bit-boards
for fast computation of the board features. For the first two goals we use a
weighted sum of the number of first-, second- and third-order liberties. (Lib-
erties of order n are empty intersections at a Manhattan distance n from the
stones). Liberties of higher order are not used since they appeared to slow down
the evaluation without a significant contribution to the quality (especially on
small boards). Instead of calculating individual liberties per string, the sum
of liberties is directly calculated for the full board. Since the exact value for
the liberties and the territory becomes quite meaningless when the difference
between both sides is large the value can be clipped.

Connections and eyes are more costly to detect than the liberties. Fortu-
nately there is a trick that combines an estimate of the two in one cheaply
computable number: the Euler number [79]. The Euler number of a binary
image is the number of objects minus the number of holes in those objects.
Minimising the Euler number thus connects stones as well as creates eyes.



28 CHAPTER 4. THE CAPTURE GAME

An attractive property of the Euler number is that it is a locally countable
(for a proof see [79] or [120]). This is done by counting the number of occurrences
of the three quad types Q1, Q3, and Qd, shown in Figure 4.1, by sliding a 2×2
window over the board.
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Figure 4.1: Quad types.

From the quad counts n(Q1), n(Q3), and n(Qd) we then compute

E =
n(Q1) − n(Q3) + 2n(Qd)

4
(4.1)

which is the zeros-joined Euler number. Zeros-joined ignores loose diagonal
connections between stones (diagonal connections are used to connect the back-
ground; see below); it is the most conservative setting. More optimistic settings
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n(Q1) = 8, n(Q3) = 8, n(Qd) = 4

Figure 4.2: Quad-count example.

can be obtained by decreasing the weight
of n(Qd). In the example, shown in Fig-
ure 4.2, it leads to an Euler number of
2, which corresponds to 3 objects and 1
hole. (Notice that because of the con-
servative zeros-joined setting only the left
eye is counted as a hole. To count more
eyes as holes in this position one has to
decrease the weight of n(Qd) or use a
non-binary approach to consider the op-
ponent’s stones in the quads too.)

In our implementation we calculate two Euler numbers: one for the black
stones, where we consider the white intersections as empty, and one for the
white stones, where we consider the black intersections as empty. The border
around the board is also taken to be empty. For speed we pre-compute quad
sums per two rows, and store them in a lookup table. Consequently, during
search only a small number of operations is needed.

The heuristic part of Ponnuki’s evaluation function is calculated by

Vh = min(max(αf1 + βf2 + γf3,−δ), δ) + εf4 (4.2)

in which f1 is the number of first-order liberties for Black minus the number
of first-order liberties for White, f2 is the number of second-order liberties for
Black minus the number of second-order liberties for White, f3 is the number
of third-order liberties for Black minus the number of third-order liberties for
White, and f4 is the Euler number for Black minus the Euler number for White.
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The weights were set to α = 1, β = 1, γ = 1
2 , δ = 3, and ε = −4. Won positions

are evaluated by large positive values where we subtract the path length (since
we prefer quick wins). For evaluating positions from the opponent’s perspective
we simply negate the sign.

4.3 Experimental results

This section presents results obtained on a Pentium III 1.0 GHz computer,
using a transposition table with 225 double entries. We discuss: (1) small-board
solutions, (2) the impact of the search enhancements, and (3) the power of our
evaluation function.

4.3.1 Small-board solutions

The program Ponnuki solved the empty square boards up to 5×5. Table 4.1
shows the winner, the depth (in plies) of the shortest solution, the number
of nodes, and the time (in seconds) needed to find the solution, as well as
the effective branching factor for each board. The principal variations for the
solutions of the 4×4 and the 5×5 board are shown in the Figures 4.3 and 4.4.
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Figure 4.3: Solution for the 4×4
board.
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Figure 4.4: Solution for the 5×5
board.

We observed that small square boards with an even number of intersections
(2×2 and 4×4) are won by the second player on zugzwang (after a sequence of
moves that nearly fills the entire board the first player is forced to weaken his
position because passing is not allowed). The boards with an odd number of

2×2 3×3 4×4 5×5 6×6
Winner W B W B ?
Depth 4 7 14 19 > 23
Nodes 68 1.7 × 103 5.0 × 105 2.4 × 108 > 1012

Time (s) 0 0 1 395 > 106

beff 2.9 2.9 2.6 2.8

Table 4.1: Solving small empty boards.
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Figure 4.5: Stable starting position. Figure 4.6: Crosscut starting position.

intersections (3×3 and 5×5) are won by the first player, who uses the initiative
to take control of the centre and dominate the board. It is known that in many
board games the initiative is a clear advantage when the board is sufficiently
large [175]. It is therefore an interesting question whether 6×6 is won by the
first or the second player. We ran our search on the empty 6×6 board for a few
weeks, until a power failure crashed our machine. The results indicated that
the solution is at least 24 ply deep.

Since solving the empty 6×6 board turned out a bit too difficult, we tried
making the first few moves by hand. The first four moves are normally played in
the centre (for the reason of controlling most territory). Normally this leads to
the stable centre of Figure 4.5. An alternative starting position is the crosscut
shown in Figure 4.6. The crosscut creates an unstable centre with many forcing
moves. Though the position is inferior to the stable centre, when reached from
the empty board, it is generally considered an interesting starting position for
teaching beginners (especially on larger boards).

Around the time that we were attempting to solve the empty 6×6 board
Cazenave [42] had solved the 6×6 board starting with a crosscut in the centre.
His Gradual Abstract Proof Search (GAPS) algorithm, which is an interesting
combination of αβ with a clever threat-extension scheme, proved a win at depth
17 in around 10 minutes. Cazenave concluded that a plain αβ would spend years
to solve this problem. We tested Ponnuki on the same problem and found
the shortest win at depth 15 in approximately 3 minutes. Figure 4.8 shows
our solution for 6×6 with a crosscut. After combining our selection of search
enhancements with GAPS Cazenave was able to prove the win at depth 15 in
26 seconds on an Athlon 1.7 GHz [40, 41].

Stable Crosscut
Winner B B
Depth 26 (+5) 15 (+4)
Nodes 4.0 × 1011 1.0 × 108

Time (s) 8.3 × 105 185
beff 2.8 3.4

Table 4.2: Solutions for 6×6 with initial stones in the centre.
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Figure 4.7: Solution for 6×6 starting
with a stable centre.

13

12

15

11

8

9

1

7 5

2

3

4

10

6

14

Figure 4.8: Solution for 6×6 starting
with a crosscut.

Unlike the crosscut, we were not able to find quick solutions for the stable
centre (Figure 4.5). (Estimates are that solving this position directly would
have required around a month of computation time.) We did however prove
that Black wins this position by manually playing the first move (below the
two white stones). The solution is shown in Figure 4.7. The stones without
numbers were placed manually, the rest was found by Ponnuki. Details of this
solution are shown in Table 4.2. As far as we know Cazenave never managed to
solve the stable opening, probably because there were insufficient direct threats.
A number of alternative starting moves were also tested, all leading to a win
for Black at the same depth, thus indicating that if the first 4 moves in the
centre are correct the solution of the empty 6×6 board is a win in 31 for the
first player. This supports the idea that (for boards with an even number of
intersections) the initiative takes over at 6×6.

4.3.2 The impact of search enhancements

The performance of the search enhancements was measured by comparing the
number of nodes searched with all enhancements to that of the search with one
enhancement left out, on the task of solving the various board sizes. Results
are given in Table 4.3. It is shown that on larger boards, with deeper searches,
the enhancements become increasingly effective. The killer moves on the 4×4
board are an exception. The reason may be the relatively deep and narrow path
leading to a win for the second player, resulting in a poor generalisation of the
killers to other parts of the tree.

3×3 4×4 5×5
Transposition tables 42% 98% >99%
Killer moves 19% -6% 81%
History heuristic 6% 29% 86%
Enhanced Transposition Cut-offs 0% 6% 28%

Table 4.3: Reduction of nodes by the search enhancements.
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4.3.3 The power of our evaluation function

The evaluation function was compared to the standard three-valued approach
for solving small trees. Usually an evaluation function with a minimal range
of values generates a large number of cut-offs, and is therefore more efficient
for solving small problems than the more fine-grained heuristic approaches that
are needed to play on larger boards. In contrast, the results given in Table
4.4 indicate that our heuristic evaluation function outperforms the minimal
approach for solving the capture game. The reason probably lies in the move
ordering of which the efficiency increases with the information provided by our
evaluation function.

Table 4.4 further shows that our heuristic evaluation function is quite fast.
Using the heuristic evaluation function increases the average time spent per
node in the search tree by only 4% compared to the three-valued approach. If
we take into account that roughly 70% of all nodes were actually not directly
evaluated heuristically (due to the fact that they represent illegal positions, final
positions, transpositions, or are just internal nodes) this still amounts to a pure
evaluation speed of roughly 5,000,000 evaluations per second. Comparing this
to the over-all speed of about 600,000 nodes per second indicates that there is
still significant room for adding knowledge to the evaluation function.

heuristic win/unknown/loss
board nodes time(s) nodes time(s)
3×3 1.7 × 103 0 1.7 × 103 0
4×4 5.0 × 105 1 8.0 × 105 1
5×5 2.4 × 108 395 6.1 × 108 968

Table 4.4: Performance of the evaluation function.

4.4 Performance on larger boards

We tested Ponnuki (with our heuristic evaluation function) against Rainer
Schütze’s freeware program AtariGo 1.0 [160]. This program plays on the 10
×10 board with a choice of three initial starting positions, of which one is the
crosscut in the centre. Ponnuki was able to win most games, but occasion-
ally lost when stones were trapped in a ladder. The reason for the loss was that
Ponnuki used a fixed maximum depth. It did not include any means of extend-
ing ladders (which is not essential for solving the small boards). After making
an ad-hoc implementation to extend simple ladders Ponnuki convincingly won
all games against AtariGo 1.0.

Moreover, we tested Ponnuki against some human players too (on the empty
9×9 board). In close combat it was sometimes able to defeat reasonably strong
amateur Go players, including a retired Chinese first dan. Despite of this, most
stronger players were able to win easily by playing quiet territorial games. In
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an informal tournament against some student programs of the study Knowledge
Engineering at the Universiteit Maastricht, Ponnuki convincingly won all its
games except one, which it played with drastically reduced time settings.

4.5 Chapter conclusions

We solved the capture game on the 3×3, 4×4, 5×5 and some non-empty 6×
6 boards. These results were obtained by a combination of standard searching
techniques, some standard enhancements that where adapted to exploit domain-
specific properties of the game, and a novel evaluation function.

Regarding the first research question (see 1.3), and the questions posed in
section 3.3, we may conclude that standard searching techniques and enhance-
ments can be applied successfully for the capture game, especially when they
are restricted to small regions of fewer than 30 empty intersections.

In addition, we have shown how adding inexpensive domain-specific heuristic
knowledge to the evaluation function drastically improves the efficiency of the
search. From the experiments we may conclude that our evaluation function
performs adequately at least for the task of capturing stones.

Cazenave and our group both solved 6×6 with a crosscut using different
techniques. Combining our selection of search enhancements with Cazenave’s
GAPS can improve the performance even further. For the capture game the
next challenges are: solving the empty 6×6 board and solving the 8×8 board
starting with a crosscut in the centre.
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Chapter 5

Solving Go on small boards

This chapter is based on E. C. D. van der Werf, H. J. van den Herik, J. W. H.
M. Uiterwijk. Solving Go on Small Boards. ICGA Journal, 26(2):92-107, 2003.1

In the previous chapter we used the capture game as a simple testing ground
for the various searching techniques and enhancements. The results were quite
promising owing to a novel evaluation function and domain-specific adaptations
to the search enhancements. Therefore, we decided to increase the complexity
of the domain by switching back to the normal rules of Go, and attempt to
solve Go on small boards. Although it is difficult to scale up to large boards,
and solving the 19×19 board will remain completely infeasible, we believe that
searching techniques will become increasingly useful for heuristic play as well as
for solving small localised regions.

Many games have been solved using a search-based approach [86]. Go is
a notable exception. Up to our publication [189], the largest square board
for which a computer solution had been published was the 4×4 board [161].
Although some results based on human analysis already existed for 5×5, 6×6
and 7×7 boards, they were difficult to understand and had not been confirmed
by computers [55, 57, 86]. This chapter presents a search-based approach of
solving Go on small boards. To support the relevance of our research we quote
Davies [55].

“If you doubt that 5×5 Go is worthy of attention, you may be interested
to know that Cho Chikun devoted over 200 diagrams to the subject in a
five-month series of articles in the Japanese Go Weekly.”

Our search method is the well-known αβ framework extended with several
domain-dependent and domain-independent search enhancements. A dedicated
heuristic evaluation function is combined with the static recognition of uncondi-
tional territory to guide the search towards an early detection of final positions.

1The author would like to thank his co-authors and the editors of the ICGA Journal for
permission to reuse relevant parts of the article in this thesis.
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Our program called Migos (MIni GO Solver) has solved all square boards up
to 5×5 and can be applied to any enclosed problem of similar size.

This chapter is organised as follows. Section 5.1 discusses the evaluation
function. Section 5.2 deals with the search method and its enhancements. Sec-
tion 5.3 presents an analysis of problems with super ko. Section 5.4 provides
experimental results. Finally, section 5.5 gives our conclusions.

5.1 The evaluation function

The evaluation function is an essential ingredient for guiding the search towards
strong play. So far there are neither good nor cheap evaluation functions for
19×19 Go [28, 126]. For small boards the situation is slightly better. In the
previous chapter we introduced an adequate evaluation function for the capture
game. In this chapter we use a modified version of the heuristic evaluation for
the capture game (in 5.1.1), and extend it with a method for early detection of
sure bounds on the final score by recognising unconditional territory (in 5.1.2).
This is necessary because for Go, unlike the capture game, there is no simple
criterion for deciding when the game is over (at least not until one side runs out
of legal moves). Special attention is therefore given to scoring terminal positions
(in 5.1.3) as well as to some subtle details about the rules (in 5.1.4).

5.1.1 Heuristic evaluation

Our heuristic evaluation function for small-board Go aims at five goals:

1. maximising the number of stones on the board,

2. maximising the number of liberties,

3. avoiding moves on the edge,

4. connecting stones, and

5. making eyes.

These goals relate in negated form to the opponent’s stones. Since the evaluation
function is used in tree search and is called in many leaves, speed is essential.
Therefore our implementation uses bit-boards for fast computation of the board
features.

Values for the first three goals are easily computed by directly counting
relevant points on the board. It should be noted that instead of calculating
individual liberties per block, the sum of liberties is directly calculated for the
full board. For goals 4 and 5 (connections and eyes) we again use the Euler
number [79], discussed in section 4.2.

Below we will not reveal all details, for reasons of competitiveness in future
Go tournaments. However, we would like to state that the heuristic part of our
evaluation function is implemented quite similarly to the heuristic evaluation
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function discussed in section 4.2 except for two important differences. First,
goal (3), which avoids moves on the edge, is new. Second, we do not use the
second-order and the third-order liberties.

5.1.2 Static recognition of unconditional territory

For solving games a heuristic score is never sufficient. To be able to prove a
win the highest and lowest values of the evaluation function must correspond
to final positions (a sure win and a definite loss). For most games this is not a
problem since the end is well defined (capture a piece, connect two sides etc.).
In Go we face two problems.

The first problem is that most human games end by agreement, when both
sides pass. For computers the end is usually detected by 2, 3, or 4 consecutive
pass moves (the exact number of consecutive passes depends on the specific
rule set). However, in nearly all positions where humans pass, a computer and
especially a tree-search algorithm will try many more (useless) moves. Such
moves do not affect the score and only increase the length of the game, thus
pushing the final result over the horizon of any simple search.
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−1025

0

1025

minimal loss

minimal win

maximal loss

Final scores

Final scores

Heuristic
scores

maximal win

−1001

1001

Figure 5.1: Score range
for the 5×5 board.

The second problem is in the scoring itself. In
even games White usually has a number of so-called
komi points, which are added to White’s score to com-
pensate for the advantage of the initiative of the first
player (Black). In 19×19 Go the komi is usually be-
tween 5 and 8 points. For solving the game, with-
out knowing the komi, we have to determine the exact
number of controlled points. The values for winning or
losing are therefore limited by the maximum number
of points on the board and should strictly dominate
the heuristic scores. In Figure 5.1 we show the score
range for the 5×5 board without komi. From the bot-
tom up −1025 indicates a sure loss by 25 points, −1001
indicates a sure loss by at least one point, heuristic
scores between −1000 and 1000 indicate draw or un-
known, 1001 indicates a sure win by at least one point,
and 1025 indicates a sure win by 25 points.

A requirement for provably correct results when solving the game is that the
winning final scores are lower bounds (the worst that can happen is that you
still win with at least that score) and the losing final scores are upper bounds
on the score, no matter how deep the tree is searched. For positions that are
terminal (after a number of consecutive passes) this is easy, because there are
no more moves. For other positions, which are closer to positions where hu-
mans would decide to pass, scoring is more difficult. To obtain reliable scores
for such positions a provably correct analysis of life, death and unconditionally
controlled territory is pivotal. Our analysis consists of 3 steps. First, we de-
tect unconditional life. Second, we find the eyespace of possible unconditional
territory. Third, we analyse the eyespace to see whether an invasion is possible.
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Unconditional life

A set of stones is said to be unconditionally alive if they cannot be captured and
never require any defensive move. A typical example of a set of unconditionally
alive stones is a block with two small eyes. A straightforward approach to
determine unconditional life would be to search out positions with the defending
side always passing. Although such a search may have its merits it can easily
become too costly.

A more elegant approach was developed by Benson [14]. His algorithm deter-
mines statically the complete set of unconditionally alive stones, in combination
with a set of vital regions that form the eyespace. The algorithm is provably
correct under the assumption that suicide is illegal (which is true for all major
rule sets).

Benson’s algorithm can be extended to determine safety under local alter-
nating play [125]. Alternatively one could use a more refined characterisation
of safety using the concept of X life [141]. For strong (but imperfect) play the
evaluation of life and death can be further extended using heuristics such as
described by Chen and Chen [45]. Although some techniques discussed here are
also used by Chen and Chen [45] and by Müller [125], none of their methods
are fully implemented in our program, first because heuristics do not suffice to
solve the game, and second because relying on local alternating play is less safe
than relying on an unconditional full-scope evaluation with global search.

Unconditional territory
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Figure 5.2: Regions to
analyse.

Unconditional territory is defined as a set of points con-
trolled by a set of unconditionally alive stones of the de-
fender’s colour where an invader can never build a living
group, even if no defensive move is made. The set of
unconditionally alive stones, as recognised by Benson’s
algorithm, segments the board into the following three
types of regions, illustrated by 1, 2, and 3 in Figure 5.2.
They form the basic elements for establishing (bounds
on) the final scores.

Type 1. Benson-controlled regions are formed by the unconditionally alive
blocks and their vital regions (eyespace), as classified by Benson’s algo-
rithm. The surface of these regions is unconditional and directly added to
the final score.

Type 2. Open regions are not adjacent to unconditionally alive stones (which
is common early in the game) or are adjacent to unconditionally alive
stones of both sides. Since both sides can still be occupy the intersections
of open regions they are played out further by the search.

Type 3. Closed regions are surrounded by unconditionally alive stones of
one colour. They may contain stones of any colour, but can never contain
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unconditionally alive stones of the invader’s colour (because those would
fall under type 1 or 2).

The rest of this subsection deals with classifying regions of type 3. For these
regions we statically find the maximum number of sure liberties (usually eyes)
an invader can make under the assumption that the defender always passes until
the end of the game. If the maximum number of sure liberties is fewer than
two the region is considered unconditional territory of the defending side that
surrounds it (with unconditionally alive stones) and added to the final score.
Otherwise it has to be played out. For region 3 in the example of Figure 5.2,
which is surrounded by unconditionally alive White defender stones, it means
that, since the invader (Black) can build a group with two eyes in both corners
(remember the defender always passes), the territory is not unconditionally
controlled by White. A one-ply search will reveal that only one defensive move
of White in region 3 (as long as it is not in the corner) is sufficient to make the
full region unconditional territory of White.

To determine the maximum number of sure liberties each point in the interior
of the region is classified as false or true eyespace. (False eyes are completely
surrounded by stones of one colour but cannot provide sure liberties because
they function as a connection.) Points that are occupied by the invader’s stones
are not considered as possible eyespace. Determining the status of points that
form possible eyespace is done by counting the number of diagonally placed
unconditionally alive defender stones. If the point is on the edge and no diago-
nally placed unconditionally alive defender stone is present then the point can
become true eyespace. If the point is not on the edge (but more towards the
centre) and at most one diagonally placed unconditionally alive defender stone
is present, then it can also become true eyespace. In all other cases, except one,
the eyespace is false and cannot provide space for an eye. The only exception,
in which a false eye is upgraded to a true eye, is when the false eye connects
two regions that are already connected by an alternative path. This happens
when the region forms a loop (around the unconditionally alive defender stones),
which is easily detected by computing the region’s Euler number.
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Figure 5.3: False eyes
upgraded to true eyes.

An illustration of false eyes that are upgraded to
true eyes is shown in Figure 5.3. Only Black’s stones
are unconditionally alive, so he is the defender, and
White is the invader. All points marked f are ini-
tially false eyes of White. However, all false eyes
are upgraded to true eyes, since White might play
both a and b, which is possible because we assume
that the defender (Black) always passes. (In prac-
tice Black will respond locally, unless there is a huge
ko fight elsewhere on the board.) If Black plays a
stone on a or b the loop is broken and all points
marked f remain false eyes. The white stones and
their neighbouring empty intersections then become
unconditional territory for Black.



40 CHAPTER 5. SOLVING GO ON SMALL BOARDS

Analysis of the eyespace

The analysis of the eyespace starts by looking for single defender stones. If a sin-
gle defender stone is present on a false eye point then the directly neighbouring
empty intersections cannot provide a sure liberty, and are therefore removed
from the set of points that forms the true eyespace. (If a defender stone is
connected to a second defender stone it may also remove an eye; however, this
cannot be established statically and has to be determined by the search.)

Now that the true eyespace (henceforth called the eyespace) is found we test
whether the eyespace is sufficiently large for two sure liberties. If the eyespace
contains fewer than two points, or only two adjacent points, the territory is too
small for a successful invasion and unconditionally belongs to the defender. If
the eyespace is larger we continue with the analysis of defender stones inside
the eyespace. Such stones may be placed to kill possible invader stones by
reducing the size of the region to one single eye. In practice, we have to consider
only two cases. The first case is when one defender stone is present in the
invader’s eyespace. The second case is when two defender stones are present
in the invader’s eyespace. If more than two defender stones are present in the
invader’s eyespace the territory can never be unconditional since the defender
has to respond at least once to a capture (if he is able to prevent a successful
invasion at all).

The analysis of a single defender stone is straightforward. The single de-
fender stone contracts the stone’s directly adjacent points of the invader’s eye-
space to a single eye, which provides one sure liberty. If the invader has no
other region for eyes (non-adjacent points) any invasion fails and the territory
unconditionally belongs to the defender.

The analysis of two defender stones in the invader’s eyespace is harder. Here
we start with noticing whether the two stones are adjacent. If the stones are
non-adjacent they may provide two sure liberties; so, the territory is not un-
conditional. If the stones are adjacent they contract the surrounding eyespace
to a two-point eye. If there is more eyespace, non-adjacent to the two defender
stones, the area may provide two sure liberties for the invader and is not un-
conditional. If there is no more non-adjacent eyespace, the invader cannot be
unconditionally alive (since he has at most one eye), but may still live in a seki
together with the two defender stones.
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Figure 5.4: Seki with
two defender stones.

Whether the two adjacent defender stones live
in seki depends on the exact shape of the surround-
ing eyespace. If the two defender stones have three
or fewer liberties in the eyespace of the invader, the
region is too small for a seki and the area uncon-
ditionally belongs to the defender. If the two de-
fender stones have four non-adjacent liberties and
each stone directly neighbours two of the four lib-
erties, the area can become seki. An example of
such a position is shown in Figure 5.4. If the two
defender stones have five liberties with more than
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one being non-adjacent, the area can become seki. If the two defender stones
have six liberties the area can also become seki. Examples for five and six lib-
erties can be obtained by removing one or two of the marked white stones in
Figure 5.4. If White would play a or b the white group dies regardless of the
marked stones. If one of the marked stones would move to c or d White also
dies. If the area can become seki the two defender stones are counted as uncon-
ditional territory, but the rest is left undecided. If the area cannot become seki
it unconditionally belongs to the defender.

5.1.3 Scoring terminal positions

In Go, games end when both sides stop placing stones on the board and play a
number of consecutive passes. In all rule sets the number of consecutive passes
to end the game varies between two and four. The reason why two consecutive
passes do not always end the game is that the player first to pass might want to
continue after the second pass. This typically occurs in positions where a basic
ko is left on the board. If after two consecutive passes all moves are legal, the ko
can be captured back. Therefore three or four consecutive passes are needed to
end the game. The reason why under some rule sets four consecutive passes are
required is that a pass can be worth a point, which is cancelled out by requiring
an even number of passes. However, since passes at the end of the game do not
affect area scoring, we require at most three consecutive passes.

In tree search the number of consecutive passes to end the game has to be
chosen as restrictive as possible. The reason is that passes can otherwise push
terminal positions over the search horizon. Thus in the case that a position
contains a basic ko, and the previous position did not contain a basic ko,2 the
game ends after three consecutive passes. In all other cases two consecutive
passes end the game.

Next, the terminal position has to be scored. Usually, many points on the
board can be scored by recognising unconditional territory, as described in sub-
section 5.1.2. However, not all territory is unconditional.

For scoring points that are not in unconditional territory, dead stones must
be removed from the board. This is done by counting the liberties. Each block
that is not unconditionally alive and has only one liberty, which means it can be
captured in one move, is removed from the board. All other stones are assumed
alive. The reason why blocks with more than one liberty remain on the board
is that they might live in seki, or could even become unconditionally alive after
further play. If stones cannot live, or if the blocks with one liberty could have
been saved, this will be revealed by (deeper) search.

Under situational super ko (SSK) (see 2.2.1) the situation is more difficult.
Blocks that are not unconditionally alive and have only one liberty are some-
times not capturable because the capture would create repetition (thus making
the capture illegal). Therefore, under SSK, all non-unconditional regions must
be played out and all remaining stones in these regions are assumed to be alive.

2This additional constraint prevents repetition after two consecutive passes in rare positions
such as a double ko seki (Figure 5.6).
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Once the dead stones are removed, each empty point is scored based on the
distance toward the nearest remaining black or white stone(s).3 If the point is
closer to a black stone it counts as one point for Black, if the point is closer to a
white stone it counts as one point for White, otherwise (if the distance is equal)
the point does not affect the score. The stones that remain on the board also
count as points for their respective colour. Finally, the difference between black
and white points, together with a possible komi, determines the outcome of the
game.

5.1.4 Details about the rules

The approach used to determine statically (1) unconditional territory, and (2)
(bounds on) final scores, contains four implicit assumptions about the rules.
The assumptions depend on subtle details in the various rule texts which arise
from tradition and are often not well formulated, obscured, or sometimes even
omitted. Although these details are irrelevant under nearly all circumstances,
we have to deal with them here for completeness. In this subsection we discuss
the four assumptions somewhat informally. For a more formal description of
our rules we refer to appendix A.

The first assumption is that suicide is illegal. That was already discussed in
subsection 2.2.3.

The second assumption is that groups that have no space for two eyes or
seki cannot live by an infinite source of ko threats elsewhere on the board. As
a consequence moonshine life (shown in Figure 5.5) is statically classified dead
if the surrounding stones are unconditionally alive. An example of an infinite
source of ko threats is shown in Figure 5.6.
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Figure 5.5: Moonshine life.
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Figure 5.6: Infinite source of ko threats.
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Figure 5.7: Bent four in the corner.

The third assumption is that groups
that have possible space for two eyes
or seki are not statically classified as
dead. As a consequence bent four in
the corner (shown in Figure 5.7) has to
be played out. (Under Japanese rules
the white group in Figure 5.7 is dead
regardless of the rest of the board.)

3In principle our distance-based area scoring can give slightly different results compared
to other scoring methods when large open regions occur after removing dead stones of both
sides based on having one liberty. However, the only position we found (so far) for which this
might be considered a problem is a so-called hane seki which does not fit on the 5×5 board.
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We strongly suspect that the solutions for small boards (at least up to 5
×5) are independent of the second and third assumption. The reason is that
an infinite source of ko threats must be separated from another group by a
set of unconditionally alive stones, which just does not fit on a small board.
Nevertheless the assumptions must be noted if one would apply our system to
larger boards.
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Figure 5.8: Capturable
white block.

The fourth assumption is that capturable
stones surrounded by unconditionally alive blocks
are dead and the region counts as territory for the
side that can capture. As a consequence in a situa-
tion such as in Figure 5.8 Black controls the whole
board, even though after an actual capture of the
large block White would still be able to build a liv-
ing group inside the new empty region. This con-
flicts with one of the inconsistencies of the Japanese
rules (1989) by which the white stones are consid-
ered alive (though in practice White still loses the
game because of the number of captured stones).

5.2 The search method

We selected the iterative-deepening principal variation search (PVS) [118] in-
troduced in chapter 3. The efficiency of the αβ search usually improves several
orders of magnitude by applying the right search enhancements. We selected
the following enhancements: (1) transposition tables, (2) enhanced transposi-
tion cut-offs, (3) symmetry lookups, (4) internal unconditional bounds, and (5)
enhanced move ordering. All enhancements will be discussed below.

5.2.1 The transposition table

Transposition tables, introduced in subsection 3.2.6, prevent searching the same
position several times by storing best move, score, and depth of previously
encountered positions. Our transposition table uses the TwoDeep replacement
scheme [32]. Iterative-deepening search with transposition tables can cause some
problems with super-ko rules to be discussed in section 5.3.

5.2.2 Enhanced transposition cut-offs

We use enhanced transposition cut-offs (ETCs) [140] (see also 3.2.7) to take
additional advantage of the transposition table by looking at all successors of a
node to find whether they contain transpositions that lead to a direct β cut-off
before a deeper search starts. Since ETCs are expensive they are only used
three or more plies away from the leaves (where the amount of the tree that can
be cut off is sufficiently large).
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5.2.3 Symmetry lookups

The game of Go is played on a square board which contains eight symmetries.
Furthermore, positions with Black to move are equal to positions where White
is to move if all stones reverse colour. As a consequence these symmetries effec-
tively reduce the state space by a factor approaching 16 (although in practice
this number is significantly lower for small boards).

The effect of the use of the transposition table can be further enhanced by
looking for symmetrical positions that have already been searched. In our appli-
cation, when checking for symmetries, the hash keys for symmetrical positions
are (re)calculated only when needed. Naturally this takes somewhat more com-
putation time per symmetry lookup (SL), but in many positions we do not need
to look up all symmetries. In fact, since most of the symmetrical positions occur
more near the starting position (where also the largest node reductions can be
obtained) the hashes for symmetrical positions are only computed (and used)
at a distance of 5 or more plies from the leaves. When multiple symmetrical
positions are found, they are all used to narrow bounds on the score.

Since all symmetrical positions have to be reached from the root it is impor-
tant to check the symmetries that are likely near the root. For empty boards
all symmetries are reachable; however, for non-empty boards many symmetries
can be broken. Time is saved by not checking unlikely symmetries in the tree.

It should further be noted that under SSK symmetrical transpositions can
only be used for move ordering (because the history is different).

5.2.4 Internal unconditional bounds

Recognising unconditional territory is important for scoring leaves. However, in
many cases unconditional territory can also be used in internal nodes to improve
the efficiency of the search.

The analysis of unconditional territory, presented in subsection 5.1.2, divides
the board into regions that are either unconditionally controlled by one colour or
are left undecided. In internal nodes, we use the size of these regions to compute
two unconditional bounds on the score, which we call internal unconditional
bounds (IUB). An upper bound is calculated by assigning all undecided points
to friendly territory. A lower bound is calculated by assigning all undecided
points to the opponent’s territory. If the upper bound on the score is equal to
or smaller than α, or the lower bound on the score is equal to or larger than
β, the search directly generates a cut-off. In other cases the bounds can still
be used to narrow the αβ window, thus generating more cut-offs deeper in the
tree.

Unconditional territory can further be used for reducing the branching fac-
tor. The reason is that moves inside unconditional territory normally do not
have to be examined since they cannot change the outcome of the game. Excep-
tions are rare positions where changing the state just for the sake of changing the
history for a future position is essential. Therefore all legal moves are examined
under SSK.
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5.2.5 Enhanced move ordering

The move ordering is enhanced by the following three heuristics: (1) history
heuristic [155, 199], (2) killer moves [2], and (3) sibling promotion [66]. As in
the previous chapter, all move-ordering enhancements are implemented (and
modified) to utilise the Go proverb “the move of my opponent is my move”.

History heuristic

The standard implementation of the history heuristic (HH) orders moves based
on a weighted cut-off frequency as observed in (recently) investigated parts of
the search tree. In games such as Chess it is normal to have separate tables for
the moves of each player. In contrast, our Go-specific implementation of the
history heuristic employs one table, sharing intersections for both the black and
the white moves.

Killer moves

The standard killer moves (KM) are the moves that most recently generated a
cut-off at the same depth in the search tree. Our implementation of the killer
moves stores (and tests) them not only at their own depth but also one and two
ply deeper. (We remark that testing KM two ply deeper in the search tree is
not a new idea. However, testing them one ply deeper, where the opponent is
to move, is not done in other games such as Chess.)

Sibling promotion

When a search returns (without generating a cut-off), the intersection of the
opponent’s expected best reply is often an interesting intersection to try next.
Taking the opponent’s expected reply as the next move to be investigated is
called sibling promotion (SP) [66].

Since the quality of the moves proposed by the search heavily depends on
the search depth, SP does not work well in nodes where the remaining search
depth is shallow. Therefore, our implementation of SP is only active in nodes
that are at least 5 plies away from the leaves. After our implementation of SP
is called it remains active until it generates a move that is already examined or
illegal, after which the move ordering proceeds to the next ordering heuristic.

Complete move ordering

The complete move ordering is as follows:
(1) the transposition move, (2) sibling promotion,
(3) the first move sorted by the history heuristic, (4) sibling promotion,
(5) the first killer move, (6) sibling promotion,
(7) the second move sorted by the history heuristic, (8) sibling promotion,
(9) the second killer move, (10) sibling promotion,

(11) the next move sorted by the history heuristic, (12) sibling promotion,
(13) back to (11).
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5.3 Problems with super ko

Though the use of transposition tables is pivotal for efficient iterative-deepening
search it can create so-called graph history interaction (GHI) problems [36] if
the SSK rule applies. The reason is that the history of a position is normally
not included in the transposition table, which means that in some special cases
the transposition may suggest a continuation that is illegal or sub optimal under
super ko. In our experiments we found two variations of the problem which we
call the shifting-depth variant and the fixed-depth variant. Below both variants
are presented, in combination with some possible solutions.4

5.3.1 The shifting-depth variant

The shifting-depth variant of the GHI problem is illustrated by the following
example. Consider an iterative-deepening search until depth n examining the
following sequence of positions:

(root)-A-B-C-D-E-F-...-(heuristic score)

Now the heuristic score and the depth are stored in the transposition table
for position D. Assume in the next iteration, the iterative-deepening process
searches until depth n + 1, and examines the following sequence of positions:

(root)-J-K-L-F-...-D

Here position D is found closer to the leaves. From the information stored in
the transposition table, D is assumed to be examined sufficiently deep (in the
previous iteration). As a consequence the search directly returns the heuristic
score from the transposition table. However, the result for D is not valid because
the assumed continuation contains a repetition (F). This will not be observed
since the moves are not actually made. The problem is even more disturbing
because the transposition is found at another depth and in a following iteration,
which means that results of the subsequent iterations can inherit a heuristic
score. It is remarked that a final score would have been calculated if the moves
were actually made.

To complicate matters even more, it is possible to construct positions where
alternating lines of play continuously inherit heuristic scores from previous it-
erations through the transposition table. An example of such a position, found
for the 3×3 board, is shown in Figure 5.9. Here White’s move 4 is a mistake
under situational super ko because Black could take control of the full board by
playing 5 directly adjacent to 4. (Black 1 is of course also sub-optimal, but that
is not important here.) However, the iterative-deepening search only returns a
heuristic score for that line because of depth-shifted transpositions (which im-
plicitly rely on continuations that are illegal under SSK). Black does not see the

4Recently a solution to the GHI problem in Go was proposed for depth-first proof-number
search (DF-PN) [102], and for αβ search [101]. It can be used efficiently when the complete
proof-tree is stored in memory.
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Next iteration (one ply deeper search)

Root position

B+1 (sub optimal)

Heuristic score

Only heuristic scores from 
the transposition table

Figure 5.9: Sub-optimal under SSK due to the shifting-depth variant.

optimal win either, because of the same problem, and will also play sub-optimal
obtaining only a narrow victory of one point.

To overcome shifts in depth we can incorporate the number of passes and
captured stones in the full hash used to characterise positions. Then only trans-
positions are possible to positions found at the same depth. (Of course it is also
possible to store the path length directly in the transposition table at the cost
of a small amount of additional memory and speed.)

5.3.2 The fixed-depth variant

Although fixing the depth (by including passes and captures in the hash) solves
most problems, it still leaves some room for errors. The fixed-depth variant of
the GHI problem is illustrated by the following example. Consider an iterative-
deepening search examining the following sequence of positions:

(root)-A-B-...-C-...-B

Since B is illegal because of super ko this will become:

(root)-A-B-...-C-...-D-...

Now C is stored in the transposition table. Assume after some time the search
investigates:

(root)-E-F-...-C

C is found in the transposition table and was previously examined to the same
depth. As a consequence this line will not be expanded further. However, the
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value of C is based on the continuation C-...-D where C-...-B-... may give a
higher score.

Another example of the fixed-depth GHI problem when using SSK is illus-
trated by Figure 5.10. Here the optimal sequence is as follows: (1-4) as shown,
(5) Black captures the white stone marked 2 by playing at the marked square,
(6) White passes, (7) Black at 1, (8) White passes (playing at 2 is illegal by
SSK), (9) Black captures White’s upper right group and wins by 17 points.
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Figure 5.10: Black win by SSK.

Now assume the following alternative se-
quence: (1) Black at 3, (2) White at 4, (3)
Black at 1, (4) White at 2. The configuration
of stones on the board is now identical to Fig-
ure 5.10. However, under SSK Black cannot
play the same follow-up sequence and loses by
3 points.

Although both sequences of moves lead to
the same position only the first sequence kills
a white group. Since both sequences of moves
lead to the same position at the same depth one of them, which one depends
on the move ordering, can be valued incorrectly if the history is not taken into
account.

In practice using separate hash keys for the number of passes and the num-
ber of captured stones, combined with a decent move ordering, is sufficient to
overcome nearly all problems with super ko. However, for a proof this is not suf-
ficient. Though it is possible to include the full history of a position in the hash,
our experiments indicate a drastic decrease in search efficiency, thus making it
impractical for larger problems.

The reader should note that although (depth-shifted) transpositions are a
problem for SSK they are not a problem under the Japanese-ko rule. The reason
is that draws never dominate a win or a loss, because draws are in the range of
the heuristic scores. In practice we use 0 as the value for a draw, and we do not
distinguish between a draw and heuristic scores. (Alternatively one could use
1000 (or −1000) to indicate that Black (or White) could at least achieve a draw,
which might be missed because of depth-shifted transpositions.) Occasionally
depth-shifted transpositions are even useful, for solving positions under basic or
Japanese ko, because they enable the search to look beyond the fixed depth of
the iteration.

5.4 Experimental results

This section presents the results obtained by a Pentium IV 2.0 GHz computer,
using a transposition table with 224 double entries (for the TwoDeep replace-
ment scheme) and a full Zobrist hash of 88 bits. We discuss: (1) small-board
solutions, (2) opening moves on the 5×5 board, (3) the impact of recognising
unconditional territory, (4) the power of the search enhancements, (5) prelimi-
nary results for the 6×6 board, and (6) scaling up.
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board ko rule Move Result Depth Nodes (log10) Time beff

2×2 basic a1 0 5 2.1 n.a. 2.65

Japanese a1 0 5 2.1 n.a. 2.65

appr. SSK a1 +1 11 2.9 n.a. 1.83

full SSK a1 +1 11 3.1 n.a. 1.91

3×3 basic b2 +9 11 3.5 n.a. 2.06

Japanese b2 +9 11 3.5 n.a. 2.06

appr. SSK b2 +9 11 4.0 n.a. 2.30

full SSK b2 +9 11 4.4 n.a. 2.51

4×4 basic b2 +1 21 5.8 3.3 (s) 1.90

Japanese b2 +2 21 5.8 3.3 (s) 1.90

appr. SSK b2 +2 23 6.9 14.8 (s) 1.99

full SSK b2 +2 23 9.5 1.1 (h) 2.58

5×5 basic c3 +25 23 9.2 2.7 (h) 2.51

Japanese c3 +25 23 9.2 2.7 (h) 2.51

appr. SSK c3 +25 23 10.0 9.7 (h) 2.73

Table 5.1: Solving small empty boards.

5.4.1 Small-board solutions

Migos solved the empty square boards sized up to 5×5.5 Table 5.1 shows the
ko rule, the best move, the result, the depth (in plies) where the PV becomes
stable, the number of nodes, the time needed to find the solution, and the
effective branching factor for each board. (In column ‘time’, s means seconds
and h hours.)

The reader should note that ‘depth’ here does not mean the maximum length
of the game (the losing side often can make some more futile moves). It just
means that after that depth the Principal Variation and value of the move were
no longer affected by deeper searches. As a consequence, boards that did not get
a maximal score (e.g., 2×2 and 4×4) could in principle contain an undetected
deep variant that might raise the score further. To rule out the possibility of a
higher score both boards were re-searched with adjusted komi. The komi was
adjusted so that it converted the loss of the second player to a win by one point.
Finding the win then established both the lower and the upper bound on the
score, thus confirming that they are indeed correct. Our results for boards up
to 4×4 confirm the results published in [86], which apparently assumed Chinese
scoring with a super-ko rule. Since the two-point victory for Black on the 4×
4 board is a seki (which is a draw under Japanese rules) it also confirms the
results of [161]. For all square boards up to 5×5, our results mutually confirm
results based on human analysis [62, 172].

Table 5.1 shows results for two possible implementations of SSK. Approx-
imate SSK does not check the full history, but does prevent most common
problems by including the number of passes and the number of captured stones

5We would like to remind the reader that winning scores under basic ko are lower bounds
for the score under SSK (because repetition can be avoided by playing well). Therefore the
empty 5×5 board is solved regardless of super ko.
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in the hash. Full SSK stores (and checks) a separate hash for the history in all
entries of the transposition table. Both implementations of SSK require signifi-
cantly more nodes than Japanese ko. In particular, full SSK requires too much
effort to be practical for larger boards.

It is interesting that under SSK Black can win the 2×2 board by one point.
The search for this tiny board requires 11 plies, just as deep as solutions for
the 3×3 board! Another conspicuous result is that under basic ko Black does
not win the 4×4 board by two points. The reason is that the two-point victory
is unreachable by a seki with a cycle where White throws in more stones than
Black per cycle.

5.4.2 Opening moves on the 5×5 board

We analysed all opening moves for the 5×5 board. An opening in the centre
leads to an easy win for Black, as shown in Figure 5.11a. However, alternative
openings are much more challenging to solve. In Figure 5.12 the results are
shown, with the numbered stones representing the winner (by the colour) and
the score (by the number), for all possible opening moves.

Most difficult of all is the opening move on the b2 point. It is lost by one
point only. After White’s response in the centre Migos still required a 36-ply
deep search (which took some days) to find the one-point victory. Proving that
White cannot do better takes even longer. Optimal play for the b2 opening is
shown in Figure 5.11c. Although this line of play is ‘only’ 21 ply deep, both
Black and White can easily force much deeper variations. A typical example is
when White throws in 16 at 19, followed by Black at 16, which leads to a draw.
If Black plays 11 at 15 he loses the full board at ply 40.

The opening on c2 is also challenging, requiring a 28-ply deep search. Op-
timal play for the c2 opening is shown in Figure 5.11b. Extending with White
6 at 7 is a mistake and leads to a seki won with 5 points by Black (a mistake
that was overlooked even by Cho Chikun [56]).

The results for both alternative opening moves support the main lines of
the human solutions by Ted Drange, Bill Taylor, John Tromp, and Bill Spight
[172]. (However, we did find some subtle differences deep in the tree, due to
differences in the rules.)
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Figure 5.11: Optimal play for central openings.
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Figure 5.12: Values
of opening moves on
the 5×5 board.



5.4. EXPERIMENTAL RESULTS 51

5.4.3 The impact of recognising unconditional territory

In subsection 5.1.2 we introduced a method for static recognition of uncondi-
tional territory (UT). It is used to detect final positions, or generate cut-offs,
as soon as possible (thus avoiding deeper search until both players eventually
must pass or create repetition). Although our method reduces the search depth
it does not necessarily mean that the search is always more efficient. The reason
is that static analysis of unconditional territory is more expensive than a simple
evaluation at the leaves (recognising dead stones by having only one liberty, or
playing it out completely). To test the impact on the performance of recognising
unconditional territory we used our program to solve the small empty boards
without recognising unconditional territory, and compared it to the version that
did recognise unconditional territory.

board Use UT Depth Nodes (log10) Time Speed (knps) beff

3×3 + 11 3.5 n.a. n.a. 2.06
3×3 - 13 3.8 n.a. n.a. 1.97
4×4 + 21 5.8 3.3 (s) 214 1.90
4×4 - 25 6.4 12.7 (s) 213 1.80
5×5 + 23 9.2 2.7 (h) 160 2.51
5×5 - >30 >10.7 >2 (d) ∼ 340

Table 5.2: The impact of recognising unconditional territory.

The results, shown in Table 5.2, indicate that recognising unconditional
territory reduces the search depth, the time, and the number of nodes for solving
the small boards. (In column ‘time’, s means seconds, h hours and d days.)
Although the speed in nodes per second is significantly less on the 5×5 board
the reduced depth easily compensates this.

On the 4×4 board we observed no significant speed difference in nodes
per second. For this there are at least four reasons: (1) most 4×4 positions
cannot contain unconditionally alive blocks (therefore a large amount of costly
analysis is often not performed), (2) many expensive evaluations are retrieved
from a cache, (3) due to initialisation time the results for small searches may
be inaccurate, and (4) the search trees are different (different positions require
different time).

5.4.4 The power of search enhancements

The performance of the search enhancements was measured by comparing the
reduction in the number of nodes between a search using all enhancements and
a search with one enhancement left out. The results, on the task of solving the
various board sizes, are given in Table 5.3.

It is shown that on larger boards, with deeper searches, the enhancements
become increasingly effective. The transposition table is clearly pivotal. En-
hanced transposition cut-offs are quite effective, although the results suggest a



52 CHAPTER 5. SOLVING GO ON SMALL BOARDS

3×3 4×4 5×5
Transposition tables 92 % >99 % >99 %
Enhanced transposition cut-offs 4 % 35 % 40 %
Symmetry lookups 63 % 89 % 86 %
Internal unconditional bounds 5 % 1 % 7 %
History heuristic 61 % 90 % 95 %
Killer moves 0 % 8 % 20 %
Sibling promotion 0 % 3 % 31 %

Table 5.3: Reduction of nodes by the search enhancements.

slightly overestimated importance (because we neglect time). Symmetry lookups
are quite useful, at least on the empty boards. Internal unconditional bounds
are not really effective because unconditional territory is also recognised at the
leaves (on larger boards it may be interesting to turn off unconditional territory
at the leaves and only use internal unconditional bounds). Our implementation
of the history heuristic (one table for both sides) is very effective compared to
the killer moves. This is also the reason why the first history move is examined
before the killer moves. Finally, sibling promotion works quite well, especially
on larger boards.

5.4.5 Preliminary results for the 6×6 board
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Figure 5.13: Black win (≥2).

After solving the 5×5 board we tried to solve the
6×6 board. Migos did not solve the empty 6×6
board. However, based on human solutions it is
possible to make the first few moves by hand. The
most difficult position for which Migos proved
a win, is shown in Figure 5.13. After about 13
days, searching 220 billion nodes in 25 ply, it
proved that Black wins this position by at least
two points. However, we were not able to prove
the exact value (which is expected to be a win by 4 points).

We tested Migos on a set of 24 problems for the 6×6 board published in Go
World by James Davies [52, 53]. For 21 problems it found the correct move, for
the other 3 it found a move that is equally good (at least for Chinese scoring).
The correct moves usually turned up within a few seconds; solving the positions
(i.e., returning a final score) took more time. Migos solved 19 problems of
which two only reached at least a draw (probably because of the occasional
one-point difference between Japanese and Chinese scoring). All problems with
more than 13 stones were solved in a few minutes or seconds only. The problems
that were not solved in a couple of hours had 10 or less stones on the board.
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5.4.6 Scaling up

As computers are becoming more powerful over time, searching techniques tend
to become increasingly powerful as well. Primarily this is, of course, caused by
the increasing processor clock speed(s) which directly improve the raw speed in
nodes per second. Another important factor is the increase in available working
memory, which affects the speed in nodes per second (through various caches)
as well as the number of nodes that have to be investigated (through the trans-
position table). To obtain an indication of how both factors reduce time, we
re-tuned and tested our search on a number of old machines. The results, shown
in Table 5.4 for solving the 4×4 board and in Table 5.5 for solving the 5×5
board, indicate that the amount of memory is not so important on the 4×4
board. However, on the 5×5 board the increased memory gave a factor of 4 in
reduction of nodes compared to the 6 year old Pentium 133MHz. We therefore
expect even bigger pay-offs from increased memory for larger boards.

Machine TT size Depth Nodes Time Speed beff

(log2) (log10) (knps)
486 DX2 66MHz 18 21 5.8 182.8 (s) 3.8 1.90
Pentium 133MHz 20 21 5.8 47.8 (s) 14.6 1.90
Pentium III 450MHz 22 21 5.8 11.2 (s) 62.2 1.90
Pentium IV 2GHz 24 21 5.8 3.3 (s) 214 1.90

Table 5.4: Solving the 4×4 board on old hardware.

Machine TT size Depth Nodes Time Speed beff

(log2) (log10) (knps)
486 DX2 66MHz 18 23 10.1 55 (d) 2.5 2.74
Pentium 133MHz 20 23 9.8 6.6 (d) 11.2 2.67
Pentium III 450MHz 22 23 9.5 17.1 (h) 54.3 2.59
Pentium IV 2GHz 24 23 9.2 2.7 (h) 160 2.51

Table 5.5: Solving the 5×5 board on old hardware.

5.5 Chapter conclusions

The main result is that Migos solved Go on the 5×5 board for all possible open-
ing moves. Further, the program solved several 6×6 positions with 8 and more
stones on the board. The results were reached by a combination of standard
(TT, ETC), improved (HH, KM, SP), and new (IUB, SL) search enhancements,
a dedicated heuristic evaluation function, and a method for static recognition
of unconditional territory.

So far only the 4×4 board was solved by Sei and Kawashima [161]. For this
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board their search required 14,000,000 nodes. Migos was able to confirm their
solutions and solved the same board in fewer than 700,000 nodes. Hence we
conclude that the static recognition of unconditional territory, the symmetry
lookups, the enhanced move ordering, and our Go-specific improvements to the
various search enhancements are key ingredients for solving Go on small boards.

We analysed the application of the situational-super-ko rule in tree search,
and compared it to the Japanese rules for dealing with repetition. For solv-
ing positions, SSK quickly becomes impractical. It is possible to obtain good
approximate results by reducing the information stored about the history of
a position to the number of passes and captures. However, for most practical
purposes super ko is irrelevant and can be ignored safely because winning scores
under basic ko are lower bounds on the score under SSK.

Regarding the first research question (see 1.3), and to answer the main ques-
tion posed in section 3.3; our experience with Migos leads us to conclude that,
on current hardware, provably correct solutions can be obtained within a rea-
sonable time frame for confined regions of size up to about 28 intersections.

Moreover, for efficiency of the search, provably correct domain-specific knowl-
edge is essential to obtain tight bounds on the score early in the search tree. We
showed that without such domain-specific knowledge, detecting final positions
by search alone becomes unreasonably expensive.

Future expectations

The next challenges in small-board Go are: solving the 6×6 and 7×7 boards.
Both boards are claimed to have been solved by humans, but so far no computer
was able to confirm the results. The human solutions for the 6×6 board suggests
a 4 point victory for Black [172]. The 7×7 board is claimed to have been solved
by a group of Japanese amateurs including Kiga Yasuo, Nebashi Teruichi, Noro
Natsuo and Yamashita Isao. In 1989, after several years of work, with some
professional help from Kudo Norio and Nakayama Noriyuki, they reached the
conclusion that Black wins by 9 points [57].

On today’s standard PC Migos is not yet ready to take on the empty 6
×6 board. However, over the last decade we have seen an over-all speedup
by almost a factor 500 for solving 5×5. A continuing increase in hardware
performance alone may enable our searching techniques to solve the 6×6 boards
on an ordinary PC in less than 20 years. Although we might just sit back and
wait a few years, there are of course ways to speed up the process, e.g., by using
a massive parallel system, or by using the human solutions to guide and extend
the search selectively, or work backward from the end.

On the AI side, we believe that large gains can be expected from adding
more (provably correct) Go knowledge to the evaluation function (for obtaining
final scores earlier in the tree). Further, a scheme for selective search extensions,
examining a highly asymmetric tree (resembling the human solutions), may en-
able the search to solve the 6×6 and the 7×7 boards much more efficiently than
our current fixed-depth iterative-deepening search without extensions. Next to
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these suggestions an improved move ordering may increase the search efficiency,
possibly even by several orders of magnitude.
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Chapter 6

Learning in games

This chapter is partially based on1

1. E. C. D. van der Werf, J. W. H. M. Uiterwijk, and H. J. van den Herik. Learn-
ing connectedness in binary images. In B. Kröse, M. de Rijke, G. Schreiber,
M. van Someren, editors, Proceedings of the 13th Belgium-Netherlands Confer-
ence on Artificial Intelligence (BNAIC’01), pages 459–466. 2001.

2. E. C. D. van der Werf and H. J. van den Herik. Visual learning in Go. In
J.W.H.M. Uiterwijk, editor, The CMG Sixth Computer Olympiad: Computer-
Games Workshop Proceedings Maastricht. Technical Report CS 01-04, IKAT,
Department of Computer Science, Universiteit Maastricht, 2001.

This chapter provides an introduction to learning in games. First, in section 6.1
we explain the purpose of learning. Then, in section 6.2 we give an overview
of the learning techniques that can be used for game-playing programs. In
section 6.3 we discuss some fundamental questions to assess the importance of
learning in computer Go. Finally, in section 6.4 we explore techniques for the
fundamental task of learning connectedness.

6.1 Why learn?

In the previous chapter we have shown how searching techniques can be used to
play well on small boards. As the size of the board grows knowledge becomes
increasingly important, which was underlined by the experiments assessing the
importance of recognising unconditional territory. The evaluation function of
Migos uses both heuristic and provably correct knowledge to play well on small
boards. Due to limitations in our understanding of the game as well as limita-
tions inherently imposed by the complexity of the game, improving the program

1The author would like to thank his co-authors for the permission of reusing relevant parts
of the articles in this thesis.
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with additional hand-coded Go knowledge tends to become increasingly diffi-
cult. In principle, a learning system should be able to overcome this problem,
at least for adding heuristic knowledge.

The main reason why we are interested in learning techniques is to lift the
programmers’ burden of having to acquire, understand, and implement all Go
knowledge manually. However there are more reasons: (1) learning techniques
have been successful in other games such as Backgammon [170], (2) learning
techniques have, at least to some extent, been successful in related complex do-
mains such as image recognition, and (3) understanding of learning techniques
that are successful for computer Go may provide some insights into understand-
ing human intelligence and in particular why humans are able to play Go so well.
This said, we would like to stress that our learning techniques are by no means
a model of how human learning is assumed to take place. Although we, and
many other researchers in the fields of neural networks, pattern recognition, and
machine learning, may have been inspired by models of the human brain and
visual system, our learning techniques are best understood from the mathemat-
ical perspective of general function approximators. The primary goal of our
research is to obtain a good performance at tasks that are relevant for playing
Go. In this context, issues such as biological plausibility are only relevant to the
extent that they may provide some hints on how to obtain a good performance.

6.2 Overview of learning techniques

In the last century many techniques for learning in games have been developed.
In this section we present a brief overview of the field, and only go into details
of the techniques that are directly relevant for this thesis. For a more extensive
overview we refer to [76].

Many ideas for learning in games such as rote learning, reinforcement learn-
ing, and comparison training, as well as several searching techniques were intro-
duced in Samuel’s pioneering work [153, 154]. Nowadays, learning techniques are
used for various aspects of game playing such as the opening book [35, 89, 116],
search decisions [22, 51, 106, 121], evaluation functions [9, 11, 68, 72, 159, 169,
170], patterns and plans [38, 39, 109], and opponent models [18, 37, 60].

In this thesis we are interested in search decisions and evaluation functions.
For search decisions we focus mainly on move ordering. For evaluation func-
tions our focus is on various skills that are important for a Go player, such
as scoring, predicting life and death, and estimating territory. To learn such
skills two important learning paradigms are considered: (1) supervised learn-
ing, and (2) reinforcement learning, which will be discussed in subsections 6.2.1
and 6.2.2, respectively. For supervised learning we can use either classifiers from
statistical pattern recognition or artificial neural networks (to be discussed in
subsections 6.2.3 and 6.2.4). For reinforcement learning we only use artificial
neural networks.

When we talk about learning or training we refer to the process of opti-
mising an input/output mapping using mathematical techniques for function
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approximation. Throughout this thesis the inputs are fixed-length feature vec-
tors representing properties that are relevant for the given task. The outputs are
usually scalars, but may in principle also be fixed-length vectors (for example
to assign probabilities for multiple classes).

6.2.1 Supervised learning

Supervised learning is the process of learning from labelled examples. In super-
vised learning the training data typically consists of a large number of examples;
for each example the input and the desired output are given. There are vari-
ous supervised learning methods that can be used to optimise the input/output
mapping such as Bayesian statistics [117], case-based reasoning [1], neural net-
works [19, 87], support vector machines [50, 123], and various other classifiers
from statistical pattern recognition [93].

Although supervised learning is a powerful approach, it can only be used
successfully when reliable training data is available. For Go sufficiently strong
human players can, at least in principle, provide such training data. However,
for many tasks this may become too time consuming. As an alternative it is, at
least for some tasks, possible to use game records as a source of training data.

6.2.2 Reinforcement learning

When there is no reliable source of supervised training data, reinforcement learn-
ing [98, 168] can be used. Reinforcement learning is a technique for learning
from delayed rewards (or punishments). In game playing such rewards are typ-
ically obtained at the end of the game based on the result. For improving the
quality of play, the learning algorithm then has to distribute this reward over
all state evaluations or actions that contributed to the outcome of the game.
The most popular technique for learning state evaluations from delayed re-
wards is Temporal-Difference learning (TD) [167], which comes in many flavours
[7, 9, 10, 30, 59, 68, 194]. A variation of TD-learning which, instead of learn-
ing to evaluate states, directly learns to evaluate actions is called Q-learning
[138, 177, 195]. In games, Q-learning can for instance be used to learn to eval-
uate the moves directly without search. In contrast, standard TD-learning is
typically used to learn to evaluate positions, which then require at least a one-
ply search for an evaluation of the moves.

In introductory texts TD-learning and Q-learning are often applied in small
domains where all possible states or state-action pairs can be stored in a lookup
table. For most interesting tasks, however, lookup tables are not an option, at
least for the following two reasons: (1) the state space is generally too large to
store in memory, and (2) there is no generalisation between states. To overcome
both problems the lookup table can be replaced by a function approximator,
which in combination with a well-chosen representation may provide generalisa-
tion to unseen states. Combining TD-learning with function approximation is a
non-trivial task that can lead to difficulties, especially when non-linear function
approximators are used [7, 173].
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So far, TD-learning has been reasonably successful in game playing, most
notably by Tesauro’s result in Backgammon [170]. In Go it has been applied by
several researchers with some interesting results [51, 68, 72, 159, 202]. However,
there are various alternative learning techniques that can be applied to the same
tasks. Such techniques include Genetic Algorithms [24], Genetic Programming
[49, 111], and some hybrid approaches [122, 201], which in recent years have
gained quite some popularity in the field of game-playing [23, 48, 110, 142, 145,
150, 166]. Although these techniques have not yet produced world-class game-
playing programs, they are certainly worth further investigation. However, they
are beyond the scope of this thesis.

6.2.3 Classifiers from statistical pattern recognition

In this thesis we use a number of standard classifiers from statistical pattern
recognition which are briefly discussed below. Most of the experiments with
these classifiers were performed in Matlab using PRTools3 [65]. For an
extensive overview of these and several other classifiers as well as a good intro-
duction to the field of statistical pattern recognition we refer to [63, 93].

Before we discuss the classifiers it is important to note that all classifiers
require a reasonably continuous feature space in which the compactness hy-
pothesis holds. The compactness hypothesis states that “Representations of
real world similar objects are close. There is no ground for any generalisation
(induction) on representations that do not obey this demand.” [5, 64]. The rea-
son why compactness is important is that all classifiers use distance measures
(usually Euclidean-like) to indicate similarity. Once these distance measures
lose meaning the classifiers lose their ability to generalise to unseen instances.

The nearest mean classifier

The nearest mean classifier (NMC) is one of the simplest classifiers used for
pattern recognition. It only stores the mean for each class, based on the training
data, and assigns unseen instances to the class with the nearest mean.

The linear discriminant classifier

The linear discriminant classifier (LDC) computes the linear discriminant be-
tween the classes in the training data. The classifier approximates the optimal
Bayes classifiers for classes with normal densities and equal covariance matrices.

The logistic linear classifier

The logistic linear classifier (LOGLC) is a linear classifier that maximises the
likelihood criterion using the logistic (sigmoid) function. It is functionally equiv-
alent to a perceptron network without hidden layers.
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The quadratic discriminant classifier

The quadratic discriminant classifier (QDC) computes the quadratic discrimi-
nant between the classes in the training data. The classifier approximates the
optimal Bayes classifiers for classes with normal densities.

The nearest neighbour classifier

The nearest neighbour classifier (NNC) is a conceptually straightforward clas-
sifier which stores all training data and assigns new instances to the class of the
nearest example in the training set. For overlapping class distributions NNC
behaves as a proportional classifier.

The k-nearest neighbours classifier

The k-nearest neighbours classifier (KNNC) is an extension of NNC, which
stores all training examples. New instances are classified by assigning a class
label based on the k nearest examples in the training set. Unlike NNC, which
requires no training except storing all data, the KNNC has to be trained to find
an optimal value for k. This is typically done by minimising the leave-one-out
error on the training data. When the number of training examples becomes
large KNNC approximates the optimal Bayes classifier.

6.2.4 Artificial neural networks

In the last decades there has been extensive research on artificial neural networks
[19, 63, 80, 87]. Various types of network architectures have been investigated
such as single-layer and multi-layer perceptron networks [19, 120, 148], simple
recurrent networks [69], radial basis networks [46], networks of spiking neu-
rons [78], as well as several closely related techniques such as Gaussian mixture
models [119], self-organising maps [108], and support vector machines [50, 123].

Our main focus is on the well-known multi-layer perceptron (MLP) net-
works. The most common architecture for MLPs is feed-forward, where the
input signals are propagated through one or more hidden layers with sigmoidal
transfer functions to provide a non-linear mapping to the output. Simple feed-
forward MLPs do not have the ability to learn sequential tasks where memory
is required. Often this problem can be avoided by providing the networks with
an extended input so that sequential structure can be learned directly. How-
ever, when this is not an option, the networks may be enhanced with feedback
connections [69], or more specialised memory architectures [77, 88].

Once an adequate network architecture is selected it has to be trained to
optimise the input/output mapping. The most successful training algorithms, at
least for supervised learning tasks, are gradient based. For training the network
the gradient consists of the partial derivatives for each network weight with
respect to some error measure between the actual output values and the desired
output values of the network. Usually the mean-square error is used, however
other differentiable error measures can often be applied as well. For training
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feed-forward networks the gradient can be calculated efficiently by repeated
application of the chain rule, which is generally referred to as backpropagation
[149]. For more complex recurrent networks several techniques can be applied for
calculating the gradient [137]. Probably the most straightforward approach is
backpropagation through time [179], which corresponds to performing standard
backpropagation on the network unfolded in time.

Once the gradient information is available a method has to be selected for
updating the network weights. There are many possible algorithms [81]. The
algorithms typically aim at a good performance, speed, generalisation, and pre-
venting premature convergence into local optima by using various tricks such
as adding momentum, adaptive learning rate(s), batch learning, early stopping,
line searches, random restarts, approximation of the Hessian matrix, and other
heuristic techniques. In this thesis we use gradient descent with momentum
and adaptive learning [81], and the resilient propagation algorithm (RPROP)
[146]. We also did some preliminary experiments with Levenberg-Marquardt
[82], quasi-Newton [58], and several conjugate gradient algorithms [81]. How-
ever, especially for large problems, these algorithms usually trained significantly
slower or obtained less generalisation to unseen instances.

In this thesis artificial neural networks are used for evaluation tasks as well
as for classification tasks. For evaluation tasks we typically use the network’s
continuous valued output(s) directly. For classification tasks an additional step
is taken because a class has to be selected. In the simplest case of only two
possible classes (such as yes or no) we typically use a network with one output
and set a threshold to decide the class. In the case of multiple classes we
normally use one output for each possible class. For unseen instances the class
label is then typically selected by the output that has the highest value.

6.3 Fundamental questions

Our second research question is to what extent learning techniques can be used
in computer Go. From the overview presented above it is clear that there are
many interesting learning techniques which can be applied to the various aspects
of game playing. Since it is impossible to investigate them all within the scope
of one thesis we restricted our focus on artificial neural networks (ANNs) for
learning search decisions and evaluation functions.

Out of the many types of ANNs we decided to restrict ourselves even further
by focusing only on MLPs. However even for MLPs there are several possible
architectures. A first question is the choice of the network architecture and,
of course directly related to it, the choice of the representation. To choose the
right network architecture and representation it is important to have some un-
derstanding of the strengths and weaknesses, as well as the fundamental limita-
tions of the various alternatives. A second question is whether to use supervised
learning or reinforcement learning.

To obtain some insight into the strengths and weaknesses of the various ar-
chitectures and learning paradigms we decided to try our ideas on the simplified



6.4. LEARNING CONNECTEDNESS 63

domain of connectedness, which will be discussed in the next section. Then in
the following chapters we will focus on two learning tasks for Go: (1) evaluating
moves, and (2) evaluating positions. We will present supervised learning tech-
niques for training feed-forward MLP architectures on both tasks, and compare
them to standard classifiers from statistical pattern recognition.

6.4 Learning connectedness

The limitations of single-layer perceptrons were investigated by Minsky and
Papert [120]. In 1969, their proof that single-layer perceptrons could not learn
connectedness, as well as their (incorrect) assessment that the same would be
true for multi-layer perceptrons (which they even repeated in the 1988 epilogue
of the expanded edition), stifled research in most of the field for at least a
decade. Nevertheless, their work is an interesting starting point for investigating
the properties of MLPs. Although we now know that MLPs, with a sufficiently
large number of hidden units, can approximate any function arbitrarily close this
does not mean that practical learning algorithms are necessarily actually able
to do this. Moreover, connectedness is still among the more difficult learning
tasks, especially when regarding generalisation to unseen instances.

In Go connectedness is a fundamental element of the game because con-
nections form blocks and chains, and connectivity is essential for recognising
liberties as well as various other more subtle elements of the game that may
be relevant, e.g., for spatial reasoning [25]. It is important that our learning
system is able to handle these elements of the game. Consequently there are
two important design choices. First, the architecture of the network has to be
chosen. Here we have choices such as the number of neurons, hidden layers, and
whether recurrent connections or specialised memory architectures are needed.
Second, an adequate representation has to be chosen. Adequate representations
can improve the performance and may avoid the need for complex network
architectures because they facilitate generalisation and because they can im-
plicitly perform some of the necessary computations more efficiently outside of
the network.

We decided to test a number of different network architectures and learning
algorithms on the task of learning to determine connectedness between stones
from example positions. Note that we do not consider the possibility of connect-
ing under alternating play, we just focus on the question whether a practical
learning system can learn to detect that two stones are connected regardless
of any additional moves. To make the task interesting we only used a direct
representation of the raw board (so no additional features were calculated). Of
course, a more complex representation could have solved the problem by pro-
viding the answer as an input feature. However, this would not give us any
insight into the network’s capabilities to learn such a feature from examples,
which on a slightly more subtle level of connectedness may still be necessary at
some point.
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6.4.1 The network architectures

The standard feed-forward multi-layer perceptron architecture (MLP) for pat-
tern classification usually has one hidden layer with non-linear transfer func-
tions, is fully connected to all inputs, and has an output layer with one neuron
assigned to each class. The disadvantage of using the MLP (or any other stan-
dard classifier) for raw board classification is that the architecture does not
exploit any knowledge about the topological ordering of the intersections on
the board. Although the intersections are topologically fixed on the rectangular
grid, the conventional network architectures treat every intersection just as an
(arbitrary) element of the input vector, thus ignoring the spatial order of the
original representation. For humans this disadvantage becomes evident in the
task of recognising natural images in which the spatial order of pixels is removed
either by random permutation or by concatenation into a linear array. Clearly,
for methods dealing with low-level image properties, the topological ordering is
relevant. This observation motivated us to test a special input for our network
architecture.

Inspired by the unrivalled performance of human vision and the fact that
humans (and many other animals) have eyes we designed ERNA, an Eye-based
Recurrent Network Architecture. Figure 6.1 shows the main components of
ERNA. In our architecture, the eye is an input structure covering a local subset
of intersections surrounding a movable point of fixation (see upper left corner).
The focusing and scanning operations of the eye impose spatial order onto the
input, thus automatically providing information about the topological ordering
of the intersections.

The movement of the eye is controlled by five action neurons (left, right, up,
down, stay). Together with the action neurons for classification (one for each
class) they form the action layer (see upper right corner).

Focusing the eye on relevant intersections usually requires multiple actions.
Since knowledge about previously observed pixels may be needed a memory
seems necessary. It is implemented by adding recurrent connections to the net-
work architecture. The simplest way to do this is linking the output of the
hidden layer directly to the input. However, since information is partially re-
dundant, an additional linear layer, called global memory, is applied to compress
information between the output of the hidden layer and the input for the next
iteration. (An interesting alternative would be to try LSTM instead [77, 88].)

Since the global memory has no topological ordering (with respect to the grid
structure) and is overwritten at every iteration, it is not well suited for long-term
storage of information related to specific locations on the board. Therefore, a
local memory formed by linear neurons coupled to the position of the eye input
is devised. At each iteration, the hidden layer is connected to the neurons of
the local memory associated with the area visible by the eye. In ERNA the
number of local memory neurons for an intersection as well as the readable and
writable window size are defined in advance. The operation of the network is
further facilitated by three extra input neurons representing the co-ordinates of
the eye’s point of fixation (X,Y) and the maximum number of iterations left (I).
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Figure 6.1: The ERNA architecture.

Below we briefly discuss the operation of ERNA. At each iteration step the
hidden layer performs a non-linear mapping of input signals from the eye, the
local memory, the global memory, the action layer and the three extra inputs to
the local memory, the global memory and the action layer. The network then
executes the action associated with the action neuron with the largest output
value. The network iterates until the selected action performs the classification,
or a maximum number of iterations is reached.

We note that, next to the normal recurrent connections of the memory, in
ERNA the action layer is also recurrently connected to the hidden layer, thus
allowing (back)propagation of information through all the action neurons.

Since the eye automatically incorporates knowledge about the topological
ordering of intersections into the network architecture, we expect it to facilitate
learning in topologically-oriented raw-board classification tasks, i.e., with the
same number of training examples a better classification performance should
be obtained. To evaluate the added value of the eye and that of the recurrent
connections, ERNA is compared with three other network architectures.

The first network is the standard MLP, which has a feed-forward architecture
with one non-linear hidden layer. The second network is a feed-forward network
with an eye. This network is a stripped-down version of ERNA. All recurrent
connections are removed by setting the number of neurons for local and global
memory to zero. Previous action values are also not included in the input.
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The third network is a recurrent network with a fully-connected input, a fully-
connected recurrent hidden layer with non-linear transfer functions, and a linear
output layer with an action neuron for each class and an extra action neuron
for choosing another iteration (class thinking). The difference with the MLP is
that the hidden layer has recurrent connections and the output layer has one
more action neuron. This network architecture is very similar to the well-known
Elman network [69] except that signals also propagate recurrently between the
action layer and the hidden layer (as happens in ERNA).

6.4.2 The training procedure

In our experiments, we only used gradient-based learning techniques. The gra-
dients, which are used to update the weights, consist of the partial derivatives
of each network weight with respect to the (mean square) error between the
actual output values and the target output values of the network. For the stan-
dard MLP the target values are directly available from the class information,
as in supervised learning. For the other network architectures, which may se-
lect actions that do not directly lead to a classification, targets could not be
calculated directly. Instead we used Q(λ)-learning [138, 167, 177]. For the feed-
forward networks, without recurrent connections, we calculated the gradients
using standard backpropagation. For the recurrent networks the gradients were
calculated with backpropagation through time [179]. For updating the network
weights we selected the resilient propagation algorithm (RPROP) developed by
Riedmiller and Braun [146].

6.4.3 The data set

For the experiments, square 4×4, 5×5, and 6×6 board positions were created.
Boards with the upper left stone connected to the lower right stone were labelled
connected, all others were labelled unconnected. For simplicity we binarised the
boards, thus treating enemy stones and free points equal (not connecting).

The boards were not generated completely at random, because on such data
all networks would perform almost optimally. The reason is that in 75% of
the cases the class unconnected can be determined from the two crucial corners
alone (both must contain a stone for being connected), and in addition the
number of placed stones is a strong indicator for connectedness.

We define a minimal connected path as a path of stones in which each stone is
crucial for connectedness (if any stone is removed the two corners are no longer
connected). To build a reasonably difficult data set, we started to generate the
set of all minimal connected paths between the two corners. From this set a new
set was generated by making copies and randomly flipping 15% of the points.
For all boards both crucial corners always contained a stone. Duplicate boards
and boards with less stones than the minimal path length (for connecting the
two corners) were removed from the data set.

After applying this process for creating the 4×4, 5×5, and 6×6 boards, the
three data sets were split into independent training and test sets, all containing
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an equal number of unique positive and negative examples. The three sets
contained 300, 1326, and 1826 training examples and 100, 440, and 608 test
examples, respectively.

6.4.4 Experimental results

We compared the generalising ability of ERNA with the three other network
architectures by focusing on the relation between the number of training exam-
ples and the classification performance on an independent test set. To prevent
over-training, in each run a validation set was selected from the training exam-
ples and was used to estimate the optimal point for stopping the training. For
the experiments with the 4×4 boards 100 validation samples were used. For
both the 5×5 and 6×6 boards 200 validation samples were used.

The setting of ERNA

Because of limited computational resources and the fact that reinforcement
learning is much slower than supervised learning, the size of the hidden layer
was tested exhaustively only for the standard MLP. For ERNA we established
reasonable settings, for the architecture and training parameters, based on some
initial tests on 4×4 boards. Although these settings were kept the same for
all our experiments, other settings might give better results especially for the
larger boards. The architecture so obtained was as follows. For the hidden
layer 25 neurons, with tangent sigmoid transfer functions, were used. The area
observed by the eye contained the intersection on the fixation point and the
four direct neighbours, i.e., the observed area was within a Manhattan distance
of one from the centre point of focus. The output to the local memory was
connected only to the centre point. For each point three linear neurons were
assigned to the local memory. The global memory contained 15 linear neurons.
All memory and action neurons were initialised at 0. During training, actions
were selected randomly 5% of the time. In the rest of the cases, the best
action was selected directly 75% of the time, and 25% of the time actions were
selected with a probability proportional to their estimated action value. Of
course, during validation and testing no exploration was used. The maximum
number of iterations per example was set equal to the number of intersections.
Negative reinforcements of −1 were returned for (1) moving the eye out of
range, (2) exceeding the maximum number of iterations, and (3) performing
the wrong classification. A positive reinforcement of +1 was returned for the
correct classification. The Q-learning parameters λ and γ were set at 0.3 and
0.97. All network weights were initialised with small random values. Training
was performed in batch for a maximum of 5000 epochs.

Settings of the three other architectures

The MLP was tested with hidden layers of 3, 6, 12, 25, 50, and 100 neurons. In
each run, the optimal layer size was selected based on the performance on the
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validation set. Supervised training with RPROP was performed in batch for a
maximum of 2000 epochs.

The stripped-down version of ERNA (the feed-forward network with eye)
was kept similar to ERNA as much as possible. The sizes of the hidden layer
and the eye were kept the same and training was done with exactly the same
learning parameters.

The fully-connected recurrent (Elman-like) network also used a hidden layer
of 25 neurons, and training was done with exactly the same learning parameters
except that this network was allowed to train for a maximum of 10,000 epochs.

The four architectures compared

In Figures 6.2, 6.3, and 6.4 the average performance is plotted for the four
network architectures tested on the 4×4, 5×5 and 6×6 boards, respectively.
The horizontal axis shows the number of training examples, with logarithmic
scaling. The vertical axis shows the fraction of correctly-classified test samples
(1.0 for perfect classification, 0.5 for pure guessing).

The plots show that for all board sizes both ERNA and the stripped-down
version of ERNA outperform the two networks without eye. Moreover, we can
see that the recurrent connections are only useful for ERNA, and then only
when sufficient training examples are available.

We also compared the neural networks to some of the standard classifiers
from statistical pattern recognition (see 6.2.3). Since these classifiers are not
trained incrementally, unlike the neural networks, we combined the training and
validation sets resulting in 300 examples for the 4×4 board, 1000 examples for
the 5×5 board, and 1000 examples for the 6×6 board. In Table 6.1 the results
are shown for NMC, LDC, QDC, NNC, KNNC, as well as the four network
architectures. It is shown that the performance of the network architectures is
quite acceptable compared to most standard classifiers. Moreover, also here we
see that the specialised architectures outperform the other classifiers at least
with respect to generalisation.

Board size
Classifier 4×4 5×5 6×6
Nearest mean 71% 61% 56%
Linear Discriminant 74% 64% 60%
Quadratic discriminant 78% 75% 76%
Nearest neighbour 67% 72% 58%
K-nearest neighbours 77% 74% 63%
Feed-forward MLP 80% 74% 67%
Fully recurrent MLP 83% 77% 67%
Feed-forward + eye (stripped down ERNA) 91% 86% 76%
Recurrent + eye (ERNA) 97% 95% 87%

Table 6.1: Comparison with some standard classifiers.
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Figure 6.2: Connectedness on 4×4 boards.
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Figure 6.3: Connectedness on 5×5 boards.
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Figure 6.4: Connectedness on 6×6 boards.
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6.4.5 Discussion

The experiments indicate that practical learning algorithms are able to learn
connectedness between stones at least on relatively small boards. As the board
size increases the number of instances that is required for sufficient generali-
sation also increases drastically. Although all the four architectures can learn
to perform the same task, the number of training examples that is needed to
obtain the same level of generalisation varies greatly. The experiments indicate
that using specialised architectures that can focus on local regions of the board
significantly improves generalisation.

A point that was not highlighted above is speed. Although the specialised
recurrent architectures can improve generalisation, compared to, for example,
the standard MLP, the computational costs for training and operating such
architectures is much higher. There are at least two reasons for the higher costs.
(1) Reinforcement learning methods like Q(λ)-learning converge much slower
(although using RPROP was a quite substantial help here) than supervised
learning methods, probably because of a variety of reasons, such as the necessary
exploration of the state space, the length of the action sequences, and the fact
that there may also be some instability due to the use of (non-linear) function
approximators. (2) Even when the networks are fully trained, the operation
generally requires several steps (with internal feedback) before a final action
is selected. Although we did not optimise ERNA to the full extent possible,
it is safe to conclude that it cannot operate at speeds comparable to simpler
classifiers such as the standard MLP.

Although it is too early for definite conclusions, we can already say something
about the questions posed in section 6.3 regarding architecture, representation,
and learning paradigm. Since both training and operation of complex recurrent
network architectures is slow, it is our opinion that such architectures should
only be used for tasks where supervised learning with large numbers of labelled
training examples is not an option. In Go there are many tasks for which suf-
ficient training examples can be obtained without too much effort. Moreover,
since there is extensive human knowledge about the basic topological properties
that are relevant for assessing Go positions it may be best to provide simple
architectures with a well-chosen representation, which may easily compensate
their reduced generalising capabilities observed for raw-board representations.
Consequently, in the next chapters, instead of using complex recurrent architec-
tures trained with reinforcement learning, we will focus on supervised learning
in combination with well-chosen representations to obtain both speed and gen-
eralisation.



Chapter 7

Move prediction

This chapter is based on E. C. D. van der Werf, J. W. H. M. Uiterwijk, E. O.
Postma, and H. J. van den Herik. Local move prediction in Go. In J. Schaeffer,
M. Müller, and Y. Björnsson, editors, Computers and Games: Third Interna-
tional Conference, CG 2002, Edmonton, Canada, July 2002: revised papers,
volume 2883 of LNCS, pages 393–412. Springer-Verlag, Berlin, 2003.1

In this chapter we investigate methods for building a system that can learn
to predict expert moves from examples. An important application for such
predictions is the move ordering for αβ tree search. Furthermore, good move
predictions can also be used to reduce the number of moves that will be investi-
gated (forward pruning), to bias a search towards more promising lines of play,
and, at least in theory, to avoid all search completely.

It is known that many moves in Go conform to some local pattern of play
which is performed almost reflexively by human players. The reflexive nature
of many moves leads us to believe that pattern-recognition techniques, such as
neural networks, are capable of predicting many of the moves made by human
experts. The encouraging results reported by Enderton [70] and Dahl [51] on
similar supervised-learning tasks, and by Schraudolph [159] who used neural
networks in a reinforcement-learning framework, underline our belief.

Since locality seems to be important in Go, our primary focus is on the
ranking that can be made between legal moves which are near to each other.
Ideally, in a local ranking, the move played by the expert should be among the
best. Of course, we are also interested in full-board ranking. However, due
to the complexity of the game and the size of any reasonable feature space to
describe adequately the full board, full-board ranking is not our main aim.

The remainder of this chapter is organised as follows. In section 7.1 the
move predictor is introduced. In section 7.2 we discuss the representation that
is used by the move predictor for ranking the moves. Section 7.3 presents
feature-extraction and pre-scaling methods for extracting promising features to

1The author would like to thank Springer-Verlag and his co-authors for permission to reuse
relevant parts of the article in this thesis.
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reduce the dimensionality of the raw-feature space, and we discuss the option of
a second-phase training. Then section 7.4 presents experimental results on the
performance of the raw features, the feature extraction, the pre-scaling, and the
second-phase training. From the experiments we select our best move predictor
(MP*). In section 7.5 we assess the quality of MP* (1) by comparing it to the
performance of human amateurs on a local prediction task, (2) by testing on
professional games, and (3) by actually playing against the program GNU Go.
Finally, section 7.6 provides conclusions and suggestions for future research.

7.1 The move predictor

The goal of the move predictor is to rank legal moves, based on a set of features,
in such a way that expert moves are ranked above (most) other moves. In order
to rank moves they must be made comparable. This can be done by performing
a non-linear mapping of the feature vector onto a scalar value for each legal
move. A general function approximator, such as a neural network, which can
be trained from examples, can perform such a mapping.

The architecture chosen for our move predictor is the well-known feed-
forward multi layer perceptron (MLP). Our MLP has one hidden layer with
non-linear transfer functions, is fully connected to all inputs, and has a single
linear output predicting the value for ranking the move. Although this move
predictor alone may not suffice to play a strong game, e.g., because it may have
difficulty to understand tactical threats that require a deep search, it can be of
great value for move ordering and for reducing the number of moves that have
to be considered globally.

Functionally the network architecture is identical to the half-networks used
in Tesauro’s comparison training [169], which were trained by standard back
propagation with momentum. Our approach differs from Tesauro’s in that it
employs a more efficient training scheme and error function especially designed
for the task of move ordering.

7.1.1 The training algorithm

The MLP must be trained in such a way that expert moves are generally valued
higher than other moves. Several training algorithms exist that can be used for
this task. In our experiments, the MLP was trained with the resilient propaga-
tion algorithm (RPROP) developed by Riedmiller and Braun [146]. RPROP is a
gradient-based training procedure that overcomes the disadvantages of gradient-
descent techniques (slowness, blurred adaptivity, tuning of learning parameters,
etc.). The gradient used by RPROP consists of partial derivatives of each net-
work weight with respect to the (mean-square) error between the actual output
values and the desired output values of the network.

In standard pattern-classification tasks the desired output values are usually
set to zero or one, depending on the class information. Although for the task
of move prediction we also have some kind of class information (expert / non-
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expert moves) a strict class assignment is not feasible because class membership
may change during the game, i.e., moves which may initially be sub-optimal,
later on in the game can become expert moves [70]. Another problem, related
to the efficiency of fixed targets, is that when the classification or ordering is
correct, i.e., the expert move is valued higher than the non-expert move(s), the
network needlessly adapts its weights just to get closer to the target values.

To incorporate the relative nature of the move values into the training algo-
rithm, training is performed with move pairs. A pair of moves is selected in such
a way that one move is the expert move, and the other is a randomly selected
move within a pre-defined maximum distance from the expert move.

With this pair of moves we can devise the following error function

E(ve, vr) =
{

(vr + ε − ve)2, ∀ vr + ε > ve

0, otherwise
(7.1)

in which ve is the predicted value for the expert move, vr is the predicted value
for the random move and ε is a control parameter that scales the desired minimal
distance between the two moves. A positive value for control parameter ε is
needed to rule out trivial solutions where all predicted values v would become
equal. Although not explicitly formulated in his report [70] Enderton appears
to use the same error function with ε = 0.2.

Clearly the error function penalises situations where the expert move is
ranked below the non-expert move. In the case of a correct ranking the error
can become zero (just by increasing the scale), thus avoiding needless adapta-
tions. The exact value of control parameter ε is not very important, as long
as it does not interfere with minimum or maximum step-sizes for the weight
updates. (Typical settings for ε were tested in the range [0.1, 1] in combination
with standard RPROP settings.)

Repeated application of the chain rule, using standard backpropagation, cal-
culates the gradient from equation 7.1. A nice property of the error function
is that no gradient needs to be calculated when the error signal is zero (which
practically never happens for the standard fixed target approach). As the per-
formance grows, this significantly reduces the time between weight updates.

The quality of the weight updates strongly depends on the generalisation of
the calculated gradient. Therefore, all training is performed in batch, i.e., the
gradient is averaged over all training examples before performing the RPROP
weight update. To avoid overfitting, training is terminated when the perfor-
mance on an independent validation set does not improve for a pre-defined
number of weight updates. (In our experiments this number is set to 100.)

7.2 The representation

In this section we present a representation with a selection of features that can
be used as inputs for the move predictor. The list is by no means complete
and could be extended with a (possibly huge) number of Go-specific features.
Our selection comprises a simple set of locally computable features that are



74 CHAPTER 7. MOVE PREDICTION

common in most Go representations [51, 70] used for similar learning tasks. In a
tournament program our representation can readily be enriched with additional
features which may be obtained by a more extensive (full-board) analysis or by
specific goal-directed searches.

Our selection consists of the following eight features: stones, edge, ko, liber-
ties, liberties after, captures, nearest stones, and the last move.

Stones

The most fundamental features to represent the board contain the positions of
black and white stones. Local stone configurations can be represented by two
bitmaps. One bitmap represents the positions of the black stones, the other
represents the positions of the white stones.

Since locality is important, it seems natural to define a local region of interest
(ROI) centred on the move under consideration. The points inside the ROI are
then selected from the two bitmaps, and concatenated into one binary vector;
points outside the ROI are discarded.

A question which arises when defining the ROI is: what are good shapes
and sizes? To answer this question we tested differently sized shapes of square,
diamond, and circular forms, as shown in Figure 7.1, all centred on the free
point considered for play. For simplicity (and for saving training time) we only
included the edge and the ko features. In Figure 7.2 the percentages of incor-
rectly ordered move-pairs are plotted for the ROIs. These results were obtained
from several runs with training sets of 100,000 feature vectors. Performances
were measured on independent test sets. The standard deviations (not shown)
were less than 0.5%.

The results do not reveal significant differences between the three shapes. In
contrast, the size of the ROI does affect the performance considerably. Figure
7.2 clearly shows that initially, as the size of the ROI grows, the error decreases.
However, at a size of about 30 the error starts to increase with the size. The
increase of the classification error with the size (or dimensionality) of the input
is known as the “peaking phenomenon” [92] which is caused by the “curse of
dimensionality” [13] to be discussed in section 7.3.

Since the shape of the ROI is not critical for the performance, in all further
experiments we employ a fixed shape, i.e., the diamond. The optimal size of the
ROI cannot yet be determined at this point since it depends on other factors
such as the number of training patterns, the number of other features, and the
performance of the feature-extraction methods that will be discussed in the next
section.

Edge

In Go, the edge has a huge impact on the game. The edge can be encoded in two
ways: (1) by including the coordinates of the move that is considered for play, or
(2) by a binary representation (board = 0, edge = 1) using a 9-bit string vector
along the horizontal and the vertical line from the move towards the closest
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Figure 7.1: Shapes and sizes of the ROI.
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Figure 7.2: Performance for different ROIs.

edges. Preliminary experiments showed a slightly better performance for the
binary representation (around 0.75%). Therefore we implemented the binary
representation. (Note that since the integer representation can be obtained
by a linear combination of the larger binary representation, there is no need to
implement both. Furthermore, since on square boards the binary representation
can directly be transformed to a full binary ROI by a logical OR it is not useful
to include more edge features.)

Ko

The ko rule, which forbids returning to previous board states, has a significant
impact on the game. In a ko fight the ko rule forces players to play threaten-
ing moves, elsewhere on the board, which have to be answered locally by the
opponent. Such moves often are only good in a ko fight since they otherwise
just reduce the player’s number of ko threats. For the experiments presented
here only two ko features were included. The first one is a binary feature that
indicates if there is a ko or not. The second one is the distance from the point
considered for play to the point that is illegal due to the ko rule. In a tourna-
ment program it may be wise to include more information, such as (an estimate
of) the value of the ko (number of points associated with winning or losing the
ko), assuming this information is available.
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Liberties

An important feature used by human players is the number of liberties. The
number of liberties is the number of unique free intersections connected to a
stone. The number of liberties of a stone is a lower bound on the number of
moves that must be played by the opponent to capture that stone.

In our implementation for each stone inside a diamond-shaped ROI the num-
ber of liberties is calculated. For each empty intersection only the number of
directly neighbouring free intersections is calculated.

Liberties after

The feature ‘liberties after’ is directly related to the previous one. It is the
number of liberties that a new stone will have after placement on the position
that is considered. The same feature is also calculated for the opponent moving
first on this position.

Captures

It is important to know how many stones are captured when Black or White
plays a stone on the point under investigation. Therefore we include two fea-
tures. The first feature is the number of stones that are directly captured
(removed from the board) after placing a (friendly) stone on the intersection
considered. The second feature is the number of captures if the opponent would
move first on that intersection.

Nearest stones

In Go stones can have long-range effects which are not visible inside the ROI.
To detect such long-range effects a number of features are incorporated charac-
terising stones outside the ROI.

Since we do not want to incorporate all stones outside the ROI, features are
calculated only for a limited set of stones near the point considered for play.
These nearest stones are found by searching in eight directions (2 horizontal, 2
vertical and 4 diagonal) starting from the points just outside the ROI. In Fig-
ure 7.3 the two principal orderings for these searches are shown. The marked
stone, directly surrounded by the diamond-shaped ROI, represents the point
considered for play. Outside the ROI a horizontal beam and a diagonal beam of
numbered stones are shown representing the order in which stones are searched.
For each stone found we store the following four features: (1) colour, (2) Man-
hattan distance to the proposed move, (3) offset perpendicular to the beam
direction, and (4) number of liberties.

In our implementation only the first stone found in each direction is used.
However, at least in principle, a more detailed set of features might improve the
performance. This can be done by searching for more than one stone per direc-
tion or by using more (narrow) beams (at the cost of increased dimensionality).
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Figure 7.3: Ordering of nearest stones.

Last move

The last feature in our representation is the Manhattan distance to the last move
played by the opponent. This feature is often a powerful cue to know where
the action is. In the experiments performed by Enderton [70] (where bad moves
were selected randomly from all legal moves) this feature was even considered
harmful since it dominated all others and made the program play all moves
directly adjacent to the last move played. However, since in our experiments
both moves are selected from a local region we do not expect such a dramatic
result.

Exploiting symmetry

A standard technique to simplify the learning task, which is applied before
calculating the features, is canonical ordering and colour reversal. The game of
Go is played on a square board which contains eight symmetries. Furthermore,
if we ignore the komi, positions with Black to move are equal to positions where
White is to move if all stones reverse colour. Rotating the viewpoint of the move
under consideration to a canonical region in one corner, and reversing colours
so that only one side is always to move, effectively reduces the state space by a
factor approaching 16.

7.3 Feature extraction and pre-scaling

The representation, presented in the previous section, can grow quite large as
more information is added (either by simply increasing the ROIs or by adding
extra Go-specific knowledge). The high-dimensional feature vectors significantly
slow down training and can even decrease the performance (see Figure 7.2).
As stated in section 7.2 the negative effect on performance is known as the
“curse of dimensionality” [13] and refers to the exponential growth of the hyper-
volume of the feature space as a function of its dimensionality. The “curse of
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dimensionality” leads to the paradoxical “peaking phenomenon” where adding
more information decreases classification performance [19, 92]. Efficiency and
performance may be reduced even further due to the fact that some of the
features are correlated or redundant.

In this section we discuss the following topics: feature-extraction methods (in
7.3.1), pre-scaling the raw feature vector (in 7.3.2), and second-phase training
(in 7.3.3).

7.3.1 Feature-extraction methods

Feature-extraction methods deal with peaking phenomena by reducing the di-
mensionality of the raw-feature space. In pattern recognition there is a wide
range of methods for feature extraction such as principal component analysis
[96], discriminant analysis [75], independent component analysis [99], Kohonen’s
mapping [108], Sammon’s mapping [152] and auto-associative diabolo networks
[180]. In this section we will focus on simple linear feature-extraction methods,
which can efficiently be used in combination with feed-forward networks.

Principal component analysis

The most well known feature-extraction method is principal component analysis
(PCA). PCA is an unsupervised feature-extraction method that approximates
the data by a linear subspace using the mean-square-error criterion. Mathemat-
ically, PCA finds an orthonormal linear projection that maximises preserved
variance. Since the amount of variance is equal to the trace of the covariance
matrix, an orthonormal projection that maximises the trace for the extracted
feature space is considered optimal. Such a projection is constructed by select-
ing the eigenvectors with the largest eigenvalues of the covariance matrix. The
PCA technique is of main importance since all other feature-extraction methods
discussed here rely on trace maximisation. The only difference is that for other
mappings other (covariance-like) matrices are used.

Discriminant analysis

PCA works well in a large number of domains where there is no class information
available. However, in domains where class information is available supervised
feature-extraction methods usually work better. The task of learning to predict
moves from examples is a supervised-learning task. A commonly used supervised
feature-extraction method is linear discriminant analysis (LDA). In LDA, inter-
class separation is emphasised by replacing the covariance matrix in PCA by
a general separability measure known as the Fisher criterion, which results in
finding the eigenvectors of S−1

w Sb (the product of the inverse of the within-class
scatter matrix, Sw, and the between-class scatter matrix Sb) [75].

The Fisher criterion is known to be optimal for linearly separable Gaussian
class distributions only. However, in the case of move prediction, the two classes
of random and expert moves are not likely to be so easily separable for at least
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two reasons. First, the random moves can become expert moves later on in the
game. Second, sometimes the random moves may even be just as good as (or
better than) the expert moves. Therefore, standard LDA may not be well suited
for the job.

Move-pair scatter

As an alternative to LDA we propose a new measure, the move-pair scatter,
which may be better suited to emphasise the differences between good and bad
moves. The move-pair scatter matrix Smp is given by

Smp = E[(xe − xr)(xe − xr)T ] (7.2)

in which E is the expectation operator, xe is the expert vector and xr the
associated random vector. It should be noted that the trace of Smp is the
expected quadratic distance between a pair of vectors.

The move-pair scatter matrix Smp can be used to replace the between-class
scatter matrix in the Fisher criterion. Alternatively a mapping that directly
maximises move-pair separation is obtained by replacing the covariance matrix
in PCA by Smp. We call this mapping, on the largest eigenvectors of Smp, move
pair analysis (MPA).

Although MPA linearly maximises the preserved distances between the move
pairs, which is generally a good idea for separability, it has one serious flaw.
Since the mapping aggressively tries to extract features which separate the move
pairs, it can miss some features which are also relevant but have a more global
and static nature. An example is the binary ko feature. In Go the ko rule can
significantly alter the ordering of moves, i.e., a move which is good in a ko fight
can be bad in a position without a ko. However, since this ko feature is globally
set for both expert and random moves the preservable distance will always be
zero, and thus the feature is regarded as uninteresting.

To overcome this problem the mapping has to be balanced with a mapping
that preserves global structure such as PCA. This can be done by extracting
a set of features, preserving global structure, using standard PCA followed by
extracting a set of features using MPA on the subspace orthogonal to the PCA
features. In the experimental section we will refer to this type of balanced feature
extraction as PCAMPA. Naturally balanced extraction can also be performed in
reversed order starting with MPA, followed by PCA performed on the subspace
orthogonal to the MPA features, to which we will refer as MPAPCA. Another
approach, the construction of a balanced scatter matrix by averaging a weighted
sum of scatter and covariance matrices, will not be explored in this thesis.

Eigenspace separation transforms

Recently an interesting supervised feature-extraction method, called the eigen-
space separation transform (EST), was proposed by Torrieri [171]. EST aims at
maximising the difference in average length of vectors in two classes, measured
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by the absolute value of the trace of the correlation difference matrix. For the
task of move prediction the correlation difference matrix M is defined by

M = E[xex
T
e ] − E[xrx

T
r ] (7.3)

subtracting the correlation matrix of random move vectors from the correlation
matrix of expert move vectors. (Notice that the trace of M is the expected
quadratic length of expert vectors minus the expected quadratic length of ran-
dom vectors.) From M we calculate the eigenvectors and eigenvalues. If the sum
of positive eigenvalues is larger than the absolute sum of negative eigenvalues,
the positive eigenvectors are used for the projection. Otherwise, if the absolute
sum of negative eigenvalues is larger, the negative eigenvectors are used. In the
unlikely event of an equal sum, the smaller set of eigenvectors is selected.

Effectively EST tries to project one class close to the origin while having the
other as far away as possible. The choice for either the positive or the negative
eigenvectors is directly related to the choice which of the two classes will be
close to the origin and which will be far away. Torrieri [171] experimentally
showed that EST performed well in combination with radial basis networks on
an outlier-sensitive classification task. However in general the choice for only
positive or negative eigenvectors seems questionable.

In principle it should not matter which of the two classes are close to the
origin, along a certain axis, as long as the classes are well separable. Therefore,
we modify the EST by taking eigenvectors with large eigenvalues regardless of
their sign. This feature-extraction method, which we call modified eigenspace
separation transform (MEST), is easily implemented by taking the absolute
value of the eigenvalues before ordering the eigenvectors of M .

7.3.2 Pre-scaling the raw feature vector

Just like standard PCA, all feature-extraction methods discussed here (except
LDA) are sensitive to scaling of the raw input features. Therefore features
have to be scaled to an appropriate range. The standard solution for this is
to subtract the mean and divide by the standard deviation for each individual
feature. Another simple solution is to scale the minimum and maximum values
of the features to a fixed range. The latter method however can give bad results
in the case of outliers. In the absence of a priori knowledge of the data, such
uninformed scalings usually work well. However, for the task of move prediction,
we have knowledge on what our raw features represent and what features are
likely to be important. Therefore we may be able to use this extra knowledge
for finding an informed scaling that emphasises relevant information.

Since moves are more likely to be influenced by stones that are close than
stones that are far away, it is often good to preserve most information from the
central region of the ROI. This is done by scaling the variance of the individual
features of the ROI inversely proportional to the distance to the centre point.
In combination with the previously described feature-extraction methods this
biases our extracted features towards representing local differences, while still
keeping a relatively large field of view.
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7.3.3 Second-phase training

A direct consequence of applying the feature-extraction methods discussed above
is that potentially important information may not be available for training the
move predictor. Although the associated loss in performance may be compen-
sated by the gain in performance resulting from the reduced dimensionality, it
can imply that we have not used all raw features to their full potential. Fortu-
nately, there is a simple way to have the best of both worlds by making the full
representation available to the network, and improve the performance further.

Since we used a linear feature extractor, the mapping to extract features
from the original representation is a linear mapping. In the move predictor,
the mapping from input to hidden layer is linear too. As a consequence both
mappings can be combined into one (simply by multiplying the matrices). The
result is a network that takes the features of the full representation as input,
with the performance obtained on the extracted features.

Second-phase training entails the (re)training of the network formed by the
combined mapping. Since the full representation is now directly available, the
extra free parameters (i.e.,weights) give way for further improvement. (Natu-
rally the validation set prevents the performance from getting worse.)

7.4 Experimental results

In this section we present experimental results obtained with our approach on
predicting the moves of strong human players. Most games used for the exper-
iments presented here were played on IGS [90]. Only games from rated players
were used. Although we mainly used dan-level games, a small number of games
played by low(er)-ranked players was incorporated in the training set too. The
reason was our belief that the network should be exposed to positions somewhat
less regular, which are likely to appear in the games of weaker players.

The raw feature vectors for the move pairs were obtained by replaying the
games, selecting for each move the actual move that was played by the expert
together with a second move selected randomly from all other free positions
within a Manhattan distance of 3 from the expert move.

The dataset was split up into three subsets. One for training, one for val-
idation (deciding when to stop training), and one for testing. Due to time
constraints most experiments were performed with a relatively small data set.
Unless stated otherwise, the training set contained 25,000 examples (12,500
move pairs); the validation and test set contained 5,000 and 20,000 (indepen-
dent) examples, respectively. The predictor had one hidden layer of 100 neurons
with hyperbolic tangent transfer functions.

The rest of this section is organised as follows. In subsection 7.4.1 we in-
vestigate the relative contribution of individual feature types. In subsection
7.4.2 we present experimental results for different feature-extraction and pre-
scaling methods. In subsection 7.4.3 we show the gain in performance by the
second-phase training.
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7.4.1 Relative contribution of individual feature types

A strong predictor requires good features. Therefore, an important question for
building a strong predictor is: how good are the features? The answer to this
question can be found experimentally by measuring the performance of different
configurations of feature types. The results can be influenced by the number
of examples, peaking phenomena, and a possible bias of the predictor towards
certain distributions. Although our experiments are not exhaustive, they give
a reasonable indication of the relative contribution of the feature types.

We performed two experiments. In the first experiment we trained the pre-
dictor with only one feature type as input. Naturally, the performance of most
single feature types is not expected to be high. The added performance (com-
pared to 50% for pure guessing) is shown in the column headed “Individual”
of Table 7.1. The first experiment shows that individually, the stones, liberties
and the last move are the strongest features.

Individual (%) Leave one out (%)
Stones +32.9 −4.8
Edge +9.5 −0.9
Ko +0.3 −0.1
Liberties +24.8 0.0
Liberties after +12.1 −0.1
Captures +5.6 −0.8
Nearest stones +6.2 +0.3
Last move +21.5 −0.8

Table 7.1: Added performance in percents of raw-feature types.

For the second experiment, we trained the predictor on all feature types
except one, and compared the performance to a predictor using all feature types.
The results, shown in the last column of Table 7.1, indicate that again the stones
are the best feature type. (It should be noted that negative values indicate good
performance of the feature type that is left out.) The edge, captures and the
last move also yield a small gain in performance. For the other features there
seems to be a fair degree of redundancy, and possibly some of them are better
left out. However, it may be that the added value of these features is only in
the combination with other features. The liberties might benefit from reducing
the size of their ROI. The nearest stones performed poorly (4 out of 5 times),
which resulted in an average increase in performance of 0.3% after leaving these
features out, possibly due to peaking effects. However, the standard deviations,
which were around 0.5%, do not allow strong conclusions.

7.4.2 Performance of feature extraction and pre-scaling

Feature extraction reduces the dimensionality, while preserving relevant infor-
mation, to overcome harmful effects related to the curse of dimensionality. In
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section 7.3 a number of methods for feature extraction and pre-scaling of the
data were discussed. Here we present empirical results on the performance of the
feature-extraction methods discussed in combination with the three techniques
for pre-scaling the raw feature vectors, discussed in subsection 7.3.2.

Table 7.2 lists the results for the different feature-extraction and pre-scaling
methods. In the first row the pre-scaling is shown. The three types of pre-scaling
are (from left to right): (1) normalised mean and standard deviation ([µ, σ]),
(2) fixed-range pre-scaling ([min,max]), and (3) ROI-scaled mean and standard
deviation ([µ, σ] , σ2 ∼ 1/d in ROI). The second row shows the (reduced)
dimensionality, as a percentage of the dimensionality of the original raw-feature
space. Rows 3 to 11 show the percentages of correctly ranked move pairs,
measured on the independent test set, for the nine different feature-extraction
methods. Though the performances shown are averages of only a small number
of experiments, all standard deviations were less than 1%. It should be noted
that LDA* was obtained by replacing Sb with Smp. Both LDA and LDA* used
a small regularisation term (to avoid invertability and singularity problems).
The balanced mappings, PCAMPA and MPAPCA, both used 50% PCA and
50% MPA.

pre-scaling

Dimensionality

PCA

LDA

LDA*

MPA

PCAMPA

MPAPCA

EST

MEST

MESTMPA

[µ, σ]

10% 25%

78.7 80.8

75.2 74.9

72.5 73.8

73.7 76.7

77.3 80.6

77.2 80.6

80.7 79.3

84.3 82.4

83.8 82.5

[min, max]

10% 25%

74.4 80.4

75.2 75.5

70.0 72.1

70.3 73.8

73.5 80.5

74.0 80.1

78.1 78.9

82.6 82.2

82.6 82.2

[µ, σ] , σ2 ∼ 1/d in ROI

10% 25% 50% 90%

83.9 85.8 84.9 84.5

75.3 75.4 75.8 76.9

72.6 74.0 75.9 76.7

80.7 84.6 85.5 84.3

84.4 85.9 84.1 83.7

83.6 85.6 84.4 84.3

83.5 81.1 79.2 79.5

86.0 84.6 83.9 84.4

86.8 85.6 84.5 84.5

Table 7.2: Performance in percents of extractors for different dimensionalities.

Table 7.2 reveals seven important findings.

• A priori knowledge of the feature space is useful for pre-scaling the data
as is evident from the overall higher scores obtained with the scaled ROIs.

• In the absence of a priori knowledge it is better to scale by the mean and
standard deviation than by the minimum and maximum values as follows
from a comparison of the results for both pre-scaling methods.

• PCA performs quite well despite the fact that it does not use class infor-
mation.

• LDA performs poorly. Replacing the between-class scatter matrix in LDA
with our move-pair scatter matrix (i.e., LDA*) degrades rather than up-
grades the performance. We suspect that the main reason for this is that
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minimisation of the within-class scatter matrix, which is very similar to
the successful covariance matrix used by PCA, is extremely harmful to
the performance.

• MPA performs reasonably well, but is inferior to PCA. Presumably this
is due to the level of global information in MPA.

• The balanced mappings PCAMPA and MPAPCA are competitive and
sometimes even outperform PCA.

• MEST is the clear winner. It outperforms both PCA and the balanced
mappings.

Our modification of the eigenspace separation transform (MEST) significantly
outperforms standard EST. However, MEST does not seem to be very effec-
tive at the higher dimensionalities. It may therefore be useful to balance this
mapping with one or possibly two other mappings such as MPA or PCA. One
equally balanced combination of MEST and MPA is shown in the last row, other
possible combinations are left for future study.

7.4.3 Second-phase training

After training of the move predictor on the extracted features we turn to the
second-phase training. Table 7.3 displays the performances for both training
phases performed on a training set of 200,000 examples. The first column (ROI)
shows the size in number of intersections of the ROIs (a, b), in which a refers to
the ROI for the stones and b refers to the ROI for the liberties. In the second
column the dimensionality of the extracted feature space is shown, as a percent-
age of the original feature space. The rest of the table shows the performances
and duration of the first-phase and second-phase training experiments.

As is evident from the results in Table 7.3, second-phase training boosts
the performance obtained with the first-phase training. The extra performance
comes at the price of increased training time, though it should be noted that in
these experiments up to 60% of the time was spent on the stopping criterion,
which can be reduced by setting a lower threshold.

Phase 1 Phase 2
ROI dim. (%) perf.(%) time (h) perf.(%) time (h)
40,40 10 87.3 14.9 89.9 33.0
40,40 15 88.8 12.0 90.5 35.9
40,12 20 88.4 11.6 90.1 18.5
60,60 15 89.0 10.2 90.4 42.5
60,24 20 89.2 16.9 90.7 31.0
60,12 20 88.8 11.8 90.2 26.1

Table 7.3: First-phase and second-phase training statistics.
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7.5 Assessing the quality of the move predictor

Below we assess the quality of our best move predictor (MP*). It is the network
with an ROI of size 60 for the stones and 24 for the liberties, used in subsection
7.4.3; it is prepared by ROI-scaled pre-scaling, MESTMPA feature extraction,
first-phase and second-phase training. In subsection 7.5.1 we compare human
performance on the task of move prediction to the performance of MP*. Then
in subsection 7.5.2 the move predictor is tested on professional games. Finally,
in subsection 7.5.3 it is tested by playing against the program GNU Go.

7.5.1 Human performance with full-board information

We compared the performance of MP* with that of human performance. For
this we selected three games played by strong players (3d*-5d* IGS). The three
games were replayed by a number of human amateur Go players, all playing
black. The task faced by the human was identical to that of the neural predictor,
the main difference being that the human had access to complete full-board
information. At each move the human player was instructed to choose between
two moves: one of the two moves was the expert move, the other was a move
randomly selected within a Manhattan distance of 3 from the expert move.

Table 7.4 shows the results achieved by the human players. The players
are ordered according to their (Dutch) rating, shown in the first column. It
should be noted that some of the ratings might be off by one or two grades,
which is especially true for the low-ranked kyu players (5-15k). Only of the
dan-level ratings we can be reasonably sure, since they are regulated by official
tournament results. The next three columns contain the scores of the human
players on the three games, and the last column contains their average scores
over all moves. (Naturally all humans were given the exact same set of choices,
and were not exposed to these games before.)

From Table 7.4 we estimate that dan-level performance lies somewhere around
94%. Clearly there is still a significant variation most likely related to some in-

rating game 1 (%) game 2 (%) game 3 (%) average (%)
3 dan 96.7 91.5 89.5 92.4
2 dan 95.8 95.0 97.0 95.9
2 kyu 95.0 91.5 92.5 92.9
MP* 90.0 89.4 89.5 89.6
2 kyu 87.5 90.8 n.a. 89.3
5 kyu 87.5 84.4 85.0 85.5
8 kyu 87.5 85.1 86.5 86.3
13 kyu 83.3 75.2 82.7 80.2
14 kyu 76.7 83.0 80.5 80.2
15 kyu 80.0 73.8 82.0 78.4

Table 7.4: Human and computer (MP*) performance on move prediction.
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Figure 7.4: Ranking professional moves on 19×19.

herent freedom for choosing between moves that are (almost) equally good.
Strong kyu level is somewhere around 90%, and as players get weaker we see
performance dropping even below 80%. On the three games our move predic-
tor (MP*) scored an average of 89.6% correct predictions thus placing it in the
region of strong kyu-level players.

7.5.2 Testing on professional games

19 × 19 games

The performance of MP* was tested on 52 professional games played for the
title matches of recent Kisei, Meijin, and Honinbo Tournaments. The Kisei,
Meijin, and Honinbo are the most prestigious titles in Japan with total first-
prize money of about US$ 600,000. The 52 games contained 11,460 positions
with 248 legal moves on average (excluding the pass move). For each position
MP* was used to rank all legal moves. We calculated the probability that the
professional move was among the first n moves (cumulative performance). In
Figure 7.4 the cumulative performance of the ranking is shown for the full board
as well as for the local neighbourhoods (within a Manhattan distance of 3 from
the professional move).

In local neighbourhoods the predictor ranked 48% of the professional moves
first. On the full board the predictor ranked 25% of the professional moves first,
45% within the best three, and 80% in the top 20. The last 20% was in a long
tailed distribution reaching 99% at about 100 moves.

In an experiment performed ten years ago by Müller and reported in [124]
the program EXPLORER ranked one third of the moves played by professionals
among its top three choices. Another third of the moves was ranked between 4
and 20, and the remaining third was either ranked below the top twenty or not
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Figure 7.5: Ranking professional moves on 9×9.

considered at all. Though the comparison may be somewhat unfair, due to the
fact that EXPLORER was not optimised for predicting professional moves, it still
seems that significant progress has been made.

9 × 9 games

For fast games, and for teaching beginners, the game of Go is often played on the
9×9 board. This board has a reduced state space, a reduced branching factor,
and a shorter game length, which result in a complexity between Chess and
Othello [28]. Yet despite the reduced complexity the current 9×9 Go programs
perform nearly as bad as Go programs on the 19×19 board.

We tested the performance of MP* (which was re-trained on amateur 9×
9 games) on 17 professional 9×9 games. The games contained 862 positions
with 56 legal moves on average (excluding the pass move). Figure 7.5 shows the
cumulative performance of the ranking for the full board as well as for the local
neighbourhoods (again within a Manhattan distance of 3 from the professional
move). On the full 9×9 board the predictor ranked 37% of the professional
moves first and over 99% of the professional moves in the top 25.

7.5.3 Testing by actual play

To assess the strength of our predictor in practice we tested it against GNU Go

version 3.2. This was done by always playing the first-ranked move. Despite of
many good moves in the opening and middle-game MP* lost all games. Thus,
the move predictor in itself is not sufficient to play a strong game. The main
handicap of the move predictor was that it did not understand (some of) the
tactical fights. Occasionally this resulted in the loss of large groups, and poor
play in the endgame. Another handicap was that always playing the first-ranked
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Figure 7.6: Nine-stone handicap game against GNU Go (white 136 at 29).

move often turned out to be too passive. (The program followed GNU Go’s
moves and seldom took initiative in other regions of the board.)

We hypothesised that a balanced combination of MP* with a decent tacti-
cal search procedure would have a significant impact on the performance, and
in particular on the quality of the fights. However, since we did not have a
reasonable search procedure (and evaluation function) available at the time, we
did not explore this idea. As an alternative we tested some games where the
author (at the time a strong kyu level player) selected moves from the first n
candidate moves ranked by MP*. Playing with n equals ten we were able to
defeat GNU Go even when it played with up to five handicap stones. With n
equals twenty the strength of our combination increased even further. In Figure
7.6 a game is shown where GNU Go played Black with nine handicap stones
against the author selecting from the first twenty moves. The game is shown up
to move 234, where White is clearly ahead. After some small endgame fights
White convincingly won the game with 57.5 points.

The results indicate that, at least against other Go programs, a relatively
small set of high-ranked moves is sufficient to play a strong game.
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7.6 Chapter conclusions

We have presented a system that learns to predict moves in the game of Go
from observing strong human play. The performance of our best move predictor
(MP*) is, at least in local regions, comparable to that of strong kyu-level players.
Although the move predictor in itself is not sufficient to play a strong game,
selecting from only a small number of moves as proposed by MP* is sufficient
to defeat other Go programs, even at high handicaps.

The training algorithm presented here is more efficient than standard fixed-
target implementations. This is mainly due to the avoidance of needless weight
adaptation when rankings are correct. As an extra bonus, our training method
reduces the number of gradient calculations as performance grows, thus speed-
ing up the training. A major contribution to the performance is the use of
feature-extraction methods. Feature extraction reduces the training time while
increasing the quality of the predictor. Together with a sensible scaling of the
original features and an optional second-phase training, superior performance
over direct-training schemes can be obtained.

The predictor can be used for move ordering and forward pruning in a full-
board search. The performance obtained on ranking professional moves indi-
cates that a large fraction of the legal moves may be pruned directly without
any significant risk. In particular, our results against GNU Go indicate that a
relatively small set of high-ranked moves is sufficient to play a strong game.

On a 1 GHz PC our system evaluates moves with a speed in the order
of roughly 5000 moves per second. This translates to around 0.05 seconds
for a full-board ranking. As a consequence our approach may not be directly
applicable for deep searches. The speed can however be increased greatly by
parallel computation. Trade-offs between speed and predictive power are also
possible since the number of hidden units and the dimensionality of the raw
feature vector both scale linearly with computation time.

Regarding our second research question (see 1.3) we conclude that, for the
task of move prediction, supervised learning techniques can provide a perfor-
mance at least comparable to strong kyu-level players. The performance was
obtained with a representation consisting of a relatively simple set of features,
thus ignoring a significant amount of information which can be obtained by
more extensive (full-board) analysis or by specific goal-directed searches. Con-
sequently, there is still significant room for improving the performance, possibly
even into the strong dan-level region.

Future research

Experiments showed that MP* performs well on the prediction of moves which
are played in strong human games. The downside however is that MP* cannot
be trusted (yet) in odd positions which do not show up in (strong) human games.
Future work should therefore focus on ensuring reliability of the move predictor
in more odd regions of the Go state space.

It may be interesting to train the move predictor further through some type
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of Q-learning. In principle Q-learning works regardless of who is selecting the
moves. Consequently, training should work both by self-play (in odd positions)
and by replaying human games. Furthermore, since Q-learning does not rely
on the assumption of the optimality of human moves, it may be able to solve
possible inconsistencies in its current knowledge (due to the fact that some
human moves were bad).

Finally, future research should focus on the application of our move predic-
tor for move ordering and forward pruning in full-board search. Preliminary
results suggested that it can greatly improve the search in particular if it can
be combined with a sensible full-board evaluation function.
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Chapter 8

Scoring final positions

This chapter is based on E. C. D. van der Werf, H. J. van den Herik, and
J. W. H. M. Uiterwijk. Learning to score final positions in the game of Go. In
H. J. van den Herik, H. Iida, and E.A. Heinz, editors, Advances in Computer
Games: Many Games, Many Challenges, pages 143–158. Kluwer Academic
Publishers, Boston, MA, 2003. An extended version is to appear in [191].1

The best computer Go programs are still in their infancy. They are no match
even for human amateurs of only moderate skill. Partially this is due to the
complexity of Go, which makes brute-force search techniques infeasible on the
19×19 board. As stated in subsection 7.5.2, on the 9×9 board, which has a
complexity between Chess and Othello [28], the current Go programs perform
nearly as bad. The main reason lies in the lack of good positional evaluation
functions. Many (if not all) of the current top programs rely on (huge) static
knowledge bases derived from the programmers’ Go skills and Go knowledge. As
a consequence the top programs are extremely complex and difficult to improve.
In principle a learning system should be able to overcome this problem.

In the past decade several researchers have used machine-learning techniques
in Go. After Tesauro’s [170] success story many researchers, including Dahl [51],
Enzenberger [71] and Schraudolph et al. [159], have applied Temporal Difference
(TD) learning for learning evaluation functions. Although TD-learning is a
promising technique, which was underlined by NeuroGo’s silver medal in the
9×9 Go tournament at the 8th Computer Olympiad in Graz [181], there has
not been a major breakthrough, such as in Backgammon, and we believe that
this will remain unlikely to happen in the near future as long as most learning
is done from self-play or against weak opponents.

Over centuries humans have acquired extensive knowledge of Go. Since
the knowledge is implicitly available in the games of human experts, it should
be possible to apply machine-learning techniques to extract that knowledge
from game records. So far, game records were only used successfully for move

1The author would like to thank Kluwer Academic Publishers, Elsevier Science and his
co-authors for permission to reuse relevant parts of the article in this thesis.
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prediction [51, 70, 182]. However, we are convinced that much more can be
learned from these game records.

One of the best sources of game records on the Internet is the No Name Go
Server game archive [136]. NNGS is a free on-line Go club where people from
all over the world can meet and play Go. All games played on NNGS since
1995 are available on-line. Although NNGS game records contain a wealth of
information, the automated extraction of knowledge from these games is a non-
trivial task at least for the following three reasons.

Missing Information. Life-and-death status of blocks is not available. In
scored games only a single numeric value representing the difference in
points is available.

Unfinished Games. Not all games are scored. Human games often end by one
side resigning or abandoning the game without finishing it, which often
leaves the status of large parts of the board unclear. 2

Bad Moves. During the game mistakes are made which are hard to detect.
Since mistakes break the chain of optimal moves it can be misleading
(and incorrect from a game-theoretical point of view) to relate positions
before the mistake to the final outcome of the game.

The first step towards making the knowledge in the game records accessible
is to obtain reliable scores at the end of the game. Reliable scores require correct
classifications of life and death. This chapter focuses on determining life and
death for final positions. By focusing on final positions we avoid the problem of
unfinished games and bad moves during the game, which will be addressed in
the next chapter.

It has been pointed out by Müller [125] that proving the score of final posi-
tions is a hard task. For a set of typical human final positions, Müller showed
that extending Benson’s techniques for proving life and death [14] with a more
sophisticated static analysis and search, still leaves around 75% of the board
points unproven. Heuristic classification of his program Explorer classified
most blocks correctly, but still left some regions unsettled (and to be played out
further). Although this may be appropriate for computer-computer games, it
can be annoying in human-computer games, especially under the Japanese rules
which penalise playing more stones than necessary.

Since proving the score of most final positions is not (yet) an option, we
focus on learning a heuristic classification. We believe that a learning algorithm
for scoring final positions is important because: (1) it provides a more flexible
framework than the traditional hand-coded static knowledge bases, and (2) it is
a necessary first step towards learning to evaluate non-final positions. In general
such an algorithm is good to have because: (1) large numbers of game records
are hard to score manually, (2) publicly available programs still make too many

2In professional games that are not played on-line similar problems can occur when the
final reinforcing moves are omitted because they are considered obvious.
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mistakes when scoring final positions, and (3) it can avoid unnecessarily long
human-computer games.

The remainder of this chapter is organised as follows. Section 8.1 discusses
the scoring method. Section 8.2 presents the learning task. Section 8.3 in-
troduces the representation. Section 8.4 provides details about the data set.
Section 8.5 reports our experiments. Finally, section 8.6 presents our conclu-
sions and on-going work.

8.1 The scoring method

In this thesis we use area scoring, introduced in subsection 2.2.4. The process
of applying area scoring to a final position works as follows. First, the life-
and-death status of blocks of connected stones is determined. Second, dead
stones are removed from the board. Third, each empty point is marked Black,
White, or neutral. The non-empty points are already marked by their colour.
The empty points can be marked by flood filling or by distance. Flood filling
recursively marks empty points to their adjacent colour. In the case that a flood
fill for Black overlaps with a flood fill for White the overlapping region becomes
neutral. (As a consequence all non-neutral empty regions must be completely
enclosed by one colour.) Scoring by distance marks each point based on the
distance towards the nearest remaining black or white stone(s). If the point is
closer to a black stone it is marked black, if the point is closer to a white stone
it is marked white, otherwise (if the distance is equal) the point does not affect
the score and is marked neutral. Finally, the difference between black and white
points, together with a possible komi, determines the outcome of the game.

In final positions scoring by flood filling and scoring by distance should give
the same result. If the result is not the same, there are large open regions
with unsettled interior points, which usually means that some stones should
have been removed or some points could still be gained by playing further.
Comparing flood filling with scoring by distance, to detect large open regions,
is a useful check to find out whether the game is finished and scored correctly.

8.2 The learning task

The task of learning to score comes down to learning to determine which blocks
of connected stones are dead and should be removed from the board. This can
be learned from a set of labelled final positions, for which the labels contain
the colour controlling each point. A straightforward implementation would be
to learn classifying all blocks based on the labelled points. However, for some
blocks this is not a good idea because their status can be irrelevant and forcing
them to be classified just complicates the learning task.
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8.2.1 Which blocks to classify?

For arriving at a correct score we require correct classifications for only two
types of blocks. The first type is dead in the opponent’s area. The second
type is alive and at the border of friendly area. (Notice that, for training, the
knowledge where the border is will be obtained from labelled game records.) The
distinction between block types is illustrated in Figure 8.1. Here all marked
stones must be classified. The stones marked by triangles must be classified
alive. The stones marked by squares must be classified dead. The unmarked
stones are irrelevant for scoring because they are not at the border of their area
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Figure 8.1: Blocks to classify.

and their capturability does not affect the score.
For example, the two black stones in the top-left
corner kill the white block and are in Black’s
area. However, White can always captured
them, so forcing them to be classified as alive or
dead is misleading and even unnecessary. (The
stones in the bottom left corner are alive in seki
because neither side can capture. The two white
stones in the upper right corner are adjacent to
two neutral points (dame) and therefore also at
the border of White’s region.)

8.2.2 Recursion

Usually blocks of stones are not alive on their own. Instead they form chains
or groups which are only alive in combination with other blocks. Their status
also may depend on the status of neighbouring blocks of the opponent, i.e.,
blocks can live by capturing the opponent. (Although one might be tempted to
conclude that life and death should be dealt with at the level of groups this does
not really help because the human notion of a group is not well defined, difficult
to program, and may even require an underlying notion of life and death.)

Because life and death of blocks is strongly related to the life and death of
other blocks the status of other (usually nearby) blocks has to be taken into ac-
count. Partially this can be done by including features for nearby blocks in the
representation. In addition, it seems natural to consider a recursive framework
for classification which employs the predictions for other blocks to improve per-
formance iteratively. In our implementation this is done by training a cascade
of classifiers which use previous predictions for other blocks as additional input
features.

8.3 Representation

In this section we will present the representation of blocks for classification.
Several representations are possible and used in the field. The most primitive
representations typically employ the raw board directly. A straightforward im-
plementation is to concatenate three bitboards into a feature vector, for which



8.3. REPRESENTATION 95

the first bitboard contains the block to be classified, the second bitboard con-
tains other friendly blocks, and the third bitboard contains the enemy blocks.
Although this representation is complete, in the sense that all relevant informa-
tion is preserved it is unlikely to be efficient because of the high dimensionality
and lack of topological structure.

8.3.1 Features for Block Classification

A more efficient representation employs a set of features based on simple mea-
surable geometric properties, some elementary Go knowledge and some hand-
crafted specialised features. Several of these features are typically used in Go
programs to evaluate positions [45, 73]. The features are calculated for: (1)
single friendly blocks, (2) single opponent blocks, (3) multiple blocks in chains,
and (4) colour-enclosed regions (CERs).

General features

For each block our representation consists of the following features (all features
are single scalar values unless stated otherwise).

– Size measured in occupied points.

– Perimeter measured in number of adjacent points.

– Opponents are the occupied adjacent points.

– (First-order) liberties are the free (empty) adjacent points.

– Protected liberties are the liberties which normally should not be played
by the opponent, because of suicide or being directly capturable.

– Auto-atari liberties are liberties which by playing them reduce the liberties
of the block from 2 to 1; it means that the block would become directly
capturable (such liberties are protected for an adjacent opponent block).

– Second-order liberties are the empty points adjacent to but not part of the
liberties.

– Third-order liberties are the empty points adjacent to but not part of the
first-order and second-order liberties.

– Number of adjacent opponent blocks

– Local majority is the number of friendly stones minus the number of op-
ponent stones within a Manhattan distance of 2 from the block.

– Centre of mass represented by the average distance of stones in the block
to the closest and second-closest edge (using floating-point scalars).

– Bounding box size is the number of points in the smallest rectangular box
that can contain the block.
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Colour-enclosed regions

Adjacent to each block are colour-enclosed regions. CERs consist of connected
empty and occupied points, surrounded by stones of one colour. (Notice that
regions along the edge, such as an eye in the corner, are also enclosed). It
is important to know whether an adjacent CER is fully accessible, because a
fully accessible CER surrounded by safe blocks provides at least one sure liberty
(the surrounding blocks are safe when they all have at least two sure liberties).
To detect fully accessible regions we use so-called miai strategies as applied by
Müller [125]. In addition to Müller’s original implementation we (1) add miai-
accessible interior empty points to the set of accessible liberties, and (2) use
protected liberties for the chaining. An example of a fully accessible CER is
shown in Figure 8.2. Here the idea is that if White plays on a marked empty
point, Black replies on the other empty point marked by the same letter. By
following this miai strategy Black is guaranteed to be able to occupy or become
adjacent to all points in the region, i.e., all empty points in Figure 8.2 that are
not directly adjacent to black stones are miai-accessible interior empty points;
the points on the edge marked ‘b’ and ‘e’ were not used in Müller’s original
implementation [128]. Often it is not possible to find a miai strategy for the
full region, in which case we call the CER partially accessible. In Figure 8.3
an example of a partially accessible CER is shown. In this case the 3 points
marked ‘x’ form the inaccessible interior for the given miai strategy.

� � �� �� � ���
� ��� ��� � ����
������������������

Figure 8.2: Fully accessible CER.

� � ���� ���
� � � ��� ���
� � ������
��������������

Figure 8.3: Partially accessible CER.

Analysis of the CERs can provide us with several interesting features. How-
ever, the number of regions is not fixed, and our representation requires a fixed
number of features. Therefore we decided to sum the features over all regions.
For fully accessible CERs we include the following features.

– Number of regions

– Size 3

– Perimeter

– Number of split points in the CER. Split points are crucial points for pre-
serving connectedness in the local 3×3 window around the point. (The
region could still be connected by a big loop outside the local 3×3 win-
dow.) Examples are shown in Figure 8.4.

3Although regions may contain stones we deal with them as blocks of connected intersec-
tions regardless of the colour. Calculations of the various features, such as size, perimeter, and
split points, are performed analogously to the calculations for normal blocks of one colour.
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Figure 8.4: Split points marked with x.

For partially accessible CERs we include the following features.

– Number of partially accessible regions

– Accessible size

– Accessible perimeter

– Size of the inaccessible interior.

– Perimeter of the inaccessible interior.

– Split points of the inaccessible interior.

Eyespace

Another way to analyse CERs is to look for possible eyespace. Points forming
the eyespace should be empty or contain capturable opponent stones. Empty
points directly adjacent to opponent stones are not part of the eyespace. Points
on the edge with one or more diagonally adjacent alive opponent stones and
points with two or more diagonally adjacent alive opponent stones are false
eyes. False eyes are not part of the eyespace (we ignore the unlikely case where
a big loop upgrades false eyes to true eyes). For example, in Figure 8.5 the
points marked ‘e’ belong to Black’s eyespace and the points marked ‘f’ are false
eyes for White. Initially we assume all diagonally adjacent opponent stones
to be alive. However, in the recursive framework (see below) the eyespace is
updated based on the status of the diagonally adjacent opponent stones after
each iteration.

��������� � � ����
�� ����������������
������ � �����������
�������������� � ���
� ������ �����������
������ ����������
������������

Figure 8.5: True and false eyespace.

For directly adjacent eyespace of the block we include two features.

– Size

– Perimeter



98 CHAPTER 8. SCORING FINAL POSITIONS

Optimistic chain

Since we are dealing with final positions it is often possible to use the optimistic
assumption that all blocks with shared liberties can form a chain (during the
game this assumption can be dangerous because the chain may be split). Ex-
amples of a black and a white optimistic chain are shown in Figure 8.6. For the
block’s optimistic chain we include the following features.

– Number of blocks

– Size

– Perimeter

– Split points

– Number of adjacent CERs

– Number of adjacent CERs with eyespace

– Number of adjacent CERs, fully accessible from at least one block.

– Size of adjacent eyespace

– Perimeter of adjacent eyespace (Again, in the case of multiple connected
regions for the eyespace, size and perimeter are summed over all regions.)

– External opponent liberties are liberties of adjacent opponent blocks that
are not accessible from the optimistic chain.

��������������
����������������
���������������

Figure 8.6: Marked optimistic chains.

Weak opponent blocks

Adjacent to the block in question there may be opponent blocks. For the weak-
est (measured by the number of liberties) directly adjacent opponent block we
include the following features.

– Perimeter

– Liberties

– Shared liberties

– Split points

– Perimeter of adjacent eyespace
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The same features are also included for the second-weakest directly adjacent
opponent block and the weakest opponent block directly adjacent to or shar-
ing liberties with the optimistic chain of the block in question (so the weakest
directly adjacent opponent block may be included twice).

Disputed territory

By comparing a flood fill starting from Black with a flood fill starting from
White we find unsettled empty regions which are disputed territory (assuming
all blocks are alive). If the block is adjacent to disputed territory we include
the following features.

– Direct liberties in disputed territory.

– Liberties of all friendly blocks in disputed territory.

– Liberties of all enemy blocks in disputed territory.

8.3.2 Additional features for recursive classification

For the recursive classification we use the predicted values of previous classifi-
cations, which are floating-point scalars in the range between 0 (dead) and 1
(alive), to construct the following six additional features.

– Predicted value of the strongest friendly block with a shared liberty.

– Predicted value of the weakest adjacent opponent block.

– Predicted value of the second-weakest adjacent opponent block.

– Average predicted value of the weakest opponent block’s optimistic chain.

– Adjacent eyespace size of the weakest opponent block’s optimistic chain.

– Adjacent eyespace perimeter of the weakest opponent block’s optimistic
chain.

Next to these additional features the predictions are also used to update the
eyespace, i.e., dead blocks can become eyespace for the side that captures, alive
blocks cannot provide eyespace, and diagonally adjacent dead opponent stones
are not counted for detecting false eyes.

8.4 The data set

In the experiments we used game records obtained from the NNGS archive
[136]. All games were played on the 9×9 board between 1995 and 2002. We
only considered games that were played to the end and scored, thus ignoring
unfinished or resigned games. Since the game records only contain a single
numeric value for the score, we had to find a way to label all blocks.
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8.4.1 Scoring the data set

For scoring the data set we initially used a combination of GNU Go (version 3.2)
[74] and manual labelling. Although GNU Go has the option to finish games
and label blocks the program could not be used without human supervision.
The reasons for this are threefold: (1) bugs, (2) the inherent complexity of the
task, and (3) the mistakes made by weak human players who ended the game in
positions that were not final, or scored them incorrectly. Fortunately, nearly all
mistakes were easily detected by comparing GNU Go’s scores and the labelled
boards with the numeric scores stored in the game records.4 As an additional
check all boards containing open regions with unsettled interior points (where
flood filling does not give the same result as distance-based scoring) were also
inspected manually.

Since the scores did not match in many positions the labelling proved to
be very time consuming. We therefore only used GNU Go to label the games
played in 2002 and 1995. With the 2002 games a classifier was trained. When we
tested the performance on the 1995 games it outperformed GNU Go’s labelling.
Therefore our classifier replaced GNU Go for labelling the other games (1996-
2001), retraining it each time a new year was labelled. Although this sped
up the process it still required a fair amount of human intervention mainly
because of games that contained incorrect scores in their game record. A few
hundred games had to be thrown out completely because they were not finished,
contained illegal moves, contained no moves at all (for at least one side), or both
sides were played by the same player. In a small number of cases, where the
last moves would have been trivial but not actually played, we made the last
few moves manually.

Eventually we ended up with a data set containing 18,222 final positions.
Around 10% of these games were scored incorrectly (by the players) and were
inspected manually. (Actually the number of games we inspected is significantly
higher because of the games that were thrown out and because both our ini-
tial classifiers and GNU Go made mistakes.) On average the final positions
contained 5.8 alive blocks, 1.9 dead blocks, and 2.7 irrelevant blocks. (In the
case that one player gets the full board we count all blocks of this player as
irrelevant, because there is no border. Of course, in practice at least one block
should be classified as alive, which appears to be learned automatically without
any special attention.)

Since the Go scores on the 9×9 board range from −81 to +81 the chances
of an incorrect labelling leading to a correct score are low, nevertheless it could
not be ruled out completely. On inspecting an additional 1% of the positions
randomly we found none that were labelled incorrectly. Finally, when all games
were labelled, we re-inspected all positions for which our best classifier seemed
to predict an incorrect score. This final pass detected 42 positions (0.2%) that
were labelled incorrectly, mostly because our initial classifiers had made the
same mistakes as the players who scored the games.

4All differences caused by territory scoring were filtered out automatically, except when
dealing with eyes in seki.
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8.4.2 Statistics

Since many game records contained incorrect scores we looked for reasons and
gathered statistics. The first thing that came to mind is that weak players might
not know how to score. Therefore in Figure 8.7 the percentage of incorrectly
scored games related to the strength of the players is shown. (Although in each
game only one side may have been responsible for the incorrect score, we always
assigned blame to both sides.) The two marker types distinguish between rated
and unrated players. Although unrated players have a value for their rating, it
is an indication given by the player and not by the server. Only after playing
sufficiently many games the server assigns players a rating.
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Figure 8.7: Incorrect scores.
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Figure 8.8: Incorrect winners.

Although a significant number of games are scored incorrectly this is usually
not considered a problem when the winner is correct. (Players typically forget
to remove some stones when they are far ahead.) Figure 8.8 shows how often
incorrect scoring by rated players converts a loss into a win (cheater) or a win
into a loss (victim).

It should be noted that the percentages in Figures 8.7 and 8.8 were weighted
over all games, regardless of who was the player. Therefore, they do not nec-
essarily reflect the probabilities for individual players, i.e., the statistics can be
dominated by a small group of players that played many games. This group
at least contains some computer players, which have a tendency to get robbed
of their points in the scoring phase. Hence, we calculated some statistics that
were normalised over individual players, e.g., statistics of players who played
hundreds of games were weighted equal to the statistics of players who played
only a small number of games. Thereupon we found that for rated players the
average probability of scoring a game incorrectly is 4.2%, the probability of
cheating (the incorrect score converts a loss into a win) is 0.66%, and the prob-
ability of getting cheated is 0.55%. For unrated players the average probability
of scoring a game incorrectly is 11.2%, the probability of cheating is 2.1%, and
the probability of getting cheated is 1.1%. The fact that, when we normalise
over players, the probability of getting cheated is lower than the probability of
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cheating is the result of a small group of players (several of them are computer
programs) who systematically lose points in the scoring phase, and a larger
group of players who take advantage of that fact.

8.5 Experiments

In this section experimental results are presented for: (1) selecting a classifier,
(2) performance of the representation, (3) recursive performance, (4) full-board
performance, and (5) performance on the 19×19 board. Unless stated otherwise
the various training and validation sets, used in the experiments, were extracted
from games played between 1996 and 2002. The test set was always the same,
containing 7149 labelled blocks extracted from 919 games played in 1995.

8.5.1 Selecting a classifier

An important choice is selecting a good classifier. In pattern recognition there is
a wide range of classifiers to choose from [93]. We tested a number of well-known
classifiers, introduced in section 6.2, for their performance (without recursion)
on data sets of 100, 1000, and 10,000 examples. The classifiers are: near-
est mean classifier (NMC), linear discriminant classifier (LDC), logistic linear
classifier (LOGLC), quadratic discriminant classifier (QDC), nearest neighbour
classifier (NNC), k-nearest neighbours classifier (KNNC), backpropagation neu-
ral net classifier with momentum and adaptive learning (BPNC), Levenberg-
Marquardt neural net classifier (LMNC), and resilient propagation neural net
classifier (RPNC). Some preliminary experiments with a support vector classi-
fier, decision tree classifiers, a Parzen classifier, and a radial basis neural net
classifier were not pursued further because of excessive training times and/or
poor performance. All classifiers except the neural net classifiers, for which
we directly used the standard Matlab toolbox, were used as implemented in
PRTools3 [65].

The results, shown in Table 8.1, indicate that the performance first of all
depends on the size of the training set. The linear classifiers perform better
than the quadratic classifier and nearest neighbour classifiers. For large data
sets training KNNC is very slow because it takes a long time to find an optimal
value of the parameter k. The number of classifications per second of (K)NNC
is also low because of the large number of distances that must be computed (all
training examples are stored). Although editing and condensing the data set
still might improve the performance of the nearest neighbour classifiers, we did
not investigate them further.

The best classifiers are the neural network classifiers. It should however be
noted that their performance may be slightly overestimated with respect to the
size of the training set, because we used an additional validation set to stop
training (this was not possible for the other classifiers because they are not
trained incrementally). The logistic linear classifier performs nearly as well as
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Classifier Training Training error Test error Training time Classi. speed

size (%) (%) (s) (s−1)

NMC 100 2.8 3.9 0.0 4.9 × 104

1000 4.0 3.8 0.1 5.2 × 104

10,000 3.8 3.6 0.5 5.3 × 104

LDC 100 0.7 3.0 0.0 5.1 × 104

1000 2.1 2.0 0.1 5.2 × 104

10,000 2.2 1.9 0.9 5.3 × 104

LOGLC 100 0.0 9.3 0.2 5.2 × 104

1000 0.0 2.6 1.1 5.2 × 104

10,000 1.0 1.2 5.6 5.1 × 104

QDC 100 0.0 13.7 0.1 3.1 × 104

1000 1.0 2.1 0.1 3.2 × 104

10,000 1.9 2.1 1.1 3.2 × 104

NNC 100 0.0 18.8 0.0 4.7 × 103

1000 0.0 13.5 4.1 2.4 × 102

10,000 0.0 10.2 4.1×103 2.4 × 100

KNNC 100 7.2 13.1 0.0 4.8 × 103

1000 4.2 4.4 1.0×101 2.4 × 102

10,000 2.8 2.8 9.4×103 2.6 × 100

BPNC 100 0.5 3.6 2.9 1.8 × 104

1000 0.2 1.5 1.9×101 1.8 × 104

10,000 0.5 1.0 1.9×102 1.9 × 104

LMNC 100 2.2 7.6 2.6×101 1.8 × 104

1000 0.7 2.8 3.2×102 1.8 × 104

10,000 0.5 1.2 2.4×103 1.9 × 104

RPNC 100 1.5 4.1 1.4 1.8 × 104

1000 0.2 1.7 7.1 1.8 × 104

10,000 0.4 1.1 7.1×101 1.9 × 104

Table 8.1: Performance of classifiers without recursion.

the neural network classifiers, which is quite an achievement considering that it
is just a linear classifier.

The results of Table 8.1 were obtained with networks that employed one
hidden layer containing 15 neurons with hyperbolic tangent sigmoid transfer
functions. Since our choice for 15 neurons was quite arbitrary a second exper-
iment was performed in which we varied the number of neurons in the hidden
layer. In Figure 8.9 results are shown for the RPNC. The classification errors
marked with triangles represent results for training on 5000 examples, the stars
indicate results for training on 15,000 examples. The solid lines are measured
on the independent test set, whereas the dash-dotted lines are obtained on the
training set. The results show that even moderately sized networks easily over-
fit the data. Although the performance initially improves with the size of the
network, it seems to level off for networks with over 50 hidden neurons (the stan-
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Figure 8.9: Sizing the neural network for the RPNC.

dard deviation is around 0.1%). Again, the key factor in improving performance
clearly is in increasing the size of the training set.

8.5.2 Performance of the representation

In section 8.3 we claimed that a raw board representation is inefficient for pre-
dicting life and death. To validate this claim we measured the performance of
such a representation and compared it to our specialised representation.

The raw representation consists of three concatenated bitboards, for which
the first bitboard contains the block to be classified, the second bitboard con-
tains other friendly blocks, and the third bitboard contains the enemy blocks.
To remove symmetry the bitboards are rotated such that the centre of mass of
the block to be classified is always in a single canonical region.

Since high-dimensional feature spaces tend to raise several problems which
are not directly caused by the quality of the individual features we also tested
two compressed representations. These compressed representations were gener-
ated by performing principal component analysis (PCA) (see 7.3.1) on the raw
representation. For the first PCA mapping the number of features was chosen
identical to our specialised representation. For the second PCA mapping the
number of features was set to preserve 90% of the total variance.

The results, shown in Table 8.2, are obtained for the RPNC with 15, 35,
and 75 neurons in the hidden layer, for training sets with 100, 1000, and 10,000
examples. All values are averages over 11 runs with different training sets, val-
idation sets (same size as the training set), and random initialisations. The
errors, measured on the test set, indicate that a raw representation alone re-
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Training Size Extractor Test error Test error Test error
15 neurons 35 neurons 75 neurons

(%) (%) (%)
100 - 29.1 26.0 27.3
100 pca1 22.9 22.9 22.3
100 pca2 23.3 24.3 21.9
1000 - 13.7 13.5 13.4
1000 pca1 16.7 16.2 15.6
1000 pca2 14.2 14.5 14.4
10,000 - 7.5 6.8 6.5
10,000 pca1 9.9 9.3 9.1
10,000 pca2 8.9 8.2 7.7

Table 8.2: Performance of the raw representation.

quires too many training examples to be useful in practice. Even with 10,000
training examples the raw representation performs much more weakly than our
specialised representation with only 100 training examples. Simple feature-
extraction methods such as principal component analysis do not seem to im-
prove performance, indicating that preserved variance of the raw representation
is relatively insignificant for determining life and death. (Some preliminary re-
sults for other feature-extraction methods used in the previous chapter were not
encouraging either.)

8.5.3 Recursive performance

Our recursive framework for classification is implemented as a cascade of clas-
sifiers which use extra features, based on previous predictions as discussed in
subsection 8.3.2, as additional input. The performance measured on an inde-
pendent test set for the first 4 steps is shown for various sizes of the training
set in Table 8.3. The results are averages of 5 runs with randomly initialised
networks containing 50 neurons in the hidden layer (the standard deviation is
around 0.1%).

The results show that recursive predictions improve the performance. How-
ever, the only significant improvement comes from the first iteration. The im-

Training Size Direct error 2-step error 3-step error 4-step error
(%) (%) (%) (%)

1000 1.93 1.60 1.52 1.48
10,000 1.09 0.76 0.74 0.72

100,000 0.68 0.43 0.38 0.37

Table 8.3: Recursive performance.
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Figure 8.10: Examples of mistakes that are corrected by recursion.

provements are far from significant for the average 3-step and 4-step errors. The
reason for this is that sometimes the performance got stuck or even worsened
after the first iteration. Preliminary experiments suggest that large networks
were more likely to get stuck after the first iteration than small networks, which
might indicate some kind of overfitting. A possible solution to overcome this
problem is to retrain the networks a number of times, and pick the best one
based on the performance on the validation set. If we do this, our best networks
trained on 100,000 training examples achieve a 4-step error of 0.25%. We refer
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to the combination of the four cascaded classifier networks and the marking of
empty intersections based on the distance to the nearest living block (which may
be verified by comparing to flood filling, see section 8.1) by CSA* (Cascaded
Scoring Architecture).

In Figure 8.10 we show twelve examples of mistakes that are made by direct
classification without recursion, which can be corrected by using the 4-step re-
cursion of CSA*. All marked blocks were initially classified incorrectly. Initially,
the blocks marked with squares were classified as alive, and the blocks marked
with triangles were classified as dead. After recursion this was corrected so that
the blocks marked with squares are classified as dead, and the blocks marked
with triangles are classified as alive.

8.5.4 Full-board performance

So far we have concentrated on the percentage of blocks that are classified cor-
rectly. Although this is an important measure it does not directly indicate how
often boards will be scored correctly (a board may contain multiple incorrectly
classified blocks). Further, we do not yet know what the effect is on the score
in number of board points. Therefore we tested our classifiers on the full-board
test positions, which were not used for training or validation.

For CSA* we found that 1.1% of the boards were scored incorrectly. For
0.5% of the boards the winner was not identified correctly. The average num-
ber of incorrectly scored board points (using distance-based scoring) was 0.15.
However, in case a board is scored incorrectly it usually affects around 14 board
points (which counts double in the numeric score).

In Figure 8.11 we show examples of the (rare) mistakes that are still made by
the 4-step classification of CSA*. All marked blocks were classified incorrectly.
The blocks marked with squares were incorrectly classified as alive. The blocks
marked with triangles were incorrectly classified as dead. The difficult positions
typically include seki, long chains connected by false eyes, bent four and similar
looking shapes, and rare shapes such as ten-thousand year ko. In general we
believe that many of these mistakes can be corrected by adding more training
examples. However, for some positions it might be best to add new features or
use a local search.

8.5.5 Performance on the 19 × 19 board

The experiments presented above were all performed on the 9×9 board which,
as was pointed out before, is a challenging environment. Nevertheless, it is
interesting to test whether (and if so to what extent) the techniques scale up to
the 19×19 board. So far we did not focus on labelling large quantities of 19×
19 games. Therefore, training directly on the 19×19 board was not an option.
Despite of this we tested CSA*, which was trained using blocks observed on the
9×9 board, on the problem set IGS 31 counted from the Computer Go Test
Collection. This set contains 31 labelled 19×19 games played by amateur dan
players, and was used by Müller [125]. On the 31 final positions our 4-step
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Figure 8.11: Examples of incorrectly scored positions.
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classifier classified 5 blocks incorrectly (0.5% of all relevant blocks), and as a
consequence 2 final positions were scored incorrectly. The average number of
incorrectly scored board points was 2.1 (0.6%).

In his paper Müller [125] stated that the heuristic classification by his pro-
gram Explorer classified most blocks correctly. Although we do not know the
exact performance of Explorer we believe it is safe to say that CSA*, which
classified 99.5% of all blocks correctly, is performing at least at a comparable
level. Furthermore, since our system was not trained explicitly for 19×19 games
there may still be significant room for improvement.

8.6 Chapter conclusions

We have developed a Cascaded Scoring Architecture (CSA*) that learns to
score final positions from labelled examples. On unseen game records CSA*
scored around 98.9% of the positions correctly without any human intervention.
Compared to the average rated player on NNGS, who has a rating of 7 kyu for
scored 9×9 games, we may conclude that CSA* is more accurate at removing
all dead blocks, and performs comparably on determining the correct winner.

Regarding our second research question (see 1.3), and the questions posed
in section 6.3, we conclude that for the task of scoring final positions supervised
learning techniques can provide a performance at least comparable to reason-
ably strong kyu-level players. This performance is obtained by a cascade of
four relatively simple MLP classifiers in combination with a well-chosen repre-
sentation, which only employs features that are calculated statically (without
search).

By comparing numeric scores and counting unsettled interior points nearly
all incorrectly scored final positions can be detected (for verification by a hu-
man operator). Although some final positions are assessed incorrectly by our
classifier, most are in fact scored incorrectly by the players. Detecting games
that were incorrectly scored by the players is important because most machine-
learning methods require reliable training data for a good performance.

8.6.1 Future Work

By providing reliable score information CSA* opens the large source of Go
knowledge which is implicitly available in human game records. The next step is
to apply machine learning in non-final positions, which will be done in chapters
9 and 10. We believe that the representation, techniques, and the data set
presented in this chapter provide a solid basis for static predictions in non-final
positions.

So far, the good performance of CSA* was obtained without any search,
indicating that static evaluation is sufficient for most human final positions.
Nevertheless, we expect that some (selective) search can still improve the per-
formance. Adding selective features that involve search and integrating our
system into Magog, our 9×9 Go program, will be an important next step.
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Although the performance of CSA* is already quite good for labelling game
records, there are, at least in theory, still positions which may be scored incor-
rectly when the classifiers make the same mistakes as the human players. Future
work should determine how often this happens in practice.



Chapter 9

Predicting life and death

This chapter is partially based on E. C. D. van der Werf, M. H. M. Winands, H. J.
van den Herik, and J. W. H. M. Uiterwijk. Learning to predict life and death
from Go game records. Information Sciences, 2004. Accepted for publication.
A 4-page paper summary appeared in [192].1

Over centuries humans have acquired extensive knowledge of Go. Much of this
knowledge is implicitly available in the games of human experts. In the previous
chapter, we have set the first step towards making the knowledge contained in
9×9 game records from the NNGS archive [136] accessible for machine-learning
techniques. Consequently, we now have a database containing roughly 18,000 9
×9 games with reliable and complete score information. From this database we
intend to learn relevant Go knowledge for building a strong evaluation function.

In this chapter we focus on predicting life and death. Unlike in the previous
chapter, where we only used final positions, we now focus on predictions during
the game. We believe that predicting life and death is a skill that is pivotal
for strong play and an essential ingredient in any strong positional evaluation
function.

The rest of this chapter is organised as follows. Section 9.1 introduces the
concepts life and death. Section 9.2 presents the learning task in detail. In
section 9.3 we discuss the representation which is extended with five additional
features. Section 9.4 provides information on the data set. Section 9.5 reports
on our experiments. Finally, section 9.6 gives the chapter conclusions.

9.1 Life and death

Life and death has been studied by various researchers [14, 45, 73, 100, 103,
112, 125, 127, 141, 176, 200]. It provides the basis for accurately evaluating
Go positions. In this chapter we focus on learning to predict life and death for
non-final positions from labelled game records. The labelling stored in the game

1The author would like to thank the editors of JCIS 2003, Elsevier Science, and his co-
authors for permission to reuse relevant parts of the articles in this thesis.
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112 CHAPTER 9. PREDICTING LIFE AND DEATH

records provides the controlling colour for each intersection at the end of the
game.

The knowledge which blocks are dead and which are alive, at the end of a
game, closely corresponds to the labelling of the intersections. Therefore, an
intuitively straightforward implementation might be to learn to classify each
block as the (majority of) occupied labelled points. However, this does not
necessarily provide correct information for classification of life and death, for
which at least two conflicting definitions exist.

The Japanese Go rules [135] state: “Stones are said to be ‘alive’ if they
cannot be captured by the opponent, or if capturing them would enable a new
stone to be played that the opponent could not capture. Stones which are not
alive are said to be ‘dead’.”

The Chinese Go rules [54] state: “At the end of the game, stones which
both players agree could inevitably be captured are dead. Stones that cannot
be captured are alive.”
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Figure 9.1: Alive or dead?

A consequence of both rules is shown in Figure 9.1a: the marked black stones
can be considered alive by the Japanese rules, and dead by the Chinese rules.
Since the white stones are dead under all rule sets, and the whole region is
controlled by Black, the choice whether these black stones are alive or dead is
irrelevant for scoring the position. However, whether the marked black stones
should be considered alive or dead in training is unclear.

A more problematic position, known as ‘3 points without capturing’, is shown
in Figure 9.1b. If this position is scored under the Japanese rules all marked
stones are considered alive (because after capturing some new stones would
eventually be played that cannot be captured). However, if the position would
be played out the most likely result (which may be different if one side can
win a ko-fight) is that the empty point in the corner, the marked white stone,
and the black stone marked with a triangle become black, and the three black
stones marked with a square become white. Furthermore, all marked stones are
captured and can therefore be considered dead under the Chinese rules.

In this chapter we choose the Chinese rules for defining life and death.
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9.2 The learning task

By adopting the Chinese rules for defining life and death, the learning task
becomes a task of predicting whether blocks of stones can or will be captured.
In non-final positions, the blocks that will be captured (during the game) are
easily recognised by looking ahead in the game record. Recognising the blocks
that can be captured is more difficult.

In principle blocks that can be captured or saved may be recognised by goal-
directed search. However, for the purpose of evaluating positions this may not
be the best solution. The reason is that for some blocks, although they can
be saved, the moves that would save them would constitute unreasonable play
resulting in an unacceptable loss elsewhere on the board (meaning that optimal
play would be to sacrifice such blocks). Conversely, capturing a block may also
be unreasonable from a global perspective. Another difficulty is the inherent
freedom of choice by the players. It is illustrated by the simple example in Figure
9.2. Here Black can capture one of the White blocks, while the other can be
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Figure 9.2: Fifty percent alive.

saved. Which of the two is captured,
and which is saved is decided by the
first player to play at point ‘a’ or ‘b’,
the second player may then play at
the other point. Consequently, it can
be argued that the white blocks are
50% alive, and a prefect classification
is therefore not possible.

Since perfect classification is not possible in non-final positions, our goal is
to approximate the Bayesian a posteriori probability given a set of features or
at least the Bayesian discriminant function, for deciding whether the block will
be alive or dead at the end of the game. This implicitly takes into account
that play should be reasonable (or even optimal if the game record contains no
mistakes). Moreover, we focus our attention only on blocks that will be relevant
for scoring the positions at the end of the game. To approximate the Bayesian
a posteriori probability we use the multi-layer perceptron (MLP) classifier. It
has been shown [83] that minimising the mean-square error (MSE) on binary
targets, for an MLP with sufficient functional capacity, adequately approximates
the Bayesian a posteriori probability.

9.2.1 Target values for training

When replaying the game backward from the labelled final position the following
four types of blocks are identified (in order of decreasing domination).

1. Blocks that are captured during the game.

2. Blocks that occupy points ultimately controlled by the opponent.

3. Blocks that occupy points on the edge of regions ultimately controlled by
their own colour.
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4. Blocks that occupy points in the interior of regions ultimately controlled
by their own colour.

In contrast to normal play, when replaying the game backward blocks shrink
and may split when stones are removed. When blocks shrink or split they
inherit their type from the original block. Of course, when there is no change to
a block the type is also preserved. When new blocks appear, because they were
captured, they are marked type 1. Blocks of type 2, 3, and 4 obtained their
initial labelling in the final position.

Blocks of type 1 and 2 should be classified as dead, and their target value
for training is set to 0. Blocks of type 3 should be classified as alive, and their
target value for training is set to 1. Type-4 blocks cannot be classified based on
the labelling and are therefore not used in training. (As an example, the marked
block in Figure 9.1a typically ends up as a type-4 block, and the marked blocks
in Figure 9.1b as a type-2 block. However, if any of the marked blocks are
actually captured during the game they will of course be of type 1.)

9.3 Five additional features

In chapter 8 we presented a representation for characterising blocks by sev-
eral carefully selected features based on simple measurable geometric proper-
ties, some elementary Go knowledge, and some handcrafted specialised features.
Since the representation performed quite well for final positions, we decided to
re-use the same features for learning to predict life and death for non-final po-
sitions.

Of course, there are some features that are only relevant during the game.
They were not used in chapter 8. We add the following five features.

– Player to move relative to the block’s colour.

– Ko indicates if an active ko is on the board.

– Distance to ko from the block.

– Number of friendly stones on the board.

– Number of opponent stones on the board.

9.4 The data set

We used the same 9×9 game records played between 1995 and 2002 on NNGS
[136] as in section 8.4. For the experiments reported in subsections 9.5.1 and
9.5.2 we used training and test examples obtained from 18,222 9×9 games that
were played to the end and scored. In total, all positions from these games
contain about 10 million blocks of which 8.5% are of type 1, 11.5% are of type
2, 65.5% are of type 3, and 14.5% are of type 4. Leaving out the type-4 blocks
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gives as a priori probabilities that 76.5% of the remaining blocks are alive and
23.5% of the remaining blocks are dead.

In all experiments the test examples were extracted from games played in
1995, and the training examples from games played between 1996 and 2002.
Since the games provide a huge amount of blocks with little or no variation
(large regions remain unchanged per move) only a small fraction of blocks was
randomly selected for training (<5% per game).

9.5 Experiments

This section reports on our experiments. In subsection 9.5.1 we start by choosing
a classifier. Then, in 9.5.2 we measure the classifier performance over the game,
and in 9.5.3 we present results on full-board evaluation of resigned games.

9.5.1 Choosing a classifier

It is important to choose a good classifier. In pattern recognition there is a
variety of classifiers to choose from (see subsection 6.2.3). Our experiments
in chapter 8 on scoring final positions showed that the multi-layer perceptron
(MLP) provided a good performance with a reasonable training time. Con-
sequently we decided to try the MLP on non-final positions too. There, the
performance of the MLP mainly depended on the architecture, the number of
training examples, and the training algorithm.

In the experiments reported here, we tested architectures with 1 and with 2
hidden layers containing various numbers of neurons per hidden layer. For train-
ing we compared: (1) gradient descent with momentum and adaptive learning
(GDXNC) with (2) RPROP backpropagation (RPNC). For comparison we also
present results for the nearest mean classifier (NMC), the linear discriminant
classifier (LDC), and the logistic linear classifier (LOGLC) (see section 6.2.3).

In Table 9.1 the classifier performance is shown for a test set containing
22,632 blocks (∼ 5%) extracted from 920 games played in 1995. The results
are averages over 10 runs with different random weight initialisations. Training
and validation sets were randomly selected per run (so in each run all classifiers
used the same training data). The test set always remained fixed. The standard
deviations are in the order of 0.1% for training with 25,000 examples, 0.2% for
training with 5000 examples, and 0.5% for training with 1000 examples.

The results indicate that GDXNC performed slightly better than RPNC. Al-
though RPNC trains 2 to 3 times faster than GDXNC, and converges at a lower
error on the training data, the performance on the test data was slightly worse,
probably because of overfitting. GDXNC-25 gave the best performance, classi-
fying 88% of the blocks correctly. Using the double amount of neurons in the
hidden layer of GDXNC-50 did not improve the performance. Adding a second
hidden layer to the network architecture with 5 or 25 neurons (GDXNC-25-5,
GDXNC-25-25) also did not improve the performance. Thus we may conclude
that using one hidden layer with 25 neurons is sufficient at least for training
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with 25,000 examples. Consequently, we selected the GDXNC-25 classifier for
the experiments in the following sections.

Classifier Test error (%)
Training examples 1000 5000 25,000
NMC 21.5 21.0 21.0
LDC 14.2 13.7 13.6
LOGLC 14.8 13.3 13.1
GDXNC-5 13.8 12.9 12.2
GDXNC-15 13.9 12.9 12.2
GDXNC-25 13.7 12.8 12.0
GDXNC-25-5 13.8 12.9 12.1
GDXNC-25-25 13.9 12.8 12.0
GDXNC-50 13.8 12.8 12.0
RPNC-5 14.7 13.4 12.4
RPNC-15 14.4 13.2 12.4
RPNC-25 14.7 13.3 12.4
RPNC-25-5 14.3 13.4 12.6
RPNC-25-25 14.3 13.5 12.8
RPNC-50 15.0 13.3 12.5

Table 9.1: Performance of classifiers. The numbers in the names indicate the
number of neurons per hidden layer.

The performance of the classifiers strongly depends on the number of train-
ing examples. Therefore, we trained a new GDXNC-25 classifier on 175,000
examples. On average this classifier achieved a prediction error of 11.7% on the
complete test set (containing 443,819 blocks from 920 games).

9.5.2 Performance during the game

In subsection 9.5.1 we calculated the average classification performance on
blocks observed throughout the game. Consequently, the results in Table 9.1 do
not tell us how the performance changes as the game develops. We hypothesise
that for standard opening moves the best choice is pure guessing based on the
highest a priori probability (always alive). Final positions, however, can (in
principle) be classified perfectly. Given these extremes it is interesting to see
how the performance changes over the game, either looking forward from the
start position or backward from the final position.

To test the performance over the game we applied the GDXNC-25 classifier,
trained on 175,000 examples, to all positions in the 920 test games and compared
its performance to the a priori performance of always predicting alive. The
performance looking forward from the start position is plotted in Figure 9.3a.
The performance looking backward from the final position is plotted in Figure
9.3b.
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Figure 9.3: Performance over the game.

Figure 9.3a shows that pure guessing performs equally well for roughly the
first 10 moves. As the length of games increases the a priori probability of
blocks on the board ultimately being captured also increases (which makes sense
because the best points are occupied first and there is only limited space on the
board).2

Good evaluation functions typically aim at predicting the final result at the
end of the game as soon as possible. It is therefore encouraging to see in Figure
9.3b that towards the end of the game the error goes down rapidly, predicting
about 95% correctly 10 moves before the end. (For final positions over 99%
of all blocks are classified correctly. The experiments in the previous chapter
indicated that such a performance is at least comparable to that of the average
rated 7-kyu NNGS player. Whether this performance is similar for non-final
positions, far from the end of the game, is difficult to say.)

9.5.3 Full-board evaluation of resigned games

In the previous sections we only considered finished games that were played
to the end and scored. However, not all games are finished. When humans
observe that they are too far behind to win they usually resign. When games
are resigned only the winner is stored in the game record. The life-and-death
status of blocks is generally not available and may for some blocks even be
unclear to human experts.

To test the performance of the GDXNC-25 classifier on resigned games it
has to be incorporated into a full-board evaluation function that predicts the
winner. In Go, full-board evaluation functions typically aim at predicting the
number of intersections controlled by each player at the end of the game. The
predictions of life and death, for the occupied intersections, provide the basis for

2We remark that although the plots extend only up to 80 moves this does not mean that
there were no longer games. However, the number of games with a length of over 80 moves is
too low for meaningful results.
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Probabilities TerritoryDead blocks removed

Figure 9.4: An example of a full-board evaluation.

such a full-board evaluation function. A straightforward extension3 to classify
all intersections is implemented by assigning each intersection to the colour of
the nearest living block. An example is presented in Figure 9.4. Here the
left board shows the predictions, the middle board shows all blocks which are
assumed to be alive (with probability ≥ 50%), and the right board shows the
territory which is calculated by assigning each intersection to the colour of
the nearest living block. (Notice that even though one white dead block was
incorrectly evaluated as 60% alive, the estimated territory is still sufficient to
predict the correct winner.)

We tested 2,786 resigned 9×9 games played between 1995 and 2002 by rated
players on NNGS [136]. On average the winner was predicted correctly for 87%
of all positions. For comparison, if we do not remove any dead blocks, and all
empty points are assigned to the colour of the nearest stone, the performance
drops to 69% correct. This drop in performance underlines the importance of
accurate predictions of life and death.

The strength of players is a factor that influences the difficulty of positions
and the reliability of the results. We calculated statistics for all rank categories
between 20 kyu and 2 dan. Figure 9.5 shows the relation between the rank of the
player who resigned and the average error at predicting the winner (top), the
number of game records available (middle), and the average estimated difference
in points (bottom). The top plot suggests that predicting the winner tends
to become more difficult with increasing strength of the players. This makes
sense because strong players usually resign earlier (because they are better at
recognising lost positions). Moreover, it may be that strong players generally
create more difficult positions than weak players. It is no surprise that the
estimated difference in points (when one player resigns) tends to decrease with
the playing strength.

3More knowledgeable approaches will be discussed in the next chapter.
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Figure 9.5: Predicting the outcome of resigned games.

9.6 Chapter conclusions

We trained MLPs to predict life and death from labelled examples quite accu-
rately. From the experiments we may conclude that the GDXNC-25 classifier,
which uses one hidden layer with 25 neurons, provides an adequate performance.
Nevertheless, it should be noted that simple linear classifiers such as LOGLC
also perform quite well. The reason for these similar performances probably lies
in the quality of our representation, which helps to makes the classification task
linearly separable.

On unseen game records and averaged over the whole game, the GDXNC-25
classifier classified around 88% of all blocks correctly. Ten moves before the end
of the game it classified around 95% correctly, and for final positions it classified
over 99% correctly.

We introduced a straightforward implementation of our GDXNC-25 classi-
fier into a full-board evaluation function, which gave quite promising results.
To obtain more insight into the importance of this work, the MLP should be
incorporated into a more advanced full-board evaluation function. In chapter
10, this will be done for the task of estimating potential territory.

Regarding our second research question (see 1.3) we conclude that supervised
learning techniques can be applied quite well for the task of predicting life and
death in non-final positions. For positions near the end of the game we are
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confident that the performance is comparable to that of reasonably strong kyu-
level players. However, without additional experiments it is difficult to say
whether the performance is similar in positions that are further away from the
end of the game.

Future work

Although training with more examples still has some impact on the performance,
it seems that most can be gained from improving the representation of blocks.
Some features, such as those for loosely connected groups, have not yet been
properly characterised and implemented. Adding selective features that involve
search may also improve the performance. We conjecture that in the future
automatic feature-extraction and feature-selection methods have to be employed
to improve the representation.
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Chapter 10

Estimating potential
territory

This chapter is based on E. C. D. van der Werf, H. J. van den Herik, and J. W.
H. M. Uiterwijk. Learning to estimate potential territory in the game of Go.
In Proceedings of the 4th International Conference on Computers and Games
(CG’04) (Ramat-Gan, Israel, July 5-7), 2004. To appear in LNCS, Springer-
Verlag, Berlin, Germany.1

Evaluating Go positions is a difficult task [43, 127]. In the last decade Go has
received significant attention from AI research [28, 126]. Yet, despite all efforts,
the best Go programs are still weak. An important reason lies in the lack of
an adequate full-board evaluation function. Building such a function requires
a method for estimating potential territory. At the end of the game territory
is defined as the intersections that are controlled by one colour. Together with
the captured or remaining stones, territory determines who wins the game (see
also subsection 2.2.4). For final positions (where both sides have completely
sealed off the territory by stones of their colour) territory is determined by
detecting and removing dead stones and assigning the empty intersections to
their surrounding colour.

In chapter 8 we presented techniques for scoring final positions based on an
accurate classification of life and death. In chapter 9 we extended our scope to
predict life and death in non-final positions too. In this chapter we focus on
evaluating non-final positions. In particular, we deal with the task of estimating
potential territory in non-final positions. We believe that for this task predic-
tions of life and death are a valuable component too. The current task is much
more difficult than determining territory in final positions. We will investigate
several possible methods to estimate potential territory based on the predic-
tions of life and death and compare them to other approaches, known from the
literature, which do not require an explicit notion of life and death.

1The author would like to thank Springer-Verlag and his co-authors for permission to reuse
relevant parts of the article in this thesis.
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The remainder of this chapter is organised as follows. First, in section 10.1 we
define potential territory. Then, in section 10.2 we discuss five direct methods for
estimating (potential) territory as well as two enhancements for supplying them
with information about life and death. In section 10.3 we describe trainable
methods for learning to estimate potential territory from examples. Section
10.4 presents our experimental setup. Then, in section 10.5 we present our
experimental results. Finally, section 10.6 provides our chapter conclusions and
suggestions for future research.

10.1 Defining potential territory

During the game human players typically try to estimate the territory that
they will control at the end of the game. Moreover, they often distinguish
between secure territory, which is assumed to be safe from attack, and regions
of influence, which are unsafe. An important reason why human players like
to distinguish secure territory from regions of influence is that, since the secure
territory is assumed to be safe, they do not have to consider moves inside secure
territory, which reduces the number of candidate moves to choose from.

In principle, secure territory can be recognised by extending Benson’s method
for recognising unconditional life [14], such as described in chapter 5 or in [125].
In practice, however, these methods are not sufficient to predict accurately the
outcome of the game until the late end-game because they aim at 100% cer-
tainty, which is assured by assumptions like losing all ko-fights, allowing the
opponent to place several moves without the defender answering, and requiring
completely enclosed regions. Therefore, such methods usually leave too many
points undecided.

An alternative (probably more realistic) model of the human notion of se-
cure territory may be obtained by identifying regions with a high confidence
level. However, finding a good threshold for distinguishing regions with a high
confidence level from regions with a low confidence level is a non-trivial task
and admittedly always a bit arbitrary. As a consequence it may be debatable
to compare heuristic methods to methods with a 100% confidence level. Subse-
quently the debate continues when comparing among heuristic methods, e.g., a
77% versus a 93% confidence level (cf. Figure 10.1).

In this chapter, our main interest is in evaluating positions with the purpose
of estimating the score. For this purpose the distinction between secure territory
and regions of influence is relatively unimportant. Therefore we combine the
two notions into one definition of potential territory.

Definition In a position, available from a game record, an intersection is de-
fined as potential territory of a certain colour if the game record shows that the
intersection is controlled by that colour at the end of the game.

Although it is not our main interest, it is possible to use our estimates
of potential territory to provide a heuristic estimate of secure territory. This
can be done by focusing on regions with a high confidence level, by setting an
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arbitrarily high threshold. In subsection 10.5.3 we will present results at various
levels of confidence so that our methods can be compared more extensively to
methods that are designed for regions with a high confidence level only.

10.2 Direct methods for estimating territory

In this section we present five direct methods for estimating territory (subsec-
tions 10.2.1 to 10.2.5). They are known or derived from the literature and are
easy to implement in a Go program. All methods assign a scalar value to each
(empty) intersection. In general, positive values are used for intersections con-
trolled by Black, and negative values for intersections controlled by White. In
subsection 10.2.6 we mention two immediate enhancements for adding knowl-
edge about life and death to the direct methods.

10.2.1 Explicit control

The explicit-control function is obtained from the ‘concrete evaluation function’
as described by Bouzy and Cazenave [28]. It is probably the simplest possible
evaluation function and is included here as a baseline reference of performance.
The explicit-control function assigns +1 to empty intersections which are com-
pletely surrounded by black stones and −1 to empty intersections which are
completely surrounded by white stones, all other empty intersections are as-
signed 0.

10.2.2 Direct control

Since the explicit-control function only detects completely enclosed intersections
(single-point eyes) as territory it performs quite weak. Therefore we propose
a slight modification of the explicit-control function, called direct control. The
direct-control function assigns +1 to empty intersections which are adjacent to a
black stone and not adjacent to a white stone, −1 to empty intersections which
are adjacent to a white stone and not adjacent to a black stone, and 0 to all
other empty intersections.

10.2.3 Distance-based control

Both the explicit-control and the direct-control functions are not able to recog-
nise larger regions surrounded by (loosely) connected stones. A possible alterna-
tive is the distance-based control (DBC) function. Distance-based control uses
the Manhattan distance to assign +1 to each empty intersection that is closer
to a black stone, −1 to each empty intersection that is closer to a white stone,
and 0 to all other empty intersections.
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10.2.4 Influence-based control

Although distance-based control is able to recognise larger territories a weakness
is that it does not take into account the strength of stones in any way, i.e., a
single stone is weighted equally important as a strong large block at the same
distance. A way to overcome this weakness is by the use of influence functions,
which were already described by the early researchers in computer Go Zobrist
[203] and Ryder [151], and are still in use in several of today’s Go programs
[44, 47].

Below we adopt Zobrist’s method to recognise influence; it works as follows.
First, all intersections are initialised by one of three values: +50 if they are
occupied by a black stone, −50 if they are occupied by a white stone, and 0
otherwise. (It should be noted that the value of 50 has no specific meaning and
any other large value can be used in practice.) Then the following process is
performed four times. For each intersection, add to the absolute value of the
intersection the number of neighbouring intersections of the same sign minus
the number of neighbouring intersections of the opposite sign.

10.2.5 Bouzy’s method

It is important to note that the repeating process used to radiate the influence of
stones in the Zobrist method is quite similar to the dilation operator known from
mathematical morphology [163]. This was remarked by Bouzy [26] who proposed
a numerical refinement of the classical dilation operator which is similar (but
not identical) to Zobrist’s dilation.

Bouzy’s dilation operator Dz works as follows. For each non-zero intersec-
tion that is not adjacent to an intersection of the opposite sign, take the number
of neighbouring intersections of the same sign and add it to the absolute value
of the intersection. For each zero intersection without negative adjacent inter-
sections, add the number of positive adjacent intersections. For each zero inter-
section without positive adjacent intersections, subtract the number of negative
adjacent intersections.

Bouzy argued that dilations alone are not the best way to recognise territory.
Therefore he suggested that the dilations should be followed by a number of
erosions. This combined form is similar to the classical closing operator known
from mathematical morphology [163].

To do this numerically Bouzy proposed the following refinement of the clas-
sical erosion operator Ez. For each non-zero intersection subtract from its ab-
solute value the number of adjacent intersections which are zero or have the
opposite sign. If this causes the value of the intersection to change its sign, the
value becomes zero.

The operators Ez and Dz are then combined by first performing d times Dz

followed by e times Ez, which we will refer to as Bouzy(d, e). Bouzy suggested
the relation e = d(d−1)+1 because this becomes the unity operator for a single
stone in the centre of a sufficiently large board. He further recommended to use
the values 4 or 5 for d. The intersections are initialised by one of three values:
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+64 if they are occupied by a black stone, −64 if they are occupied by a white
stone, and 0 otherwise.2

The reader may be curious why the number of erosions is larger than the
number of dilations. The main reason is that (unlike in the classical binary case)
Bouzy’s dilation operator propagates faster than his erosion operator. Further-
more, Bouzy’s method seems to be more aimed at recognising secure territory
with a high confidence level than Zobrist’s method (the intersections with a
lower confidence level are removed by the erosions). Since Bouzy’s method
leaves many intersections undecided it is expected to perform sub-optimal at
estimating potential territory, which also includes regions with lower confidence
levels (cf. subsection 10.5.3). To improve the estimations of potential territory it
is therefore interesting to consider an extension of Bouzy’s method for dividing
the remaining empty intersections. A natural choice to extend Bouzy’s method
is to divide the undecided empty intersections using distance-based control.
The reason why we expect this combination to be better than only performing
distance-based control directly from the raw board is that radiating influence
from a (relatively) safe base, as provided by Bouzy’s method, implicitly intro-
duces some understanding of life and death. (It should be noted that extending
Bouzy’s method with distance-based control is not the only possible choice, and
extending with, for example, influence-based control provides nearly identical
results.)

10.2.6 Enhanced direct methods

The direct methods all share one important weakness: the lack of understanding
life and death. As a consequence, dead stones (which are removed at the end of
the game) can give the misleading impression of providing territory or reducing
the opponent’s territory. Recognising dead stones is a difficult task, but many
Go programs have available some kind of (usually heuristic) information about
the life-and-death status of stones. In our case we use the MLPs, trained to
predict life and death for non-final positions, introduced in chapter 9.

Here we mention two immediate enhancements for the direct methods. (1)
The simplest approach to use information about life and death for the estimation
of territory is to remove dead stones before applying one of the direct methods.
(2) An alternative sometimes used is to reverse the colour of dead stones [27].

10.3 Trainable methods

Although the direct methods can be improved by (1) removing dead stones, or
(2) reversing their colour, neither approach seems optimal, especially because
both lack the ability to exploit the more subtle differences in the strength of
stones, which would be expressed by human concepts such as ‘aji’ or ‘thickness’.
However, since it is not well understood how such concepts should be modelled,

2We remark that these are the values proposed in Bouzy’s original article [26]. For d > 4
larger initialisation values are required to prevent the possibility of removing single stones.
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it is tempting to try a machine-learning approach to train a general function
approximator to provide an estimation of the potential territory. For this task
we again select the Multi-Layer Perceptron (MLP). The MLP has been used
on similar tasks by several other researchers [51, 71, 72, 159], so we believe it
is a reasonable choice. Nevertheless it should be clear that any other general
function approximator can be used for the task.

Our MLP has a feed-forward architecture which estimates potential territory
on a per intersection basis. The estimates are based on a local representation
which includes features that are relevant for predicting the status of the inter-
section under investigation. Here we test two representations, first a simple one
which only looks at the raw (local) configuration of stones, and second an en-
hanced representation that encompasses additional information about life and
death.

For our experiments we exploit the fact that the game is played on a square
board with eight symmetries. Furthermore, positions with Black to move are
equal to positions with White to move provided that all stones reverse colour.
To simplify the learning task we remove the symmetries in our representation
by rotating the view on the intersection under investigation to one canonical
region in the corner, and reversing the colours if the player to move is White.

10.3.1 The simple representation

The simple representation is characterised by the configuration of all stones in
the region of interest (ROI) which is defined by all intersections within a pre-
defined Manhattan distance of the intersection under investigation. For each
intersection in the ROI we include the following feature:

– Colour : +1 if the intersection contains a black stone, −1 if the intersection
contains a white stone, and 0 otherwise.

In the following, we will refer to the combination of the simple representation
with an MLP trained to estimate potential territory as simple MLP (SMLP).
The performance of the simple MLP will be compared to the direct methods
because it does not use any explicit information of life and death (although
some knowledge of life and death may of course be learned from examples) and
only looks at the local configuration of stones. Since both Zobrist’s and Bouzy’s
method (see above) are diameter limited by the number of times the dilation
operator is used, our simple representation should be able to provide results
which are at least comparable. However, we actually expect it to do better
because the MLP might learn some additional shape-dependent properties.

10.3.2 The enhanced representation

We enhanced the simple representation with knowledge of life and death as
provided by the GDXNC-25 classifier presented in the chapter 9. The most
straightforward way to include the predictions of life and death would be to
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add these predictions as an additional feature for each intersection in the ROI.
However, preliminary experiments showed that this was not the best way to
add knowledge of life and death. (The reason is that adding features reduces
performance due to peaking phenomena caused by the curse of dimensionality
[13, 92].) As an alternative which avoids increasing the dimensionality we de-
cided to multiply the value of the colour feature in the simple representation
with the estimated probability that the stones are alive. (This means that the
sign of the value of an intersection indicates the colour, and the absolute value
indicates some kind of strength.) Moreover, the following three features were
added.

– Edge: encoded by a binary representation (board=0, edge=1) using a 9-bit
string vector along the horizontal and vertical line from the intersection
under investigation to the nearest edges.

– Nearest colour: the classification for the intersection using the distance-
based control method on the raw board (black=1, empty=0, white=−1).

– Nearest alive: the classification for the intersection using the distance-
based control method after removing dead stones (black=1, empty=0,
white=−1).

In the following, the combination of the enhanced representation with an
MLP trained to estimate potential territory is called enhanced MLP (EMLP).

10.4 Experimental setup

In this section we discuss the data set used for training and evaluation (subsec-
tion 10.4.1) and the performance measures used to evaluate the various methods
(subsection 10.4.2).

10.4.1 The data set

In the experiments we used our collection of 9×9 game records which were
originally obtained from NNGS [136]. The games, played between 1995 and
2002, were all played to the end and then scored. Since the original NNGS
game records only contained a single numeric value for the score, the fate of all
intersections was labelled by a threefold combination of GNU Go [74], our own
learning system, and some manual labelling. Details about the data set and the
way we labelled the games can be found in chapter 8

In all experiments, test examples were extracted from games played in 1995;
training examples were extracted from games played between 1996 and 2002. In
total the test set contained 906 games, 46,616 positions, and 2,538,152 empty
intersections.
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10.4.2 The performance measures

Now that we have introduced a series of methods (combinations of methods are
possible too) to estimate (potential) territory, an important question is: how
good are they? We attempt to answer this question (in section 10.5) using
several measures of performance which can be calculated from labelled game
records. Although game records are not ideal as an absolute measure of perfor-
mance (because the people who played those games surely have made mistakes)
we believe that the performance averaged over large numbers of unseen game
records is a reasonable indication of strength.

Probably the most important question in assessing the quality of an evalu-
ation function is how well it can predict the winner at the end of the game. By
combining the estimated territory with the (alive) stones we obtain the so-called
area score, which is the number of intersections controlled by Black minus the
number of intersections controlled by White. Together with a possible komi
(which compensates the advantage of the first player) the sign of this score de-
termines the winner. Therefore, our first performance measure Pwinner is the
percentage of positions in which the sign of the score is predicted correctly.

Our second performance measure Pscore uses the same score to calculate the
average absolute difference between the predicted score and the actual score at
the end of the game.

Both Pwinner and Pscore combine predictions of stones and territory in one
measure of performance. As a consequence these measures are not sufficiently
informative to evaluate the task of estimating potential territory alone. To
provide more detailed information about the errors that are made by the various
methods we also calculate the confusion matrices (see subsection 10.5.1) for the
estimates of potential territory alone.

Since some methods leave more intersections undecided (i.e., by assigning
empty) than others, it may seem unfair to compare them directly using only
Pwinner and Pscore. As an alternative the fraction of intersections which are left
undecided can be considered together with the performance on intersections
which are decided. This typically leads to a trade-off curve where performance
can be improved by rejecting intersections with a low confidence. The fraction of
intersections that are left undecided, as well as the performance on the decided
intersections is directly available from the confusion matrices of the various
methods.

10.5 Experimental results

We tested the performance of the various direct and trainable methods. They
are subdivided as follows: performance of direct methods in subsection 10.5.1;
performance of trainable methods in subsection 10.5.2; comparing different lev-
els of confidence in subsection 10.5.3; and performance during the game in
subsection 10.5.4.
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Pwinner (%) Pscore (points)
Predicted dead stones remain remove reverse remain remove reverse
Explicit control 52.4 60.3 61.8 16.0 14.8 14.0
Direct control 54.7 66.5 66.9 15.9 12.9 12.7
Distance-based control 60.2 73.8 73.8 18.5 13.8 13.9
Influence-based control 61.0 73.6 73.6 17.3 12.8 12.9
Bouzy(4,13) 52.6 66.9 67.5 17.3 12.8 12.8
Bouzy(5,21) 55.5 70.2 70.4 17.0 12.3 12.4
Bouzy(5,21) + DBC 63.4 73.9 73.9 18.7 14.5 14.6

Table 10.1: Average performance of direct methods.

10.5.1 Performance of direct methods

The performance of the direct methods was tested on all positions from the
labelled test games. The results for Pwinner and Pscore are shown in Table 10.1.
In this table the columns ‘remain’ represent results without using knowledge
of life and death, the columns ‘remove’ and ‘reverse’ represent results with
predictions of life and death used to remove or reverse the colour of dead stones.

To compare the results of Pwinner and Pscore it is useful to have a confidence
interval. However, since positions of the test set are not all independent, it is
non-trivial to provide exact results. Nevertheless it is easy to calculate lower and
upper bounds, based on an estimate of the number of independent positions.
If we pessimistically assume only one independent position per game an upper
bound (for a 95% confidence interval) is roughly 3% for Pwinner and 1.2 points
for Pscore. If we optimistically assume all positions to be independent a lower
bound is roughly 0.4% for Pwinner and 0.2 points for Pscore. Of course this
is only a crude approximation which ignores the underlying distribution and
the fact that the accuracy increases drastically towards the end of the game.
However, given the fact that the average game length is around 50 moves it
seems safe to assume that the true confidence interval will be somewhere in the
order of 1% for Pwinner and 0.4 points for Pscore.

More detailed results about the estimations (in percentages) for the empty
intersections alone are presented in the confusion matrices shown in Table 10.2.
The fraction of undecided intersections and the performance on the decided
intersections, which can be calculated from the confusion matrices, will be dis-
cussed in subsection 10.5.3. (The rows of the confusion matrices contain the
possible predictions which are either black (PB), white (PW), or empty (PE).
The columns contain the actual labelling at the end of the game which are either
black (B), white (W), or empty (E). Therefore, correct predictions are found on
the trace, and errors are found in the upper right and lower left corners of the
matrices.)

The difference in performance between (1) when stones remain on the board
and (2) when dead stones are removed or reversed colour underlines the impor-



130 CHAPTER 10. ESTIMATING POTENTIAL TERRITORY

B W E
PB 0.78 0.16 0
PW 0.1 0.88 0
PE 48.6 49.3 0.13

Explicit control

B W E
PB 0.74 0.04 0
PW 0.04 0.82 0
PE 48.7 49.5 0.14
dead stones removed

B W E
PB 0.95 0.09 0.01
PW 0.07 1.2 0.01
PE 48.4 49.0 0.12
dead colour reversed

B W E
PB 15.4 4.33 0.02
PW 3.16 14.3 0.01
PE 30.9 31.6 0.1

Direct control

B W E
PB 16.0 3.32 0.02
PW 2.56 15.2 0.02
PE 30.9 31.7 0.09
dead stones removed

B W E
PB 16.6 3.44 0.02
PW 2.75 16.3 0.03
PE 30.0 30.6 0.08
dead colour reversed

B W E
PB 36.0 11.6 0.05
PW 6.63 31.0 0.03
PE 6.86 7.71 0.06

Distance-based control

B W E
PB 38.2 10.4 0.06
PW 6.21 34.3 0.06
PE 5.09 5.55 0.02
dead stones removed

B W E
PB 38.0 10.3 0.05
PW 6.21 34.1 0.05
PE 5.29 5.87 0.04
dead colour reversed

B W E
PB 37.4 12.2 0.07
PW 7.76 33.3 0.04
PE 4.25 4.79 0.03

Influence-based control

B W E
PB 38.4 10.5 0.06
PW 7.02 35.3 0.06
PE 4 4.47 0.02
dead stones removed

B W E
PB 38.4 10.5 0.06
PW 7.11 35.4 0.06
PE 3.98 4.46 0.02
dead colour reversed

B W E
PB 17.7 1.82 0.02
PW 0.83 15.4 0.01
PE 30.9 33.1 0.11

Bouzy(4,13)

B W E
PB 21.2 1.86 0.03
PW 1.06 19.9 0.03
PE 27.2 28.5 0.07
dead stones removed

B W E
PB 21.2 1.9 0.03
PW 1.16 20.1 0.03
PE 27.0 28.3 0.08
dead colour reversed

B W E
PB 19.0 1.87 0.02
PW 0.81 15.8 0.01
PE 29.6 32.6 0.1

Bouzy(5,21)

B W E
PB 23 1.98 0.03
PW 1.13 20.8 0.04
PE 25.3 27.5 0.07
dead stones removed

B W E
PB 22.9 1.99 0.03
PW 1.17 20.7 0.03
PE 25.3 27.6 0.08
dead colour reversed

B W E
PB 37.9 12.1 0.05
PW 6.51 32.4 0.03
PE 5 5.73 0.05
Bouzy(5,21) + DBC

B W E
PB 39.0 11.0 0.06
PW 6.3 34.8 0.06
PE 4.12 4.5 0.02
dead stones removed

B W E
PB 38.9 10.9 0.05
PW 6.32 34.6 0.05
PE 4.28 4.74 0.03
dead colour reversed

Table 10.2: Confusion matrices of direct methods.
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Pwinner (%) Pscore (points)
Predicted dead stones remain remove reverse remain remove reverse
Explicit control 55.0 66.2 68.2 16.4 14.5 13.3
Direct control 57.7 74.9 75.3 16.1 11.6 11.3
Distance-based control 61.9 82.1 82.1 16.4 9.6 9.7
Influence-based control 63.6 82.1 82.2 16.0 9.5 9.6
Bouzy(4,13) 56.7 77.9 78.3 17.2 10.4 10.5
Bouzy(5,21) 58.6 80.3 80.5 16.9 9.9 10
Bouzy(5,21) + DBC 66.7 82.2 82.3 15.5 9.6 9.7

Table 10.3: Average performance of direct methods after 20 moves.

tance of understanding life and death. For the weakest direct methods reversing
the colour of dead stones seems to improve performance compared to only re-
moving them. For the stronger methods, however, it has no significant effect.

The best method for predicting the winner without understanding life and
death is Bouzy’s method extended with distance-based control to divide the
remaining undecided intersections. It is interesting to see that this method
also has a high Pscore which would actually indicate a bad performance. The
reason for this is instability of distance-based control in the opening, e.g., with
only one stone on the board it assigns the whole board to the colour of that
stone. We can filter out the instability near the opening by only looking at
positions that occur after a certain minimal number of moves. When we do
this for all positions with at least 20 moves made, as shown in Table 10.3, it
becomes clear that Bouzy’s method extended with distance-based control also
achieves the best Pscore. Our experiments indicate that radiating influence from
a (relatively) safe base, as provided by Bouzy’s method, outperforms other direct
methods probably because it implicitly introduces some understanding of life
and death. This conclusion is supported by the observation that the combination
does not perform significantly better than for example influence-based control
when knowledge about life and death is used.

At first glance the results presented in this subsection could lead to the ten-
tative conclusion that for a method which only performs N dilations to estimate
potential territory the performance keeps increasing with N ; so the largest pos-
sible N might have the best performance. However, this is not the case and
N should not be chosen too large. Especially in the beginning of the game a
large N tends to perform significantly worse than a restricted setting with 4 or
5 dilations such as used by Zobrist’s method. Moreover, setting N too large
leads to a waste of time under tournament conditions.

10.5.2 Performance of trainable methods

Below we present the results of the trainable methods. All architectures were
trained with the resilient propagation algorithm (RPROP) developed by Ried-
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miller and Braun [146]. The non-linear architectures all had one hidden layer
with 25 units using the hyperbolic tangent sigmoid transfer function. (Prelimi-
nary experiments showed this to be a reasonable setting, though large networks
may still provide a slightly better performance when more training examples
are used.) For training, 200,000 examples were used. A validation set of 25,000
examples was used to stop training. For each architecture the weights were
trained three times with different random initialisations, after which the best
result was selected according to the performance on the validation set. (Note
that the validation examples were taken, too, from games played between 1996
and 2002.)

We tested the various linear and non-linear architectures on all positions
from the labelled test games. Results for Pwinner and Pscore are presented in
Table 10.4, and the confusion matrices are shown in Table 10.5. The enhanced
representation, which uses predictions of life and death, clearly performs much
better than the simple representation. We further see that the performance
tends to improve with increasing size of the ROI. (A ROI of size 24, 40, and 60
corresponds to the number of intersections within a Manhattan distance of 3,
4, and 5 respectively, excluding the centre point, which is always empty.)

Architecture Representation ROI Pwinner (%) Pscore (points)
linear simple 24 64.0 17.9
linear simple 40 64.5 18.4
linear simple 60 64.6 19.0
non-linear simple 24 63.1 18.2
non-linear simple 40 64.5 18.3
non-linear simple 60 65.1 18.3
linear enhanced 24 75.0 13.4
linear enhanced 40 75.2 13.3
linear enhanced 60 75.1 13.4
non-linear enhanced 24 75.2 13.2
non-linear enhanced 40 75.5 12.9
non-linear enhanced 60 75.5 12.5

Table 10.4: Performance of the trainable methods.

It is interesting to see that the non-linear architectures are not much better
than the linear architectures. This seems to indicate that, once life and death
has been established, influence spreads mostly linearly.

10.5.3 Comparing different levels of confidence

The MLPs are trained to predict positive values for black territory and negative
values for white territory. Small values close to zero indicate that intersections
are undecided and by adjusting the size of the window around zero, in which
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B W E
PB 40.5 13.6 0.08
PW 6.7 33.8 0.05
PE 2.3 2.9 0.01
Simple, linear, roi=24

B W E
PB 41.5 14.2 0.08
PW 5.8 33.2 0.05
PE 2.1 2.9 0.01
Simple, linear, roi=40

B W E
PB 42.0 14.6 0.08
PW 5.3 32.6 0.04
PE 2.2 3.1 0.01
Simple, linear, roi=60

B W E
PB 40.5 13.6 0.07
PW 6.4 33.3 0.05
PE 2.6 3.5 0.02
Simple, non-linear,

roi=24

B W E
PB 41.4 14.0 0.08
PW 5.8 33.0 0.04
PE 2.4 3.3 0.02
Simple, non-linear,

roi=40

B W E
PB 41.8 14.2 0.0759
PW 5.5 33.0 0.04
PE 2.2 3.2 0.01
Simple, non-linear,

roi=60

B W E
PB 40.5 11.7 0.06
PW 7.0 36.4 0.07
PE 2.0 2.3 0.01

Enhanced, linear,
roi=24

B W E
PB 40.6 11.6 0.06
PW 6.8 36.3 0.07
PE 2.1 2.5 0.01

Enhanced, linear,
roi=40

B W E
PB 40.6 11.6 0.06
PW 6.6 36.2 0.07
PE 2.2 2.6 0.01

Enhanced, linear,
roi=60

B W E
PB 40.3 11.4 0.06
PW 6.8 36.2 0.06
PE 2.4 2.7 0.01
Enhanced, non-linear,

roi=24

B W E
PB 40.4 11.3 0.06
PW 6.8 36.4 0.06
PE 2.4 2.7 0.01
Enhanced, non-linear,

roi=40

B W E
PB 40.2 10.9 0.06
PW 6.8 36.6 0.07
PE 2.5 2.9 0.01
Enhanced, non-linear,

roi=60

Table 10.5: Confusion matrices of trainable methods.

we predict empty, we can modify the confidence level of the non-empty clas-
sifications. If we do this we can plot a trade-off curve which shows how the
performance increases at the cost of rejecting undecided intersections.

In Figure 10.1 two such trade-off curves are shown for the simple MLP and
the enhanced MLP, both non-linear with a ROI of size 60. For comparison,
results for the various direct methods are also plotted. It is shown that the
MLPs perform well at all levels of confidence. Moreover, it is interesting to
see that at high confidence levels Bouzy(5,21) performs nearly as good as the
MLPs.

Although Bouzy’s methods and the influence methods provide numerical
results, which could be used to plot trade-off curves, too, we did not do this
because they would make the plot less readable. Moreover, for Bouzy’s methods
the lines would be quite short and uninteresting because they already start high.
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Figure 10.1: Performance at different levels of confidence.

10.5.4 Performance during the game

In the previous subsections we looked at the average performance over complete
games. Although this is interesting, it does not tell us how the performance
changes as the game develops. Below we consider the performance changes and
the adequacy of the MLP performance.

Since all games do not have equal length, there are two principal ways of
looking at the performance. First, we can look forward from the start, and
second, we can look backward from the end. The results for Pwinner are shown
in Figure 10.2a looking forward from the start and in Figure 10.2b looking
backward from the end. We remark that the plotted points are between moves
and their associated performance is the average obtained for the two directly
adjacent positions (where one position has Black to move and the other has
White to move). This was done to filter out some distracting odd-even effects
caused by the alternation of the player to move. It is shown that the EMLP,
using the enhanced representation, performs best. However, close to the end
Bouzy’s method extended with distance-based control and predictions of life
and death performs nearly as good. The results for Pscore are shown in Figure
10.2c looking forward from the start and in Figure 10.2d looking backward from
the end. Also here we see that the EMLP performs best.

For clarity of presentation we did not plot the performance of DBC, which is
rather similar to Influence-based control (IBC) (but over-all slightly worse). For
the same reason we did not plot the results for DBC and IBC with knowledge
of life and death, which perform quite similar to Bouzy(5,21)+DBC+L&D.
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Figure 10.2: Performance over the game.

It is interesting to observe how good the simple MLP performs. It outper-
forms all direct methods without using life and death. Here it should be noted
that the adequate performance of the simple MLP could still be improved con-
siderably, if it would be allowed to make predictions for occupied intersections
too, i.e., remove dead stones. (This was not done for a fair comparison with the
direct methods.)

10.6 Chapter conclusions

We investigated several direct and trainable methods for estimating potential
territory. We tested the performance of the direct methods, known from the
literature, which do not require an explicit notion of life and death. Additionally,
two enhancements for adding knowledge of life and death and an extension of
Bouzy’s method were presented.

From the experiments we may conclude that without explicit knowledge of
life and death the best direct method is Bouzy’s method extended with distance-
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based control to divide the remaining empty intersections. If information about
life and death is used to remove dead stones this method also performs well.
However, the difference with distance-based control and influence-based control
becomes small.

Moreover, we presented new trainable methods for estimating potential ter-
ritory. They can be used in combination with the classifiers for predicting life
and death presented in chapter 9. Using only the simple representation the
SMLP can estimate potential territory at a level outperforming the best direct
methods. The EMLP, which has the knowledge of life and death available from
the GDXNC-25 classifier presented in chapter 9, performs well at all stages of
the game, even at high levels of confidence. Experiments showed that all meth-
ods are greatly improved by adding knowledge of life and death, which leads
us to conclude that good predictions of life and death are the most important
ingredient for an adequate full-board evaluation function.

Regarding our second research question (see 1.3) we conclude that super-
vised learning techniques can be applied quite well for the task of estimating
potential territory. When provided with sufficient training examples, these tech-
niques easily outperform the best direct methods known from literature. On a
human scale, we are confident that for positions near the end of the game the
performance is at least comparable to that of reasonably strong kyu-level play-
ers. However, as in chapter 9, without additional experiments it is difficult to
say whether the performance is similar in positions that are far away from the
end of the game.

Future research

Although our system for predicting life and death already performs quite well,
we believe that it can still be improved significantly. The most important reason
is that we only use static features, which do not require search. By incorporating
features from specialised life-and-death searches the predictions of life and death
may improve. By improving the predictions of life and death, the performance
of the EMLP should improve as well.

The work in chapter 8 indicated that CSA* scales up well to the 19×19
board. Although we expect similar results for the EMLP, additional experiments
should be performed to validate this claim.

In our experiments we estimated potential territory based on knowledge ex-
tracted from game records. An interesting alternative for acquiring such knowl-
edge may be obtaining it by simulation using, e.g., Monte Carlo methods [29, 34].
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Chapter 11

Conclusions and future
research

In the thesis we investigated AI techniques for the game of Go. We focused our
research on searching techniques and on learning techniques. We combined the
techniques with adequate knowledge representations, and presented practical
implementations that show how they can be used to improve the strength of Go
programs.

We developed search-based programs for the capture game (Ponnuki) and
for Go (Migos) that can solve the game and play perfectly on small boards.
Moreover, we developed learning systems for move prediction (MP*), scoring
final positions (CSA*), predicting life and death (GDXNC-25), and estimating
potential territory (EMLP). The various techniques have all been implemented
in the Go program Magog which has won the bronze medal in the 9×9 Go
tournament of the 2004 Computer Olympiad in Ramat-Gan, Israel.

The course of this final chapter is as follows. In section 11.1 we provide
answers to the research questions, and summarise the main conclusions of the
individual chapters. Then, in section 11.2 we return to the problem statement
of section 1.3. Finally, in section 11.3 we present some directions for future
research.

11.1 Answers to the research questions

In section 1.3 we posed the following two research questions.

1. To what extent can searching techniques be used in computer Go?

2. To what extent can learning techniques be used in computer Go?

In the following two subsections we answer these questions.
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11.1.1 Searching techniques

To address the first research question we summarise the main conclusions of
chapters 4 and 5. They focused on searching techniques. Thereafter we give our
main conclusion.

The capture game: Ponnuki

Our program Ponnuki solved the capture game on empty square boards up to
size 5×5. The 6×6 board is solved, too, under the assumption that the first four
moves are played in the centre. These results were obtained by a combination of
standard searching techniques, some standard enhancements adapted to exploit
domain-specific properties of the game, and a novel evaluation function.

We conclude that standard searching techniques and enhancements can be
applied successfully for the capture game, especially when they are restricted to
small regions of fewer than 30 empty intersections. Moreover, we conclude that
our evaluation function performs adequately at least for the task of capturing
stones.

Solving Go on small boards: Migos

The main result is that Migos, as the first Go program in the world, solved
Go on the 5×5 board. Further, the program solved several 6×6 positions with
8 and more stones on the board. The results were reached by a combination
of standard search enhancements (transposition tables, enhanced transposition
cut-offs), improved search enhancements (history heuristic, killer moves, sib-
ling promotion), and new search enhancements (internal unconditional bounds,
symmetry lookups), a dedicated heuristic evaluation function, and a method for
static recognition of unconditional territory.

So far, only the 4×4 board was solved by Sei and Kawashima [161]. For
this board their search required 14,000,000 nodes. Migos was able to confirm
their solutions and solved the same board in fewer than 700,000 nodes. Hence
we conclude that the static recognition of unconditional territory, the symmetry
lookups, the enhanced move ordering, and our Go-specific improvements to the
various search enhancements are key ingredients for solving Go on small boards.

We analysed the application of the situational-super-ko rule (SSK) and iden-
tified several problems that can occur due to the graph-history-interaction prob-
lem [36] in tree search using transposition tables. Most problems can be over-
come by only allowing transpositions that are found at the same depth in the
search tree (transpositions found at a different depth can, of course, still be
used for the move ordering). The remaining problems are quite rare, especially
in combination with a decent move ordering, and can often be ignored safely
because winning scores under basic ko are lower bounds on the score under SSK.

We conclude that, on current hardware, provably correct solutions can be
obtained within a reasonable time frame for confined regions of size up to about
28 intersections. Moreover, for efficiency of the search, provably correct domain-
specific knowledge is essential to obtain tight bounds on the score early in the
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search tree. Without such domain-specific knowledge, detecting final positions
by search alone becomes unreasonably expensive.

Conclusion

We applied searching techniques in two domains with a reduced complexity. By
scaling the complexity both domains provided an interesting testing ground for
investigating the limitations of the current state of the art in searching tech-
niques. The experimental results showed that advances in search enhancements,
provably correct knowledge for the evaluation function, and the ever increasing
computing power drastically increase the power of searching techniques. When
searches are confined to regions of about 20 to 30 intersections, the current state-
of-the-art searching techniques together with adequate domain-specific knowl-
edge representations can provide strong and often even perfect play.

11.1.2 Learning techniques

To address the second research question we summarise the main conclusions of
chapters 7, 8, 9, and 10, which focused on learning techniques. It is followed by
our main conclusion.

Move prediction: MP*

We have presented a system that learns to predict moves in the game of Go
from observing strong human play. The performance of our best move predictor
(MP*) is, at least in local regions, comparable to that of strong kyu-level players.

The training algorithm presented here is more efficient than standard fixed-
target implementations. This is mainly due to the avoidance of needless weight
adaptation when rankings are correct. As an extra bonus, our training method
reduces the number of gradient calculations as the performance grows, thus
speeding up the training. A major contribution to the performance is the use of
feature-extraction methods. Feature extraction reduces the training time while
increasing the quality of the predictor. Together with a sensible scaling of the
original features and an optional second-phase training, superior performance
over direct-training schemes can be obtained.

The predictor can be used for move ordering and forward pruning in a full-
board search. The performance obtained on ranking professional moves in-
dicates that a large fraction of the legal moves may be pruned directly. In
particular, our results against GNU Go indicate that a relatively small set of
high-ranked moves is sufficient to play a strong game.

We conclude that it is possible to train a learning system to predict good
moves most of the time with a performance at least comparable to strong kyu-
level players. The performance was obtained from a simple set of locally com-
putable features, thus ignoring a significant amount of information which can
be obtained by more extensive (full-board) analysis or by specific goal-directed
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searches. Consequently, there is still significant room for improving the perfor-
mance, possibly even into the strong dan-level region.

Scoring final positions: CSA*

We developed a Cascaded Scoring Architecture (CSA*) that learns to score
final positions from labelled examples. On unseen game records our system
scored around 98.9% of the positions correctly without any human intervention.
Compared to the average rated player on NNGS, who has a rating of 7 kyu for
scored 9×9 games, we may conclude that CSA* is more accurate at removing
all dead blocks, and performs comparably on determining the correct winner.

We conclude that for the task of scoring final positions supervised learning
techniques can provide a performance at least comparable to reasonably strong
kyu-level players. This performance can be obtained by a cascade of relatively
simple MLP classifiers in combination with a well-chosen representation, which
only employs features that are calculated statically (without search).

By comparing numeric scores and counting unsettled interior points nearly
all incorrectly scored final positions can be detected (for verification by a hu-
man operator). Although some final positions are assessed incorrectly by our
classifier, most are in fact scored incorrectly by the players. Detecting games
that were incorrectly scored by the players is important for obtaining reliable
training data.

Predicting life and death: GDXNC-25

We trained MLPs to predict life and death from labelled examples quite accu-
rately. From the experiments we may conclude that the GDXNC-25 classifier
provides an adequate performance. Nevertheless, it should be noted that simple
linear classifiers such as LOGLC also perform quite well. The reason probably
lies in the quality of our representation, which helps to make the classification
task linearly separable.

On unseen game records and averaged over the whole game, the GDXNC-25
classifier classified around 88% of all blocks correctly. Ten moves before the end
of the game it classified around 95% correctly, and for final positions it classified
over 99% correctly.

We conclude that supervised learning techniques can be applied quite well
for the task of predicting life and death in non-final positions. For positions
near the end of the game we are confident that the performance is comparable
to that of reasonably strong kyu-level players. However, without additional
experiments it is difficult to say whether the performance is similar in positions
that are further away from the end of the game.

Estimating potential territory: EMLP

We investigated several direct and trainable methods for estimating potential
territory. We tested the performance of the direct methods, known from the
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literature, which do not require an explicit notion of life and death. Additionally,
two enhancements for adding knowledge of life and death and an extension of
Bouzy’s method were presented.

From the experiments we may conclude that without explicit knowledge of
life and death the best direct method is Bouzy’s method extended with distance-
based control to divide the remaining empty intersections. When information
about life and death is used to remove dead stones the difference with distance-
based control and influence-based control becomes small, and all three methods
perform quite well.

Moreover, we presented new trainable methods for estimating potential ter-
ritory. They can be used as an extension of our system for predicting life and
death. Using only a simple representation our trainable methods can estimate
potential territory at a level outperforming the best direct methods. Experi-
ments showed that all methods are greatly improved by adding knowledge of life
and death, which leads us to conclude that good predictions of life and death are
the most important ingredient for an adequate full-board evaluation function.

We conclude that supervised learning techniques can be applied quite well
for the task of estimating potential territory. When provided with sufficient
training examples, these techniques easily outperform the best direct methods
known from literature. On a human scale, we are confident that for positions
near the end of the game the performance is at least comparable to that of
reasonably strong kyu-level players. However, without additional experiments
it is difficult to say whether the performance is similar in positions that are far
away from the end of the game.

Conclusion

We applied learning techniques on important Go-related tasks and compared
the performance with the performance of human players as well as with other
programs and techniques. We showed that learning techniques can effectively
extract knowledge for evaluating moves and positions from human game records.
The most important ingredients for obtaining a good performance from learning
techniques are (1) carefully chosen representations, and (2) large amounts of
reliable training data. The quality of the static knowledge that can be obtained
using learning techniques is at least comparable to that of reasonably strong
kyu-level players.

11.2 Answer to the problem statement

In section 1.3 we formulated the following problem statement:

How can AI techniques be used to improve the strength of Go programs?

To answer this question we investigated AI techniques for searching and for
learning in the game of Go.
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Our conclusion is that domain-specific knowledge is the most important
ingredient for improving the strength of Go programs. For small problems,
human experts can implement sufficient provably correct knowledge. Larger
problems require heuristic knowledge.

Although human experts also can implement heuristic knowledge, this tends
to become quite difficult when the playing strength of the program increases.
To overcome this problem learning techniques can be used to automatically
extract knowledge from the game records of human experts. For maximising
performance, the main task of the programmer then becomes providing the
learning algorithms with adequate representations and large amounts of reliable
training data. Once adequate knowledge is available, searching techniques can
exploit the ever increasing computing power to improve the strength of Go
programs further. In addition, some goal-directed search may also be used to
improve the representation.

11.3 Directions for future research

When studying the AI techniques for searching and for learning, on specific
tasks in relative isolation, we observed that they could significantly improve
the strength of Go programs. The searching techniques generally work best
for well-defined tasks with a restricted number of intersections involved. As
the number of involved intersections grows, heuristic knowledge becomes in-
creasingly important. The learning techniques can provide this knowledge, and
consequently, learning techniques are most important for dealing with the more
fuzzy tasks typically required to play well on large boards.

To build a strong Go program the techniques should be combined. Partially
this has already been done in our Go program Magog, which has recently won
the bronze medal (after finishing 4th in 2003) in a strong field of 9 participants
in the 9×9 Go tournament of the 2004 Computer Olympiad in Ramat-Gan,
Israel. However, many of the design choices in Magog were made ad hoc and
the tuning between the various components is probably still far from optimal.

Four combinations of the techniques developed in this thesis are directly
apparent:

1. goal-directed capture searches can be used to provide features for improv-
ing the representation for predicting life and death,

2. the move predictor can be used for move ordering or even forward pruning
in a tree-searching algorithm,

3. the heuristic knowledge for evaluating positions (chapter 10) can be com-
bined with the provably correct knowledge and search of Migos,

4. the predictions of life and death and the estimations of territory can be
used to improve the representation for move prediction.
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Next to the combinations of techniques there are several other possible di-
rections for future research. Below, we mention some ideas that we consider
most interesting.

The capture game

For the capture game the next challenges are: solving the empty 6×6 board
and solving the 8×8 board starting with a crosscut in the centre. It would be
interesting to compare the performance with other searching techniques such as
the various PN-searching techniques [3, 4, 31, 130, 162, 197].

Solving Go on small boards

The next challenges in small-board Go are: solving the 6×6 and 7×7 boards.
Both boards are claimed to have been solved by humans, but so far no computer
was able to confirm the results.

We expect large gains from adding more (provably correct) Go knowledge to
the evaluation function (for obtaining final scores earlier in the tree). Further,
a scheme for selective search extensions, examining a highly asymmetric tree
(resembling the human solutions), may enable the search to solve the 6×6 and
the 7×7 board much more efficiently than fixed-depth iterative-deepening search
without extensions. Next to these suggestions an improved move ordering may
increase the search efficiency, possibly even by several orders of magnitude.

As for the capture game, it would be interesting to compare the performance
of Migos with the various alternative PN-searching techniques [3, 4, 31, 130,
162, 197].

Reinforcement learning

In this thesis we mainly focused on supervised learning. Although we have
presented some preliminary work on reinforcement learning (see section 6.4), and
even had some interesting results recently for small-board Go [67, 68], there still
remains much work to be done. When the techniques developed in this thesis are
fully integrated in a Go program, it will be interesting to train them further, by
self-play and by playing against other opponents, using reinforcement learning.

Move prediction

For move prediction, it may be interesting to train the move predictor further
through some type of Q-learning. In principle Q-learning works regardless of
who is selecting the moves. Consequently, training should work both by self-
play (in odd positions) and by replaying human games. Since Q-learning does
not rely on the assumption of the optimality of human moves, it may be able
to solve possible inconsistencies in its current knowledge (due to the fact that
some human moves were bad). Moreover, it may be well suited to explore lines
of play that are never considered by human players.



144 CHAPTER 11. CONCLUSIONS AND FUTURE RESEARCH

Scoring final positions

The performance of CSA* is already quite good for the purpose of labelling
large quantities of game records, particularly because most incorrectly scored
positions are easily detected and can be presented for human inspection. How-
ever, for automating the process further we could still add more static features
as well as non-static features that could use some (selective) search. In addition,
automatic play-out by a full Go-playing engine may be an interesting alternative
for dealing with the most difficult positions.

Predicting life and death

For predicting life and death during the game, we believe most can be gained by
improving the representation of blocks. Some features, such as those for loosely
connected groups, have not yet been implemented, whereas some other features
may be correlated or could even be redundant. We expect that adding features
that involve some (selective) search may improve the performance considerably.
Most likely, automatic feature-extraction and feature-selection methods have to
be employed to improve the representation.

Estimating potential territory

We expect that the best way to improve the performance of the EMLP is by
improving the predictions of life and death.
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[6] A. Aÿ. Frühe erwähnungen des Go in Europa, 2004.

http://go-lpz.envy.nu/vorgeschichte.html

[7] L. C. Baird. Residual algorithms: Reinforcement learning with function approx-

imation. In Proceedings of the Twelfth International Conference on Machine

Learning, pages 30–37. Morgan Kauffman, San Francisco, CA, 1995.

[8] E. B. Baum and W. D. Smith. A Bayesian approach to relevance in game playing.

Artificial Intelligence, 97:195–242, 1997.

[9] J. Baxter, A. Tridgell, and L. Weaver. Tdleaf(λ): Combining temporal difference

learning with game-tree search. Australian Journal of Intelligent Information

Processing Systems, 5(1):39–43, 1998.

[10] D. F. Beal. Learn from you opponent - but what if he/she/it knows less than

you? In J. Retschitzki and R. Haddad-Zubel, editors, Step by Step. Proceed-

ings of the 4th Colloquium Board Games in Academia, pages 123–132. Editions

Universitaires, Fribourg, Switzerland, 2002.

[11] D. F. Beal and M. C. Smith. Learning piece values using temporal difference

learning. ICCA Journal, 20(3):147–151, 1997.

[12] R. C. Bell. Board and Table Games from Many Civilizations. Oxford University

Press, 1960. Revised edition, 1979.

[13] R. E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton Univer-

sity Press, Princeton, NJ, 1961.

145



146 REFERENCES

[14] D. B. Benson. Life in the game of Go. Information Sciences, 10:17–29, 1976.

Reprinted in D.N.L Levy, editor, Computer Games, Vol. II, pages 203–213,

Springer-Verlag, New York, NY, 1988.

[15] H. J. Berliner. The B* tree search algorithm: A best-first proof procedure.

Artificial Intelligence, 12:23–40, 1979.

[16] H. J. Berliner, G. Goetsch, M. S. Campbell, and C. Ebeling. Measuring the per-

formance potential of chess programs. Artificial Intelligence, 43(1):7–20, 1990.

[17] H. J. Berliner and C. McConnell. B* probability based search. Artificial Intel-

ligence, 86(1):97–156, 1996.

[18] D. Billings, L. Peña, J. Schaeffer, and D. Szafron. Learning to play strong poker.

In J. Fürnkranz and M. Kubat, editors, Machines that Learn to Play Games,

chapter 11, pages 225–242. Nova Science Publishers, Huntington, NY, 2001.

[19] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Ox-

ford, UK, 1995.

[20] Y. Björnsson. Selective Depth-First Game-Tree Search. Ph.D. thesis, University

of Alberta, Edmonton, Canada, 2002.

[21] Y. Björnsson and T. A. Marsland. Multi-cut αβ-pruning in game-tree search.

Theoretical Computer Science, 252:177–196, 2001.

[22] Y. Björnsson and T. A. Marsland. Learning extension parameters in game-tree

search. Information Sciences, 154(3-4):95–118, 2003.

[23] A. Blair. Emergent intelligence for the game of Go. In From Animals to Ani-

mats, The 6th International Conference on the Simulation of Adaptive Behavior

(SAB2000). ISAB, MA, 2000.

[24] L. B. Booker, D. E. Goldberg, and J. H. Holland. Classifier systems and genetic

algorithms. Artificial Intelligence, 40(1-3):235–282, 1989.

[25] B. Bouzy. Spatial reasoning in the game of Go, 1996.

http://www.math-info.univ-paris5.fr/∼bouzy/publications/SRGo.article.pdf

[26] B. Bouzy. Mathematical morphology applied to computer Go. International

Journal of Pattern Recognition and Artificial Intelligence, 17(2):257–268, 2003.

[27] B. Bouzy, 2004. Personal communication.

[28] B. Bouzy and T. Cazenave. Computer Go: An AI oriented survey. Artificial

Intelligence, 132(1):39–102, 2001.

[29] B. Bouzy and B. Helmstetter. Monte-Carlo Go developments. In H. J. van den

Herik, H. Iida, and E.A. Heinz, editors, Advances in Computer Games: Many

Games, Many Challenges, pages 159–174. Kluwer Academic Publishers, Boston,

MA, 2003.

[30] J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: Safely

approximating the value function. In G. Tesauro, D. S. Touretzky, and T. K.

Leen, editors, Advances in Neural Information Processing Systems 7, pages 369–

376. The MIT Press, Cambridge, MA, 1995.

[31] D. M. Breuker. Memory versus Search in Games. Ph.D. thesis, Universiteit

Maastricht, Maastricht, The Netherlands, 1998.

[32] D. M. Breuker, J. W. H. M. Uiterwijk, and H. J. van den Herik. Replacement

schemes and two-level tables. ICCA Journal, 19(3):175–180, 1996.



REFERENCES 147

[33] British Go Association. Comparison of some Go rules, 2001.

http://www.britgo.org/rules/compare.html

[34] B. Brügmann. Monte Carlo Go, 1993.

ftp://ftp.cse.cuhk.edu.hk/pub/neuro/GO/mcgo.tex

[35] M. Buro. Toward opening book learning. ICCA Journal, 22(2):98–102, 1999.

[36] M. Campbell. The graph-history interaction: on ignoring position history. In

Proceedings of the 1985 ACM Annual Conference on the Range of Computing:

Mid-80’s Perspective, pages 278–280. ACM Press, New York, NY, 1985.

[37] D. Carmel and S. Markovitch. Learning models of opponent’s strategy in game

playing. Technical Report CIS Report 9318, Technion - Israel Institute of Tech-

nology, Computer Science Department, Haifa, Israel, 1993.

[38] T. Cazenave. Automatic acquisition of tactical Go rules. In H. Matsubara,

editor, Proceedings of the 3rd Game Programming Workshop, Hakone, Japan,

1996.

[39] T. Cazenave. Metaprogramming forced moves. In H. Prade, editor, Proceedings

of the 13th European Conference on Artificial Intelligence (ECAI-98), pages

645–649, Brighton, U.K., 1998.

[40] T. Cazenave, 2002. Personal communication.

[41] T. Cazenave. Gradual abstract proof search. ICGA Journal, 25(1):3–16, 2002.

[42] T. Cazenave. La recherche abstraite graduelle de preuve. 13ème Congrès Fran-

cophone AFRIF-AFIA de Reconnaissance des Formes et Intelligence Artificielle,

8 - 10 Janvier 2002, Centre des Congrès d’Angers, 2002.

http://www.ai.univ-paris8.fr/∼cazenave/AGPS-RFIA.pdf

[43] K-H. Chen. Some practical techniques for global search in Go. ICGA Journal,

23(2):67–74, 2000.

[44] K-H. Chen. Computer Go: Knowledge, search, and move decision. ICGA Jour-

nal, 24(4):203–215, 2001.

[45] K-H. Chen and Z. Chen. Static analysis of life and death in the game of Go.

Information Sciences, 121:113–134, 1999.

[46] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least squares learn-

ing algorithm for radial basis function networks. IEEE Transactions on Neural

Networks, 2(2):302–309, 1991.

[47] Z. Chen. Semi-empirical quantitative theory of Go part i: Estimation of the

influence of a wall. ICGA Journal, 25(4):211–218, 2002.

[48] J. Churchill, R. Cant, and D. Al-Dabass. Genetic search techniques for line

of play generation in the game of Go. In Q. H. Mehdi, N. E. Gough, and

S. Natkine, editors, Proceedings of GAME-ON 2003 4th International Conference

on Intelligent Games and Simulation, pages 233–237. EUROSIS, 2003.

[49] N. L. Cramer. A representation for the adaptive generation of simple sequential

programs. In J. John, editor, International Conference on Genetic Algorithms

and their Applications (ICGA85). Carnegie Mellon University, Pittsburgh, PA,

1985.

[50] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-

chines and other Kernel-based Learning Methods. Cambridge University Press,

Cambridge, UK, 2000.



148 REFERENCES

[51] F. A. Dahl. Honte, a Go-playing program using neural nets. In J. Fürnkranz

and M. Kubat, editors, Machines that Learn to Play Games, chapter 10, pages

205–223. Nova Science Publishers, Huntington, NY, 2001.

[52] J. Davies. Small-board problems. Go World, 14-16:55–56, 1979.

[53] J. Davies. Go in lilliput. Go World, 17:55–56, 1980.

[54] J. Davies. The rules of Go. In R. Bozulich, editor, The Go Player’s Almanac.

Ishi Press, San Francisco, CA, 1992.

http://www-2.cs.cmu.edu/∼wjh/go/rules/Chinese.html

[55] J. Davies. 5x5 Go. American Go Journal, 28(2):9–12, 1994.

[56] J. Davies. 5x5 Go revisited. American Go Journal, 29(3):13, 1995.

[57] J. Davies. 7x7 Go. American Go Journal, 29(3):11, 1995.

[58] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Opti-

mization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[59] T. Dietterich. State abstraction in MAXQ hierarchical reinforcement learning. In

Advances in Neural Information Processing Systems 12, pages 994–1000, 2000.

[60] H. H. L. M. Donkers. Nosce Hostem - Searching with Opponent Models. Ph.D.

thesis, Universiteit Maastricht, Maastricht, The Netherlands, 2003.

[61] C. Donninger. Null move and deep search. ICCA Journal, 16(3):137–143, 1993.

[62] T. Drange. Mini-Go, 2002. http://www.mathpuzzle.com/go.html

[63] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. 2nd edition.

Wiley, New York, NY, 2001.

[64] R. P. W. Duin. Compactness and complexity of pattern recognition problems. In

C. Perneel, editor, Proc. Int. Symposium on Pattern Recognition ‘In Memoriam

Pierre Devijver’ (Brussels, B, Feb.12), pages 124–128. Royal Military Academy,

Brussels, 1999.

[65] R. P. W. Duin. PRTools, a Matlab Toolbox for Pattern Recognition. Pattern

Recognition Group, Delft University of Technology, P.O. Box 5046, 2600 GA

Delft, The Netherlands, 2000.

[66] D. Dyer. Searches, tree pruning and tree ordering in Go. In H. Matsubara,

editor, Proceedings of the Game Programming Workshop in Japan ’95, pages

207–216. Computer Shogi Association, Tokyo, 1995.

[67] R. Ekker. Reinforcement learning and games. M.Sc. thesis, RijksUniversiteit

Groningen, Groningen, 2003.

[68] R. Ekker, E. C. D. van der Werf, and L. R. B. Schomaker. Dedicated TD-learning

for stronger gameplay: applications to Go. In A. Nowé, T. Lennaerts, and
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Appendix A

MIGOS rules

This appendix provides a precise formulation of rules which enables a computer
to play and solve Go while avoiding problems that may occur due to some
ambiguities of the traditional rules. Our main aim is to approximate traditional
area-scoring rules without super ko as close as possible. In the footnotes we
present some optional changes/additions that (usually) make the search more
efficient, but can have some rare (and usually insignificant) counter-intuitive
side effects.

We remark that the Migos rules are a special-purpose formulation of the
rules for programming computer Go. If anyone would wish to adopt these rules
for human play they should at least be extended with the option of agreement
about life and death in the scoring phase, and the option of resigning.

A.1 General

The game of Go is played by two players, Black and White, on a rectangular grid
(usually 19×19). Each intersection of the grid is coloured black if it contains
a black stone, white if it contains a white stone, or empty if it contains no
stone. One player uses black stones, the other white stones. Initially the board
is empty. The player with the black stones starts the game. The players move
alternately. A move is either a play of a stone on an empty intersection, or a
pass.

A.2 Connectivity and liberties

Two intersections are adjacent if they have a line but no intersection between
them. Two adjacent intersections are connected if they have the same colour.
Two non-adjacent intersections are connected if there is a path of adjacent in-
tersections of their colour between them. Connected intersections of the same
colour form a block. An intersection that is not connected to any other inter-
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section is also a block. The directly adjacent empty intersections of blocks are
called liberties.

A block of stones is captured when the opponent plays on its last liberty.
When stones are captured they are removed from the grid.

A.3 Illegal moves

Basic ko: A move may not remove a single stone if this stone has removed a
single stone in the last preceding move.

Suicide: A move that does not capture an opponent block and leaves its own
block without a liberty is illegal.

A.4 Repetition

A whole-board situation is defined by:

• the colouring of the grid,

• the position of a possible prohibited intersection due to basic ko,

• the number of consecutive passes, and

• the player to move.

A repetition is a whole-board situation which is identical to a whole-board
situation that occurred earlier in the game.

If a repetition occurs, the game ends and is scored directly based on an
analysis of all moves in the cycle starting from the first occurrence of the whole-
board situation. If the number of pass moves in the cycle is identical for both
players the game ends as a draw. Otherwise, the game is won by the player
that played the most pass moves in the cycle. Optional numeric scores for an
exceptional end by repetition are: +∞ (black win), −∞ (white win), and 0
(draw).

A.5 End

Normally, the game ends by 2 consecutive passes.1 Only if a position contains a
prohibited intersection due to basic ko, and the previous position did not contain
a prohibited intersection due to basic ko, the game ends by 3 consecutive passes.

When the game ends it must be scored.

1Alternative: the game always ends after two consecutive passes.
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A.6 Definitions for scoring

One-sided play consists of moves that may play stones on the board for one
colour only (the other player always passes). Alternating play consists of alter-
nating moves of both players.

Stones that cannot be captured under one-sided play of the opponent are
unconditionally alive.

A region is an arbitrary set of connected intersections regardless of colour.
The border of a region consists of all intersections which are not part of, but
are adjacent to intersections of that region. A local region is a region which

• contains no unconditionally alive stones, and

• has no border or has a border that is completely occupied by uncondition-
ally alive stones.

Each local region is fixed based on the arrangement of stones on the grid at
the start of the scoring phase. Play is local if all moves are played in one local
region, passes are also allowed.

A connector is an intersection of a region which has at least two adjacent
intersections that are part of that region. A unique connector is a connector
that would split the region into two or more disconnected regions if it would be
removed from the region.

A single-point eye is an empty intersection which is

• not a unique connector, and

• not adjacent to any other empty intersection, and

• adjacent to stones of only one colour.

Blocks of stones that cannot become adjacent to at least one single-point eye
under local one-sided play of their colour are dead. Blocks of stones that can
become adjacent to at most one single-point eye under local one-sided play of
their colour, and can be captured under local alternating play with their colour
moving first are dead.2

A.7 Scoring

First, dead stones are removed from the grid. Second, empty blocks that are
adjacent to stones of one colour only, get the colouring of those adjacent stones.3

Finally, the score is determined by the number of black intersections minus the
number of white intersections (plus komi). If the score is positive Black wins
the game, if the score is negative White wins the game, otherwise the game is
drawn.

2Optional addition: any block of stones with one liberty is dead.
3Optional addition: Third, if an empty block is adjacent to stones of more than one

colour each empty intersection which is closer to a black stone becomes black and each empty
intersection which is closer to a white stone becomes white. (If the distance is equal the colour
remains empty.)
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Summary

The thesis describes our research results and the development of new AI tech-
niques that improve the strength of Go programs. In chapter 1, we provide
some general background information and introduce the topics of the thesis.
We focus on two important lines of research that have proved their value in do-
mains which are related to and relevant for the domain of computer Go. These
lines are: (1) searching techniques, which have been successful in games such as
Chess, and (2) learning techniques, which have been successful in other games
such as Backgammon, and in other complex domains such as image recognition.
For both lines we investigate the question to what extent these techniques can
be used in computer Go.

Chapter 2 introduces the reader to the game of Go. Go is the most complex
popular board game in the class of two-player zero-sum perfect-information
games. It is played regularly by millions of players in many countries around
the world. Despite several decades of AI research, and a million-dollar prize for
the first computer program to defeat a professional Go player, there are still no
Go programs that can challenge a strong human player.

Chapter 3 introduces the standard searching techniques used in this thesis.
We discuss minimax, αβ, pruning, move ordering, iterative deepening, trans-
position tables, enhanced transposition cut-offs, null windows, and principal
variation search. The searching techniques are applied in two domains with a
reduced complexity to be discussed in chapters 4 and 5.

Chapter 4 investigates searching techniques for the task of solving the cap-
ture game, a simplified version of Go aimed at capturing stones, on small boards.
The main result is that our program Ponnuki solved the capture game on empty
square boards up to size 5× 5 (a win for the first player in 19 plies). The 6× 6
board is solved, too (a win for the first player in 31 plies), under the assumption
that the first four moves are played in the centre. These results were obtained
by a combination of standard searching techniques, some standard enhance-
ments adapted to exploit domain-specific properties of the game, and a novel
evaluation function. We conclude that standard searching techniques and en-
hancements can be applied effectively for the capture game, especially when
they are restricted to small regions of fewer than 30 empty intersections. More-
over, we conclude that our evaluation function performs adequately at least for
the task of capturing stones.
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Chapter 5 extends the scope of our searching techniques to Go, and applies
them to solve the game on small boards. We describe our program Migos in de-
tail. It uses principal variation search with (1) a combination of standard search
enhancements (transposition tables, enhanced transposition cut-offs), improved
search enhancements (history heuristic, killer moves, sibling promotion), and
new search enhancements (internal unconditional bounds, symmetry lookups),
(2) a dedicated heuristic evaluation function, and (3) a method for static recog-
nition of unconditional territory. In 2002, Migos was the first Go program in
the world to have solved Go on the 5×5 board.

We analyse the application of the situational-super-ko rule (SSK), identifying
several problems that can occur when the history of a position is discarded by
the transposition table, and investigate some possible solutions. Most problems
can be overcome by only allowing transpositions that are found at the same
depth in the search tree. The remaining problems are quite rare, especially in
combination with a decent move ordering, and can often be ignored safely.

We conclude that, on current hardware, provably correct solutions can be
obtained within a reasonable time frame for confined regions of a size up to
about 28 intersections. For efficiency of the search, provably correct domain-
specific knowledge is essential to obtain tight bounds on the score early in the
search tree. Without such domain-specific knowledge, detecting final positions
by search alone becomes unreasonably expensive.

Chapter 6 introduces the learning techniques used in this thesis. We explain
the purpose of learning, and give a brief overview of the learning techniques that
can be used for game-playing programs. Our focus is on multi-layer perceptron
(MLP) networks. We discuss the strengths and weaknesses of the possible net-
work architectures, representations and learning paradigms, and test our ideas
on the simplified domain of connectedness between stones. We find that training
and applying complex recurrent network architectures with reinforcement learn-
ing is quite slow, and that simpler network architectures may provide a good
alternative especially when large amounts of training examples and well-chosen
representations are available. Consequently, in the following chapters we focus
on supervised learning techniques for training simple architectures to evaluate
moves and positions.

Chapter 7 presents techniques for learning to predict strong moves from
game records. We introduce a training algorithm which is more efficient than
standard fixed-target implementations due to the avoidance of needless weight
adaptation when predictions are correct. As an extra bonus, the algorithm
reduces the number of gradient calculations as the performance grows, thus
speeding up the training. A major contribution to the performance is the use of
feature-extraction methods. Feature extraction reduces the training time while
increasing the quality of the predictor. Together with a sensible scaling of the
original features and an optional second-phase training, superior performance
over direct-training schemes can be obtained.

The predictor can be used for move ordering and forward pruning in a
full-board search. The performance obtained on ranking professional moves
indicates that a large fraction of the legal moves may be pruned directly. Ex-
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periments with the program GNU Go indicate that a relatively small set of
high-ranked moves is sufficient to play a strong game against other programs.

Our conclusion is that it is possible to train a learning system to predict
good moves most of the time with a performance at least comparable to strong
kyu-level players. Such a performance can be obtained from a simple set of
locally computable features, thus ignoring a significant amount of information
which can be obtained by more extensive (full-board) analysis or by specific goal-
directed searches. Consequently, there is still significant room for improving the
performance further.

Chapter 8 presents learning techniques for scoring final positions. We de-
scribe a cascaded scoring architecture (CSA*) that learns to score final positions
from labelled examples, and apply it to create a reliable collection of 9×9 game
records (which is re-used for the experiments in chapters 9 and 10). On un-
seen game records CSA* scores around 98.9% of the positions correctly without
any human intervention. By comparing numeric scores and counting unsettled
interior points nearly all incorrectly scored final positions can be detected (for
verification by a human operator). Although some final positions are assessed
incorrectly by CSA*, it turns out that many are in fact scored incorrectly by
the players. Detecting games that were incorrectly scored by the players is
important for obtaining reliable training data.

We conclude that for the task of scoring final positions supervised learning
techniques can provide a performance at least comparable to reasonably strong
kyu-level players. This performance is obtained by a cascade of relatively simple
classifiers in combination with a well-chosen representation, which only employs
features that are calculated statically (without search).

Chapter 9 focuses on predicting life and death. The techniques from chapter
8 are extended to train MLP classifiers to predict life and death in non-final
positions too. Experiments show that, averaged over the whole game, around
88% of all blocks (that are relevant for scoring) are classified correctly. Ten
moves before the end of the game 95% of all blocks are classified correctly, and
for final positions over 99% are classified correctly. We conclude that super-
vised learning techniques in combination with a well-chosen representation can
be applied quite well for the task of predicting life and death in non-final posi-
tions. At least for positions near the end of the game we are confident that the
performance is comparable to that of reasonably strong kyu-level players.

Chapter 10 investigates various learning techniques for estimating potential
territory. Several direct and trainable methods for estimating potential territory
are discussed. We test the performance of the direct methods, known from the
literature, which do not require an explicit notion of life and death. Additionally,
two enhancements for adding knowledge of life and death and an extension of
Bouzy’s method are presented. The experiments show that without explicit
knowledge of life and death the best direct method is Bouzy’s method extended
with a means to divide the remaining empty intersections. When information
about life and death is used to remove dead stones, the difference with distance-
based control and influence-based control becomes small, and it is seen that all
three methods perform quite well.
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The trainable methods are new and can be used as an extension of the sys-
tem for predicting life and death presented in chapter 9. A simple representation
for our trainable methods suffices to estimate potential territory at a level out-
performing the best direct methods. Experiments show that all methods are
greatly improved by adding knowledge of life and death, which leads us to con-
clude that good predictions of life and death are the most important ingredient
for an adequate full-board evaluation function.

Here we conclude that supervised learning techniques can be applied quite
well for the task of estimating potential territory. When provided with sufficient
training examples, these techniques easily outperform the best direct methods
known from literature. On a human scale, we are confident that for positions
near the end of the game the performance is at least comparable to that of
reasonably strong kyu-level players. However, without additional experiments
it is difficult to say whether the performance is similar in positions that are far
away from the end of the game.

Finally, chapter 11 revisits the research questions, summarises the main
conclusions, and provides directions for future research. Our conclusion is that
domain-specific knowledge is the most important ingredient for improving the
strength of Go programs. For small problems sufficient provably correct knowl-
edge can be implemented by human experts. When searches are confined to
regions of about 20 to 30 intersections, the current state-of-the-art searching
techniques together with adequate domain-specific knowledge representations
can provide strong and often even perfect play. Larger problems require heuris-
tic knowledge. Although heuristic knowledge can be implemented by human ex-
perts, too, this tends to become quite difficult when the playing strength of the
program increases. To overcome this problem learning techniques can be used
to extract automatically and intelligently knowledge from the game records of
human experts. For maximising performance, the main task of the programmer
then becomes providing the learning algorithms with adequate representations
and large amounts of reliable training data. When both are available the qual-
ity of the static knowledge that can be obtained using learning techniques is
at least comparable to that of reasonably strong kyu-level players. The various
techniques presented in this thesis have been implemented in the Go program
Magog which enabled it to win the bronze medal in the 9×9 Go tournament
of the 2004 Computer Olympiad in Ramat-Gan, Israel.



Samenvatting

Dit proefschrift beschrijft onderzoek naar en de ontwikkeling van nieuwe AI-
technieken om de speelsterkte van Go-programma’s te verbeteren. Hoofdstuk
1 geeft enige algemene achtergrondinformatie en introduceert de onderwerpen
van dit proefschrift. We richten ons op twee belangrijke onderzoekslijnen die
hun waarde hebben bewezen in domeinen die verwant zijn met het domein van
computer-Go. Het zijn: (1) zoektechnieken, die succesvol zijn geweest in spelen
zoals schaken, en (2) leertechnieken, die succesvol zijn geweest in andere spelen
zoals Backgammon, en in andere complexe domeinen zoals beeldherkenning.
Voor beide onderzoekslijnen beschouwen we de vraag in hoeverre deze technieken
bruikbaar zijn in computer-Go.

Hoofdstuk 2 introduceert het spel Go. Go is het meest complexe popu-
laire bordspel in de klasse van tweepersoons nulsom spelen met volledige infor-
matie. Wereldwijd zijn er miljoenen mensen die regelmatig Go spelen. Ondanks
tientallen jaren van AI-onderzoek, en een prijs van zo’n 1 miljoen dollar voor
het eerste programma dat een professionele speler zou verslaan, maken Go-
programma’s nog altijd geen schijn van kans tegen sterke amateurs.

Hoofdstuk 3 bevat een overzicht van de standaard zoektechnieken die in dit
proefschrift worden gebruikt. We behandelen minimax, αβ, snoeien, het orde-
nen van zetten, iteratief verdiepen, transpositie-tabellen, enhanced transposition
cut-offs, null windows, en principal variation search. De zoektechnieken wor-
den toegepast in twee domeinen met een gereduceerde complexiteit. Zij worden
behandeld in de hoofdstukken 4 en 5.

Hoofdstuk 4 richt zich op zoektechnieken voor het oplossen van Slag-Go
(een vereenvoudigde versie van Go gericht op het slaan van stenen) op kleine
borden. Het belangrijkste resultaat is dat ons programma Ponnuki Slag-Go
heeft opgelost voor kleine lege borden tot de grootte van 5×5 (de eerste speler
wint na 19 zetten). Het 6×6 bord is ook opgelost onder de aanname dat de eerste
vier zetten in het centrum worden gespeeld (de eerste speler wint na 31 zetten).
Deze resultaten zijn verkregen met behulp van (1) standaard zoektechnieken, (2)
enkele standaard verbeteringen waarbij gebruik gemaakt is van domeinspecifieke
eigenschappen van het spel, en (3) een nieuwe evaluatiefunctie. We concluderen
dat standaard zoektechnieken en de verbeteringen effectief toegepast kunnen
worden voor het spel Slag-Go, met name als het domein beperkt is tot kleine
gebieden met minder dan 30 lege kruispunten. Verder concluderen we dat de
evaluatiefunctie in ieder geval geschikt is voor het vangen van stenen.
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In hoofdstuk 5 breiden wij het domein van de zoektechnieken uit van Slag-
Go naar Go, en passen ze toe bij het oplossen van Go op kleine borden. We
beschrijven het programma Migos in detail. Het maakt gebruik van principal
variation search met een combinatie van standaard verbeteringen (transpositie-
tabellen, enhanced transposition cut-offs), aangepaste verbeteringen (history
heuristic, killer moves, sibling promotion), en nieuwe verbeteringen (internal
unconditional bounds, symmetry lookups), een heuristische evaluatiefunctie, en
een methode voor het statisch herkennen van onconditioneel gebied. In 2002
heeft Migos als eerste programma ter wereld Go op het 5×5 bord opgelost.

Voorts analyseren we in dit hoofdstuk de toepassing van de situationele-
super-ko regel (SSK). We beschrijven verscheidene problemen die zich kun-
nen voordoen in combinatie met de transpositie-tabel als de geschiedenis van
een positie wordt genegeerd, en onderzoeken enkele mogelijke oplossingen. De
meeste problemen zijn oplosbaar door alleen transposities te gebruiken die op
dezelfde diepte in de zoekboom gevonden zijn. De resterende problemen zijn
zeldzaam, vooral in combinatie met een degelijke zettenordening, en kunnen
meestal veilig genegeerd worden.

We concluderen dat, op hedendaagse hardware, bewijsbaar correcte oplos-
singen verkregen kunnen worden binnen een redelijke tijd voor afgesloten ge-
bieden met maximaal zo’n 28 kruispunten. Voor efficiënt zoeken is bewijsbaar
correcte domeinspecifieke kennis essentieel voor het verkrijgen van stringente
grenzen aan de mogelijke scores in de zoekboom. Zonder gebruik te maken van
zulke domeinspecifieke kennis is het herkennen van eindposities, puur op basis
van zoeken, in de praktijk niet goed mogelijk.

Hoofdstuk 6 geeft een overzicht van de leertechnieken die in dit proefschrift
gebruikt worden. We leggen het doel van het leren uit, en geven aan welke
leertechnieken gebruikt kunnen worden. Onze aandacht is gericht op meer-
laags perceptron (MLP) netwerken. We bespreken de sterke en zwakke kanten
van mogelijke architecturen, representaties en leerparadigma’s, en testen onze
ideeën op het vereenvoudigde domein van connectiviteit tussen stenen. Onze
bevindingen laten zien dat het trainen en toepassen van complexe recurrente
netwerk-architecturen met reinforcement learning bijzonder traag is, en dat een-
voudiger architecturen een goed alternatief zijn, vooral als grote aantallen leer-
voorbeelden en goed gekozen representaties beschikbaar zijn. Derhalve richten
wij ons in de hoofdstukken 7, 8, 9 en 10 op supervised leertechnieken voor het
trainen van eenvoudige architecturen voor het evalueren van zetten en posities.

Hoofdstuk 7 presenteert technieken voor het leren voorspellen van sterke
zetten op basis van opgeslagen partijen. We introduceren een trainingsalgo-
ritme dat efficiënter is dan standaard implementaties omdat het geen onnodige
berekeningen uitvoert wanneer de ordeningen correct zijn en daarmee het aantal
noodzakelijke gradiënt-berekeningen reduceert, wat de training aanzienlijk ver-
snelt naarmate de voorspellingen beter worden. Een belangrijke bijdrage aan de
prestatie is het gebruik van kenmerk-extractie. Kenmerk-extractie reduceert de
leertijd en verbetert de kwaliteit van de voorspellingen. In combinatie met een
zinnige schaling van de originele kenmerken en een tweede-fase training kunnen
superieure prestaties worden verkregen ten opzichte van directe training.
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De voorspellingen kunnen gebruikt worden om zetten te ordenen en voor-
waarts te snoeien bij het zoeken op het volledige bord. De kwaliteit van de
ordening van professionele zetten geeft aan dat een groot deel van de legale
zetten direct gesnoeid kan worden. Experimenten met het programma GNU

Go laten zien dat een relatief klein aantal hoog geordende zetten voldoende is
om een sterke partij te spelen tegen andere programma’s.

Onze conclusie is dat het mogelijk is om een lerend systeem te trainen dat
zetten kan voorspellen op een niveau dat minstens vergelijkbaar is met dat van
sterke kyu-spelers. Dit niveau is reeds haalbaar op basis van relatief eenvoudige
lokaal te berekenen kenmerken, waarmee we dus een aanzienlijke hoeveelheid
informatie negeren die verkregen kan worden door middel van een uitgebreidere
analyse (van het volledige bord) of door middel van het speciaal doelgericht
zoeken. Derhalve zijn er nog voldoende verbeteringen mogelijk.

Hoofdstuk 8 presenteert leertechnieken voor het waarderen van eindposities.
We beschrijven een cascade-scoring architecture (CSA*) die leert om eindposi-
ties te waarderen op basis van gelabelde voorbeelden. We passen deze methode
toe om een betrouwbare verzameling 9×9 partijen samen te stellen (die tevens
gebruikt wordt voor de experimenten in hoofdstuk 9 en 10). Op onafhankelijke
partijen scoort CSA* volledig zelfstandig zo’n 98,9% van de posities correct.
Door numerieke scores te vergelijken en onbesliste interne punten te tellen kun-
nen bijna alle incorrect gescoorde eindposities gedetecteerd worden (voor veri-
ficatie door een menselijke operator). Hoewel sommige eindposities incorrect
beoordeeld worden door CSA*, blijkt dat het merendeel incorrect beoordeeld is
door de spelers. Het herkennen van partijen die incorrect beoordeeld zijn door
de spelers is belangrijk voor het verkrijgen van betrouwbaar leermateriaal.

We concluderen dat supervised leertechnieken voor het waarderen van eind-
posities een prestatieniveau halen dat zeker vergelijkbaar is met redelijk sterke
kyu-spelers. Dit niveau wordt verkregen met behulp van relatief eenvoudige
beslissers in combinatie met een goed gekozen representatie, die slechts gebruik
maakt van kenmerken die statisch berekend kunnen worden (zonder zoeken).

Hoofdstuk 9 richt zich op het voorspellen van leven en dood. De tech-
nieken uit hoofdstuk 8 worden uitgebreid voor het trainen van MLP-beslissers
om leven en dood te voorspellen in niet-eindposities, ook op basis van gela-
belde voorbeelden. De experimenten laten zien dat, gemiddeld over de gehele
partij, zo’n 88% van alle blokken (die relevant zijn voor de score) correct geclas-
sificeerd worden. Tien zetten voor het einde van de partij wordt zo’n 95% van
alle blokken correct geclassificeerd, en voor de eindposities wordt meer dan 99%
correct geclassificeerd. We concluderen dat supervised leertechnieken in com-
binatie met een adequate representatie behoorlijk goed in staat zijn om ook in
niet-eindposities leven en dood te voorspellen. We zijn er van overtuigd dat, in
ieder geval voor posities vlak voor het einde van de partij, het prestatieniveau
vergelijkbaar is met dat van redelijk sterke kyu-spelers.

Hoofdstuk 10 onderzoekt verscheidene leertechnieken voor het schatten van
potentieel gebied. Verschillende directe en lerende methoden voor het schatten
van potentieel gebied worden behandeld. We testen de prestaties van de directe
methoden die bekend zijn uit de literatuur en geen expliciete notie van leven
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en dood nodig hebben. Tevens presenteren we twee verbeteringen voor het
toevoegen van kennis omtrent leven en dood en een uitbreiding van Bouzy’s
methode. De experimenten laten zien dat zonder expliciete kennis van leven
en dood Bouzy’s methode, indien die uitgebreid is met een methode om de
neutrale punten verder te verdelen, de beste directe methode is. Als informatie
over leven en dood gebruikt wordt om de dode stenen te verwijderen, is het
verschil met distance-based control en influence-based control klein, en doen alle
drie de methoden het behoorlijk goed.

De lerende methoden zijn nieuw en kunnen gebruikt worden als uitbreiding
van het systeem voor het voorspellen van leven en dood dat we beschreven
hebben in hoofdstuk 9. Een eenvoudige representatie voldoet om potentieel
gebied beter te schatten dan de beste directe methoden. Experimenten laten
zien dat alle methoden aanzienlijk beter presteren met kennis van leven en
dood. Dit leidt tot de conclusie dat kennis van leven en dood het belangrijkste
ingrediënt is van een adequate evaluatiefunctie voor het gehele bord.

Hier concluderen wij dat supervised leertechnieken behoorlijk goed toegepast
kunnen worden voor de taak van het schatten van potentieel gebied. Wan-
neer voldoende trainingsvoorbeelden beschikbaar zijn kunnen deze technieken
de beste directe methoden uit de literatuur eenvoudig verslaan. Op de mense-
lijke schaal zijn we ervan overtuigd dat vlak voor het einde van de partij de
prestaties minstens vergelijkbaar zijn met die van redelijk sterke kyu-spelers.
Echter, zonder aanvullende experimenten is het lastig om te zeggen of dat ver
voor het einde ook zo is.

Tenslotte komen we in hoofdstuk 11 terug op de onderzoeksvragen, geven een
overzicht van de belangrijkste conclusies, en eindigen met suggesties voor nader
onderzoek. Onze conclusie is dat domeinspecifieke kennis het belangrijkste in-
grediënt is voor het verbeteren van de sterkte van Go programma’s. Voor kleine
problemen kan voldoende bewijsbaar correcte kennis gëımplementeerd worden
door menselijke experts. Als het zoeken begrensd is tot gebieden van ongeveer
20 tot 30 kruispunten zijn de huidige state-of-the-art zoektechnieken in combi-
natie met adequate domeinspecifieke kennisrepresentaties in staat tot zeer sterk
en vaak zelfs perfect spel. Voor het aanpakken van grotere problemen is heuris-
tische kennis noodzakelijk. Hoewel heuristische kennis ook gëımplementeerd
kan worden door menselijke experts wordt dit naarmate het programma sterker
wordt snel lastiger. Dit laatste kan vermeden worden door gebruik te maken
van leertechnieken die automatisch en op intelligente wijze kennis extraheren uit
de partijen van menselijke experts. Voor het maximaliseren van de prestaties
wordt de belangrijkste taak van de programmeur dan het leveren van adequate
representaties en grote hoeveelheden betrouwbare leervoorbeelden aan het leer-
algoritme. Als beide beschikbaar zijn is de kwaliteit van de statische kennis die
kan worden verkregen met leertechnieken minstens vergelijkbaar met die van
spelers van redelijk sterk kyu-niveau. De technieken die we in dit proefschrift
hebben gepresenteerd zijn gëımplementeerd in het Go-programma Magog en
hebben direct bijgedragen aan het winnen van de bronzen medaille in het 9×9
Go-toernooi van de 9de Computer Olympiade (2004) in Ramat-Gan, Israel.
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