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Preface

The world is governed more by appearance than by realities,
so that it is fully as necessary

to seem to know something as it is to know it.

— Daniel Webster (1782-1852).

The classic Greek culture recognised six art forms: painting, sculpture, architecture,
literature, drama, and music. In the twentieth century, television, cinema, and comic
books became known as the seventh to ninth art forms. The brothers Le Diberer
(1993) nominated commercial computer games! as the tenth art form.

Many people will scoff at the notion of games being elevated to the status of art.
They see games as little more than running through dark corridors and shooting
aliens on a computer, which hardly can be considered art. These people have a point.
Most games are too shallow to be called art. But, as we may not expect every book
to be GODEL, ESCHER, BACH, every movie to be CITIZEN KANE, or every piece of
music to be the BRANDENBURGER CONCERTOS, we may not expect every game to
be high art. Certainly a few games exist that evoke profound, emotionally touching,
fascinating experiences. It is true that such games are extremely rare. However,
games are a young art form; when they mature more games will be found worthy of
the epithet ‘art’.

Games are certainly distinct from the other nine art forms. For one thing, they
are the only art form that, by definition, needs to be experienced interactively.
For a game to be considered art, the interaction in particular must be successful,
so that game players may become deeply immersed in a game world, gaining a
suspension of disbelief (i.e., a mental willingness to accept the game world as reality).
Unfortunately, a suspension of dishelief is fragile, and shatters easily. To maintain it,
every aspect of the game world must be true to the nature it is supposed to embody.

Nowadays, a game’s top-notch graphics and sound manage to keep up a sus-
pension of disbelief quite well. However, the behaviours of characters in a game
are usually of an inferior quality. It is all too clear that the characters are lifeless,
mindless drones controlled by a computer with little knowledge.

A major distinguishing feature of real-life beings, which is clearly lacking in
characters in today’s games, is the ability to adapt to new situations. Endowing

"Henceforth, whenever T use the term ‘game’ without an adjective, T am referring to a ‘commer-
cial computer game’.
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computer-controlled characters with this ability may evoke the illusion that the char-
acters actually understand what they are doing, and thus maintain the suspension
of disbelief for a longer time.

The behaviour of characters in a game is determined by the so-called ‘game
AT (AT being the abbreviation of ‘Artificial Intelligence’). This thesis discusses
how game AT can be made adaptive. The research is mainly driven by the goal of
achieving results that are practically applicable. The research may be considered
successful if, in a few years time, the investigated techniques are implemented in
actual commercially-available games.

T am deeply grateful to the Institute of Knowledge and Agent Technology (IKAT)
of the Universiteit Maastricht, which allowed me to do my thesis research as part
of my job. In authoring this thesis, it was my good fortune to benefit from the
invaluable guidance of Jaap van den Herik and Eric Postma. I am thankful to Ida
Sprinkhuizen-Kuyper, Sander Bakkes, and Marc Ponsen, for our productive collabo-
ration on considerable chunks of my research. I also thank my colleagues at TKAT,
for our pleasant and fruitful discussions. My 2003 visit to Edmonton, Canada,
proved to be a turning point in my research, for which I wish to express my thanks
to the University of Alberta’s GAMES group, led by Jonathan Schaeffer, and to
BioWare Corp. Finally, I wish to extend my heartfelt gratitude to my parents, for
their continued support, and to Muriél and Myrthe, for joy and love.

Pieter Spronck, January 2005.



Chapter 1

Introduction

A great deal of intelligence can be invested in ignorance
when the need for illusion is deep.
Saul Bellow (b. 1915).

Over the last twenty years the audiovisual qualities of commercial games have im-
proved significantly. However, over the same period game developers have largely
neglected artificial intelligence (AI) in games, so-called ‘game AT’. Since the turn of
the century game-development companies have discovered that nowadays it is the
quality of game AT that distinguishes good games from mediocre ones. The general
goal of the present thesis is to investigate to what extent the quality of game Al
can be improved by using machine-learning techniques. In particular, the goal is
to create game opponents that can learn from mistakes and that can adapt to new
tactics.

This chapter implicitly provides my research motivation. Section 1.1 examines
the differences between analytical and commercial games. Section 1.2 discusses the
state of the art in commercial game AI. Section 1.3 establishes that game Al can
benefit from being adaptive. Section 1.4 discusses the scientific relevance of adaptive-
game-Al research. The problem statement that guides the research is formulated in
Section 1.5, along with three research questions. The chapter ends with an outline
of the thesis in Section 1.6.

1.1 Analytical vs. Commercial Games

Computer games can be roughly divided into two groups, namely ‘analytical games’
and ‘commercial games’. Analytical games are the classic board and card games,
such as BACKGAMMON, BRIDGE, CHECKERS, CHESS, GO, POKER, and STRATEGO.
Commercial games are the popular modern computer games, of which well-known
examples are BALDUR’S GATE, DooM, EVERQUEST, PAcMAN, QUAKE, TowmB
RAIDER, and WARCRAFT.
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Traditionally, computer-game research has focussed on analytical games. The
goal of computer-game research is to endow computers with artificial intelligence
that makes them the strongest possible game-players. For some games the research
has achieved impressive results; for instance, computers outplay World Champions
in CHEss (Hsu, 2002), CHECKERS (Schaeffer, 1997), and OTHELLO (Buro, 1997).

Around the start of the twenty-first century computer-game research was ex-
tended to encompass commercial games (Woodcock, 1999). A close inspection shows
that analytical and commercial computer games' differ in many characteristics. Nine
of those differences are listed here.

Game-theoretical classification: Game theory distinguishes between perfect and
imperfect information games, as well as between deterministic and stochastic
games (Koller and Pfeffer, 1997; Halck and Dahl, 1999). In perfect informa-
tion games complete information on the state of the game is available, while in
imperfect information games part of the game state is hidden. Deterministic
games have no element of chance, while in stochastic games chance plays a
prominent role. Figure 1.1 presents a coarse personal assessment of how some
typical example games (both analytical and commercial) can be qualified ac-
cording to these characteristics. As can be observed, in general, analytical
games deal with much or even perfect information and are highly deterministic,
while commercial games deal with little information and are highly stochastic
(Buro, 2004; Chan et al., 2004).2

Origin of complexity: The complexity of an analytical game arises from the in-
teraction of a few simple, transparent rules. The complexity of a commercial
game arises from the interaction of large numbers of in-game objects and lo-
cations, controlled by complex, opaque rules (Fairclough, Fagan, MacNamee,
and Cunningham, 2001; Nareyek, 2002; Buro, 2004).

Computer requirement: Analytical games can, in principle, be played by humans
without the use of a computer. Commercial games take place in a virtual world
created by the computer, which means that the computer is an essential part
of the game.

Pacing: Analytical games usually progress at a slow pace, while commercial games
are fast-paced (Nareyek, 2002).

"The term ‘commercial games’ is misleading, because analytical games can be commercially
exploited as well. An alternate term found in literature is ‘interactive computer games’, but since
all computer games are interactive, this term is even more misleading. A potentially better term
is ‘video games’, but this term is usually reserved for ‘console games’ that are played on dedicated
gaming hardware connected to a television set. Most authors simply refer to commercial games as
‘computer games’ or ‘games’, and let the context define which type of games they are referring to. In
this thesis I will use the simple term ‘games’ to refer to commercial computer games, except where
I am discussing differences between analytical and commercial games, as in the present section.

2In imperfect-information analytical games little information is hidden, at least in comparison
with commercial games. For instance, in card games only the players’ hands are hidden, while in
commercial games complete game worlds are hidden.
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deterministic |
STRATEGO CHECKERS,
CHESS, GO
[ J o
slightly POKER  BRIDGE
stochastic |
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) [ [
highly
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completely
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no known much unknown some unknown perfect
information information information information

Figure 1.1: Game-theoretical classification of some analytical and commercial games
according to the author. The horizontal axis represents the amount of information
on the game state available to the player, while the vertical axis represents the
amount of randomness in the game.

Drama: The only drama in connection with an analytical game is the drama of
winning or losing. For most commercial games drama, in the form of a story
(however shallow), is an essential part of the game (Laurel, 1993).

Role reversal: In analytical games the computer replaces one or more of the human
players. In essence, the computer transcends into the human world to assume
the role of a game-playing human. In commercial games human players take on
the role of some of the virtual characters in the game (whether those characters
are actual beings in the game, or god-like army leaders that have no in-game
avatar) — the human player becomes part of the computer world.

Player skills: Analytical games require players to use first and foremost their in-
tellectual skills.®> Commercial games require players to invest a wide variety of
skills. Depending on the game, besides intellectual skills players will need to
use their imagination, reflexes, timing skills, sensory abilities, emotions, and
even ethical insights.

31In analytical games between humans, usually psychology also plays an important role. However,
in an analytical game played between a human and a computer, psychology is not used as a strategic
means, at least not yet.
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Figure 1.2: The difference in art between a typical analytical game (DEEP FRITZ,
left) and a typical commercial game (HALF-LIFE 2, right).

Art: For analytical games the art, consisting of graphics and sound, is of little
importance. For commercial games art is of key importance. Most of the
development resources of a commercial game are invested in the game’s art
(Fairclough et al., 2001; Khoo and Zubek, 2002). This difference is vividly
illustrated in Figure 1.2.

Goal: For analytical games the goal of the computer is to defeat the human player.
For commercial games the goal of the computer is to entertain the human
player (Tozour, 2002b; Chan et al., 2004; Lidén, 2004).

Decades of research (often very successful) have been invested into AI that plays
analytical games (Schaeffer and Van den Herik, 2002; Van den Herik, Uiterwijk, and
Van Rijswijck, 2002; Van den Herik, Tida, and Heinz, 2003). The vast majority of
this research focusses on deterministic, perfect information games (Halck and Dahl,
1999). The aforementioned differences between analytical games and commercial
games are a reason that most analytical-game research has little applicability to
commercial games. There are many problems in the field of commercial-game Al
that are untouched by analytical game research, such as pathfinding, spatial and
temporal reasoning, and decision making under high uncertainty (Buro, 2003b).

This thesis investigates commercial-game AI. The research has little overlap with
analytical game research. Henceforth, the term ‘game’ will be used to refer to a
‘commercial computer game’.

1.2 Game Al

The popularity surge of commercial games has stimulated the growth of the game-
development industry until its revenues surpassed those of the Hollywood movie
industry (Hause, 1999; Fairclough et al., 2001; Snider, 2002). Traditionally, game-
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development companies competed by creating games with superior graphics. Nowa-
days they attempt to compete by offering a better game-play experience (Tozour,
2002b; Graepel, Herbrich, and Gold, 2004). The behaviour of game characters is
an essential element of game-play. Game Al is defined as the decision-making al-
gorithms of game characters, that determine the characters’ behaviour (Wright and
Marshall, 2000; Allen et al., 2001; Fairclough et al., 2001; Nareyek, 2002). Game
AT has become an important selling point of games (Laird and Van Lent, 2001; For-
bus and Laird, 2002). However, even state-of-the-art game Al is, in general, of low
quality (Laird and Van Lent, 2001; Schaeffer, 2001; Buro, 2004; Gold, 2004). Game
AT can benefit from academic research into commercial games (Forbus and Laird,
2002), although this research is still in its infancy (Laird and Van Lent, 2001).

Tt should be noted that the term ‘game AT’ is used differently by game develop-
ers and academic researchers (Funge, 2004; Gold, 2004; Nareyek, 2004). Academic
researchers restrict the use of the term ‘game AT’ to refer to intelligent behaviours
of game characters (Wright and Marshall, 2000; Allen et al., 2001; Funge, 2004).
In contrast, for game developers the term ‘game AT’ is used in a broader sense to
encompass techniques such as pathfinding, animation systems, level geometry, colli-
sion physics, vehicle dynamics (Tomlinson, 2003) and even the generation of random
numbers (Rabin, 2004a).

In this thesis the term ‘game AT’ will be used in the narrow, academic sense.
Furthermore, the term ‘agent’ will be used to refer to any decision-making game
presence, whether it is a ‘visible’ agent (e.g., a creature that attacks the player), or
it is an ‘invisible’ agent (e.g., the commander of an army that opposes the player).
The focus of this thesis lies on agents that compete with a human player. These
agents are called ‘opponents’.

In general, game AI may operate on three levels of intelligence, namely (i) oper-
ational, (ii) tactical, and (iii) strategic. On the operational level, game AT controls
the movements and individual actions of an agent. On the tactical level, game Al
determines sequences of actions for an agent to accomplish a specific goal in an envi-
ronment. On the strategic level, game Al engages in long-term planning of decisions
for an agent. This thesis discusses game Al at all three levels of intelligence.

The remainder of this section discusses the goals that game Al aims to achieve
(1.2.1), and the state of the art in game AI (1.2.2).

1.2.1 Goals

The purpose of a game is to provide entertainment (Tozour, 2002b; Nareyek, 2004).
By extension this is also the purpose of game AI. Thus, the question that is in the
forefront of any game-ATI programmer’s mind is: “How can game Al contribute to a
game’s entertainment value?”

Most games pose a challenge to human players in the form of opponents, whose
behaviour is controlled by game AI. Three important issues with respect to the en-
tertainment value that opponents provide are the following. First, a challenge is not
entertaining when it is too easy or too hard (Graepel et al., 2004). Second, most
human players who are defeated by a computer will be disappointed if they feel they
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lost undeservedly. Third, human players generally appreciate an agent maintaining
the illusion that it is really intelligent (Scott, 2002). Cousidering these three issues,
the following is a (not necessarily exhaustive) list of seven goals, arranged accord-
ing to increasing difficulty, that game AT aspires to for providing an entertaining
challenge. The better game Al achieves the goals, the higher its quality.

No obvious cheating: An agent cheats when it uses information or executes ac-
tions that are in principle unavailable to the human player. For most games
some form of cheating by game Al is unavoidable (Scott, 2002) and imple-
mented deliberately. This is not necessarily a problem, as long as the cheating
is not too obvious. In general, state-of-the-art games do not employ obvious
cheating to create challenging opponents.

Unpredictable behaviour: An agent whose actions are predictable is usually easy
to defeat (if not plain boring) and does not present an illusion of intelligence
(Crawford, 1984). With random variations on manually designed behaviour
unpredictable behaviour can be achieved easily. Unfortunately, with random
variations game AI will not always be equally challenging. * Expert human
players may prefer non-random behaviour, as long as it provides a strong
challenge.

No obvious inferior behaviour: The moment an agent performs a clearly bone-
headed action, the illusion of its intelligence is shattered (Crawford, 1984). Ob-
vious inferior agent behaviour is often the result of programming mistakes that
went undetected during a game’s ‘quality assurance’ phase (Tozour, 2002a).
Even state-of-the-art games do not succeed in avoiding such behaviour entirely.

Using the environment: Games are commonly situated in a virtual world, with
a wealth of environmental features that can be tactically exploited. To allow
agents to exploit them equally well as human players, some game developers
let the game AT take environmental features into account. Usually, this is
realised by adding markings to the environment (Lidén, 2002; Tomlinson, 2003;
Orkin, 2004b), or by allowing the environmental features to communicate their
possibilities to the game AI (Orkin, 2002, 2004a). One step further, game Al is
able to explore and analyse a game world by itself to form new tactical plans.
As yet, advanced game Al with such capabilities is only explored in academic
research, e.g., by Laird (2001).

Self-correction: Far worse than an agent that makes an exploitable mistake, is an
agent that consistently repeats the same mistake. To allow game AI to avoid
the repetition of mistakes, it should be able to (i) recognise a mistake, and (ii)
change the agent’s behaviour to avoid the mistake in the future. The behaviour
learning must take place ‘online’, i.e., while the game is being played, because
game Al must learn from the mistakes it makes in actual game-play situations.

4In the source code of the game AI of version 1.31 of the game NeverwiNTER NigHTS the
following change comment can be found, dated September 19, 2002: “Removed randomness from
Talent system. You can’t have smart Al and random behavior.”
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Furthermore, the learning must be unsupervised, because the human player
cannot be expected to inform the game Al that a mistake was made. As
yet, there is no precedent of the successful application of unsupervised online
learning in mainstream top-rated games (Manslow, 2002; Kirby, 2004).

Creativity: Avoiding the repetition of mistakes usually can be achieved by chang-
ing parameters (e.g., reducing the occurrence rate of one action in favour of an
other). When game Al is confronted with a previously unconsidered situation
(e.g., the human player using a surprising new tactic), simple parameter chang-
ing will be of little help. The game AI must creatively learn completely new
behaviour. For games, the most advanced form of adapting to new situations
in practice is game Al that is allowed to choose between a limited number of
predefined tactics (Johnson, 2004).

Human-like behaviour: Similar to the ultimate goal of any AI researcher, the
ultimate goal of a game-Al designer is to create Al that rivals human intelli-
gence. For games this is not an unreachable goal, because game worlds have
a limited scope. However, it is obvious that human-like game behaviour is an
advancement that can only be achieved after all other mentioned goals have
been reached (Laird, 2001; Livingstone and McGlinchey, 2004).

1.2.2 State of the Art

Even in state-of-the-art games the game AT lacks sophistication. Of the seven game-
AT goals listed in Subsection 1.2.1 only the first three are addressed by modern game
AT - and often not successfully. The four main reasons for this low quality of game
AT are the following (adopted from Fairclough et al., 2001).

e The need for advanced graphics still overshadows the need for good game Al

o Game-development companies and their publishers are distrustful of advanced
AT techniques.

e Game AT is usually added when the deadline for the release of a game ap-
proaches, and there is little time left to experiment.

o Game developers commonly lack academic knowledge of Al.

To develop better game AI, game-development companies need help from the
academic community (Laird and Van Lent, 2001; Rabin, 2004b). This thesis com-
prises an academic contribution to game-Al research. Its focus is on the the fifth
and the sixth goal listed in Subsection 1.2.1: ‘self-correction’ and ‘creativity’ in
brief, its focus is on the investigation of ‘adaptive game AT’.
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1.3 Adaptive Game Al

Adaptive game Al is defined as game Al with the ability of self-correction (i.e., the
ability to resolve faulty agent behaviour), and with the ability of creativity (i.e., the
ability to adapt successfully to changing circumstances). Since there is no precedent
for the use of adaptive game Al in state-of-the-art games, it should be considered
carefully whether it is a good idea to enhance games with adaptive game Al In this
respect I will discuss the following three questions: (i) To what extent is adaptive
game AT beneficial for games? (ii) Is adaptive game Al really necessary? and (iii)
Can adaptive game AT contribute to the purpose of games: providing entertainment?
These questions are answered in Subsections 1.3.1, 1.3.2, and 1.3.3, respectively.

1.3.1 Benefits

The answer to the question “To what extent is adaptive game AI beneficial for
games?” is that adaptive game Al (i) allows the challenge level of a game to be
maintained automatically, and (ii) improves the effectiveness of the ‘quality assur-
ance’ phase of game development.

To illustrate why maintenance of the challenge level of a game is beneficial, I
provide as an example the game AT of the second game in the BALDUR’S GATE series:
SHADOWS OF AMN. SHADOWS OF AMN is a so-called ‘computer roleplaying game’
(CRPG). In the game the player controls a team of agents who exist in a world where
they meet many enemies. Among the toughest enemy types are dragons (illustrated
in Figure 1.3). According to CRPG tradition, dragons are both physically and
mentally powerful creatures. While SHADOWS OF AMN does not require the player
to fight dragons, the designers realised that most players will attempt to do so
anyway. Therefore they created complex game AI that should be able to humiliate
any player bold enough to attack a dragon. Soon after the game’s release, weaknesses
in the game Al were discovered that players could exploit to defeat any dragon
in the game, even with a weak team.® Furthermore, without exploiting game Al
weaknesses, players could still design superior tactics that, while unforeseen by the
game developers, allowed weak teams to take on dragons successfully. It is trivial for
a dragon to recognise that its current behaviour is inadequate to deal with tactics
used by attackers that, according to its domain knowledge, are no match for it. Were
the dragons controlled by adaptive game Al instead of static game AI, an answer to
the superior and exploiting tactics could have been discovered automatically, keeping
up the challenge level of the game.

During the ‘quality assurance’ phase of game development, adaptive game Al can
be used to spot weaknesses in manually-designed game Al, and to suggest alternative
tactics. This application of adaptive game Al is an inexpensive investment that has

50ne of these exploits was that dragons only responded to visible attackers. As long as the
attackers remained outside the visual range of a dragon while attacking, it would not fight back.
A second exploit was that the player team could lay traps all around a dragon, that killed it as
soon as they went off. A dragon would not interfere with laying traps, even though it obviously is
a hostile action. These exploits were fixed in an add-on to the game that appeared one year after
the initial release.
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Figure 1.3: A surprisingly meagre challenge: a dragon in SHADOWS OF AMN.

the potential to deliver valuable results, risk-free (Spronck, Sprinkhuizen-Kuyper,
and Postma, 2002; Chan et al., 2004). Even if game developers and publishers are
hesitant to incorporate adaptive game Al in their games (which they are), they can
still apply adaptive game AI during the ‘quality assurance’ phase.

1.3.2 Necessity

The answer to the question “Is adaptive game Al really necessary?” is that adaptive
game Al is sorely needed to deal with the complexities of state-of-the-art games.
Over the years games have become increasingly complex, offering realistic worlds,
freedom and a great variety of possibilities. The technique of choice used by game
developers for dealing with a game’s complexities is rule-based game AI, usually
in the form of scripts (Nareyek, 2002; Tozour, 2002c). The advantage of the use of
scripts is that scripts are (i) understandable, (ii) predictable, (iii) tuneable to specific
circumstances, (iv) easy to implement, (v) easily extendable, and (vi) useable by non-
programmers (Tozour, 2002¢; Tomlinson, 2003). However, as a consequence of game
complexity, scripts tend to be quite long and complex (Brockington and Darrah,
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2002). Manually-developed complex scripts are likely to contain design flaws and
programming mistakes (Nareyek, 2002). Successful adaptive game AI can ensure
that the impact of these mistakes is limited to only a few situations encountered by
the player, after which their occurrence will have become unlikely. Consequently, it
is safe to say that the more complex a game is, the greater the need for adaptive
game AT (Fairclough et al., 2001; Laird and Van Lent, 2001; Fyfe, 2004). In the near
future game complexity will only increase. As long as the best approach to game Al
is to design it manually, the need for adaptive game AI will increase accordingly.

1.3.3 Entertainment

The answer to the question “Can adaptive game AI contribute to the purpose of
games: providing entertainment?” is that the capability of adaptive game Al to
maintain the challenge level of a game positively influences the entertainment pro-
vided by a game (Crawford, 1984).

Game Al in most modern games is not challenging. The appeal of Massive Multi-
player Online Games (MMOGs), where human players challenge each other, stems
partly from the fact that computer-controlled opponents often exhibit what has
been called ‘artificial stupidity’ (Schaeffer, 2001) rather than artificial intelligence.
Adaptive game AI has the potential to make the game AI more challenging, since
it can learn automatically to defeat strong tactics used by the human player. Many
researchers and game developers hold that game AI, in principle, is entertaining
when it is difficult to defeat (Buro, 2003b).

Furthermore, adaptive game Al if implemented correctly, cannot only be used to
make the game Al stronger, but also to scale automatically the challenge level of the
game Al to the skills of the human player. On the subject of game AI challenges and
entertainment, in his famous novel “2001: A Space Odyssey”, Clarke (1968) writes
about the artificially intelligent computer HATL 9000:

“For relaxation [the astronauts] could always engage HAL in a large num-
ber of semi-mathematical games, including checkers, chess, and polyomi-
noes. If HAL went all out, he could win anyone of them; but that would
be bad for morale. So he had been programmed to win only fifty percent
of the time, and his human partners pretended not to know this.”

While it might be questioned whether adults are entertained when they win
a game while knowing their opponent made deliberate mistakes, Clarke assumes
correctly that humans, in general, will neither play a game when they know they
just will be slaughtered, nor enjoy a game when they know their opponent is no match
for them. The most enjoyable games are those that are played between opponents
with a comparative level of skill (Graepel et al., 2004). Therefore, if adaptive game
AT continuously scales a game’s difficulty level to the point that the human player
is challenged, but not completely overpowered, the game will be most entertaining,
and will remain entertaining even if the player’s skill increases through experience.
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1.4 Scientific Relevance

While games are generally considered to be a worthwhile research subject for social
and cultural scientists, they may leave the impression to be too frivolous an appli-
cation for computer scientists. This impression is misguided. Games are considered
to be a driving force behind the research and development of 3D computer graphics
and animation (Pabst, 2000; Philips-Mahoney, 2002; Sawyer, 2002). I argue that
they are worthy of the same position for the research into artificial intelligence.

For artificial intelligence research, complex modern games are truly challenging
applications. They have the following four characteristics.

o Glames are widely available. Al innovations implemented in games are sub-
jected to the scrutiny of hundreds of thousands of human players (Laird and
Van Lent, 2001; Sawyer, 2002).

o Games reflect the real world. Games can often be considered simulations of
aspects of reality. Therefore, game Al may capture features of real-world
behaviour (Sawyer, 2002; Graepel et al., 2004).

e (Games are a test-bed for human-like intelligence. While ‘real’ human-like intel-
ligence is not required for games, game Al must be able to simulate human-like
behaviour to a large extent. Therefore, games are ideally suited to pursue the
fundamental goal of Al, i.e., to understand and develop systems with human-
like capabilities (Laird and Van Lent, 2001; Sawyer, 2002).

e Games place highly-constricting requirements on implemented AI solutions.
Requirements for game Al force it to achieve good results with limited compu-
tational resources (Nareyek, 2002; Charles and Livingstone, 2004), free from
possible degradation (Charles and Livingstone, 2004), in noisy environments
(Laird and Van Lent, 2001), and within a few trials.5

By these characteristics, results achieved with game AT are widely applicable.
They may be transferred to many other problem domains, which generally are less
restrictive. Achieved results may contribute to, amongst others, the fields of machine
learning, multi-agent systems, and robotics (Laird and Van Lent, 2001).

1.5 Problem Statement and Research Questions

Section 1.2 indicated that so far there is little academic research into commercial
game Al Section 1.3 indicated that adaptive game AT does not exist yet in state-of-
the-art games. Furthermore, it is argued that adaptive game AT can be beneficial
to games (1.3.1), that the need for adaptive game Al exists and will only increase
in the near future (1.3.2), and that adaptive game AI can contribute to the purpose
of games: providing entertainment (1.3.3).

6The requirements are further discussed in Subsection 2.3.4.
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Successful adaptive game Al achieves the fifth and sixth goals listed for game
AT (1.2.1), and thus contributes to the quality of game AI. The quality of game
AT is directly related to its entertainment value (Tozour, 2002b). In this thesis it
is assumed that machine-learning techniques can be used to implement adaptive
game Al Several research projects have investigated machine learning for game
AT in simple games (Demasi and Cruz, 2002; Laramée, 2002a; Demasi and Cruz,
2003; McGlinchey, 2003). However, complex game Al (i.e., the game Al in complex
games) so far is an untouched area.” Consequently, the problem statement discussed
in this thesis reads as follows.

Problem statement: To what extent can machine-learning techniques
be used to increase the quality of complex game AI?

To find an answer to the problem statement, four research questions are formu-
lated below.

For expert players adaptive game Al is successful if it increases the effective-
ness of opponents, and thus their challenge level. Research into ways to implement
effective adaptive game Al is related to research into the use of machine learning
for agent control, such as evolutionary robotics (Arkin, 1998). In general, this re-
search focusses on learning during the development phase of the control mechanism,
so-called ‘offline’ learning. The first research question therefore reads as follows.

Research question 1: To what extent can offline machine-learning
techniques be used to increase the effectiveness of game AI?

While game AT can be improved by offline learning during game development, the
actual confrontation with human players takes place during the deployment phase of
a game. Game Al that adapts during the deployment phase of a game uses so-called
‘online’ learning. The second research question therefore reads as follows.

Research question 2: To what extent can online machine-learning
techniques be used to increase the effectiveness of game AI?

Most agent-Al research, both inside and outside the field of game research, as-
pires to make agents as effective as possible. In games, highly effective game Al
is entertaining for expert human players. However, successful adaptive game Al
should provide entertainment for all players, not just expert players. Novice players
are entertained by game AI that matches their skill. Entertainment in games is best
ensured if agents are challenging but not overpowering, against human players of all
levels of skill. The third research question therefore reads as follows.

Research question 3: To what extent can machine-learning techniques
be used to scale the difficulty level of game AT to meet the human player’s
level of skill?

7At least, as far as unsupervised learning is concerned. Subsection 2.3.2 lists a few complex
games with game Al that employs supervised learning.
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Name Type AT level Agents  Sections
Box-pushing robot movement operational 1 3.3
Food-gathering search & avoid operational 1 3.4
Duelling spaceships RTS game operational 1 4.1
QUAKE action game tactical 4 4.2
Simulated CRPG CRPG tactical 4 5254
NEVERWINTER NIGHTS CRPG tactical 4 5.5
WARGUS RTS game strategic >50 6.2 64

Table 1.1: Game and game-like environments investigated in the thesis.

This thesis aims at providing a practical approach to the design and implemen-
tation of adaptive game AI. Consequently, it must consider how adaptive game AT is
best applied by game-development companies. Hence, the fourth research question
reads as follows.

Research question 4: How can adaptive game Al be integrated in the
game-development process of state-of-the-art games?

1.6 Thesis Outline

The thesis investigates seven different games and game-like environments. These are
listed in Table 1.1, with their relevant characteristics. From left to right, the five
columus of the table display (i) the environment’s name, (ii) the environment’s type
(game types are discussed in Subsection 2.2.2), (iii) the level of intelligence on which
the AI operates in the environment, (iv) the number of agents under the control of
the AI, and (v) the thesis sections in which the environment is investigated.

The outline of this thesis is as follows.

Chapter 1 implicitly motivates the research, and formulates the problem state-
ment, and four research questions.

Chapter 2 provides background information. It presents (i) a short overview of
the machine-learning techniques used in this thesis, (ii) an overview of the state of
the art in game-Al research, and (iii) an exposition of the use of machine learning in
game Al It contributes to answering all research questions, in particular the second
research question.

Chapter 3 contributes to answering the first research question. It presents a novel
evolutionary technique called the ‘Doping-driven Evolutionary Control Algorithm’
(DECA). When evolving the behaviour of agents in game-like environments, DECA
is able to achieve results that are more effective than results achieved with traditional
evolutionary techniques. DECA is empirically validated by two experiments.

Chapter 4 contributes to answering both the first and second research questions.
It investigates empirically to what extent evolutionary learning can be applied to
improve game Al, both offline and online.
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Chapter 5 contributes to answering the second, third, and fourth research ques-
tions. It presents a novel technique for online adaptation of game Al, called ‘dynamic
scripting’. The effectiveness of dynamic scripting is empirically confirmed in a game
simulation and in an actual commercial game. It is also shown how dynamic scripting
can be used to scale the game AT’s difficulty level.

Chapter 6 contributes to answering the first, second, and fourth research ques-
tions. It discusses how offline adaptive game Al can be used to improve the reliability
of online adaptive game AI, and how adaptive game AT can be integrated in the de-
velopment process of modern games.

Chapter 7 first answers the four research questions and then comes to a conclusive
answer to the problem statement. It finishes with several suggestions for future
research.



Chapter 2

Background

In every real man a child is hidden that wants to play.
Friedrich Wilhelm Nietzsche (1844 1900).

The focus of the present research is on the use of machine-learning techniques to
improve the quality of game AI, specifically, to improve the decision-making capabil-
ities of agents that compete with a human player. This chapter provides background
information in support of the research, on three different subjects, namely machine-
learning techniques in Section 2.1, games in Section 2.2, and the application of
machine learning to game Al in Section 2.3. A summary of the chapter is provided
in Section 2.4.

2.1 Machine Learning

This section provides a concise overview of the machine-learning techniques applied
in the present research. It discusses evolutionary algorithms (2.1.1), artificial neural
networks (2.1.2), evolutionary artificial neural networks (2.1.3), evolutionary control
(2.1.4), and reinforcement learning (2.1.5).

2.1.1 Evolutionary Algorithms

‘Biological evolution’ (Dawkins, 1976, 1986) employs the theories of ‘natural selec-
tion’ (Darwin, 1859) and ‘natural genetics’ (Mendel, 1866) to explain how complex
living beings, tuned to their environment, have come to exist. Evolutionary algo-
rithms are search-and-optimisation algorithms based on the principles of biological
evolution. The most widely known evolutionary algorithm is the ‘genetic algo-
rithm’ (GA), developed by Holland (Holland, 1975; Goldberg, 1989; Béck, 1996).
Many other varieties of evolutionary algorithms have been invented, some of which
are even older than genetic algorithms. Examples are evolution strategies (Schwe-
fel, 1965; Bick, 1996), evolutionary programming (Fogel, 1962; Bick, 1996), clas-
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sifier systems (Holland, 1975; Goldberg, 1989), and genetic programming (Koza,
1992; Kinnear, 1994). All evolutionary algorithms share the following five features.

e Population: Evolutionary algorithms optimise a collection of potential solu-
tions to a problem, called a ‘population’.

e Chromosomes: Evolutionary algorithms encode the potential solutions. The
encoded solutions are called ‘chromosomes’.

e Flitness function: Evolutionary algorithms assign each chromosome in the pop-
ulation a ‘fitness’ value, that indicates how well the potential solution encoded
in the chromosome solves the problem, compared with the other potential
solutions in the population.

e (enetic operators: To create new chromosomes, evolutionary algorithms apply
transformation methods, called ‘genetic operators’, to ‘parent’ chromosomes,
already existing in the population.

e Selection: To select parent chromosomes, evolutionary algorithms apply a se-
lection mechanism to the population, which gives the fittest chromosomes the
highest chance to procreate.

The idea is that an algorithm possessing these features will produce potential
solutions that have a high chance of containing characteristics of well-working so-
lutions. As long as the population has not converged too much, an evolutionary
algorithm has the ability to escape from local optima. Arguably the most impor-
tant property of evolutionary algorithms is that the only requirement for applying
them is the ability to define an adequate fitness function. The main disadvantage of
evolutionary algorithms is that they are not guaranteed to find a good solution, not
even a mediocre one (Goldberg, 1989).

Genetic operators can be divided in three types, namely (i) reproduction opera-
tors, that create a child chromosome by copying a parent chromosome, (ii) mutation
operators, that create a child chromosome by copying a parent chromosome and
making changes to it, and (iii) crossover operators (also called ‘recombination op-
erators’), which combine chromosome parts of two or more parent chromosomes to
create a child chromosome.

Each of the aforementioned varieties of evolutionary algorithms prescribes specific
implementations of chromosome encoding, genetic operators, selection, and other
parameters. Nowadays researchers are unlikely to follow the prescriptions, but use
whatever they think fits best to the problem which they attempt to solve. The
researchers refer to their algorithm with the umbrella name ‘evolutionary algorithm’.

Evolutionary algorithms are employed in Chapters 3, 4, and 6.

2.1.2 Artificial Neural Networks

Artificial neural networks, also called simply ‘neural networks’, are structures that
can learn to emulate a (non-linear) function. A neural network consists of a network
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Figure 2.1: Examples of four different types of neural networks: (a) a perceptron,
(b) a two-layer feed-forward network, (c) a general feed-forward network, and (d) a
recurrent (Elman) network.

of interconnected nodes, or ‘neurons’. Each neuron can receive input signals from
other neurons via its incoming connections, and can send an output signal to other
neurons over its outgoing connections. Neurons in the so-called ‘input layer’ receive
signals from outside the network. Neurons in the so-called ‘output layer’ provide a
reaction to the received signals over their outgoing connections. Neurons that are
neither in the input layer nor in the output layer are called ‘hidden neurons’.

For neuron n the output signal o, is calculated as follows.

on = f((z w;a;) + b) (2.1)

In this equation, w; is a weight value attached to incoming connection i, a; is the
signal received via incoming connection i, b is a bias value, and f is a so-called
‘activation function’. Two common activation functions are (i) a threshold function,
that maps the output of the neuron to either 0 or 1, and (ii) a sigmoid function, that
maps the output to a value in the range [0, 1] (McCulloch and Pitts, 1943; Aleksander
and Morton, 1990; Russell and Norvig, 2003).

Figure 2.1 displays examples of four common neural-network architectures,
namely of (a) a perceptron, (b) a layered feed-forward network, (c) a general feed-
forward network, and (d) a recurrent network.

A perceptron, of which an example is shown in Figure 2.1(a), is the simplest form
of neural network (Rosenblatt, 1958; Minsky and Papert, 1988; Russell and Norvig,
2003). It contains only an input and an output layer.
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A layered feed-forward network, of which an example is shown in Figure 2.1(b),
contains hidden neurons organised in a sequence of layers. Each layer can receive
input signals from the immediately-preceding layer only. A layered feed-forward
network with one hidden layer is commonly called a ‘two-layer feed-forward net-
work’ (the second layer being the output layer; by convention the input layer is
not counted). A single-layer feed-forward network is a perceptron (Aleksander and
Morton, 1990; Russell and Norvig, 2003).

A general feed-forward network, of which an example is shown in Figure 2.1(c),
contains hidden neurons organised in a sequence. Each neuron can receive input
signals from all neurons in the input layer, and from all neurons that are before it
in the sequence. In other words, all possible feed-forward connections are allowed
(Bishop, 1995)."

A feed-forward network is represented by an acyclic graph. A recurrent network
is represented by a cyclic graph. It does not limit its connections to a feed-forward
structure. A well-known form of recurrent network is the so-called ‘Elman network’,
of which an example is shown in Figure 2.1(d) (Elman, 1990). An Elman network
organises hidden neurons in layers. Recurrent connections are allowed between neu-
rons within a layer. The recurrent connections are used to feed the output of neurons
back into the network with a time-delay. Hence, they allow the network to support
a short-term memory.

A neural network must be trained to emulate a desired function. This is com-
monly done with the help of a set of typical training samples, called the ‘training
set’. A well-known algorithm that trains a neural network is ‘backpropagation’.
This algorithm tests inputs from the training set, and propagates the error between
the achieved and desired outputs back into the network, updating the connection
weights (Aleksander and Morton, 1990; Russell and Norvig, 2003). When the aver-
age error on the training set is minimised, the network is validated using a ‘test set’
of typical samples, different from the training set. If the network achieves inferior
results on the test set, this is usually caused by the network overfitting the training
set. Common causes for overfitting are the use of a network with too many nodes,
or the use of a training set with too few or untypical samples.

Neural networks are used in Chapters 3 and 4.

2.1.3 Evolutionary Artificial Neural Networks

Evolutionary artificial neural networks use the power of evolutionary algorithms to
design neural networks. A typical application of evolutionary algorithms to neural-
network design is an alternative for neural-network-training algorithms to determine
the connection weights of the network. Other possibilities are the design of a net-
work architecture and the tuning of network parameters. Combinations of these

IThe most appropriate name for a general feed-forward network is ‘feed-forward network’. In the
literature, however, such networks are not conventional (Hertz, Krogh, and Palmer, 1991; Russell
and Norvig, 2003), and the term ‘feed-forward network’ is often used to denote layered feed-forward
networks. To avoid confusion I will use the term ‘general feed-forward network’ to denote networks
that allow any feed-forward connection.
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possibilities, such as designing the network architecture in parallel with determining
the weight values, are also an option (Schaffer, Whitley, and Eschelman, 1992; Yao,
1995). A common design for an evolutionary algorithm that builds neural networks
is as follows (cf. Albrecht, Reeves, and Steel, 1993; Yao, 1995).

e The neural networks are encoded as a chromosome by storing all connection
weight values. If the network architecture is evolved in parallel with the weight
determination, for each possible connection the chromosome also holds a bit
that indicates whether the connection is present or absent.

e The fitness is defined by the error on a training set, where the fitness increases
as the error decreases.

e Besides ‘regular’ genetic operators, often genetic operators are used that are
tailored for neural-network evolution. Three examples of such genetic oper-
ators are (i) operators that switch neurons between networks, (ii) operators
that enable or disable network connections, and (iii) operators that mutate
neurons (Montana and Davis, 1989).

A problem that arises with neural network evolution is that structurally dif-
ferent networks may represent the same function. This is the problem of ‘com-
peting conventions’ (Schaffer et al., 1992).2 Competing conventions increase the
size of the solution space drastically, and marginalise the effect of crossover opera-
tors. While many solutions for competing conventions have been proposed (Hancock,
1992; Karunanithi, Das, and Whitley, 1992; Alba, Aldana, and Troya, 1993; Braun
and Weisbrod, 1993; Thierens, Suykens, Vandewalle, and De Moor, 1993), some re-
searchers consciously ignore the problem (Hancock, 1992), or restrict themselves to
using only mutation operators (‘genetic hill-climbing’) or small populations (Schaf-
fer et al., 1992).

The four main advantages of using evolutionary algorithms to design neural net-
works instead of conventional training algorithms such as backpropagation are the
following.

e Evolutionary algorithms can design the neural-network architecture in paral-
lel with the weight determination, while conventional algorithms usually are
restricted to just determining the weights.

e Evolutionary algorithms are designed to escape from local optima.

e Evolutionary algorithms only require a fitness function, while conventional al-
gorithms often need more information (e.g., backpropagation needs the deriv-
ative of the error function).

e Evolutionary algorithms can design a neural network with any architecture,
while conventional training algorithms are restricted to specific architectures
(e.g., backpropagation is restricted to feed-forward networks).

2 Alternative terms found in the literature are the ‘permutation problem’, the ‘problem of iso-
morphism’ and the ‘structural/functional mapping problem’.
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A disadvantage is that evolutionary algorithms are not suited for local optimi-
sation. This means that when a solution close to the optimum is found, the evolu-
tionary algorithm will, in general, not be able to seek out the actual optimum. The
disadvantage can be resolved by applying a local-optimisation procedure (for exam-
ple, one of the regular training algorithms) when it is observed that the evolutionary
algorithm is unable to improve upon the best solution found.

Evolutionary artificial neural networks are used in Chapters 3 and 4.

2.1.4 Evolutionary Control

A ‘plant’ is a process that has input, output, and possibly an internal state. ‘Plant
control’ aims at generating desired plant output by manipulating the input. ‘Evolu-
tionary control’ uses evolutionary algorithms to design plant controllers. Although
control engineers rarely use evolutionary techniques, they have been researched
widely (Man and Tang, 1997; Fleming and Purhouse, 2001; Wang, Spronck, and
Tracht, 2003). Evolutionary algorithms can be used to choose or tune parameters
for controllers (e.g., the P(roportional), I (ntegral), and D(ifferential) values for PID-
controllers), or to design new controllers from scratch. Evolutionary artificial neural
networks can be used as controllers, and in that case are referred to as ‘evolutionary
neural controllers’.

Two complicating factors with plant control are that (i) the output need not react
immediately to the input, and (ii) the internal state may cause the plant to behave
differently in situations that, from the outside, seem to be equal. These complicating
factors make it difficult, if not impossible, to determine whether an output of a plant
is desirable. For plant control a training set, that couples desirable output values to
input values, is therefore hard to design. Evolutionary control commonly analyses
the behaviour of the controller over a test-run to determine the fitness.

The general design of an evolutionary-control experiment is illustrated in Figure
2.2. The experiment searches for a successful controller for a plant. The potential
controller solutions are stored as chromosomes in a population. An evolutionary
algorithm selects parent chromosomes from the population. It applies genetic oper-
ators to these parent chromosomes to generate new controllers. A newly generated
controller is tested by placing it in a ‘control loop’. In the control loop, the con-
troller sends control signals to a plant, and receives feedback from the plant. The
test results (indicating how successful the controller was in controlling the plant) are
used by the evolutionary algorithm to assign a fitness value to the new controller.
The evolutionary algorithm then replaces one of the chromosomes in the population
with a chromosome that represents the new controller.

ELEGANCE, which is an acronym for Engineering Laboratory for Experi-
ments with Genetic Algorithms for Neural Controller Evolution, is an environ-
ment I designed to do experiments with evolutionary neural controllers (Spronck,
1996; Spronck and Kerckhoffs, 1997). It is easily extendable and supports both
feed-forward and recurrent neural controllers, a wide range of genetic operators and
evolutionary algorithm parameters, and many different plants.?

3ELEGANCE is freely available through the Internet from the author’s homepage.



2.1 Machine Learning 21

population

select
evolutionary
algorithm

replace

test test results

controller Lﬁd» plant

feedback

Figure 2.2: General design of an evolutionary control experiment.

Inspired by the encoding of Maniezzo (1993), the evolutionary algorithm em-
ployed in ELEGANCE allows evolving the network’s weights in parallel with its archi-
tecture. The network is directly encoded into a chromosome consisting of an array
of ‘connection genes’. Each connection gene represents a single possible connection
of the network and consists of a single bit and a real number. The bit represents
the presence or absence of a connection and the real value specifies the weight of
the connection. In this encoding scheme, even absent connections have a weight
associated with them. The weight values of inactivated connections function as a
kind of latent memory that can be reactivated by a mutation of the connection bit.

Evolutionary control is employed in Chapters 3, 4, and 6. ELEGANCE is used for
experiments described in Chapters 3 and 4.

2.1.5 Reinforcement Learning

Reinforcement learning is used to train an agent to exhibit specific behaviour by
rewarding and penalising agent actions coupled to states. State/action-pairs that
drive the agent to desirable states are strengthened, while state/action-pairs that
drive the agent to undesirable states are penalised. Rewards and penalties are usually
awarded with a delay, because, when an agent has arrived at a state where a reward or
penalty is given, not only the last action which the agent performed should receive
the award, but the whole sequence of actions responsible for reaching the state
(Mitchell, 1997; Sutton and Barto, 1998; Russell and Norvig, 2003).
Temporal-Difference (TD) learning is a form of reinforcement learning that learns
a Q-function, which is an evaluation function for actions. Once a good Q-function
has been derived, the success of new actions can be predicted and so the action with
the highest expected reward in a given situation can be selected. A drawback of using
TD-learning is that in practice many thousands of training iterations are required
for the Q-function to converge (Mitchell, 1997). An example of the application
of reinforcement learning in games, is TD-GAMMON, a program that learned to
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play BACKGAMMON with TD-learning, using millions of training samples (Tesauro,
1992; Mitchell, 1997; Tesauro, 2002).

Reinforcement learning is similar to evolutionary control in the sense that both
use an evaluation of the behaviour of an agent (or controller) to assign rewards and
penalties. The major difference is that reinforcement learning is a gradient-search
mechanism, that improves one solution by continuously making small changes to it,
while evolutionary control examines each solution once and generates new solutions
using undirected genetic operators.

Reinforcement learning is employed in Chapters 5 and 6.

2.2 Games

This section provides a concise overview of computer games. It presents a short
history of games (2.2.1), an overview of different types of games (2.2.2), and the
state of the art in game-AT research (2.2.3).

2.2.1 History

The very first game in the long lineage of commercial computer games was TENNTS
FOR Two, which is similar to PONG. It was created in 1958 by W. A. Higinbotham,
and ran on a Brookhaven National Laboratory oscilloscope.* The first game that ran
on a computer was SPACEWAR, created in 1962 by Steve Russell at MIT on a PDP-1
computer. In the game, illustrated in Figure 2.3, two players control spaceships that
fire rockets at each other until one of them is destroyed (Levy, 1984). A version
of SPACEWAR, named COMPUTER SPACE, was released by Magnavox as the first
commercial console game in 1971. Magnavox’ example was soon followed by other
manufacturers who released game consoles, the most famous probably being the
1977 Atari VCS (Baratz, 2001).

Inexpensive micro-computers have been sold since the early 1970s. They became
popular in 1977 with the release of the TRS-80 and the Apple IT computers. These
computers were meant both for both business and home users. For the latter group,
games were built and published by dedicated game companies such as Electronic
Arts, Infocom, Origin, Sierra, and SSI. While originally game developers needed
to support a wide variety of computers, in the mid-1980s the IBM-PC became the
industry standard for home computing and thus for home gaming. In parallel de-
velopment, gaming consoles (dedicated game computers that are hooked up to a
television set) became popular, starting with the Nintendo Entertainment System
in 1986 (Baratz, 2001).

4Many argue that the very first game was Tic-Tac-Tor, programmed in 1952 by A. S. Douglas
for the EDSAC computer, which used a cathode-ray tube to display the playing grid. However,
in my opinion T1c-Tac-ToE is an analytical game, and as such does not deserve the title of first
commercial computer game. Note that computers played analytical games even before 1952: in
1951 D. G. Prinz built a CHEss-playing program, that was the first program to solve a CHEsS
problem (Van den Herik, 1983).
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Figure 2.3: SPACEWAR, great-great-grand-parent of modern games.

The continuous advances in processing power and capabilities of home comput-
ers, caused games to become increasingly complex. While in the 1980s a team of
five people could create a top-rated game, in the 1990s game-development teams
consisted of hundreds of people. The cost of producing a game grew accordingly.

Since the start of the twenty-first century, the game industry has grown to surpass
the multi-billion-dollar Hollywood movie industry in revenues (Fairclough et al.,
2001; Snider, 2002). The market for PC and console games now only allows for large
game-development companies, supported by wealthy publishers. For the smaller
developers, a new market has opened up with handheld gaming. It is, however, only
a matter of time before the domain of handheld game development also is taken over
by large game developers (Spronck and Van den Herik, 2003).

For a long time the processing power of computers was mainly invested into cre-
ating better graphics. In the late 1990s specialised 3D video cards became affordable
and widespread. This freed up processing power for other game-play features, such
as artificial intelligence (Tozour, 2002b). Game-Al programming has become an
important activity in game development, instead of something that is added in the
last weeks before a game is released. Therefore the subject of this thesis, game Al,
is relevant for the game industry as it exists today.

2.2.2 Game Types

Games can be divided into different categories. There is no general consensus on
what those categories are.> My view is that there are six categories of games: ac-
tion games, adventure games, puzzles, role-playing games, simulations, and strategy
games. I discuss the different categories below.

Action: Action games are games that require players to use mainly their reflexes to
beat the game. The five main types of action games are arcade games (such as

5For example, Fairclough et al. (2001) distinguish ‘action games’, ‘adventure games’, ‘role-
playing games’ and ‘strategy games’. Schaeffer (2001) adds to these ‘god games’ and ‘sports games’.
Laird and Van Lent (2001) have a similar view, but make a clear distinction between ‘team sports
games’ and ‘individual sports games’.
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PACMAN), platform games (such as PRINCE OF PERSIA), sports games (such
as FIFA SOCCER), 3D shooters (such as QUAKE), and 3D sneakers (such as
THIEF). Nowadays the first two types have almost died out, while the others
are arguably the most popular types of games available. The game AT in action

games controls individual agents on an operational and tactical level.

Adventure: Adventure games are story-driven games that require players to fol-
low a specific path towards the end of the game. The path is littered with
puzzles of all kinds that players must solve, using their intellectual skills. The
two main types of adventure games are text adventures or interactive fiction
(such as ZORK), and graphical adventures (such as KING’s QUEST). Nowadays
the adventure-game genre seems to have almost died out, although amateurs,
some surprisingly talented, still produce these games (Montfort, 2004). Char-
acters in adventure games can only react in a pre-defined way to specific player
actions. As such, game Al is absent for adventure games. °

Puzzle: Puzzle games are games that require players to apply their intellectual
skills to solving a puzzle. The two main types of puzzle games are time-free
puzzles (such as SOKOBAN), and time-constrained puzzles (such as TETRIS).
Puzzle games are, in general, not very popular, except for handheld computers.
Puzzles do not require game Al.

Role-playing: Computer role-playing games (CRPGs) are story-driven games that
require players to assume the role of a game character. Players are sent on
a quest, usually with a fantasy or a science-fiction theme. The quest mainly
involves exploration and tactical combat. The two main types of CRPGs
are single-player CRPGs (such as BALDUR'S GATE), and massive multiplayer
online games (such as EVERQUEST). After almost having died out in the
1990s, CRPGs have become quite popular again nowadays. The game AT in
CRPGs controls individual agents on an operational and tactical level.

Simulation: Simulation games are games that require players to observe and inter-
act with a simulation. The two main types of simulation games are god games
(such as THE Sims), and vehicle simulations (such as FLIGHT SIMULATOR).
Simulations always have been fairly popular. The amount of game Al that
pervades a simulation game depends on the level of realism of the simulation.

Strategy: Strategy games are games that require players to use their strategic and
tactical skills to guide a group of agents to victory. The two main types of
strategy games are turn-based strategy games (such as CIVILIZATION and RATL-
ROAD TYCOON), and real-time strategy games (such as WARCRAFT). Strategy
games have been popular since the 1990s. The game Al in strategy games
controls large groups of agents on an operational, tactical and strategic level.

6Some adventure games, especially text adventures, contain characters that exhibit seemingly
intelligent behaviour, but in general their choice of actions is based on simple probability. They
are not in the game as opponents for the player, but as puzzles to be solved (Lebling, 1980).
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Type Games Sections
Action QUAKE 4.2
Role-playing Simulated CRPG 5.2 54
Role-playing NEVERWINTER NIGHTS 5.9
Strategy Duelling spaceships 4.1
Strategy WARGUS 6.2-6.4

Table 2.1: Game types investigated in the thesis.

Many games that are in existence today fall into more than one of the categories.
To stand out, game developers attempt to combine game genres to create an original
game that exhibits the best of different categories (Slater, 2002). For instance,
vehicle simulations are often enhanced with action elements, and action games are
often enhanced with elements from strategy games. Complex game Al is encountered
mainly in role-playing games and strategy games.

Table 2.1 lists the game types discussed in this thesis. From left to right, the
three columns represent (i) the game type, (ii) the games of this type discussed, and
(iii) the corresponding thesis sections.

2.2.3 Game-Al Research

Game Al is of interest to two different groups, namely (i) game developers, who aspire
to have game Al keep up with game enhancements, and (ii) academic researchers,
who profess to have a high-level view of the field of game AI. Surprisingly, there is
little communication between these two groups (Sawyer, 2002). Game developers
complain that academics fail to get out of their ivory tower to help them with the
practical implementation of game Al (Laird, 2000; Tozour, 2002b). Academics claim
they cannot get their foot in the door of game development, because of industry
secrets (Sawyer, 2002; Buro, 2003a), tight schedules (Sawyer, 2002), and lack of
funding (Laird and Van Lent, 2001; Sawyer, 2002). Consequently, game developers
and game researchers tend to remain in their own communities.

Fortunately, this trend is changing. Game developers recognise they need help
from academic communities to implement game AI that can cope with the com-
plexities of modern games (Laird and Van Lent, 2001; Sawyer, 2002; Rabin, 2004b).
Game resources are freed up for more advanced game AT (Laird, 2000). Academics
are allowed access to modern game engines for their research (Laird, 2000), through
open source, or through toolsets released with the games. Nowadays, many acad-
emic AT researchers attend game development conferences, and occasionally a game
developer visits an academic conference on game-Al research.

Not only game developers can benefit from the work of AI researchers, but Al
researchers have much to gain from the work of game developers as well. Since the
goal of game Al is to make human players believe that their opponents are actually
controlled by other humans (Laird and Van Lent, 2001; Sawyer, 2002; Livingstone
and McGlinchey, 2004), modern games are nothing less than a practical implementa-
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tion of a Turing Test (Turing, 1950). Even small steps that AT researchers can take
towards human-like game Al are welcomed by game developers, and, when imple-
mented in an actual game, will be tested out in practice (Laird and Van Lent, 2001).
Furthermore, games are a popular pastime, which may help to attract students to
the field of Al research, and gain attention from popular media.

This thesis aims at bridging the gap between academic research and the daily
practice of game development. It investigates the application of machine-learning
techniques to game AI. A major requirement of the techniques investigated is their
practical applicability in modern games.

2.3 Machine Learning and Game Al

This section clarifies the three different ways in which machine learning can be
applied to game AI, namely offline learning (2.3.1), supervised learning (2.3.2), and
online learning (2.3.3). Tt also discusses the requirements that online learning of
game AT must meet (2.3.4).

2.3.1 Offline Learning

‘Offline learning’ of game Al is learning that takes place while the game is not
being played by a human (Charles and McGlinchey, 2004; Funge, 2004). This can
be learning from samples or learning by self-play (i.e., the computer controlling
all sides in the game). A typical application of offline learning is tuning game-
AT parameters during the ‘quality assurance’ phase of game development. A more
advanced application is creating new tactics for opponents by self-play.

Although offline learning is a common technique used in analytical games
(Tesauro, 1992; Schaeffer, 1997; Schaeffer, Billings, Pefia, and Szafron, 1999;
Donkers, 2003; Enzenberger, 2003; Kocsis, 2003; Van der Werf, 2004; Winands,
2004) and is sporadically used in academic research of commercial games (Ballard,
1997; Laramée, 2002a; McGlinchey, 2003; Spronck and Van den Herik, 2003), the
literature provides little or no examples of offline learning used by professional game
developers, other than tweaking a few parameters (Biasillo, 2002; Woodcock, 2002).
Neither did my own contacts with game developers turn up any evidence of offline
learning in professional games. This is somewhat surprising, since offline learning
takes place entirely ‘in-house’, and therefore is the least risky application of machine
learning to games. Chan et al. (2004) surmise that the use of offline learning of game
AT to help game designers and programmers for the purpose of quality assurance is
the first step to introduce machine-learning techniques in the game industry.

In this thesis offline learning in games is discussed in Chapters 3, 4, and 6.

2.3.2 Supervised Learning

‘Supervised learning’ of game Al takes places while the game is being played by a
human. It implements changes to the game AI by processing immediate feedback on
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any decision that the game AI makes. The feedback indicates whether a decision is
desired or undesired. With supervised learning of game AI the human player controls
what is being learned, either by providing the game AI with samples of behaviour to
be imitated, or by rewarding desired behaviour and penalising undesired behaviour.

When supervised learning is part of a game, it requires the cooperation of the hu-
man player, i.e., the learning is part of the game-play design. Very few games incor-
porate supervised learning. Two well-known examples of such games are CREATURES
and BLACK & WHITE. In both games, the agent behaviour is partly determined
by a learning structure (the agent’s ‘brain’). In CREATURES the learning structure
consists of a neural network (Adamatzky, 2000), and in Br.ack & WHITE it consists
of a decision tree and perceptrons (Evans, 2001 & 2002; Fu and Houlette, 2004). The
human player trains the learning structure by rewarding agents when they exhibit
desired behaviour, and penalising them when they exhibit undesired behaviour.

This thesis is on automatic learning of game AI. Supervised learning is not au-
tomatic, for it requires human intervention. Therefore, supervised learning will not
be discussed further in this thesis.

2.3.3 Online Learning

‘Online learning’ of game Al is learning that takes place while the game is being
played by a human (Charles and McGlinchey, 2004; Funge, 2004).” Through online
learning, game AT automatically adapts in accordance with the human player’s style
and tactics. There are two main reasons to implement adaptive game AT, namely (i)
the game AI makes exploitable mistakes, which makes the game too easy, and (ii)
the game AT’s skill is not in the same league as the human player’s skill, which makes
the game either too easy or too hard. Both reasons, if neglected, are detrimental to
a game’s entertainment value.

Some academic research has investigated online learning in games (Demasi and
Cruz, 2002; Laramée, 2002b; Mommersteeg, 2002; Demasi and Cruz, 2003; Aha and
Molineaux, 2004; Graepel et al., 2004; Le Hy, Arrigoni, Bessiérre, and Lebeltel, 2004;
Jones and Goel, 2004; Leen and Fyfe, 2004; Spronck, Sprinkhuizen-Kuyper, and
Postma, 2004c; Ulam, Goel, and Jones, 2004). In practice, however, game publishers
are reluctant to release games with online-learning capabilities (Funge, 2004). Their
main fear is that the game learns inferior behaviour (Woodcock, 2002; Charles and
Livingstone, 2004). Therefore, the few games that contain online learning, only do
so in a severely limited sense, in order to run as little risk as possible (Charles and
Livingstone, 2004).

Two less-risky possibilities for online learning in games are (i) to change automat-
ically a few parameters (e.g., in NASCAR RACING 2003 SEASON and THE FALL OF
Max PAYNE), and (ii) to switch automatically between several manually-designed

7Supervised learning (2.3.2) also takes place online. Therefore, to be absolutely clear, ‘online
learning’ should be named ‘unsupervised online learning’. However, in the literature, when learn-
ing is mentioned, it is usually assumed that unsupervised learning is meant. This thesis does
not investigate supervised learning. I therefore use the shorter term ‘online learning’ to refer to
‘unsupervised online learning’.
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varieties of the game AI, such as different formations of enemy groups (e.g., in DE-
SCENT 3: MERCENARY and WWII: FRONTLINE COMMAND). While these simple
attempts to implement adaptive game Al can be surprisingly effective (Funge, 2004),
they are not always appreciated by game players.®

In this thesis online learning in games is discussed in Chapters 4, 5, and 6.°

2.3.4 Online Learning Requirements

After a search through the literature, personal communication with game developers,
and applying our own insights to the subject matter, we arrived at a list of four
computational and four functional requirements, which online adaptive game Al
must meet to be applicable in practice.

The computational requirements are necessities: failure of an online adaptive-
game-Al technique to meet the computational requirements makes it useless in prac-
tice. The functional requirements are not so much necessities, as strong preferences
by game developers: failure of an online adaptive-game-AT technique to meet the
functional requirements means that game developers will be unwilling to include it
in their games, even when it yields good results and meets all four computational
requirements. The four computational requirements are the following.

Speed: Online learning in games must be computationally fast, since learning takes
place during game-play (Laird and Van Lent, 2001; Nareyek, 2002; Charles and
Livingstone, 2004; Funge, 2004).

Effectiveness: Online learning in games must create effective game Al during the
whole learning process, to avoid it becoming inferior to manually-designed
game Al thus diminishing the entertainment value for the human player
(Charles and Livingstone, 2004; Funge, 2004).1°

Robustness: Online learning in games has to be robust with respect to the ran-
domness inherent in most games (Chan et al., 2004; Funge, 2004).

Efficiency: Online learning in games must be efficient with respect to the num-
ber of trials needed to achieve successful game Al, since in a single game, a
player experiences only a limited number of encounters with similar groups of
opponents.

8For instance, after the release of THE FALL oF Max PAYNE, many players complained that if
they played the game too well, the opponents soon achieved capabilities that made them almost
impossible to defeat. Players started to take deliberate damage, in order to fool the game into
assuming the difficulty level should not be increased.

9Note that the term ‘online’ as used in this thesis should not be confused with the popular
meaning of ‘online’ to refer to activities that are performed over the internet. For instance, the
work of Baxter, Tridgell, and Waever (1998) in which reinforcement learning is applied to improve
a CHEss evaluation function using games played through the internet, is actually an example of
offline learning, since the evaluation function is changed only after the games have been played.

10Usually, the occasional occurrence of a non-challenging agent is permissible, since the player
will attribute an occasional easy win to luck. Note that, if adaptive game AI meets this requirement,
the main fear of game publishers, that agents will learn inferior behaviour, is resolved.
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The four functional requirements are the following.!!

Clarity: Online learning in games must produce easily interpretable results, because
game developers distrust learning techniques of which the results are hard to
understand.

Variety: Online learning in games must produce a variety of different behaviours,
because agents that exhibit predictable behaviour are less entertaining than
agents that exhibit unpredictable behaviour.

Consistency: The average number of trials needed for adaptive game Al to produce
successful results should have a high consistency, i.e., a low variance, to ensure
that it is rare for players to find that learning in a game takes exceptionally
long.

Scalability: Online learning in games must be able to scale the difficulty level of
its results to the experience level of the human player (Lidén, 2004).

To meet the four computational requirements, an online learning algorithm must
be of ‘high performance’. According to Michalewicz and Fogel (2000), the two main
factors of importance when attempting to achieve high performance for a learning
mechanism are the exclusion of randomness and the addition of domain-specific
knowledge. Since randomness is inherent in most games, it cannot be excluded.
Therefore, it is imperative that the learning process is based on domain-specific
knowledge (Manslow, 2002).

Obviously, it is hard to create an online-learning technique for games that meets
all the eight requirements. However, the ‘dynamic scripting’ technique, discussed in
Chapter 5, is designed to do just that.

2.4 Chapter Summary

This chapter provided background information on the research in this thesis. It dis-
cussed machine-learning techniques used in the research (evolutionary algorithms,
artificial neural networks, evolutionary artificial neural networks, evolutionary con-
trol, and reinforcement learning), and gave an overview of commercial computer
games and game-Al research. It distinguished three different ways in which machine
learning can be applied to game Al namely (i) offline learning, (ii) supervised learn-
ing, and (iii) online learning. For online learning four computational requirements
were listed, namely the requirements of (i) speed, (ii) effectiveness, (iii) robustness,
and (iv) efficiency. Furthermore, four functional requirements were listed, namely
the requirements of (i) clarity, (ii) variety, (iii) consistency, and (iv) scalability. The
focus of this thesis is on unsupervised learning, that is, on offline and online learning.

HThe first two functional requirements, the requirements of clarity and variety, were expressed
by three of the lead developers of BioWare Corp, during a personal exchange I had with them in
2003.






Chapter 3

Doping in Agent Control

Better Living Through Chemistry.
— Advertising slogan of Monsanto Corporation.

Agents in games have a task to accomplish; usually, it is defeating a human player.
Game Al controls the behaviour of the agents in game environments. The present
chapter! investigates evolutionary control of agents in game-like environments. A
game-like environment has two major characteristics with respect to agents, namely
(i) agents have only a limited view of the environment, and (ii) agents can interact
with the environment to accomplish their tasks.

Evolutionary control is an effective technique for creating the controllers of the
agents (2.1.4). To achieve good results, evolutionary control must deal with the
‘problem of hard instances’. This chapter explores a novel technique designed to
alleviate the problem of hard instances, called the ‘Doping-driven Evolutionary Con-
trol Algorithm’ (DECA). Section 3.1 describes the problem of hard instances, and
introduces DECA. Section 3.2 describes the experimental procedure employed for
evaluating DECA. Sections 3.3 and 3.4 are devoted to two experiments that confirm
DECA’s effectiveness. Section 3.5 provides a general discussion of the experimental
results. A summary of the chapter is provided in Section 3.6.

3.1 DECA and the Problem of Hard Instances

Agents in game-like environments have a task to accomplish. A ‘task instance’ is
a specific example of the environment in which the agent resides. Evolutionary
control can be used to determine the agent’s behaviour in the environment (2.1.4).
Evolutionary control tends to favour controllers that solve easy task instances, but
that fail to solve the hard ones. This phenomenon is called ‘the problem of hard
instances’ (Spronck, Sprinkhuizen-Kuyper, and Postma, 2001a). It can be alleviated
by the Doping-driven Evolutionary Control Algorithm (DECA), which is based on

IThis chapter is based on a paper by Spronck, Sprinkhuizen-Kuyper, Postma, and Kortmann
(2003c), and a submitted paper by Spronck, Sprinkhuizen-Kuyper, and Postma (2005).
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the notion of ‘doping’. This section explains the problem of hard instances (3.1.1),
provides background information on doping (3.1.2), and defines and explains DECA
(3.1.3). From hereon I will refer to a ‘task instance’ with the shorter term ‘instance’.

3.1.1 The Problem of Hard Instances

Evolutionary learning is effective for creating the controllers of situated agents
(Arkin, 1998). When applying evolutionary learning to controller design, the map-
ping executed by the controller is generated by setting the controller parameters. The
quality of controllers is defined in terms of an appropriate measure as determined
by the fitness function. In general, the fitness function is based on the evaluation of
a controller on a series of typical instances varying in difficulty from easy to hard.
An easy instance is an instance for which a solution can be found easily, i.e., in the
search space, solutions to easy instances are abundant and located in ‘flat’ regions of
the search space. In contrast, a hard instance is an instance for which it is difficult
to find a solution, i.e., in the search space, solutions to hard instances are rare and
located at ‘peaks’ surrounded by inferior solutions (Spronck et al., 2001a).

In the evolutionary learning process new controllers are generated by recombining
elements of previously-generated controllers, favouring those that have a relatively
high fitness. Obviously, a controller that solves at least one of the instances is
assigned a higher fitness value than one that solves no instances at all. Since it is
very likely that controllers that cope with easy instances are discovered before those
that cope with harder instances, the performance on the easy instances determines
the course of the evolutionary process to a great extent. Therefore, the evolutionary
search is more or less confined to the regions of search space where most of the
solutions to easy instances reside. Unless a good solution that covers both easy and
hard instances is found in the vicinity of these regions, the end result is a controller
that handles easy instances well, but fails on the hard ones. This is called ‘the
problem of hard instances’.

If the problem of hard instances is not dealt with, evolutionary algorithms are
bound to produce inferior solutions to task control problems. To deal with the prob-
lem of hard instances, I propose the Doping-driven Evolutionary Control Algorithm
(DECA). DECA is based on the notion of ‘doping’, which is explained below.

3.1.2 Doping

Doping is defined as the addition of some very good solutions to a population (usually
the initial one) in order to facilitate the evolution process. These solutions may be
generated by a different algorithm or may express the user’s knowledge about the
problem domain (Dumitrescu, Lazzerini, Jain, and Dumitrescu, 2000). Common
terms used for similar techniques are ‘seeding’, ‘case injection’ (Louis, 2002) and
‘infusion’ (Spronck et al., 2001a). If there are differences between the exact meanings
of these terms, they are not well defined. The term ‘seeding’ is used in the literature
most often. It refers to the injection of any kind of genetic material into a population.
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I chose to use the term ‘doping’ to refer to the injection of complete solutions into
a population, rather than the injection of any kind of genetic material.

The application of doping (or seeding) is restricted to those cases where it is
important to retain specific genetic material in the population (Dumitrescu et al.,
2000). The best-known example is in the ‘messy Genetic Algorithm’ (mGA), where
in the primordial phase of the evolution the population is doped with all possible
building blocks of a specific length (Goldberg, Deb, and Korb, 1991). Sometimes
doping takes the form of inserting manually-designed solutions into the initial pop-
ulation. An example is the work of Matthews et al. (2000) on a problem in land-use
planning where the initial population was doped with heuristic and expert-based
solutions. In Case-Initialised Genetic Algorithms (Louis and Johnson, 1999), a solu-
tion to a problem similar to the target problem is inserted in the initial population
to facilitate the evolution process in finding a good solution to the target problem.
Grefenstette and Ramsey (1992) created an initial population that consisted of 50
per cent solutions that worked well in the past, 25 per cent manually-designed solu-
tions for the problem in general, and only 25 per cent solutions generated randomly.

While the examples mentioned above demonstrate beneficial effects of doping, it
should be considered whether doping can be detrimental to the evolution process.
Doping genetic material that is unrelated to any known solution, as is done in the
mGA, does little harm to the final solution. However, doping an initial population
with known solutions may lead to inferior results. The reason is that within a
population of random solutions, a fairly good solution is likely to have the highest
fitness, which leads to convergence to a local optimum in the vicinity of the doped
solution. The evolution process is used as a local optimisation process, rather than
as a method to scan the search space. Good solutions that are too remote from the
doped solution are likely to be missed. In order for doping to yield good results in
task-control problems, the evolutionary process needs to be biased to deal with hard
instances. This is exactly what is done in DECA as will be detailed below.

3.1.3 DECA

The Doping-driven Evolutionary Control Algorithm (DECA) ensures that the evo-
lutionary search is confined to those regions of the search space where the solutions
to hard instances are likely to be found. In order to achieve the bias, DECA applies
doping as described in the following six steps.

1. Training-set design: Select a series of instances that encompass most or all
relevant characteristics of a task.

2. Hard-instance selection: Identify a hard instance that encompasses most of
the relevant characteristics.

3. Hard-instance evolution: Evolve a good solution to the hard instance selected
in the previous step.

4. Initialisation: Generate a random population and ‘dope’ this population with
the solution evolved in the previous step.
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5. Evolution: Evolve good solutions to the complete series of instances selected
in step 1 using the doped population.

6. Validation: Evaluate the validity of the evolved solution on a new selection of
instances.

If no domain knowledge is available to select hard instances in step 2, a (time-
consuming but generally applicable) way to identify hard instances is to attempt
to evolve separate solutions to all the instances in the training set, and observe for
which instances the evolution process takes the longest on average.

DECA is expected to yield good results because T assume that there is an asym-
metry in the search space with respect to easy and hard solutions (i.e., local minima
of the fitness function). Solutions to easy instances are readily found in the vicinity
of solutions to hard instances, whereas the reverse is not true. The asymmetry is
caused by the abundance of solutions to easy instances and the relative scarcity of
solutions to hard instances. The validity of this assumption is discussed in more
detail in Subsection 3.5.1.

3.2 Experimental Procedure

To evaluate the effectiveness of DECA, two experiments were performed with two
different tasks. The first task is a box-pushing task wherein a robot has to push a box
between two walls. The second task is a food-gathering task in which an agent has
to collect food while avoiding to be damaged. For both tasks neural controllers were
used, which are suitable adaptive structures for situated agents (Arkin, 1998). The
weights and architectures of the controllers were generated using an evolutionary
algorithm, using the ELEGANCE environment (2.1.4).

Preliminary experiments with the evolution of a neural box-pushing controller in-
dicated that a recurrent neural controller outperforms various kinds of feed-forward
controllers on this particular task (Sprinkhuizen-Kuyper, Postma, and Kortmann,
2000b). I therefore decided for both experiments to use a neural network configu-
ration that gave the best results in the preliminary experiments, namely an Elman
network (2.1.2) with a maximum of four hidden nodes, and the network output
values constrained by applying a sigmoid function.

In the experiments the following six genetic operators were employed, which
were found to perform well in evolving solutions for other neural control problems
(Spronck, 1996).

o Uniform crossover: Child chromosomes are created by copying each allele from
one of two parents, each parent having a 50 per cent chance of being selected
for each allele (Goldberg, 1989).

e Biased weight mutation (Montana and Davis, 1989): Child chromosomes are
copies of parent chromosomes, with each weight having a 5 per cent chance to
be mutated by adding a random value selected from the range [—0.3,0.3].
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e Biased nodes mutation (Montana and Davis, 1989): Child chromosomes are
copies of parent chromosomes, with all the input weights of one randomly
selected node changed by adding a random value selected from the range
[—0.3,0.3].

e Nodes crossover (Montana and Davis, 1989): Child chromosomes are created
by copying each of their nodes (including their input connections) from one
of two parents, each parent having a 50 per cent chance of being selected for
each node.

e Node ezistence mutation (Spronck, 1996): Child chromosomes are copies of
parent chromosomes, with a 95 per cent chance of having all incoming and
outgoing connections of one randomly-selected node being removed, and a 5
per cent chance of having all absent connections of a randomly-selected node
being activated.

o Connectivity mutation (Spronck, 1996): Child chromosomes are copies of par-
ent chromosomes, with each connection having a probability of 5 per cent to
switch from being connected to being disconnected and vice versa.

During evolution, one of these six operators was selected at random. For the
crossover operators, I arbitrarily decided to add only the fittest of the two children to
the population, while the other child was rejected. To alleviate the problem of com-
peting conventions (2.1.3) the hidden nodes of the parents were rearranged to make
their signs match (insofar as possible) before a crossover took place (Thierens et al.,
1993). Newly-generated individuals replaced existing individuals in the population,
while taking into account elitism. Crowding (Goldberg, 1989) with a factor of 3 was
used as replacement policy. For the selection process, size k tournament selection
(Goldberg and Deb, 1991) was used, with k = 2 for the box-pushing experiment and
k = 3 for the food-gathering experiment.

In all experiments, the population size was equal to 100 and real-valued weights
were used. In preliminary experiments larger population sizes were tested, with
a maximum of 250, but these did not give significantly better results. Based on
the observed convergence rates, I set the maximum number of generations to 35
for the box-pushing experiment, and to 30 for the food-gathering experiment. Pre-
liminary experiments showed that in rare cases slightly better solutions could be
achieved if the evolution was allowed to continue for more generations, but in my
view the considerable increase in computation time required was not worth the small
improvement in performance.

Having discussed the experimental procedure, I now turn to the description of
the two experiments to evaluate the effectiveness of DECA.

3.3 Box-Pushing Behaviour

The box-pushing task is the first task to evaluate DECA. The task involves the
pushing of a box between two walls. A simpler version of the task was introduced



36 Doping in Agent Control

I I R R R B

Khepera Sinluatnr

!_!_I_V—T!_!—!_I_PJ new| load| save| sten| run| reset| connand| ?| linfo| +|-| auit|

Figure 3.1: Simulation environment of the Khepera robot.

by Lee, Hallam, and Lund (1997). Pushing an object (in this case a circular box)
between two walls is an elementary behaviour that is relevant in, for instance, the
game of robot soccer in which a ball has to be pushed towards the opponent’s
goal (Asada and Kitano, 1999). The task is non-trivial, because it requires the
agent to adapt continuously to the position of the ball as perceived through the
noisy sensors. Elementary behaviours, of which the box-pushing task is only an
example, are believed to underlie more complex behaviours such as target following,
navigation and object manipulation. I describe the box-pushing task in Subsection
3.3.1, present the achieved results using DECA in Subsection 3.3.2, and provide a
discussion of the results in Subsection 3.3.3.

3.3.1 The Box-Pushing Task

To study box-pushing behaviour, a publicly available mobile robot simulator was
employed. The simulator is based on the widely used mobile robot Khepera (Mon-
dada, Franzi, and Jenne, 1993). Tt is illustrated in Figure 3.1. The square area on
the left side is the robot world and measures 1000 x 1000 units. The grey circle rep-
resents the robot, the black circle the box, and the six small black dots the starting
positions of the box (the upper three dots) and the robot (the lower three dots).
The starting positions can be combined to nine instances, that differ in the initial
configuration of robot and box (illustrated in Figure 3.4).

The (simulated) Khepera displayed in Figure 3.2 is equipped with eight sensors
and two motors, one for each of the wheels. The sensors provide the robot with prox-
imity values. For the purpose of the experiment, the simulator was coupled to the
ELEGANCE environment. The Khepera simulation is controlled by a neural network
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Neural controller inputs:

0to7: Sensor 0 to 7 proximity values

8: Sensor 0 - 1
9: Sensor 1 -2
10: Sensor2 -3
11: Sensor 3 -4
12: Sensor4 -5
13: Sensor 6 -7

Inputs 8 to 13 are the edge detectors
(see text for explanation)

Figure 3.2: Schematic overview of the Khepera robot, with a mapping to the neural
controller inputs.

with fourteen inputs, provided by the eight proximity sensors and six additional
virtual ‘edge-detector’ sensors. The outputs of the virtual sensors are defined as the
differences in proximity values between all pairs of neighbouring sensors, e.g., sensor
8 gets the proximity value of sensor 0, from which the proximity value of sensor
1 is subtracted. It is important to note that the Khepera simulation is stochastic
because the sensors and controller outputs generate noisy signals.

The motors driving the wheels are controlled by the outputs of two neural net-
works, one for the left and one for the right wheel. Exploiting the mirror symmetry
of the perception-to-action mapping, the two neural networks are identical except
for the mapping of sensors to network inputs and the definition of the signs of the
edge-detecting inputs. Figure 3.3 illustrates the different mapping and signs for
both networks. In the figure, the small rectangles at the left of the neural networks
indicate the sensors. In these rectangles, x — y indicates an edge detector in which
the value of sensor y is subtracted from the value of sensor x.

The task set to the simulated robot was to push the box as far away as possible
from its starting position within a limited period of time. Figure 3.4 illustrates the
nine instances numbered 0 to 8. The box-pushing task is difficult because the robot
(i) must identify the box, (ii) must remain behind the box while pushing, (iii) must
prevent the box from getting stuck, and (iv) must deal with noise generated by
the sensors and the motor controls. Preliminary experiments revealed that the nine
instances exhibited these difficulties in various degrees. For instance, in instances 0,
4, and 8, the box is positioned directly in front of the robot, which means the robot
can perform its task by simply moving forward and correcting for small deviations.
Instances 2 and 6 are harder since the initial separation of the robot and box is larger
than in instances 0, 4, and 8. Instances 3 and 5 can be considered the most difficult
because in these tasks the robot suffers more from the roughness of the walls than
in any of the other instances (Spronck et al., 2001a).

At first glance it may seem that instances 2 and 6 are equally difficult, if not
more difficult than instances 3 and 5. However, I found that, in general, evolving a
controller for instances 3 and 5 takes considerably longer than for instances 2 and
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Figure 3.3: The two almost identical networks that drive the left and right robot
motors. The network inputs are proximity values derived from the robot in Figure
3.2.

6, with worse results for the final fitness values reached. The explanation for these
counterintuitive results is as follows. In instances 2 and 6, the robot travels a longer
distance from its starting position to the box than in instances 3 and 5. The longer
distance allows the robot more time and more room to manoeuvre to a good position
to slide the box along the wall. In instances 2 and 6 the robot learns to position
itself directly ‘below’ the centre of the box. In instances 3 and 5, the robot has less
time and less room to manoeuvre to a good position, and so it tends to push the box
‘sideways’, thereby hitting the wall under an inconvenient angle. This is illustrated
in Figure 3.4. In this figure, the circles shown are the robot (largest circles) and
the circular box (slightly smaller circles) at their initial (bottom) and final (top)
positions. The lines connecting the initial to the final positions represent typical
paths followed by the robot and the box.

Sprinkhuizen-Kuyper, Kortmann, and Postma (2000a) determined a suitable fit-
ness function to measure the success of the robot’s behaviour in this experimental
setup. I copied their fitness function, which is defined as follows. If robot; is the
position of the robot at time ¢, and box; is the position of the box at time ¢, the
fitness value assigned to a robot upon completion of a single instance 7 is defined as
follows.

1
F; = d;(boxr,boxy) — 3 d;(boxr,robotr) (3.1)

In this equation, d;(boxr, boxo) represents the Euclidian distance between the initial
(t = 0) and final positions (¢t = T') of the box, and d;(boxr,robotr) the Euclidian
distance between the robot and the box at their final positions for instance ¢ (all
distances are calculated between the centres of the objects). An experimental trial
comprises 1" = 100 steps on each of the nine instances. The average fitness F,, on
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Figure 3.4: The nine instances (0 to 8) and typical trajectories of the robot and the
box. Note that the roughness of the walls hinders the robot in sliding the box along
a wall.

a trial is defined as the average fitness over all instances, i.e., Fyyy = % Z?:O E;.

In the present experiment, to reduce the effect of the noise the overall fitness F’
was defined as the average of the trial fitness values over a number of R repetitions
of trials, ie., F = & Zle Fi,g, with F7 - representing the average fitness Flyg
obtained at the r th repetition. Computational resources constrained the number
of repetitions. The number of repetitions was varied between R = 1 and R = 100
depending on the following considerations. In preliminary experiments I already
determined that controllers with a fitness value of 250 or less on a single trial are
inferior, and remain inferior on replications of the trial.2 The contribution of inferior
controllers to the evolution process is limited, and consequently their ranking need
not be very precise, especially since tournament selection is used. Therefore, in case
of such low fitness values, a single trial suffices (R = 1). For higher fitness values,
the number of repetitions was set to R = 10. For a controller that has the potential
to be the best of the population, the overall fitness was determined on the basis of
R = 100 repetitions. Using this procedure the overall fitness of the fittest controller
has a standard error of the mean of about 1.3, yielding an accuracy of about 2.5
fitness points (reliability of 95%; Cohen, 1995).

The validity of the evolved controllers was confirmed by testing them on a real
Khepera robot. The controllers proved to be effective and efficient in letting a real
Khepera robot push a circular box between walls. It is my opinion that this success
is owing to the high amount of noise inherent in the simulation, which requires an
evolved controller to be robust (Jakobi, 1997).

3.3.2 Results of the Box-Pushing Experiment

One experiment without doping and ten experiments with doping using various solu-
tions were performed, and the overall fitness values were determined. For the doping

2] determined empirically that, in general, controllers with a fitness value of 250 or less worked
well on the easy instances 0, 1, 4, 7 and 8, but were unable to deal with the hard instances 2, 3, 5
and 6.
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Figure 3.5: Fitness values of experiments with doping of a solution to a single
instance (‘0’ to ‘8”), without doping (‘no’) and with doping of all solutions (‘all’).
From left to right, the bars represent the average, the highest, and the lowest fitness.

experiments DECA was applied by executing the six steps described in Subsection
3.1.3. Figure 3.4 shows examples of the trajectories of successful robots on the nine
instances. To determine how doping with a solution to a hard instance compares
to doping with a solution to an easy instance (instead of selecting a hard instance,
as prescribed in step 1), I performed separate doping experiments with solutions
to each of the nine instances (that vary from easy to hard). In addition, a dop-
ing experiment using solutions to all instances was performed. The average fitness
values were obtained by averaging over the highest fitness values obtained in seven
replications of each of the experiments.

I expected that doping with controllers trained on the hardest instances 3 and
5 to yield the best results. Indeed this was what I found. Figure 3.5 displays the
results obtained with doping using controllers trained on a single instance (labelled
‘0’ to ‘8”), without doping (labelled ‘no’) and with doping using controllers trained
on all nine instances (labelled ‘all’). Doping with controllers trained on instances 3
and 5 yield the best results (average fitness of 320.3 and 319.5, respectively), and the
most consistent results (highest/lowest fitness values 322.9/318.1 and 322.1/316.8,
respectively). Doping with controllers trained on all tasks yields better results than
doping with controllers trained on instances that are easy or moderate (i.e., instances
0,1,2,4,6,7, and 8). Presumably, the inclusion of solutions to the hardest instances
contributes to the high fitness obtained in this case. It should be noted, however,
that while doping with all instances gives the highest fitness, the results have a much
higher variance than those obtained by doping with controllers trained on instances
3 and 5 (highest/lowest fitness values 323.0/304.3). T assume that the reason for this
is that the evolutionary algorithm occasionally converges to a local optimum near
to the optimal solution for instances other than 3 and 5.
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Overall, these results show that on the box-pushing task DECA gives a signifi-
cant improvement over non-doped evolutionary learning. The solutions found also
perform considerably better than those found for the same problem by Sprinkhuizen-
Kuyper (2001).

3.3.3 Discussion of the Box-Pushing Experiment

The box-pushing experiment was not specifically designed to test DECA. Yet, I was
pleasantly surprised by the improved results obtained by applying DECA. Notwith-
standing these results, it must be acknowledged that the box-pushing experiment
task is of limited value for evaluating DECA. The reason is that it suffers from
two main shortcomings, namely (i) the task is based on a stochastic simulation re-
quiring many repetitions to obtain reliable results, and (ii) the lack of variety in
possible instances precludes the assessment of the ability to generalise beyond the
instances given (even though the controller’s ability to generalise was demonstrated
by applying it to a real Khepera).

I expected that the success of DECA can be generalised to other evolutionary
control tasks. To support this expectation, I decided to evaluate DECA on a second
control task, designed to deal with the limitations of the box-pushing experiment.

3.4 Food-Gathering Behaviour

The food-gathering experiment was designed to have the following two requirements:
(i) the task should be deterministic, and (ii) the task should allow for generating
instances with variable levels of difficulty. The food-gathering task is described in
Subsection 3.4.1, the achieved results using DECA are presented in Subsection 3.4.2
and a discussion of the results is provided in Subsection 3.4.3.

3.4.1 The Food-Gathering Task

The food-gathering task is designed as follows. A rabbit is placed on a square two-
dimensional grid of N x N cells. The rabbit can move by one step in each of the four
orthogonal directions: north, east, south and west. The grid has periodic boundary
conditions, i.e., it is defined as a torus. As illustrated in Figure 3.6, the rabbit’s field
of vision encompasses all cells that are within two moves from its current position. A
cell may be empty, it may contain one or more carrots, or it may contain one or more
poison bottles. If the rabbit enters a cell that contains ¢ carrots, it removes (eats)
all of them leaving an empty cell, and increases its score by c¢ points. If the rabbit
enters a cell with p poison bottles, it decreases its score by p points. In contrast to
carrots, poison bottles are not removed from the grid when visited by the rabbit. In
each experimental trial, a rabbit has to score as many points as possible within 100
moves. Initially, the rabbit is always positioned in an empty cell.

The rabbit is controlled by a neural network with thirteen inputs. Each input
I is defined as the value of a cell visible to the rabbit (a shaded square in Figure
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3.6; this includes the cell the rabbit currently occupies, which may contain poison).
The magnitude |I] of the input value represents the number of elements within the
patch occupying the cell. The sign of the input indicates whether the patch contains
carrots (I > 0) or poison bottles (I < 0). An empty cell is represented by zero input
(I =0). The network has four outputs, representing the four directions of movement
of the rabbit. The rabbit moves in the direction corresponding to the output with
the highest value.

For the training set grids were randomly generated with N = 15, a total number
of carrots C' = 100 and a total number of poison bottles P varying between 0 and
150. Carrots and poison bottles are clustered in small patches of one to five carrots
or poison bottles per patch. The number of poison patches directly bordering a
carrot patch also varies according to a density value d (d € {0,1,2,3,4}). Arguably,
the complexity of an instance is proportional to d and P, because an increased total
number of poison bottles and an increased density of poison bottles adjacent to
carrots make it harder for the rabbit to collect carrots without losing points.

Table 3.1 displays the twenty instances (numbered 0 to 19) in the training set in
relation to the parameters d and P, including a qualification of their difficulty. For
instances 5 to 17, the parameter d is defined as a range. Figure 3.7 shows six of the
twenty instances that serve as the training set.

To assess the generalisation performance of evolutionary designed rabbits, an
extensive test set of a hundred instances was generated, comprising five subsets of
twenty randomly-generated instances each. The instances within each subset were
generated according to the same values of d and P as specified in Table 3.1.

The fitness F' of a controller (or rabbit) is defined as the average score on the
twenty instances of the training set. Since each instance contains 100 carrots, an up-

o

i

Figure 3.6: Part of the grid defined as the environment of the rabbit. The envi-
ronment contains food (carrots) and danger (poison bottles). The rabbit’s field of
vision consists of all cells (squares) that can be reached in a maximum of two moves
(the shaded squares in the image), i.e., the Manhattan distance = 2.
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instance d P difficulty | instance d P difficulty
0 0 0 very easy 10 1-2 50  medium
1 0 25 very easy 11 1-2 100 medium
2 0 50 easy 12 1-2 150 hard
3 0 100 easy 13 23 50 medium
4 0 150 medium 14 2-3 100 hard
5 0-1 25 easy 15 2-3 150 hard
6 0-1 50 easy 16 3-4 100 hard
7 0-1 100 medium 17 3-4 150 very hard
8 01 150 medium 18 4 100 very hard
9 1-2 25 easy 19 4 150 very hard

Table 3.1: Specification of the twenty instances (numbered 0 to 19) used in the food-
gathering experiments in relation to the density value d and the number of poison
bottles P. In all instances C' = 100.

per bound to the fitness is 100. In most instances it is impossible to reach this upper
bound, because even without poison patches, usually the shortest path connecting
all carrot patches in the grid is longer than 100 steps.

3.4.2 Results of the Food-Gathering Experiment

For the food-gathering experiment two series of tests were compared. In the first
series, the evolutionary algorithm discussed in Section 3.2 was used to evolve, in 30
generations, a neural controller for the rabbit, with a fitness function defined as the
average score of the controller on the twenty grids in the training set. In the second
series DECA was applied, as follows. First, a good controller for a single instance was
evolved. Then a neural controller was evolved with the overall fitness function in 27
generations, using an initial population doped with the solution found for the single
instance. The reason for using 27 (rather than 30) generations for the evolution with
the overall fitness function was to ensure that the computational resources used for
both series of experiments were approximately equal.

I decided to use instance 17 as the hard instance to develop a good controller
for doping. In this instance P = 150 and d = 3—4. I preferred instance 17 over the
seemingly harder instance 19 (with P = 150 and d = 4), because in instance 19 all
carrot patches are completely surrounded by poison. I suspected this would reduce
the complexity of the task, because it would be impossible for a controller to avoid
damage to get to carrots. Therefore, damage avoidance is of less importance for
instance 19 than for instance 17.

R = 100 repetitions of each of the series of tests were run. Of each of the tests,
the controller with the highest fitness on the training set containing twenty grids,
was used as the solution found. Then this controller was evaluated on the test set
containing 100 grids. In the statistical analysis the fitness of a controller was defined
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Figure 3.8: Comparison of the scores of 100 tests with doping and 100 tests without
doping in the food-gathering experiment.

as its score on the test set. In Figure 3.8 the histograms of the experiments with
and without doping are displayed.

As is evident from the histograms, the experiments with doping tend to give
better solutions than those without doping. The minimum score achieved without
doping is 27, while the minimum score achieved with doping is 43. The highest score
achieved is 61 both with doping (twice) and without doping (once). For doping, the
bulk of the scores range from 50 to 60, whereas the bulk of the scores obtained
without doping are more widely distributed, namely between 40 and 60.

Without doping, the score of evolutionary-designed controllers averaged over 100
experiments is 48.9 with a standard error of the mean of 0.6. With doping, the score
averaged over 100 experiments equals 53.6 with a standard error of the mean of 0.4.
From these numbers it can be concluded that the results achieved with doping are
significantly better than those achieved without doping (reliability > 99.9%; Cohen,
1995).

3.4.3 Discussion of the Food-Gathering Experiment

The food-gathering task is deterministic and allows for the generation of novel in-
stances. Both characteristics offer the advantage that the effect of doping can easily
be assessed. Clearly, the results show that doping is useful for enhancing the quality
and generalisation performance of evolutionary-designed controllers.

To illustrate the type of solutions obtained, a striking example is presented in
Figure 3.9. It shows a path followed by a successful rabbit (controller) on a hard
instance (P = 150 and d = 3-4). Despite the ability to move in four directions,
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Figure 3.9: An example of the path taken by a successful rabbit in a hard environ-
ment.

the rabbit moves to the east and south only. In a post-hoc analysis of successful
controllers, I noticed that two of their four outputs (namely one of the two longitude
outputs and one of the two latitude outputs) were disconnected. Constraining the
movement, to two orthogonal directions prevents rabbits from moving in circles,
which leads to suboptimal performance.

3.5 Discussion

The application of DECA to two different tasks showed the feasibility of the DECA
approach. In this section DECA will be discussed in more detail. Subsection 3.5.1
provides insight into why the doping effect occurs. Doping is compared to hill-
climbing in Subsection 3.5.2. T discuss five search techniques that provide an alter-
native approach to deal with the problem of hard instances, namely (i) multitask
learning (3.5.3), (ii) multi-objective learning (3.5.4), (iii) boosting (3.5.5), (iv) island-
based evolutionary learning (3.5.6), and (v) constraint-satisfaction reasoning (3.5.7).
Finally, Subsection 3.5.8 discusses how DECA can be applied to the evolutionary
learning of game Al

Note that I do not claim that evolutionary learning of a neural controller with
DECA provides the best solutions for the problem domains discussed in this chap-
ter. Other techniques that use a training set, such as reinforcement learning, may
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Figure 3.10: Typical developments of fitness for evolutionary learning with doping
(top graph) and without doping (bottom graph). In both graphs the fitness (divided
by 1000) is plotted against the generation. The top curve in each of the graphs shows
the maximum, and the bottom curve the average fitness in the population.

generate solutions of a quality comparable to, or even higher than the quality of the
solutions discovered by evolutionary learning. The point is that these other tech-
niques are also likely to discover better solutions when the doping effect is taken into
account. Therefore, I refrain from discussing such alternative techniques.

3.5.1 Explanation of the Doping Effect

Why is DECA a successful strategy? Below I attempt to provide a qualitative
explanation for the success of doping.

The search space of task control problems is spanned by the adaptable parame-
ters defining the controllers, i.e., by the connection weights in the neural networks.
Hence, the dimensionality of the search space is defined by the number of adaptable
parameters specifying the controllers (the dimensionalities of the box-pushing and
food-gathering controllers are 81 and 92 respectively). As stated in Subsection 3.1.3
I assume that the high-dimensional search space contains abundant regions where
solutions to easy instances are found, but only a few small regions where solutions
to hard instances reside. Because the hard instances encompass many, if not all
of the difficulties posed by the environment, a solution that applies to instances of
arbitrary complexity is likely to be found relatively near to a hard-instance region.
Hence, doping the initial population with a solution specialised to hard instances
leads to good generalised solutions.

The explanation is supported by the development of the fitness of evolution
processes with and without doping. In Figure 3.10 the developments of fitness in
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Figure 3.11: The fitness of doped solutions to a single task, tested on all instances,
averaged over 100 tests. For doping with solutions to each of the nine instances (0
to 8), the graph shows the fitness (the left, black bar), and the standard deviation
(the right, shaded bar).

the evolution of a box-pushing task with doping (the upper graph) and without
doping (the lower graph) are compared. While these are only two examples, I found
that they are typical for all tests. With doping the fitness of the best controller
in the population starts between 200 and 250. Within one or two generations, the
fitness jumps to around 300. After that, the fitness slowly increases towards a
value around 320. Without doping, the fitness starts anywhere between 0 and 200.
Initially, the fitness increases quickly to a value between 200 and 250. After that, the
fitness progresses slowly towards a value of about 310. These different patterns of
development, in particular the quick rise in fitness at the start of the doped evolution
process, suggest that DECA takes the best available solution (the doped one) and
adapts it to handle the other instances.

Further support for the explanation is found in experiments that indicated that
solutions to hard instances also perform reasonably well on the easy instances,
whereas the same is not true the other way round. For the box-pushing task this
is illustrated in Figure 3.11. It shows, for each of the doped controllers used in the
box-pushing experiments, the fitness and standard deviation on all instances, aver-
aged over 100 tests. Controllers evolved on the hardest instances 3 and 5 yield the
highest fitness on all other instances, combined with the lowest standard deviation.

To provide solid evidence for the explanation, first the key assumption in the
explanation for DECA’s success, namely the supposed asymmetry of the search
space with respect to easy and hard solutions, needs to be verified. Moreover,
the belief that solutions to hard instances encompass characteristics of solutions to
easy instances is a major ingredient for DECA’s success, must be confirmed. A
possible approach to this future research is testing DECA on a variety of benchmark
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problems, designed to exhibit specific characteristics with respect to the architecture
of the search space, and with respect to overlapping features between instances.
Tracing the lineage of the best evolved solutions to the benchmark problems, to
determine whether and how they include doped solutions in their ancestry, will be
a key activity in understanding the factors responsible for DECA’s success.

3.5.2 DECA and Hillclimbing

Since the explanation for the doping effect states that the evolution process adapts
the doped solution to become a general solution, the question may be posed whether
DECA may be combined with hillclimbing. Given a doped solution, hillclimbing
may represent a good alternative to standard evolutionary learning to obtain good
results. I believe, however, that hillclimbing is not a good alternative to evolutionary
learning in DECA for the following reason. While the generalised solution may be
in the vicinity of the solution to a hard instance, it is unlikely that it is in the
vicinity of all dimensions of the hard instance. Sometimes, adapting the solution to
the hard instance to generalise over all instances requires large steps in one or a few
dimensions of the search space. In contrast to hillclimbing, evolutionary algorithms
are capable of doing that.

Of course, the nature of the search space depends on the type of problem. Hence,
hillclimbing may yield good results in some cases, which should be examined in future
work. Montana and Davis (1989) support my line of reasoning in this respect, by
stating that hillclimbing does not work well for neural network training, since it
tends to force convergence to a local optimum instead of a global optimum. They
recommend using hillclimbing only in those cases where the best solution achieved
is close to the global optimum.

3.5.3 DECA and Multitask Learning

The principal goal of multitask learning is to improve generalisation performance of
a controller on a task, by leveraging information obtained from controlling related
tasks. It does this by training tasks in parallel using a shared representation. Caru-
ana (1997) claims, and shows empirically, that it is more difficult to train a controller
on an isolated, difficult task, than it is to train a controller on a combination of re-
lated tasks that includes the difficult one. At first glance, this seems to be in conflict
with my claim, that doping with a controller for a hard instance generalises better
than doping with a controller for an easy instance.

As Caruana (1997) explains, the ‘related tasks’ used in multitask learning are not
so much various instances, but simpler subtasks. With DECA the task is the same
for each instance, only the environment differs. The claims Caruana (1997) makes
about multitask learning are, therefore, not in conflict with the claims I make about
DECA. Moreover, I suspect that multitask learning actually suffers from the hard-
instances problem, because it deliberately focusses on easier tasks before tackling a
hard one. It does that for a good reason, namely that the hard task cannot be solved
directly. Obviously, DECA is not intended to deal with these ‘unsolvable’ tasks.
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Louis and Li (1997) use an approach to multitask learning reminiscent of DECA.
They evolve solutions to subtasks and use those to dope the initial population of
an evolution run that solves the overall task. They discovered that doping with the
best solution to each of the subtasks actually results in worse overall solutions than
starting with a randomly initialised population. However, doping with solutions to
subtasks that also give good results on the overall task, leads to significantly better
solutions than achieved with a randomly initialised population. This result supports
my suggestion in Subsection 3.5.1, where it is stated that the doping effect results
from solutions to hard instances encompassing characteristics that are needed to
solve the easier instances.

It is possible that a combination of multitask learning and DECA, where con-
trollers for hard instances of the subtasks are doped, may improve the performance
of either technique alone. This is an interesting notion that warrants exploration in
future work.

3.5.4 DECA and Multi-Objective Learning

Multi-objective learning aims to find a solution that performs well with regard to
all individual objectives in a set of (often) conflicting objectives (Van Veldhuizen
and Lamont, 2000). The main problem of multi-objective learning is that it tends
to get stuck in a local minimum once a solution is found for one of the objectives.
It is generally appreciated (Horn, 1997; Van Veldhuizen and Lamont, 2000) that
a successful Multi-Objective Evolutionary Algorithm (MOEA) needs a secondary
population to store Pareto-optimal solutions (e.g., solutions to single objectives)
sometimes actually involving the secondary population in the evolution process.

The instances used in the DECA experiments bear some resemblance to the
objectives in multi-objective learning. Interpreting the task instances as different
objectives, multi-objective learning techniques can be applied to the problem of
hard instances, since they seek a balance between several conflicting objectives (Van
Veldhuizen and Lamont, 2000). However, the instances in the DECA experiments
do not represent different objectives, but different incarnations of the environment,
while the task to be performed is the single objective. Furthermore, the environ-
ments are mostly not in conflict with each other. Since, in general, multi-objective
learning techniques are geared towards conflicting objectives, they do not exploit the
similarity between the various environments. Therefore, I believe DECA to be bet-
ter suited for handling the particular domain of task control problems. This belief
must be tested in future work.

3.5.5 DECA and Boosting

Boosting (Schapire, 2002) is a learning method, usually employed to design classi-
fiers, that assigns each sample in the training set a weight. At the beginning all
weights are equal, but over time the samples that are handled badly receive higher
weights than those that are handled well, so that the focus of the learning shifts to
the harder samples. If the explanation we gave in Subsection 3.5.1 for the doping
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effect is correct, boosting will at least give evolutionary algorithms a better chance
to escape from local optima where easy instances are handled well but hard instances
are not. However, it does not have DECA’s advantage of starting in a local opti-
mum for a hard instance, in the neighbourhood of which a global optimum should
be located. I therefore expect that controllers created with boosting on average will
be inferior to those created with DECA. Clearly, this expectation requires empirical
validation, which is considered future work.

3.5.6 DECA and Island-Based Evolutionary Learning

Evolutionary algorithms are inherently parallel. On multi-processor computers this
is commonly exploited by dividing the population into smaller sub-populations, each
of which is handled by a different processor. The sub-populations are often referred
to as ‘islands’ (Goldberg, 1989). On each island the population is evolutionary
trained on a particular task. The islands exchange genetic material on a regular
basis. Apart from enabling parallel processing, the islands may converge to different
solutions. The exchange of genetic material might result in an overall solution that
combines the best of the island-based solutions.

Island-based evolutionary learning (Spronck, Sprinkhuizen-Kuyper, and Postma,
2001b) is an attempt to exploit the principles behind parallel evolutionary algorithms
to solve the problem of hard instances. The basic idea of island-based evolutionary
learning is to distribute the population evenly over a few islands, whereby each island
is assigned a different task instance. After all island populations have converged to a
solution to their assigned task, a new population of the best solutions of each of the
islands and a number of random solutions is created. A conventional evolutionary
algorithm is applied to this new population that is trained to deal with all instances.
The idea is that the evolution combines genetic material developed using single
instances to solve the general task.

Clearly, island-based evolutionary learning may very well be applied to the prob-
lem of hard instances. However, empirical studies, using the box-pushing task, have
revealed that island-based evolutionary learning tends to generate solutions that
perform well on the hard instances (even better than when a regular evolutionary
algorithm is applied), but show an inferior performance on the easy instances. As a
consequence, a gain in overall fitness is not obtained (Spronck et al., 2001b). Fur-
thermore, since island-based evolutionary learning evolves a separate solution for all
instances, the computational time required by the island-based evolution process is
much larger than the computational time required by DECA.

3.5.7 DECA and Constraint-Satisfaction Reasoning

Constraint satisfaction reasoning (CSR) deals with problems where the solution has
to satisfy a given set of restrictions or constraints (Tsang, 1993). A solution is
invalid unless it fulfils all the constraints. Hence, in CSR, the problem is to find a
solution that takes into account all constraints rather than one that addresses some
of the constraints. Interpreting the instances as constraints, CSR seems applicable
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to alleviate the problem of hard instances. However, CSR cannot be readily applied
to the problem. The reason is that in CSR all constraints must be strictly satisfied,
whereas in task learning it suffices if the instances are handled reasonably well.

3.5.8 DECA and Game Al

Both the box-pushing task and the food-gathering task have strong ties to tasks
that agents have to solve in modern computer games. The box-pushing task con-
cerns robot control in a noisy environment, which can be compared to, for instance,
controlling a race car in a racing game (Pyeatt and Howe, 1998), or controlling a
soccer-playing agent in a sports game (Van Rijswijck, 2003). The food-gathering
task concerns effective path-finding in an environment filled with dangers and re-
wards, which can be compared to, for instance, army movement in a strategy game
(Buro, 2003b), or maze-traversing in an arcade game (Ledwich, 2003). In games,
the game AT is responsible for controlling the agents. The results achieved with
DECA indicate, that when game Al is created by an evolutionary algorithm, doping
the initial population with game AI that has been evolved on the hardest agent
task, is likely to result in game AT that is more effective than when evolved using a
randomly-initialised population. This conjecture will be used in Chapter 6.

Despite the similarities between the two experimental environments used in this
chapter, and some types of agents in games, the question remains whether the learn-
ing techniques used, evolutionary algorithms and neural networks, are suitable for
game Al. Spronck et al. (2002) provided an answer to that question, stating that
they are suitable for offline learning of game AI, but not for online learning of game
AL Chan et al. (2004) and Madeira, Corruble, Ramalho, and Ratitch (2004) reached
similar conclusions with respect to evolutionary algorithms. Chapter 4 will further
explore this subject.

3.6 Chapter Summary

In this chapter the problem of hard instances was identified, and the DECA approach
was proposed to deal with it. In particular, it was demonstrated how doping an ini-
tial population with a solution to a single hard instance improved the performance on
two quite different tasks. Given the results on the box-pushing and food-gathering
tasks it may be concluded that the problem of hard instances is alleviated by the
application of DECA. Moreover, compared to ‘regular’ evolutionary algorithms, so-
lutions discovered by DECA not only perform better on hard instances, but also
perform better overall, i.e., achieve a significantly higher average fitness. With re-
spect to games, this means that, when evolutionary algorithms are used to create
the game Al, doping the initial population can be expected to generate better results
than when using a randomly-initialised population.



Chapter 4

Evolutionary Game Al

The art of progress is to preserve order amid change
and to preserve change amid order.
— Alfred North Whitehead (1861-1947).

In Chapter 3 it was shown that evolutionary algorithms can improve the behaviour of
agents for task control problems. The present chapter' discusses evolutionary game
AT i.e., game Al that employs evolutionary algorithms. The purpose of using evo-
lutionary algorithms in game Al is providing a high-entertainment value for human
players by evolving challenging agent tactics. Section 4.1 empirically investigates
offline evolutionary game AI, that has the ability to pinpoint potential weaknesses
in the agent’s behaviour, and to design new tactics. Section 4.2 empirically inves-
tigates online evolutionary game AI, that has the ability to improve game-playing
tactics against a specific human player. Section 4.3 provides a general discussion of
evolutionary game AI. A summary of the chapter is provided in Section 4.4.

4.1 Offline Evolutionary Game Al

Offline evolutionary game AT controls agents that are in competition with agents that
employ existing (usually manually-designed) game AI. Offline evolutionary game Al
has two applications: (i) to detect exploits in the existing game AI (Spronck et al.,
2002; Chan et al., 2004), and (ii) to discover new tactics that can be used against the
existing game Al (Spronck et al., 2002; Madeira et al., 2004). Note that, because
human players are only indirectly involved when offline learning takes place, it is
infeasible to use offline evolutionary game AI to adapt the agent’s behaviour to
specific human-player tactics (Madeira et al., 2004). To investigate the effectiveness
of offline evolutionary game Al I tested it on a duelling task in a small strategy
game called PICOVERSE. The approach used consisted of the following four steps.

IThis chapter is based on two papers. Section 4.1 on offline evolutionary game Al is based on a
paper by Spronck, Sprinkhuizen-Kuyper, and Postma (2003a). Section 4.2 on online evolutionary
game Al is based on a paper by Bakkes, Spronck, and Postma (2004).
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Figure 4.1: PICOVERSE.

1. Ewvolution: Evolving duelling behaviour that is successful against the manually-
designed game Al.

2. Analysis: Observing and analysing the evolved duelling behaviour, to gain
insight into which areas of the manually-designed game AT can be improved.

3. Derivation: Deriving potential improvements for the manually-designed game
AL

4. Validation: Implementing the potential improvements in the manually-
designed game Al, and repeating the Fvolution step to investigate their effect.

This section describes the duelling task (4.1.1), the experimental procedure
(4.1.2), the results of the Evolution step (4.1.3), the results of the Analysis step

(4.1.4), the results of the Derivation step (4.1.5), the results of the Validation step
(4.1.6), and a discussion of the results (4.1.7).

4.1.1 The Duelling Task

P1COVERSE, illustrated in Figure 4.1, is a strategy game for the Palm (handheld)
computer. PICOVERSE’s design was inspired by the classic game ELITE by D. Braben
and 1. Bell (Spufford, 2003). It was developed for two reasons: (i) to support and
illustrate views on the design of complex Palm games (Spronck and Van den Herik,
2003), and (ii) in the present context, to investigate the application of machine-
learning techniques to improve game AI.2

In PICOVERSE, a human player controls a spaceship (henceforth called the
‘player’s ship’). In the game, the player’s ship may encounter computer-controlled
enemy ships, and combat may ensue between the player’s ship and the enemy ships.
All ships are equipped with laser guns, and are protected from destruction by their
hulls. Hull strength decreases when a hull is hit by laser beams fired from the laser

?Because of time constraints, in 2003 developments on PI1COVERSE were put on hold, to be
continued at a later date.
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guns. The strength of laser guns and the hull strengths vary from ship to ship. A
ship is destroyed when its hull strength is reduced to zero. Ships are controlled by
changing their acceleration (which increases or decreases velocity), and by chang-
ing their rotation (which steers a ship in a different direction). While the relative
strength of laser guns and relative hull strength of battling ships are important fac-
tors in deciding the outcome of combat, ships have a chance to flee from a battle
even when they are overpowered, provided they are equipped with fast and flexible
drives. However, attempting to flee is a risky action, because a fleeing ship is unable
to counterattack. The reason is that, to flee, a ship must turn its back to its attacker,
and laser guns can only fire within a 180-degree arc at the front of a ship.

As is usual for modern games, the computer-controlled enemy ships are pro-
grammed manually. Upon detecting the player’s ship, an enemy ship will turn
towards it and attempt to catch up with it. When the player’s ship is within laser
range of an enemy ship, the enemy ship will fire its lasers. It will also attempt to
keep the player’s ship within laser range, by matching the speed of the player’s ship.
To evoke a suspension of disbelief, an enemy ship will attempt to escape from a
duel that it is bound to lose, rather than continue fighting until it is destroyed. This
fleeing behaviour is implemented as follows: if the ratio of the current and maximum
hull strength of the enemy ship is lower than the corresponding ratio of the player’s
ship, the enemy ship attempts to flee by turning around and flying away at maxi-
mum speed. This simple yet effective behaviour mimics a basic tactic often used in
games. It makes the opponent intelligence for PICOVERSE non-trivial, despite the
relatively low level of complexity compared to state-of-the-art games.

Figure 4.2 illustrates the manually-programmed behaviour. The duelling space-
ships are represented by the small circles. A ship’s direction is indicated by a line
inside the circle, and its speed is indicated by the length of the line extending from
the ship’s ‘nose’. The dotted arc indicates the laser range. The player’s ship is fixed
at the centre of the screen and directed to the right. During the sequence shown
in Figure 4.2 it remains stationary. From left to right, top to bottom, the pictures
demonstrate the following six events: (i) The two ships starts within viewing range
of each other (the viewing range of the player’s ship is delimited by the large circle).
(ii) The computer-controlled enemy ship moves towards the player’s ship. (iii) The
ships bump head-on into each other, which reduces the speed of both ships to zero.
Both ships are firing their lasers. (iv) The enemy ship has determined it should flee
and turns around. (v) The enemy ship flees. (vi) The enemy ship escapes by leaving
the viewing range of the player’s ship.

The duelling task entails designing successful behaviour for the player’s ship
against the enemy ships. Successful behaviour for the player’s ship can be used to
detect weaknesses in the manually-programmed behaviour of the enemy ships, and
to design completely new tactics.

4.1.2 Experimental Procedure

Offline evolutionary game Al was used to solve the duelling task experimentally. The
success of the experiments with agents in game-like environments (Chapter 3) war-
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Figure 4.2: Manually-programmed behaviour for the PICOVERSE computer-
controlled ships.

ranted a similar approach to the duelling task. The duelling task was implemented
in the ELEGANCE environment (2.1.4). ELEGANCE uses evolutionary learning to
evolve solutions for ‘plants’. Below, I describe four elements of the experimental
procedure: (i) the plant implementation, (ii) the neural-network controller, (iii) the
evolutionary algorithm, and (iv) the fitness function.

The first element of the experimental procedure is the duelling-task plant. The
duelling-task plant represents a player’s ship, in a series of combat situations with
an enemy ship. The player’s ship uses dynamically determined behaviour, and is
called the ‘dynamic ship’. The enemy ship uses manually-programmed, static game
AT (as described in Subsection 4.1.1), and is called the ‘static ship’. For both ships,
laser guns fire automatically at appropriate times, and need not be controlled. Thus,
plant control consists of setting the acceleration and rotation values for the dynamic
ship.

The movement of the ships is turn-based. Movements are executed in an al-
ternating sequence. The dynamic ship is allowed to move first and the static ship
is always allowed a last move even if its hull strength is reduced to zero. For two
reasons a turn-based approach was preferred over a simultaneous approach to the
combat sequences: (i) a turn-based approach is used in a number of popular strategy
games, and (ii) a turn-based approach is computationally significantly cheaper than
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a simultaneous approach, which is an important consideration for time-intensive
evolutionary-learning experiments.

The second element of the experimental procedure is the neural-network con-
troller. In the experiments, the dynamic ship is controlled by a neural network, i.e.,
the game Al of the dynamic ship is implemented by a neural-network controller. To
reduce the number of required neural-network inputs, coordinates are used relative
to the dynamic ship, i.e., the ‘game world’ is moved so that the dynamic ship is
located at its centre, and rotated so that the dynamic ship’s ‘nose’ is pointed at an
angle of zero degrees.

Ten neural-network inputs were used to represent the environment. Four inputs
represent characteristics of the dynamic ship: (i) the laser-gun strength, (ii) the
laser-gun range, (iii) the hull strength, and (iv) the speed. Five inputs represent
characteristics of the static ship: (i) the location direction of the static ship relative
to the dynamic ship, (ii) the distance between the static ship and the dynamic ship,
(iii) the current hull strength, (iv) the flying direction, and (v) the speed. The tenth
input is a random value, to allow the dynamic ship an element of randomness in its
decisions. The neural network has two outputs, namely the acceleration and rotation
of the dynamic ship. The hidden nodes in the network have a sigmoid activation
function. The outputs of the network are scaled to ship-specific maximums.

The third element of the experimental procedure is the evolutionary algorithm.
The parameters for the evolutionary algorithm were determined during a few trail
runs. For the evolutionary algorithm, the population size was equal to 200 and real-
valued weights were used. Experiments were allowed to continue for 50 generations.
The following six genetic operators were employed.

e Uniform crossover: Child chromosomes are created by copying each allele from
one of two parents, each parent having a 50 per cent chance of being selected
for each allele (Goldberg, 1989).

e Biased weight mutation (Montana and Davis, 1989): Child chromosomes are
copies of parent chromosomes, with each weight having a 10 per cent chance
to be mutated by adding a random value selected from the range [—2.0,2.0].

e Nodes crossover (Montana and Davis, 1989): Child chromosomes are created
by copying each of their nodes (including their input connections) from one
of two parents, each parent having a 50 per cent chance of being selected for
each node.

e Node existence mutation (Spronck, 1996): Child chromosomes are copies of
parent chromosomes, with a 75 per cent chance of having all incoming and
outgoing connections of one randomly-selected node being removed, and a 25
per cent chance of having all absent connections of a randomly-selected node
being activated.

o Connectivity mutation (Spronck, 1996): Child chromosomes are copies of par-
ent chromosomes, whereby each connection has a probability of 10 per cent to
switch from being connected to being disconnected and vice versa.



58 Evolutionary Game Al

e Randomisation: A random new child chromosome is generated to prevent
premature convergence.

During evolution, one of these six operators was selected at random. For the
crossover operators, I decided to add both children to the population. To alleviate
the problem of competing conventions (2.1.3) the hidden nodes of the parents were
rearranged to make their signs match (insofar as possible) before a crossover took
place (Thierens et al., 1993). Newly generated individuals replaced existing individ-
uals in the population, while taking into account elitism. Size-3 crowding (Goldberg,
1989) was used as replacement policy. For the selection process, size-2 tournament
selection was used (Goldberg and Deb, 1991).

The fourth element of the experimental procedure is the fitness function. The
fitness of the dynamic-ship controller, with a value in the range [0, 1], is defined as
the average result on a training set of fifty duels between the dynamic ship and the
static ship. The starting distance between the two ships in all of the 50 training-set
cases is in the range [80,125]. Each duel lasts T" = 50 time steps. To ensure equal
opportunities for the dynamic ship and the static ship to achieve high fitness, each
duel in which the ships start with different characteristics is followed by a duel in
which the characteristics are exchanged between both ships. At time step ¢ the
fitness is defined as in the following equation.

0 D; <0
F, = oD, b (4.1)
SoD; + DoS; "

In this equation, D; and S; are the hull strengths of respectively the dynamic ship
and the static ship at time ¢. The fitness is 0.5 if both ships remain passive or are
damaged for an equal percentage. If the static ship is damaged for a larger percentage
than the dynamic ship, the fitness is greater than 0.5, and if the reverse is true (or
when the dynamic ship is destroyed) the fitness is smaller than 0.5. Consequently, the
fitness function favours attacking if it leads to victory, and favours fleeing otherwise.
The overall fitness F' for a duel is determined as the average of the fitness values at

. - T
each time step, i.e., F =3, | %

4.1.3 Evolving Successful Duelling Behaviour

An experiment with offline evolutionary game AI was performed, with the pur-
pose of evolving duelling behaviour that is successful against the manually-designed
game Al described in Subsection 4.1.1. Since the experiment was executed using
ELEGANCE, a neural network was used to implement the evolved behaviour. Dif-
ferent neural-network architectures may yield different results. For lack of insight
into which neural-network architecture gives the best results for the duelling task, I
decided to test seven different architectures, which are listed in Table 4.1.

The question should be answered how successful duelling behaviour can be recog-
nised. It can be argued that a neural-network controller with a fitness value > 0.5
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Neural network type Hidden Hidden Tests Average Lowest Highest
layers nodes fitness  fitness fitness

Recurrent 1 5 5 0.516 0.459 0.532
Recurrent 1 10 5 0.523 0.497 0.541
Recurrent 2 10 7 0.504 0.482 0.531
General feed-forward n/a 7 5 0.472 0.382 0.527
Layered feed-forward 2 10 5 0.541 0.523 0.579
Layered feed-forward 2 20 8 0.537 0.498 0.576
Layered feed-forward 3 15 7 0.515 0.446 0.574

Table 4.1: Results achieved in the duelling-behaviour experiment, for seven different
neural-network controller architectures.

performs better than the static ship’s game AI. But how high can we expect the
fitness actually to become? To provide an answer to that question, I calculated the
fitness of a dynamic ship that is stationary, i.e., that will fire its laser guns at the
static ship when appropriate, but that will not accelerate or rotate. I found that, on
the training set, a stationary dynamic ship achieves a fitness of 0.362. If the fitness
for the static ship is calculated according to formula 4.1, the static ship’s fitness is
1 — F, where F is the dynamic ship’s fitness. Since it is reasonable to assume that
the static ship performs better than a stationary ship, a fitness of 1 — 0.362 = 0.638
can be considered an upper bound to the fitness of the dynamic ship’s controller.

Table 4.1 presents the results achieved for evolving neural-network controllers for
the dynamic ship. For each of the neural-network architectures tested, from left to
right, the columns indicate (i) the neural-network architecture, (ii) the number of
hidden layers, (iii) the number of hidden nodes (the hidden nodes are evenly distrib-
uted over the hidden layers), (iv) the number of tests, (v) the average fitness value,
(vi) the lowest fitness value achieved, and (vii) the highest fitness value achieved.
The best results for the average and highest fitness values achieved are printed in
boldface. Two conclusions are derived from Table 4.1.

First, it is evident that, in this environment, two-layered feed-forward networks
outperform all other networks in terms of both average and maximum fitness values.
The network with five nodes in each hidden layer did not score significantly better
than the network with ten nodes in each layer.

Second, a layered feed-forward neural network with 10 hidden nodes in two layers
achieved a fitness of 0.579. Compared to the theoretical upper bound of 0.638, a
fitness value of 0.579 indicates very successful duelling behaviour.

It should be noted, that from the perspective of game-play experience, the fitness
rating as calculated in the experiment is not as important as the objective result
of a fight. A fight can end in a victory, a defeat, or a tie.?> For the best controller

3A tie means that both ships survive the encounter. It does not mean that both ships are
destroyed. The destruction of both ships is considered to be a loss for the dynamic ship.
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evolved, we found that 42 per cent of the encounters ended in a victory for the
dynamic ship, 28 per cent in a defeat, and 30 per cent in a tie. This means that 72
per cent of the encounters ended in a situation not disadvantageous to the dynamic
ship. The dynamic ship achieved 50 per cent more victories than the static ship.
Clearly, on the training set the dynamic ship performs considerably better than the
static ship. This supports the statement that the fitness value of 0.579 indicates
successful duelling behaviour.

4.1.4 Analysis of Successful Duelling Behaviour

An analysis of the behaviour of the best-performing dynamic ship showed that it
exhibited appropriate following behaviour when it overpowered the static ship. In
the experiment, such following behaviour is never detrimental to the performance.
The reason is that the static ship’s game AI ensures that, while fleeing, the static
ship will only turn around to attack if the dynamic ship’s hull strength becomes less
than its own. As long as the dynamic ship remains behind the static ship, this will
not happen.

While in pursuit, the dynamic ship avoided bumping against the static ship.
Avoiding bumping is appropriate behaviour, because bumping would reduce the dy-
namic ship’s speed to zero, while leaving the static ship’s speed unaffected. This
would give the static ship an opportunity to escape. However, contrary to expecta-
tion the dynamic ship did not avoid bumping by reducing its speed when approach-
ing the static ship, but by swerving as much as needed to keep a constant relative
distance to the static ship.

The dynamic ship did not try to flee when losing a fight. The probable reason
is that for a spaceship to flee, it must turn its back toward the enemy. The fleeing
ship then becomes a target that does not have the ability to fight back (since laser
guns only fire from the front of the ship). As a result, fleeing ships are almost
always destroyed before being able to escape. Attempts to escape seem therefore
of little use. From this observation it can be concluded that in the actual game a
better balance between the power of the weapons and the versatility of the ships is
required to enable effective escaping behaviour.

The purpose of the experiment was to discover possible improvements to the
static ship’s game AI. T found two such improvements, which are detailed below.

The first possible improvement was suggested by the dynamic ship’s ability to
exploit a weakness in the static ship’s game AI. The weakness spotted was the
following. The static ship bases its decision to flee on a comparison between the
relative hull strengths. The comparison does not take into account that it is the static
ship’s initiative (i.e., turn to act) when it makes the decision. If the comparative
hull strengths are close to each other, this becomes an important consideration. For
instance, if on the initial approach the static ship comes within the dynamic ship’s
laser-gun range before being able to fire its own laser guns, it will be damaged while
the dynamic ship remains undamaged. Regardless of its own laser-gun strength and
hull strength, this would cause the static ship’s initial reaction to be attempting
to flee. Since in most cases it would still be able to fire its laser guns once, this
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Figure 4.3: The static ship approaches the dynamic ship from behind.

behaviour had little influence when the static ship significantly overpowered the
dynamic ship. However, if the strengths of the ships were about equal, we found the
dynamic ship to exploit this weakness of the static ship, by attempting to manoeuvre
into a position from which it could fire the first shot. Removing this exploit from
the static ship’s game AT can be considered as a possible improvement.

The second possible improvement was suggested by a surprising manoeuvre of the
dynamic ship, that was observed when the static ship started behind the dynamic
ship, as illustrated in Figure 4.3. In such cases, the dynamic ship often attempted
to increase the distance between the two ships, up until the point where a further
increase in separation would imply a tie. At that point, the dynamic ship turned
around and either (i) started to attack, or (ii) increased the distance between the two
ships again, and attacked after a second turn. Figure 4.4 illustrates this sequence of
events. In the figure, the right panel displays a trace of the movements of the dynamic
ship up to the moment that it fires its first shot. The static ship is overpowered (its
hull strength is very low compared to the hull strength of the dynamic ship, as
can be observed at the top of the display) and tries to flee, but the dynamic ship
follows, as shown in the left panel. An explanation for the success of the observed
behaviour is that, if the distance between the two ships is maximal, the dynamic
ship will have a maximal amount of time to turn around and face the static ship
before the static ship can fire its laser guns. Since facing the opponent is required
to counter-attack, the observed behaviour is beneficial to the dynamic ship’s tactics.
Below this behaviour is reformulated as a possible improvement of the static ship’s
game Al.

41t is noteworthy that in many commercial turn-based games similar shortcomings in the game
Al can be observed. For instance, in many games it is a good tactic for the player to pass game
turns until the enemy has approached to a certain distance, so that the player can initiate the first
attack. Game designers will seldom let game-playing agents employ such a tactic, because it could
lead to a stalemate, where both the player and the computer refuse to move, since whoever makes
the first move is at a disadvantage. Similarities with trench warfare are striking.
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Figure 4.4: The dynamic ship evades the static ship before it attacks.

4.1.5 Deriving Duelling Improvements

The two possible improvements derived from the analysis of the most successful
dynamic ship (4.1.4), resulted in two possible changes to the static ship’s game Al
The changes are the following.

Fleeing change: Before comparing the hull strength ratios of the two ships, the
static ship assumes that it is able to shoot the dynamic ship once more before
evaluating the ratios. This change effectively removes the possibility for the
dynamic ship to trick the static ship into attempting to flee, when the dynamic
ship is able to strike first.

Aft-attack change: When attacked from behind it may be beneficial for the static
ship to attempt to increase the distance between the two ships before turning
around. This was implemented as follows. First, three conditions are checked,
namely (i) whether the dynamic ship is behind the static ship, (ii) whether the
static ship is undamaged, and (iii) whether the distance between the ships is in
the range [75,150] (180 being the distance beyond which a fight ends in a tie).
If all three conditions are true, then the static ship does not rotate, but simply
increases its speed to maximum, in order to increase the distance between
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Al A0 Al-1 Al-2 AlL-3
AI-0 | 0.499 (15/16) 0.481 (15/18) 0.504 (13/15) 0.505 (15/16) | 0.497
AI-1 | 0.525 (18/17) 0.491 (16/17) 0.500 (13/17) 0.504 (15/17) | 0.505
AT-2 | 0.501 (13/14) 0.485 (13/15) 0.494 (10/13) 0.489 (11/13) | 0.492
AI-3 | 0.507 (14/14) 0.487 (13/14) 0.497 (10/13) 0.492 (11/13) | 0.496
0.508 0.486 0.499 0.498 Avg.

Table 4.2: Comparison of four game-Al variations.

the two ships. If the distance becomes larger than 150, it is considered to be
sufficiently large to let the static ship turn around safely. If the distance is
smaller than 75, the static ship is assumed to be unable to outrun the dynamic
ship, so it always turns towards the dynamic ship.

With these two possible changes, four variations of the static ship’s game Al
can be defined. These are the following. ‘AI-0’ is the unchanged, original game
AT ‘AI-1’ is the original game AI, enhanced with the fleeing change. ‘AI-2’ is the
original game AI, enhanced with the aft-attack change. ‘AI-3’ is the original game
AT, enhanced with both the fleeing change and the aft-attack change.

The relative strengths of these four game-Al variations can be derived by pitting
them against each other. The results of the cross-comparison are shown in Table
4.2. The rows and columns represent the game Al variations used for the two ships;
the ship represented by a row is allowed to move first. The cells of the table show
the resulting fitness of the game AT of the first-moving ship. Next to the fitness,
between brackets, the number of wins and losses (‘wins/losses’) is shown. The right
column shows the average fitness over the rows, and the bottom row the average
fitness over the columns.

Tt is clear from Table 4.2 that the four game-Al variations do not greatly differ in
strength. This comes as no surprise, because their implementations are very similar.
The average fitness is highest for AI-1 (0.505), and the average fitness is lowest when
it is calculated against an opponent using AI-1 (0.486). Therefore, AI-1 seems to be
the most effective of the four variations. However, the difference between AI-1 and
the other three variations is too small to be considered significant.

Two unexpected results can be derived from Table 4.2. The first unexpected
result is that the fitness values on the main diagonal deviate from 0.5, despite the
fact that the competing variations on the diagonal are equal. The deviation is caused
by the turn-based handling of the encounters. Since all values on the diagonal
are slightly lower than 0.5, it can be concluded that on the 50 training-set cases
the second-moving ship has a small advantage over the first-moving ship. Note
that this does not entail that initiative is disadvantageous per se, only that it is
disadvantageous in the training set.

The second unexpected result concerns the fitness values and the associated win-
loss ratios, which in some cases seem counter-intuitive. For instance, AI-0 for the
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Al Tests Average Lowest Highest Win/loss Average ~ Win/loss
on test set on test set

AL-0 8 0.537 0.498 0.576 19/14 0.490 16/19
Al-1 6 0.486 0.471 0.528 9/12 0.434 9/20
Al-2 6 0.547 0.479 0.615 16/8 0.476 10/16
AI-3 7 0.517 0.463 0.570 17/11 0.442 13/19

Table 4.3: Results of testing offline evolutionary game AI against four game-Al
variations.

first-moving ship, pitted against AI-2 for the second-moving ship, has a fitness value
of 0.504. This value, which is slightly greater than 0.5, indicates that AI-0 performs
better than AI-2. However, this is combined with 13 wins against 15 losses. Despite
the higher fitness value, AI-0 appears weaker than AI-2 in terms of number of wins.
The explanation is that the fitness is not based on the number of wins and losses,
but on the change of the relative hull strengths during a fight. A fast win might
yield a higher fitness than a slow win. As a result, in the fitness rating a few fast
wins can compensate for a few extra (slow) losses.

4.1.6 Validating Duelling Improvements

To validate the improvements to the static ship’s game Al, the experiment detailed
in Subsection 4.1.2 was repeated with three changes: (i) for the static ship I tested all
four variations of the game Al defined in Subsection 4.1.5, (ii) because preliminary
tests revealed that a feed-forward controller with 5 nodes in each layer was not
powerful enough to oppose the new versions of the static ship, for the neural-network
controller only a feed-forward controller with two 10-node hidden layers was used,
and (iii) the best results achieved on the training set were re-evaluated on five test
sets, each consisting of 50 novel encounters.

Table 4.3 shows the results of the validation experiment. From left to right,
the eight columns represent: (i) the game AI of the static ship, (ii) the number of
experiments performed against this game Al (iii) the average fitness of the dynamic
ship, (iv) the lowest fitness value, (v) the highest fitness value, (vi) the number of
wins and losses of the dynamic ship with the highest fitness value, (vii) the average
fitness of the best dynamic ship re-evaluated on five test sets, and (viii) the average
number of wins and losses for the re-evaluation.

Clearly, on the training set the dynamic ship outperforms three out of four game-
AT variations. Only the static ship using AI-1 (which implements the fleeing change)
outperforms the dynamic ship. Against AI-1, the dynamic ship has an average fitness
lower than 0.5, and even the dynamic ship with the highest fitness value against Al-
1 loses more often than the static ship. It is also clear that AI-2 (the game-Al
variation that implements the aft-attack change) does not increase the effectiveness
of the static ship. AI-2 performs even worse than the original (unchanged) AI-0.
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The results of the best dynamic ships on the test sets show that the average fitness
drops considerably from its original value. This indicates that, unsurprisingly, the
dynamic ship is focused too much on the encounters comprising the training set,
i.e., it is overfitting the training set. Interestingly, both the fitness and the win-loss
ratio decrease to a larger extent for AT 2 and AI 3 (the game-Al variations that both
contain the aft-attack change) than for AI-0 and AI-1. Therefore, overfitting seems
to be a more severe problem when trained on AI-2 and AI-3, than when trained
on AI-0 and AI-1. Moreover, the dynamic ships evolved against AI-0 and AI-2
(the two game-Al variations that do not implement the fleeing change) end up with
a significantly higher average fitness on the test sets than the other two game-Al
variations. This means that for the dynamic ship it is easier to deal with a game-
AT variation that does not implement the fleeing change, than with one that does.
Therefore, the conclusion is warranted that implementation of the fleeing change
improves the effectiveness of the static ship’s game Al

4.1.7 Discussion of the Duelling Experiments

While implementation of the fleeing change clearly improves the behaviour of the sta-
tic ship, implementation of the aft-attack change seems to weaken it somewhat. This
does not mean that the aft-attack change should not be implemented in a published
game. In a game such as PICOVERSE there should be several different game-AT vari-
ations available to computer-controlled agents. They must vary in strength and be
applicable in various situations. The aft-attack change may be more effective when
the situations in which it is a sound tactic can be successfully identified. In addition,
allowing some (but not all) agents to use this tactic introduces heterogeneity which
makes opponent behaviour less predictable, and thus more entertaining.

In Table 4.2 a discrepancy between the fitness results and the ratio of wins and
losses can be observed. Since in terms of game-play experience the win-loss ratio is
a more important measure for success than the change in hull strength, the fitness
function used is probably not the most suitable for these experiments. In itself, the
win-loss ratio is not a good alternative for a fitness measure, because it does not
reward small favourable changes in the behaviour of the dynamic ship. However,
extending the fitness function with penalties for losing a duel and with extra rewards
for winning a duel may improve the correspondence between the fitness rating and
the win-loss ratio.

The fact that the results of the re-evaluation of the dynamic ships on the test sets
differed considerably from the results on the training set, indicates that the dynamic
ship did not generalise to novel situations. A larger training set would probably yield
a more general controller, at the cost of a considerably increased computation time.
However, in this particular research domain the lack of the ability to generalise is
not a problem, as long as existing exploits in the game AT are discovered. The goal
of the present experiments is not to generate good game Al, but to discover exploits
and new tactics.’ Offline evolutionary game AI managed to achieve that goal.

50f course, that does not mean game AT researchers and developers are not interested in using
offline learning to create generalised game Al. Such offline learning will be discussed in Chapter 6.
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Chan et al. (2004) investigated the evolution of action sequences for FIFA-99.
As Spronck et al. (2002) concluded, they, too, found that offline evolutionary game
AT can be used to detect exploits and discover new tactics. However, instead of
a neural network to implement adaptive game AI, they used a Markov Decision
Process (MDP), which is arguably a better choice in this respect. Usually, game
AT needs to couple environmental circumstances to specific actions for an agent to
undertake. The game AI should reflect the human thought process, which game
developers aspire to imitate in agents. For this, scripts (which are preferred by most
game developers), finite-state machines, and MDPs may be suitable choices, but a
neural network is not. Neural networks are suitable to emulate non-linear functions,
not production rules. An approach to offline evolutionary learning based on directly
evolving scripted Al will be used in Chapter 6.

4.2 Online Evolutionary Game Al

Online evolutionary game AT controls agents that are in competition with human
players. It has two applications: (i) to resolve weaknesses in the game AI when
they are exploited by the human player (self-correction), and (ii) to create new tac-
tics in response to tactics employed by the human player (creativity). For online
evolutionary game Al to be applicable in practice, it must meet the computational
requirements of (i) speed, (ii) effectiveness, (iii) robustness, and (iv) efficiency (2.3.4).
In general, evolutionary algorithms are computationally intensive (i.e., they are not
fast), generate noisy results (i.e., they are not effective), and require numerous exper-
iments (i.e., they are not efficient). Furthermore, in an environment with inherent
randomness they can be made robust, but only at the cost of speed and efficiency,
which for online learning cannot be spared. These characteristics indicate that it is
quite a challenge to implement online evolutionary game AT successfully.

To investigate the potential of online evolutionary game AI, the Team-oriented
Evolutionary Adaptability Mechanism (TEAM) was designed. TEAM applies online
evolution to game AI that controls a team of agents, that play ‘capture-the-flag’
in the action game QUAKE III ARENA (henceforth referred to as QUAKE).® This
section describes capture-the-flag in QUAKE (4.2.1), the design of online evolutionary
game Al that plays capture-the-flag (4.2.2), the experimental procedure used to test
the design (4.2.3), the results of an experiment in which team game AT was evolved
(4.2.4), and a discussion of the results (4.2.5).

4.2.1 Capture-the-Flag in Quake

QUAKE is a ‘3D shooter’ (2.2.2). It has been used by several researchers in their
research, because it is popular, state of the art, and highly adaptable (Laird, 2001;
Van Waveren and Rothkrantz, 2002). In QUAKE, a human player controls an agent
in a real-time 3D virtual world, called a ‘map’. In regular QUAKE game-play, a

6This experiment was performed by Bakkes (2003), in collaboration with and under supervision
of the author.
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Figure 4.5: QUAKE IIT ARENA in capture-the-flag game-play mode. A shot is fired
at an agent that carries the flag.

player’s objective is to eliminate opponent agents. The opponent agents are either
controlled by other human players, or by the computer. The map provides agents
with objects that can be used to achieve their goals, such as weapons and armour.
An eliminated agent is not removed from the game, but ‘respawns’ at a designated
location on the map (Van Waveren and Rothkrantz, 2002).

Capture-the-flag is a team-oriented game-play mode for QUAKE. In capture-the-
flag each agent belongs to one of two opposing teams. Each team has a base on
the map, and an object representing a flag, that is initially located at the team’s
base. A team’s primary goal in capture-the-flag is to capture the opposing team’s
flag and bring it to its own base, which scores a point. After delivery of the flag,
the flag returns immediately to its starting location. The game is won by the team
that scores the most points (Van Waveren and Rothkrantz, 2002). Figure 4.5 shows
a screenshot, of QUAKE during a capture-the-flag game.

In capture-the-flag mode QUAKE contains two different kinds of game AI, namely
(i) agent Al, and (ii) team AI. Agent Al is the game Al that is localised within each
individual computer-controlled agent, determining the behaviour of the agent, at an
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State Score Offensive Defensive N =4
No flags stolen winning max(0.4N,4) max(0.5N,5) (2,2,0)
No flags stolen losing max(0.5N,5) max(0.4N,4) (2,2,0)
Home flag stolen winning max(0.7N,6) max(0.3N,3) (3,1,0)
Home flag stolen losing max(0.7N,7) max(0.2N,2) (3,1,0)
Opponent flag stolen  winning max(0.3N,3) max(0.6N,6) (1,2,1)
Opponent flag stolen losing max(0.3N,3) max(0.6N,6) (1,2,1)
Both flags stolen winning max(0.5N,5) max(0.4N,4) (2,2,0)
Both flags stolen losing max(0.5N,5) max(0.4N,4) (2,2,0)

Table 4.4: Role divisions of the QUAKE static team Al.

operational level of intelligence. Team AT is the game AI that is implemented as
a centralised coach for the computer-controlled team, determining the behaviour of
the team as a whole, at a tactical level of intelligence. The team AT provides each
of the members of a team with behavioural guidelines. The agent AT takes decisions
within the boundaries set by the guidelines (Van der Sterren, 2002).

The team AI implemented in QUAKE by the game developers assigns each team
member a role, corresponding to the current game state and the current score. Three
different roles are defined, namely (i) offensive, (ii) defensive, and (iii) roaming. Four
different game states are defined, distinguishing whether or not each of the two flags
is located at its base. Two different score situations are defined, namely whether
the team is winning or losing. The implementation of a role differs between game
states. For instance, when the opposing team’s flag is at its base, an agent with
an ‘offensive’ role attempts to capture that flag. When the opposing team’s flag
is captured, an agent with an ‘offensive’ role focuses on attacking members of the
opposing team.

The QUAKE team Al is static, i.e., the role division and the role assignments are
pre-programmed, although different configurations are used for the four different
game states and the two different score situations. The calculations for the eight
different role divisions are listed in Table 4.4. The five columns of the table represent
(i) the game state, (ii) the score situation (‘winning’ or ‘losing’), (iii) the calculation
for the number of team members in an offensive role, (iv) the calculation for the
number of team members in a defensive role, and (v) the role division for a team
with four members (respectively ‘offensive’,‘defensive’, and ‘roaming’). In the calcu-
lations, N represents the total number of team members, and the calculation results
are rounded to the nearest integer value.

Adaptive team AT has the ability to tune automatically the team behaviour to
the tactics of the opposing team. Therefore, enhancing the QUAKE team Al with
adaptive capabilities has the potential to improve a team’s behaviour. In the present
research, online evolutionary learning is used to implement adaptive team Al.
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4.2.2 Adaptive Team AI with TEAM

The Team-oriented Evolutionary Adaptability Mechanism (TEAM) is an online evo-
lutionary learning technique designed to adapt the team AI of QUAKE-like games
(Bakkes et al., 2004). TEAM is applicable under the condition that the behaviour
of a team in a game is defined by a small number of parameters, specified per game
state. A specific instance of team behaviour is defined by values for each of the para-
meters, for each of the states. TEAM is defined as a regular evolutionary algorithm,
such as a genetic algorithm, applied to team-behaviour learning, with the following
six properties.

State-based evolution: TEAM employs a separate evolutionary process for each
state, each with its own population of chromosomes. The idea is that suc-
cessful behaviour for each of the separate states can be evolved faster than
successful behaviour for all states, acknowledging the requirement that online
evolutionary game AI must be efficient. The combination of the best solutions
for each of the states is considered to be the best solution for the team Al as
a whole.

State-based chromosome encoding: TEAM’s chromosomes encode the state’s
parameters, using real values.

State-transition-based fitness function: TEAM uses a fitness function based
on state transitions. Beneficial state transitions reward the chromosome that
caused the state transition, while detrimental state transitions punish it. Usu-
ally, an assessment of whether a state transition is beneficial or detrimental
cannot be given immediately after the transition; it must be delayed until the
game has been observed for a while.”

Fitness propagation: TEAM propagates fitness values from child chromosomes
to their parents. This ensures that a parent chromosome with a high fitness
value, that mostly produces children with low fitness values, will get a low
fitness value over time. The idea is that such a parent probably achieved high
fitness due to chance, and not due to the quality of the solution it represents.
This acknowledges the requirement that online evolutionary game AI must be
robust.

Elitist selection: TEAM always selects the highest-ranking chromosome to use as
parent for the evolution process, acknowledging the requirement that online
evolutionary game AT must be effective. While in most applications elitist
selection is risky when randomness is involved in the fitness calculation (as is
generally the case in games), the fitness-propagation mechanism protects the
evolution against inferior top-ranking chromosomes.

"For instance, if a state transition happens from a state that is neutral for the team to a state
that is good for the team, the transition seems beneficial. However, if this is immediately followed
by a second transition to a state that is bad for the team, the first transition cannot be considered
beneficial, since it may have been the primary cause for the second transition.
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Manually-designed initialisation: TEAM’s population is initialised with chro-
mosomes that are designed manually. This ensures that the team Al is effec-
tive from the outset, acknowledging the requirement that online evolutionary
game Al must be effective.

TEAM differs from reinforcement learning, according to the specifications given
by Sutton and Barto (1998), for two of its features, namely that (i) TEAM uses a
population (admittedly, in a minor role), and (ii) TEAM uses undirected genetic
operators to scan the search space, whereas reinforcement learning uses a gradient-
based search.

4.2.3 Experimental Procedure

To evaluate the suitability of TEAM for implementing adaptive team Al, it was
tested with the capture-the-flag game-play mode in QUAKE IIT ARENA. Similar to
the experimental procedure used for the duelling experiment (4.1), a dynamic team
employing TEAM was pitted against a static team. The static team used the default
QUAKE team Al, which has the ability to adapt the team behaviour to the current
state of the game. Each team consisted of four agents.

The four game states of QUAKE in capture-the-flag mode, with their state tran-
sitions, are illustrated in Figure 4.6. Using D and S to denote the dynamic team’s
flag and the static team’s flag respectively, and the subscripts b and s to denote
a flag being at its base and a flag being stolen respectively, the states are defined
as (Dy, Sp), (Ds,Sp), (Dy,Ss), and (Ds,Ss). Since events in QUAKE are handled
sequentially, in theory transitions are impossible between states that are located di-
agonally opposite each other in Figure 4.6. From the point of view of the dynamic
team, state transitions can be beneficial, indicated with a ‘+’, or detrimental, indi-
cated with a ‘—’. Depending on the circumstances, some transitions can be both.
For instance, when a transition (Ds,x) — (Dp,x) occurs, the reason is either that
the dynamic team intercepted its stolen flag, which is beneficial, or that the static
team scored a point, which is detrimental.

The chromosome used to represent each state was kept small, to elicit speedy
evolution. It contained only two parameters, namely (i) the ratio of ‘offensive’ agents
ro, and (ii) the ratio of ‘defensive’ agents r4y. Both 7, and r4 were defined as real
values in the range [0,1]. Translation of a ratio to the number of agents in the corre-
sponding role, was executed by multiplying the ratio with the total number of agents,
rounding up for ‘offensive’ agents, and rounding down for ‘defensive’ agents. The
assignment of selected roles to specific agents was copied from the default QUAKE
team AI. Agents that were assigned neither an ‘offensive’ role, nor a ‘defensive’ role,
were assigned a ‘roaming’ role.

After each state transition, a new chromosome was generated for the state in
which the game then resided. This chromosome was used to determine the team Al
The team’s behaviour under guidance of the new team AI was used to determine
the chromosome’s fitness F' € [0, 1], according to the following equation.
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Figure 4.6: State transitions in a capture-the-flag game.

T+d F,
F= ; ToaT1 (4.2)

In this equation, T is the number of the state transition after which the chromosome
was generated, and d is the ‘depth’ of the calculation, i.e., the number of state
transitions that pass before the chromosome’s fitness is calculated. In the experiment
d = 2 was used. The value F; € [0, 1] represents the perceived fitness between state
transitions ¢ and ¢ + 1. F; is calculated according to the following equation.

1 — min (0.1(\/5 —V/t:/3), 1) {+ transition}
min (0.1(\/157 —/t:/3), 1) {— transition}

F = (4.3)

In this equation, ¢; is the number of seconds that pass between state transitions 4
and i + 1. The effect of equations 4.2 and 4.3 is that the fitness value awarded to
a chromosome is higher when the team Al it represents promotes beneficial state
transitions (marked ‘4’ in Figure 4.6), and lower when the team Al it represents
promotes detrimental state transitions (marked ‘-’ in Figure 4.6). The longer the
resulting game states are maintained, the bigger the effect is.
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Recombination operators (genetic operators that use genetic material from mul-
tiple parents) often generate children that are radically different from their parents
(Davis, 1991), and thus often produce inferior results, which should be avoided on
account of the requirement of effectiveness. Therefore, it was decided that only a
genetic mutation operator was to be used to generate new chromosomes.

The genetic mutation operator was always applied to the best chromosome in the
population. Its effect was scaled in correspondence to the fitness of the parent chro-
mosome it mutated: a parent with a high fitness got a small mutation, while a parent
with a low fitness got a large mutation. The mutation was implemented as a biased
mutation on one or both genes in the chromosome, while ensuring that the resulting
chromosome always represented a legal role division. Newly generated child chro-
mosomes either replaced the bottom-ranking chromosome in the population, or were
discarded, if their fitness did not exceed the bottom-ranking chromosome’s fitness.
With respect to fitness propagation, the fitness calculated for child chromosomes
was also factored into the fitness of the parent chromosome.

Since the population’s only function is to support the fitness-propagation mech-
anism, by offering a replacement for the population’s top-ranking position in case
the current top was removed, a small population size suffices. In the experiment
the population size was set to 5. The population was initialised with five copies of
a chromosome representing the parameters used by the default QUAKE team Al to
ensure effective behaviour even with the initial dynamic team Al

4.2.4 Evolving Team Al

The experiment to evaluate the suitability of TEAM for implementing adaptive
team Al consisted of fifteen tests. In each test a team using dynamic team Al
played QUAKE III ARENA capture-the-flag against a team using static team Al
The game was played on an ‘open’ map, i.e., a map without walls, allowing the
agents an unrestricted view of their environment.

Each test ran for at least six real-time hours, in which between 250 and 600
points were scored. The points scored by each team were tracked, and compared
after the tests. The following two measures were defined to rate the success of the
dynamic team.

Absolute turning point: The absolute turning point is the number of the last
point scored, after which the dynamic team’s total score exceeds the static
team’s total score for the remainder of the test. Figure 4.7 illustrates the
absolute turning point with a graph displaying the dynamic team’s lead in one
of the tests. After point 52 is scored, the dynamic team’s score exceeds the
static team’s score for the remainder of the test. Therefore, in this example
the absolute turning point is 52.

Relative turning point: The relative turning point is the number of the last point
in the first sliding window of twenty points, in which the dynamic team scored
fifteen, and the static team scored five points. At the relative turning point the
dynamic team’s behaviour is more successful than the static team’s behaviour
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Figure 4.7: A test run with an absolute turning point of 52.

with a reliability > 97% (Cohen, 1995). Figure 4.8 illustrates the relative
turning point with a graph displaying the dynamic team’s number of wins in
a sliding window of 20 points scored, in the same test used for Figure 4.7. At
the scoring of point 57, the dynamic team’s score in the window of the last
twenty points scored is fifteen for the first time. Therefore, in this example
the relative turning point is 57. Note that, due to the window size of 20, the
lowest possible value for the relative turning point is 20.

Fifteen tests were performed. In all tests the dynamic team managed to evolve
team AT which allowed it to defeat the static team consistently. Table 4.5 provides an
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Figure 4.8: A test run with a relative turning point of 57.
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Average St.dev. Median Highest Lowest

Absolute turning point 108 62.0 99 263 38
Relative turning point 71 44.8 50 158 20

Table 4.5: Results for the team-AT experiment.

overview of the results. From these results it can be concluded that TEAM is capable
of successfully adapting team behaviour in QUAKE capture-the-flag. Analysing the
behaviour of the evolved team Al, it was observed that the dynamic team used risky,
but successful, tactics against the static team. The tactics can best be described
as ‘rush’ tactics, aimed at quickly obtaining offensive field supremacy.? The default
QUAKE team AT only applies ‘moderate’ tactics, leaving at least one agent in a
‘defensive’ role, and is therefore unable to deal effectively with rush tactics.

4.2.5 Discussion of the Team-AI Experiment

In the introduction of Section 4.2, is was indicated that it is hard to create online
evolutionary game AI that meets the four computational requirements for online
learning in games (detailed in 2.3.4). The four requirements are now discussed for
the team-Al experiment.

e Speed: The implementation of the dynamic team AT, using a small chromosome
and a small population, needed relatively few processing cycles. During the
tests, the game-play was never interrupted or slowed down because of the
evolutionary process. Therefore, it can be concluded that the dynamic team
AT meets the requirement of speed.

o Fffectiveness: Table 4.5 shows that, on average, the absolute turning point
is significantly higher than the relative turning point. This means that, in
general, the dynamic team has become the dominant team on the map a con-
siderable period of time before it actually gains the lead in the number of
points scored. The reason for the gap between the two turning points is that
initially the dynamic team tends to be weaker than the static team. How-
ever, it was observed during all fifteen tests that its score never was more than
about a dozen points behind the static team’s score. In contrast, as soon as
the absolute turning point was reached, the dynamic team’s lead increased to
hundreds of points. Therefore, it can be concluded that the dynamic team Al
meets the requirement of effectiveness.

8The dynamic team AT assigns all agents an ‘offensive’ role in the state (Dy, Sp). In translation,
this means that in a situation where its own flag is in no immediate danger, and the opponent’s
flag is not captured, the dynamic team will launch an all-out attack to get the opponent’s flag as
quickly as possible, which is the first step that needs to be taken to score a point. Rush tactics are
often applied in real-time strategy games, which are discussed in Chapter 6.
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e Robustness: In almost all tests the dynamic team AT did not suffer from the

inherent randomness in the QUAKE environment. Only in one of the fifteen
tests, the dynamic team Al after having increased its lead to about 375 points,
suddenly seemed to ‘forget’ the successful tactics it had learned, and started
losing again. After its lead had dropped to about 340 points, it recovered.
The explanation for this phenomenon is that the dynamic team AI had diffi-
culties dealing with a long run of fitness values that, due to chance, were not
representative for the quality of the chromosome they were assigned to. It is
possible to protect the dynamic team AT better against such chance runs, by
not replacing the team AT after each state transition. Instead, the time gained
is used to confirm the assigned fitness values. The drawback is that this will
hurt the efficiency of the process. Moreover, statistically it is impossible to
rule out such chance runs completely. Taking all these facts into account, it
can be concluded that the dynamic team Al is fairly robust.

Efficiency: When in a capture-the-flag game the relative turning point is
reached, the dynamic team’s superiority is clear. Table 4.5 shows that the
average relative turning point is 71, i.e., after the scoring of only 71 points the
dynamic team significantly outperforms the static team. A relative turning
point of 71 is quite low, considering that, in general, evolutionary algorithms
need thousands of trials (or more) to find an acceptable solution. Therefore,
at first glance the dynamic team AI seems to be efficient. However, for three
reasons we should be cautious in regarding this result too optimistically. The
reasons are the following. (i) As the high standard deviation of 44.8 indicates,
the relative turning point has a high variance, which is in conflict with the
functional requirement of consistency (2.3.4). (ii) With four states and ba-
sically only fifteen different allele combinations per chromosome,” the search
space for team Al covering all four states only contains 15* = 50625 different
solutions, and thus is very small. (iii) The dynamic team started with tactics
equal to the already effective tactics used by the static team. On average,
the dynamic team needed about two hours of real-time play to turn the ef-
fective initial tactics into superior tactics. In general, QUAKE capture-the-flag
matches do not last that long. Taking the three reasons into account, it can
be concluded that the dynamic team AI is moderately efficient, provided the
search space is small.

TEAM can be applied in practical situations, because it does not slow down

game-play, its tactics do not degrade, and it is fairly robust. While it is lacking in
efficiency, in capture-the-flag matches that run for long periods of time, it may be
expected that TEAM will discover successful tactics, under the provision that the
search space is small.

9Tet N, € N be the number of agents that gets an ‘offensive’ role, Ny € N be the number of
agents that gets a ‘defensive’ role, and N € N be the total number of agents in a team. Then it
holds that N, + Ng < N. With N = 4 agents in a team, as used in the team-Al experiment, only
fifteen different role divisions are possible.
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4.3 Discussion of Evolutionary Game AI

Offline evolutionary game AT achieved good results in exploiting weaknesses in game
AT, and in discovering new tactics, in the duelling-spaceships environment described
in Section 4.1. This is of no surprise, since the only requirement for use of evolution-
ary learning is that an adequate fitness function can be designed (Goldberg, 1989).
A fitness function for the evolution of tactics in a game may be designed by taking
into account the speed by which an encounter is played out, and the effectiveness
by which agents defend themselves and attack the human player. In general, games
provide such information. Thus, it may be concluded that evolutionary learning can
be used to detect exploits in game Al, and to design new tactics for game Al

In the duelling-spaceships experiment, a neural network was used to implement
the game Al It was argued that a neural network is not a suitable architecture
to store game AI, because it cannot create the equivalent of scripts consisting of
production rules. In Chapter 6, where offline evolutionary game AI will be applied
to a different problem, an alternative learning structure will be used, specifically
designed to evolve production rules. However, the same overall design as used in
the present chapter will be used, namely evolving strong tactics by pitting offline
evolutionary game AT against strong static game Al

In the QUAKE capture-the-flag experiment described in Section 4.2, online evo-
lutionary game AI achieved good results in improving tactics against a specific op-
ponent during QUAKE game-play. The opponent was the standard opponent im-
plemented by the QUAKE developers, with the ability to switch between different
configurations in response to changing circumstances. Despite the good results, the
learning mechanism was shown to be only moderately efficient.

Laird (2000) is skeptical about the possibilities offered by online evolutionary
game Al He states that, while neural networks and evolutionary algorithms may be
applied to tune parameters, they are “grossly inadequate when it comes to creating
synthetic characters with complex behaviours automatically from scratch”. In con-
trast, the results achieved with dynamic team Al in QUAKE show that it is certainly
possible to use online evolutionary algorithms for game Al design. A similar discov-
ery, using online evolutionary learning to evolve agent AI, was made by Demasi and
Cruz (2002).

However, the team Al designed for QUAKE capture-the-flag, and the agent Al
designed by Demasi and Cruz (2002), are both simple, controlled by just a few
parameters. Regarding the ‘complexr behaviours’ referred to in Laird’s sentiment,
it is highly doubtful whether an evolutionary approach can generate those in an
efficient manner. It is likely that the search for complex behaviour takes place in
a large search space. In general, the larger the search space, the less efficient an
evolutionary algorithm (or, indeed, any other search algorithm) will be (Russell and
Norvig, 2003). When online evolutionary game AT is no longer efficient, its practical
use is negligible.

It may be concluded that evolutionary game Al is suitable for the offline adap-
tation of game Al and for the online adaptation of game Al for simple behaviour.
However, for lack of efficiency it is not the right approach for the online adaptation
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of game AI for complex behaviour. A different approach to online adaptation of
game Al, targeted at the adaptation of complex behaviour, will be introduced in
Chapter 5.

4.4 Chapter Summary

In this chapter both offline and online evolutionary game Al were investigated. Off-
line evolutionary game AI was shown to be able to exploit weaknesses in game AT,
and to discover new tactics, when pitted against strong static game AI. Online evolu-
tionary game AT was shown to be able to improve tactics against a specific opponent
during game-play. However, the success of online evolutionary game AI depended
on the potential solutions residing in a small search space. In general, when evolving
game Al that is complex, online evolutionary game AI will not be sufficiently effi-
cient. Efficiency is a requirement to apply online adaptation of game Al in practice.
Therefore, to adapt complex game Al, a different approach needs to be used.






Chapter 5
Dynamic Scripting

When error is corrected whenever it is recognised as such,
the path of error is the path of truth.
Hans Reichenbach (1891 1953).

In Chapter 4 it was shown that online evolutionary game AT fails to meet one of the
computational requirements for online-learning, namely the requirement of efficiency
(2.3.4). The present chapter! discusses online learning of game AI using a novel
technique called ‘dynamic scripting’. Dynamic scripting has been designed to meet
all four computational online-learning requirements. With a few enhancements, it
is also able to meet all four functional requirements. Section 5.1 introduces the
dynamic-scripting technique. Experiments performed for evaluating the adaptive
performance of dynamic scripting are described in Sections 5.2 to 5.5. Section 5.2
describes the experimental procedure, and investigates the performance of dynamic
scripting in a simulated CRPG. Section 5.3 investigates enhancements to dynamic
scripting to reduce the number of exceptionally long adaptation runs. Section 5.4
investigates enhancements to dynamic scripting to allow scaling of the difficulty level
of the game AT to the experience level of the human player. In Section 5.5, the results
achieved in the simulated CRPG are validated in an actual state-of-the-art CRPG.
A summary of the chapter is provided in Section 5.6.

5.1 Dynamic-Scripting Technique

This section describes the dynamic-scripting technique (5.1.1), provides pseudo-code
for two of its main process (5.1.2), and explains to what extent it meets the compu-
tational and functional requirements for online learning of game AI (5.1.3).

IThis chapter is based on three papers by Spronck, Sprinkhuizen-Kuyper, and Postma (2004a;
2004b; 2004c).
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Figure 5.1: Dynamic scripting.

5.1.1 Description of Dynamic Scripting

Dynamic scripting is an online machine-learning technique for game Al, that can be
characterised as a stochastic optimisation technique. Dynamic scripting maintains
several rulebases, one for each agent class in the game. Every time a new instance of
an agent is generated, the rulebases are used to create a new script that controls the
agent’s behaviour. The rules that comprise a script controlling a particular agent
are extracted from the rulebase associated with the agent’s class. The probability
that a rule is selected for a script is influenced by a weight value that is attached
to each rule. Adaptation of the rulebase proceeds by changing the weight values to
reflect the success or failure rate of the corresponding rules in scripts. The weight
changes are determined by a weight-update function.

The dynamic-scripting technique is illustrated in Figure 5.1 in the context of a
commercial game. In the figure, the team dressed in grey is controlled by a human
player, while the computer controls the team dressed in black. The rulebase associ-
ated with each computer-controlled agent (named ‘A’ and ‘B’ in Figure 5.1) contains
manually-designed rules derived from domain-specific knowledge. It is imperative
that the majority of the rules in the rulebase define effective, or at least sensible,
agent behaviour.

At the start of an encounter (i.e., a fight between two opposing teams), a new
script is generated for each computer-controlled agent, by randomly selecting a spe-
cific number of rules from its associated rulebase. There is a linear relationship
between the probability that a rule is selected and its associated weight. The order
in which the rules are placed in the script depends on the application domain. A
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priority mechanism can be used to let certain rules take precedence over other rules.
Such a priority mechanism is only required if a general ordering of rules and actions
is prescribed by the domain knowledge. More specific action groupings, such as two
actions which must always be executed in a specific order, should be combined in
one rule.

The learning mechanism in the dynamic-scripting technique is inspired by rein-
forcement learning techniques (Sutton and Barto, 1998; Russell and Norvig, 2003).
‘Regular’ reinforcement learning techniques, such as TD-learning, in general need
large amounts of trials, and thus do not meet the requirement of efficiency (Manslow,
2002; Madeira et al., 2004). Reinforcement learning may be suitable for online learn-
ing of game AI when the trials occur in a short time-span. Such may be the case
on an operational level of intelligence, as in, for instance, the work by Graepel et al.
(2004), where fight movements in a fighting game are learned. However, for the
learning on a tactical or strategic level of intelligence, a trial consists of observing
the performance of a tactic over a fairly long period of time. Therefore, for the
online learning of tactics in a game, reinforcement learning will take too long to be
particularly suitable. In contrast, dynamic scripting has been designed to learn from
a few trails only.

In the dynamic-scripting approach, learning proceeds as follows. Upon com-
pletion of an encounter (combat), the weights of the rules employed during the
encounter are adapted depending on their contribution to the outcome. Rules that
lead to success are rewarded with a weight increase, whereas rules that lead to failure
are punished with a weight decrease. The increment or decrement of each weight
is compensated for by decreasing or increasing all remaining weights as to keep the
weight total constant.

Dynamic scripting can be applied to any form of game AI that meets three
requirements: (i) the game AI can be scripted, (ii) domain knowledge on the char-
acteristics of a successful script can be collected, and (iii) an evaluation function
can be designed to assess the success of the script. Note that the maximum playing
strength game Al can achieve using dynamic scripting depends on the quality of the
domain knowledge used to create the rules in the rulebase. In the present chapter,
it is assumed that the game developer provides high-quality domain knowledge. In
Chapter 6, I discuss the automatic generation of high-quality domain knowledge.

5.1.2 Dynamic Scripting Code

The two central processes of the dynamic-scripting technique are script generation
and weight adjustment, which are specified in pseudo-code in this subsection. In
the code, the rulebase is represented by an array of rule objects. Each rule object
has three attributes, namely (i) weight, which stores the rule’s weight as an integer
value, (ii) line, which stores the rule’s actual text to add to the script when the rule
is selected, and (iii) activated, which is a boolean that indicates whether the rule
was activated during script execution.

Algorithm 1 presents the script generation algorithm. In the algorithm, the
function ‘InsertInScript’ add a line to the script. If the line is already in the script,
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Algorithm 1 Script Generation

1: ClearScript()
2: sumweights = 0
3: for i = 0 to rulecount — 1 do
4:  sumweights = sumweights + ruleli].weight
5: end for
6: for ¢ =0 to scriptsize — 1 do
7. try=0
8:  lineadded = false
9:  while try < maxtries and not lineadded do
10: 7=0
11: sum =0
12: selected = —1
13: fraction = random (sumweights)
14: while selected < 0 do
15: sum = sum + rule[jl.weight
16: if sum > fraction then
17: selected = j
18: else
19: Jj=7+1
20: end if
21: end while
22: lineadded = InsertInScript(rule[selected].line)
23: try=try+1
24:  end while
25: end for

26: FinishScript()

the function has no effect and returns ‘false’. Otherwise, the line is inserted and
the function returns ‘true’. The algorithm aims to put scriptsize lines in the script,
but may end up with less lines if it needs more than maxtries trials to find a new
line. The function ‘FinishScript’ appends one or more lines to the script, to ensure
that the script will always find an action to execute. For computational speed, all
numbers in the algorithm are integer values.

Algorithm 2 presents the weight adjustment algorithm. The function ‘Calcu-
lateAdjustment’ calculates the reward or penalty each of the activated rules receives.
The parameter Fitness is a measure of the performance of the script during the en-
counter. For computational speed, all numbers in the algorithm are integer values,
except for the value of Fitness, which is a real value.

Note that in Algorithm 1 the calculation of sumweights in lines 3 to 5 should
always lead to the same result, namely the sum of all the initial rule weights. How-
ever, the short calculation that is used to determine the value of sumweights ensures
that the algorithm will succeed even if Algorithm 2 does not divide the value of
remainder completely (to avoid using too many processing cycles).
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Algorithm 2 Weight Adjustment
1: active = 0

2: for ¢ = 0 to rulecount — 1 do
3:  if rule[i].activated then

4 active = active + 1

5  end if
6
7
8
9

: end for
. if active <= 0 or active >= rulecount then
: return {No updates are needed.}
: end if
10: nonactive = rulecount — active
11: adjustment = CalculateAdjustment (Fitness)
12: compensation = —round(active x adjustment/nonactive)
13: remainder = —active * adjustment — nonactive x compensation
14: {Awarding rewards and penalties:}
15: for ¢ = 0 to rulecount — 1 do
16:  if ruleli].activated then

17: ruleli].weight = ruleli].weight + adjustment

18:  else

19: rule[i].weight = ruleli].weight + compensation

20:  end if

21:  if rulefil.weight < minweight then

22: remainder = remainder + (ruleli].weight — minweight)
23: ruleli].weight = minweight

24:  else if rule[i].weight > mazweight then

25: remainder = remainder + (ruleli].weight — mazweight)
26: ruleli].weight = maxweight

27 end if

28: end for

29: {Division of remainder:}

30: 1 =0

31: while remainder > 0 do
32:  if rulefil.weight <= mazweight — 1 then

33: ruleli].weight = rule[i].weight + 1
34: remainder = remainder — 1
35  end if

36: 4= (i+ 1) mod rulecount

37: end while

38: while remainder < 0 do

39:  if rule[i].weight >= minweight + 1 then

40: rulei].weight = ruleli].weight — 1
41: remainder = remainder + 1
42:  end if

43: 1= (i+ 1) mod rulecount
44: end while
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5.1.3 Dynamic Scripting and Learning Requirements

Dynamic scripting meets five of the eight computational and functional requirements
(2.3.4) by design, as follows.

e Speed (computational): Dynamic scripting is computationally fast, because
it only requires the extraction of rules from a rulebase and the updating of
weights once per encounter.

e Effectiveness (computational): Dynamic scripting is effective, because all rules
in the rulebase are based on domain knowledge. Therefore, every action which
an agent executes through a script that contains these rules, is an action that
is at least reasonably effective (although it may be inappropriate for certain
situations). Note that if the game developers make a mistake and include
an inferior rule in the rulebase, the dynamic-scripting technique will quickly
assign this rule a low weight value. Therefore, the requirement of effectiveness
is met even if the rulebase contains a few inferior rules.

e Robustness (computational): Dynamic scripting is robust, because rules are
not removed immediately when punished. Instead, they get selected less of-
ten. Their selection rate will automatically increase again, either when they
are included in a script that achieves good results, or when other rules are
punished.

e Clarity (functional): Dynamic scripting generates scripts, which can be easily
understood by game developers.

e Variety (functional): Dynamic scripting generates a new script for every agent,
and thus provides a high variety in behaviour.

The remaining three requirements, namely the computational requirement of
efficiency and the functional requirements of consistency and scalability, are not met,
by design. The dynamic-scripting technique is believed to meet the requirement of
efficiency, because with appropriate weight-updating parameters it can adapt after
a few trials only. This is investigated empirically in Section 5.2. Enhancements to
the dynamic-scripting technique that make it meet the requirements of consistency
and scalability are investigated in Sections 5.3 and 5.4, respectively.

5.2 Efficiency Validation

Since the dynamic-scripting technique is designed to be used against human players,
ideally an empirical evaluation of the technique is derived from an analysis of games
it plays against humans. However, due to the huge number of tests that must
be performed, such an evaluation is not feasible within a reasonable amount of
time (Madeira et al., 2004). Therefore, I decided to evaluate the dynamic-scripting
technique by its ability to discover scripts capable of defeating strong, but static,
tactics. Translated to a game played against human players, the evaluation tests
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Figure 5.2: The CRPG simulation.

the ability of the dynamic-scripting technique to force the human player to seek
continuously new tactics, because the game AI will automatically adapt to deal with
tactics that are used often. The evaluation was performed in a simulated CRPG.
This section describes the simulation environment (5.2.1), the scripts and rulebases
(5.2.2), the weight-update function (5.2.3), the tactics against which the dynamic-
scripting technique is tested (5.2.4), the measures used to evaluate the results (5.2.5),
and the achieved experimental results (5.2.6).

5.2.1 Simulation Environment

The CRPG simulation used to evaluate dynamic scripting is illustrated in Figure 5.2.
It is modelled after the popular BALDUR'S GATE games. These games (along with
a few others) contain the most complex and extensive game-play system found in
modern CRPGs, closely resembling classic non-computer roleplaying games (Cook,
Tweet, and Williams, 2000). The simulation entails an encounter between two teams
of similar composition. The ‘dynamic team’ is controlled by dynamic scripting.
The ‘static team’ is controlled by unchanging scripts, that represent strong tactics.
Each team consists of four agents, namely two ‘fighters’ and two ‘wizards’ of equal
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‘experience level’. The armament and weaponry of the teams is static, and each
agent is allowed to select two (out of three possible) magic potions. In addition, the
wizards are allowed to memorise seven (out of 21 possible) magic spells. The spells
incorporated in the simulation are of varying types, amongst which damaging spells,
blessings, curses, charms, area-effect spells, and summoning spells.

The simulation is implemented with hard constraints and soft constraints. Hard
constraints are constraints that are submitted by the games rules, e.g., a hard con-
straint on spells is that they can only be used when they are memorised, and a
hard constraint on agents is that they can only execute an action when they are not
incapacitated. Soft constraints are constraints that follow as logical consequences
from the rules, e.g., a soft constraint on a healing potion is that only an agent that
has been damaged should drink it. Both hard and soft constraints are taken into
account when a script is executed, e.g., agents will not drink a healing potion when
they are incapacitated or undamaged.

In the simulation, the practical issue of choosing spells and potions for agents is
solved by making the choice depend on the (generated) scripts, as follows. Before
the encounter starts, the scripts are scanned to find rules containing actions that
refer to drinking potions or casting spells. When such a rule is found, a potion or
spell that can be used in that action is selected. If the agent controlled by the script
is allowed to possess the potion or spell, it is added to the agent’s inventory.

More details on the CRPG simulation environment can be found in Appendix
A, Section A.1.

5.2.2 Scripts and Rulebases

The scripting language was designed to emulate the power and versatility of the
scripts used in the BALDUR’S GATE games. The scripting language is explained in
detail in Appendix A, Section A.2.

Rules in the scripts are executed in sequential order. For each rule the condition
(if present) is checked. If the condition is fulfilled (or absent), the action is executed
if it obeys all relevant hard and soft constraints. If no action is selected when the
final rule is checked, the default action ‘pass’ is used.

When dynamic scripting generates a new script, the rule order in the script is
determined by a manually-assigned priority value. Rules with a higher priority take
precedence over rules with a lower priority. In case of equal priority, the rules with
higher weights take precedence. For rules with equal priorities and equal weights,
the order is determined randomly.

The selection of script sizes was motivated by the following two considerations,
namely that (i) a fighter has less action choices than a wizard, thus a fighter’s script
can be shorter than a wizard’s script, and (ii) a typical fight will last five to ten
rounds, thus a maximum of ten rules in a script seems sufficient. Therefore, the size
of the script for a fighter was set to five rules, which were selected out of a rulebase
containing twenty rules. For a wizard, the script size was set to ten rules, which
were selected out of a rulebase containing fifty rules. At the end of each script,
default rules were attached, to ensure the execution of an action in case none of the
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rules extracted from the rulebase could be activated. The rulebases used are listed
in Appendix A, Section A.3.

5.2.3 Weight-Update Function

The weight-update function is based on two so-called ‘fitness functions’, namely (i)
a team-fitness function F(g) (where g refers to the team), and (ii) an agent-fitness
function F(a,g) (where a refers to the agent, and g refers to the team to which the
agent belongs). The fitness functions have been designed with the aim to assign
high fitness to behaviour that manages to defeat the opposing team, or that at least
manages to put up a good fight.

Both fitness functions yield a value in the range [0,1]. The fitness values are
calculated at time ¢ = T, where T is the time step at which all agents in one of
the teams are ‘defeated’, i.e., have their health reduced to zero or less. A team of
which all agents are defeated, has lost the fight. A team that has at least one agent
‘surviving’, has won the fight. At rare occasions both teams may lose at the same
time.

The team-fitness function is defined as follows.

0 {g lost}

Flg=) 1 1 (1 hT(c)> {g wonl

0| 2N, \ " el

(5.1)

In this equation, g refers to a team, c refers to an agent, N, € N is the total number
of agents in team g, and h;(c) € N is the health of agent ¢ at time ¢. According the
equation, a ‘losing’ team has a fitness of zero, while the ‘winning’ team has a fitness
exceeding 0.5.

The agent-fitness function is defined as follows.

Fla,g) = 15 (3F(g) + 34(a) +2B(9) + 2C(s) ) (5.2)

In this equation, a refers to the agent whose fitness is calculated, and g refers to the
team to which agent a belongs. The equation contains four components, namely (i)
F(g), the fitness of team g, derived from equation 5.1, (ii) A(a) € [0, 1], which is a
rating of the survival capability of agent a, (iii) B(g) € [0, 1], which is a measure of
health of all agents in team g, and (iv) C(g) € [0, 1], which is a measure of damage
done to all agents in the team opposing g. The weight of the contribution of each
of the four components to the final outcome was determined arbitrarily, taking into
account the consideration that agents should give high rewards to a team victory, and
to their own survival (expressed by the components F(g) and A(a), respectively).
The function assigns smaller rewards to the survival of the agent’s comrades, and to
the damage inflicted upon the opposing team (expressed by the components B(g)
and C(g), respectively). As such the agent-fitness function is a good measure of the
success rate of the script that controls the agent.
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The components A(a), B(g), and C(g) are defined as follows.

. D(a)
Ala) = 1 i (-Dma:v 7 1) (@ =0 (5.3)
2+ ’Z((Z)) {hr(a) > 0}
1 0 {hr(c) < 0}
B = 5.4
T, ze; 1+ ZT((C)) {hr(c) > 0} .
olC
1 1 {hr(c) < 0}
C(g) = c (5.5)
2N % - ’Z ((c)) {ho(c) > 0}

In equations 5.3 to 5.5, a and g are as in equation 5.2, ¢, N, and h¢(c) are as in
equation 5.1, N-4 € N is the total number of agents in the team that opposes g,
D(a) € Nis the time of ‘death’ of agent a, and D, is a constant (D,,q. was set to
100 in the experiments, which equals ten combat rounds, which is longer than most
fights last).

The agent fitness is translated into weight adaptations for the rules in the script.
Weight values are bounded by a range [Winin, Winaz|, with excess rewards being
redistributed over all weights. Only the rules in the script that are actually executed
during an encounter are rewarded or penalised. A new weight value is calculated as
W + AW, where W is the original weight value, and the weight adjustment AW is
expressed by the following formula.

—LPmeiTFJ {F < b}

Rmap 5] (F20)

AW — (5.6)

In this equation, R, € N and P,,,; € N are the maximum reward and maximum
penalty respectively, F' is the agent fitness, and b € (0, 1) is the break-even value. At
the break-even point the weights remain unchanged. To keep the sum of all weight
values in a rulebase constant, weight changes are executed through a redistribution
of all weights in the rulebase. The weight-adjustment formula is visualised later in
this chapter, in figure 5.6 (left).

In the efficiency-validation experiment, values for the constants were set as fol-
lows. The break-even value b was set to 0.3, since in the simulation this value is
between the fitness value that the ‘best losing agent’ achieves and the fitness value
that the ‘worst winning agent’ achieves (about 0.2 and 0.4, respectively). The ini-
tialisation of the rulebase assigned all weights the same weight value, W;,;; = 100.
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Wmin Was set to zero to allow rules that are punished a lot to be effectively removed
from the script-generation process. Wy, was set to 2000, which is such a high
value that it allows weights to grow more or less unrestricted. R, was set to 100
to increase the efficiency of dynamic scripting by allowing large weight increases for
agents with a high fitness. P, was set to 30, which is relatively small compared
to Rinaz, to protect the rulebase from degradation as soon as a local optimum is
found. Intuitively, the argument for the low value of P,,,, seems to be correct, since
the penalty is similar to the mutation rate in evolutionary algorithms, which should
be small in the neighbourhood of an optimum (Béck, 1996). However, in Section
5.3 it will be shown that a higher value for the maximum penalty gives a better
performance for dynamic scripting.

5.2.4 Tactics

Four different basic tactics and three composite tactics were defined for the static
team. The four basic tactics, implemented as a static script for each agent of the
static team, are as follows (in these description, an ‘enemy’ is a member of the
dynamic team).

Offensive: The fighters always attack the nearest enemy with a melee weapon,
while the wizards use the most damaging offensive spells at the (according to
domain knowledge) most susceptible enemies.

Disabling: The fighters start by drinking a potion that protects them from any
disabling effect, then attack the nearest enemy with a melee weapon. The
wizards use all kinds of spells that incapacitate enemies for several rounds.

Cursing: The fighters always attack the nearest enemy with a melee weapon, while
the wizards use all kinds of spells that reduce the enemies’ effectiveness, e.g.,
they try to charm enemies (i.e., turn them into allies), physically weaken enemy
fighters, deafen enemy wizards (which causes many of the spells they cast to
fail), and summon minions in the middle of the enemy team.

Defensive: The fighters start by drinking a potion that reduces fire damage, after
which they attack the closest enemy with a melee weapon. The wizards use
all kinds of defensive spells, to deflect harm from themselves and from their
comrades, including the summoning of minions.

Details of the basic tactics are listed in Appendix A, Section A.4.
To assess the ability of the dynamic-scripting technique to cope with sudden
changes in tactics, the following three composite tactics were defined.

Random team: For each encounter, one of the four basic tactics is selected ran-
domly.

Random agent: For each encounter, each agent randomly selects one of the four
basic tactics, independent from the choices of his comrades.
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Figure 5.3: Average fitness in size-10 window progression.

Consecutive: The static team starts by using one of the four basic tactics. For
each encounter, the team will continue to employ the tactic used during the
previous encounter if that encounter was won, but will switch to the next tactic
if that encounter was lost. This strategy is closest to what human players do:
they stick with a tactic as long as it works, and switch when it fails. This
design makes the consecutive tactic the most difficult tactic to defeat.

5.2.5 Measuring Performance

In order to identify reliable changes in strength between teams, the notion of the
‘turning point’ is defined as follows. After each encounter the average fitness for
each of the teams over the last ten encounters is calculated. The dynamic team is
said to ‘outperform’ the static team at an encounter if the average fitness over the
last ten encounters is higher for the dynamic team than for the static team. The
turning point is the number of the first encounter after which the dynamic team
outperforms the static team for at least ten consecutive encounters.

Figure 5.3 illustrates the turning point with a graph displaying the progression
of the average team-fitness in a size-10 window (i.e., the values for the average team
fitness for ten consecutive encounters) for both teams, in a typical test. The hori-
zontal axis represents the encounters. Because of the size-10 window, the first values
are displayed for encounter number 10. In this example at encounter number 29 the
dynamic team outperforms the static team, and maintains its superior performance
for ten encounters. Therefore, the turning point is 29. The absolute fitness values
for the same typical test are displayed in Figure 5.4. Since after each encounter
the fitness for one of the teams is zero, only the fitness for the winning team is
displayed per encounter (the colour of the bar indicates which is the winning team).
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Figure 5.4: Absolute fitness F'(g) as a function of the encounter number.

Evidently, after encounter 25, the dynamic team wins more often than the static
team. Note that, regardless how long training lasts, the dynamic team will never
reach a point where it is able to win always, due to (i) the randomness inherent in
the simulation, (ii) the variety of the scripts generated by dynamic scripting, and
(iii) the effectiveness of the static tactics.

A low value for the turning point indicates good efficiency of dynamic scripting,
since it indicates that the dynamic team consistently outperforms the static team
within a few encounters only.

5.2.6 Efficiency-Validation Results

For each of the tactics I ran 100 tests to determine the average turning point. The
results of these tests are presented in Table 5.1. The columns of the table represent,
from left to right, (i) the name of the tactic, (ii) the average turning point, (iii) the
standard deviation, (iv) the median, (v) the highest value for a turning point found,
and (vi) the average of the five highest values.

The aim of the first experiment was to test the viability and efficiency of dynamic
scripting. The achieved results show that dynamic scripting is both a viable, and a
highly efficient technique (at least in the present domain of combat in CRPGs). For
all tactics, dynamic scripting yields low turning points. In addition to this general
observation, I give three more specific observations.

First, the ‘disabling’ tactic is easily defeated by the dynamic team. Apparently
it is not a good tactic, because dealing with it requires little or no adaptation of the
rulebase.

Second, the ‘consecutive’ tactic, which was argued to be closest to human-player
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Tactic Average St.dev. Median Highest Top 5
Offensive 58 35.0 53 314 155
Disabling 12 5.2 10 51 31
Cursing 137 333.6 35 1767 1461
Defensive 31 18.8 27 93 7
Random team 56 74.4 34 595 310
Random agent 53 67.0 27 398 289
Consecutive 72 100.3 47 716 424

Table 5.1: Turning-point values for dynamic scripting pitted against seven different
tactics, averaged over 100 tests.

behaviour, is overall the most difficult to defeat with dynamic scripting.? Never-
theless, the dynamic-scripting technique is capable of defeating this tactic rather
quickly, especially considering the fact that the rulebase started out with all weights
being equal, while in an actual game the weights would be biased from the start to
give the objectively better rules a higher selection probability.

Third, it is striking that for all tactics the average turning point is significantly
higher than the median. The explanation is the rare occurrence of extremely high
turning points. These so-called ‘outliers’ are explained by the high degree of ran-
domness that is inherent to the simulated CRPG, and to games in general. A long
run of encounters where pure chance drives the learning process away from an opti-
mum (e.g., a run of encounters wherein the dynamic team is lucky and wins despite
employing inferior tactics, or wherein the dynamic team is unlucky and loses de-
spite employing good tactics) may place the rulebase in a state from which it has
difficulty to recover. Due to the randomness inherent in games, such occasional
long runs are unavoidable, but their probability of occurrence may be reduced. Two
countermeasures against outliers are discussed in Section 5.3.

5.3 Outlier Reduction

The occasional occurrence of outliers withholds dynamic scripting from meeting
the requirement of consistency. To reduce the number of outliers occurring with
the application of dynamic scripting, I propose two countermeasures, namely (i)
penalty balancing, and (ii) history fallback. The two countermeasures are explained
in Subsections 5.3.1 and 5.3.2, respectively. The countermeasures are evaluated in
an experiment, of which the results are presented in Subsection 5.3.3, and discussed
in Subsection 5.3.4.

2At first glance the ‘cursing’ tactic might seem harder to defeat, but the median value shows
that this is not the case; the ‘cursing’ tactic’s high average is caused by its high susceptibility to
outliers, which are discussed in Section 5.3
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5.3.1 Penalty Balancing

The magnitude of the weight adaptation in a rulebase depends on a measure of the
success (or failure) of the agent whose script is extracted from the rulebase. It is
calculated according to equation 5.6. ‘Penalty balancing’ is balancing the magnitude
of the maximum penalty P,,,, against the maximum reward R, to optimise speed
and effectiveness of the adaptation process. The experimental results presented in
Section 5.2 relied on a maximum penalty that was substantially smaller than the
maximum reward (namely, P, = 30 and Ry,.. = 100). As stated in Subsection
5.2.3, the argument for the relatively small maximum penalty is that, as soon as
a local optimum is found, the rulebase should be protected against degradation.
However, when a sequence of undeserved rewards leads to wrong settings of the
weights, recovering the appropriate weight values is hampered by a relatively low
maximum penalty. Penalty balancing attempts to take this into account by balancing
the need to recover from erroneous weight values against the risk of moving away
from an optimum.

5.3.2 History Fallback

In the formulation of dynamic scripting in Section 5.1, the old weights of the rules in
the rulebase are erased when the rulebase adapts. With history fallback all previous
weights are retained in so-called ‘historic rulebases’. When learning seems to be
stuck in a sequence of rulebases that have inferior performance, it can ‘fall back’ to
one of the historic rulebases that seemed to perform better.

Caution should be taken not to be too eager to fall back to earlier rulebases.
The dynamic-scripting technique is quite robust, and learns from both successes and
failures. Returning to an earlier rulebase means losing everything that was learned
after that rulebase was generated. Furthermore, an earlier rulebase may have a high
fitness due to chance, and returning to it might therefore have an adverse effect.
It was empirically confirmend that the performance of dynamic scripting worsened
when extended with a history-fallback mechanism that was eager to return to a
previous rulebase. Therefore, history fallback should only be activated when there
is a high probability that a truly inferior rulebase is replaced by a truly superior one.

The implementation of history fallback is as follows. The current rulebase R is
used to generate scripts that control the behaviour of an agent during an encounter.
After each encounter i, before the weight updates, all weight values from rulebase
R are copied to historic rulebase R;. With R; are also stored: the team-fitness
value F'(g), the agent-fitness value F'(a, g), and a number representing the so-called
‘parent’ of R;. The parent of R; is the historic rulebase whose weights were updated
to generate R; (usually the parent of R; is R;_1). A rulebase is considered ‘inferior’
when both its own fitness values and the fitness values of its NV immediate ancestors,
are low (i.e., below a threshold value T'). A rulebase is considered ‘superior’ when
both its own fitness values and the fitness values of its IV immediate ancestors, are
high (i.e., above T'). If at encounter i we find that R; is inferior, and in R;’s ancestry
we find a historic rulebase R; that is superior, the next parent used to generate the
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current rulebase R will not be R; but R;. Because it is useless to return to a historic
rulebase that has not yet learned, the mechanism only falls back to a rulebase R;
for j > J. In the experiments N = 3, T' = 0.4, and J = 10 were used.

Though unlikely, with this mechanism it is still possible to fall back to a historic
rulebase that does not perform well in the current situation, although it seemed
to perform well in the past. While this will be discovered by the learning process
soon enough, the risk of returning to such a rulebase over and over again should be
minimised. I propose two different ways of avoiding this risk. The first is by simply
not allowing the mechanism to fall back to a historic rulebase that is ‘too old’, but
only allow it to fall back to the last M ancestors (in the experiment M = 15 was
used). This is called ‘limited-distance fallback’ (LDF). The second is acknowledging
that the agent-fitness value of a rulebase should not be too different from that of
its direct ancestors. This is realised by propagating a newly calculated fitness value
back through the ancestry of a rulebase, and factoring it into the fitness values for
those ancestors. As a consequence, a rulebase that has children with low agent-
fitness values will be assigned an agent-fitness value that is also small. This is called
‘fitness-propagation fallback’ (FPF). Both versions of history fallback allow dynamic
scripting to recover earlier rulebases, that are truly better than the current one.

5.3.3 Outlier-Reduction Results

To test the effectiveness of penalty balancing and history fallback, I ran an ex-
periment in the simulated CRPG. The experiment consisted of a series of tests,
executed in a manner equal to the efficiency-validation experiment (5.2). T decided
to use the ‘consecutive’ tactic for the static team, since this tactic is the most chal-
lenging for dynamic scripting. I compared nine different configurations, namely

learning runs using maximum penalties Pp,q, = 30, Pe = 70 and P,,., = 100,
combined with the use of no fallback (NoF), limited-distance fallback (LDF), and
fitness-propagation fallback (FPF). All other parameters were set equal to the values
used in the efficiency-validation experiment.

Table 5.2 gives an overview of the experimental results. The columns of the
table represent, from left to right, (i) the value for P, (ii) the history-fallback
mechanism used, (iii) the average turning point, (iv) the standard deviation, (v) the
median, (vi) the highest value for the turning point, and (vii) the average of the five
highest values.

Figure 5.5 shows histograms of the turning points for each of the series of tests.
The turning points have been grouped in ranges of 25 different values. Each bar
indicates the number of turning points falling within a range. Each graph starts with
the leftmost bar representing the range [0,24]. The rightmost bars in the topmost
three graphs represent all turning points of 500 or greater (the other graphs do not
have turning points in this range).

From Table 5.2 and Figure 5.5 I derive the following four observations. (i) Penalty
balancing is a necessary requirement to reduce the number of outliers. All experi-
ments that have a higher maximum penalty than the original P,,,, = 30 reduce the
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P.. Fallback Average St.dev. Median Highest Top 5

30 NoF 72 100.3 47 716 424
30 LDF 99 229.3 49 2064 837
30 FPF 80 145.0 54 971 605
70 NoF 62 69.4 44 336 301
70 LDF 52 56.2 37 393 238
70 FPF 60 a7.3 32 391 245
100 NoF 66 99.5 59 322 246
100 LDF 68 56.7 60 271 225
100 FPF 57 50.6 93 331 202

Table 5.2: Turning-point values for dynamic scripting pitted against the consecutive
tactic, averaged over 100 tests.

number and magnitude of outliers.® (ii) There is no discernable difference in the
effect of limited-distance fallback and the effect of fitness-propagation fallback. (iii)
If penalty balancing is not applied, history fallback seems to have no effect or even
an adverse effect. (iv) If penalty balancing is applied, history fallback has no ad-
verse effect and may actually have a positive effect. One of the reasons why history
fallback is so effective in combination with penalty balancing may be the following.
In Subsection 5.3.1 it was stated that penalty balancing runs the risk of losing a
discovered optimum due to chance. History fallback counteracts this risk.

As a final test, a combination of penalty balancing with P,,,, = 70 and limited-
distance fallback was applied to all the different tactics available in the simulation
environment. The results are summarised in Table 5.3. A comparison of Table 5.3
and Table 5.1 shows a significant, often very large reduction of the both the highest
turning point and the average of the highest five turning points, for all tactics except
for the ‘disabling’ tactic (note, however, that the increased turning points for the
‘disabling’ tactic are inconsequential, since the ‘disabling’ tactic already has the
lowest turning points in both tables). Therefore, the results of the final test clearly
support the positive effect of the two countermeasures against outliers.

5.3.4 Discussion of Outlier-Reduction Results

It is clear from the results in Table 5.2 that the number of outliers has been sig-
nificantly reduced with the proposed countermeasures. However, exceptionally long
learning runs still occur in the simulation experiments, even though they are rare,
and less extreme than without the countermeasures. Does this mean that dynamic

3 After the first publication of dynamic scripting by Spronck, Sprinkhuizen-Kuyper, and Postma
(2003b), T was contacted by Dahlbom on the question how to apply dynamic scripting to real-
time strategy games. Independently of the results reported by Spronck, Sprinkhuizen-Kuyper,
and Postma (2004b), Dahlbom (2004) later arrived at a similar conclusion regarding the effect of
penalty balancing on the reduction of outliers.



96 Dynamic Scripting

Pmax=30, NoF Pmax=30, LDF Pmax=30, FPF
30 30 30
20 20 20
0 0 0
0 0 0
0 00 200 300 400 500 0 00 200 300 400 500 0 00 200 300 400 500
40 40 40
Pmax=70, NoF Pmax=70, LDF Pmax=70, FPF
30 30 30
20 20 20
0 0 0
0 0 0
0 00 200 300 400 500 0 00 200 300 400 500 0 00 200 300 400 500
40 40 40
Pmax=100, NoF Pmax=100, LDF Pmax=100, FPF
30 30 30
20 20 20
0 0 0

0 00 200 300 400 500 0 00 200 300 400 50

°

200 300 400 501

Figure 5.5: Histograms for the turning points in 100 tests, for the outlier-reduction
experiment.

scripting, enhanced with the countermeasures, still does not meet the requirement
of consistency?

I argue that the countermeasures do make dynamic scripting meet the require-
ment of consistency. The argument is twofold: (i) Because dynamic scripting is a
non-deterministic technique, outliers can never be prevented completely. However,
entertainment value of a game is guaranteed even if an outlier occurs, because dy-
namic scripting meets the requirement of effectiveness by design. (ii) Exceptionally
long learning runs mainly occur because early in the process chance increases the
wrong weights. This is not likely to happen in a rulebase with pre-initialised weights.
When dynamic scripting is implemented in an actual game, the weights in the rule-
base will not all start out with equal values, but they will be initialised to values that
are already trained against commonly used tactics. This will not only prevent the
occurrence of outliers, but also increase the speed of the dynamic scripting process,
and provide history fallback with a likely candidate for a superior rulebase.

It should be noted that, besides as a target for the history-fallback mechanism,
historic rulebases can also be used to store tactics that work well against a specific
tactic employed by a human player. If human-player tactics can be identified, these
rulebases can simply be reloaded when the player starts to use a particular tactic
again after having employed a completely different tactic for a while.
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Tactic Average St.dev. Median Highest Top 5
Offensive 53 24.8 52 120 107
Disabling 13 8.4 10 79 39
Cursing 44 50.4 26 304 222
Defensive 24 15.3 17 79 67
Random team 51 64.5 29 480 271
Random agent 41 40.7 25 251 178
Consecutive 52 56.2 37 393 238

Table 5.3: Turning-point values for dynamic scripting pitted against different tactics,
using P,,q, = 70 and limited-distance fallback, averaged over 100 tests.

5.4 Difficulty Scaling

For non-expert players, a game is most entertaining when it is challenging but beat-
able (Scott, 2002). To ensure that the game remains interesting, the issue is not for
the computer to produce occasionally a weak move so that the human player can
win, but rather to produce not-so-strong moves under the proviso that, on a balance
of probabilities, they should go unnoticed (lida, Handa, and Uiterwijk, 1995). ‘Dif-
ficulty scaling’ is the automatic adaptation of a game, to set the challenge that the
game poses to a human player. When applied to game Al, difficulty scaling aims at
achieving an ‘even game’, i.e., a game wherein the playing strength of the computer
and the human player match.

Many games provide a ‘difficulty setting’, i.e., a discrete value that determines
how difficult the game will be. The purpose of a difficulty setting is to allow both
novice and experienced players to enjoy the appropriate challenge the game offers
(Charles and Black, 2004). The difficulty setting commonly has some problematic
issues, of which I indicate three. First, the setting is coarse, with the player having
a choice between only a limited number of difficulty levels (usually three or four).
Second, the setting is player-selected, with the player unable to assess which diffi-
culty level is appropriate for his skills. Third, the setting has a limited scope, (in
general) only affecting the computer-controlled agents’ strength, and not their tac-
tics. Consequently, even on a ‘high’ difficulty setting, the opponents exhibit similar
behaviour as on a ‘low’ difficulty setting, despite their greater strength.

The three issues mentioned may be alleviated by applying dynamic scripting
enhanced with an adequate difficulty-scaling mechanism. Dynamic scripting changes
the computer’s tactics to the way a game is played. As such, (i) it makes changes
in small steps (i.e., it is not coarse), (ii) it makes changes automatically (i.e., it is
not player-selected), and (iii) it affects the computer’s tactics (i.e., it does not have
a limited scope).

This section describes three different enhancements to the dynamic-scripting
technique that let agents learn how to play an even game, namely (i) high-fitness
penalising, (ii) weight clipping, and (iii) top culling. The three enhancements are
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Figure 5.6: Comparison of the original weight-adjustment formula (left) and the
high-fitness-penalising weight-adjustment formula (right), by plotting the weight
adjustments as a function of the fitness value F. The middle graph displays the
relation between F' and F’.

explained in Subsections 5.4.1, 5.4.2, and 5.4.3, respectively. The enhancements are
evaluated in an experiment, of which the results are presented in Subsection 5.4.4,
and discussed in Subsection 5.4.5.

5.4.1 High-Fitness Penalising

The weight adjustment expressed in equation 5.6 gives rewards proportional to the
fitness value: the higher the fitness, the higher the reward. To elicit mediocre instead
of good behaviour, the weight adjustment can be changed to give highest rewards to
mediocre fitness values, and lower rewards or even penalties to high fitness values.
With high-fitness penalising the weight adjustment is expressed by formula 5.6,
where F' is replaced by F’ defined as follows.

L qr<p
F' = p (5.7)
% {F > p}

In this equation, F' is the calculated fitness value, and p € [0.5,1], p > b, is the
reward-peak value, i.e., the fitness value that should get the highest reward. The
higher the value of p, the more effective agent behaviour will be. Figure 5.6 illustrates
the weight adjustment as a function of the original fitness (left), the mapping of F' to
F’ (middle), and the weight adjustment as a function of the high-fitness-penalising
fitness (right). Angles o and § are equal.

Since the optimal value for p depends on the tactic that the human player uses,
it was decided to let the value of p adapt to the perceived difficulty level of a game,
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as follows. Initially p starts at a value p;,;- After every fight that is lost by the
computer, p is increased by a small amount, p;,,., up to a predefined maximum p,, 4.
After every fight that is won by the computer, p is decreased by a small amount
Pdec, down to a predefined minimum p,,;,. By running a series of tests with static
values for p, I found that good values for p are found close to 0.7. Therefore, in the
experiment I used pinit = 0.7, Pimin = 0.65, Prmae = 0.75, and pine = Pgec = 0.01.

5.4.2 Weight Clipping

During the weight updates, the maximum weight value W,,,, determines the maxi-
mum level of optimisation a learned tactic can achieve. A high value for W, ., allows
the weights to grow to large values, so that after a while the most effective rules will
almost always be selected. This will result in scripts that are close to optimal. A
low value for W, ., restricts weights in their growth. This enforces a high diversity
in generated scripts, most of which will be mediocre.

Weight clipping automatically changes the value of W,,,,, with the intent to
enforce an even game. It aims at having a low value for W,,,, when the computer
wins often, and a high value for W,,,,, when the computer loses often. The imple-
mentation is as follows. After the computer wins a fight, W,,,,, is decreased by W,
per cent (but not lower than the initial weight value W;,;;). After the computer
loses a fight, W,,,4. is increased by Wj,. per cent.

Figure 5.7 illustrates the weight-clipping process and the associated parameters.
The shaded bars represent weight values for four arbitrary rules on the horizontal
axis, numbered 1 to 4. After a fight, before weight adjustment, W,,,, is either
increased by W;,,. per cent, or decreased by Wy, per cent, depending on the outcome
of the fight. After the change of W,,,,., in the figure the weight value for rule 4 is too
low, so it is increased to W,;,, (the arrow marked ‘a’). Similarly, the weight value for
rule 2 is too high, so it is decreased to W4, (the arrow marked ‘b’). As prescribed
by dynamic scripting, after the weights are brought within the range [Wiuin, Winax]
the excess weights are redistributed again over all weights.

In the experiment I decided to use the same initial values as I used for the
efficiency-validation experiment, i.e., I used W;,;; = 100, W,,;» = 0, and an initial
value for W, 4. of 2000. W;,. and Wy.. I both set to 10 per cent.

5.4.3 Top Culling

Top culling is quite similar to weight clipping. It employs the same adaptation
mechanism for the value of W, .. The difference is that top culling allows weights to
grow beyond the value of W,,,,,.. However, rules with a weight greater than W,,,,, will
not be selected for a generated script. Consequently, when the computer-controlled
agents win often, the most effective rules will have weights that exceed W,4., and
cannot be selected, and thus the agents will use weak tactics. Alternatively, when
the computer-controlled agents lose often, rules with high weights will be selectable,
and the agents will use strong tactics. So, while weight clipping achieves weak tactics
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Figure 5.7: Weight-clipping and top-culling process and parameters.

by promoting diversity, top culling achieves weak tactics by removing access to the
most effective domain knowledge.

In Figure 5.7, contrary to weight clipping, top culling will leave the value of rule
2 unchanged (the action represented by arrow ‘b’ will not be performed). However,
rule 2 will be unavailable for selection, because its value exceeds W, qz-

5.4.4 Difficulty-Scaling Results

To test the effectiveness of the three difficulty-scaling enhancements, I ran an ex-
periment in the simulated CRPG. The experiment consisted of a series of tests,
executed in the same way as the efficiency-validation experiment (Section 5.2). The
experiment aimed at assessing the performance of a team controlled by the dynamic-
scripting technique using a difficulty-scaling enhancement (with P,,,, = 100, fitness-
propagation fallback, and all other parameters equal to the values used in the
efficiency-validation experiment), against a team controlled by static scripts. If the
difficulty-scaling enhancements work as intended, dynamic scripting will balance the
game so that the number of wins of the dynamic team is roughly equal to the number
of losses.

For the static team, I added an eighth tactic to the seven tactics described in
Subsection 5.2.4, called the ‘novice’ tactic. The ‘novice’ tactic resembles the playing
style of a novice CRPG player, who has learned the most obvious successful tactics,
but has not yet mastered the subtleties of the game. While normally the ‘novice’
tactic will not be defeated by arbitrarily choosing rules from the rulebase, there
are many different tactics that can be employed to defeat it, which the dynamic
team will discover quickly. Against the ‘novice’ tactic, without a difficulty-scaling
enhancement, the dynamic team’s number of wins in general will greatly exceed its
losses.
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. High-Fitness Weight Top
Plain .. . .
Penalising Clipping Culling

Tactic Avg. Dev. | Avg. Dev. | Avg. Dev. | Avg. Dev.
Offensive 61.2 164 | 46.0 15.1 | 50.6 9.4 | 46.3 7.5
Disabling 86.3 104 | 56.6 8.8 | 67.8 4.5 | 52.2 3.9
Cursing 56.2 11.7 | 42.8 9.9 | 48.4 6.9 | 46.4 5.6
Defensive 66.1 119 | 39.7 8.2 | 52.7 4.2 | 49.2 3.6
Novice 75.1 133 | 54.2 13.3 | 53.0 5.4 | 49.8 3.4
Random team | 55.8 11.3 | 37.7 6.5 | 50.0 6.9 | 47.4 5.1
Random agent, | 58.8 9.7 | 44.0 86 | 51.8 5.9 | 48.8 4.1
Consecutive 51.1 11.8 | 344 8.8 | 48.7 7.7 | 45.0 7.3

Table 5.4: Experimental results of testing the difficulty-scaling enhancements to
dynamic scripting on eight different tactics, averaged over 100 tests.

For each of the tactics, I ran 100 tests in which dynamic scripting was enhanced
with each of the three difficulty-scaling enhancements, and, for comparison, also
without difficulty-scaling enhancements (called ‘plain’). Each test consisted of a
sequence of 150 encounters between the dynamic team and the static team. Because
in each of the tests the dynamic-scripting technique starts with a rulebase with
all weights equal, the first 50 encounters were used for finding a balance of well-
performing weights. T recorded the number of wins of the dynamic team over the
last 100 encounters.

The results of these tests are displayed in Table 5.4. For each combination of
tactic and difficulty-scaling enhancement the table shows the average number of wins
over 100 tests, and the associated standard deviation. To be recognised as an even
game, it was decided that the average number of wins over all tests must be close
to 50. To take into account random fluctuations, in this context ‘close to 50’ means
‘within the range [45,55]”.* In Table 5.4, all cell values indicating an even game are
marked in bold font. From the table the following four results can be derived.

First, dynamic scripting without a difficulty-scaling enhancement (‘plain’) results
in wins significantly exceeding losses for all tactics except for the ‘consecutive’ tactic
(with a reliability > 99.9%; Cohen, 1995). This supports the viability of dynamic
scripting as a learning technique, and also supports the statement in Subsection 5.2.4
that the ‘consecutive’ tactic is the most difficult tactic to defeat. Note that the fact
that, on average, dynamic scripting plays an even game against the ‘consecutive’
tactic is not because it is unable to defeat this tactic consistently, but because

4Deciding when a game can be called an ‘even game’ by observing the number of wins, seems to
be comparable to deciding whether a coin is fair by observing a series of coin tosses, and thus be
subject to a standard statistical evaluation to determine the range of the number of wins. However,
the comparison is not apt. While coin tosses are random, the difficulty-scaling enhancements
actively force a game to equal wins and losses. Imagine a coin that moves the centre-point of its
weight after every toss.
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dynamic scripting continues learning after it has reached a local optimum. Therefore,
it can ‘forget’ what it previously learned, especially against an superior tactic like
the ‘consecutive’ tactic.

Second, high-fitness penalising performs considerably worse than the other two
enhancements. It cannot achieve an even game against six out of the eight tactics.

Third, weight clipping is successful in enforcing an even game in seven out of
eight tactics. It does not succeed against the ‘disabling’ tactic. This is caused by
the fact that the ‘disabling’ tactic is so easy to defeat, that even a rulebase with
all weights equal will, on average, generate a script that defeats this tactic. Weight
clipping can never generate a rulebase worse than ‘all weights equal’.

Fourth, top culling is successful in enforcing an even game against all eight tactics.

Histograms for the tests with the ‘novice’ tactic are displayed in Figure 5.8.
On the horizontal axis the number of wins for the dynamic team out of 100 fights
is displayed. The bar length indicates the number of tests that resulted in the
associated number of wins.

From the histograms the following result is derived. While, on average, all three
difficulty-scaling enhancements manage to enforce an even game against the ‘novice’
tactic, the number of wins in each of the tests is much more ‘spread out’ for the
high-fitness-penalising enhancement than for the other two enhancements. This
indicates that the high-fitness penalising enhancement results in a higher variance
of the distribution of won games than the other two enhancements. The top-culling
enhancement seems to yield the lowest variance. This is confirmed by an approximate
randomisation test (Cohen, 1995), which shows that against the ‘novice’ tactic, the
variance achieved with top culling is significantly lower than with the other two
enhancements (reliability > 99.9%). I observed similar distributions of won games
against the other tactics, except that against some of the stronger tactics, a few
exceptional outliers occurred with a significantly lower number of won games. The
rare outliers were caused by the fact that, occasionally, dynamic scripting requires
more than 50 encounters to find a well-performing set of weights when playing against
a strong static tactic.

In conclusion, the results show that, when dynamic scripting is enhanced with
the top-culling difficulty-scaling mechanism, it meets the functional requirement of
scalability.

5.4.5 Discussion of Difficulty-Scaling Results

Of the three different difficulty-scaling enhancements the top-culling enhancement is
the best choice. It has the following three advantages: (i) it gives the most reliable
results, (ii) it is easily implemented, and (iii) of the three enhancements, it is the
only one that manages to force an even game against inferior tactics.

Obviously, the worst choice is the high-fitness-penalising enhancement. In an
attempt to improve high-fitness penalising, some tests were performed with different
ranges and adaptation values for the reward-peak value p, but these worsened the
results. However, the possibility cannot be ruled out that with a different fitness
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Figure 5.8: Histograms of 100 tests of the achieved number of wins in 100 fights,
against the ‘novice’ tactic.

function high-fitness penalising will give better results.?

An additional possibility with the weight-clipping and top-culling enhancements
is that they can also be used to set a different desired win-loss ratio, by changing
the rates with which the value of W,,,, fluctuates. For instance, by using top
culling with Wy.. = 30 per cent instead of 10 per cent, leaving all other parameters
unchanged, after 100 tests against the ‘novice’ tactic I derived an average number
of wins of 35.0 with a standard deviation of 5.6. The histogram of this experiment
is given in Figure 5.9.

Notwithstanding the successful results, a difficulty-scaling enhancement should
be an optional feature in a game, that can be turned off by the player, for the
following two reasons: (i) when confronted with an experienced player, the learning
process should aim for superior tactics without interference from a difficulty-scaling
enhancement, and (ii) some players will feel that attempts by the computer to force
an even game diminishes their accomplishment of defeating the game, so they may
prefer not to use it.

5In independent research (see footnote 3) Dahlbom (2004) applied dynamic scripting to a simu-
lated real-time strategy game. He used a technique which he called ‘fitness mapping’ for difficulty
scaling, for which he reported good results. Fitness mapping is similar to what I call ‘high-fitness
penalising’ (Spronck, Sprinkhuizen-Kuyper, and Postma, 2004a), without dynamically changing
the reward-peak value p.
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Figure 5.9: Histogram of the achieved number of wins over 100 tests against the
‘novice’ tactic, using dynamic scripting with the top-culling enhancement, with
Waee = 30 per cent.

5.5 Validation in Practice

To investigate whether the successful results achieved with dynamic scripting in
a simulated CRPG hold in a practical setting, I decided to test the technique in
an actual state-of-the-art commercial game. For this purpose, I chose the game
NEVERWINTER NIGHTS (2002), developed by BioWare Corp. In this section I present
the NEVERWINTER NIGHTS environment (5.5.1), the scripts and rulebases (5.5.2),
the weight-update function (5.5.3), the tactics used by the static team (5.5.4), the
results of an evaluation of dynamic scripting in NEVERWINTER NIGHTS (5.5.5), and
a discussion of the results (5.5.6).

5.5.1 Neverwinter Nights

NEVERWINTER NIGHTS is a CRPG of a complexity similar to the BALDUR'S GATE
games. A major reason for selecting NEVERWINTER NIGHTS for evaluating dynamic
scripting is that the game is easy to modify and extend. It is delivered with a toolset
that allows the user to develop completely new game modules. The toolset provides
access to the scripting language and all the scripted game resources, including the
game AI. While the scripting language is not as powerful as modern programming
languages, I found it to be sufficiently powerful to implement, dynamic scripting.

Iimplemented a small module in NEVERWINTER NIGHTS, similar to the simulated
CRPG used previously. The module contains an encounter between a dynamic team
and a static team of similar composition. As a result, the NEVERWINTER NIGHTS
experiment is very similar to the CRPG simulation experiments described earlier.
This is on purpose, because the present experiment is meant to demonstrate that the
simulation results can be repeated in a commercially available game. In contrast,
Chapter 6 will demonstrate the general applicability of dynamic scripting.

The testing environment is illustrated in Figure 5.10. Each team consists of a
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Figure 5.10: A fight between two teams in NEVERWINTER NIGHTS.

fighter, a rogue, a priest, and a wizard of equal experience level. In contrast to the
agents in the simulated CRPG, the inventory and spell selections in the NEVER-
WINTER NIGHTS module cannot be changed, due to the toolset lacking functions to
achieve such modifications. This has a restrictive impact on the tactics. Details of
the module are found in Appendix B, Section B.1.

5.5.2 Scripts and Rulebases

To facilitate the development of new game modules, the default game AT in NEV-
ERWINTER NIGHTS is implemented in a very general way, suitable for agents of all
classes and levels (e.g., it does not refer to casting of a specific magic spell, but
to casting of spells from a specific class). It distinguishes between about a dozen
agent classes. For each agent class it sequentially checks a number of environmental
variables and attempts to generate an appropriate response. The behaviour gener-
ated is not completely predictable, because it is partly probabilistic. Details of the
NEVERWINTER NIGHTS game Al are found in Appendix B, Section B.2.

For the implementation of the dynamic-scripting technique, first the rules em-
ployed by the default game AI were extracted, and then entered in every appropriate
rulebase. To these standard rules several new rules were added. The new rules were
similar to the standard rules, but slightly more specific, e.g., referring to specific
enemies instead of referring to a random enemy. Additionally, a few ‘empty’ rules
were added, which, if selected, allow the game AI to decrease the number of effec-
tive rules. Priorities were set similar to the priorities used in the simulated CRPG.
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Note that since the rules extracted from the default game AI are generalised, the
rules used by dynamic scripting are generalised too. The use of generalised rules in
the rulebase has the advantage that the rulebase gets trained for generating AT for
agents of any experience level.

The size of the scripts for both a fighter and a rogue was set to five rules (the
same as the number of rules of the fighter in the simulated CRPG), which were
selected out of rulebases containing 21 rules. The size of the scripts for both a priest
and a wizard was set to ten rules (the same as the number of rules of the wizard
in the simulated CRPG), containing 55 rules and 49 rules, respectively. To the end
of each script a call to the default game AI was added, in case no rule could be
activated. Details of the rulebases are found in Appendix B, Section B.3.

5.5.3 Weight-Update Function

The weight adjustment mechanism used in NEVERWINTER NIGHTS was similar to
the mechanism used in the simulated CRPG (5.2.3). I decided to differ slightly from
the implementation of these functions in the simulation, mainly to avoid problems
with the NEVERWINTER NI1GHTS scripting language, and to allow varying team sizes.
These changes are not critical for the performance of dynamic scripting, since the
fitness functions only need to provide a general indication of the measure of success
of a team and its agents.

The team-fitness F(g), which yields a value in the range |0,1], was defined as
follows.

0 {g lost}
1 2 hr(c) (5.8)
5+ Z 5Ng<1+ hﬁ(c)) {g won}

c€g,hr(c)>0

F(g) =

All variables in this equation were defined as those in equation 5.1. The agent-fitness
F(a, g), which yields a value in the range [0,1], was defined as follows.

1

min(zp(a) 3
Fla,g) = 3F(9) + 5

Eo 5) {hr(a) < 0}

3 2 hT(CL)

5 Bhola)

(5.9)

{hr(a) >0}

All variables in this equation were defined as those in equations 5.2 to 5.5.

Weight adjustment was implemented according to equation 5.6, with all para-
meter values as in the efficiency-validation experiment, except for the maximum
penalty P,,.., which was set to 50. Furthermore, rules in the script that were not
executed during the encounter, instead of being treated as not being in the script
at all, were assigned half the reward or penalty received by the rules that were ex-
ecuted. The main reason for this is that if there were no rewards and penalties for
the non-executed rules, the empty rules would never get rewards or penalties.
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5.5.4 Tactics

In our experiment three different tactics were used for the static team, all based on
the default game AI, implemented by the NEVERWINTER NIGHTS developers. The
three tactics are the following.

AT 1.29: AT 1.29 is the default game AT used in NEVERWINTER NIGHTS version
1.29. This version of NEVERWINTER NIGHTS was used for the earliest tests.

AT 1.61: AT 1.61 is the default game AI used in NEVERWINTER NIGHTS version
1.61. This version of NEVERWINTER NIGHTS was used for the later tests.
Between version 1.29 and 1.61 the game AI was significantly improved by the
game developers.

Cursed AI: A ‘cursed’ version of AT 1.61 was created. With cursed AI in 20 per
cent of the encounters the game AI deliberately misleads dynamic scripting
into awarding high fitness to purely random tactics, and low fitness to tactics
that have shown good performance during earlier encounters.

5.5.5 Neverwinter Nights Results

Table 5.5 summarises the results from the repetition of (parts of) the efficiency-
validation experiment and the outlier-reduction experiment in the NEVERWINTER
NIGHTS environment. The columns of the table represent, from left to right, (i) the
tactic used, (ii) the fallback mechanism used, (iii) the number of tests executed,®
(iv) the average turning point, (v) the standard deviation, (vi) the median, (vii)
the highest value for the turning point, and (viii) the average of the five highest
values. No tests were performed with penalty balancing, since already in the earliest
experiments with NEVERWINTER NIGHTS higher maximum penalties were used than
in the simulated CRPG. From the results in Table 5.5 the following two conclusions
are derived.

First, since the achieved turning points in all tests are (very) low, dynamic script-
ing meets the requirement of efficiency easily.

Second, history fallback has little or no effect on the results. However, since
even ‘cursed AI’ does not cause significantly increased turning points, it seems that
dynamic scripting in NEVERWINTER NIGHTS is so robust that remote outliers do
not occur. Therefore, countermeasures against outliers are not needed, and dynamic
scripting in NEVERWINTER NIGHTS meets the requirement of consistency without
special measures.

The results achieved with the top-culling enhancement were also validated in
NEVERWINTER NIGHTS. Without top culling, in ten tests dynamic scripting achieved

6The number of tests for the NEVERWINTER N1GHTS experiment is lower than for the simulation
experiment, where I performed 100 tests for each configuration. Since the NEVERWINTER NIGHTS
developers stated that it was not possible to increase the speed of the game execution, a test lasted
8 hours on average (for the fitness-scaling tests even 24 hours on average). To limit the time needed
to do the tests, I decided to be satisfied with a number of tests sufficient to obtain statistically
sound results.
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Tactic Fallback Tests Avg. St.dev. Median Highest Top 5
AT 1.29 NoF 50 21 8.8 16 101 58
AT 1.61 NoF 31 35 18.8 32 75 65
ATl 1.61 FPF 30 32 21.8 24 104 71
Cursed AT NoF 21 33 21.8 24 92 64
Cursed AT FPF 21 32 28.1 18 115 69

Table 5.5: Turning-point values for dynamic scripting in NEVERWINTER NIGHTS.

an average number of 79.4 wins out of 100 fights, with a standard deviation of 12.7.
With top culling, in ten tests dynamic scripting achieved an average number of
49.8 wins out, of 100 fights, with a standard deviation of 3.4. The results clearly
support that dynamic scripting, enhanced with top culling, meets the requirement
of scalability.

5.5.6 Discussion

The NEVERWINTER NIGHTS experiment supports the results achieved with dynamic
scripting in a simulated CRPG. Comparison of all results even seems to indicate that
dynamic scripting performs better in NEVERWINTER NIGHTS than in the simulated
CRPG. This is caused by the fact that the default game Al in NEVERWINTER NIGHTS
is designed to be effective for all agents that can be designed in the toolset. Since
it is not specialised, for most agents it is not optimal. Therefore, there is a great
variety of tactics that can be used to deal with it, which makes it fairly easy for
dynamic scripting to discover a successful counter-tactic.

In general, the more effective the tactic against which dynamic scripting is tested,
the longer it will take for dynamic scripting to gain the upper hand. Moreover, be-
cause dynamic scripting is designed to generate a wide variety of tactics (in compli-
ance with the requirement of variety), it will never gain the upper hand if the tactic
against which it is pitted is so strong that there are very few viable counter-tactics.
Against human players, this means that dynamic scripting will achieve the most
satisfying results against non-expert players.

In a game that allows the design of ‘super-tactics’, which are almost impossible
to defeat, dynamic scripting may not give satisfying results when used against ex-
pert players who know and use these super-tactics. However, every machine-learning
technique will require more computational resources finding rare solutions than find-
ing ubiquitous solutions. Therefore, against super-tactics, instead of using an online
machine-learning technique, in general it will be more effective to use counter-tactics
that have been trained against these super-tactics in an offline-learning process. It
should be noted that the existence of super-tactics in a game is actually an indication
of bad game-design, because they make the game too hard when employed by the
computer, and they make the game too easy when employed by the human player.
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5.6 Chapter Summary

By design, dynamic scripting meets the requirements of speed, effectiveness, robust-
ness, clarity, and variety. In Section 5.2 it was shown that it meets the requirement of
efficiency. In Section 5.3 it was shown that by applying penalty balancing, possibly
combined with history fallback, dynamic scripting meets the requirement of consis-
tency. In Section 5.4 it was shown that by applying top culling, dynamic scripting
meets the requirement of scalability. The results achieved in a simulated CRPG
were confirmed in the state-of-the-art CRPG NEVERWINTER NIGHTS. Therefore
it may be concluded that dynamic scripting meets all eight requirements specified
in Subsection 2.3.4, and thus can be applied in actual commercial games for the
implementation of online adaptive game Al.






Chapter 6

Professional Adaptive Game Al

In the scale of destinies, brawn will never weigh as much as brain.
— James Russell Lowell (1819-1891).

This chapter! discusses how adaptive game Al is to be applied by professional game
developers. Section 6.1 describes the game-development process, and indicates at
which stages of the process adaptive game AI must be taken into account. While the
offline application of adaptive game AT is relatively risk-free, game developers will
only consider applying it online if it is of high reliability. A procedure is proposed
to increase the reliability of online adaptive game Al by using offline adaptive game
AT The procedure is illustrated in Sections 6.2 to 6.4. Section 6.2 discusses adaptive
game Al in a Real-Time Strategy (RTS) game. In Section 6.3 improved tactics for
the game are generated with offline evolutionary game AI. In Section 6.4 the derived
results are used to improve the reliability of the adaptive game Al introduced in
Section 6.2. Section 6.5 discusses to what extent the investigated techniques can be
accepted by game developers. A summary of the chapter is provided in Section 6.6.

6.1 Game Development and Adaptive Game Al

This section describes how adaptive game AI can be integrated in the game-
development process. It discusses the game-development process (6.1.1), the stages
of the process that are affected by adaptive game Al (6.1.2), and how offline adaptive
game Al can be used to increase the reliability of online adaptive game AI (6.1.3).

6.1.1 The Game-Development Process

Crawford (1984) describes the game-development process as consisting of the follow-
ing seven phases.?

ISections 6.2 to 6.4 of this chapter are based on a paper by Ponsen and Spronck (2004).
2T replaced some of the terms used by Crawford (1984) with terms that are more common
nowadays.
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Concept: The ‘concept’ phase consists of setting a topic and a goal for a game. Each
game must have a goal, that is expressed in terms of the effect the game has
on human players. Setting a clear goal at the start of the game-development
process supports game designers in taking decisions, especially when trade-offs
between features must be considered.

Pre-production: After choosing a goal and a topic for a game, research must be
done into the game’s background, to give designers a feeling for the game’s
scope. This is an exploratory phase, in which little is put on paper.

Design: In the ‘design’ phase, designers create documents outlining three interde-
pendent structures: (i) the I/O structure, (ii) the game structure, and (iii)
the program structure. The I/O structure describes the game’s interface, with
respect to both input and output. The game structure describes how the
game’s goal and topic translate into game elements, to be experienced and
manipulated by human players. The program structure describes how the I/0O
structure and game structure are translated into a real product.

Pre-development: In the ‘pre-development’ phase, the design documents are
translated into a detailed technical design of the game.

Development: In the ‘development’ phase the game is implemented (which in-
cludes game debugging). Crawford (1984) calls this “the easiest of all phases”.
His argument is that “[p|rogramming itself is straightforward and tedious work,
requiring attention to detail more than anything else.” At the time he wrote
this, it was certainly true, since games were much simpler then than they are
today. Whether his statement is true for a modern game depends on how
innovative and competitive the game intends to be.

Quality Assurance: ‘Quality assurance’, also referred to as ‘playtesting’, is meant
to polish and refine the game design. Often during this phase fundamental
flaws are discovered, that require major changes to the design or implementa-
tion.

Post-mortem: After the game has been deployed, the ‘post-mortem’ phase starts.
Reactions of reviewers and the gaming public are measured. Nowadays, for
most games during the ‘post-mortem’ phase one or more ‘patches’ are released,
to resolve design and programming mistakes discovered only after a game’s
publication.

6.1.2 Integrating Adaptive Game Al

Before the late 1990s, game AI only became an issue late in the ‘development’
phase. However, since game AI has become an element of competition between
game developers, as early as in the ‘design’ phase attention is given to game Al
(Champandard, 2004). When adaptive game Al is introduced in a game, it affects
the game-development process in even earlier phases, as explained below.
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Since adaptive game Al is still new for published games, its introduction in a
game will not be taken lightly. In particular online adaptive game AI has a major
impact on the game-play experience of the human players. Since online adaptive
game AT will be a unique selling point of a game, it becomes one of the game’s goals.
Therefore, the decision to include online adaptive game Al is taken in the ‘concept’
phase. This will remain the case until adaptive game AI becomes a proven technique
that most games developers include by default.

For both offline and online adaptive game AI, the ‘design’ phase will be used to
determine exactly what can be learned, and how the learning process is integrated
into the game engine. In the ‘pre-development’ phase, detailed data structures are
designed that store parameters used by the adaptive game AL During the ‘develop-
ment’ phase, the adaptive game Al is implemented.

With offline adaptive game AI, during the ‘quality assurance’ phase the game
AT can be fine-tuned, in two ways. The first way is to let the manually-designed
game Al play the game against offline adaptive game AI, to detect shortcomings
and alternative tactics, as was discussed in Section 4.1. The second way is to store
the tactics that are used by the playtesters, after which offline adaptive game Al is
used to play against the stored tactics that playtesters seem to use often, to detect
ways of defeating them.

For online adaptive game Al, special care must be taken during the ‘quality
assurance’ phase to test the effect the adaptive mechanism has on the behaviour of
the computer-controlled agents. Since the agents adapt to the human player, the
human player has plenty opportunities to ‘mess’ with the game AI while playing
the game. During the ‘quality assurance’ phase, it must be ascertained that the
adaptive game AT meets the four computational and four functional requirements
specified in Subsection 2.3.4. Adaptive game Al that meets all eight requirements
is called ‘reliable’. Game publishers can rest assured that the quality of reliable
adaptive game Al is guaranteed, even against human players that deliberately try to
exploit the adaptation process to elicit inferior game AI. However, because adaptive
game Al is not static, the game developers must take into account that the ‘quality
assurance’ phase for a game will take longer with than without adaptive game Al.

6.1.3 Combining Offline and Online Adaptive Game Al

To ensure the reliability of online adaptive game Al it must incorporate a sufficient
amount of correct prior domain knowledge (Manslow, 2002). However, if the in-
corporated domain knowledge is incorrect or insufficient, online adaptive game Al
will not be reliable, and unable to generate satisfying results. If a combination of
offline and online game Al is available during the ‘quality assurance’ phase, offline
adaptive game AT can be used to increase the reliability of online adaptive game Al
by improving the domain knowledge. To this end, I propose a procedure consisting
of the following three steps.

1. Online adaptation: During the ‘quality assurance’ phase, online adaptive game
AT is used against the playtesters and against manually-designed game Al, as
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was shown in Chapter 5. The adaptive game AT will improve itself to generate
successful tactics, that are hard to defeat.

2. Offtine adaptation: Offline adaptive game AT is used to discover new tactics
that can deal with the best results found by online adaptive game AI, and
with the manually-designed tactics that online adaptive game AI was unable
to deal with, as was shown in Section 4.1.

3. Improving: The tactics discovered with offline adaptive game AT are analysed,
and the results of the analysis are used to improve the domain knowledge
employed by online adaptive game Al. The improved online adaptive game Al
should be better able to deal with strong human player tactics, and should
be more efficient in finding tactics of a desired effectiveness. Step 1 can be
repeated to validate the improvements. If necessary all three steps can be
repeated to further improve the domain knowledge.

In the following three sections, the effectiveness of the procedure is demon-
strated.?

6.2 Dynamic Scripting in an RTS Game

The first step in combining online and offline adaptive game Al is the implementa-
tion and use of online adaptive game AI. The most complex game Al is encountered
in CRPGs and in strategy games (2.2.2). Chapter 5 already showed that dynamic
scripting can be successfully applied to a CRPG. To demonstrate the general ap-
plicability of dynamic scripting, for the experiment described in the present chapter
it was decided to apply dynamic scripting to a Real-Time Strategy (RTS) game.
In the experiment, dynamic scripting is evaluated against several static tactics, to
determine to what extent it is able to defeat the static tactics.

Subsection 6.2.1 introduces RTS games and the WARGUS environment used for
the experiment. Subsection 6.2.2 describes the implementation of dynamic script-
ing in WARGUS. Subsection 6.2.3 discusses the evaluation of dynamic scripting in
WARGUS. Subsection 6.2.4 presents the achieved results.

6.2.1 RTS Games

RTS games are simple military simulations (often called ‘war games’) that allow the
human player to control a ‘civilisation’ on a map. Typically, a civilisation consists
of buildings, technology, and armies. Armies consist of ‘units’ of several different
types. A unit is an object that separately moves on a game’s map, under the control
of either a human player or the computer. A unit is different from an agent, in that
a unit does not take autonomous decisions. All decisions are taken by the human
player, or the centralised game AT used by the computer.

3This demonstration is based on the work by Ponsen (2004), which was performed in collabo-
ration with and under supervision of the author.
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The goal that an RTS game assigns to a human player is to defeat all opposing
civilisations. Usually, defeating a civilisation equates eliminating all armies of the
civilisation. In most RTS games, the key to winning lies in efficiently collecting and
managing resources, and appropriately distributing the resources over the various
game elements. Typical game elements in RTS games include the construction of
buildings, the research of new technologies, and combat.

Game Al is of critical importance to RTS games. It determines the tactics of
the civilisations controlled by the computer, including the management of resources.
Designing game Al for RTS games is particularly challenging for game developers,
because of two reasons: (i) RTS games are complex, i.e., a wide variety of tactics
can be employed, and (ii) decisions have to be made under severe time constraints.
Buro (2003b) calls RTS games “an ideal test-bed for real-time AI research”.

Game Al in RTS games is global, i.e., it determines all decisions for a civilisation
over the course of the whole game.* For RTS games, Ramsey (2004) describes a
multi-tiered game-Al framework, which consists of different managers for different
tasks. Five examples of managers are (i) a ‘build manager’ that is responsible for
placement of structures and towns, (ii) a ‘resource manager’ that is responsible for
gathering resources, (iii) a ‘research manager’ that selects new technologies based on
their usefulness and cost, (iv) a ‘combat manager’ that is responsible for conscript-
ing and deploying military units, and (v) a ‘civilisation manager’, that coordinates
the interaction between the other managers. In practice, the managers are often
combined in one game-Al script, which defines a strategy.

Because of the high complexity of the game AI of RTS games, usually the game
AT employs a goal-directed approach (Harmon, 2002). The final goal for the game AT
is to win the game, but this goal is too complicated to address directly. Therefore,
the game AT aims at achieving subgoals, that can be considered successful steps on
the road to achieving the final goal. Examples of subgoals are ‘expanding the terrain
under control’ and ‘disabling the opponent’s resource gathering’. Usually, the game
AT is enhanced with a variety of domain-specific tactics, which may increase the
entertainment experienced by human players (Kent, 2004).

Contrary to publishers of CRPGs, publishers of RTS games have not yet released
game engines that allow replacement of the game AI by an adaptive mechanism
(Buro, 2004). Therefore, in the present context, an open-source game was selected
to experiment with online and offline adaptive game AT in RTS games.

The game selected is WARGUS, illustrated in Figure 6.1. WARGUS is a faithful
open-source clone of the game WARCRAFT II, developed by Blizzard. WARCRAFT
IT was first released in 1995, and re-released in 1999. While its graphics are not to
up to today’s standards, its game-play can still be considered state of the art. While
WARCRAFT II and WARGUS allow conflicts between more than two civilisations, for
the experiments described here, the number of civilisations on a map was limited
to two. A game-Al script for WARGUS determines a complete strategy for a whole
game. Details of the WARGUS game Al are found in Appendix C.

4Depending on the level of detail of an RTS game, it may also include local game AI, which
controls unit behaviour. However, in strategy games the local game Al is trivial compared to the
global game Al.



116 Professional Adaptive Game Al

Figure 6.1: WARGUS.

6.2.2 Dynamic Scripting in Wargus

The design of dynamic scripting for RTS games has a major difference with dynamic
scripting for CRPGs, as discussed in Chapter 5. While dynamic scripting for CRPGs
employs different rulebases for different agent classes in the game, the RTS imple-
mentation of dynamic scripting employs different rulebases for different ‘states’ of
the game. A ‘state’ of an RTS game is a game situation that the game-Al designer
typifies as fundamentally different from other game situations. The reason for the
deviation from the CRPG implementation of dynamic scripting is that the tactics
that a civilisation can use in an RTS game depend on the current military, techno-
logical, and economical situation of the civilisation. Thus, rules that deserve high
weights in one state, may not deserve high weights in another state. For instance,
attacking with weak units might be the only viable choice in early game states, while
in later game states, when strong units are available, usually weak units will have
become useless.

In WARGUS the availability of different unit types and research options deter-
mines mainly what tactics are possible. The available buildings determine the unit
types that can be trained, and the possibilities for research. Therefore, an obvious
choice for defining different game states is by the buildings that have been con-



6.2  Dynamic Scripting in an RTS Game 117

structed. Consequently, the construction of a building that allows the training of
unit types that were previously unavailable, or that allows new research, spawns a
state transition.

The twenty states for WARGUS, and the possible state transitions, are illustrated
in Figure 6.2. In the figure, each box represents a state. Inside a box the buildings
that are available are listed. The arrows between boxes, labelled with a building
that is constructed, represent state transitions. Note that a civilisation starts out
with a ‘town hall’ and with ‘barracks’ already available. Note also that buildings
that do not allow the training of new unit types, new research, or the construction
of new buildings, are left out of the figure.

For WARGUS, dynamic scripting was implemented as follows. To generate a new
game-Al script, dynamic scripting starts by randomly selecting rules for the first
state, from the rulebase corresponding to the first state. When a rule is selected
that spawns a state transition, from that point on rules will be selected for the
new state, using the rulebase corresponding to the new state. To avoid monotone
behaviour, each rule is restricted to be selected only once per state. Rule selection
continues, until either a total of N rules has been selected, or until a final state is
reached from which no state transition is possible. For the final state (which, as can
be observed in Figure 6.2, is state number 20), a maximum of N, rules is selected.
At the end of a script, a manually-designed group of commands is attached that
initiate continuous attacks against the opposing civilisation.

In the experiment the values N = 100 and N.,q = 20 were used. The value for
N is similar to the size of the scripts created by the WARGUS developers. The value
for Ne,q is largely irrelevant, since only in rare cases a game lasts until the final
state.

To design rules for the rulebases, domain knowledge was acquired from strategy
guides for WARCRAFT II. Fifty rules were defined this way, divided into four basic
categories, namely (i) build rules (12 rules, for constructing buildings), (ii) research
rules (9 rules, for acquiring new technologies), (iii) economy rules (4 rules, for gath-
ering resources), and (iv) combat rules (25 rules, for military activities). To create
rulebases for the twenty states, each rule was copied to all rulebases for states in
which the rule can be executed.® This resulted in each of the rulebases contain-
ing between 21 and 42 rules. Details of the rulebases are supplied in Appendix C,
Subsection C.5.1.

Because there are separate rulebases for each state, the size of weight updates is
determined mainly by a so-called ‘state fitness’, i.e., an evaluation of performance
of the game AT for each separate state. To recognise the importance of winning or
losing the game, weight updates also take into account a so-called ‘overall fitness’,
i.e., an evaluation of the performance of the game AI for the game as a whole. The
use of both fitness functions for the weight updates increases the efficiency of the
learning mechanism (Manslow, 2004).

A civilisation that uses dynamic scripting is called a ‘dynamic civilisation’. The

5For instance, since in WARGUS a ‘castle’ is a prerequisite for building an ‘airport’, and since a
civilisation only needs one ‘airport’, the rule ‘build airport’ is only included in rulebases for states
in which a ‘castle’ is available, and in which an ‘airport’ has not been built yet.
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state-fitness function F; for state 4, i € N/{0}, for dynamic civilisation d is defined
as follows.
Sdi Sdi-1

Sdai+Sci  Sai-1+ Sei-1
In this equation, Sy, represents the score of the dynamic civilisation after state z,
Sc.« represents the score of the civilisation opposing d after state x, Sqo = 0, and
Sc0 = 1. The score is a value that measures the success of a civilisation up to the
moment the score is calculated.

The overall-fitness function F.. for dynamic civilisation d yields a value in the
range [0, 1]. Tt is defined as follows.

F, =

(6.1)

Sa,rL )
min ’ ,b ) {dlost}
Sa.r + Se
Fo = ( dL el (6.2)
max Sa.L ,b ] {d won}
Sa.rL + Se,L

In this equation, Sq, and S, . are as in equation 6.1, L is the number of the state
in which the game ended, and b € (0,1) is the break-even value. At the break-even
point, weights remain unchanged.

The score function is domain dependent, and should successfully reflect the rela-
tive strength of the two opposing civilisations in the game. For WARGUS, the score
S,y for civilisation x after state y is defined as follows.

Sy =CmMyy+(1—Cp)Bgy (6.3)

In this equation, for player x after state y, M, represents the ‘military points’
scored, i.e., the number of points awarded for killing units and destroying buildings,
and B, , represents the ‘building points’ scored, i.e., the number of points awarded
for conscripting units and constructing buildings. C,,, € [0, 1] represents the weight
given to the military points in the fitness. Since experience indicates that military
points are a better indication for the success of a tactic than building points, C,,
was set to 0.7.

After each game, the weights of all rules employed are updated. Weight values
are bounded by a range [Winin, Winaz]. A new weight value is calculated as W+ AW,
where W is the original weight value, and the weight adjustment AW is expressed
by the following formula.

b— Fo, b— F,
_Pma:r (Cend b + (1 - Cend) b ) {Foo < b}

AW = (6.4)

Foo = b F, -0

_ . >
Rmaz (Cend 1_b + (1 Cend) 1-b > {Foo = b}

In this equation, R, € N and P,,4; € N are the maximum reward and maximum
penalty respectively, F,, is the overall fitness, F; is the state fitness, for the state
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corresponding to the rulebase containing the weight, and b is the break-even point.
Cena € [0,1] represents the fraction of the weight adjustment that is determined
by the overall fitness. Since it can be expected that rulebases for different states
will become successful at different times, the contribution of the state fitness Fj to
the weight adjustment should be larger than the contribution of the overall fitness
F. Moreover, it is desirable that, even if a game is lost, rulebases for states where
performance was successful are not punished (too much). Therefore, Cp,q was set
to 0.3.

To keep the sum of all weight values in a rulebase constant, weight changes are
executed through a redistribution of all weights in the rulebase. In the experiment,
the values Wi = 25, Winae = 1250, Ripae = 200, Ppgr = 175, and b = 0.5 were
used. These values were determined to give good results during preliminary tests.
The value of 0.5 for b is the only logical choice, since at this value the scores for the
two civilisations are equal, indicating equal performance for both of them.

Note that it can be argued that, since the dynamic-scripting implementation in
WARGUS executes weight updates only after a game has been played, the described
adaptive game Al is actually an offline mechanism. However, an RTS game typically
consists of a series of so-called ‘levels’, where each level is equivalent to a game as
discussed above, i.e, civilisations start with little, and have to expand their territo-
ries and defeat all opposing armies, before moving on to the next level. Therefore,
the described adaptive game Al learns during the playing of a full RTS game. Fur-
thermore, with a fitness function that only uses state fitness, and with game Al
generated for each state on the fly, learning can even take place during the playing
of a level, if states can be revisited, or if the human player is pitted against multiple
computer-controlled civilisations.

6.2.3 Evaluating of Dynamic Scripting in Wargus

Similar to the experiments reported in Chapter 5, the performance of dynamic script-
ing in WARGUS was evaluated by testing a dynamic civilisation against a civilisation
using manually-designed game Al called a ‘static civilisation’. Each test consisted
of a sequence of 100 games played.

For the first game in each test, the dynamic civilisation started with rulebases
with all weights equal. The dynamic civilisation was allowed to update the rulebases
after each game. A game lasted until one of the civilisations was defeated, or until
a certain period of time had elapsed. If a game ended due to the time restriction
(which was rarely the case), the civilisation with the highest score was considered
the winner of the game.

Games were played on two different maps, a small map and a large map. Games
on a small map are usually decided swiftly, with fierce battles between weak armies.
A large map allows for a slower-paced game, with long-lasting battles between strong
armies. The two maps are discussed in detail in Appendix C, Section C.1.

Four different manually-designed game-Al variations, or ‘tactics’, were used for
the static civilisation, namely the following.
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Small Balanced Tactic: A ‘balanced’ tactic keeps a balance between offensive
actions, defensive actions, and research. It is effective against many different
playing styles employed by humans. The ‘small balanced tactic’ is employed
on the small map.

Large Balanced Tactic: The ‘large balanced tactic’ is similar to the ‘small bal-
anced tactic’, but is employed on the large map.

Soldier Rush: The ‘soldier rush’ aims at overwhelming the opponent with cheap
offensive units in an early state of the game. Since the ‘soldier rush’ is most
effective in fast games, it is employed on the small map.

Knight Rush: The ‘knight rush’ aims at quick technological advancement, launch-
ing large offences as soon as strong units are available. Since the ‘knight rush’
works best in slower-paced games, it is employed on the large map.

Details of the tactics are listed in Appendix C, Section C.3.

To quantify the relative performance of the dynamic civilisation against the static
civilisation, the notion of the ‘turning point’ is defined as follows. After each game,
an approximate randomisation test (Cohen, 1995) is performed using the overall
fitness values over the most recent ten games, with the null hypothesis that both
civilisations are equally strong. The dynamic civilisation is said to outperform the
static civilisation if the randomisation test concludes that the null hypothesis can
be rejected with a probability of 90%, in favour of the dynamic civilisation being
stronger. The ‘turning point’ is the number of the first game in which the dynamic
civilisation outperforms the static civilisation. Low values for the turning points
indicate good efficiency of dynamic scripting.

6.2.4 Evaluation Results

The results of the evaluation of dynamic scripting in WARGUS are displayed in Table
6.1. From left to right, the table columns represent (i) the tactic used by the static
civilisation, (ii) the number of tests, (iii) the average turning point, (iv) the median
turning point, (v) the lowest turning point, (vi) the highest turning point, (vii) the
number of tests that did not find a turning point within 100 games played, and (viii)
the average number of games won during the test.

From the low values for the turning points for the two ‘balanced’ tactics, it
may be concluded that the dynamic civilisation adapts effectively and efficiently.
Therefore, dynamic scripting can be applied successfully to RTS games. However,
the dynamic civilisation was unable to adapt to the two ‘rush’ tactics within 100
games. The reason for the inferior performance of the dynamic civilisation against
the two ‘rush’ tactics is twofold, namely (i) the ‘rush’ tactics are optimised, in the
sense that it is quite hard to design game Al that is able to deal with them, and (ii)
the rulebase does not contain the appropriate knowledge to easily design game Al
that is able to deal with the ‘rush’ tactics.

Note that this does not mean that dynamic scripting cannot use the rulebases to
design an answer to the rush tactics. It can, and does so occasionally. However, the
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Tactic Tests Average Median Lowest Highest > 100 Won
Small balanced 31 50 39 18 99 0 59.3
Large balanced 21 49 47 19 79 0 60.2
Soldier rush 10 10 1.2
Knight rush 10 10 2.3

Table 6.1: Evaluation results of dynamic scripting in WARGUS.

rulebases generate such an answer only on rare occasions. Therefore, it takes quite
a long time before the rules of which such an answer consists have weights that are
sufficiently high so that the answer occurs regularly. The requirement of efficiency
disallows such a long learning time.

Perhaps not surprisingly, against the ‘balanced’ tactics, in some of the tests
dynamic scripting encouraged the rulebases to create scripts that were very similar
to the ‘rush’ tactics. Therefore, even if the ‘rush’ tactics had not been implemented
manually, they would have been discovered automatically by dynamic scripting.

6.3 Evolutionary Tactics

The second step in combining online and offline adaptive game Al is to use offline
adaptive game AT to discover new tactics that can deal with the best results found
by online adaptive game Al, and with the manually-designed tactics that online
adaptive game AI was unable to deal with. In Section 4.1, offline evolutionary
learning was used to design neural-network-based game Al for a strategy game. It
was concluded that offline evolutionary learning is capable of evolving successful
game Al but that a neural network is not a suitable structure to store game Al
In the present section, a similar approach as in Section 4.1 is used to evolve script-
based game AI. The goal is to design game AI for WARGUS, that has the ability
to deal successfully with the two ‘rush’ tactics discussed in Section 6.2, which were
difficult for dynamic scripting to deal with. This section discusses the experimental
procedure used (6.3.1), the chromosome encoding (6.3.2), the fitness function used by
the evolutionary algorithm (6.3.3), the genetic operators (6.3.4), the results achieved
against the two ‘rush’ tactics (6.3.5), and a qualitative examination of the discovered
solutions (6.3.6).

6.3.1 Experimental Procedure

An evolutionary algorithm was designed to evolve new tactics to be used in the WAR-
GUS environment against a static civilisation using either the ‘soldier rush’ or the
‘knight rush’ tactic. The evolutionary algorithm used a population of size 50. The
population was initialised with random (but legal) chromosomes. To select parent
chromosomes for breeding, size-3 tournament selection was used (Goldberg, 1989).
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Newly generated chromosomes replaced existing chromosomes in the population,
using size-3 crowding (Goldberg, 1989).

The evolution continued until one of two stop criteria was fulfilled, namely (i)
the fitness-stop criterion, or (ii) the run-stop criterion. The fitness-stop criterion
aborts the evolution process when a chromosome with a target fitness value has
been created. During preliminary experiments suitable target fitness values were
determined, namely 0.75 against the ‘soldier rush’, and 0.70 against the ‘knight
rush’. The run-stop criterion aborts the evolution process when a maximum number
of generations has been produced.

During preliminary experiments it was found that a maximum of only five gener-
ations (i.e., 250 new chromosomes) was sufficient to evolve successful game AI. When
the evolution process ends, the chromosome with the highest fitness is considered
the solution.

6.3.2 Encoding of Tactics

The evolutionary algorithm works with a population of chromosomes. In the present
context, a chromosome represents a game-Al script. To encode a game-AT script for
WARGUS, each gene in the chromosome represents one rule.

Four different gene types are distinguished, corresponding to the four basic rule
categories mentioned in Subsection 6.2.2, namely (i) build genes, (ii) research genes,
(iii) economy genes, and (iv) combat genes. Each gene consists of a ‘rule ID’ that
indicates the type of gene (‘B’, ‘R’, ‘E’ and ‘C’, respectively), followed by values for
the parameters needed by the gene. The genes are grouped by states, and the start
of a state is indicated by a separate marker (‘S’), followed by the state number. Rule
details can be found in Appendix C, Section C.4.

The chromosome design is illustrated in Figure 6.3. A schematic representation
of the chromosome, divided into states, is shown at the top. Below it, a schematic
representation of one state in the chromosome is shown, consisting of a state marker
and a series of rule genes. Rule genes are identified by the number of the state for
which they occur, followed by a period, followed by a sequence number. Below the
state representation, a schematic representation of one rule is shown. At the bottom,
part of an example chromosome is shown.”

Chromosomes for the initial population are generated randomly. The generating
mechanism starts by randomly producing genes for the first state, allowing only
genes that are legal in this state. When a build gene is produced that spawns a
state transition, the generating mechanism switches to producing genes for the new
state. This continues until the last state is reached, for which five genes are produced,

60f the combat gene, there are actually twenty variations, one for each possible state. Fach
variation uses different parameters. They use rule ID’s marked ‘C1’ to ‘C20°.

"The example chromosome translates as follows. In state 1, first a defensive army is created with
number 2, consisting of five soldiers. Then building type 4 is constructed. The construction of this
building spawns a transition to state 3 (thus, from Figure 6.2 it can be derived that building type
4 is a ‘blacksmith’). In state 3, first economy action 8 is executed, which is followed by research
action 15. Finally, building type 3 (a ‘lumbermill’) is constructed, which spawns a transition to
state 6.
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Figure 6.3: Chromosome design to store game AI for WARGUS.

and to which a loop is attached that continuously attacks with strong units. Thus
it is ensured that only legal game-AT scripts are created.

6.3.3 Fitness Function

To determine the fitness of a chromosome, the chromosome is translated to a game-
AT script. The game-Al script controls a dynamic civilisation against a static civi-
lisation. A fitness function F' measures the relative success of the game-Al script
represented by the chromosome. Fitness function F' for the dynamic player d, yield-
ing a value in the range [0, 1], is defined as follows.

. min(cij;m . Md]\j—nd’b> {d lost}

max(}\&,b) {d won}

In this equation, Cr represents the timestep at which the game was finished (i.e.,
lost by one of the players, or aborted because time ran out), Cy,,, represents the
maximum timestep the game is allowed to continue to, My represents the ‘military
points’ for the dynamic player, M, represents the ‘military points’ for the dynamic
player’s opponent, and b is the break-even point. When a game is aborted because
time ran out, the highest scoring civilisation wins (as calculated by equation 6.3).
The factor % ensures that a game Al that loses after a long game, is awarded a
higher fitness than a game AT that loses after a short game.

Since WARGUS is completely deterministic, the fitness does not change if multiple

(6.5)
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Figure 6.4: State crossover.

games are played. Were this not the case, the fitness would have been determined
by playing several games and averaging over the fitness values per game.

6.3.4 Genetic Operators

To breed new chromosomes, four genetic operators were implemented. By design,
all four genetic operators ensure that a child chromosome always represents a ‘legal’
game-Al script. Parent chromosomes are selected with a chance corresponding to
their fitness values.

The genetic operators take into account ‘activated’ genes. An activated gene is a
gene that represents a rule that was executed during the fitness determination. If a
genetic operator produces a child chromosome that is equal to a parent chromosome
for all activated genes, the child is rejected and a new child is generated. The
reason is that genes that are not activated, are irrelevant to the game-AT script the
chromosome represents.

The four genetic operators are the following.

e State Crossover selects two parent chromosomes, and copies states from ei-
ther parent to the child chromosome. The genetic operator is controlled by
‘matching states’. A ‘matching state’ is a state that exists in both parent
chromosomes. Figure 6.2 makes evident that, for WARGUS, there are always
at least four matching states, namely state 1, state 12, state 13, and state 20.
State crossover will only be used when there are least three matching states
with activated genes. A child chromosome is created as follows. States are
copied from the first parent chromosome to the child chromosome, starting at
state 1 and working down the chromosome. When there is a state transition
to a matching state, there is a 50 per cent probability that from that point on,
the role of the two parents is switched, and states are copied from the second
parent. When the next state transition to a matching state is encountered,
again a switch between the parents can occur. This continues until the last
state has been copied. The process is illustrated in Figure 6.4. In the figure,
parent switches occur at state 8 and at state 13.

e Rule Replacement Mutation copies one parent chromosome to a child chromo-
some. Then, all activated research, economy, and combat genes have a 25 per
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Tactic Average Lowest Highest > 250
Soldier rush 0.78 0.73 0.85 2
Knight rush 0.75 0.71 0.84 0

Table 6.2: Evolutionary game AT in WARGUS results.

cent probability to be replaced with a random different economy, research, or
combat gene. It is allowed to replace a gene of a certain type by a gene of a
different gene type (e.g., it is allowed to replace a research gene by a combat
gene). Build genes are excluded both for and as replacements, because they
can spawn a state transition, which might corrupt the chromosome.

e Biased Rule Mutation copies one parent chromosome to a child chromosome.
Then, all parameters for economy and combat genes have a 50 per cent prob-
ability to be mutated. Mutation changes the parameter value by adding a
random integer value in the range [—5, 5].

e Randomisation generates a random new child chromosome.

For each new child chromosome that is generated, randomisation has a 10 per
cent probability to be selected, and the other three genetic operators each have a 30
per cent probability to be selected.

6.3.5 Evolutionary-Tactics Results

As a remedy against each of the two ‘rush’ tactics, ten tests were performed that
generated a counter-tactic by evolutionary means. The results of the two series
of ten tests are listed in Table 6.2. From left to right, the columns of the table
represent (i) the tactic used by the static civilisation, (ii) the average of the solution-
fitness values, (iii) the lowest solution-fitness value, (iv) the highest solution-fitness
value, and (v) the number of tests that ended on the run-stop criterion. The table
shows surprisingly high average, highest, and even lowest solution-fitness values.
Therefore, it may be concluded that offline adaptive game Al was successful in
rapidly discovering game-Al scripts able to defeat both ‘rush’ tactics used by the
static civilisation.

6.3.6 Evolutionary-Tactics Discussion

About the solutions evolved against the ‘soldier rush’ tactic, the following observa-
tions were made. The ‘soldier rush’ is used on a small map. As is usual for a small
map, the game played by the solutions was always short. Most solutions included
only two states with activated genes. Basically, all ten solutions counter the ‘soldier
rush’ tactic with a ‘soldier rush’ tactic of their own. In eight out of ten solutions,
the solutions included building a ‘blacksmith’ very early in the game. Then, the
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solutions selected at least two out of the three possible research advancements, after
which large attack forces were created. These eight solutions succeed because they
ensure their soldiers are quickly upgraded to be very effective, before they attack.
The remaining two solutions overwhelmed the static civilisation with sheer numbers.

About the solutions evolved against the ‘knight rush’, the following observations
were made. The ‘knight rush’ is used on a large map, which enticed longer games. On
average, for each solution five or six states were activated. Against the ‘knight rush’,
all solutions included training large number of ‘workers’ to be able to expand the
civilisation quickly, and boosting the economy by exploiting additional resource sites
after setting up defenses. Almost all solutions worked towards the goal of quickly
creating advanced military units, in particular ‘knights’. Seven out of ten solutions
achieved this goal by employing a specific building order, namely a ‘blacksmith’,
followed by a ‘lumbermill’, followed by a ‘keep’, followed by ‘stables’. Two out of ten
solutions preferred a building order that reached state 11 as fast as possible. State
11 is the first state that allows the building of the ‘knights’.

Surprisingly, in several solutions against the ‘knight rush’, the game AT employed
many ‘catapults’. WARCRAFT II strategy guides generally consider ‘catapults’ to be
inferior military units, because of their high costs and considerable vulnerability. A
possible explanation for the successful use of ‘catapults’ by the evolutionary game
AT is that, with their high damaging abilities and large range, they are particularly
effective against tightly packed armies, such as groups of ‘knights’.

6.4 Improving Online Adaptive Game Al

The third step in combining online and offline adaptive game Al is to use the results
achieved with offline adaptive game Al to improve the domain knowledge employed
by online adaptive game Al In Section 6.2, it was discovered that dynamic scripting
did not achieve satisfying results against the two ‘rush’ tactics. Section 6.3 describes
the evolution of new game-Al scripts, which are able to defeat the two ‘rush’ tactics.
The present section discusses how the evolved game-AT scripts can be used to increase
the reliability of dynamic scripting by improving the rulebases. Subsection 6.4.1
discusses how the evolved game-Al scripts are translated into rulebase improvements.
Subsection 6.4.2 evaluates the new rulebases by repeating the experiment described
in Section 6.2. Subsection 6.4.3 discusses the evaluation results.

6.4.1 Improving the Rulebases

Subsection 6.3.6 describes typical characteristics of the solutions discovered by the
evolutionary game AI. The observations were used to manually create four new rules
for the dynamic-scripting rulebases.

e Eight out of ten solutions against the ‘soldier rush’ contained a specific pattern
of building and research, namely first building a ‘blacksmith’, then researching
better weaponry and armour, followed by the creation of large offensive forces.
A new rule was created that contained exactly this pattern.
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e Against the ‘knight rush’, almost all solutions aimed at creating advanced
military units quickly. This was acknowledged by creating a new rule, that
checks whether it is possible to reach a state that allows the creation of ad-
vanced military units, by constructing one new building. If this is possible,
the rule constructs that building, and creates an offensive force consisting of
the advanced military units.

e Against the ‘knight rush’; all solutions included boosting the economy by con-
structing a new ‘townhall’. The original rulebases, used in Section 6.2, con-
tained rules for constructing a ‘townhall’, but these were invariably assigned
low weights. The explanation is that a new ‘townhall’ is easily destroyed, and
thus can only be successful if it can be defended against enemy interference.
The solutions acknowledged this by first building up defenses. A new rule
was created that combined the building of a defensive army, followed by the
construction of a new ‘townhall’.

e The best solution found against the ‘knight rush’ was translated into a new
rule without interpretation. All activated genes for each state were translated
and combined in one rule, and stored in the corresponding rulebase.

To keep the total number of rules constant, the new rules replaced existing rules.
The replaced rules were rules that dealt with air combat. In the experiment described
in Section 6.2, the air-combat rules always ended up with low weights.

Besides the creation of the four new rules, small changes were made to the exis-
ting combat rules, changing their parameters to increase the number of units of types
preferred by the solutions, and to decrease the number of units of types avoided by
the solutions. Through these changes, the use of ‘catapults’ was encouraged.

Details of the improved rulebase are supplied in Appendix C, Subsection C.5.2.

6.4.2 FEvaluation of the Improved Rulebases

The experiment described in Section 6.2 was repeated, with dynamic scripting em-
ploying the improved rulebases. To encourage high weights, the maximum reward
R,z and the maximum penalty P,,,, were both set to 400. The change of the max-
imum reward and penalty has little impact on the results achieved with dynamic
scripting, since the weight values are compared to each other — it is not the absolute
value of a weight that is important, but the value of a weight relative to competing
weight values. However, with the higher values for R4, and P,,,., the boundaries
set to the weight values, W,,,;,, and W,,,,.., are reached faster.

Table 6.3 summarises the achieved results. The columns represent the same
variables as in Table 6.1. A comparison of Table 6.1 and Table 6.3 shows that the
performance of dynamic scripting is considerably improved with the new rulebases.
Against the two ‘balanced’ tactics, the average turning point is reduced by more
than 50 per cent. Against the two ‘rush’ tactics, the number of games won out of
100 has increased considerably. It was observed that dynamic scripting assigned
large weights to all four new rules, created in Subsection 6.4.1. Therefore, it may be
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Tactic Tests Average Median Lowest Highest > 100 Won
Small balanced 11 19 14 10 34 0 725
Large balanced 11 24 26 10 61 0 664
Soldier rush 10 10 275
Knight rush 10 10 10.1

Table 6.3: Evaluation results of dynamic scripting in WARGUS, using improved
rulebases.

concluded that the new rules are effective, and are the likely cause for the improved
performance. The improved performance against all tactics indicates an improved
reliability of dynamic scripting with the new rulebases, compared to dynamic scrip-
ting with the original rulebases.

6.4.3 Discussion

Despite the improvement of the reliability of dynamic scripting effectuated by the
new rulebases, dynamic scripting is still unable to outperform the two ‘rush’ tactics
statistically. The explanation of this fact is as follows. The two ‘rush’ tactics are
‘super-tactics’, that can only be defeated by very specific counter-tactics, with little
room for variation. By design, dynamic scripting generates a variety of tactics at all
times. Therefore, it is unlikely to make the appropriate choices enough times in a
row to reach the turning point.

As was noted in Subsection 5.5.6, the fact that such super-tactics as the ‘rush’
tactics are possible at all, can be considered a weakness of the game design.? Adap-
tive game Al may be able to deal with super-tactics, if it is able recognise that a
super-tactic is used, and has a pre-programmed ‘answer’ stored which it can use
without activating a learning mechanism. However, a better solution would be to
change the game design to make super-tactics impossible. If adaptive game Al is
used during the ‘quality assurance’ phase of game development, super-tactics can be
discovered before a game is released to the public, when there is still time to improve
the game design.

One might wonder whether using counter-tactics against super-tactics to im-
prove the domain knowledge stored in rulebases, may lead to the rulebases overfit-
ting against the super-tactics. Since the experiment improved the performance of
dynamic scripting not only against the ‘rush’ tactics, but also against the ‘balanced’
tactics, it seems overfitting has been avoided.

Actually, there is a good reason why the proposed procedure to improve the
rulebases manages to avoid overfitting. The reason is a consequence of the principle
discussed in Chapter 3, that solutions to hard instances encompass characteristics

8This is not to suggest that WARCRAFT 11, on which WaRGUS is based, has a weak game design.
WAaRCRAFT 11 is a classic game that has gained lasting respect. However, ‘rush’ tactics are possible
in the game, and can be considered detrimental to the game’s entertainment value.
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of solutions to easy instances. The ‘rush’ tactics can be considered hard instances,
the ‘balanced’ tactics easy instances. The new rules derived from observing the
solutions (i.e., the evolved counter-tactics) to the ‘rush’ tactics, implement typical
characteristics of the solutions to the ‘rush’ tactics. These characteristics are likely
to be able to deal successfully with easier tactics, too. Furthermore, as long as the
new rules are added to a rulebase that can deal with easy tactics, or replace rules
that are inferior anyway, then at worst the new rules are inconsequential against
easy tactics. Therefore, overfitting is unlikely to occur.

To improve the domain knowledge for online adaptive game Al the procedure
prescribes extracting typical characteristics of offline evolved tactics. This step re-
quires understanding and interpretation of the evolved tactics, which are activities
that are difficult to perform automatically. Therefore, in the experiment the extrac-
tion was done manually. However, to some extent it should be possible to automate
the extraction of new rules, especially since the effectiveness of the new rules can be
tested by running the procedure again. This will be investigated in future work.

6.5 Acceptance

Offline adaptation of game AI, when applied before the game is released, is without
risk. Therefore, game developers will not hesitate to apply offline adaptation if
they consider the possible advantages it will bring worthwhile. In contrast, game
developers will regard online adaptation of game AI with considerable suspicion.
Since online adaptation of game AT can be used during playtesting to help improving
static game Al, they might consider using online adaptation during the ‘quality
assurance’ phase, as a first step on the road to include it in a released game.

I expect that, before game developers take a decision with regard to experiment-
ing with online adaptive game AI, they will need some guarantee that the techniques
discussed in this research generalise to their games. Three issues with regard to the
generalisation of adaptive game AI are discussed below, namely (i) to what extent
adaptive game AT generalises over the course of a game (6.5.1), (ii) to what extent
adaptive game AT generalises to different game types (6.5.2), and (iii) to what extent
the adaptive techniques generalise to different functionalities (6.5.3). A major issue
for the acceptance of adaptive game-Al techniques is whether they contribute to
the entertainment experienced by the human player of a game. This is discussed in
Subsection 6.5.4. Finally, Subsection 6.5.5 discusses the future of adaptive game Al

6.5.1 Generalisation over the Course of a Game

In the experiments described in Chapter 5 and 6, the adaptation techniques are
tested against a static game Al in an effectively unchanging situation. In contrast,
in modern games situations encountered by human players change over the course of
the game. In general, the agents controlled by the human player will become more
powerful when the game progresses. At the same time, the computer-controlled
agents that oppose the human player will become more powerful too. The question
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is warranted whether adaptive game AI can be expected to perform well in these
changing circumstances.

The answer is that it depends on the design of the domain knowledge (e.g., the
dynamic-scripting rulebases) employed by the adaptive game AI. Adaptive game
AT can be expected to function well over the course of the game, if the domain
knowledge is formulated sufficiently general to describe rules and facts that hold for
most situations in the game. As Appendix A shows, the rulebases designed for the
CRPG simulation described in Chapter 5 are not sufficiently general. For instance,
a rule that casts a ‘Fireball’ spell works fine as long as the ‘Fireball’ spell is a good
spell to use, but fails when there are better alternatives available. Contrariwise, as
Appendix B shows, the rulebases designed for NEVERWINTER NIGHTS only refer to
actions in a general manner, taking into account the current status of the game.

Of course, to achieve a generalised implementation of game AI, the game should
allow generalised domain knowledge to be formulated. For instance, a rule stating
that ‘an effective action against a group of enemies standing close together is at-
tacking them with an area-effect weapon’ should hold for the whole course of the
game, otherwise it does not reflect correct domain knowledge. However, even for
games where it is difficult to formulate domain knowledge in general, adaptive game
AT can be implemented by using different rulebases for different game states. In the
present chapter, this approach has been used, with great success, to deal with the
changing circumstances over the course of an RTS game.

6.5.2 Generalisation to Different Game Types

To what extent can the techniques for adaptive game AI, discussed in this thesis, be
used in different games types?

For offline adaptive game AI, there are no real restrictions to game types, since
offline adaptive game AI can generate literally anything. A major obstruction to
using offline adaptive game Al is that offline learning techniques can take a huge
amount of computational resources before results are achieved. Usually, the amount
of required computational resources can be kept relatively small by carefully design-
ing and implementing the offline adaptive game AI. However, careful design and
implementation require a considerable, and thus expensive, investment on the part
of the game developers. Therefore, offline adaptive game AI should be applied to
games where it can be really worthwhile. Typically, these are games with complex
game Al, such as CRPGs and strategy games.

For online adaptive game AI, dynamic scripting has already been shown appli-
cable to two completely different types of games with highly complex game AT,
namely CRPGs (Chapter 5) and RTS games (the present chapter; furthermore,
Dahlbom (2004) offers an alternative implementation of dynamic scripting in RTS
games). By extrapolation, dynamic scripting is also applicable to different game
types, that use scripted game Al with a complexity less than CRPGs and RTS
games. This is the majority of games on the market today.

To games that use game Al not implemented in scripts, dynamic scripting is not
directly applicable. However, based on the idea that domain knowledge must be the
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core of an online adaptive game-AT technique, an alternative for dynamic scripting
may be designed. For instance, if game Al is based on a finite-state machine, state
transitions can be extracted from a rulebase to construct the finite-state machine,
in a way similar to dynamic scripting’s selection of rules for a game-AT script.

6.5.3 Generalisation of Functions

In the research discussed in this thesis, game AI is developed with as its main
function competing with the human player. However, the investigated techniques
are not restricted to that function.

Obviously, offline adaptive game Al investigated in Chapter 4 and in the present
chapter, is based on evolutionary learning, which can be applied to many different
problem domains (cf. Goldberg, 1989; Davis, 1991; Michalewicz, 1992). For evolu-
tionary learning, the only requirement for use is that an adequate fitness function
can be designed (Goldberg, 1989).

Online adaptive game Al in the form of dynamic scripting, investigated in Chap-
ter 5 and in the present chapter, can be applied to any function that meets three
requirements (as mentioned before in Subsection 5.1.1): (i) the function can be
scripted, (ii) domain knowledge on the characteristics of a successful function can be
collected, and (iii) an evaluation function can be designed to assess how successful
the function was executed. Such functions are not only found in games, but also in
less ‘frivolous’ application areas, such as multi-agent systems.

6.5.4 Learning to Entertain

The main goal of a game is to provide entertainment. If online adaptive game AT is
not beneficial to the entertainment experienced by human players, game developers
will not be interested in implementing it. Therefore, the question is warranted
whether online adaptive game Al really improves a game’s entertainment factor.

It is evident that not every human player is entertained by the same aspects of
a game. Charles and Livingstone (2004) differentiate between players that desire to
master a game, and players that desire to experience variety in a game. Obviously,
the first group of players will not enjoy adaptive game Al, since the game will adapt
when players are getting close to mastering it. However, the second group of players
will enjoy the variety adaptive game Al provides.

How can be assessed whether the techniques discussed in this thesis, in particular
dynamic scripting, improves the entertainment of a game, for at least those players
that enjoy the variety and the increased challenge? An answer to this question may
be discovered by a large-scale psychological investigation of players of a game that
can be experienced with or without adaptive game AI. However, such an investi-
gation is beyond the scope of this thesis. Still, literature provides indications that
adaptive game Al improves the entertainment of games, as explained below.

Most players are intrinsically motivated to play a game, i.e., they are not forced
to play the game, but do so purely for pleasure. Empirical studies have linked
intrinsic motivation to the concept of ‘presence’ (also referred to as ‘immersion’
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or ‘suspension of disbelief’); the stronger the sense of ‘presence’, the higher the
intrinsic motivation, and thus the greater the entertainment experienced (Heeter,
1992; 1Jsselsteijn et al., 2004). Since adaptive game Al allows computer-controlled
agents to avoid the continuous repetition of mistakes, it improves the feeling of
immersion experienced by the human player, and thus contributes positively to the
entertainment provided by the game.

To measure the entertainment provided by analytical games, lida and Yoshimura

(2003) formulated a theory of game refinement. According to the theory, game

refinement is expressed by the formula g, where B represents the branching factor

of the game, and D represents the game depth, i.e., the average number of moves in
the game until the outcome is decided. Game refinement was calculated for several
CHEss variations (Iida, Takeshita, and Yoshimura, 2002) and for the game of MAH
Jona (Iida et al., 2004). Tida et al. (2002) surmised that for optimal entertainment,
the refinement value of a game must be in the neighbourhood of 0.07.

Unfortunately, the refinement formula cannot be easily translated from analyt-
ical games to commercial games, since the branching factor for commercial games
is very difficult to determine.® It seems clear that, in order to apply the refinement
formula to commercial games, theory must be developed to determine how the con-
cepts of ‘branching factor’ and ‘game depth’ can be translated to commercial games.
Yannakakis and Hallam (2004) proposed a metric to measure the ‘interest value’ of
commercial predator-prey games (where the human player is the ‘prey’), based on
the prey’s ‘lifetime’, and the predator’s ‘diversity in tactics’. However, their met-
ric might be criticised for the fact that it equates increased lifetime for the human
player with increased entertainment value, while it seems evident that humans are
not entertained by a game that drags on endlessly.

Even though the refinement formula cannot be applied to games directly, the
basis for the theory of refinement is applicable to all games. lida and Yoshimura
(2003) derive the theory of refinement from the observation that the entertainment
experienced from a game results from three essential properties of games, namely (i)
complexity, (ii) fairness, and (iii) refinement.

Complexity is translated as ‘noble uncertainty’, i.e., to be entertaining, the rules
of the game must be of sufficient complexity that players feel that it is possible
(and useful) to discover new, more advanced tactics. In commercial games, against
inferior game AI, there is no need to design new tactics. Adaptive game AT has
the ability to increase the playing strength of computer-controlled agents, and thus
stimulates complexity.

Fairness is translated as ‘draw ratio’, i.e., the better two opponents are matched,
the higher the entertainment they will experience. Static game Al always plays a
game with the same level of skill, and thus is likely to play the game significantly

9For example, in a CRPG, a wizard may have spells that can be unleashed to any location
within range. Use of such a spell cannot be considered just one possible move, since the spell effect
depends on its target location. However, use of such a spell also cannot be considered a virtually
endless number of moves, since the practical number of useful locations will be limited. Still, for
most complex commercial games the branching factor will be much higher than the branching
factor for most analytical games.
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worse than human players.!® To compensate for inferior game AI, game developers
will often supply computer-controlled agents with ‘physical’” attributes that outrank
human-controlled agents. Such design detracts from the fairness of matching the
physical aspects of the agents controlled by the human player and the computer.
Adaptive game Al has the ability to improve the playing strength of computer-
controlled agents against a human player, even when the physical attributes of the
computer-controlled agents are equal to those of the agents controlled by the human
player. Thus, adaptive game AT stimulates fairness.

Refinement is translated as the ‘seesaw game’, i.e., the optimal length of time
for which the outcome of the game is uncertain. Entertainment is high if the game
is not decided ‘too fast’, and does not drag on after the outcome has been decided.
In this respect, adaptive game Al increases the period of time needed for a human
player to master a game. Furthermore, when adaptive game Al is enhanced with
difficulty scaling, it will also ensure that novice players experience a well-matched
game. Thus, adaptive game AT stimulates refinement.

In conclusion, adaptive game AT has a beneficial effect on all aspects which form
the basis of the theory of refinement. Therefore, as far as the theory of game refine-
ment is applicable to commercial games, the entertainment provided by commercial
games benefits from adaptive game Al

6.5.5 The Future of Adaptive Game Al

Observing the state of the art in games today, it is clear that game Al has a long road
to travel before truly believable computer-controlled characters are implemented.
The ability to correct mistakes (self-correction), and the ability to adapt to changing
circumstances (creativity), are essential elements of a believable character. Despite
this, the consensus amongst game developers and publishers seems to be that adap-
tive game Al is something to be avoided. Their distrust stems not so much from a
lack of interest, but more from laziness (Rabin, 2004b) and a fear of breaking game
AT that more or less worked when designed manually (Woodcock, 2002). However,
as soon as one company manages to pull off adaptive game AT successfully, the others
are forced to join in, lest they will be unable to compete.

Dynamic scripting has been shown to be able to implement successful online
adaptive game Al proving that online adaptive game Al is possible in state-of-the-
art games. The question is therefore not if, but when adaptive game AT will become
a standard element of games.

6.6 Chapter Summary

This chapter discussed how adaptive game AI can be applied in practice. Offline
adaptive game Al can be used during the ‘quality assurance’ phase of game develop-

100ne might assume that it is also possible for static game Al to play the game better than human
players, but human players that lose a game too often will, in general, quit playing (Livingstone
and Charles, 2004).
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ment to fine-tune and improve manually-designed game AI. Online adaptive game Al
allows the game Al to adapt to human-player tactics after a game has been released.
Since game developers consider online adaptive game AT risky, during the ‘quality
assurance’ phase the reliability of the game AT must be ensured by confirming that
it meets the requirements specified in Subsection 2.3.4.

To increase the reliability of online adaptive game Al, offline adaptive game Al
can be used to improve the domain knowledge used by online adaptive game AI. A
three-step procedure is proposed to effectuate this, namely (i) using online adaptive
game Al to discover strong tactics, (ii) using offline adaptive game AI to evolve
counter-tactics against the discovered tactics, and against manually-designed strong
tactics, and (iii) extracting characteristics from the evolved counter-tactics to add
to the domain knowledge used by the online adaptive game AI. The procedure was
empirically validated by applying it to dynamic scripting in a Real-Time Strategy
(RTS) game.

The chapter also discussed several generalisation issues of adaptive game Al It
was argued that the techniques discussed in this thesis generalise over the course of
a game, and to different game types. The techniques are not limited to game Al
that competes with human players, but can be applied to other functionalities in
games, and in other applications as well. Finally, it was argued that adaptive game
AT will contribute to the entertainment experienced by human players of a game,
and that, in the future, adaptive game AI will become a standard element of games.






Chapter 7

Conclusion

The real danger is not that computers will begin to think like men,
but that men will begin to think like computers.
Sydney J. Harris (1917 1986).

This chapter provides a conclusive answer to the problem statement and research
questions posed in Chapter 1. Section 7.1 restates and answers the four research
questions. Section 7.2 translates the answers to the research questions to an answer
to the problem statement. Section 7.3 looks at future work. The chapter ends with
concluding remarks in Section 7.4.

7.1 Answer to Research Questions

The four research questions, stated in Section 1.5, are answered in the present sec-
tion. Subsection 7.1.1 answers the first research question, on offline adaptive game
AT Subsection 7.1.2 answers the second research question, on online adaptive game
AT Subsection 7.1.3 answers the third research question, on difficulty scaling. Sub-
section 7.1.4 answers the fourth research question, on the integration of adaptive
game Al in the game-development process.

7.1.1 Offline Adaptive Game Al

The first research question reads:

Research question 1: To what extent can offline machine-learning
techniques be used to increase the effectiveness of game AI?

The answer to the first research question is derived from Chapters 3, 4, and 6.
Chapter 3 discussed the creation of successful agent controllers with evolution-

ary learning. It showed that by ‘doping’ (or ‘seeding’) the initial population with a

solution to a hard problem instance, evolved agent controllers are significantly more
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effective than agent controllers evolved without doping. Since game AI that deter-
mines the behaviour of an in-game agent, is equivalent to an agent controller, it may
be concluded that the application of offline machine-learning techniques to game Al
will achieve more effective results if it concentrates on hard game situations first.
As stated in Chapter 6, the beneficial effect of focussing on hard instances for de-
riving generalised game Al is an explanation for the fact that overfitting is avoided
when generalised game Al is improved by exploiting tactics used by game Al that
is designed to defeat a superior opponent.

Chapter 4 discussed evolutionary game Al It showed that offline evolutionary
game AT is suitable for detecting possible exploits in manually-programmed game
AT, and for discovering new tactics. It also indicated that, for offline evolutionary
game Al, the use of a learning structure that is less suitable for storing game Al
will negatively influence the success of the achieved results. Furthermore, it will
negatively influence the efficiency by which results are generated. For game AI that
is best stored in production rules, a learning structure should be used that is designed
to evolve scripts. In Chapter 6, evolutionary game AT was used to evolve scripts,
and proved to be not only successful, but also very efficient.

Chapter 6 discussed the application of offline evolutionary game Al in practice.
The chapter described a three-step procedure to use offline evolutionary game Al
to improve the domain knowledge used by online adaptive game AI during the
‘quality assurance’ phase of game development, thereby improving the reliability
of online adaptive game AI. Tt showed that this application of offline adaptive game
AT could be very successful. Since the computational requirements for adaptive
game Al set no restrictions to offline adaptive game Al, the only limitations to
the application of offline machine-learning techniques are available resources (i.e.,
time and money). Furthermore, the use of offline adaptive game AI during ‘quality
assurance’ is essentially risk-free. Therefore, an application of offline adaptive game
AT as described by the three-step procedure is likely to be successful in the practice
of game development, and easily adopted by game developers.

In conclusion, the answer to the first research question is that:

e computational requirements form no obstacle for the application of offline
machine-learning techniques to game Al

e offline machine-learning techniques can increase the effectiveness of game Al
by (i) detecting exploits, (ii) suggesting new tactics, and (iii) improving the
domain knowledge used by online machine-learning techniques; and

e offline machine-learning techniques achieve superior results when designing
effective game AI, when they concentrate on hard problem instances.
7.1.2 Online Adaptive Game Al
The second research question reads:

Research question 2: To what extent can online machine-learning
techniques be used to increase the effectiveness of game AI?
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The answer to the second research question is derived from Chapters 2, 4, 5, and 6.

Chapter 2 listed four computational requirements (namely the requirements of
speed, effectiveness, robustness, and efficiency) and four functional requirements
(namely the requirements of clarity, variety, consistency, and scalability) for machine-
learning techniques to adapt game Al online. When a technique meets the four com-
putational requirements, it is able to increase the effectiveness of game AI. When
it also meets the functional requirements of clarity, variety, and consistency, it is
acceptable to game developers to increase the effectiveness of game AI online. It
was also argued that any online machine-learning technique for improving the effec-
tiveness of game Al is necessarily based on domain knowledge.

Chapter 4 discussed evolutionary game Al. It showed that online evolutionary
game AT is able to increase the effectiveness of game AT during game-play. However,
the success of online evolutionary game AI was shown to depend on the potential
solutions residing in a small search space. In general, when evolving game Al that is
complex, online evolutionary game AI will not meet the computational requirement
of efficiency. Therefore, to adapt complex game Al online, a different approach needs
to be used.

Chapter 5 presented ‘dynamic scripting’, an online machine-learning technique
for game AI. Dynamic scripting was shown to meet all four computational require-
ments, and the functional requirements of clarity and variety. Furthermore, an
outlier-reduction enhancement was presented for dynamic scripting, which allows
it to meet the functional requirement of consistency. Therefore, dynamic scripting
is a machine-learning technique suitable for increasing the effectiveness of game Al
online.

The success of dynamic scripting heavily depends on the quality of the do-
main knowledge it uses (in the form of tactical rules). Chapter 6 shows how off-
line machine-learning techniques can be used to increase the quality of the domain
knowledge used by dynamic scripting, thereby improving its reliability.

In conclusion, the answer to the second research question is that:

e online machine-learning techniques for game AI are heavily dependent on do-
main knowledge;

e online machine-learning techniques can improve the effectiveness of game Al,
while meeting all requirements for acceptance; and

e offline machine-learning techniques can be used to improve the reliability of
online adaptive game Al

7.1.3 Difficulty Scaling

The third research question reads:

Research question 3: To what extent can machine-learning techniques
be used to scale the difficulty level of game Al to meet the human player’s
level of skill?
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The answer to the third research question is derived from Chapter 5. The chapter
presents dynamic scripting as a machine-learning technique for the online adaptation
of game AI. Dynamic scripting was initially designed to increase the effectiveness of
game Al. As the answer to the second research question indicates, this initial version
of dynamic scripting did not meet the functional requirement of scalability. Thus, it
could only be used to increase the effectiveness of game AI, not to match the playing
strengths of the game AT and the human player.

A difficulty-scaling enhancement to dynamic scripting was presented that al-
lows it to match automatically the playing strength of the game AI and the play-
ing strength of the human player. Of the several possible implementations of a
difficulty-scaling enhancement, ‘top culling’ was most successful, being reliable, easy
to implement, and able to match the playing strength of both inferior and superior
opponents.! Top culling functions by automatically making the most successful tac-
tical domain knowledge unavailable when the game AT is detected to be too strong,
and by automatically making it available again when the game Al is detected to be
too weak. After applying top culling, dynamic scripting meets all four computational
requirements and all four functional requirements.

In conclusion, the answer to the third research question is that online adaptive
game AT can be made to scale its playing strength to meet the human player’s level
of skill, by changing automatically the availability of domain knowledge that realises
the most effective game Al

7.1.4 Integration in State-of-the-Art Games

The fourth research question reads:

Research question 4: How can adaptive game Al be integrated in the
game-development process of state-of-the-art games?

The answer to the fourth research question is derived from Chapters 5 and 6.

Chapter 5 presents dynamic scripting as a technique for online adaptive game
AT The chapter shows that dynamic scripting can be used in state-of-the-art games,
by implementing it in the game NEVERWINTER NI1GHTS (2002), and showing it to be
successful. The chapter also argues that online adaptive game AT gives best results
against human players that do not use highly-successful tactics, i.e., non-expert
players.

Chapter 6 specifically discusses the integration of adaptive game Al in the de-
velopment process of state-of-the-art games. For games that use only manually-
designed game AI, offline adaptive game AT can be used before the game’s release,
during the ‘quality assurance’ phase of game development, for detecting possible
exploits in the game Al, and for discovering new tactics. Since there is little risk as-
sociated with the use of offline adaptive game AI, game developers will not hesitate
to use it when they feel it is worth their while.

TOf course, using difficulty scaling the game AT will never get more effective than the most
effective results achieved with online adaptive game AI without a difficulty-scaling enhancement.
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Since online adaptive game AT is still new to games, its inclusion must be consid-
ered during the earliest phases of game development. Game developers and publi-
shers feel adaptive game Al is risky. Only when they are convinced that adaptive
game AT is reliable (i.e., meets the requirements specified in Chapter 2), they will be
willing to use it in released games. Offline adaptive game Al can be used to increase
the reliability of online adaptive game AI, by improving the quality of the domain
knowledge used.

In conclusion, the answer to the fourth research question is that:

e offline adaptive game Al can be used during the ‘quality assurance’ phase of
game development to improve the quality of manually-designed game Alj;

e online adaptive game AT can be used in released games when game developers
and publishers are convinced of its reliability;

e the reliability of online adaptive game AI can be guaranteed by showing that
it meets the four computational and four functional requirements; and

e the reliability of online adaptive game AI can be increased by using offline
adaptive game AT to improve the quality of the domain knowledge used.

7.2 Answer to Problem Statement
The problem statement reads:

Problem statement: To what extent can machine-learning techniques
be used to increase the quality of complex game AI?

Taking into account the answers to the the research questions in Section 7.1, the
answer to the problem statement is that:

e reliability of online adaptive game Al is guaranteed if it meets the four com-
putational and four functional requirements;

e offline machine-learning techniques can be used during the ‘quality assurance’
phase of game development to increase the effectiveness of game AT by (i)
detecting exploits, (ii) suggesting new tactics, and (iii) increasing the reliability
of online adaptive game Al by improving the quality of the domain knowledge
used;

e after a game’s release, online machine-learning techniques can (i) improve the
effectiveness of game AI, and (ii) scale the difficulty level of game AT to match
the playing strength of the human player; and

e game developers and publishers will consider using online adaptive game Al
when they are convinced that it is reliable.
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7.3 Future Work

The research discussed in this thesis indicates three areas of future research.

1. DECA Validation: Chapter 3 presents the Doping-driven Evolutionary Con-
trol Algorithm (DECA). The characteristics of DECA require further inves-
tigation in future work. It must be determined for which tasks and under
which conditions DECA performs better or worse than alternative techniques.
In particular, in empirical studies DECA should be compared to hillclimbing
(3.5.2), multitask learning (3.5.3), multi-objective learning (3.5.4), and boost-
ing (3.5.5). In addition to these empirical studies, a solid explanation for the
doping effect is required to identify problems to which DECA can be applied
successfully. To this purpose, the key assumption in the explanation for the
doping effect, namely the supposed asymmetry of the search space with respect
to easy and hard solutions (3.1.3), needs verification. Furthermore, confirma-
tion is needed for the belief that solutions to harder task instances encom-
passing characteristics of solutions to easier task instances underlies DECA’s
success (3.5.1). To this end, DECA should be tested on a variety of bench-
mark problems, designed to exhibit specific characteristics with respect to the
structure of the search space. Tracing the lineage of the best evolved solutions
back to the doped solutions will be a key activity in understanding the factors

2. Entertainment Validation: Chapter 1 stated that the goal of games is to pro-
vide entertainment. Entertainment is a subjective experience of human play-
ers. While this thesis argued that adaptive game Al is able to increase the
entertainment value of games, it used only experiments wherein static game
AT replaced the human player. In future work, an empirical study should in-
vestigate the effectiveness and entertainment value of online adaptive game
AT (e.g., dynamic scripting) in games played against actual human players.
While such a study requires many subjects and a careful experimental design,
the game-play experiences of human players are important to convince game
developers to adopt dynamic scripting in their games.

3. Adaptive Game AI for Multi-player Games: The adaptive game AT discussed
in this thesis focussed on learning from a single human player. For future
work, a logical extension is adaptive game Al that learns from multiple parallel
players. A data store can be used to store samples of game-play experiences
against multiple human players. Game Al can use the data store (i) to guide
its decisions using a case-based reasoning approach, and (ii) as a model to
predict the effect of actions which it deliberates. An approach to adaptive
game Al based on a data store can achieve at least the same reliability as
the adaptive game AI discussed in this thesis, and probably even a higher
reliability. Moreover, it provides an approach to reduce the effect of non-
determinism in games (since the number of samples increases with the number
of human players), and to design completely new tactics online (since the data
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store can be used as a model). Three problems that this research must deal
with are (i) the design of a rapidly accessible data store that contains game-
play samples and allows a relevant mapping of game-play situations to the
stored samples, (ii) the design of an algorithm that uses the data store to
allow game AT to respond to new game-play situations, and (iii) the design of
an algorithm that uses the data store to allow game Al to match the playing
strength of the human player, without affecting negatively the entertainment
derived from the game.

7.4 Final Thoughts on Dynamic Scripting

A famous folk figure in the Arabic world is the Mullah Nasrudin. Nasrudin is a sage
and a scoundrel, whose wisdom of words seems to be ever clouded by his reputation
as a prankster. While some of the tales about Nasrudin are outright jokes, most
have a deeper meaning that is intended to transfer philosophical thinking in an
amusing package. One of the stories about Nasrudin, recanted by Shah (1968), goes
as follows:

Nasrudin stood up in the market-place and started to address the throng.

“O people! Do you want knowledge without difficulties, truth without
falsehood, attainment without effort, progress without sacrifice?”

Very soon a large crowd gathered, everyone shouting: “Yes, yes!”

“Excellent!” said the Mulla. “I only wanted to know. You may rely upon
me to tell you all about it if T ever discover any such thing.”

The meaning behind this story is evident: Nasrudin’s appeal to the crowd lists
four desirable features of progression, which the crowd would love to believe are
possible, but which he feels are evidently unattainable regardless how much people
covet them.

When I read this story, I noticed by how similar the four features which Nas-
rudin mentions are to the four computational requirements of online adaptive game
AT, discussed in Section 2.3.4. ‘Knowledge’ can be interpreted as game AI, and so
‘knowledge without difficulties’ becomes the requirement of efficiency: quick, easy
steps towards successful game AI. ‘Truth’ can be interpreted as correct domain
knowledge, and so ‘truth without falsehood’ becomes the requirement of robustness:
correct domain knowledge that does not get tainted by inferior domain knowledge.
‘Attainment’ can be interpreted as the discovery of successful game AI, and so ‘at-
tainment without effort’ becomes the requirement of speed: the achievement of
successful game AI without investing much in the name of resources. ‘Progress’
can be interpreted as the process of creating increasingly effective game Al, and
so ‘progress without sacrifice’ becomes the requirement, of effectiveness: continuous
improvements of game Al without sacrificing intermediate results by installing game
AT of inferior quality.
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Nasrudin believes that the features are impossible to achieve, and the crowd,
slightly embarrassed by its initial enthusiasm, will probably agree to that. Indeed,
the features do sound too good to be true. Yet, for online adaptive game Al these
features are requirements. And, as has been shown in this thesis, they actually are
attainable.

When presenting some of the results discussed in this thesis at conferences, occa-
sionally I have been confronted with the remark that the dynamic-scripting technique
is rather simple. In these instances, the remark was meant to be criticising, as if
something simple is somehow unworthy of scientific merit. I would like to point out,
that T sincerely believe that it is precisely the simplicity of dynamic scripting that
allows it to meet all four computational requirements. While more complex tech-
niques may be designed, and may discover even more successful game Al if they
fail to meet the four computational requirements they are of no interest to game de-
velopers. In this thesis I sought the combination of scientific progress and practical
applicability, and the mere fact that a successful approach to this combination lacks
complexity is no reason to disqualify it.

Interestingly, when I first came up with the dynamic-scripting technique, I almost
disqualified the technique myself, thinking “it is too easy” and “if it would work,
surely someone else would have thought of it first”. Much to my surprise, dynamic
scripting worked better than T had expected. For me, the surprise has gone now,
but what remains is the realisation that dynamic scripting is one of those techniques
that are only obvious in hindsight.
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Appendix A

CRPG Simulation Game Al

In Chapter 5, experiments with dynamic scripting in a simulated CRPG were dis-
cussed. This appendix describes implementation details of the CRPG simulation
(A.1), the scripting language used to define game AI (A.2), the rulebases used to
generate successful game AT for the dynamic team (A.3), and the tactics employed
by the static team (A.4).

A.1 CRPG simulation

The CRPG simulation is modelled after the BALDUR’S GATE games. The implemen-
tations of agent attributes, combat, and magic are all to the specifications of BAL-
DUR’S GATE II: SHADOWS OF AMN (Ohlen, Kristjanson, Karpyshyn, and Muzyka,
2000). The simulation entails an encounter between two teams of similar compo-
sition. Each team consists of four agents, namely two fifth-level ‘fighters’ and two
fifth-level ‘wizards’. The initial position of all agents in the CRPG simulation is
illustrated in Figure 5.2. The front row of each team consists of the two fighters,
and the back row of the two wizards. The combat area (the large square in which
the agents are located) measures 1000 x 1000 units, which equals fifty by fifty feet.
The initial distance between two fighters on opposite sides is 800 units.

The armament and weaponry of the teams is static, and each agent is allowed
to carry two magic potions. In addition, the wizards are allowed to memorise seven
magic spells. Potions and spells are implemented according to BALDUR'S GATE
specifications (Ohlen et al., 2000). Three different potions are available, namely of
(i) Healing, (ii) Fire Resistance, and (iii) Free Action. Twenty-one magic spells are
available, namely eight of the first level, eight of the second level, and five of the third
level. The eight first-level spells are (i) Blindness, (ii) Charm Person, (iii) Chromatic
Orb, (iv) Grease, (v) Larloch’s Minor Drain, (vi) Magic Missile, (vii) Shield, and
(viii) Shocking Grasp. The eight second-level spells are (i) Blur, (ii) Deafness, (iii)
Luck, (iv) Melf’s Acid Arrow, (v) Mirror Image, (vi) Ray of Enfeeblement, (vii)
Stinking Cloud, and (viii) Strength. The five third-level spells are (i) Dispel Magic,
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Figure A.1: The CRPG simulation.

(ii) Fireball, (iii) Flame Arrow, (iv) Hold Person, and (v) Monster Summoning I.
A fifth-level wizard can memorise four first-level spells, two second-level spells, and
one third-level spell.

A.2 Scripting Language

To implement game-AT scripts, the CRPG simulation employs a scripting language,
which has been designed to be as powerful as the scripting language used for the
BALDUR’S GATE games. It makes use of keywords and literals, which are listed
in Table A.1. Besides the literals listed, names of potions and spells can also be
used as literals. In the table, self refers to the agent whose script is executed,
‘opponent agent’ refers to a member of the team opposing self, and ‘comrade
agent’ refers to a member of self’s team (including self). Game-Al scripts consist
of a sequence of conditional statements, with an (optional) conditional part and an
action part, structured as if <conditional> then <action>. When the game Al
needs to select a new action, the statements in the script are checked in sequence.
Of each statement, the conditional part is evaluated. If it evaluates to ‘true’ (or if
it is absent), the corresponding action is checked. If the action obeys all relevant
hard and soft constraints, it is selected and evaluation ends. Otherwise, the next
statement in sequence is checked, until either an action is selected, or the script ends.
The selected action is executed. If no action is selected, the default action pass is
executed, though it is good practice to add actions to the end of the script that can
always be executed.

The conditional part can check many different conditions, combined with the
logical operators and, or and not. Conditions consist of either a logical method that
returns a boolean, or a comparison between numerical expressions. The numerical
expressions can use the numerical operators + (addition), - (substraction), * (mul-
tiplication), and / (division). Besides integers, the numerical expressions can use
numerical methods.
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Scripting Language

Table A.1: Simulation scripting language: keywords and literals.

Actions

cast Called with a spell as parameter. Casts the spell.

drink Called with a potion as parameter. Drinks the potion.

meleeattack Called with an agent as parameter. Attacks the agent
with the default melee weapon.

movefrom Called with a location or an agent as parameter. Moves
away in a direct line from the location, or from the agent.

moveto Called with a location or an agent as parameter. Moves
in a direct line towards the location, or towards the agent.

pass Passes.

rangedattack Called with an agent as parameter. Attacks the agent
with the default ranged weapon.

Agents

closestenemy The opponent agent closest to self.

closestfriend The comrade agent closest to self, excluding self.

defaultenemy In the conditional statement, the most recently referred
agent among the opponent agents.

defaultfriend In the conditional statement, the most recently referred
agent among the comrade agents.

enemy Used with boolean methods; returns a random opponent
agent for which the method returns true.

friend Used with boolean methods; returns a random comrade
agent for which the method returns true.

furthestenemy The opponent agent furthest from self.

furthestfriend The comrade agent furthest from self.

randomenemy A random opponent agent.

randomfriend A random comrade agent.

self The agent whose script is executed.

strongestenemy The opponent agent with the most health.

strongestfriend The comrade agent with the most health.

weakestenemy The opponent agent with the least health.

weakestfriend The comrade agent with the least health.

Influences

badinfluence A detrimental influence.

freezinginfluence

A disabling influence.

goodinfluence A beneficial influence.
Literals
"Acid" Influence. Caused by a ‘Melf’s Acid Arrow’ spell.

continued on the next page
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Table A.1: continued from the previous page

"Animal"

"Blinded"
"Blurred"
"Charmed"
"Deafened"
"Fighter"

"Fire Resistant"
"Freedom"

"Held"

llLuckyll

"Mirrored"
"Nauseating Fumes"
"Shielded"
"Slippery Surface"

Agent type. Summoned monster.

Influence. Caused by a ‘Blindness’ spell.
Influence. Caused by a ‘Blur’ spell.

Influence. Caused by a ‘Charm Person’ spell.
Influence. Caused by a ‘Deafness’ spell.

Agent type. Fighter class.

Influence. Caused by a potion of ‘Fire Resistance’.
Influence. Caused by a potion of ‘Free Action’.
Influence. Caused by a ‘Hold Person’ spell.
Influence. Caused by a ‘Luck’ spell.

Influence. Caused by a ‘Mirror Image’ spell.
Cloud. Caused by a ‘Stinking Cloud’ spell.
Influence. Caused by a ‘Shield’ spell.

Cloud. Caused by a ‘Grease’ spell.

"Strengthened" Influence. Caused by a ‘Strength’ spell.

"Stunned" Influence. Caused by a ‘Chromatic Orb’ spell or by a
‘Nauseating Fumes’ cloud.

"Weakened" Influence. Caused by a ‘Ray of Enfeeblement’ spell.

"Wizard" Agent type. Wizard class.

Locations

anywhere A random location anywhere in the combat area.

backenemy Just behind the opponent agent furthest to the back.

backfriend Just behind the comrade agent furthest to the back.

centreall The mathematical centre of all agents.

centreclouds The mathematical centre of all clouds in which the
method-calling agent is located.

centreenemy The mathematical centre of all opponent agents.

centrefriend The mathematical centre of all comrade agents.

frontenemy Just in front of the frontline opponent agent.

frontfriend Just in front of the frontline comrade agent.

randomenemyhalf A random location in the combat area at the side of the
opponent team.

randomfriendhalf A random location in the combat area at the side of the
comrade team.

Methods

chancepercentage Called with a number as parameter. Returns ‘true’ with

a chance equal to the parameter when it is interpreted as
a percentage.

continued on the next page
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Table A.1: continued from the previous page

distance Called with one or two agents as parameter. With one
agent as parameter, it returns the distance between that
agent and the method-calling agent. With two agents as
parameter, it returns the distance between the two agents.

health The health of the method-calling agent as an integer.

healthpercentage Called with a number as parameter. Returns the percent-
age that the current health of the method-calling agent is
of its starting health.

influence Called with an influence effect as parameter. Returns
‘true’ if the method-calling agent is under said effect.

locatedin Called with a cloud effect. Returns ‘true’ if the method-
calling agent is within the area covered by the cloud effect.

maxhealth The initial health of the method-calling agent.

random Called with a number as parameter. Returns a random
integer less than the parameter.

roundnumber The number of the current combat round.

segmentnumber The number of the current combat-round segment.

spellcount The number of spells the method-calling agent has mem-
orised.

stepsize The movement speed of the method-calling agent.

Potions

randompotion A random potion

Spells

randomareaeffect A random area-effect spell.

randomcurse A random curse.

randomdamaging A random damaging spell.

randomdefensive A random defensive spell.

randomoffensive A random curse or damaging spell.

randomspell A random spell.

strongareaeffect One of the highest-level area-effect spells.

strongcurse One of the highest-level curses.

strongdamaging One of the highest-level damaging spells.

strongdefensive One of the highest-level defensive spells.

strongoffensive One of the highest-level curses or damaging spells.

weakareaeffect One of the lowest-level area-effect spells.

weakcurse One of the lowest-level curses.

weakdamaging One of the lowest-level damaging spells.

weakdefensive One of the lowest-level defensive spells.

weakoffensive One of the lowest-level curses or damaging spells.
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Logical and numerical methods are called as <agent>.<method>(<parameters>).
The agent whose script is executed can be referred to as self. If <agent> is self,
the <agent>-part and the dot need not be included. If <method> does not have
parameters, the part (<parameters>) can be ignored. Some methods are polymor-
phic, i.e., they have different implementations when used with different types of
parameters.

Agents can be referred to using keywords. Except for defaultenemy, default-
friend, and self, an agent keyword can be used with an agent-type literal, restrict-
ing the agent class to the value of the parameter.

As parameters, a method can take keywords and literals. ‘Agent’ parameters, ‘in-
fluence’ parameters, ‘location’ parameters, ‘potion’ parameters, and ‘spell’ parame-
ters can be referred to using keywords. ‘Influence’ parameters, ‘potion’ parameters,
and ‘spell’ parameters can also be referred to using literals. A numerical parameter
is a numerical expression, which can contain numerical methods.

The action part of a conditional statement is called as a method, without speci-
fying the <agent>, because it is always self that executes the action. Five actions
are possible, namely (i) attacking (two varieties, namely with a melee weapon or
with a ranged weapon), (ii) moving (two varieties, namely away from or towards),
(iii) casting a spell, (iv) drinking a potion, and (v) passing.

A.3 Rulebases

In the simulated CRPG their are two classes of agents for which game AT can be
defined, namely fighters and wizards. Each of these classes has its own rulebase for
dynamic scripting to employ. The rulebase for fighters is presented in Subsection
A.3.1, and the rulebase for wizards is presented in Subsection A.3.2.

A.3.1 Fighter Rulebase

This subsection presents the rulebase used by dynamic scripting for the fighter class
in the simulated CRPG. The rulebase consists of twenty rules. In front of each rule
are the rule number, and, between brackets, the priority of the rule. ‘[0] is the
lowest priority, while ‘[9]” is the highest priority.

1. [9] if roundnumber <= 1 then
drink( "Potion of Fire Resistance" );
2. [9] if roundnumber <= 1 then
drink( "Potion of Free Action" );
3. [5] if healthpercentage < 50 then
drink( "Potion of Healing" );
4. [5] if healthpercentage < 25 then
drink( "Potion of Healing" );
5. [5] if influence( "Slippery Surface" ) then
drink( "Potion of Free Action" );
6. [3] movefrom( centreclouds );
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7. [3] if segmentnumber >= 1 then

movefrom( centrefriend );

8. [3] if locatedin( "Nauseating Fumes" ) then

drink( "Potion of Free Action" );
9. [1] meleeattack( closestenemy( "Wizard" ) );
10. [1] meleeattack( closestenemy( "Fighter" ) );
11. [1] if distance( weakestenemy ) > 300 then
rangedattack( defaultenemy );

12. [1] if distance( weakestenemy( "Wizard" ) ) > 300 then
rangedattack( defaultenemy );

13. [1] if not influence( "Slippery Surface" ) then
meleeattack( closestenemy );

14. [1] if distance( closestenemy ) > 300 then
rangedattack( randomenemy ) ;

15. [1] if distance( closestenemy ) > 300 then
rangedattack( weakestenemy ) ;

16. [1] if distance( closestenemy ) < 200 then
meleeattack( defaultenemy ) ;

17. [1] drink( randompotion );

18. [0] meleeattack( weakestenemy ) ;

19. [0] rangedattack( weakestenemy ) ;

20. [0] meleeattack( closestenemy );

Rule 1 and 2 force the agent to perform a specific action in the very first round,
but not later. These rules have the highest priority, because they are only useful
when at the very beginning of the script.

Rule 6 states that the agent should move away from the centre of a cloud. The
location centreclouds only returns a valid value for the action movefrom if the
agent is actually located in a cloud. All clouds in the CRPG simulation have a
detrimental effect, and rule 6 helps agents to avoid them.

Rule 7 checks a segment number. A combat round consists of ten segments. In
the first segment of a combat round an agent choses an action, which is executed in
one of the later segments (it depends on the action when that will be exactly). After
an action is executed, an agent has to wait until the next round to choose a new
action. However, the agent still has the ability to move. Rule 7 gives an agent extra
move actions after the agent’s main action for the combat round has been executed.

A fighter game-AT script consists of five rules extracted from the rulebase, to
which at the end the rule meleeattack( closestenemy ) is attached.

A.3.2 Wizard Rulebase

This subsection presents the rulebase used by dynamic scripting for the wizard class
in the simulated CRPG. The rulebase consists of fifty rules. In front of each rule are
the rule number, and, between brackets, the priority of the rule. ‘[0] is the lowest
priority, while ‘[9] is the highest priority.
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10.

11.

12.
13.

14.

15.

16.
17.
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20.
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24,
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28.
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[9]
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(2]
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[2]
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[2]
(2]
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[2]

[2]
(2]
[2]
2]
[2]

CRPG Simulation Game Al

if influence( "Acid" ) then
rangedattack( closestenemy( "Wizard" ) );
if roundnumber <= 1 then
drink( "Potion of Fire Resistance" );
if roundnumber <= 1 then
drink( "Potion of Free Action" );
if roundnumber <= 1 then
cast( "Monster Summoning I", centreenemy );
if roundnumber <= 1 then
cast( "Hold Person", randomenemy ) ;
if roundnumber <= 1 then
cast( "Fireball", centreenemy ) ;
if roundnumber <= 1 then
cast( "Mirror Image" );
if roundnumber <= 1 then
cast( randomdefensive );
if locatedin( "Nauseating Fumes" ) then
drink( "Potion of Free Action" );
if enemy.influence( "Charmed" ) then
cast( "Charm Person", defaultenemy );
if healthpercentage < 50 then
drink( "Potion of Healing" );
movefrom( centreclouds );
if segmentnumber >= 1 then
movefrom( centrefriend );
if segmentnumber >= 1 then
movefrom( closestenemy ) ;
if friend.influence( badinfluence ) and
not defaultfriend.influence( goodinfluence ) then
cast( "Dispel Magic", defaultfriend );
cast( "Fireball", furthestenemy );
cast( "Charm Person", randomenemy( "Fighter" ) );
cast( "Charm Person", randomenemy( "Wizard" ) );
cast( "Deafness", randomenemy( "Wizard" ) );
cast( "Monster Summoning I", randomenemyhalf );
cast( "Ray of Enfeeblement", randomenemy( "Fighter" ) );
if friend.influence( "Weakened" ) then
cast( "Strength", defaultfriend );
if friend( "Wizard" ).influence( "Deafened" ) then
cast( "Dispel Magic", defaultfriend );
cast( "Mirror Image" );
cast( "Blindness", randomenemy( "Fighter" ) );
cast( "Blur" );
cast( "Shield" );
cast( "Luck", randomfriend );
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29. [2] cast( "Chromatic Orb", randomenemy ) ;

30. [2] if roundnumber <= 1 then
cast( "Stinking Cloud", centreenemy );

31. [2] cast( "Stinking Cloud", randomenemy( "Wizard" ) );

32. [2] cast( "Stinking Cloud", randomenemy( "Fighter" ) );

33. [2] cast( "Hold Person", closestenemy );

34. [2] cast( "Flame Arrow", randomenemy ) ;

35. [2] if (health < maxhealth - 4) and (weakestenemy.health >= 4) then
cast( "Larloch’s Minor Drain", defaultenemy );

36. [2] cast( "Grease", randomenemy( "Fighter" ) );

37. [2] cast( "Magic Missile", weakestenemy( "Wizard" ) );

38. [2] cast( "Magic Missile", weakestenemy ) ;

39. [2] cast( "Melf’s Acid Arrow", randomenemy( "Wizard" ) );

40. [2] cast( "Shocking Grasp", closestenemy );

41. [2] cast( "Blur" );

42. [1] cast( randomoffensive, randomenemy ) ;

43. [1] cast( randomblessing, randomfriend );

44. [1] cast( randomcurse, randomenemy ) ;

45. [1] cast( randomdefensive );

46. [1] cast( randomareaeffect, randomenemy ) ;

47. [1] drink( randompotion );

48. [0] rangedattack( weakestenemy( "Wizard" ) );

49. [0] rangedattack( weakestenemy ) ;

50. [0] if distance( closestenemy ) < 100 then
meleeattack( defaultenemy ) ;

Rule 1 forces the agent to use a ranged weapon to attack, when under the influ-
ence of acid. Acid damage causes any spell the wizard has selected to fail. Therefore,
whilst under the influence of acid, spell-casting is not useful. Rule 1 takes this into
account by forcing the wizard to use ranged attacks until the acid has dissolved.

Rule 6 forces the agent to cast a ‘Fireball’ spell the very first round. A ‘Fireball’
is an area-effect spell, which seriously damages anyone in its range of effect. It is
most useful against a group of opponents that are standing close together, while
comrades are still a good distance away. This is the situation at the start of combat.

Rule 10 checks whether there is an opponent that is charmed. An opponent that
is charmed, is actually a friend under the influence of a ‘Charm Person’ spell, who
is now fighting for the opposing team. A second ‘Charm Person’ spell cast at the
opponent will remove the effect of the first spell, turning the erstwhile opponent
friendly again.

Rule 15 checks whether a comrade is under any detrimental spell effect, while
not being under any beneficial spell effect. If so, the wizard attempts to remove
several detrimental spell effects with the ‘Dispel Magic’ spell. Since ‘Dispel Magic’
makes no difference between detrimental and beneficial spell effects, ‘Dispel Magic’
is best applied at a comrade that is only affected by detrimental effects. The rule
takes this into account.
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Rule 19 makes the agent cast ‘Deafness’ at an opponent wizard. While ‘Deafness’
can be cast at fighters, it only affects wizards detrimentally.

Rule 21 makes the agent cast ‘Ray of Enfeeblement’ at an opponent fighter. ‘Ray
of Enfeeblement’ saps the strength of an opponent. While ‘Ray of Enfeeblement’
can be cast at wizards, wizards do not have high strength to begin with. Therefore,
the spell is most useful against fighters.

Rule 23 makes the agent cast ‘Dispel Magic’ to a comrade wizard that suffers
from the ‘Deafness’ spell. Within the CRPG simulation, ‘Dispel Magic’ is the only
remedy against being deafened.

Rule 30 is actually a mistake; it should have priority 9, but it has priority 2.
When this rule is selected for a script, its chance to be activated is remote.

A wizard game-Al script consists of ten rules extracted from the rulebase,
to which at the end the rules cast( strongoffensive, closestenemy ) and
rangedattack( closestenemy ) are attached.

A.4 Static Tactics

Chapter 5 refers to five different basic tactics used by the static team. The tactics
consist of a game-Al script for each of the members of the static team. The team
consists of two fighters and two wizards. For all tactics, the two fighters use the same
script. The following five subsections present the scripts used for each of the five
static tactics, namely the ‘offensive’ tactic (A.4.1), the ‘disabling’ tactic (A.4.2), the
‘cursing’ tactic (A.4.3), the ‘defensive’ tactic (A.4.4), and the ‘novice’ tactic (A.4.5).

A.4.1 The Offensive Tactic

For the ‘offensive’ tactic, the two fighters use the following script:

if healthpercentage < 50 then
drink( "Potion of Healing" );
meleeattack( closestenemy );

With the ‘offensive’ tactic, the two fighters will use their melee weapon to attack
opponents. In general, fighters are much more effective when using melee attacks
than when using ranged attacks. The fighters will attempt to heal when they are
damaged too much.

The two wizards both use the following script:

if healthpercentage < 50 then
drink( "Potion of Healing" );
cast( "Fireball", centreenemy ) ;
cast( "Melf’s Acid Arrow", closestenemy( "Wizard" ) );
cast( "Melf’s Acid Arrow", closestenemy );
cast( "Magic Missile", weakestenemy );
rangedattack( closestenemy );
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With the ‘offensive’ tactic, the very first round of an encounter, both wizards will
throw a ‘fireball’ at the centre the opponent team. The effect is that usually the two
wizards of the opposing team will be killed outright, unless they immediately start
moving or take protective measures. In the following rounds, the two wizards will
first attempt to kill opponents with damaging magic spells, starting any remaining
opponent wizard. When the wizards are out of spells, they will use ranged attacks.

A.4.2 The Disabling Tactic

For the ‘disabling’ tactic, the two fighters use the following script:

if roundnumber <= 1 then

drink( "Potion of Free Action" );
if healthpercentage < 50 then

drink( "Potion of Healing" );
meleeattack( closestenemy );

With the ‘disabling’ tactic, the two fighters will first drink a potion of free action,
ensuring that they will be unaffected by the area-effect spells used by the wizards
in the team. The remainder of the script is equal to the offensive tactic script.

The first wizard uses the following script:

if healthpercentage < 50 then
drink( "Potion of Healing" );

drink( "Potion of Free Action" );

if not closestenemy( "Fighter" ).influence( freezinginfluence ) then
cast( "Stinking Cloud", defaultenemy ) ;

cast( "Chromatic Orb", closestenemy( "Fighter" ) );

cast( "Hold Person", randomenemy ) ;

cast( "Stinking Cloud", randomenemy ) ;

cast( "Chromatic Orb", randomenemy );

rangedattack( closestenemy );

The second wizard uses the same script, except that in lines 4 and 6, the references
to “Fighter” are replaced by “Wizard”. With the ‘disabling’ tactic, the two wizards
will first drink a potion of free action, ensuring that they will be unaffected by the
area-effect spells they use.! After that they use all kinds of spells that disable their
opponents, such as freezing them in place, or making them nauseous. When the
wizards are out of spells, they will use ranged attacks.

LAs Chapter 5 showed, the ‘disabling’ tactic is rather weak. The main reason for its weakness
is that all four static-team members drink a potion in the first combat round. Since they do not
move from their starting position, they are rather susceptible to their opponents attacking them
with damaging area-effect magic, similar to the ‘offensive’ tactic.
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A.4.3 The Cursing Tactic

For the ‘cursing’ tactic, the two fighters use the same script as with the ‘offensive’
tactic. The first wizard uses the following script:

if healthpercentage < 50 then
drink( "Potion of Healing" );

cast( "Hold Person", closestenemy( "Fighter" ) );

cast( "Deafness", closestenemy( "Wizard" ) );

cast( "Charm Person", closestenemy( "Wizard" ) );

cast( "Ray of Enfeeblement", closestenemy( "Fighter" ) );

cast( "Blindness", closestenemy( "Fighter" ) );

if not furthestenemy( "Fighter" ).influence( freezinginfluence ) then
cast( "Chromatic Orb", defaultenemy );

if not furthestenemy( "Wizard" ).influence( freezinginfluence ) then
cast( "Chromatic Orb", defaultenemy );

cast( "Chromatic Orb", randomenemy ) ;

rangedattack( closestenemy );

The second wizard uses the following script:

if healthpercentage < 50 then
drink( "Potion of Healing" );

cast( "Monster Summoning I", centreenemy ) ;

cast( "Deafness", closestenemy( "Wizard" ) );

cast( "Charm Person", closestenemy( "Fighter" ) );

cast( "Ray of Enfeeblement", closestenemy( "Fighter" ) );

cast( "Blindness", closestenemy( "Fighter" ) );

if not closestenemy( "Wizard" ).influence( freezinginfluence ) then
cast( "Chromatic Orb", defaultenemy );

if not closestenemy( "Fighter" ).influence( freezinginfluence ) then
cast( "Chromatic Orb", defaultenemy );

cast( "Chromatic Orb", randomenemy ) ;

rangedattack( closestenemy );

The ‘cursing’ tactic aims at the wizards hampering their opponents in several
different ways, while the fighters attack them up-close. While the two wizards mostly
use the same spells, they attempt to chose different targets for their spells. The
‘cursing’ tactic relies heavily on chance. Especially the use of charming spells is
risky: they have a 50 per cent chance to fail. However, if they succeed, they can be
decisive in determining the outcome of the fight. The ‘cursing’ tactic is quite strong
if chance is in favour of the static team, but it is mediocre otherwise. As a result,
the ‘cursing’ tactic is most susceptible to the occurrence of extreme outliers.

A.4.4 The Defensive Tactic

For the ‘defensive’ tactic, the two fighters use the following script:
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if roundnumber <= 1 then

drink( "Potion of Fire Resistance" );
if healthpercentage < 50 then

drink( "Potion of Healing" );
meleeattack( closestenemy ) ;

With the ‘defensive’ tactic, the two fighters will first drink a potion of fire re-
sistance, ensuring that fire-damaging spells, which are the most common damaging
spells at this level, are less effective when used against them. The remainder of the
script is equal to the offensive tactic script.

The first wizard uses the following script:

if healthpercentage < 50 then

drink( "Potion of Healing" );
cast( "Mirror Image" );
cast( "Monster Summoning I", centreenemy );
cast( "Shield" );
cast( "Larloch’s Minor Drain", closestenemy );
rangedattack( closestenemy );

The second wizard uses the same script, except that line 5 is replaced by
“cast( "Fireball", closestenemy( "Fighter" ) );”. The ‘defensive’ tactic
aims at the static team’s wizard using mainly defensive spells. Especially the ‘Mirror
Image’ spell is, in the BALDUR’S GATE implementation,? quite effective in keeping
the wizards from suffering any damage.

A.4.5 The Novice Tactic

For the ‘novice’ tactic, the two fighters use the same script as with the ‘offensive’
tactic. The first wizard uses the following script:

if healthpercentage < 50 then
drink( "Potion of Healing" );

cast( "Hold Person", closestenemy( "Fighter" ) );

cast( "Mirror Image" );

if not closestenemy( "Fighter" ).influence( freezinginfluence ) then
cast( "Stinking Cloud", defaultenemy ) ;

cast( "Magic Missile", closestenemy( "Wizard" ) );

cast( randomoffensive, randomenemy );

cast( "Chromatic Orb", randomenemy ) ;

rangedattack( closestenemy );

The second wizard uses the following script:

2The BAL.DUR’S GATE implementation of the ‘Mirror Tmage’ spell is actually quite different from
official specification (Cook et al., 2000); so much, in fact, that the BALDUR’S GATE implementation
may be considered a programming bug, for the spell is much too powerful for the level at which it
is available in the game.
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if healthpercentage < 50 then

drink( "Potion of Healing" );
cast( "Mirror Image" );
cast( "Fireball", closestenemy( "Wizard" ) );
cast( randomoffensive, randomenemy ) ;
rangedattack( closestenemy );

The ‘novice’ tactic aims at imitating a tactic that a novice player might use. A
novice player will probably have discovered the power of the ‘Mirror Image’ spell
and the ‘Fireball’ spell, but other than that will not know which spells are effective
and which are not. In the tactic, this is implemented as the wizards using mostly
random spells.
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Neverwinter Nights Game Al

In Chapter 5, experiments with dynamic scripting in the game NEVERWINTER
Nr1GHTS were discussed. This appendix describes NEVERWINTER NIGHTS and the
module implemented for the experiments (B.1), the static game AI implemented by
the game developers (B.2), and the rulebases used to generate successful game Al
for the dynamic team (B.3).

B.1 Neverwinter Nights Module

NEVERWINTER NIGHTS is a CRPG, developed by BioWare Corp (located in Ed-
monton, Canada), released in 2002. One of the major gimmicks of the game is
the availability of an extensive toolset, called ‘Aurora’, that can be used to develop
completely new game modules based on the NEVERWINTER NIGHTS game engine.
Aurora scales fairly well from novice users without programming experience, who
can easily fit together existing game elements, to experienced programmers, who can
rebuild the inner workings of the game from scratch. BioWare proved the power of
the toolset, by commercially releasing two new NEVERWINTER NIGHTS modules in
2003, which were developed by a third party.

The NEVERWINTER NIGHTS module developed to perform the experiments dis-
cussed in Chapter 5 entails an encounter between two teams of similar composition.
Each team consists of four agents, namely a fighter, a priest, a rogue, and a wizard,
all of the eighth experience level. The initial position of all agents in the CRPG
simulation is illustrated in Figure B.1. The front row of each team consists of the
fighter and the priest, and the back row of the wizard and the rogue. The combat
area (the arena in which the agents are located) has a diameter of one-and-one-half
NEVERWINTER NIGHTS cells, or fifty feet.

The armament, weaponry, spell selection and inventory of the teams is static.
Each fighter carries a potion of ‘Cure Serious Wounds’ and a potion of ‘Speed’. Each
wizard carries a potion of ‘Cure Light Wounds’ and a potion of ‘Speed’. Each priest
carries a potion of ‘Cure Moderate Wounds’, a potion of ‘Owl’s Wisdom’, and a
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everwinter Nights  v1.30.7041

gentermien!

Figure B.1: The NEVERWINTER NIGHTS module.

potion of ‘Bless’. Each rogue carries a potion of ‘Cure Moderate Wounds’, a potion
of ‘Speed’, and a potion of ‘Invisibility’. Wizards have access to the following spells
(one copy of each spell, unless indicated otherwise): ‘Daze’ (two copies), ‘Ray of
Frost’, ‘Resistance’, ‘Burning Hands’, ‘Magic Missile’ (two copies), ‘Negative Energy
Ray’, ‘Melf’s Acid Arrow’ (two copies), ‘Summon Creature I, ‘Fireball’, ‘Flame
Arrow’, ‘Negative Energy Burst’, ‘Evard’s Black Tentacles’, and ‘Minor Globe of
Invulnerability’. Priests have access to the following spells (one copy of each spell,
unless indicated otherwise): ‘Cure Minor Wounds’, ‘Light’ (two copies), ‘Resistance’,
‘Virtue’ (two copies), ‘Cure Light Wounds’, ‘Doom’, ‘Sanctuary’, ‘Summon Creature
I, ‘Aid’, ‘Silence’, ‘Sound Burst’, ‘Animate Dead’, ‘Cure Serious Wounds’, ‘Prayer’,
‘Cure Critical Wounds’, ‘Divine Power’. A detailed description of NEVERWINTER
NIGHTS is given by Knowles et al. (2002).

I chose not to include a ‘sorcerer’ in the teams. The reason is that sorcerers
are not limited to the spells they memorise, but can use any of the spells of the
levels they have access to. Therefore, a sorcerer can always execute the first rule in
a script that casts a spell, and will continue casting the same spell over and over
again until all casting power is gone. Therefore, for a sorcerer, scripting is not ideal.
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As an alternative, a sorcerer could be controlled by the rulebase as a whole, where
for each action a rule is selected at random from the rulebase, with a probability
corresponding to the rules’ weights. This system has actually been implemented in
the NEVERWINTER NIGHTS module as an alternative to the scripting system, but
no experiments have been performed with it yet.

B.2 Static Game Al

The NEVERWINTER NIGHTS game Al is implemented in the NEVERWINTER NIGHTS
scripting language called ‘NWScript’. NWScript is derived from C++. Although it
lacks many of the powerful features of C++,' it is a fairly powerful language that
allows the implementation of advanced concepts. NWScript is documented by Loe
and Crockett (2002) and by the NWN Lexicon Group (2004).

The NEVERWINTER NIGHTS game Al is implemented in NWScript. This section
discusses the three different variations of the NEVERWINTER NIGHTS game Al used
in this thesis, namely (i) the game AI of NEVERWINTER NIGHTS version 1.29 (B.2.1),
(ii) the game AT of NEVERWINTER NIGHTS version 1.61 (B.2.2), and (iii) the cursed
version of the game AT of NEVERWINTER NIGHTS version 1.61 (B.2.2),

B.2.1 Game AI 1.29

The game AT included in NEVERWINTER NIGHTS version 1.29 consists of a straight-
forward script, titled DetermineCombatRound () (found in the file nw_i0_generic).
executed for all agents in the game. Basically, each line of the script consists of
a check whether the class of the agent is allowed to execute that line (e.g., a line
concerning magic will only be executed for spell casters), followed by a ‘talent’. A
‘talent’ is a call to a function that may perform an action of a certain type. If the
talent indeed generates an action, it returns the value ‘true’ and the script ends.
If not, it returns the value ‘false’ and the next line in the script is executed. For
instance, the following is a short code snippet from the game Al script:

if (nClass == CLASS_TYPE_BARD)

{
if (TalentHeal())
return;
if (TalentBardSong())
return;
}

This code tests whether the class of the agent that executes the script is ‘bard’. If so,
then the function TalentHeal() is called. This function checks whether the agent
has healing capabilities, and whether it is useful at this point to perform a healing
action. If no healing action is generated, the function TalentBardSong() is called,

TFor instance, other than ‘string’, ‘integer’ and ‘float’ there are no variable types, and it is not
possible to create new classes.



178 Neverwinter Nights Game Al

which checks whether it is useful at this point for the agent to perform a singing
action.

The game AT uses random numbers to provide variety. For instance, at the start
of the script a random number decides whether the agent will perform an offensive
(with 75 per cent probability) or a defensive action (with 25 per cent probability).

The game AI of NEVERWINTER NIGHTS version 1.29 is not so strong. For in-
stance, when computer-controlled agents are distanced further from their enemies
than they can cover in one combat round, they will use ranged weapons. They will
stick to using ranged weapons, even if their enemy closes in. Since usually agents
do more damage with melee weapons than with ranged weapons, an effective way
to deal with agents using ranged weapons is to run towards them and attack with
melee weapons. This is actually one of the tactics discovered by dynamic scripting
against game Al 1.29.

B.2.2 Game AI 1.61

The NEVERWINTER NIGHTS game Al was completely rewritten about a year after
the first release of the game. The game Al for version 1.61 is significantly more
effective than the game Al for version 1.29.

Game Al 1.61 starts by assigning integer values to three variables, named
n0ffense, nCompassion, and nMagic. These variables represent a percentage prob-
ability to use an offensive attack, to help companions, and to use magic, respectively.
A fourth variable, named nCrazy, is a modifier that decides how big the variety in
decisions is. The variables get typical values for the class and attributes of the agent
for which the game Al is executed. Then, the values of the variables are used to
decide which part of the script is executed. For instance, the following is a short
code snippet from the game AT script:

if ((nDffense <= 50) && (nMagic > 50) && (nCompassion > 50))
{
if (TalentHeal())
return;
if (TalentCureCondition())
return;
if (TalentUseProtectionOthers())
return;
if (TalentEnhanceOthers())
return;

}

This code tests whether the agent is not offensive, has access to magic, and feels
compassionate. If so, it attempts to select a ‘talent’ that supports its companions.
It first attempts healing, then curing (e.g., removing poison), then protective magic,
and finally general enhancements of others.

The game AI provides variety by using random values for the four variables,
ensuring that the values which the variables receive are in accordance with the class
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and attributes of the agent that executes the script. The talents themselves have
been updated to remove some randomness, and to make them more effective.

The game Al of NEVERWINTER NIGHTS version 1.61 is considerably stronger than
the game AI of NEVERWINTER NIGHTS version 1.29. For instance, fighter agents
that are able to use strong melee attacks, will often attack with melee weapons, even
if they start out far from their enemies. They are also more limited in their ability to
choose less effective actions. For instance, while in NEVERWINTER NIGHTS version
1.29 they often wasted time by drinking useless potions, in NEVERWINTER NIGHTS
version 1.61 fighters will never drink potions except to heal.

Interestingly, the reduced amount of randomness allows dynamic scripting to
design tactics that are able to easily defeat game AI 1.61. For instance, a dynamic
fighter agent will quickly learn to drink a potion of ‘Speed’ at the start of a fight,
allowing it more effective melee attacks than a static fighter agent that refuses to
drink any potion.

B.2.3 Cursed Game Al

Cursed game AT is actually equal to game AT 1.61. However, there is a difference
in the way the combat is handled. With cursed game Al, after every twelve fights,
three ‘cursed’ fights are executed. At the start of a cursed fight, the average fitness
for both teams over the last ten fights is calculated. If the dynamic team has a
higher average fitness than the static team, the static team gets cursed, otherwise
the dynamic team gets cursed. The cursing of a team consists of disabling the
members of the team for the first 60 seconds of a fight. Furthermore, if the static
team is cursed, the dynamic team selects rules from the rulebase using all equal
weights.

Consequently, when the dynamic team is winning (i.e., has a higher average
fitness), during the cursed fights it will be at a great disadvantage to the static
team. Therefore, it is likely that a dynamic team that employs a successful rulebase
AT will lose a cursed fight despite using good AI. Contrariwise, when the dynamic
team is losing (i.e., has a lower average fitness), during the cursed fights it will be
at a great advantage to the static team, and thus will probably win despite using
random Al.

In summary, for 20 per cent of the fights, cursed game AI attempts to fool
dynamic scripting into rating good AT as being inferior, and rating random AT as
being good.

B.3 Rulebase

Dynamic scripting as implemented in NEVERWINTER NIGHTS uses one central rule-
base for all classes. For each rule in the rulebase an indication is given for which
classes the rule is meant. At the start of a test (i.e., a series of fights), a separate
rulebase is created for each class by extracting those rules from the central rulebase
corresponding to the class.
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The central rulebase is listed below. In front of each rule are the rule number,
and, between brackets, the priority of the rule. ‘[0 is the lowest priority, while ‘[4]’
is the highest priority. Instead of code, a description of each rule is given, followed
by the classes for which the rule is applicable. ‘F’ indicates the fighter class, ‘P’
indicates the priest class, ‘R’ indicates the rogue class, and ‘W’ indicates the wizard
class. The implementation of the rules is always by calling a ‘talent’ function, in
many cases the same ‘talent’ functions the standard game AT uses.

1. [4] Heal self when health < 25% (F,P,R,W)

2. [4] If not yet in combat, buff self (F,R)

3. [4] Cast ‘Immunity to Death Magic’ (P)

4. [4] Cast ‘Freedom’ (P)

5. [4] Cast ‘Regenerate’ (P)

6. [4] Cast ‘Mass Haste’ or ‘Haste’ (P,W)

7. [4] Cast ‘Time Stop’ (W)

8. [4] Heal self when health < 50% (F,P,R,W)

9. [4] Empty rule (F,P,R,W)

10. [3] Cast highest magic-absorption spell (W)

11. [3] Cast highest summoning spell at nearest enemy (P,W)

12. [3] Cast highest summoning spell at nearest enemy spellcaster
(P,W)

13. [3] Cast highest area-effect damaging spell at nearest enemy
(P,w)

14. [3] Cast highest area-effect damaging spell at nearest enemy
spellcaster (P,W)

15. [3] Cast highest damaging-cloud spell at nearest enemy (P,W)

16. [3] Cast highest damaging-cloud spell at nearest enemy
spellcaster (P,W)

17. [3] Cast highest cursing-cloud spell at nearest enemy (P,W)

18. [3] Cast highest cursing-cloud spell at nearest enemy spellcaster
(P,W)

19. [3] Cast highest area-effect cursing spell at nearest enemy (P,W)

20. [3] Cast highest area-effect cursing spell at nearest enemy
spellcaster (P,W)

21. [3] Cast highest cone spell at nearest enemy (P,W)

22. [3] Cast highest cone spell at nearest enemy spellcaster (P,W)

23. [3] Cast highest damaging spell at nearest enemy (P,W)

24. [3] Cast highest damaging spell at nearest enemy spellcaster (P,W)

25. [3] Cast highest cursing spell at nearest enemy (P,W)

26. [3] Cast highest cursing spell at nearest enemy spellcaster (P,W)

27. [3] Cast highest anti-invisibility spell (P,W)

28. [3] Cast highest anti-mind-affecting spell (P,W)

29. [3] Cast highest damage-absorption spell (P,W)

30. [3] Cast highest breach spell at nearest enemy (P,W)

31. [3] Cast highest breach spell at nearest enemy spellcaster (P,W)
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32. [3] Melee-attack nearest enemy (F,R)

33. [3] Melee-attack nearest enemy spellcaster (F,R)

34. [3] Ranged-attack nearest enemy (F,R)

35. [3] Ranged-attack nearest enemy spellcaster (F,R)

36. [3] Melee-attack nearest enemy fighter or rogue (F,R)

37. [3] Ranged-attack nearest enemy fighter or rogue (F,R)

38. [3] Empty rule (F,P,R,W)

39. [2] Heal a companion (P)

40. [2] Heal self (F,P,R,W)

41. [2] Use advanced protective magic on self (P,W)

42. [2] Use protective magic on self (P,W)

43. [2] Use protective magic on companions (P,W)

44. [2] Buff self (F,P,R,W)

45. [2] Buff companions (P,W)

46. [2] Respond to a melee-attacker against self, preferably a
spellcaster (P,W)

47. [2] Respond to a ranged-attacker against self, preferably a
spellcaster (P,W)

48. [2] Use offensive magic at an enemy that attacks from a distance,
preferably a spellcaster (P,W)

49. [2] Use summoning magic (P,W)

50. [2] Use offensive magic against the nearest spellcaster (P,W)

51. [2] Melee-attack nearest spellcaster (F,P,R,W)

52. [2] Cure self of a disability (P)

53. [2] Turn undead (P)

54. [2] If there are multiple melee-attackers against self, respond
to them, preferably to nearest spellcaster (P)

55. [2] Buff self (F,R)

56. [2] Sneak attack (F,R)

57. [2] Melee-attack nearest fighter or rogue (F,R)

58. [2] Use offensive magic against nearest fighter or rogue (P,W)

59. [2] Empty rule (F,P,R,W)

60. [1] Respond to a melee-attacker against self (P,W)

61. [1] Respond to a ranged-attacker against self (P,W)

62. [1] Use offensive magic at an enemy that attacks from a distance
(P,W)

62. [1] Use offensive magic (P,W)

63. [1] Melee-attack (F,P,R,W)

64. [1] If there are multiple melee-attackers against self, respond
to them (P)

65. [1] Empty rule (F,P,R,W)

66. [0] Melee-attack (F,P,R,W)

Rule 2 forces the agent to use a potion or special ability that enhances its char-
acteristics (which is called ‘buffing’). Because of the combat check, this will only be
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executed at the start of a fight.

Rule 3 to 7 are ‘buffing’ rules for priests and wizards. However, the spells used
in these rules are unavailable at the experience level of the priest and wizards used
in the experiments. Therefore, these rules are effectively empty rules, for the classes
that are allowed to use them.

Rule 39 to 58 are extracted without change from the NEVERWINTER NIGHTS
game Al version 1.29.

Priests and wizards game-Al scripts contain ten rules extracted from their re-
spective rulebases, while the game-AT scripts of fighters and rogues contain five rules.
Rule 9, rule 38, rule 59, and rule 65 are empty rules, that can be selected to make
scripts effectively shorter than the number of rules extracted from the rulebase. At
the end of a generated script, a call is added to the standard NEVERWINTER NIGHTS
game Al Note that, since version 1.29 and version 1.61 of the standard game Al are
different, the effect of this call is dependent on the NEVERWINTER NIGHTS version
used.



Appendix C

Wargus Game Al

In Chapter 6, experiments with dynamic scripting in the game WARGUS were dis-
cussed. This appendix! describes WARGUS and the maps used for the experiments
(C.1), the scripting language used to implement game Al (C.2), the static game Al
(C.3), the gene types used to design chromosomes (C.4), and the rulebases used to
generate successful game AT for the dynamic team (C.5).

C.1 Wargus

WARGUS is a faithful clone of the game WARCRAFT II, released by Blizzard in
1995 (and released again in 1999). WARQGUS is built on the open-source game en-
gine STRATAGUS. STRATAGUS was formerly known as FREECRAFT, but for legal
reasons the engine has been renamed. STRATAGUS is implemented in C. WARGUS
is a game module for STRATAGUS, implemented in the high-level Lua scripting lan-
guage (Ierusalimschy, de Figueiredo, and Celes, 2003).2 In the academic community,
STRATAGUS is gaining popularity as a research environment for RTS games (Aha
and Molineaux, 2004; Marthi, Latham, Russel, and Guestrin, 2004).

The experiments in the WARGUS environment, described in Chapter 6, were
performed on two different maps; in the tests where the static game AI employed
the ‘small balanced tactic’ or the ‘soldier rush’, a small map was used, while in the
tests where the static game AI employed the ‘large balanced tactic’ or the ‘knight
rush’; a large map was used. The two maps are illustrated in Figure C.1. The small
map, measuring 64 by 64 cells, is displayed left. The large map, measuring 128 by
128 cells, is displayed right. The black areas on the maps represent water. The
mark ‘A’ indicates the starting base of the dynamic civilisation, and the mark ‘B’
indicates the starting base of the static civilisation. Note that on the large map the
civilisations are far apart, unless they approach each other by sea. However, since
naval units were not used during the experiments, the sea route was disabled.

IThe contents of this appendix are based on the work by Ponsen (2004)
2Lua is not an abbreviation. It is the word for ‘moon’ in Portuguese, and is pronounced ‘loo-ah’.
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Figure C.1: The two maps used in the WARGUS tests.

C.2 Scripting Language

The WARGUS game Al, implemented in Lua, is based on the concept of ‘forces’. A
‘force’ refers to a group of units, combined in a numbered army. Each unit in the
game belongs to a force, and a unit without a force is assigned to a random force
automatically. Any commands assigned to a force are assigned to each unit that
belongs to the force. WARGUS supports a maximum of ten different forces. A force
can be either offensive or defensive. An offensive force will move towards and into
the area controlled by the opposing civilisation, attacking enemy units and buildings
along the way. A defensive force will stay in the area controlled by its civilisation,
responding to enemy attacks. The force numbered zero is always defensive.

A game-AT script for WARGUS is executed sequentially. Each rule in the script
is executed (at most) once, starting at the top, and continuing to the bottom, until
the game ends.

C.3 Static Tactics

In the WARGUS experiments, the static civilisation uses four different tactics. Two of
these tactics, the ‘small balanced tactic’ and the ‘large balanced tactic’, use the same
game-Al script, but apply it to a small and a large map, respectively. The three
game-Al scripts are discussed in the following subsections. Subsection C.3.1 presents
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the ‘balanced tactic’, Subsection C.3.2 presents the ‘soldier rush’, and Subsection
C.3.3 presents the ‘knight rush’.

C.3.1 Balanced Tactic

The ‘balanced tactic’ is an improved variation of the ‘land attack’ game AI, which
was developed by the WARGUS designers. The (rather long) script starts with build-
ing a large group of ‘workers’, whose function is to gather resources and construct
buildings. The script then defines a few forces, using them for both attack and
defense. When the forces are in place, it constructs all buildings needed to get to
state 4 (see Figure 6.2), followed by an extension of the existing forces, followed by
the research of all possible weapon and armour upgrades. At that point, the script
is able to build fairly strong forces. It mixes the construction of new buildings with
extending its existing forces and the creation of new ones, which are used for both
offense and defense. If the civilisation manages to get to state 20 (see Figure 6.2),
the script continues to build units, which are assigned an offensive or a defensive
role, with a ratio of 2 to 1.

C.3.2 Soldier Rush Tactic

The ‘soldier rush’ tactic aims at overwhelming the enemy with simple soldiers at the
start of the game. Since a tactic that is based on the deployment of low-level units
works best on a map where the opposing civilisations are close to each other, during
the experiments the ‘soldier rush’ was applied to the small map. The ‘soldier rush’
script contains the following seventeen steps:

1. Indicate the need for a ‘townhall’.

2. Set the amount of needed ‘workers’ to 1.
3. Set the amount of needed ‘workers’ to 10.
4. Indicate the need for a ‘barracks’.

5. Build force 0 as two ‘soldiers’.

6. Build force 1 as ten ‘soldiers’.

7. Attack with force 1.

8. Set the amount of needed ‘workers’ to 15.
9. Indicate the need for a ‘blacksmith’.

10. Indicate the need for an extra ‘barracks’.
11. Research two weapon and two armour upgrades.
12. Build force 0 as four ‘soldiers’.

13. Build force 1 as ten ‘soldiers’.

14. Attack with force 1.

15. Build force 1 as five ‘soldiers’.

16. Attack with force 1.

17. Loop back to step 15.
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C.3.3 Knight Rush Tactic

The ‘knight rush’ tactic aims at overwhelming the opposing civilisation with ad-
vanced units. The (rather long) script starts similar to the ‘soldier rush’, but instead
of continuously attacking as happens in the ‘soldier rush’ script after step 12, the
‘knight rush’ doubles the amount of workers and builds a ‘keep’, ‘stables’; a ‘lum-
bermill’; and a ‘castle’; followed by several even more advanced buildings. Then
it starts churning out huge forces, consisting of high-level units, and uses them to
attack continuously.

C.4 Rule Design

The evolutionary game Al uses a chromosome to specify WARGUS tactics. As de-
tailed in Subsection 6.3.2, a chromosome consists of rule genes. There are four
different gene types, namely (i) build genes, (ii) research genes, (iii) economy genes,
and (iv) combat genes.

Build genes consist of a rule ID ‘B’, followed by one numerical parameter, that
indicates the type of building to be constructed. The parameter takes an integer
value in the range [1,12]. The different parameters for build genes are defined as
follows:?

1 = Townhall 4 = Blacksmith 7 = Castle 10 = Temple
2 = Barracks 5 = Keep 8 = Airport 11 = Guard tower
3 = Lumbermill 6 = Stables 9 = Mage tower 12 = Cannon tower

Research genes consist of a rule ID ‘R’, followed by one numerical parameter,
that indicates the type of research to be done. The parameter takes an integer value
in the range [13,21]. The different parameters for research genes are defined as
follows:

13 = Missile upgrade 16 = Catapult upgrade 19 = Mage upgrade 3
14 = Armour upgrade 17 = Mage upgrade 1 20 = Mage upgrade 4
15 = Weapon upgrade 18 = Mage upgrade 2 21 = Mage upgrade 5

Economy genes consist of a rule ID ‘E’, followed by one numerical parameter,
that indicates the number of workers to be trained. The parameter takes any positive
integer value.

Combat genes consist of a rule ID, consisting of a ‘C’ and a number, followed
by several parameters. The number takes an integer value in the range [1,20] (cor-
responding to the twenty possible states, illustrated in Figure 6.2), and determines
which parameters the gene has. Combat genes define forces. The first of the para-
meters is the number of the force to be defined, as an integer value in the range [0, 9].
The last of the parameters is the role of the force, namely ‘offensive’ or ‘defensive’.

3Note that the ‘guard tower’ and the ‘cannon tower’ do not allow new research or the creation
of new unit types, therefore they do not spawn state transitions, and thus do not occur in Figure
6.2.
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The parameters are unit counts, that specify how many units of a specific type are
assigned to the force. For the twenty combat genes, the unit counts are as follows:

CO1: soldiers

C02: soldiers, shooters

C03: soldiers

C04: soldiers

C05: soldiers, shooters, catapults

C06: soldiers, shooters

CO07: soldiers

C08: soldiers

C09: soldiers, shooters, catapults

C10: soldiers, shooters

C11: soldiers, knights

C12: soldiers, shooters, catapults, knights

C13: soldiers, shooters, catapults, knights

C14: soldiers, shooters, catapults, knights, flyers

C15: soldiers, shooters, catapults, knights, mages

C16: soldiers, shooters, catapults, knights

C17: soldiers, shooters, catapults, knights, flyers, mages
C18: soldiers, shooters, catapults, knights, flyers

C19: soldiers, shooters, catapults, knights, mages

C20: soldiers, shooters, catapults, knights, flyers, mages

For example, a gene with the value “C09,1,3,7,2,0ffensive” defines force 1 as
an offensive force that consists of three soldiers, seven shooters, and two catapults.

C.5 Rulebases

Chapter 6 specified two basic dynamic-scripting rulebases, namely (i) an original
rulebase, used in Section 6.2, and (ii) an improved rulebase, used in Section 6.4.
From the basic rulebases, separate rulebases for each of the twenty states were
constructed, by extracting those rules from the basic rulebases that are applicable
in the corresponding states. The two basic rulebases are presented in this section,
in Subsections C.5.1 and C.5.2, respectively.

C.5.1 The Original Rulebase

The original WARGUS rulebase, used in Section 6.2, contains fifty rules. The rule
specifications use special terms to indicate forces of five different sizes. A ‘squadron’
is a tiny force (consisting of 2 units), a ‘platoon’ is a small force (consisting of 4
units), a ‘battalion’ is a medium-sized force (consisting of 6 units), a ‘company’ is a
large force (consisting of 8 units), and a ‘division’ is a huge force (consisting of 12
units). The fifty rules are listed below, with a rule number, a rule name, and a short
explanation of the rule contents.



188

O 00 N 0L WN -

DD DD DD WWWW W W WWWWNNNMMNMNMNNDNNMNNMNNRERRPERPRPRRB R B R
AP WNEFE O OWOOONOOOOO P WNE O OWWONOOOP WNE O OWONO”Od wNDE= O

. Townhall

Barracks
Lumbermill
Blacksmith

. Keep

Stables
Castle

. Airport
. Magetower
. Temple

Guardtower
Cannontower

. MissileUpgrade
. ArmorUpgrade
. WeaponUpgrade

CatapultUpgrade

. MageUpgradel
. MageUpgrade2
. MageUpgrade3
. MageUpgrade4
. MageUpgradeb

LightWorkers

. NormalWorkers

. HeavyWorkers

. ExtremeWorkers

. DefenseSquadron
. DefensePlatoon

. DefenseBattalion
. DefenseCompany

. DefenseDivision

OffenseSquadron
OffensePlatoon
OffenseBattalion
0ffenseCompany
OffenseDivision
SoldiersDefense
ShootersDefense
CatapultDefense

. KnightsDefense
. MagesDefense

SoldiersOffense
ShootersOffense
CatapultOffense

. KnightsOffense
. MagesOffense

Construct
Construct
Construct
Construct
Construct
Construct
Construct
Construct
Construct
Construct
Construct
Construct
Research
Research
Research
Research
Research
Research
Research
Research
Research
Train a f
Train a s
Train
Train
Define a
Define a
Define a
Define a
Define a
Define
Define
Define
Define
Define
Define a
Define a
Define a
Define a
Define a
Define
Define
Define
Define
Define

townhall
barracks
lumbermill
blacksmith
keep

stables
castle
airport

mage tower
temple

guard tower
cannon tower
better
better
better weapons
better catapults
mage spell 1
mage spell 2
mage spell 3
mage spell 4
mage spell 5

ew new workers

missiles
armour

everal new workers

a many new workers
a very many new workers

defensive squadron

defensive platoon
defensive
defensive company

defensive division

Wargus Game Al

battalion

offensive squadron

offensive platoon
offensive
offensive company
offensive
force of
of
of
of
of
of
of
of
of

of

defensive
defensive force
defensive force
defensive force
defensive force
offensive force
offensive force
offensive force
offensive force

offensive force

battalion

division

soldiers
shooters
catapults
knights
mages
soldiers
shooters
catapults
knights
mages



c.5

46.
47.
48.
49.
50.
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AirDefenseBattalion Define a defensive air battalion
AirDefenseCompany Define a defensive air company
AirOffenseBattalion Define an offensive air battalion
Air0OffenseCompany Define an offensive air company
Air0ffenseDivision Define an offensive air division

At the end of a game-Al script generated from a rulebase, a continuous loop is
added that initiates constant attacks.

C.5.2 The Improved Rulebase

The improved WARGUS rulebase, used in Section 6.4, is based on the original rulebase
presented in Subsection C.5.1. The differences are the following.

Rule 1 has been replaced by a new rule, that defines a defensive force before
constructing a new ‘townhall’. The reason is that a new townhall will be
quickly overrun by enemy units, if it is not defended.

A new rule has been added, named AntiSoldierRush. The rule exists in the
rulebase for the state 1. It builds a ‘blacksmith’ followed by researching two
weapon upgrades and two armour upgrades. Then, two offensive forces are
defined, one with four soldiers and one with eight soldiers. This rule is meant
as a counter-tactic against the ‘soldier rush’ tactic. When executed, it stems
the first wave of ‘soldier rush’ attacks, and prepares a strong offense with
simple units.

A new rule has been added, named AntiKnightRush. The rule exists in the
rulebases for states 7 to 11. In state 7 and 8, it builds ‘stables’. In state 9
and 10, it builds a ‘blacksmith’. In state 11, it builds a ‘lumbermill’. In all
five states, the construction of the new building is followed by defining two
offensive forces consisting of soldiers and knights. The rule aims at quickly
switching to a state that allows the construction of ‘knights’, and exploits this
switch by setting up a strong attack using ‘knights’.

A new rule has been added, named Chromosome. The rule is a literal copy
of a successful chromosome. The rule has implementations for states 3, 4, 8,
12, and 14. The rule is strongly defensive in states 3, 4 and 8, and strongly
offensive in states 12 and 14.

The parameters of rules 26 to 35 have been changed. Four different force sizes
have been increased. A ‘squadron’ now consists of 4 units, a ‘platoon’ of 6
units, a ‘battalion’ of 8 units, and a ‘company’ of 10 units. The size of a
‘division’ remains at 12 units. Furthermore, the numbers of the units types
have been redistributed, to give more weight to ‘catapults’.

Rule 46 to 50, the ‘air force’ rules, have been removed, to make room for the
new rules.
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Summary

The behaviour of agents in commercial computer games is determined by so-called
‘game AT’ When enhanced with an adaptive mechanism, game AI may learn from
its mistakes (‘self-correction’), and may change the agents’ behaviour in response to
unfamiliar situations (‘creativity’). Such enhanced game Al is called ‘adaptive game
AT’. The focus of this thesis is on the design and implementation of machine-learning
techniques that can be used to create successful adaptive game Al.

The first chapter provides a motivation for the research, and formulates a prob-
lem statement and four research questions. The research is motivated by the fact
that game Al in state-of-the-art games lacks sophistication. While the audiovisual
qualities of games have undergone considerable improvements in recent years, game
AT has been largely neglected by professional game developers. Usually, the suspen-
sion of disbelief that modern games attempt to evoke is shattered by the inferior
decision-making capabilities of the computer-controlled agents. Adaptive game Al
has the potential to extend the time span that a game is challenging for the human
player, and to scale the level of difficulty to the human player’s level of skill. Im-
plementation of these features may allow adaptive game AI to influence a game’s
suspension of disbelief positively. So far, academic research in adaptive game Al,
small as it is, has focused on simple game Al.

The problem statement derived from the motivation is: to what extent can
machine-learning techniques be used to increase the quality of complex game AI?
To answer the problem statement, four research questions are formulated: (i) to
what extent can offline machine-learning techniques be used to increase the effec-
tiveness of game AI? (ii) to what extent can online machine-learning techniques be
used to increase the effectiveness of game AI? (iii) to what extent can machine-
learning techniques be used to scale the difficulty level of game AT to meet the
human player’s level of skill? and (iv) how can adaptive game Al be integrated in
the game-development process of state-of-the-art games?

The second chapter provides background information. First, it discusses the
machine-learning techniques used in the thesis: evolutionary algorithms, artificial
neural networks, evolutionary artificial neural networks, evolutionary control, and
reinforcement learning. Then, it discusses modern games and state-of-the-art game
Al Finally, it discusses how machine-learning techniques can be applied to game
AT, and gives an overview of related research in this area. The three ways by which
machine learning can be applied to game AI are (i) offline learning, (ii) supervised
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learning (which is excluded from this thesis), and (iii) online learning. Offline adap-
tive game Al is game AI that adapts using self-play, typically during the ‘quality
assurance’ phase of game development. Online adaptive game Al is game AI that
adapts while the game is being played by a human player. Online adaptive game Al
must meet four computational and four functional requirements to be applicable in
practice. The four computational requirements are (i) speed, (ii) effectiveness, (iii)
robustness, and (iv) efficiency. The four functional requirements are (i) clarity, (ii)
variety, (iii) consistency, and (iv) scalability.

The third chapter discusses how to evolve successful agent controllers in game-like
environments. When evolving agent controllers, the evolutionary algorithm tends to
seek solutions in the search space in the neighbourhood of solutions to easy problem
instances. Consequently, the solutions found tend to work well with easy instances,
but give inferior results with hard instances. This is called ‘the problem of hard
instances’. To deal with this problem, a novel evolutionary algorithm is introduced,
called the Doping-driven Evolutionary Control Algorithm (DECA). DECA ‘dopes’
the initial population of potential solutions with a very good solution to a single
hard instance. Through experiments with a box-pushing task and with a food-
gathering task, the chapter empirically shows that DECA evolves agent controllers
that are significantly more effective than agent controllers evolved with a ‘regular’
evolutionary algorithm.

The fourth chapter explores evolutionary game AI, which is game AT that employs
evolutionary algorithms to adapt. The first part of the chapter discusses offline
evolutionary game AI. By an experiment that controls the actions of a spaceship
in a strategy game with a neural network, it shows that offline evolutionary game
AT can be successful in detecting exploits, and in discovering new tactics. However,
the first part concludes with the observation that a neural network is not a suitable
learning structure for game AI. The second part discusses online evolutionary game
AT By an experiment that evolves team behaviour in the capture-the-flag mode of
the action game QUAKE I1T ARENA, it shows that online evolutionary game AT can
be used to create successful tactics. However, it is concluded that online evolutionary
game Al is only reasonably efficient if the search space is small.

The fifth chapter discusses a novel technique for online adaptive game AT called
‘dynamic scripting’. Dynamic scripting maintains game-domain knowledge in the
form of rules in an adaptive rulebase. Each rule has a weight attached to it, which
determines the probability that the associated rule is selected for a game-AT script.
The weights adapt automatically to reflect the success or failure of the game Al as
observed in the game. The chapter shows that dynamic scripting meets by design
all four computational requirements, and two of the four functional requirements
(namely clarity and variety). The chapter then explores (i) outlier-reduction en-
hancements to dynamic scripting to allow it to meet the requirement of consistency,
and (ii) difficulty-scaling enhancements to allow it to meet the requirement of scal-
ability. With ‘penalty balancing’ as an outlier-reduction enhancement, and ‘top
culling’ as a difficulty-scaling enhancement, dynamic scripting meets all four com-
putational and all four functional requirements. Therefore, it is concluded that
dynamic scripting can be applied in practice. The conclusion is supported by the
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successful implementation of dynamic scripting in the state-of-the-art roleplaying
game NEVERWINTER NIGHTS.

The sixth chapter discusses how adaptive game AI can be integrated in profes-
sional game development. It shows that game developers and publishers will not
hesitate to use offline adaptive game AI when they believe that they can benefit
from it. However, at present they are still suspicious of online adaptive game AI,
and need to be convinced of its reliability to start considering applying it in their
games. The reliability of online adaptive game Al can be improved by using offline
adaptive game Al to discover new domain knowledge. A three-step procedure to
execute this improvement is illustrated by an experiment with the game Al in the
real-time strategy game WARGUS. The experiment shows that a dynamic-scripting
rulebase for WARGUS can be improved by using offline evolutionary game Al to de-
sign counter-tactics against ‘super-tactics’, which are quite difficult to defeat. The
chapter ends by discussing some generalisation issues, and by providing arguments
that support the conjecture that adaptive game Al is beneficial to the entertainment
value derived from games.

The seventh chapter returns to the problem statement and research questions.
The answers to the research questions are all given above. They provide the follow-
ing, four-part answer to the problem statement:

e reliability of online adaptive game Al is guaranteed if it meets the four com-
putational and four functional requirements;

e offline machine-learning techniques can be used during the ‘quality assurance’
phase of game development to increase the effectiveness of game AI by (i)
detecting exploits, (ii) suggesting new tactics, and (iii) increasing the reliability
of online adaptive game AI by improving the quality of the domain knowledge
used;

e after a game’s release, online machine-learning techniques can (i) improve the
effectiveness of game Al, and (ii) scale the difficulty level of game AI to match
the playing strength of the human player; and

e game developers and publishers will consider using online adaptive game Al
when they are convinced that it is reliable.

The consensus amongst game developers and publishers seems to be that adap-
tive game Al is something to be avoided. Still, adaptive game AI is an essential
element for truly believable characters in computer games. This thesis shows that
adaptive game Al can be successful, and be reliable, both in offline and online im-
plementations. The question is therefore not if, but when adaptive game AT will
become a standard element of games.






Samenvatting

Het gedrag van agenten in commerciéle computer games' wordt bepaald door zo-

geheten game Al Als game AT wordt uitgebreid met een adaptief mechanisme, kan
ze leren van de eigen fouten (zelf-correctie), en het gedrag van de agenten aan-
passen aan ongewone situaties (creativiteit). Een dergelijke game Al wordt adaptive
game Al genoemd. Dit proefschrift focust op het ontwerp en de implementatie van
machine-learning technieken die successvolle adaptive game AT mogelijk maken.

Het eerste hoofdstuk geeft een motivatie voor het onderzoek, en formuleert een
probleemstelling en vier onderzoeksvragen. Het onderzoek wordt sterk gemotiveerd
door een gebrek aan raffinement bij de game AI van moderne games. Terwijl de au-
diovisuele kwaliteiten van games de laatste jaren met sprongen vooruit zijn gegaan,
hebben professionele game-ontwikkelaars de game AT grotendeels genegeerd. Game-
ontwikkelaars trachten bij spelers de beleving op te roepen dat de wereld voorgesteld
in een game werkelijkheid is (dit wordt aangeduid met de term ‘immersie’). Deze
beleving wordt meestal teniet gedaan door het inferieure gedrag van de computer-
gestuurde agenten. Adaptive game AT heeft de mogelijkheid de tijdsduur te verlen-
gen dat een game uitdagend blijft voor een menselijke speler. Daarnaast kan ze de
moeilijkheidsgraad van een game automatisch aanpassen aan de speelsterkte van
de menselijke speler. Implementatie van deze eigenschappen kan ervoor zorgen dat
adaptive game AI het gevoel van immersie bij de menselijke speler versterkt. Tot
voor kort was academisch onderzoek naar adaptive game Al beperkt tot de game Al
voor eenvoudige games.

De probleemstelling, direct afgeleid uit de bovengeschetste motivatie, luidt: In
hoeverre is het mogelijk om machine-learning technieken te gebruiken om de kwaliteit
van complexe game Al te verhogen? Om deze vraag te beantwoorden, zijn vier on-
derzoeksvragen geformuleerd: (i) In hoeverre is het mogelijk om offline machine-
learning technieken te gebruiken om de effectiviteit van game Al te vergroten? (ii)
In hoeverre is het mogelijk om online machine-learning technieken te gebruiken om
de effectiviteit van game AT te vergroten? (iii) In hoeverre kunnen machine-learning
technieken gebruikt worden om de moeilijkheidsgraad van game AI te schalen naar
de speelsterkte van de menselijke speler? en (iv) Hoe kan adaptive game Al worden
geintegreerd in het proces van game-ontwikkeling van moderne games?

IDe Nederlandse vertaling van ‘computer games’ is ‘computerspelen’, maar in het dagelijks
gebruik geniet de Engelse benaming de voorkeur. Daarnaast worden commerciéle computer games
meestal aangeduid met de verkorte term ‘games’. Dit gebruik is in het proefschrift overgenomen.
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Het tweede hoofdstuk geeft enige achtergrondinformatie bij het onderzoek. Het
hoofdstuk begint met een bespreking van de machine-learning technieken die in het
proefschrift gebruikt worden: evolutionaire algoritmen, neurale netwerken, evolutio-
naire neurale netwerken, evolutionaire besturing, en reinforcement leren. Daarna
volgt een bespreking van moderne games en hun game AI. Tenslotte bespreekt het
hoofdstuk de toepassing van machine-learning technieken op game Al, en geeft het
een overzicht van aanpalend onderzoek op dit gebied. De drie manieren waarop
machine learning kan worden toegepast op game Al zijn: (i) offline learning, (ii)
supervised learning (die niet wordt behandeld in dit proefschrift), en (iii) online
learning. Offline adaptive game Al is game Al die zich aanpast door tegen zichzelf
te spelen. Gewoonlijk gebeurt dit tijdens de testfase van een game. Online adaptive
game Al is game Al die zich aanpast tijdens het spelen van een game door een mens.
Om praktisch toepasbaar te zijn, moet online adaptive game Al voldoen aan vier
computationele eisen, en aan vier functionele eisen. De vier computationele eisen zijn:
(i) snelheid, (ii) effectiviteit, (iii) robuustheid, en (iv) efficiéntie. De vier functionele
eisen zijn: (i) helderheid, (ii) variéteit, (iii) consistentie, en (iv) schaalbaarheid.

Het derde hoofdstuk bespreekt hoe succesvolle agent-besturing geévolueerd kan
worden in een spel-achtige omgeving. Wanneer agentbesturing geévolueerd wordt,
zoekt een evolutionair algoritme over het algemeen in de zoekruimte een oplossing
in de buurt van oplossingen voor een eenvoudige probleem-instantie. Het gevolg is
dat de uiteindelijke oplossing vaak goed werkt op eenvoudige instanties, maar slecht
op moeilijke instanties. Dit heet ‘het probleem van de moeilijke instanties’. Om dit
probleem op te lossen, introduceert het hoofdstuk een nieuw evolutionair algoritme
dat het Doping-driven Fvolutionary Control Algorithm (DECA) wordt genoemd.
DECA voorziet een initiéle populatie van mogelijke oplossingen van een zeer goede
oplossing voor een moeilijke instantie. Met behulp van twee experimenten met ieder
een verschillende taak (namelijk het verplaatsen van een doos door een robot, en het
vergaren van voedsel door een agent) toont het hoofdstuk aan dat DECA agentbestu-
ringen evolueert die significant effectiever zijn dan agentbesturingen die geévolueerd
zijn met reguliere evolutionaire algoritmen.

Het vierde hoofdstuk handelt over evolutionaire game AI. Dit is game Al die
zich aanpast middels evolutionaire algoritmen. Het eerste deel van het hoofdstuk
bespreekt offline evolutionaire game AI. Met behulp van een experiment waarbij
een neuraal netwerk wordt geévolueerd voor de aansturing van een ruimteschip in
een strategisch spel, wordt aangetoond dat offline evolutionaire game Al succesvol
kan zijn in het ontdekken van exploiteerbare zwakheden, en van nieuwe tactieken.
Niettemin wordt geconcludeerd dat neurale netwerken niet bijster geschikt zijn voor
het leren van game AI. Het tweede deel bespreekt online evolutionaire game Al.
Met behulp van een experiment, waarbij groepsgedrag wordt geévolueerd voor het
vlagveroveren in het actie-spel QUAKE IIT ARENA, wordt aangetoond dat online evo-
lutionaire game AT gebruikt kan worden voor het genereren van succesvolle tactieken.
Er wordt echter geconcludeerd dat online evolutionaire game AT slechts redelijk ef-
ficiént is indien de zoekruimte klein is.

Het vijfde hoofdstuk bespreekt een nieuwe techniek voor online adaptive game
AT, dynamic scripting genaamd. Dynamic scripting onderhoudt domeinkennis over
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een game in de vorm van regels in een adaptieve kennisbank. Elke regel is voorzien
van een gewicht, dat de kans aangeeft dat de geassocieerde regel gebruikt wordt in
een game-Al script. De gewichten passen zich automatisch aan naar aanleiding van
het geobserveerde succes of falen van de game Al tijdens het spelen. Het hoofdstuk
toont aan dat dynamic scripting voldoet aan alle vier de computationele eisen, en
aan twee van de vier functionele eisen (namelijk helderheid en variéteit). Daarna
wordt in het hoofdstuk onderzoek gedaan naar maatregelen ten behoeve van de
bevordering van consistentie, en van de schaalbaarheid. Met penalty balancing als
consistentie-bevorderende maatregel, en top culling als schaalbaarheids-maatregel,
voldoet dynamic scripting aan alle vier de computationele, en alle vier de functionele
eisen. Er wordt daarom geconcludeerd dat dynamic scripting in de praktijk kan
worden toegepast. Deze conclusie wordt gestaafd door de succesvolle implementatie
van dynamic scripting in het moderne computer roleplaying game NEVERWINTER
NIGHTS.

Het zesde hoofdstuk bespreekt hoe adaptive game AI kan worden geintegreerd
in de praktijk van game-ontwikkeling. Het hoofdstuk laat zien dat ontwikkelaars en
uitgevers van games niet zullen aarzelen om offline adaptive game Al toe te passen
wanneer ze denken daarmee winst te kunnen behalen. Op dit moment staan ze echter
wantrouwend tegenover online adaptive game Al. Ze zullen overtuigd moeten worden
van de betrouwbaarheid van online adaptive game AI, voordat ze zullen overwegen
het toe te passen in hun games. De betrouwbaarheid van online adaptive game Al
kan worden vergroot door offline adaptive game Al in te zetten voor het ontdekken
van nieuwe domeinkennis. Een drie-stappen procedure die dit bewerkstelligt, wordt
geillustreerd aan de hand van een experiment met adaptive game Al in het real-
time strategy game WARGUS. Het experiment toont aan dat een dynamic-scripting
kennisbank voor WARGUS verbeterd kan worden door offline evolutionaire game Al
te gebruiken voor de weerlegging van ‘super-tactieken’, die slechts met veel moeite
verslagen kunnen worden. Het hoofdstuk sluit af met een discussie over generalisatie-
mogelijkheden, en het geven van een argument waarom adaptive game Al positief
kan bijdragen aan de entertainment-waarde die mensen ervaren bij het spelen van
een game.

Het zevende hoofdstuk keert terug naar de probleemstelling en onderzoeksvragen.
De antwoorden op de onderzoeksvragen zijn hierboven gegeven. Zij leiden direct tot
het volgende antwoord op de probleemstelling, dat bestaat uit vier delen:

e De betrouwbaarheid van online adaptive game Al is gegarandeerd als de game
AT voldoet aan de vier computationele eisen en aan de vier functionele eisen.

e Offline machine-learning technieken kunnen worden gebruikt tijdens de test-
fase van een game, om de effectiviteit van de game Al te vergroten door (i)
zwakheden bloot te leggen, (ii) nieuwe tactieken te suggereren, en (iii) de be-
trouwbaarheid van online adaptive game Al te vergroten door de kwaliteit van
de domeinkennis te verbeteren.

e Nadat een game op de markt is gekomen, kunnen online machine-learning
technieken gebruikt worden om (i) de effectiviteit van game Al te vergroten,
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en (ii) de moeilijkheidsgraad van de game AI te schalen naar de speelsterkte
van de menselijke speler.

e Game-ontwikkelaars en uitgevers zullen het gebruik van online adaptive game
AT in overweging willen nemen als ze overtuigd zijn van de betrouwbaarheid
ervan.

Onder game-ontwikkelaars en uitgevers lijkt de consensus te zijn dat adaptive
game Al vermeden dient te worden. Toch is adaptive game AI een essentieel element
voor de creatie van werkelijk geloofwaardige personages in een game. Dit proefschrift
toont aan dat adaptive game Al succesvol en betrouwbaar kan zijn, in zowel offline
als online implementaties. De vraag is daarom niet zozeer of, maar wanneer adaptive
game Al een standaard element in games zal zijn.
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