
Adaptive Game AI

Adaptive Game AI
PROEFSCHRIFTter verkrijging van de graad van do
toraan de Universiteit Maastri
ht,op gezag van de Re
tor Magni�
us,Prof. mr. G.P.M.F. Mols,volgens het besluit van het College van De
anen,in het openbaar te verdedigenop vrijdag 20 mei 2005, om 12:00 uurdoorPieter Hubert Marie Spron
k

Promotores: Prof. dr. H.J. van den HerikProf. dr. E.O. PostmaLeden van de beoordelings
ommissie:Prof. dr. A.J. van Zanten (Universiteit Maastri
ht; voorzitter)Prof. dr. P.M.E. de Bra (Eindhoven University of Te
hnology)Prof. ir. L.A.A.M. Coolen (Universiteit Maastri
ht)Prof. dr. H.J.M. Peters (Universiteit Maastri
ht)Prof. dr. J. S
hae�er (University of Alberta)

Dissertation Series No. 2005-06The resear
h reported in this thesis has been
arried out under the auspi
es of SIKS,the Dut
h Resear
h S
hool for Information and Knowledge Systems.ISBN 90-5278-462-0Universitaire Pers Maastri
htPrinted by Datawyse b.v., Maastri
ht, The Netherlands.
©2005 P.H.M. Spron
k, Maastri
ht, The Netherlands.All rights reserved. No part of this publi
ation may be reprodu
ed, stored in a retrievalsystem, or transmitted, in any form or by any means, ele
troni
ally, me
hani
ally, photo-
opying, re
ording or otherwise, without prior permission of the author.

Contents
Prefa
e ix1 Introdu
tion 11.1 Analyti
al vs. Commer
ial Games 11.2 Game AI . 41.2.1 Goals . 51.2.2 State of the Art . 71.3 Adaptive Game AI . 81.3.1 Bene�ts . 81.3.2 Ne
essity . 91.3.3 Entertainment . 101.4 S
ienti�
 Relevan
e . 111.5 Problem Statement and Resear
h Questions 111.6 Thesis Outline . 132 Ba
kground 152.1 Ma
hine Learning . 152.1.1 Evolutionary Algorithms . 152.1.2 Arti�
ial Neural Networks . 162.1.3 Evolutionary Arti�
ial Neural Networks 182.1.4 Evolutionary Control . 202.1.5 Reinfor
ement Learning . 212.2 Games . 222.2.1 History . 222.2.2 Game Types . 232.2.3 Game-AI Resear
h . 252.3 Ma
hine Learning and Game AI . 262.3.1 O�ine Learning . 262.3.2 Supervised Learning . 262.3.3 Online Learning . 272.3.4 Online Learning Requirements 282.4 Chapter Summary . 29

iv Contents3 Doping in Agent Control 313.1 DECA and the Problem of Hard Instan
es 313.1.1 The Problem of Hard Instan
es 323.1.2 Doping . 323.1.3 DECA . 333.2 Experimental Pro
edure . 343.3 Box-Pushing Behaviour . 353.3.1 The Box-Pushing Task . 363.3.2 Results of the Box-Pushing Experiment 393.3.3 Dis
ussion of the Box-Pushing Experiment 413.4 Food-Gathering Behaviour . 413.4.1 The Food-Gathering Task . 413.4.2 Results of the Food-Gathering Experiment 443.4.3 Dis
ussion of the Food-Gathering Experiment 453.5 Dis
ussion . 463.5.1 Explanation of the Doping E�e
t 473.5.2 DECA and Hill
limbing . 493.5.3 DECA and Multitask Learning 493.5.4 DECA and Multi-Obje
tive Learning 503.5.5 DECA and Boosting . 503.5.6 DECA and Island-Based Evolutionary Learning 513.5.7 DECA and Constraint-Satisfa
tion Reasoning 513.5.8 DECA and Game AI . 523.6 Chapter Summary . 524 Evolutionary Game AI 534.1 O�ine Evolutionary Game AI . 534.1.1 The Duelling Task . 544.1.2 Experimental Pro
edure . 554.1.3 Evolving Su

essful Duelling Behaviour 584.1.4 Analysis of Su

essful Duelling Behaviour 604.1.5 Deriving Duelling Improvements 624.1.6 Validating Duelling Improvements 644.1.7 Dis
ussion of the Duelling Experiments 654.2 Online Evolutionary Game AI . 664.2.1 Capture-the-Flag in Quake 664.2.2 Adaptive Team AI with TEAM 694.2.3 Experimental Pro
edure . 704.2.4 Evolving Team AI . 724.2.5 Dis
ussion of the Team-AI Experiment 744.3 Dis
ussion of Evolutionary Game AI 764.4 Chapter Summary . 77

Contents v5 Dynami
 S
ripting 795.1 Dynami
-S
ripting Te
hnique . 795.1.1 Des
ription of Dynami
 S
ripting 805.1.2 Dynami
 S
ripting Code . 815.1.3 Dynami
 S
ripting and Learning Requirements 845.2 E�
ien
y Validation . 845.2.1 Simulation Environment . 855.2.2 S
ripts and Rulebases . 865.2.3 Weight-Update Fun
tion . 875.2.4 Ta
ti
s . 895.2.5 Measuring Performan
e . 905.2.6 E�
ien
y-Validation Results 915.3 Outlier Redu
tion . 925.3.1 Penalty Balan
ing . 935.3.2 History Fallba
k . 935.3.3 Outlier-Redu
tion Results . 945.3.4 Dis
ussion of Outlier-Redu
tion Results 955.4 Di�
ulty S
aling . 975.4.1 High-Fitness Penalising . 985.4.2 Weight Clipping . 995.4.3 Top Culling . 995.4.4 Di�
ulty-S
aling Results . 1005.4.5 Dis
ussion of Di�
ulty-S
aling Results 1025.5 Validation in Pra
ti
e . 1045.5.1 Neverwinter Nights . 1045.5.2 S
ripts and Rulebases . 1055.5.3 Weight-Update Fun
tion . 1065.5.4 Ta
ti
s . 1075.5.5 Neverwinter Nights Results 1075.5.6 Dis
ussion . 1085.6 Chapter Summary . 1096 Professional Adaptive Game AI 1116.1 Game Development and Adaptive Game AI 1116.1.1 The Game-Development Pro
ess 1116.1.2 Integrating Adaptive Game AI 1126.1.3 Combining O�ine and Online Adaptive Game AI 1136.2 Dynami
 S
ripting in an RTS Game 1146.2.1 RTS Games . 1146.2.2 Dynami
 S
ripting in Wargus 1166.2.3 Evaluating of Dynami
 S
ripting in Wargus 1206.2.4 Evaluation Results . 1216.3 Evolutionary Ta
ti
s . 1226.3.1 Experimental Pro
edure . 1226.3.2 En
oding of Ta
ti
s . 123

vi Contents6.3.3 Fitness Fun
tion . 1246.3.4 Geneti
 Operators . 1256.3.5 Evolutionary-Ta
ti
s Results 1266.3.6 Evolutionary-Ta
ti
s Dis
ussion 1266.4 Improving Online Adaptive Game AI 1276.4.1 Improving the Rulebases . 1276.4.2 Evaluation of the Improved Rulebases 1286.4.3 Dis
ussion . 1296.5 A

eptan
e . 1306.5.1 Generalisation over the Course of a Game 1306.5.2 Generalisation to Di�erent Game Types 1316.5.3 Generalisation of Fun
tions 1326.5.4 Learning to Entertain . 1326.5.5 The Future of Adaptive Game AI 1346.6 Chapter Summary . 1347 Con
lusion 1377.1 Answer to Resear
h Questions . 1377.1.1 O�ine Adaptive Game AI . 1377.1.2 Online Adaptive Game AI . 1387.1.3 Di�
ulty S
aling . 1397.1.4 Integration in State-of-the-Art Games 1407.2 Answer to Problem Statement . 1417.3 Future Work . 1427.4 Final Thoughts on Dynami
 S
ripting 143Referen
es 145Appendi
esA CRPG Simulation Game AI 161A.1 CRPG simulation . 161A.2 S
ripting Language . 162A.3 Rulebases . 166A.3.1 Fighter Rulebase . 166A.3.2 Wizard Rulebase . 167A.4 Stati
 Ta
ti
s . 170A.4.1 The O�ensive Ta
ti
 . 170A.4.2 The Disabling Ta
ti
 . 171A.4.3 The Cursing Ta
ti
 . 172A.4.4 The Defensive Ta
ti
 . 172A.4.5 The Novi
e Ta
ti
 . 173

Contents viiB Neverwinter Nights Game AI 175B.1 Neverwinter Nights Module . 175B.2 Stati
 Game AI . 177B.2.1 Game AI 1.29 . 177B.2.2 Game AI 1.61 . 178B.2.3 Cursed Game AI . 179B.3 Rulebase . 179C Wargus Game AI 183C.1 Wargus . 183C.2 S
ripting Language . 184C.3 Stati
 Ta
ti
s . 184C.3.1 Balan
ed Ta
ti
 . 185C.3.2 Soldier Rush Ta
ti
 . 185C.3.3 Knight Rush Ta
ti
 . 186C.4 Rule Design . 186C.5 Rulebases . 187C.5.1 The Original Rulebase . 187C.5.2 The Improved Rulebase . 189Index 191Summary 197Samenvatting 201Curri
ulum Vitae 205SIKS Dissertation Series 207

Prefa
e The world is governed more by appearan
e than by realities,so that it is fully as ne
essaryto seem to know something as it is to know it.� Daniel Webster (1782�1852).The
lassi
 Greek
ulture re
ognised six art forms: painting, s
ulpture, ar
hite
ture,literature, drama, and musi
. In the twentieth
entury, television,
inema, and
omi
books be
ame known as the seventh to ninth art forms. The brothers Le Diberer(1993) nominated
ommer
ial
omputer games1 as the tenth art form.Many people will s
o� at the notion of games being elevated to the status of art.They see games as little more than running through dark
orridors and shootingaliens on a
omputer, whi
h hardly
an be
onsidered art. These people have a point.Most games are too shallow to be
alled art. But, as we may not expe
t every bookto be Gödel, Es
her, Ba
h, every movie to be Citizen Kane, or every pie
e ofmusi
 to be the Brandenburger Con
ertos, we may not expe
t every game tobe high art. Certainly a few games exist that evoke profound, emotionally tou
hing,fas
inating experien
es. It is true that su
h games are extremely rare. However,games are a young art form; when they mature more games will be found worthy ofthe epithet `art'.Games are
ertainly distin
t from the other nine art forms. For one thing, theyare the only art form that, by de�nition, needs to be experien
ed intera
tively.For a game to be
onsidered art, the intera
tion in parti
ular must be su

essful,so that game players may be
ome deeply immersed in a game world, gaining asuspension of disbelief (i.e., a mental willingness to a

ept the game world as reality).Unfortunately, a suspension of disbelief is fragile, and shatters easily. To maintain it,every aspe
t of the game world must be true to the nature it is supposed to embody.Nowadays, a game's top-not
h graphi
s and sound manage to keep up a sus-pension of disbelief quite well. However, the behaviours of
hara
ters in a gameare usually of an inferior quality. It is all too
lear that the
hara
ters are lifeless,mindless drones
ontrolled by a
omputer with little knowledge.A major distinguishing feature of real-life beings, whi
h is
learly la
king in
hara
ters in today's games, is the ability to adapt to new situations. Endowing1Hen
eforth, whenever I use the term `game' without an adje
tive, I am referring to a `
ommer-
ial
omputer game'.

x Prefa
e
omputer-
ontrolled
hara
ters with this ability may evoke the illusion that the
har-a
ters a
tually understand what they are doing, and thus maintain the suspensionof disbelief for a longer time.The behaviour of
hara
ters in a game is determined by the so-
alled `gameAI' (AI being the abbreviation of `Arti�
ial Intelligen
e'). This thesis dis
usseshow game AI
an be made adaptive. The resear
h is mainly driven by the goal ofa
hieving results that are pra
ti
ally appli
able. The resear
h may be
onsideredsu

essful if, in a few years time, the investigated te
hniques are implemented ina
tual
ommer
ially-available games.I am deeply grateful to the Institute of Knowledge and Agent Te
hnology (IKAT)of the Universiteit Maastri
ht, whi
h allowed me to do my thesis resear
h as partof my job. In authoring this thesis, it was my good fortune to bene�t from theinvaluable guidan
e of Jaap van den Herik and Eri
 Postma. I am thankful to IdaSprinkhuizen-Kuyper, Sander Bakkes, and Mar
 Ponsen, for our produ
tive
ollabo-ration on
onsiderable
hunks of my resear
h. I also thank my
olleagues at IKAT,for our pleasant and fruitful dis
ussions. My 2003 visit to Edmonton, Canada,proved to be a turning point in my resear
h, for whi
h I wish to express my thanksto the University of Alberta's GAMES group, led by Jonathan S
hae�er, and toBioWare Corp. Finally, I wish to extend my heartfelt gratitude to my parents, fortheir
ontinued support, and to Muriël and Myrthe, for joy and love.Pieter Spron
k, January 2005.

Chapter 1Introdu
tionA great deal of intelligen
e
an be invested in ignoran
ewhen the need for illusion is deep.� Saul Bellow (b. 1915).Over the last twenty years the audiovisual qualities of
ommer
ial games have im-proved signi�
antly. However, over the same period game developers have largelynegle
ted arti�
ial intelligen
e (AI) in games, so-
alled `game AI'. Sin
e the turn ofthe
entury game-development
ompanies have dis
overed that nowadays it is thequality of game AI that distinguishes good games from medio
re ones. The generalgoal of the present thesis is to investigate to what extent the quality of game AI
an be improved by using ma
hine-learning te
hniques. In parti
ular, the goal isto
reate game opponents that
an learn from mistakes and that
an adapt to newta
ti
s.This
hapter impli
itly provides my resear
h motivation. Se
tion 1.1 examinesthe di�eren
es between analyti
al and
ommer
ial games. Se
tion 1.2 dis
usses thestate of the art in
ommer
ial game AI. Se
tion 1.3 establishes that game AI
anbene�t from being adaptive. Se
tion 1.4 dis
usses the s
ienti�
 relevan
e of adaptive-game-AI resear
h. The problem statement that guides the resear
h is formulated inSe
tion 1.5, along with three resear
h questions. The
hapter ends with an outlineof the thesis in Se
tion 1.6.1.1 Analyti
al vs. Commer
ial GamesComputer games
an be roughly divided into two groups, namely `analyti
al games'and `
ommer
ial games'. Analyti
al games are the
lassi
 board and
ard games,su
h as Ba
kgammon, Bridge, Che
kers, Chess, Go, Poker, and Stratego.Commer
ial games are the popular modern
omputer games, of whi
h well-knownexamples are Baldur's Gate, Doom, EverQuest, Pa
man, Quake, TombRaider, and War
raft.

2 Introdu
tionTraditionally,
omputer-game resear
h has fo
ussed on analyti
al games. Thegoal of
omputer-game resear
h is to endow
omputers with arti�
ial intelligen
ethat makes them the strongest possible game-players. For some games the resear
hhas a
hieved impressive results; for instan
e,
omputers outplay World Championsin Chess (Hsu, 2002), Che
kers (S
hae�er, 1997), and Othello (Buro, 1997).Around the start of the twenty-�rst
entury
omputer-game resear
h was ex-tended to en
ompass
ommer
ial games (Wood
o
k, 1999). A
lose inspe
tion showsthat analyti
al and
ommer
ial
omputer games1 di�er in many
hara
teristi
s. Nineof those di�eren
es are listed here.Game-theoreti
al
lassi�
ation: Game theory distinguishes between perfe
t andimperfe
t information games, as well as between deterministi
 and sto
hasti
games (Koller and Pfe�er, 1997; Hal
k and Dahl, 1999). In perfe
t informa-tion games
omplete information on the state of the game is available, while inimperfe
t information games part of the game state is hidden. Deterministi
games have no element of
han
e, while in sto
hasti
 games
han
e plays aprominent role. Figure 1.1 presents a
oarse personal assessment of how sometypi
al example games (both analyti
al and
ommer
ial)
an be quali�ed a
-
ording to these
hara
teristi
s. As
an be observed, in general, analyti
algames deal with mu
h or even perfe
t information and are highly deterministi
,while
ommer
ial games deal with little information and are highly sto
hasti
(Buro, 2004; Chan et al., 2004).2Origin of
omplexity: The
omplexity of an analyti
al game arises from the in-tera
tion of a few simple, transparent rules. The
omplexity of a
ommer
ialgame arises from the intera
tion of large numbers of in-game obje
ts and lo-
ations,
ontrolled by
omplex, opaque rules (Fair
lough, Fagan, Ma
Namee,and Cunningham, 2001; Nareyek, 2002; Buro, 2004).Computer requirement: Analyti
al games
an, in prin
iple, be played by humanswithout the use of a
omputer. Commer
ial games take pla
e in a virtual world
reated by the
omputer, whi
h means that the
omputer is an essential partof the game.Pa
ing: Analyti
al games usually progress at a slow pa
e, while
ommer
ial gamesare fast-pa
ed (Nareyek, 2002).1The term `
ommer
ial games' is misleading, be
ause analyti
al games
an be
ommer
iallyexploited as well. An alternate term found in literature is `intera
tive
omputer games', but sin
eall
omputer games are intera
tive, this term is even more misleading. A potentially better termis `video games', but this term is usually reserved for `
onsole games' that are played on dedi
atedgaming hardware
onne
ted to a television set. Most authors simply refer to
ommer
ial games as`
omputer games' or `games', and let the
ontext de�ne whi
h type of games they are referring to. Inthis thesis I will use the simple term `games' to refer to
ommer
ial
omputer games, ex
ept whereI am dis
ussing di�eren
es between analyti
al and
ommer
ial games, as in the present se
tion.2In imperfe
t-information analyti
al games little information is hidden, at least in
omparisonwith
ommer
ial games. For instan
e, in
ard games only the players' hands are hidden, while in
ommer
ial games
omplete game worlds are hidden.

1.1 � Analyti
al vs. Commer
ial Games 3

Figure 1.1: Game-theoreti
al
lassi�
ation of some analyti
al and
ommer
ial gamesa

ording to the author. The horizontal axis represents the amount of informationon the game state available to the player, while the verti
al axis represents theamount of randomness in the game.Drama: The only drama in
onne
tion with an analyti
al game is the drama ofwinning or losing. For most
ommer
ial games drama, in the form of a story(however shallow), is an essential part of the game (Laurel, 1993).Role reversal: In analyti
al games the
omputer repla
es one or more of the humanplayers. In essen
e, the
omputer trans
ends into the human world to assumethe role of a game-playing human. In
ommer
ial games human players take onthe role of some of the virtual
hara
ters in the game (whether those
hara
tersare a
tual beings in the game, or god-like army leaders that have no in-gameavatar) � the human player be
omes part of the
omputer world.Player skills: Analyti
al games require players to use �rst and foremost their in-telle
tual skills.3 Commer
ial games require players to invest a wide variety ofskills. Depending on the game, besides intelle
tual skills players will need touse their imagination, re�exes, timing skills, sensory abilities, emotions, andeven ethi
al insights.3In analyti
al games between humans, usually psy
hology also plays an important role. However,in an analyti
al game played between a human and a
omputer, psy
hology is not used as a strategi
means, at least not yet.

4 Introdu
tion

Figure 1.2: The di�eren
e in art between a typi
al analyti
al game (Deep Fritz,left) and a typi
al
ommer
ial game (Half-Life 2, right).Art: For analyti
al games the art,
onsisting of graphi
s and sound, is of littleimportan
e. For
ommer
ial games art is of key importan
e. Most of thedevelopment resour
es of a
ommer
ial game are invested in the game's art(Fair
lough et al., 2001; Khoo and Zubek, 2002). This di�eren
e is vividlyillustrated in Figure 1.2.Goal: For analyti
al games the goal of the
omputer is to defeat the human player.For
ommer
ial games the goal of the
omputer is to entertain the humanplayer (Tozour, 2002b; Chan et al., 2004; Lidén, 2004).De
ades of resear
h (often very su

essful) have been invested into AI that playsanalyti
al games (S
hae�er and Van den Herik, 2002; Van den Herik, Uiterwijk, andVan Rijswij
k, 2002; Van den Herik, Iida, and Heinz, 2003). The vast majority ofthis resear
h fo
usses on deterministi
, perfe
t information games (Hal
k and Dahl,1999). The aforementioned di�eren
es between analyti
al games and
ommer
ialgames are a reason that most analyti
al-game resear
h has little appli
ability to
ommer
ial games. There are many problems in the �eld of
ommer
ial-game AIthat are untou
hed by analyti
al game resear
h, su
h as path�nding, spatial andtemporal reasoning, and de
ision making under high un
ertainty (Buro, 2003b).This thesis investigates
ommer
ial-game AI. The resear
h has little overlap withanalyti
al game resear
h. Hen
eforth, the term `game' will be used to refer to a`
ommer
ial
omputer game'.1.2 Game AIThe popularity surge of
ommer
ial games has stimulated the growth of the game-development industry until its revenues surpassed those of the Hollywood movieindustry (Hause, 1999; Fair
lough et al., 2001; Snider, 2002). Traditionally, game-

1.2 � Game AI 5development
ompanies
ompeted by
reating games with superior graphi
s. Nowa-days they attempt to
ompete by o�ering a better game-play experien
e (Tozour,2002b; Graepel, Herbri
h, and Gold, 2004). The behaviour of game
hara
ters isan essential element of game-play. Game AI is de�ned as the de
ision-making al-gorithms of game
hara
ters, that determine the
hara
ters' behaviour (Wright andMarshall, 2000; Allen et al., 2001; Fair
lough et al., 2001; Nareyek, 2002). GameAI has be
ome an important selling point of games (Laird and Van Lent, 2001; For-bus and Laird, 2002). However, even state-of-the-art game AI is, in general, of lowquality (Laird and Van Lent, 2001; S
hae�er, 2001; Buro, 2004; Gold, 2004). GameAI
an bene�t from a
ademi
 resear
h into
ommer
ial games (Forbus and Laird,2002), although this resear
h is still in its infan
y (Laird and Van Lent, 2001).It should be noted that the term `game AI' is used di�erently by game develop-ers and a
ademi
 resear
hers (Funge, 2004; Gold, 2004; Nareyek, 2004). A
ademi
resear
hers restri
t the use of the term `game AI' to refer to intelligent behavioursof game
hara
ters (Wright and Marshall, 2000; Allen et al., 2001; Funge, 2004).In
ontrast, for game developers the term `game AI' is used in a broader sense toen
ompass te
hniques su
h as path�nding, animation systems, level geometry,
olli-sion physi
s, vehi
le dynami
s (Tomlinson, 2003) and even the generation of randomnumbers (Rabin, 2004a).In this thesis the term `game AI' will be used in the narrow, a
ademi
 sense.Furthermore, the term `agent' will be used to refer to any de
ision-making gamepresen
e, whether it is a `visible' agent (e.g., a
reature that atta
ks the player), orit is an `invisible' agent (e.g., the
ommander of an army that opposes the player).The fo
us of this thesis lies on agents that
ompete with a human player. Theseagents are
alled `opponents'.In general, game AI may operate on three levels of intelligen
e, namely (i) oper-ational, (ii) ta
ti
al, and (iii) strategi
. On the operational level, game AI
ontrolsthe movements and individual a
tions of an agent. On the ta
ti
al level, game AIdetermines sequen
es of a
tions for an agent to a

omplish a spe
i�
 goal in an envi-ronment. On the strategi
 level, game AI engages in long-term planning of de
isionsfor an agent. This thesis dis
usses game AI at all three levels of intelligen
e.The remainder of this se
tion dis
usses the goals that game AI aims to a
hieve(1.2.1), and the state of the art in game AI (1.2.2).1.2.1 GoalsThe purpose of a game is to provide entertainment (Tozour, 2002b; Nareyek, 2004).By extension this is also the purpose of game AI. Thus, the question that is in theforefront of any game-AI programmer's mind is: �How
an game AI
ontribute to agame's entertainment value?�Most games pose a
hallenge to human players in the form of opponents, whosebehaviour is
ontrolled by game AI. Three important issues with respe
t to the en-tertainment value that opponents provide are the following. First, a
hallenge is notentertaining when it is too easy or too hard (Graepel et al., 2004). Se
ond, mosthuman players who are defeated by a
omputer will be disappointed if they feel they

6 Introdu
tionlost undeservedly. Third, human players generally appre
iate an agent maintainingthe illusion that it is really intelligent (S
ott, 2002). Considering these three issues,the following is a (not ne
essarily exhaustive) list of seven goals, arranged a

ord-ing to in
reasing di�
ulty, that game AI aspires to for providing an entertaining
hallenge. The better game AI a
hieves the goals, the higher its quality.No obvious
heating: An agent
heats when it uses information or exe
utes a
-tions that are in prin
iple unavailable to the human player. For most gamessome form of
heating by game AI is unavoidable (S
ott, 2002) and imple-mented deliberately. This is not ne
essarily a problem, as long as the
heatingis not too obvious. In general, state-of-the-art games do not employ obvious
heating to
reate
hallenging opponents.Unpredi
table behaviour: An agent whose a
tions are predi
table is usually easyto defeat (if not plain boring) and does not present an illusion of intelligen
e(Crawford, 1984). With random variations on manually designed behaviourunpredi
table behaviour
an be a
hieved easily. Unfortunately, with randomvariations game AI will not always be equally
hallenging. 4 Expert humanplayers may prefer non-random behaviour, as long as it provides a strong
hallenge.No obvious inferior behaviour: The moment an agent performs a
learly bone-headed a
tion, the illusion of its intelligen
e is shattered (Crawford, 1984). Ob-vious inferior agent behaviour is often the result of programming mistakes thatwent undete
ted during a game's `quality assuran
e' phase (Tozour, 2002a).Even state-of-the-art games do not su

eed in avoiding su
h behaviour entirely.Using the environment: Games are
ommonly situated in a virtual world, witha wealth of environmental features that
an be ta
ti
ally exploited. To allowagents to exploit them equally well as human players, some game developerslet the game AI take environmental features into a

ount. Usually, this isrealised by adding markings to the environment (Lidén, 2002; Tomlinson, 2003;Orkin, 2004b), or by allowing the environmental features to
ommuni
ate theirpossibilities to the game AI (Orkin, 2002, 2004a). One step further, game AI isable to explore and analyse a game world by itself to form new ta
ti
al plans.As yet, advan
ed game AI with su
h
apabilities is only explored in a
ademi
resear
h, e.g., by Laird (2001).Self-
orre
tion: Far worse than an agent that makes an exploitable mistake, is anagent that
onsistently repeats the same mistake. To allow game AI to avoidthe repetition of mistakes, it should be able to (i) re
ognise a mistake, and (ii)
hange the agent's behaviour to avoid the mistake in the future. The behaviourlearning must take pla
e `online', i.e., while the game is being played, be
ausegame AI must learn from the mistakes it makes in a
tual game-play situations.4In the sour
e
ode of the game AI of version 1.31 of the game Neverwinter Nights thefollowing
hange
omment
an be found, dated September 19, 2002: �Removed randomness fromTalent system. You
an't have smart AI and random behavior.�

1.2 � Game AI 7Furthermore, the learning must be unsupervised, be
ause the human player
annot be expe
ted to inform the game AI that a mistake was made. Asyet, there is no pre
edent of the su

essful appli
ation of unsupervised onlinelearning in mainstream top-rated games (Manslow, 2002; Kirby, 2004).Creativity: Avoiding the repetition of mistakes usually
an be a
hieved by
hang-ing parameters (e.g., redu
ing the o

urren
e rate of one a
tion in favour of another). When game AI is
onfronted with a previously un
onsidered situation(e.g., the human player using a surprising new ta
ti
), simple parameter
hang-ing will be of little help. The game AI must
reatively learn
ompletely newbehaviour. For games, the most advan
ed form of adapting to new situationsin pra
ti
e is game AI that is allowed to
hoose between a limited number ofprede�ned ta
ti
s (Johnson, 2004).Human-like behaviour: Similar to the ultimate goal of any AI resear
her, theultimate goal of a game-AI designer is to
reate AI that rivals human intelli-gen
e. For games this is not an unrea
hable goal, be
ause game worlds havea limited s
ope. However, it is obvious that human-like game behaviour is anadvan
ement that
an only be a
hieved after all other mentioned goals havebeen rea
hed (Laird, 2001; Livingstone and M
Glin
hey, 2004).1.2.2 State of the ArtEven in state-of-the-art games the game AI la
ks sophisti
ation. Of the seven game-AI goals listed in Subse
tion 1.2.1 only the �rst three are addressed by modern gameAI � and often not su

essfully. The four main reasons for this low quality of gameAI are the following (adopted from Fair
lough et al., 2001).
• The need for advan
ed graphi
s still overshadows the need for good game AI.
• Game-development
ompanies and their publishers are distrustful of advan
edAI te
hniques.
• Game AI is usually added when the deadline for the release of a game ap-proa
hes, and there is little time left to experiment.
• Game developers
ommonly la
k a
ademi
 knowledge of AI.To develop better game AI, game-development
ompanies need help from thea
ademi

ommunity (Laird and Van Lent, 2001; Rabin, 2004b). This thesis
om-prises an a
ademi

ontribution to game-AI resear
h. Its fo
us is on the the �fthand the sixth goal listed in Subse
tion 1.2.1: `self-
orre
tion' and `
reativity' � inbrief, its fo
us is on the investigation of `adaptive game AI'.

8 Introdu
tion1.3 Adaptive Game AIAdaptive game AI is de�ned as game AI with the ability of self-
orre
tion (i.e., theability to resolve faulty agent behaviour), and with the ability of
reativity (i.e., theability to adapt su

essfully to
hanging
ir
umstan
es). Sin
e there is no pre
edentfor the use of adaptive game AI in state-of-the-art games, it should be
onsidered
arefully whether it is a good idea to enhan
e games with adaptive game AI. In thisrespe
t I will dis
uss the following three questions: (i) To what extent is adaptivegame AI bene�
ial for games? (ii) Is adaptive game AI really ne
essary? and (iii)Can adaptive game AI
ontribute to the purpose of games: providing entertainment?These questions are answered in Subse
tions 1.3.1, 1.3.2, and 1.3.3, respe
tively.1.3.1 Bene�tsThe answer to the question �To what extent is adaptive game AI bene�
ial forgames?� is that adaptive game AI (i) allows the
hallenge level of a game to bemaintained automati
ally, and (ii) improves the e�e
tiveness of the `quality assur-an
e' phase of game development.To illustrate why maintenan
e of the
hallenge level of a game is bene�
ial, Iprovide as an example the game AI of the se
ond game in the Baldur's Gate series:Shadows of Amn. Shadows of Amn is a so-
alled `
omputer roleplaying game'(CRPG). In the game the player
ontrols a team of agents who exist in a world wherethey meet many enemies. Among the toughest enemy types are dragons (illustratedin Figure 1.3). A

ording to CRPG tradition, dragons are both physi
ally andmentally powerful
reatures. While Shadows of Amn does not require the playerto �ght dragons, the designers realised that most players will attempt to do soanyway. Therefore they
reated
omplex game AI that should be able to humiliateany player bold enough to atta
k a dragon. Soon after the game's release, weaknessesin the game AI were dis
overed that players
ould exploit to defeat any dragonin the game, even with a weak team.5 Furthermore, without exploiting game AIweaknesses, players
ould still design superior ta
ti
s that, while unforeseen by thegame developers, allowed weak teams to take on dragons su

essfully. It is trivial fora dragon to re
ognise that its
urrent behaviour is inadequate to deal with ta
ti
sused by atta
kers that, a

ording to its domain knowledge, are no mat
h for it. Werethe dragons
ontrolled by adaptive game AI instead of stati
 game AI, an answer tothe superior and exploiting ta
ti
s
ould have been dis
overed automati
ally, keepingup the
hallenge level of the game.During the `quality assuran
e' phase of game development, adaptive game AI
anbe used to spot weaknesses in manually-designed game AI, and to suggest alternativeta
ti
s. This appli
ation of adaptive game AI is an inexpensive investment that has5One of these exploits was that dragons only responded to visible atta
kers. As long as theatta
kers remained outside the visual range of a dragon while atta
king, it would not �ght ba
k.A se
ond exploit was that the player team
ould lay traps all around a dragon, that killed it assoon as they went o�. A dragon would not interfere with laying traps, even though it obviously isa hostile a
tion. These exploits were �xed in an add-on to the game that appeared one year afterthe initial release.

1.3 � Adaptive Game AI 9

Figure 1.3: A surprisingly meagre
hallenge: a dragon in Shadows of Amn.the potential to deliver valuable results, risk-free (Spron
k, Sprinkhuizen-Kuyper,and Postma, 2002; Chan et al., 2004). Even if game developers and publishers arehesitant to in
orporate adaptive game AI in their games (whi
h they are), they
anstill apply adaptive game AI during the `quality assuran
e' phase.1.3.2 Ne
essityThe answer to the question �Is adaptive game AI really ne
essary?� is that adaptivegame AI is sorely needed to deal with the
omplexities of state-of-the-art games.Over the years games have be
ome in
reasingly
omplex, o�ering realisti
 worlds,freedom and a great variety of possibilities. The te
hnique of
hoi
e used by gamedevelopers for dealing with a game's
omplexities is rule-based game AI, usuallyin the form of s
ripts (Nareyek, 2002; Tozour, 2002
). The advantage of the use ofs
ripts is that s
ripts are (i) understandable, (ii) predi
table, (iii) tuneable to spe
i�

ir
umstan
es, (iv) easy to implement, (v) easily extendable, and (vi) useable by non-programmers (Tozour, 2002
; Tomlinson, 2003). However, as a
onsequen
e of game
omplexity, s
ripts tend to be quite long and
omplex (Bro
kington and Darrah,

10 Introdu
tion2002). Manually-developed
omplex s
ripts are likely to
ontain design �aws andprogramming mistakes (Nareyek, 2002). Su

essful adaptive game AI
an ensurethat the impa
t of these mistakes is limited to only a few situations en
ountered bythe player, after whi
h their o

urren
e will have be
ome unlikely. Consequently, itis safe to say that the more
omplex a game is, the greater the need for adaptivegame AI (Fair
lough et al., 2001; Laird and Van Lent, 2001; Fyfe, 2004). In the nearfuture game
omplexity will only in
rease. As long as the best approa
h to game AIis to design it manually, the need for adaptive game AI will in
rease a

ordingly.1.3.3 EntertainmentThe answer to the question �Can adaptive game AI
ontribute to the purpose ofgames: providing entertainment?� is that the
apability of adaptive game AI tomaintain the
hallenge level of a game positively in�uen
es the entertainment pro-vided by a game (Crawford, 1984).Game AI in most modern games is not
hallenging. The appeal of Massive Multi-player Online Games (MMOGs), where human players
hallenge ea
h other, stemspartly from the fa
t that
omputer-
ontrolled opponents often exhibit what hasbeen
alled `arti�
ial stupidity' (S
hae�er, 2001) rather than arti�
ial intelligen
e.Adaptive game AI has the potential to make the game AI more
hallenging, sin
eit
an learn automati
ally to defeat strong ta
ti
s used by the human player. Manyresear
hers and game developers hold that game AI, in prin
iple, is entertainingwhen it is di�
ult to defeat (Buro, 2003b).Furthermore, adaptive game AI, if implemented
orre
tly,
annot only be used tomake the game AI stronger, but also to s
ale automati
ally the
hallenge level of thegame AI to the skills of the human player. On the subje
t of game AI
hallenges andentertainment, in his famous novel �2001: A Spa
e Odyssey�, Clarke (1968) writesabout the arti�
ially intelligent
omputer HAL 9000:�For relaxation [the astronauts℄
ould always engage HAL in a large num-ber of semi-mathemati
al games, in
luding
he
kers,
hess, and polyomi-noes. If HAL went all out, he
ould win anyone of them; but that wouldbe bad for morale. So he had been programmed to win only �fty per
entof the time, and his human partners pretended not to know this.�While it might be questioned whether adults are entertained when they wina game while knowing their opponent made deliberate mistakes, Clarke assumes
orre
tly that humans, in general, will neither play a game when they know theyjust will be slaughtered, nor enjoy a game when they know their opponent is no mat
hfor them. The most enjoyable games are those that are played between opponentswith a
omparative level of skill (Graepel et al., 2004). Therefore, if adaptive gameAI
ontinuously s
ales a game's di�
ulty level to the point that the human playeris
hallenged, but not
ompletely overpowered, the game will be most entertaining,and will remain entertaining even if the player's skill in
reases through experien
e.

1.4 � S
ienti�
 Relevan
e 111.4 S
ienti�
 Relevan
eWhile games are generally
onsidered to be a worthwhile resear
h subje
t for so
ialand
ultural s
ientists, they may leave the impression to be too frivolous an appli-
ation for
omputer s
ientists. This impression is misguided. Games are
onsideredto be a driving for
e behind the resear
h and development of 3D
omputer graphi
sand animation (Pabst, 2000; Philips-Mahoney, 2002; Sawyer, 2002). I argue thatthey are worthy of the same position for the resear
h into arti�
ial intelligen
e.For arti�
ial intelligen
e resear
h,
omplex modern games are truly
hallengingappli
ations. They have the following four
hara
teristi
s.
• Games are widely available. AI innovations implemented in games are sub-je
ted to the s
rutiny of hundreds of thousands of human players (Laird andVan Lent, 2001; Sawyer, 2002).
• Games re�e
t the real world. Games
an often be
onsidered simulations ofaspe
ts of reality. Therefore, game AI may
apture features of real-worldbehaviour (Sawyer, 2002; Graepel et al., 2004).
• Games are a test-bed for human-like intelligen
e. While `real' human-like intel-ligen
e is not required for games, game AI must be able to simulate human-likebehaviour to a large extent. Therefore, games are ideally suited to pursue thefundamental goal of AI, i.e., to understand and develop systems with human-like
apabilities (Laird and Van Lent, 2001; Sawyer, 2002).
• Games pla
e highly-
onstri
ting requirements on implemented AI solutions.Requirements for game AI for
e it to a
hieve good results with limited
ompu-tational resour
es (Nareyek, 2002; Charles and Livingstone, 2004), free frompossible degradation (Charles and Livingstone, 2004), in noisy environments(Laird and Van Lent, 2001), and within a few trials.6By these
hara
teristi
s, results a
hieved with game AI are widely appli
able.They may be transferred to many other problem domains, whi
h generally are lessrestri
tive. A
hieved results may
ontribute to, amongst others, the �elds of ma
hinelearning, multi-agent systems, and roboti
s (Laird and Van Lent, 2001).1.5 Problem Statement and Resear
h QuestionsSe
tion 1.2 indi
ated that so far there is little a
ademi
 resear
h into
ommer
ialgame AI. Se
tion 1.3 indi
ated that adaptive game AI does not exist yet in state-of-the-art games. Furthermore, it is argued that adaptive game AI
an be bene�
ialto games (1.3.1), that the need for adaptive game AI exists and will only in
reasein the near future (1.3.2), and that adaptive game AI
an
ontribute to the purposeof games: providing entertainment (1.3.3).6The requirements are further dis
ussed in Subse
tion 2.3.4.

12 Introdu
tionSu

essful adaptive game AI a
hieves the �fth and sixth goals listed for gameAI (1.2.1), and thus
ontributes to the quality of game AI. The quality of gameAI is dire
tly related to its entertainment value (Tozour, 2002b). In this thesis itis assumed that ma
hine-learning te
hniques
an be used to implement adaptivegame AI. Several resear
h proje
ts have investigated ma
hine learning for gameAI in simple games (Demasi and Cruz, 2002; Laramée, 2002a; Demasi and Cruz,2003; M
Glin
hey, 2003). However,
omplex game AI (i.e., the game AI in
omplexgames) so far is an untou
hed area.7 Consequently, the problem statement dis
ussedin this thesis reads as follows.Problem statement: To what extent
an ma
hine-learning te
hniquesbe used to in
rease the quality of
omplex game AI?To �nd an answer to the problem statement, four resear
h questions are formu-lated below.For expert players adaptive game AI is su

essful if it in
reases the e�e
tive-ness of opponents, and thus their
hallenge level. Resear
h into ways to implemente�e
tive adaptive game AI is related to resear
h into the use of ma
hine learningfor agent
ontrol, su
h as evolutionary roboti
s (Arkin, 1998). In general, this re-sear
h fo
usses on learning during the development phase of the
ontrol me
hanism,so-
alled `o�ine' learning. The �rst resear
h question therefore reads as follows.Resear
h question 1: To what extent
an o�ine ma
hine-learningte
hniques be used to in
rease the e�e
tiveness of game AI?While game AI
an be improved by o�ine learning during game development, thea
tual
onfrontation with human players takes pla
e during the deployment phase ofa game. Game AI that adapts during the deployment phase of a game uses so-
alled`online' learning. The se
ond resear
h question therefore reads as follows.Resear
h question 2: To what extent
an online ma
hine-learningte
hniques be used to in
rease the e�e
tiveness of game AI?Most agent-AI resear
h, both inside and outside the �eld of game resear
h, as-pires to make agents as e�e
tive as possible. In games, highly e�e
tive game AIis entertaining for expert human players. However, su

essful adaptive game AIshould provide entertainment for all players, not just expert players. Novi
e playersare entertained by game AI that mat
hes their skill. Entertainment in games is bestensured if agents are
hallenging but not overpowering, against human players of alllevels of skill. The third resear
h question therefore reads as follows.Resear
h question 3: To what extent
an ma
hine-learning te
hniquesbe used to s
ale the di�
ulty level of game AI to meet the human player'slevel of skill?7At least, as far as unsupervised learning is
on
erned. Subse
tion 2.3.2 lists a few
omplexgames with game AI that employs supervised learning.

1.6 � Thesis Outline 13Name Type AI level Agents Se
tionsBox-pushing robot movement operational 1 3.3Food-gathering sear
h & avoid operational 1 3.4Duelling spa
eships RTS game operational 1 4.1Quake a
tion game ta
ti
al 4 4.2Simulated CRPG CRPG ta
ti
al 4 5.2�5.4Neverwinter Nights CRPG ta
ti
al 4 5.5Wargus RTS game strategi
 > 50 6.2�6.4Table 1.1: Game and game-like environments investigated in the thesis.This thesis aims at providing a pra
ti
al approa
h to the design and implemen-tation of adaptive game AI. Consequently, it must
onsider how adaptive game AI isbest applied by game-development
ompanies. Hen
e, the fourth resear
h questionreads as follows.Resear
h question 4: How
an adaptive game AI be integrated in thegame-development pro
ess of state-of-the-art games?1.6 Thesis OutlineThe thesis investigates seven di�erent games and game-like environments. These arelisted in Table 1.1, with their relevant
hara
teristi
s. From left to right, the �ve
olumns of the table display (i) the environment's name, (ii) the environment's type(game types are dis
ussed in Subse
tion 2.2.2), (iii) the level of intelligen
e on whi
hthe AI operates in the environment, (iv) the number of agents under the
ontrol ofthe AI, and (v) the thesis se
tions in whi
h the environment is investigated.The outline of this thesis is as follows.Chapter 1 impli
itly motivates the resear
h, and formulates the problem state-ment and four resear
h questions.Chapter 2 provides ba
kground information. It presents (i) a short overview ofthe ma
hine-learning te
hniques used in this thesis, (ii) an overview of the state ofthe art in game-AI resear
h, and (iii) an exposition of the use of ma
hine learning ingame AI. It
ontributes to answering all resear
h questions, in parti
ular the se
ondresear
h question.Chapter 3
ontributes to answering the �rst resear
h question. It presents a novelevolutionary te
hnique
alled the `Doping-driven Evolutionary Control Algorithm'(DECA). When evolving the behaviour of agents in game-like environments, DECAis able to a
hieve results that are more e�e
tive than results a
hieved with traditionalevolutionary te
hniques. DECA is empiri
ally validated by two experiments.Chapter 4
ontributes to answering both the �rst and se
ond resear
h questions.It investigates empiri
ally to what extent evolutionary learning
an be applied toimprove game AI, both o�ine and online.

14 Introdu
tionChapter 5
ontributes to answering the se
ond, third, and fourth resear
h ques-tions. It presents a novel te
hnique for online adaptation of game AI,
alled `dynami
s
ripting'. The e�e
tiveness of dynami
 s
ripting is empiri
ally
on�rmed in a gamesimulation and in an a
tual
ommer
ial game. It is also shown how dynami
 s
ripting
an be used to s
ale the game AI's di�
ulty level.Chapter 6
ontributes to answering the �rst, se
ond, and fourth resear
h ques-tions. It dis
usses how o�ine adaptive game AI
an be used to improve the reliabilityof online adaptive game AI, and how adaptive game AI
an be integrated in the de-velopment pro
ess of modern games.Chapter 7 �rst answers the four resear
h questions and then
omes to a
on
lusiveanswer to the problem statement. It �nishes with several suggestions for futureresear
h.

Chapter 2Ba
kgroundIn every real man a
hild is hidden that wants to play.� Friedri
h Wilhelm Nietzs
he (1844�1900).The fo
us of the present resear
h is on the use of ma
hine-learning te
hniques toimprove the quality of game AI, spe
i�
ally, to improve the de
ision-making
apabil-ities of agents that
ompete with a human player. This
hapter provides ba
kgroundinformation in support of the resear
h, on three di�erent subje
ts, namely ma
hine-learning te
hniques in Se
tion 2.1, games in Se
tion 2.2, and the appli
ation ofma
hine learning to game AI in Se
tion 2.3. A summary of the
hapter is providedin Se
tion 2.4.2.1 Ma
hine LearningThis se
tion provides a
on
ise overview of the ma
hine-learning te
hniques appliedin the present resear
h. It dis
usses evolutionary algorithms (2.1.1), arti�
ial neuralnetworks (2.1.2), evolutionary arti�
ial neural networks (2.1.3), evolutionary
ontrol(2.1.4), and reinfor
ement learning (2.1.5).2.1.1 Evolutionary Algorithms`Biologi
al evolution' (Dawkins, 1976, 1986) employs the theories of `natural sele
-tion' (Darwin, 1859) and `natural geneti
s' (Mendel, 1866) to explain how
omplexliving beings, tuned to their environment, have
ome to exist. Evolutionary algo-rithms are sear
h-and-optimisation algorithms based on the prin
iples of biologi
alevolution. The most widely known evolutionary algorithm is the `geneti
 algo-rithm' (GA), developed by Holland (Holland, 1975; Goldberg, 1989; Bä
k, 1996).Many other varieties of evolutionary algorithms have been invented, some of whi
hare even older than geneti
 algorithms. Examples are evolution strategies (S
hwe-fel, 1965; Bä
k, 1996), evolutionary programming (Fogel, 1962; Bä
k, 1996),
las-

16 Ba
kgroundsi�er systems (Holland, 1975; Goldberg, 1989), and geneti
 programming (Koza,1992; Kinnear, 1994). All evolutionary algorithms share the following �ve features.
• Population: Evolutionary algorithms optimise a
olle
tion of potential solu-tions to a problem,
alled a `population'.
• Chromosomes: Evolutionary algorithms en
ode the potential solutions. Theen
oded solutions are
alled `
hromosomes'.
• Fitness fun
tion: Evolutionary algorithms assign ea
h
hromosome in the pop-ulation a `�tness' value, that indi
ates how well the potential solution en
odedin the
hromosome solves the problem,
ompared with the other potentialsolutions in the population.
• Geneti
 operators: To
reate new
hromosomes, evolutionary algorithms applytransformation methods,
alled `geneti
 operators', to `parent'
hromosomes,already existing in the population.
• Sele
tion: To sele
t parent
hromosomes, evolutionary algorithms apply a se-le
tion me
hanism to the population, whi
h gives the �ttest
hromosomes thehighest
han
e to pro
reate.The idea is that an algorithm possessing these features will produ
e potentialsolutions that have a high
han
e of
ontaining
hara
teristi
s of well-working so-lutions. As long as the population has not
onverged too mu
h, an evolutionaryalgorithm has the ability to es
ape from lo
al optima. Arguably the most impor-tant property of evolutionary algorithms is that the only requirement for applyingthem is the ability to de�ne an adequate �tness fun
tion. The main disadvantage ofevolutionary algorithms is that they are not guaranteed to �nd a good solution, noteven a medio
re one (Goldberg, 1989).Geneti
 operators
an be divided in three types, namely (i) reprodu
tion opera-tors, that
reate a
hild
hromosome by
opying a parent
hromosome, (ii) mutationoperators, that
reate a
hild
hromosome by
opying a parent
hromosome andmaking
hanges to it, and (iii)
rossover operators (also
alled `re
ombination op-erators'), whi
h
ombine
hromosome parts of two or more parent
hromosomes to
reate a
hild
hromosome.Ea
h of the aforementioned varieties of evolutionary algorithms pres
ribes spe
i�
implementations of
hromosome en
oding, geneti
 operators, sele
tion, and otherparameters. Nowadays resear
hers are unlikely to follow the pres
riptions, but usewhatever they think �ts best to the problem whi
h they attempt to solve. Theresear
hers refer to their algorithm with the umbrella name `evolutionary algorithm'.Evolutionary algorithms are employed in Chapters 3, 4, and 6.2.1.2 Arti�
ial Neural NetworksArti�
ial neural networks, also
alled simply `neural networks', are stru
tures that
an learn to emulate a (non-linear) fun
tion. A neural network
onsists of a network

2.1 � Ma
hine Learning 17

Figure 2.1: Examples of four di�erent types of neural networks: (a) a per
eptron,(b) a two-layer feed-forward network, (
) a general feed-forward network, and (d) are
urrent (Elman) network.of inter
onne
ted nodes, or `neurons'. Ea
h neuron
an re
eive input signals fromother neurons via its in
oming
onne
tions, and
an send an output signal to otherneurons over its outgoing
onne
tions. Neurons in the so-
alled `input layer' re
eivesignals from outside the network. Neurons in the so-
alled `output layer' provide area
tion to the re
eived signals over their outgoing
onne
tions. Neurons that areneither in the input layer nor in the output layer are
alled `hidden neurons'.For neuron n the output signal on is
al
ulated as follows.
on = f((

∑

i

wiai) + b) (2.1)In this equation, wi is a weight value atta
hed to in
oming
onne
tion i, ai is thesignal re
eived via in
oming
onne
tion i, b is a bias value, and f is a so-
alled`a
tivation fun
tion'. Two
ommon a
tivation fun
tions are (i) a threshold fun
tion,that maps the output of the neuron to either 0 or 1, and (ii) a sigmoid fun
tion, thatmaps the output to a value in the range [0, 1] (M
Cullo
h and Pitts, 1943; Aleksanderand Morton, 1990; Russell and Norvig, 2003).Figure 2.1 displays examples of four
ommon neural-network ar
hite
tures,namely of (a) a per
eptron, (b) a layered feed-forward network, (
) a general feed-forward network, and (d) a re
urrent network.A per
eptron, of whi
h an example is shown in Figure 2.1(a), is the simplest formof neural network (Rosenblatt, 1958; Minsky and Papert, 1988; Russell and Norvig,2003). It
ontains only an input and an output layer.

18 Ba
kgroundA layered feed-forward network, of whi
h an example is shown in Figure 2.1(b),
ontains hidden neurons organised in a sequen
e of layers. Ea
h layer
an re
eiveinput signals from the immediately-pre
eding layer only. A layered feed-forwardnetwork with one hidden layer is
ommonly
alled a `two-layer feed-forward net-work' (the se
ond layer being the output layer; by
onvention the input layer isnot
ounted). A single-layer feed-forward network is a per
eptron (Aleksander andMorton, 1990; Russell and Norvig, 2003).A general feed-forward network, of whi
h an example is shown in Figure 2.1(
),
ontains hidden neurons organised in a sequen
e. Ea
h neuron
an re
eive inputsignals from all neurons in the input layer, and from all neurons that are before itin the sequen
e. In other words, all possible feed-forward
onne
tions are allowed(Bishop, 1995).1A feed-forward network is represented by an a
y
li
 graph. A re
urrent networkis represented by a
y
li
 graph. It does not limit its
onne
tions to a feed-forwardstru
ture. A well-known form of re
urrent network is the so-
alled `Elman network',of whi
h an example is shown in Figure 2.1(d) (Elman, 1990). An Elman networkorganises hidden neurons in layers. Re
urrent
onne
tions are allowed between neu-rons within a layer. The re
urrent
onne
tions are used to feed the output of neuronsba
k into the network with a time-delay. Hen
e, they allow the network to supporta short-term memory.A neural network must be trained to emulate a desired fun
tion. This is
om-monly done with the help of a set of typi
al training samples,
alled the `trainingset'. A well-known algorithm that trains a neural network is `ba
kpropagation'.This algorithm tests inputs from the training set, and propagates the error betweenthe a
hieved and desired outputs ba
k into the network, updating the
onne
tionweights (Aleksander and Morton, 1990; Russell and Norvig, 2003). When the aver-age error on the training set is minimised, the network is validated using a `test set'of typi
al samples, di�erent from the training set. If the network a
hieves inferiorresults on the test set, this is usually
aused by the network over�tting the trainingset. Common
auses for over�tting are the use of a network with too many nodes,or the use of a training set with too few or untypi
al samples.Neural networks are used in Chapters 3 and 4.2.1.3 Evolutionary Arti�
ial Neural NetworksEvolutionary arti�
ial neural networks use the power of evolutionary algorithms todesign neural networks. A typi
al appli
ation of evolutionary algorithms to neural-network design is an alternative for neural-network-training algorithms to determinethe
onne
tion weights of the network. Other possibilities are the design of a net-work ar
hite
ture and the tuning of network parameters. Combinations of these1The most appropriate name for a general feed-forward network is `feed-forward network'. In theliterature, however, su
h networks are not
onventional (Hertz, Krogh, and Palmer, 1991; Russelland Norvig, 2003), and the term `feed-forward network' is often used to denote layered feed-forwardnetworks. To avoid
onfusion I will use the term `general feed-forward network' to denote networksthat allow any feed-forward
onne
tion.

2.1 � Ma
hine Learning 19possibilities, su
h as designing the network ar
hite
ture in parallel with determiningthe weight values, are also an option (S
ha�er, Whitley, and Es
helman, 1992; Yao,1995). A
ommon design for an evolutionary algorithm that builds neural networksis as follows (
f. Albre
ht, Reeves, and Steel, 1993; Yao, 1995).
• The neural networks are en
oded as a
hromosome by storing all
onne
tionweight values. If the network ar
hite
ture is evolved in parallel with the weightdetermination, for ea
h possible
onne
tion the
hromosome also holds a bitthat indi
ates whether the
onne
tion is present or absent.
• The �tness is de�ned by the error on a training set, where the �tness in
reasesas the error de
reases.
• Besides `regular' geneti
 operators, often geneti
 operators are used that aretailored for neural-network evolution. Three examples of su
h geneti
 oper-ators are (i) operators that swit
h neurons between networks, (ii) operatorsthat enable or disable network
onne
tions, and (iii) operators that mutateneurons (Montana and Davis, 1989).A problem that arises with neural network evolution is that stru
turally dif-ferent networks may represent the same fun
tion. This is the problem of `
om-peting
onventions' (S
ha�er et al., 1992).2 Competing
onventions in
rease thesize of the solution spa
e drasti
ally, and marginalise the e�e
t of
rossover opera-tors. While many solutions for
ompeting
onventions have been proposed (Han
o
k,1992; Karunanithi, Das, and Whitley, 1992; Alba, Aldana, and Troya, 1993; Braunand Weisbrod, 1993; Thierens, Suykens, Vandewalle, and De Moor, 1993), some re-sear
hers
ons
iously ignore the problem (Han
o
k, 1992), or restri
t themselves tousing only mutation operators (`geneti
 hill-
limbing') or small populations (S
haf-fer et al., 1992).The four main advantages of using evolutionary algorithms to design neural net-works instead of
onventional training algorithms su
h as ba
kpropagation are thefollowing.
• Evolutionary algorithms
an design the neural-network ar
hite
ture in paral-lel with the weight determination, while
onventional algorithms usually arerestri
ted to just determining the weights.
• Evolutionary algorithms are designed to es
ape from lo
al optima.
• Evolutionary algorithms only require a �tness fun
tion, while
onventional al-gorithms often need more information (e.g., ba
kpropagation needs the deriv-ative of the error fun
tion).
• Evolutionary algorithms
an design a neural network with any ar
hite
ture,while
onventional training algorithms are restri
ted to spe
i�
 ar
hite
tures(e.g., ba
kpropagation is restri
ted to feed-forward networks).2Alternative terms found in the literature are the `permutation problem', the `problem of iso-morphism' and the `stru
tural/fun
tional mapping problem'.

20 Ba
kgroundA disadvantage is that evolutionary algorithms are not suited for lo
al optimi-sation. This means that when a solution
lose to the optimum is found, the evolu-tionary algorithm will, in general, not be able to seek out the a
tual optimum. Thedisadvantage
an be resolved by applying a lo
al-optimisation pro
edure (for exam-ple, one of the regular training algorithms) when it is observed that the evolutionaryalgorithm is unable to improve upon the best solution found.Evolutionary arti�
ial neural networks are used in Chapters 3 and 4.2.1.4 Evolutionary ControlA `plant' is a pro
ess that has input, output, and possibly an internal state. `Plant
ontrol' aims at generating desired plant output by manipulating the input. `Evolu-tionary
ontrol' uses evolutionary algorithms to design plant
ontrollers. Although
ontrol engineers rarely use evolutionary te
hniques, they have been resear
hedwidely (Man and Tang, 1997; Fleming and Purhouse, 2001; Wang, Spron
k, andTra
ht, 2003). Evolutionary algorithms
an be used to
hoose or tune parametersfor
ontrollers (e.g., the P (roportional), I(ntegral), and D(i�erential) values for PID-
ontrollers), or to design new
ontrollers from s
rat
h. Evolutionary arti�
ial neuralnetworks
an be used as
ontrollers, and in that
ase are referred to as `evolutionaryneural
ontrollers'.Two
ompli
ating fa
tors with plant
ontrol are that (i) the output need not rea
timmediately to the input, and (ii) the internal state may
ause the plant to behavedi�erently in situations that, from the outside, seem to be equal. These
ompli
atingfa
tors make it di�
ult, if not impossible, to determine whether an output of a plantis desirable. For plant
ontrol a training set, that
ouples desirable output values toinput values, is therefore hard to design. Evolutionary
ontrol
ommonly analysesthe behaviour of the
ontroller over a test-run to determine the �tness.The general design of an evolutionary-
ontrol experiment is illustrated in Figure2.2. The experiment sear
hes for a su

essful
ontroller for a plant. The potential
ontroller solutions are stored as
hromosomes in a population. An evolutionaryalgorithm sele
ts parent
hromosomes from the population. It applies geneti
 oper-ators to these parent
hromosomes to generate new
ontrollers. A newly generated
ontroller is tested by pla
ing it in a `
ontrol loop'. In the
ontrol loop, the
on-troller sends
ontrol signals to a plant, and re
eives feedba
k from the plant. Thetest results (indi
ating how su

essful the
ontroller was in
ontrolling the plant) areused by the evolutionary algorithm to assign a �tness value to the new
ontroller.The evolutionary algorithm then repla
es one of the
hromosomes in the populationwith a
hromosome that represents the new
ontroller.Elegan
e, whi
h is an a
ronym for Engineering Laboratory for Experi-ments with Geneti
 Algorithms for Neural Controller Evolution, is an environ-ment I designed to do experiments with evolutionary neural
ontrollers (Spron
k,1996; Spron
k and Ker
kho�s, 1997). It is easily extendable and supports bothfeed-forward and re
urrent neural
ontrollers, a wide range of geneti
 operators andevolutionary algorithm parameters, and many di�erent plants.33Elegan
e is freely available through the Internet from the author's homepage.

2.1 � Ma
hine Learning 21

Figure 2.2: General design of an evolutionary
ontrol experiment.Inspired by the en
oding of Maniezzo (1993), the evolutionary algorithm em-ployed in Elegan
e allows evolving the network's weights in parallel with its ar
hi-te
ture. The network is dire
tly en
oded into a
hromosome
onsisting of an arrayof `
onne
tion genes'. Ea
h
onne
tion gene represents a single possible
onne
tionof the network and
onsists of a single bit and a real number. The bit representsthe presen
e or absen
e of a
onne
tion and the real value spe
i�es the weight ofthe
onne
tion. In this en
oding s
heme, even absent
onne
tions have a weightasso
iated with them. The weight values of ina
tivated
onne
tions fun
tion as akind of latent memory that
an be rea
tivated by a mutation of the
onne
tion bit.Evolutionary
ontrol is employed in Chapters 3, 4, and 6. Elegan
e is used forexperiments des
ribed in Chapters 3 and 4.2.1.5 Reinfor
ement LearningReinfor
ement learning is used to train an agent to exhibit spe
i�
 behaviour byrewarding and penalising agent a
tions
oupled to states. State/a
tion-pairs thatdrive the agent to desirable states are strengthened, while state/a
tion-pairs thatdrive the agent to undesirable states are penalised. Rewards and penalties are usuallyawarded with a delay, be
ause, when an agent has arrived at a state where a reward orpenalty is given, not only the last a
tion whi
h the agent performed should re
eivethe award, but the whole sequen
e of a
tions responsible for rea
hing the state(Mit
hell, 1997; Sutton and Barto, 1998; Russell and Norvig, 2003).Temporal-Di�eren
e (TD) learning is a form of reinfor
ement learning that learnsa Q-fun
tion, whi
h is an evaluation fun
tion for a
tions. On
e a good Q-fun
tionhas been derived, the su

ess of new a
tions
an be predi
ted and so the a
tion withthe highest expe
ted reward in a given situation
an be sele
ted. A drawba
k of usingTD-learning is that in pra
ti
e many thousands of training iterations are requiredfor the Q-fun
tion to
onverge (Mit
hell, 1997). An example of the appli
ationof reinfor
ement learning in games, is TD-Gammon, a program that learned to

22 Ba
kgroundplay Ba
kgammon with TD-learning, using millions of training samples (Tesauro,1992; Mit
hell, 1997; Tesauro, 2002).Reinfor
ement learning is similar to evolutionary
ontrol in the sense that bothuse an evaluation of the behaviour of an agent (or
ontroller) to assign rewards andpenalties. The major di�eren
e is that reinfor
ement learning is a gradient-sear
hme
hanism, that improves one solution by
ontinuously making small
hanges to it,while evolutionary
ontrol examines ea
h solution on
e and generates new solutionsusing undire
ted geneti
 operators.Reinfor
ement learning is employed in Chapters 5 and 6.2.2 GamesThis se
tion provides a
on
ise overview of
omputer games. It presents a shorthistory of games (2.2.1), an overview of di�erent types of games (2.2.2), and thestate of the art in game-AI resear
h (2.2.3).2.2.1 HistoryThe very �rst game in the long lineage of
ommer
ial
omputer games was Tennisfor Two, whi
h is similar to Pong. It was
reated in 1958 by W. A. Higinbotham,and ran on a Brookhaven National Laboratory os
illos
ope.4 The �rst game that ranon a
omputer was Spa
ewar,
reated in 1962 by Steve Russell at MIT on a PDP-1
omputer. In the game, illustrated in Figure 2.3, two players
ontrol spa
eships that�re ro
kets at ea
h other until one of them is destroyed (Levy, 1984). A versionof Spa
ewar, named Computer Spa
e, was released by Magnavox as the �rst
ommer
ial
onsole game in 1971. Magnavox' example was soon followed by othermanufa
turers who released game
onsoles, the most famous probably being the1977 Atari VCS (Baratz, 2001).Inexpensive mi
ro-
omputers have been sold sin
e the early 1970s. They be
amepopular in 1977 with the release of the TRS-80 and the Apple II
omputers. These
omputers were meant both for both business and home users. For the latter group,games were built and published by dedi
ated game
ompanies su
h as Ele
troni
Arts, Info
om, Origin, Sierra, and SSI. While originally game developers neededto support a wide variety of
omputers, in the mid-1980s the IBM-PC be
ame theindustry standard for home
omputing and thus for home gaming. In parallel de-velopment, gaming
onsoles (dedi
ated game
omputers that are hooked up to atelevision set) be
ame popular, starting with the Nintendo Entertainment Systemin 1986 (Baratz, 2001).4Many argue that the very �rst game was Ti
-Ta
-Toe, programmed in 1952 by A. S. Douglasfor the EDSAC
omputer, whi
h used a
athode-ray tube to display the playing grid. However,in my opinion Ti
-Ta
-Toe is an analyti
al game, and as su
h does not deserve the title of �rst
ommer
ial
omputer game. Note that
omputers played analyti
al games even before 1952: in1951 D. G. Prinz built a Chess-playing program, that was the �rst program to solve a Chessproblem (Van den Herik, 1983).

2.2 � Games 23

Figure 2.3: Spa
ewar, great-great-grand-parent of modern games.The
ontinuous advan
es in pro
essing power and
apabilities of home
omput-ers,
aused games to be
ome in
reasingly
omplex. While in the 1980s a team of�ve people
ould
reate a top-rated game, in the 1990s game-development teams
onsisted of hundreds of people. The
ost of produ
ing a game grew a

ordingly.Sin
e the start of the twenty-�rst
entury, the game industry has grown to surpassthe multi-billion-dollar Hollywood movie industry in revenues (Fair
lough et al.,2001; Snider, 2002). The market for PC and
onsole games now only allows for largegame-development
ompanies, supported by wealthy publishers. For the smallerdevelopers, a new market has opened up with handheld gaming. It is, however, onlya matter of time before the domain of handheld game development also is taken overby large game developers (Spron
k and Van den Herik, 2003).For a long time the pro
essing power of
omputers was mainly invested into
re-ating better graphi
s. In the late 1990s spe
ialised 3D video
ards be
ame a�ordableand widespread. This freed up pro
essing power for other game-play features, su
has arti�
ial intelligen
e (Tozour, 2002b). Game-AI programming has be
ome animportant a
tivity in game development, instead of something that is added in thelast weeks before a game is released. Therefore the subje
t of this thesis, game AI,is relevant for the game industry as it exists today.2.2.2 Game TypesGames
an be divided into di�erent
ategories. There is no general
onsensus onwhat those
ategories are.5 My view is that there are six
ategories of games: a
-tion games, adventure games, puzzles, role-playing games, simulations, and strategygames. I dis
uss the di�erent
ategories below.A
tion: A
tion games are games that require players to use mainly their re�exes tobeat the game. The �ve main types of a
tion games are ar
ade games (su
h as5For example, Fair
lough et al. (2001) distinguish `a
tion games', `adventure games', `role-playing games' and `strategy games'. S
hae�er (2001) adds to these `god games' and `sports games'.Laird and Van Lent (2001) have a similar view, but make a
lear distin
tion between `team sportsgames' and `individual sports games'.

24 Ba
kgroundPa
man), platform games (su
h as Prin
e of Persia), sports games (su
has FIFA So

er), 3D shooters (su
h as Quake), and 3D sneakers (su
h asThief). Nowadays the �rst two types have almost died out, while the othersare arguably the most popular types of games available. The game AI in a
tiongames
ontrols individual agents on an operational and ta
ti
al level.Adventure: Adventure games are story-driven games that require players to fol-low a spe
i�
 path towards the end of the game. The path is littered withpuzzles of all kinds that players must solve, using their intelle
tual skills. Thetwo main types of adventure games are text adventures or intera
tive �
tion(su
h as Zork), and graphi
al adventures (su
h as King's Quest). Nowadaysthe adventure-game genre seems to have almost died out, although amateurs,some surprisingly talented, still produ
e these games (Montfort, 2004). Char-a
ters in adventure games
an only rea
t in a pre-de�ned way to spe
i�
 playera
tions. As su
h, game AI is absent for adventure games. 6Puzzle: Puzzle games are games that require players to apply their intelle
tualskills to solving a puzzle. The two main types of puzzle games are time-freepuzzles (su
h as Sokoban), and time-
onstrained puzzles (su
h as Tetris).Puzzle games are, in general, not very popular, ex
ept for handheld
omputers.Puzzles do not require game AI.Role-playing: Computer role-playing games (CRPGs) are story-driven games thatrequire players to assume the role of a game
hara
ter. Players are sent ona quest, usually with a fantasy or a s
ien
e-�
tion theme. The quest mainlyinvolves exploration and ta
ti
al
ombat. The two main types of CRPGsare single-player CRPGs (su
h as Baldur's Gate), and massive multiplayeronline games (su
h as EverQuest). After almost having died out in the1990s, CRPGs have be
ome quite popular again nowadays. The game AI inCRPGs
ontrols individual agents on an operational and ta
ti
al level.Simulation: Simulation games are games that require players to observe and inter-a
t with a simulation. The two main types of simulation games are god games(su
h as The Sims), and vehi
le simulations (su
h as Flight Simulator).Simulations always have been fairly popular. The amount of game AI thatpervades a simulation game depends on the level of realism of the simulation.Strategy: Strategy games are games that require players to use their strategi
 andta
ti
al skills to guide a group of agents to vi
tory. The two main types ofstrategy games are turn-based strategy games (su
h asCivilization andRail-road Ty
oon), and real-time strategy games (su
h asWar
raft). Strategygames have been popular sin
e the 1990s. The game AI in strategy games
ontrols large groups of agents on an operational, ta
ti
al and strategi
 level.6Some adventure games, espe
ially text adventures,
ontain
hara
ters that exhibit seeminglyintelligent behaviour, but in general their
hoi
e of a
tions is based on simple probability. Theyare not in the game as opponents for the player, but as puzzles to be solved (Lebling, 1980).

2.2 � Games 25Type Games Se
tionsA
tion Quake 4.2Role-playing Simulated CRPG 5.2�5.4Role-playing Neverwinter Nights 5.5Strategy Duelling spa
eships 4.1Strategy Wargus 6.2�6.4Table 2.1: Game types investigated in the thesis.Many games that are in existen
e today fall into more than one of the
ategories.To stand out, game developers attempt to
ombine game genres to
reate an originalgame that exhibits the best of di�erent
ategories (Slater, 2002). For instan
e,vehi
le simulations are often enhan
ed with a
tion elements, and a
tion games areoften enhan
ed with elements from strategy games. Complex game AI is en
ounteredmainly in role-playing games and strategy games.Table 2.1 lists the game types dis
ussed in this thesis. From left to right, thethree
olumns represent (i) the game type, (ii) the games of this type dis
ussed, and(iii) the
orresponding thesis se
tions.2.2.3 Game-AI Resear
hGame AI is of interest to two di�erent groups, namely (i) game developers, who aspireto have game AI keep up with game enhan
ements, and (ii) a
ademi
 resear
hers,who profess to have a high-level view of the �eld of game AI. Surprisingly, there islittle
ommuni
ation between these two groups (Sawyer, 2002). Game developers
omplain that a
ademi
s fail to get out of their ivory tower to help them with thepra
ti
al implementation of game AI (Laird, 2000; Tozour, 2002b). A
ademi
s
laimthey
annot get their foot in the door of game development, be
ause of industryse
rets (Sawyer, 2002; Buro, 2003a), tight s
hedules (Sawyer, 2002), and la
k offunding (Laird and Van Lent, 2001; Sawyer, 2002). Consequently, game developersand game resear
hers tend to remain in their own
ommunities.Fortunately, this trend is
hanging. Game developers re
ognise they need helpfrom a
ademi

ommunities to implement game AI that
an
ope with the
om-plexities of modern games (Laird and Van Lent, 2001; Sawyer, 2002; Rabin, 2004b).Game resour
es are freed up for more advan
ed game AI (Laird, 2000). A
ademi
sare allowed a

ess to modern game engines for their resear
h (Laird, 2000), throughopen sour
e, or through toolsets released with the games. Nowadays, many a
ad-emi
 AI resear
hers attend game development
onferen
es, and o

asionally a gamedeveloper visits an a
ademi

onferen
e on game-AI resear
h.Not only game developers
an bene�t from the work of AI resear
hers, but AIresear
hers have mu
h to gain from the work of game developers as well. Sin
e thegoal of game AI is to make human players believe that their opponents are a
tually
ontrolled by other humans (Laird and Van Lent, 2001; Sawyer, 2002; Livingstoneand M
Glin
hey, 2004), modern games are nothing less than a pra
ti
al implementa-

26 Ba
kgroundtion of a Turing Test (Turing, 1950). Even small steps that AI resear
hers
an taketowards human-like game AI are wel
omed by game developers, and, when imple-mented in an a
tual game, will be tested out in pra
ti
e (Laird and Van Lent, 2001).Furthermore, games are a popular pastime, whi
h may help to attra
t students tothe �eld of AI resear
h, and gain attention from popular media.This thesis aims at bridging the gap between a
ademi
 resear
h and the dailypra
ti
e of game development. It investigates the appli
ation of ma
hine-learningte
hniques to game AI. A major requirement of the te
hniques investigated is theirpra
ti
al appli
ability in modern games.2.3 Ma
hine Learning and Game AIThis se
tion
lari�es the three di�erent ways in whi
h ma
hine learning
an beapplied to game AI, namely o�ine learning (2.3.1), supervised learning (2.3.2), andonline learning (2.3.3). It also dis
usses the requirements that online learning ofgame AI must meet (2.3.4).2.3.1 O�ine Learning`O�ine learning' of game AI is learning that takes pla
e while the game is notbeing played by a human (Charles and M
Glin
hey, 2004; Funge, 2004). This
anbe learning from samples or learning by self-play (i.e., the
omputer
ontrollingall sides in the game). A typi
al appli
ation of o�ine learning is tuning game-AI parameters during the `quality assuran
e' phase of game development. A moreadvan
ed appli
ation is
reating new ta
ti
s for opponents by self-play.Although o�ine learning is a
ommon te
hnique used in analyti
al games(Tesauro, 1992; S
hae�er, 1997; S
hae�er, Billings, Peña, and Szafron, 1999;Donkers, 2003; Enzenberger, 2003; Ko
sis, 2003; Van der Werf, 2004; Winands,2004) and is sporadi
ally used in a
ademi
 resear
h of
ommer
ial games (Ballard,1997; Laramée, 2002a; M
Glin
hey, 2003; Spron
k and Van den Herik, 2003), theliterature provides little or no examples of o�ine learning used by professional gamedevelopers, other than tweaking a few parameters (Biasillo, 2002; Wood
o
k, 2002).Neither did my own
onta
ts with game developers turn up any eviden
e of o�inelearning in professional games. This is somewhat surprising, sin
e o�ine learningtakes pla
e entirely `in-house', and therefore is the least risky appli
ation of ma
hinelearning to games. Chan et al. (2004) surmise that the use of o�ine learning of gameAI to help game designers and programmers for the purpose of quality assuran
e isthe �rst step to introdu
e ma
hine-learning te
hniques in the game industry.In this thesis o�ine learning in games is dis
ussed in Chapters 3, 4, and 6.2.3.2 Supervised Learning`Supervised learning' of game AI takes pla
es while the game is being played by ahuman. It implements
hanges to the game AI by pro
essing immediate feedba
k on

2.3 � Ma
hine Learning and Game AI 27any de
ision that the game AI makes. The feedba
k indi
ates whether a de
ision isdesired or undesired. With supervised learning of game AI the human player
ontrolswhat is being learned, either by providing the game AI with samples of behaviour tobe imitated, or by rewarding desired behaviour and penalising undesired behaviour.When supervised learning is part of a game, it requires the
ooperation of the hu-man player, i.e., the learning is part of the game-play design. Very few games in
or-porate supervised learning. Two well-known examples of su
h games areCreaturesand Bla
k & White. In both games, the agent behaviour is partly determinedby a learning stru
ture (the agent's `brain'). In Creatures the learning stru
ture
onsists of a neural network (Adamatzky, 2000), and in Bla
k & White it
onsistsof a de
ision tree and per
eptrons (Evans, 2001 & 2002; Fu and Houlette, 2004). Thehuman player trains the learning stru
ture by rewarding agents when they exhibitdesired behaviour, and penalising them when they exhibit undesired behaviour.This thesis is on automati
 learning of game AI. Supervised learning is not au-tomati
, for it requires human intervention. Therefore, supervised learning will notbe dis
ussed further in this thesis.2.3.3 Online Learning`Online learning' of game AI is learning that takes pla
e while the game is beingplayed by a human (Charles and M
Glin
hey, 2004; Funge, 2004).7 Through onlinelearning, game AI automati
ally adapts in a

ordan
e with the human player's styleand ta
ti
s. There are two main reasons to implement adaptive game AI, namely (i)the game AI makes exploitable mistakes, whi
h makes the game too easy, and (ii)the game AI's skill is not in the same league as the human player's skill, whi
h makesthe game either too easy or too hard. Both reasons, if negle
ted, are detrimental toa game's entertainment value.Some a
ademi
 resear
h has investigated online learning in games (Demasi andCruz, 2002; Laramée, 2002b; Mommersteeg, 2002; Demasi and Cruz, 2003; Aha andMolineaux, 2004; Graepel et al., 2004; Le Hy, Arrigoni, Bessièrre, and Lebeltel, 2004;Jones and Goel, 2004; Leen and Fyfe, 2004; Spron
k, Sprinkhuizen-Kuyper, andPostma, 2004
; Ulam, Goel, and Jones, 2004). In pra
ti
e, however, game publishersare relu
tant to release games with online-learning
apabilities (Funge, 2004). Theirmain fear is that the game learns inferior behaviour (Wood
o
k, 2002; Charles andLivingstone, 2004). Therefore, the few games that
ontain online learning, only doso in a severely limited sense, in order to run as little risk as possible (Charles andLivingstone, 2004).Two less-risky possibilities for online learning in games are (i) to
hange automat-i
ally a few parameters (e.g., in Nas
ar Ra
ing 2003 Season and The Fall ofMax Payne), and (ii) to swit
h automati
ally between several manually-designed7Supervised learning (2.3.2) also takes pla
e online. Therefore, to be absolutely
lear, `onlinelearning' should be named `unsupervised online learning'. However, in the literature, when learn-ing is mentioned, it is usually assumed that unsupervised learning is meant. This thesis doesnot investigate supervised learning. I therefore use the shorter term `online learning' to refer to`unsupervised online learning'.

28 Ba
kgroundvarieties of the game AI, su
h as di�erent formations of enemy groups (e.g., in De-s
ent 3: Mer
enary and WWII: Frontline Command). While these simpleattempts to implement adaptive game AI
an be surprisingly e�e
tive (Funge, 2004),they are not always appre
iated by game players.8In this thesis online learning in games is dis
ussed in Chapters 4, 5, and 6.92.3.4 Online Learning RequirementsAfter a sear
h through the literature, personal
ommuni
ation with game developers,and applying our own insights to the subje
t matter, we arrived at a list of four
omputational and four fun
tional requirements, whi
h online adaptive game AImust meet to be appli
able in pra
ti
e.The
omputational requirements are ne
essities: failure of an online adaptive-game-AI te
hnique to meet the
omputational requirements makes it useless in pra
-ti
e. The fun
tional requirements are not so mu
h ne
essities, as strong preferen
esby game developers: failure of an online adaptive-game-AI te
hnique to meet thefun
tional requirements means that game developers will be unwilling to in
lude itin their games, even when it yields good results and meets all four
omputationalrequirements. The four
omputational requirements are the following.Speed: Online learning in games must be
omputationally fast, sin
e learning takespla
e during game-play (Laird and Van Lent, 2001; Nareyek, 2002; Charles andLivingstone, 2004; Funge, 2004).E�e
tiveness: Online learning in games must
reate e�e
tive game AI during thewhole learning pro
ess, to avoid it be
oming inferior to manually-designedgame AI, thus diminishing the entertainment value for the human player(Charles and Livingstone, 2004; Funge, 2004).10Robustness: Online learning in games has to be robust with respe
t to the ran-domness inherent in most games (Chan et al., 2004; Funge, 2004).E�
ien
y: Online learning in games must be e�
ient with respe
t to the num-ber of trials needed to a
hieve su

essful game AI, sin
e in a single game, aplayer experien
es only a limited number of en
ounters with similar groups ofopponents.8For instan
e, after the release of The Fall of Max Payne, many players
omplained that ifthey played the game too well, the opponents soon a
hieved
apabilities that made them almostimpossible to defeat. Players started to take deliberate damage, in order to fool the game intoassuming the di�
ulty level should not be in
reased.9Note that the term `online' as used in this thesis should not be
onfused with the popularmeaning of `online' to refer to a
tivities that are performed over the internet. For instan
e, thework of Baxter, Tridgell, and Waever (1998) in whi
h reinfor
ement learning is applied to improvea Chess evaluation fun
tion using games played through the internet, is a
tually an example ofo�ine learning, sin
e the evaluation fun
tion is
hanged only after the games have been played.10Usually, the o

asional o

urren
e of a non-
hallenging agent is permissible, sin
e the playerwill attribute an o

asional easy win to lu
k. Note that, if adaptive game AI meets this requirement,the main fear of game publishers, that agents will learn inferior behaviour, is resolved.

2.4 � Chapter Summary 29The four fun
tional requirements are the following.11Clarity: Online learning in games must produ
e easily interpretable results, be
ausegame developers distrust learning te
hniques of whi
h the results are hard tounderstand.Variety: Online learning in games must produ
e a variety of di�erent behaviours,be
ause agents that exhibit predi
table behaviour are less entertaining thanagents that exhibit unpredi
table behaviour.Consisten
y: The average number of trials needed for adaptive game AI to produ
esu

essful results should have a high
onsisten
y, i.e., a low varian
e, to ensurethat it is rare for players to �nd that learning in a game takes ex
eptionallylong.S
alability: Online learning in games must be able to s
ale the di�
ulty level ofits results to the experien
e level of the human player (Lidén, 2004).To meet the four
omputational requirements, an online learning algorithm mustbe of `high performan
e'. A

ording to Mi
halewi
z and Fogel (2000), the two mainfa
tors of importan
e when attempting to a
hieve high performan
e for a learningme
hanism are the ex
lusion of randomness and the addition of domain-spe
i�
knowledge. Sin
e randomness is inherent in most games, it
annot be ex
luded.Therefore, it is imperative that the learning pro
ess is based on domain-spe
i�
knowledge (Manslow, 2002).Obviously, it is hard to
reate an online-learning te
hnique for games that meetsall the eight requirements. However, the `dynami
 s
ripting' te
hnique, dis
ussed inChapter 5, is designed to do just that.2.4 Chapter SummaryThis
hapter provided ba
kground information on the resear
h in this thesis. It dis-
ussed ma
hine-learning te
hniques used in the resear
h (evolutionary algorithms,arti�
ial neural networks, evolutionary arti�
ial neural networks, evolutionary
on-trol, and reinfor
ement learning), and gave an overview of
ommer
ial
omputergames and game-AI resear
h. It distinguished three di�erent ways in whi
h ma
hinelearning
an be applied to game AI, namely (i) o�ine learning, (ii) supervised learn-ing, and (iii) online learning. For online learning four
omputational requirementswere listed, namely the requirements of (i) speed, (ii) e�e
tiveness, (iii) robustness,and (iv) e�
ien
y. Furthermore, four fun
tional requirements were listed, namelythe requirements of (i)
larity, (ii) variety, (iii)
onsisten
y, and (iv) s
alability. Thefo
us of this thesis is on unsupervised learning, that is, on o�ine and online learning.11The �rst two fun
tional requirements, the requirements of
larity and variety, were expressedby three of the lead developers of BioWare Corp, during a personal ex
hange I had with them in2003.

Chapter 3Doping in Agent ControlBetter Living Through Chemistry.� Advertising slogan of Monsanto Corporation.Agents in games have a task to a

omplish; usually, it is defeating a human player.Game AI
ontrols the behaviour of the agents in game environments. The present
hapter1 investigates evolutionary
ontrol of agents in game-like environments. Agame-like environment has two major
hara
teristi
s with respe
t to agents, namely(i) agents have only a limited view of the environment, and (ii) agents
an intera
twith the environment to a

omplish their tasks.Evolutionary
ontrol is an e�e
tive te
hnique for
reating the
ontrollers of theagents (2.1.4). To a
hieve good results, evolutionary
ontrol must deal with the`problem of hard instan
es'. This
hapter explores a novel te
hnique designed toalleviate the problem of hard instan
es,
alled the `Doping-driven Evolutionary Con-trol Algorithm' (DECA). Se
tion 3.1 des
ribes the problem of hard instan
es, andintrodu
es DECA. Se
tion 3.2 des
ribes the experimental pro
edure employed forevaluating DECA. Se
tions 3.3 and 3.4 are devoted to two experiments that
on�rmDECA's e�e
tiveness. Se
tion 3.5 provides a general dis
ussion of the experimentalresults. A summary of the
hapter is provided in Se
tion 3.6.3.1 DECA and the Problem of Hard Instan
esAgents in game-like environments have a task to a

omplish. A `task instan
e' isa spe
i�
 example of the environment in whi
h the agent resides. Evolutionary
ontrol
an be used to determine the agent's behaviour in the environment (2.1.4).Evolutionary
ontrol tends to favour
ontrollers that solve easy task instan
es, butthat fail to solve the hard ones. This phenomenon is
alled `the problem of hardinstan
es' (Spron
k, Sprinkhuizen-Kuyper, and Postma, 2001a). It
an be alleviatedby the Doping-driven Evolutionary Control Algorithm (DECA), whi
h is based on1This
hapter is based on a paper by Spron
k, Sprinkhuizen-Kuyper, Postma, and Kortmann(2003
), and a submitted paper by Spron
k, Sprinkhuizen-Kuyper, and Postma (2005).

32 Doping in Agent Controlthe notion of `doping'. This se
tion explains the problem of hard instan
es (3.1.1),provides ba
kground information on doping (3.1.2), and de�nes and explains DECA(3.1.3). From hereon I will refer to a `task instan
e' with the shorter term `instan
e'.3.1.1 The Problem of Hard Instan
esEvolutionary learning is e�e
tive for
reating the
ontrollers of situated agents(Arkin, 1998). When applying evolutionary learning to
ontroller design, the map-ping exe
uted by the
ontroller is generated by setting the
ontroller parameters. Thequality of
ontrollers is de�ned in terms of an appropriate measure as determinedby the �tness fun
tion. In general, the �tness fun
tion is based on the evaluation ofa
ontroller on a series of typi
al instan
es varying in di�
ulty from easy to hard.An easy instan
e is an instan
e for whi
h a solution
an be found easily, i.e., in thesear
h spa
e, solutions to easy instan
es are abundant and lo
ated in `�at' regions ofthe sear
h spa
e. In
ontrast, a hard instan
e is an instan
e for whi
h it is di�
ultto �nd a solution, i.e., in the sear
h spa
e, solutions to hard instan
es are rare andlo
ated at `peaks' surrounded by inferior solutions (Spron
k et al., 2001a).In the evolutionary learning pro
ess new
ontrollers are generated by re
ombiningelements of previously-generated
ontrollers, favouring those that have a relativelyhigh �tness. Obviously, a
ontroller that solves at least one of the instan
es isassigned a higher �tness value than one that solves no instan
es at all. Sin
e it isvery likely that
ontrollers that
ope with easy instan
es are dis
overed before thosethat
ope with harder instan
es, the performan
e on the easy instan
es determinesthe
ourse of the evolutionary pro
ess to a great extent. Therefore, the evolutionarysear
h is more or less
on�ned to the regions of sear
h spa
e where most of thesolutions to easy instan
es reside. Unless a good solution that
overs both easy andhard instan
es is found in the vi
inity of these regions, the end result is a
ontrollerthat handles easy instan
es well, but fails on the hard ones. This is
alled `theproblem of hard instan
es'.If the problem of hard instan
es is not dealt with, evolutionary algorithms arebound to produ
e inferior solutions to task
ontrol problems. To deal with the prob-lem of hard instan
es, I propose the Doping-driven Evolutionary Control Algorithm(DECA). DECA is based on the notion of `doping', whi
h is explained below.3.1.2 DopingDoping is de�ned as the addition of some very good solutions to a population (usuallythe initial one) in order to fa
ilitate the evolution pro
ess. These solutions may begenerated by a di�erent algorithm or may express the user's knowledge about theproblem domain (Dumitres
u, Lazzerini, Jain, and Dumitres
u, 2000). Commonterms used for similar te
hniques are `seeding', `
ase inje
tion' (Louis, 2002) and`infusion' (Spron
k et al., 2001a). If there are di�eren
es between the exa
t meaningsof these terms, they are not well de�ned. The term `seeding' is used in the literaturemost often. It refers to the inje
tion of any kind of geneti
 material into a population.

3.1 � DECA and the Problem of Hard Instan
es 33I
hose to use the term `doping' to refer to the inje
tion of
omplete solutions intoa population, rather than the inje
tion of any kind of geneti
 material.The appli
ation of doping (or seeding) is restri
ted to those
ases where it isimportant to retain spe
i�
 geneti
 material in the population (Dumitres
u et al.,2000). The best-known example is in the `messy Geneti
 Algorithm' (mGA), wherein the primordial phase of the evolution the population is doped with all possiblebuilding blo
ks of a spe
i�
 length (Goldberg, Deb, and Korb, 1991). Sometimesdoping takes the form of inserting manually-designed solutions into the initial pop-ulation. An example is the work of Matthews et al. (2000) on a problem in land-useplanning where the initial population was doped with heuristi
 and expert-basedsolutions. In Case-Initialised Geneti
 Algorithms (Louis and Johnson, 1999), a solu-tion to a problem similar to the target problem is inserted in the initial populationto fa
ilitate the evolution pro
ess in �nding a good solution to the target problem.Grefenstette and Ramsey (1992)
reated an initial population that
onsisted of 50per
ent solutions that worked well in the past, 25 per
ent manually-designed solu-tions for the problem in general, and only 25 per
ent solutions generated randomly.While the examples mentioned above demonstrate bene�
ial e�e
ts of doping, itshould be
onsidered whether doping
an be detrimental to the evolution pro
ess.Doping geneti
 material that is unrelated to any known solution, as is done in themGA, does little harm to the �nal solution. However, doping an initial populationwith known solutions may lead to inferior results. The reason is that within apopulation of random solutions, a fairly good solution is likely to have the highest�tness, whi
h leads to
onvergen
e to a lo
al optimum in the vi
inity of the dopedsolution. The evolution pro
ess is used as a lo
al optimisation pro
ess, rather thanas a method to s
an the sear
h spa
e. Good solutions that are too remote from thedoped solution are likely to be missed. In order for doping to yield good results intask-
ontrol problems, the evolutionary pro
ess needs to be biased to deal with hardinstan
es. This is exa
tly what is done in DECA as will be detailed below.3.1.3 DECAThe Doping-driven Evolutionary Control Algorithm (DECA) ensures that the evo-lutionary sear
h is
on�ned to those regions of the sear
h spa
e where the solutionsto hard instan
es are likely to be found. In order to a
hieve the bias, DECA appliesdoping as des
ribed in the following six steps.1. Training-set design: Sele
t a series of instan
es that en
ompass most or allrelevant
hara
teristi
s of a task.2. Hard-instan
e sele
tion: Identify a hard instan
e that en
ompasses most ofthe relevant
hara
teristi
s.3. Hard-instan
e evolution: Evolve a good solution to the hard instan
e sele
tedin the previous step.4. Initialisation: Generate a random population and `dope' this population withthe solution evolved in the previous step.

34 Doping in Agent Control5. Evolution: Evolve good solutions to the
omplete series of instan
es sele
tedin step 1 using the doped population.6. Validation: Evaluate the validity of the evolved solution on a new sele
tion ofinstan
es.If no domain knowledge is available to sele
t hard instan
es in step 2, a (time-
onsuming but generally appli
able) way to identify hard instan
es is to attemptto evolve separate solutions to all the instan
es in the training set, and observe forwhi
h instan
es the evolution pro
ess takes the longest on average.DECA is expe
ted to yield good results be
ause I assume that there is an asym-metry in the sear
h spa
e with respe
t to easy and hard solutions (i.e., lo
al minimaof the �tness fun
tion). Solutions to easy instan
es are readily found in the vi
inityof solutions to hard instan
es, whereas the reverse is not true. The asymmetry is
aused by the abundan
e of solutions to easy instan
es and the relative s
ar
ity ofsolutions to hard instan
es. The validity of this assumption is dis
ussed in moredetail in Subse
tion 3.5.1.3.2 Experimental Pro
edureTo evaluate the e�e
tiveness of DECA, two experiments were performed with twodi�erent tasks. The �rst task is a box-pushing task wherein a robot has to push a boxbetween two walls. The se
ond task is a food-gathering task in whi
h an agent hasto
olle
t food while avoiding to be damaged. For both tasks neural
ontrollers wereused, whi
h are suitable adaptive stru
tures for situated agents (Arkin, 1998). Theweights and ar
hite
tures of the
ontrollers were generated using an evolutionaryalgorithm, using the Elegan
e environment (2.1.4).Preliminary experiments with the evolution of a neural box-pushing
ontroller in-di
ated that a re
urrent neural
ontroller outperforms various kinds of feed-forward
ontrollers on this parti
ular task (Sprinkhuizen-Kuyper, Postma, and Kortmann,2000b). I therefore de
ided for both experiments to use a neural network
on�gu-ration that gave the best results in the preliminary experiments, namely an Elmannetwork (2.1.2) with a maximum of four hidden nodes, and the network outputvalues
onstrained by applying a sigmoid fun
tion.In the experiments the following six geneti
 operators were employed, whi
hwere found to perform well in evolving solutions for other neural
ontrol problems(Spron
k, 1996).
• Uniform
rossover : Child
hromosomes are
reated by
opying ea
h allele fromone of two parents, ea
h parent having a 50 per
ent
han
e of being sele
tedfor ea
h allele (Goldberg, 1989).
• Biased weight mutation (Montana and Davis, 1989): Child
hromosomes are
opies of parent
hromosomes, with ea
h weight having a 5 per
ent
han
e tobe mutated by adding a random value sele
ted from the range [−0.3, 0.3].

3.3 � Box-Pushing Behaviour 35
• Biased nodes mutation (Montana and Davis, 1989): Child
hromosomes are
opies of parent
hromosomes, with all the input weights of one randomlysele
ted node
hanged by adding a random value sele
ted from the range

[−0.3, 0.3].
• Nodes
rossover (Montana and Davis, 1989): Child
hromosomes are
reatedby
opying ea
h of their nodes (in
luding their input
onne
tions) from oneof two parents, ea
h parent having a 50 per
ent
han
e of being sele
ted forea
h node.
• Node existen
e mutation (Spron
k, 1996): Child
hromosomes are
opies ofparent
hromosomes, with a 95 per
ent
han
e of having all in
oming andoutgoing
onne
tions of one randomly-sele
ted node being removed, and a 5per
ent
han
e of having all absent
onne
tions of a randomly-sele
ted nodebeing a
tivated.
• Conne
tivity mutation (Spron
k, 1996): Child
hromosomes are
opies of par-ent
hromosomes, with ea
h
onne
tion having a probability of 5 per
ent toswit
h from being
onne
ted to being dis
onne
ted and vi
e versa.During evolution, one of these six operators was sele
ted at random. For the
rossover operators, I arbitrarily de
ided to add only the �ttest of the two
hildren tothe population, while the other
hild was reje
ted. To alleviate the problem of
om-peting
onventions (2.1.3) the hidden nodes of the parents were rearranged to maketheir signs mat
h (insofar as possible) before a
rossover took pla
e (Thierens et al.,1993). Newly-generated individuals repla
ed existing individuals in the population,while taking into a

ount elitism. Crowding (Goldberg, 1989) with a fa
tor of 3 wasused as repla
ement poli
y. For the sele
tion pro
ess, size k tournament sele
tion(Goldberg and Deb, 1991) was used, with k = 2 for the box-pushing experiment and

k = 3 for the food-gathering experiment.In all experiments, the population size was equal to 100 and real-valued weightswere used. In preliminary experiments larger population sizes were tested, witha maximum of 250, but these did not give signi�
antly better results. Based onthe observed
onvergen
e rates, I set the maximum number of generations to 35for the box-pushing experiment, and to 30 for the food-gathering experiment. Pre-liminary experiments showed that in rare
ases slightly better solutions
ould bea
hieved if the evolution was allowed to
ontinue for more generations, but in myview the
onsiderable in
rease in
omputation time required was not worth the smallimprovement in performan
e.Having dis
ussed the experimental pro
edure, I now turn to the des
ription ofthe two experiments to evaluate the e�e
tiveness of DECA.3.3 Box-Pushing BehaviourThe box-pushing task is the �rst task to evaluate DECA. The task involves thepushing of a box between two walls. A simpler version of the task was introdu
ed

36 Doping in Agent Control

Figure 3.1: Simulation environment of the Khepera robot.by Lee, Hallam, and Lund (1997). Pushing an obje
t (in this
ase a
ir
ular box)between two walls is an elementary behaviour that is relevant in, for instan
e, thegame of robot so

er in whi
h a ball has to be pushed towards the opponent'sgoal (Asada and Kitano, 1999). The task is non-trivial, be
ause it requires theagent to adapt
ontinuously to the position of the ball as per
eived through thenoisy sensors. Elementary behaviours, of whi
h the box-pushing task is only anexample, are believed to underlie more
omplex behaviours su
h as target following,navigation and obje
t manipulation. I des
ribe the box-pushing task in Subse
tion3.3.1, present the a
hieved results using DECA in Subse
tion 3.3.2, and provide adis
ussion of the results in Subse
tion 3.3.3.3.3.1 The Box-Pushing TaskTo study box-pushing behaviour, a publi
ly available mobile robot simulator wasemployed. The simulator is based on the widely used mobile robot Khepera (Mon-dada, Franzi, and Jenne, 1993). It is illustrated in Figure 3.1. The square area onthe left side is the robot world and measures 1000× 1000 units. The grey
ir
le rep-resents the robot, the bla
k
ir
le the box, and the six small bla
k dots the startingpositions of the box (the upper three dots) and the robot (the lower three dots).The starting positions
an be
ombined to nine instan
es, that di�er in the initial
on�guration of robot and box (illustrated in Figure 3.4).The (simulated) Khepera displayed in Figure 3.2 is equipped with eight sensorsand two motors, one for ea
h of the wheels. The sensors provide the robot with prox-imity values. For the purpose of the experiment, the simulator was
oupled to theElegan
e environment. The Khepera simulation is
ontrolled by a neural network

3.3 � Box-Pushing Behaviour 37

Figure 3.2: S
hemati
 overview of the Khepera robot, with a mapping to the neural
ontroller inputs.with fourteen inputs, provided by the eight proximity sensors and six additionalvirtual `edge-dete
tor' sensors. The outputs of the virtual sensors are de�ned as thedi�eren
es in proximity values between all pairs of neighbouring sensors, e.g., sensor8 gets the proximity value of sensor 0, from whi
h the proximity value of sensor1 is subtra
ted. It is important to note that the Khepera simulation is sto
hasti
be
ause the sensors and
ontroller outputs generate noisy signals.The motors driving the wheels are
ontrolled by the outputs of two neural net-works, one for the left and one for the right wheel. Exploiting the mirror symmetryof the per
eption-to-a
tion mapping, the two neural networks are identi
al ex
eptfor the mapping of sensors to network inputs and the de�nition of the signs of theedge-dete
ting inputs. Figure 3.3 illustrates the di�erent mapping and signs forboth networks. In the �gure, the small re
tangles at the left of the neural networksindi
ate the sensors. In these re
tangles, x − y indi
ates an edge dete
tor in whi
hthe value of sensor y is subtra
ted from the value of sensor x.The task set to the simulated robot was to push the box as far away as possiblefrom its starting position within a limited period of time. Figure 3.4 illustrates thenine instan
es numbered 0 to 8. The box-pushing task is di�
ult be
ause the robot(i) must identify the box, (ii) must remain behind the box while pushing, (iii) mustprevent the box from getting stu
k, and (iv) must deal with noise generated bythe sensors and the motor
ontrols. Preliminary experiments revealed that the nineinstan
es exhibited these di�
ulties in various degrees. For instan
e, in instan
es 0,4, and 8, the box is positioned dire
tly in front of the robot, whi
h means the robot
an perform its task by simply moving forward and
orre
ting for small deviations.Instan
es 2 and 6 are harder sin
e the initial separation of the robot and box is largerthan in instan
es 0, 4, and 8. Instan
es 3 and 5
an be
onsidered the most di�
ultbe
ause in these tasks the robot su�ers more from the roughness of the walls thanin any of the other instan
es (Spron
k et al., 2001a).At �rst glan
e it may seem that instan
es 2 and 6 are equally di�
ult, if notmore di�
ult than instan
es 3 and 5. However, I found that, in general, evolving a
ontroller for instan
es 3 and 5 takes
onsiderably longer than for instan
es 2 and

38 Doping in Agent Control

Figure 3.3: The two almost identi
al networks that drive the left and right robotmotors. The network inputs are proximity values derived from the robot in Figure3.2.6, with worse results for the �nal �tness values rea
hed. The explanation for these
ounterintuitive results is as follows. In instan
es 2 and 6, the robot travels a longerdistan
e from its starting position to the box than in instan
es 3 and 5. The longerdistan
e allows the robot more time and more room to manoeuvre to a good positionto slide the box along the wall. In instan
es 2 and 6 the robot learns to positionitself dire
tly `below' the
entre of the box. In instan
es 3 and 5, the robot has lesstime and less room to manoeuvre to a good position, and so it tends to push the box`sideways', thereby hitting the wall under an in
onvenient angle. This is illustratedin Figure 3.4. In this �gure, the
ir
les shown are the robot (largest
ir
les) andthe
ir
ular box (slightly smaller
ir
les) at their initial (bottom) and �nal (top)positions. The lines
onne
ting the initial to the �nal positions represent typi
alpaths followed by the robot and the box.Sprinkhuizen-Kuyper, Kortmann, and Postma (2000a) determined a suitable �t-ness fun
tion to measure the su

ess of the robot's behaviour in this experimentalsetup. I
opied their �tness fun
tion, whi
h is de�ned as follows. If robott is theposition of the robot at time t, and boxt is the position of the box at time t, the�tness value assigned to a robot upon
ompletion of a single instan
e i is de�ned asfollows.
Fi = di(boxT , box0) −

1

2
di(boxT , robotT) (3.1)In this equation, di(boxT , box0) represents the Eu
lidian distan
e between the initial(t = 0) and �nal positions (t = T) of the box, and di(boxT , robotT) the Eu
lidiandistan
e between the robot and the box at their �nal positions for instan
e i (alldistan
es are
al
ulated between the
entres of the obje
ts). An experimental trial
omprises T = 100 steps on ea
h of the nine instan
es. The average �tness Favg on

3.3 � Box-Pushing Behaviour 39

Figure 3.4: The nine instan
es (0 to 8) and typi
al traje
tories of the robot and thebox. Note that the roughness of the walls hinders the robot in sliding the box alonga wall.a trial is de�ned as the average �tness over all instan
es, i.e., Favg = 1
9

∑8
i=0 Fi.In the present experiment, to redu
e the e�e
t of the noise the overall �tness Fwas de�ned as the average of the trial �tness values over a number of R repetitionsof trials, i.e., F = 1

R

∑R
r=1 F r

avg
, with F r

avg
representing the average �tness Favgobtained at the r�th repetition. Computational resour
es
onstrained the numberof repetitions. The number of repetitions was varied between R = 1 and R = 100depending on the following
onsiderations. In preliminary experiments I alreadydetermined that
ontrollers with a �tness value of 250 or less on a single trial areinferior, and remain inferior on repli
ations of the trial.2 The
ontribution of inferior
ontrollers to the evolution pro
ess is limited, and
onsequently their ranking neednot be very pre
ise, espe
ially sin
e tournament sele
tion is used. Therefore, in
aseof su
h low �tness values, a single trial su�
es (R = 1). For higher �tness values,the number of repetitions was set to R = 10. For a
ontroller that has the potentialto be the best of the population, the overall �tness was determined on the basis of

R = 100 repetitions. Using this pro
edure the overall �tness of the �ttest
ontrollerhas a standard error of the mean of about 1.3, yielding an a

ura
y of about 2.5�tness points (reliability of 95%; Cohen, 1995).The validity of the evolved
ontrollers was
on�rmed by testing them on a realKhepera robot. The
ontrollers proved to be e�e
tive and e�
ient in letting a realKhepera robot push a
ir
ular box between walls. It is my opinion that this su

essis owing to the high amount of noise inherent in the simulation, whi
h requires anevolved
ontroller to be robust (Jakobi, 1997).3.3.2 Results of the Box-Pushing ExperimentOne experiment without doping and ten experiments with doping using various solu-tions were performed, and the overall �tness values were determined. For the doping2I determined empiri
ally that, in general,
ontrollers with a �tness value of 250 or less workedwell on the easy instan
es 0, 1, 4, 7 and 8, but were unable to deal with the hard instan
es 2, 3, 5and 6.

40 Doping in Agent Control

Figure 3.5: Fitness values of experiments with doping of a solution to a singleinstan
e (`0' to `8'), without doping (`no') and with doping of all solutions (`all').From left to right, the bars represent the average, the highest, and the lowest �tness.experiments DECA was applied by exe
uting the six steps des
ribed in Subse
tion3.1.3. Figure 3.4 shows examples of the traje
tories of su

essful robots on the nineinstan
es. To determine how doping with a solution to a hard instan
e
omparesto doping with a solution to an easy instan
e (instead of sele
ting a hard instan
e,as pres
ribed in step 1), I performed separate doping experiments with solutionsto ea
h of the nine instan
es (that vary from easy to hard). In addition, a dop-ing experiment using solutions to all instan
es was performed. The average �tnessvalues were obtained by averaging over the highest �tness values obtained in sevenrepli
ations of ea
h of the experiments.I expe
ted that doping with
ontrollers trained on the hardest instan
es 3 and5 to yield the best results. Indeed this was what I found. Figure 3.5 displays theresults obtained with doping using
ontrollers trained on a single instan
e (labelled`0' to `8'), without doping (labelled `no') and with doping using
ontrollers trainedon all nine instan
es (labelled `all'). Doping with
ontrollers trained on instan
es 3and 5 yield the best results (average �tness of 320.3 and 319.5, respe
tively), and themost
onsistent results (highest/lowest �tness values 322.9/318.1 and 322.1/316.8,respe
tively). Doping with
ontrollers trained on all tasks yields better results thandoping with
ontrollers trained on instan
es that are easy or moderate (i.e., instan
es0, 1, 2, 4, 6, 7, and 8). Presumably, the in
lusion of solutions to the hardest instan
es
ontributes to the high �tness obtained in this
ase. It should be noted, however,that while doping with all instan
es gives the highest �tness, the results have a mu
hhigher varian
e than those obtained by doping with
ontrollers trained on instan
es3 and 5 (highest/lowest �tness values 323.0/304.3). I assume that the reason for thisis that the evolutionary algorithm o

asionally
onverges to a lo
al optimum nearto the optimal solution for instan
es other than 3 and 5.

3.4 � Food-Gathering Behaviour 41Overall, these results show that on the box-pushing task DECA gives a signi�-
ant improvement over non-doped evolutionary learning. The solutions found alsoperform
onsiderably better than those found for the same problem by Sprinkhuizen-Kuyper (2001).3.3.3 Dis
ussion of the Box-Pushing ExperimentThe box-pushing experiment was not spe
i�
ally designed to test DECA. Yet, I waspleasantly surprised by the improved results obtained by applying DECA. Notwith-standing these results, it must be a
knowledged that the box-pushing experimenttask is of limited value for evaluating DECA. The reason is that it su�ers fromtwo main short
omings, namely (i) the task is based on a sto
hasti
 simulation re-quiring many repetitions to obtain reliable results, and (ii) the la
k of variety inpossible instan
es pre
ludes the assessment of the ability to generalise beyond theinstan
es given (even though the
ontroller's ability to generalise was demonstratedby applying it to a real Khepera).I expe
ted that the su

ess of DECA
an be generalised to other evolutionary
ontrol tasks. To support this expe
tation, I de
ided to evaluate DECA on a se
ond
ontrol task, designed to deal with the limitations of the box-pushing experiment.3.4 Food-Gathering BehaviourThe food-gathering experiment was designed to have the following two requirements:(i) the task should be deterministi
, and (ii) the task should allow for generatinginstan
es with variable levels of di�
ulty. The food-gathering task is des
ribed inSubse
tion 3.4.1, the a
hieved results using DECA are presented in Subse
tion 3.4.2and a dis
ussion of the results is provided in Subse
tion 3.4.3.3.4.1 The Food-Gathering TaskThe food-gathering task is designed as follows. A rabbit is pla
ed on a square two-dimensional grid of N ×N
ells. The rabbit
an move by one step in ea
h of the fourorthogonal dire
tions: north, east, south and west. The grid has periodi
 boundary
onditions, i.e., it is de�ned as a torus. As illustrated in Figure 3.6, the rabbit's �eldof vision en
ompasses all
ells that are within two moves from its
urrent position. A
ell may be empty, it may
ontain one or more
arrots, or it may
ontain one or morepoison bottles. If the rabbit enters a
ell that
ontains c
arrots, it removes (eats)all of them leaving an empty
ell, and in
reases its s
ore by c points. If the rabbitenters a
ell with p poison bottles, it de
reases its s
ore by p points. In
ontrast to
arrots, poison bottles are not removed from the grid when visited by the rabbit. Inea
h experimental trial, a rabbit has to s
ore as many points as possible within 100moves. Initially, the rabbit is always positioned in an empty
ell.The rabbit is
ontrolled by a neural network with thirteen inputs. Ea
h input
I is de�ned as the value of a
ell visible to the rabbit (a shaded square in Figure

42 Doping in Agent Control3.6; this in
ludes the
ell the rabbit
urrently o

upies, whi
h may
ontain poison).The magnitude |I| of the input value represents the number of elements within thepat
h o

upying the
ell. The sign of the input indi
ates whether the pat
h
ontains
arrots (I > 0) or poison bottles (I < 0). An empty
ell is represented by zero input(I = 0). The network has four outputs, representing the four dire
tions of movementof the rabbit. The rabbit moves in the dire
tion
orresponding to the output withthe highest value.For the training set grids were randomly generated with N = 15, a total numberof
arrots C = 100 and a total number of poison bottles P varying between 0 and
150. Carrots and poison bottles are
lustered in small pat
hes of one to �ve
arrotsor poison bottles per pat
h. The number of poison pat
hes dire
tly bordering a
arrot pat
h also varies a

ording to a density value d (d ∈ {0, 1, 2, 3, 4}). Arguably,the
omplexity of an instan
e is proportional to d and P , be
ause an in
reased totalnumber of poison bottles and an in
reased density of poison bottles adja
ent to
arrots make it harder for the rabbit to
olle
t
arrots without losing points.Table 3.1 displays the twenty instan
es (numbered 0 to 19) in the training set inrelation to the parameters d and P , in
luding a quali�
ation of their di�
ulty. Forinstan
es 5 to 17, the parameter d is de�ned as a range. Figure 3.7 shows six of thetwenty instan
es that serve as the training set.To assess the generalisation performan
e of evolutionary designed rabbits, anextensive test set of a hundred instan
es was generated,
omprising �ve subsets oftwenty randomly-generated instan
es ea
h. The instan
es within ea
h subset weregenerated a

ording to the same values of d and P as spe
i�ed in Table 3.1.The �tness F of a
ontroller (or rabbit) is de�ned as the average s
ore on thetwenty instan
es of the training set. Sin
e ea
h instan
e
ontains 100
arrots, an up-

Figure 3.6: Part of the grid de�ned as the environment of the rabbit. The envi-ronment
ontains food (
arrots) and danger (poison bottles). The rabbit's �eld ofvision
onsists of all
ells (squares) that
an be rea
hed in a maximum of two moves(the shaded squares in the image), i.e., the Manhattan distan
e = 2.

3.4 � Food-Gathering Behaviour 43

Figure 3.7: Six of the twenty instan
es in the training set of the food-gatheringexperiment.

44 Doping in Agent Controlinstan
e d P di�
ulty instan
e d P di�
ulty0 0 0 very easy 10 1�2 50 medium1 0 25 very easy 11 1�2 100 medium2 0 50 easy 12 1�2 150 hard3 0 100 easy 13 2�3 50 medium4 0 150 medium 14 2�3 100 hard5 0�1 25 easy 15 2�3 150 hard6 0�1 50 easy 16 3�4 100 hard7 0�1 100 medium 17 3�4 150 very hard8 0�1 150 medium 18 4 100 very hard9 1�2 25 easy 19 4 150 very hardTable 3.1: Spe
i�
ation of the twenty instan
es (numbered 0 to 19) used in the food-gathering experiments in relation to the density value d and the number of poisonbottles P . In all instan
es C = 100.per bound to the �tness is 100. In most instan
es it is impossible to rea
h this upperbound, be
ause even without poison pat
hes, usually the shortest path
onne
tingall
arrot pat
hes in the grid is longer than 100 steps.3.4.2 Results of the Food-Gathering ExperimentFor the food-gathering experiment two series of tests were
ompared. In the �rstseries, the evolutionary algorithm dis
ussed in Se
tion 3.2 was used to evolve, in 30generations, a neural
ontroller for the rabbit, with a �tness fun
tion de�ned as theaverage s
ore of the
ontroller on the twenty grids in the training set. In the se
ondseries DECA was applied, as follows. First, a good
ontroller for a single instan
e wasevolved. Then a neural
ontroller was evolved with the overall �tness fun
tion in 27generations, using an initial population doped with the solution found for the singleinstan
e. The reason for using 27 (rather than 30) generations for the evolution withthe overall �tness fun
tion was to ensure that the
omputational resour
es used forboth series of experiments were approximately equal.I de
ided to use instan
e 17 as the hard instan
e to develop a good
ontrollerfor doping. In this instan
e P = 150 and d = 3�4. I preferred instan
e 17 over theseemingly harder instan
e 19 (with P = 150 and d = 4), be
ause in instan
e 19 all
arrot pat
hes are
ompletely surrounded by poison. I suspe
ted this would redu
ethe
omplexity of the task, be
ause it would be impossible for a
ontroller to avoiddamage to get to
arrots. Therefore, damage avoidan
e is of less importan
e forinstan
e 19 than for instan
e 17.
R = 100 repetitions of ea
h of the series of tests were run. Of ea
h of the tests,the
ontroller with the highest �tness on the training set
ontaining twenty grids,was used as the solution found. Then this
ontroller was evaluated on the test set
ontaining 100 grids. In the statisti
al analysis the �tness of a
ontroller was de�ned

3.4 � Food-Gathering Behaviour 45

Figure 3.8: Comparison of the s
ores of 100 tests with doping and 100 tests withoutdoping in the food-gathering experiment.as its s
ore on the test set. In Figure 3.8 the histograms of the experiments withand without doping are displayed.As is evident from the histograms, the experiments with doping tend to givebetter solutions than those without doping. The minimum s
ore a
hieved withoutdoping is 27, while the minimum s
ore a
hieved with doping is 43. The highest s
orea
hieved is 61 both with doping (twi
e) and without doping (on
e). For doping, thebulk of the s
ores range from 50 to 60, whereas the bulk of the s
ores obtainedwithout doping are more widely distributed, namely between 40 and 60.Without doping, the s
ore of evolutionary-designed
ontrollers averaged over 100experiments is 48.9 with a standard error of the mean of 0.6. With doping, the s
oreaveraged over 100 experiments equals 53.6 with a standard error of the mean of 0.4.From these numbers it
an be
on
luded that the results a
hieved with doping aresigni�
antly better than those a
hieved without doping (reliability > 99.9%; Cohen,1995).3.4.3 Dis
ussion of the Food-Gathering ExperimentThe food-gathering task is deterministi
 and allows for the generation of novel in-stan
es. Both
hara
teristi
s o�er the advantage that the e�e
t of doping
an easilybe assessed. Clearly, the results show that doping is useful for enhan
ing the qualityand generalisation performan
e of evolutionary-designed
ontrollers.To illustrate the type of solutions obtained, a striking example is presented inFigure 3.9. It shows a path followed by a su

essful rabbit (
ontroller) on a hardinstan
e (P = 150 and d = 3�4). Despite the ability to move in four dire
tions,

46 Doping in Agent Control

Figure 3.9: An example of the path taken by a su

essful rabbit in a hard environ-ment.the rabbit moves to the east and south only. In a post-ho
 analysis of su

essful
ontrollers, I noti
ed that two of their four outputs (namely one of the two longitudeoutputs and one of the two latitude outputs) were dis
onne
ted. Constraining themovement to two orthogonal dire
tions prevents rabbits from moving in
ir
les,whi
h leads to suboptimal performan
e.3.5 Dis
ussionThe appli
ation of DECA to two di�erent tasks showed the feasibility of the DECAapproa
h. In this se
tion DECA will be dis
ussed in more detail. Subse
tion 3.5.1provides insight into why the doping e�e
t o

urs. Doping is
ompared to hill-
limbing in Subse
tion 3.5.2. I dis
uss �ve sear
h te
hniques that provide an alter-native approa
h to deal with the problem of hard instan
es, namely (i) multitasklearning (3.5.3), (ii) multi-obje
tive learning (3.5.4), (iii) boosting (3.5.5), (iv) island-based evolutionary learning (3.5.6), and (v)
onstraint-satisfa
tion reasoning (3.5.7).Finally, Subse
tion 3.5.8 dis
usses how DECA
an be applied to the evolutionarylearning of game AI.Note that I do not
laim that evolutionary learning of a neural
ontroller withDECA provides the best solutions for the problem domains dis
ussed in this
hap-ter. Other te
hniques that use a training set, su
h as reinfor
ement learning, may

3.5 � Dis
ussion 47

Figure 3.10: Typi
al developments of �tness for evolutionary learning with doping(top graph) and without doping (bottom graph). In both graphs the �tness (dividedby 1000) is plotted against the generation. The top
urve in ea
h of the graphs showsthe maximum, and the bottom
urve the average �tness in the population.generate solutions of a quality
omparable to, or even higher than the quality of thesolutions dis
overed by evolutionary learning. The point is that these other te
h-niques are also likely to dis
over better solutions when the doping e�e
t is taken intoa

ount. Therefore, I refrain from dis
ussing su
h alternative te
hniques.3.5.1 Explanation of the Doping E�e
tWhy is DECA a su

essful strategy? Below I attempt to provide a qualitativeexplanation for the su

ess of doping.The sear
h spa
e of task
ontrol problems is spanned by the adaptable parame-ters de�ning the
ontrollers, i.e., by the
onne
tion weights in the neural networks.Hen
e, the dimensionality of the sear
h spa
e is de�ned by the number of adaptableparameters spe
ifying the
ontrollers (the dimensionalities of the box-pushing andfood-gathering
ontrollers are 81 and 92 respe
tively). As stated in Subse
tion 3.1.3I assume that the high-dimensional sear
h spa
e
ontains abundant regions wheresolutions to easy instan
es are found, but only a few small regions where solutionsto hard instan
es reside. Be
ause the hard instan
es en
ompass many, if not allof the di�
ulties posed by the environment, a solution that applies to instan
es ofarbitrary
omplexity is likely to be found relatively near to a hard-instan
e region.Hen
e, doping the initial population with a solution spe
ialised to hard instan
esleads to good generalised solutions.The explanation is supported by the development of the �tness of evolutionpro
esses with and without doping. In Figure 3.10 the developments of �tness in

48 Doping in Agent Control

Figure 3.11: The �tness of doped solutions to a single task, tested on all instan
es,averaged over 100 tests. For doping with solutions to ea
h of the nine instan
es (0to 8), the graph shows the �tness (the left, bla
k bar), and the standard deviation(the right, shaded bar).the evolution of a box-pushing task with doping (the upper graph) and withoutdoping (the lower graph) are
ompared. While these are only two examples, I foundthat they are typi
al for all tests. With doping the �tness of the best
ontrollerin the population starts between 200 and 250. Within one or two generations, the�tness jumps to around 300. After that, the �tness slowly in
reases towards avalue around 320. Without doping, the �tness starts anywhere between 0 and 200.Initially, the �tness in
reases qui
kly to a value between 200 and 250. After that, the�tness progresses slowly towards a value of about 310. These di�erent patterns ofdevelopment, in parti
ular the qui
k rise in �tness at the start of the doped evolutionpro
ess, suggest that DECA takes the best available solution (the doped one) andadapts it to handle the other instan
es.Further support for the explanation is found in experiments that indi
ated thatsolutions to hard instan
es also perform reasonably well on the easy instan
es,whereas the same is not true the other way round. For the box-pushing task thisis illustrated in Figure 3.11. It shows, for ea
h of the doped
ontrollers used in thebox-pushing experiments, the �tness and standard deviation on all instan
es, aver-aged over 100 tests. Controllers evolved on the hardest instan
es 3 and 5 yield thehighest �tness on all other instan
es,
ombined with the lowest standard deviation.To provide solid eviden
e for the explanation, �rst the key assumption in theexplanation for DECA's su

ess, namely the supposed asymmetry of the sear
hspa
e with respe
t to easy and hard solutions, needs to be veri�ed. Moreover,the belief that solutions to hard instan
es en
ompass
hara
teristi
s of solutions toeasy instan
es is a major ingredient for DECA's su

ess, must be
on�rmed. Apossible approa
h to this future resear
h is testing DECA on a variety of ben
hmark

3.5 � Dis
ussion 49problems, designed to exhibit spe
i�

hara
teristi
s with respe
t to the ar
hite
tureof the sear
h spa
e, and with respe
t to overlapping features between instan
es.Tra
ing the lineage of the best evolved solutions to the ben
hmark problems, todetermine whether and how they in
lude doped solutions in their an
estry, will bea key a
tivity in understanding the fa
tors responsible for DECA's su

ess.3.5.2 DECA and Hill
limbingSin
e the explanation for the doping e�e
t states that the evolution pro
ess adaptsthe doped solution to be
ome a general solution, the question may be posed whetherDECA may be
ombined with hill
limbing. Given a doped solution, hill
limbingmay represent a good alternative to standard evolutionary learning to obtain goodresults. I believe, however, that hill
limbing is not a good alternative to evolutionarylearning in DECA for the following reason. While the generalised solution may bein the vi
inity of the solution to a hard instan
e, it is unlikely that it is in thevi
inity of all dimensions of the hard instan
e. Sometimes, adapting the solution tothe hard instan
e to generalise over all instan
es requires large steps in one or a fewdimensions of the sear
h spa
e. In
ontrast to hill
limbing, evolutionary algorithmsare
apable of doing that.Of
ourse, the nature of the sear
h spa
e depends on the type of problem. Hen
e,hill
limbing may yield good results in some
ases, whi
h should be examined in futurework. Montana and Davis (1989) support my line of reasoning in this respe
t, bystating that hill
limbing does not work well for neural network training, sin
e ittends to for
e
onvergen
e to a lo
al optimum instead of a global optimum. Theyre
ommend using hill
limbing only in those
ases where the best solution a
hievedis
lose to the global optimum.3.5.3 DECA and Multitask LearningThe prin
ipal goal of multitask learning is to improve generalisation performan
e ofa
ontroller on a task, by leveraging information obtained from
ontrolling relatedtasks. It does this by training tasks in parallel using a shared representation. Caru-ana (1997)
laims, and shows empiri
ally, that it is more di�
ult to train a
ontrolleron an isolated, di�
ult task, than it is to train a
ontroller on a
ombination of re-lated tasks that in
ludes the di�
ult one. At �rst glan
e, this seems to be in
on�i
twith my
laim, that doping with a
ontroller for a hard instan
e generalises betterthan doping with a
ontroller for an easy instan
e.As Caruana (1997) explains, the `related tasks' used in multitask learning are notso mu
h various instan
es, but simpler subtasks. With DECA the task is the samefor ea
h instan
e, only the environment di�ers. The
laims Caruana (1997) makesabout multitask learning are, therefore, not in
on�i
t with the
laims I make aboutDECA. Moreover, I suspe
t that multitask learning a
tually su�ers from the hard-instan
es problem, be
ause it deliberately fo
usses on easier tasks before ta
kling ahard one. It does that for a good reason, namely that the hard task
annot be solveddire
tly. Obviously, DECA is not intended to deal with these `unsolvable' tasks.

50 Doping in Agent ControlLouis and Li (1997) use an approa
h to multitask learning reminis
ent of DECA.They evolve solutions to subtasks and use those to dope the initial population ofan evolution run that solves the overall task. They dis
overed that doping with thebest solution to ea
h of the subtasks a
tually results in worse overall solutions thanstarting with a randomly initialised population. However, doping with solutions tosubtasks that also give good results on the overall task, leads to signi�
antly bettersolutions than a
hieved with a randomly initialised population. This result supportsmy suggestion in Subse
tion 3.5.1, where it is stated that the doping e�e
t resultsfrom solutions to hard instan
es en
ompassing
hara
teristi
s that are needed tosolve the easier instan
es.It is possible that a
ombination of multitask learning and DECA, where
on-trollers for hard instan
es of the subtasks are doped, may improve the performan
eof either te
hnique alone. This is an interesting notion that warrants exploration infuture work.3.5.4 DECA and Multi-Obje
tive LearningMulti-obje
tive learning aims to �nd a solution that performs well with regard toall individual obje
tives in a set of (often)
on�i
ting obje
tives (Van Veldhuizenand Lamont, 2000). The main problem of multi-obje
tive learning is that it tendsto get stu
k in a lo
al minimum on
e a solution is found for one of the obje
tives.It is generally appre
iated (Horn, 1997; Van Veldhuizen and Lamont, 2000) thata su

essful Multi-Obje
tive Evolutionary Algorithm (MOEA) needs a se
ondarypopulation to store Pareto-optimal solutions (e.g., solutions to single obje
tives),sometimes a
tually involving the se
ondary population in the evolution pro
ess.The instan
es used in the DECA experiments bear some resemblan
e to theobje
tives in multi-obje
tive learning. Interpreting the task instan
es as di�erentobje
tives, multi-obje
tive learning te
hniques
an be applied to the problem ofhard instan
es, sin
e they seek a balan
e between several
on�i
ting obje
tives (VanVeldhuizen and Lamont, 2000). However, the instan
es in the DECA experimentsdo not represent di�erent obje
tives, but di�erent in
arnations of the environment,while the task to be performed is the single obje
tive. Furthermore, the environ-ments are mostly not in
on�i
t with ea
h other. Sin
e, in general, multi-obje
tivelearning te
hniques are geared towards
on�i
ting obje
tives, they do not exploit thesimilarity between the various environments. Therefore, I believe DECA to be bet-ter suited for handling the parti
ular domain of task
ontrol problems. This beliefmust be tested in future work.3.5.5 DECA and BoostingBoosting (S
hapire, 2002) is a learning method, usually employed to design
lassi-�ers, that assigns ea
h sample in the training set a weight. At the beginning allweights are equal, but over time the samples that are handled badly re
eive higherweights than those that are handled well, so that the fo
us of the learning shifts tothe harder samples. If the explanation we gave in Subse
tion 3.5.1 for the doping

3.5 � Dis
ussion 51e�e
t is
orre
t, boosting will at least give evolutionary algorithms a better
han
eto es
ape from lo
al optima where easy instan
es are handled well but hard instan
esare not. However, it does not have DECA's advantage of starting in a lo
al opti-mum for a hard instan
e, in the neighbourhood of whi
h a global optimum shouldbe lo
ated. I therefore expe
t that
ontrollers
reated with boosting on average willbe inferior to those
reated with DECA. Clearly, this expe
tation requires empiri
alvalidation, whi
h is
onsidered future work.3.5.6 DECA and Island-Based Evolutionary LearningEvolutionary algorithms are inherently parallel. On multi-pro
essor
omputers thisis
ommonly exploited by dividing the population into smaller sub-populations, ea
hof whi
h is handled by a di�erent pro
essor. The sub-populations are often referredto as `islands' (Goldberg, 1989). On ea
h island the population is evolutionarytrained on a parti
ular task. The islands ex
hange geneti
 material on a regularbasis. Apart from enabling parallel pro
essing, the islands may
onverge to di�erentsolutions. The ex
hange of geneti
 material might result in an overall solution that
ombines the best of the island-based solutions.Island-based evolutionary learning (Spron
k, Sprinkhuizen-Kuyper, and Postma,2001b) is an attempt to exploit the prin
iples behind parallel evolutionary algorithmsto solve the problem of hard instan
es. The basi
 idea of island-based evolutionarylearning is to distribute the population evenly over a few islands, whereby ea
h islandis assigned a di�erent task instan
e. After all island populations have
onverged to asolution to their assigned task, a new population of the best solutions of ea
h of theislands and a number of random solutions is
reated. A
onventional evolutionaryalgorithm is applied to this new population that is trained to deal with all instan
es.The idea is that the evolution
ombines geneti
 material developed using singleinstan
es to solve the general task.Clearly, island-based evolutionary learning may very well be applied to the prob-lem of hard instan
es. However, empiri
al studies, using the box-pushing task, haverevealed that island-based evolutionary learning tends to generate solutions thatperform well on the hard instan
es (even better than when a regular evolutionaryalgorithm is applied), but show an inferior performan
e on the easy instan
es. As a
onsequen
e, a gain in overall �tness is not obtained (Spron
k et al., 2001b). Fur-thermore, sin
e island-based evolutionary learning evolves a separate solution for allinstan
es, the
omputational time required by the island-based evolution pro
ess ismu
h larger than the
omputational time required by DECA.3.5.7 DECA and Constraint-Satisfa
tion ReasoningConstraint satisfa
tion reasoning (CSR) deals with problems where the solution hasto satisfy a given set of restri
tions or
onstraints (Tsang, 1993). A solution isinvalid unless it ful�ls all the
onstraints. Hen
e, in CSR the problem is to �nd asolution that takes into a

ount all
onstraints rather than one that addresses someof the
onstraints. Interpreting the instan
es as
onstraints, CSR seems appli
able

52 Doping in Agent Controlto alleviate the problem of hard instan
es. However, CSR
annot be readily appliedto the problem. The reason is that in CSR all
onstraints must be stri
tly satis�ed,whereas in task learning it su�
es if the instan
es are handled reasonably well.3.5.8 DECA and Game AIBoth the box-pushing task and the food-gathering task have strong ties to tasksthat agents have to solve in modern
omputer games. The box-pushing task
on-
erns robot
ontrol in a noisy environment, whi
h
an be
ompared to, for instan
e,
ontrolling a ra
e
ar in a ra
ing game (Pyeatt and Howe, 1998), or
ontrolling aso

er-playing agent in a sports game (Van Rijswij
k, 2003). The food-gatheringtask
on
erns e�e
tive path-�nding in an environment �lled with dangers and re-wards, whi
h
an be
ompared to, for instan
e, army movement in a strategy game(Buro, 2003b), or maze-traversing in an ar
ade game (Ledwi
h, 2003). In games,the game AI is responsible for
ontrolling the agents. The results a
hieved withDECA indi
ate, that when game AI is
reated by an evolutionary algorithm, dopingthe initial population with game AI that has been evolved on the hardest agenttask, is likely to result in game AI that is more e�e
tive than when evolved using arandomly-initialised population. This
onje
ture will be used in Chapter 6.Despite the similarities between the two experimental environments used in this
hapter, and some types of agents in games, the question remains whether the learn-ing te
hniques used, evolutionary algorithms and neural networks, are suitable forgame AI. Spron
k et al. (2002) provided an answer to that question, stating thatthey are suitable for o�ine learning of game AI, but not for online learning of gameAI. Chan et al. (2004) and Madeira, Corruble, Ramalho, and Ratit
h (2004) rea
hedsimilar
on
lusions with respe
t to evolutionary algorithms. Chapter 4 will furtherexplore this subje
t.3.6 Chapter SummaryIn this
hapter the problem of hard instan
es was identi�ed, and the DECA approa
hwas proposed to deal with it. In parti
ular, it was demonstrated how doping an ini-tial population with a solution to a single hard instan
e improved the performan
e ontwo quite di�erent tasks. Given the results on the box-pushing and food-gatheringtasks it may be
on
luded that the problem of hard instan
es is alleviated by theappli
ation of DECA. Moreover,
ompared to `regular' evolutionary algorithms, so-lutions dis
overed by DECA not only perform better on hard instan
es, but alsoperform better overall, i.e., a
hieve a signi�
antly higher average �tness. With re-spe
t to games, this means that, when evolutionary algorithms are used to
reatethe game AI, doping the initial population
an be expe
ted to generate better resultsthan when using a randomly-initialised population.

Chapter 4Evolutionary Game AIThe art of progress is to preserve order amid
hangeand to preserve
hange amid order.� Alfred North Whitehead (1861�1947).In Chapter 3 it was shown that evolutionary algorithms
an improve the behaviour ofagents for task
ontrol problems. The present
hapter1 dis
usses evolutionary gameAI, i.e., game AI that employs evolutionary algorithms. The purpose of using evo-lutionary algorithms in game AI is providing a high-entertainment value for humanplayers by evolving
hallenging agent ta
ti
s. Se
tion 4.1 empiri
ally investigateso�line evolutionary game AI, that has the ability to pinpoint potential weaknessesin the agent's behaviour, and to design new ta
ti
s. Se
tion 4.2 empiri
ally inves-tigates online evolutionary game AI, that has the ability to improve game-playingta
ti
s against a spe
i�
 human player. Se
tion 4.3 provides a general dis
ussion ofevolutionary game AI. A summary of the
hapter is provided in Se
tion 4.4.4.1 O�ine Evolutionary Game AIO�ine evolutionary game AI
ontrols agents that are in
ompetition with agents thatemploy existing (usually manually-designed) game AI. O�ine evolutionary game AIhas two appli
ations: (i) to dete
t exploits in the existing game AI (Spron
k et al.,2002; Chan et al., 2004), and (ii) to dis
over new ta
ti
s that
an be used against theexisting game AI (Spron
k et al., 2002; Madeira et al., 2004). Note that, be
ausehuman players are only indire
tly involved when o�ine learning takes pla
e, it isinfeasible to use o�ine evolutionary game AI to adapt the agent's behaviour tospe
i�
 human-player ta
ti
s (Madeira et al., 2004). To investigate the e�e
tivenessof o�ine evolutionary game AI, I tested it on a duelling task in a small strategygame
alled Pi
overse. The approa
h used
onsisted of the following four steps.1This
hapter is based on two papers. Se
tion 4.1 on o�ine evolutionary game AI is based on apaper by Spron
k, Sprinkhuizen-Kuyper, and Postma (2003a). Se
tion 4.2 on online evolutionarygame AI is based on a paper by Bakkes, Spron
k, and Postma (2004).

54 Evolutionary Game AI

Figure 4.1: Pi
overse.1. Evolution: Evolving duelling behaviour that is su

essful against the manually-designed game AI.2. Analysis: Observing and analysing the evolved duelling behaviour, to gaininsight into whi
h areas of the manually-designed game AI
an be improved.3. Derivation: Deriving potential improvements for the manually-designed gameAI.4. Validation: Implementing the potential improvements in the manually-designed game AI, and repeating the Evolution step to investigate their e�e
t.This se
tion des
ribes the duelling task (4.1.1), the experimental pro
edure(4.1.2), the results of the Evolution step (4.1.3), the results of the Analysis step(4.1.4), the results of the Derivation step (4.1.5), the results of the Validation step(4.1.6), and a dis
ussion of the results (4.1.7).4.1.1 The Duelling TaskPi
overse, illustrated in Figure 4.1, is a strategy game for the Palm (handheld)
omputer. Pi
overse's design was inspired by the
lassi
 game Elite by D. Brabenand I. Bell (Spu�ord, 2003). It was developed for two reasons: (i) to support andillustrate views on the design of
omplex Palm games (Spron
k and Van den Herik,2003), and (ii) in the present
ontext, to investigate the appli
ation of ma
hine-learning te
hniques to improve game AI.2In Pi
overse, a human player
ontrols a spa
eship (hen
eforth
alled the`player's ship'). In the game, the player's ship may en
ounter
omputer-
ontrolledenemy ships, and
ombat may ensue between the player's ship and the enemy ships.All ships are equipped with laser guns, and are prote
ted from destru
tion by theirhulls. Hull strength de
reases when a hull is hit by laser beams �red from the laser2Be
ause of time
onstraints, in 2003 developments on Pi
overse were put on hold, to be
ontinued at a later date.

4.1 � O�ine Evolutionary Game AI 55guns. The strength of laser guns and the hull strengths vary from ship to ship. Aship is destroyed when its hull strength is redu
ed to zero. Ships are
ontrolled by
hanging their a

eleration (whi
h in
reases or de
reases velo
ity), and by
hang-ing their rotation (whi
h steers a ship in a di�erent dire
tion). While the relativestrength of laser guns and relative hull strength of battling ships are important fa
-tors in de
iding the out
ome of
ombat, ships have a
han
e to �ee from a battleeven when they are overpowered, provided they are equipped with fast and �exibledrives. However, attempting to �ee is a risky a
tion, be
ause a �eeing ship is unableto
ounteratta
k. The reason is that, to �ee, a ship must turn its ba
k to its atta
ker,and laser guns
an only �re within a 180-degree ar
 at the front of a ship.As is usual for modern games, the
omputer-
ontrolled enemy ships are pro-grammed manually. Upon dete
ting the player's ship, an enemy ship will turntowards it and attempt to
at
h up with it. When the player's ship is within laserrange of an enemy ship, the enemy ship will �re its lasers. It will also attempt tokeep the player's ship within laser range, by mat
hing the speed of the player's ship.To evoke a suspension of disbelief, an enemy ship will attempt to es
ape from aduel that it is bound to lose, rather than
ontinue �ghting until it is destroyed. This�eeing behaviour is implemented as follows: if the ratio of the
urrent and maximumhull strength of the enemy ship is lower than the
orresponding ratio of the player'sship, the enemy ship attempts to �ee by turning around and �ying away at maxi-mum speed. This simple yet e�e
tive behaviour mimi
s a basi
 ta
ti
 often used ingames. It makes the opponent intelligen
e for Pi
overse non-trivial, despite therelatively low level of
omplexity
ompared to state-of-the-art games.Figure 4.2 illustrates the manually-programmed behaviour. The duelling spa
e-ships are represented by the small
ir
les. A ship's dire
tion is indi
ated by a lineinside the
ir
le, and its speed is indi
ated by the length of the line extending fromthe ship's `nose'. The dotted ar
 indi
ates the laser range. The player's ship is �xedat the
entre of the s
reen and dire
ted to the right. During the sequen
e shownin Figure 4.2 it remains stationary. From left to right, top to bottom, the pi
turesdemonstrate the following six events: (i) The two ships starts within viewing rangeof ea
h other (the viewing range of the player's ship is delimited by the large
ir
le).(ii) The
omputer-
ontrolled enemy ship moves towards the player's ship. (iii) Theships bump head-on into ea
h other, whi
h redu
es the speed of both ships to zero.Both ships are �ring their lasers. (iv) The enemy ship has determined it should �eeand turns around. (v) The enemy ship �ees. (vi) The enemy ship es
apes by leavingthe viewing range of the player's ship.The duelling task entails designing su

essful behaviour for the player's shipagainst the enemy ships. Su

essful behaviour for the player's ship
an be used todete
t weaknesses in the manually-programmed behaviour of the enemy ships, andto design
ompletely new ta
ti
s.4.1.2 Experimental Pro
edureO�ine evolutionary game AI was used to solve the duelling task experimentally. Thesu

ess of the experiments with agents in game-like environments (Chapter 3) war-

56 Evolutionary Game AI

Figure 4.2: Manually-programmed behaviour for the Pi
overse
omputer-
ontrolled ships.ranted a similar approa
h to the duelling task. The duelling task was implementedin the Elegan
e environment (2.1.4). Elegan
e uses evolutionary learning toevolve solutions for `plants'. Below, I des
ribe four elements of the experimentalpro
edure: (i) the plant implementation, (ii) the neural-network
ontroller, (iii) theevolutionary algorithm, and (iv) the �tness fun
tion.The �rst element of the experimental pro
edure is the duelling-task plant. Theduelling-task plant represents a player's ship, in a series of
ombat situations withan enemy ship. The player's ship uses dynami
ally determined behaviour, and is
alled the `dynami
 ship'. The enemy ship uses manually-programmed, stati
 gameAI (as des
ribed in Subse
tion 4.1.1), and is
alled the `stati
 ship'. For both ships,laser guns �re automati
ally at appropriate times, and need not be
ontrolled. Thus,plant
ontrol
onsists of setting the a

eleration and rotation values for the dynami
ship.The movement of the ships is turn-based. Movements are exe
uted in an al-ternating sequen
e. The dynami
 ship is allowed to move �rst and the stati
 shipis always allowed a last move even if its hull strength is redu
ed to zero. For tworeasons a turn-based approa
h was preferred over a simultaneous approa
h to the
ombat sequen
es: (i) a turn-based approa
h is used in a number of popular strategygames, and (ii) a turn-based approa
h is
omputationally signi�
antly
heaper than

4.1 � O�ine Evolutionary Game AI 57a simultaneous approa
h, whi
h is an important
onsideration for time-intensiveevolutionary-learning experiments.The se
ond element of the experimental pro
edure is the neural-network
on-troller. In the experiments, the dynami
 ship is
ontrolled by a neural network, i.e.,the game AI of the dynami
 ship is implemented by a neural-network
ontroller. Toredu
e the number of required neural-network inputs,
oordinates are used relativeto the dynami
 ship, i.e., the `game world' is moved so that the dynami
 ship islo
ated at its
entre, and rotated so that the dynami
 ship's `nose' is pointed at anangle of zero degrees.Ten neural-network inputs were used to represent the environment. Four inputsrepresent
hara
teristi
s of the dynami
 ship: (i) the laser-gun strength, (ii) thelaser-gun range, (iii) the hull strength, and (iv) the speed. Five inputs represent
hara
teristi
s of the stati
 ship: (i) the lo
ation dire
tion of the stati
 ship relativeto the dynami
 ship, (ii) the distan
e between the stati
 ship and the dynami
 ship,(iii) the
urrent hull strength, (iv) the �ying dire
tion, and (v) the speed. The tenthinput is a random value, to allow the dynami
 ship an element of randomness in itsde
isions. The neural network has two outputs, namely the a

eleration and rotationof the dynami
 ship. The hidden nodes in the network have a sigmoid a
tivationfun
tion. The outputs of the network are s
aled to ship-spe
i�
 maximums.The third element of the experimental pro
edure is the evolutionary algorithm.The parameters for the evolutionary algorithm were determined during a few trailruns. For the evolutionary algorithm, the population size was equal to 200 and real-valued weights were used. Experiments were allowed to
ontinue for 50 generations.The following six geneti
 operators were employed.
• Uniform
rossover : Child
hromosomes are
reated by
opying ea
h allele fromone of two parents, ea
h parent having a 50 per
ent
han
e of being sele
tedfor ea
h allele (Goldberg, 1989).
• Biased weight mutation (Montana and Davis, 1989): Child
hromosomes are
opies of parent
hromosomes, with ea
h weight having a 10 per
ent
han
eto be mutated by adding a random value sele
ted from the range [−2.0, 2.0].
• Nodes
rossover (Montana and Davis, 1989): Child
hromosomes are
reatedby
opying ea
h of their nodes (in
luding their input
onne
tions) from oneof two parents, ea
h parent having a 50 per
ent
han
e of being sele
ted forea
h node.
• Node existen
e mutation (Spron
k, 1996): Child
hromosomes are
opies ofparent
hromosomes, with a 75 per
ent
han
e of having all in
oming andoutgoing
onne
tions of one randomly-sele
ted node being removed, and a 25per
ent
han
e of having all absent
onne
tions of a randomly-sele
ted nodebeing a
tivated.
• Conne
tivity mutation (Spron
k, 1996): Child
hromosomes are
opies of par-ent
hromosomes, whereby ea
h
onne
tion has a probability of 10 per
ent toswit
h from being
onne
ted to being dis
onne
ted and vi
e versa.

58 Evolutionary Game AI
• Randomisation: A random new
hild
hromosome is generated to preventpremature
onvergen
e.During evolution, one of these six operators was sele
ted at random. For the
rossover operators, I de
ided to add both
hildren to the population. To alleviatethe problem of
ompeting
onventions (2.1.3) the hidden nodes of the parents wererearranged to make their signs mat
h (insofar as possible) before a
rossover tookpla
e (Thierens et al., 1993). Newly generated individuals repla
ed existing individ-uals in the population, while taking into a

ount elitism. Size-3
rowding (Goldberg,1989) was used as repla
ement poli
y. For the sele
tion pro
ess, size-2 tournamentsele
tion was used (Goldberg and Deb, 1991).The fourth element of the experimental pro
edure is the �tness fun
tion. The�tness of the dynami
-ship
ontroller, with a value in the range [0, 1], is de�ned asthe average result on a training set of �fty duels between the dynami
 ship and thestati
 ship. The starting distan
e between the two ships in all of the 50 training-set
ases is in the range [80, 125]. Ea
h duel lasts T = 50 time steps. To ensure equalopportunities for the dynami
 ship and the stati
 ship to a
hieve high �tness, ea
hduel in whi
h the ships start with di�erent
hara
teristi
s is followed by a duel inwhi
h the
hara
teristi
s are ex
hanged between both ships. At time step t the�tness is de�ned as in the following equation.

Ft =











0 Dt ≤ 0

S0Dt

S0Dt + D0St
Dt > 0

(4.1)In this equation, Dt and St are the hull strengths of respe
tively the dynami
 shipand the stati
 ship at time t. The �tness is 0.5 if both ships remain passive or aredamaged for an equal per
entage. If the stati
 ship is damaged for a larger per
entagethan the dynami
 ship, the �tness is greater than 0.5, and if the reverse is true (orwhen the dynami
 ship is destroyed) the �tness is smaller than 0.5. Consequently, the�tness fun
tion favours atta
king if it leads to vi
tory, and favours �eeing otherwise.The overall �tness F for a duel is determined as the average of the �tness values atea
h time step, i.e., F =
∑T

t=1
Ft

T .4.1.3 Evolving Su

essful Duelling BehaviourAn experiment with o�ine evolutionary game AI was performed, with the pur-pose of evolving duelling behaviour that is su

essful against the manually-designedgame AI, des
ribed in Subse
tion 4.1.1. Sin
e the experiment was exe
uted usingElegan
e, a neural network was used to implement the evolved behaviour. Dif-ferent neural-network ar
hite
tures may yield di�erent results. For la
k of insightinto whi
h neural-network ar
hite
ture gives the best results for the duelling task, Ide
ided to test seven di�erent ar
hite
tures, whi
h are listed in Table 4.1.The question should be answered how su

essful duelling behaviour
an be re
og-nised. It
an be argued that a neural-network
ontroller with a �tness value > 0.5

4.1 � O�ine Evolutionary Game AI 59Neural network type Hidden Hidden Tests Average Lowest Highestlayers nodes �tness �tness �tnessRe
urrent 1 5 5 0.516 0.459 0.532Re
urrent 1 10 5 0.523 0.497 0.541Re
urrent 2 10 7 0.504 0.482 0.531General feed-forward n/a 7 5 0.472 0.382 0.527Layered feed-forward 2 10 5 0.541 0.523 0.579Layered feed-forward 2 20 8 0.537 0.498 0.576Layered feed-forward 3 15 7 0.515 0.446 0.574Table 4.1: Results a
hieved in the duelling-behaviour experiment, for seven di�erentneural-network
ontroller ar
hite
tures.performs better than the stati
 ship's game AI. But how high
an we expe
t the�tness a
tually to be
ome? To provide an answer to that question, I
al
ulated the�tness of a dynami
 ship that is stationary, i.e., that will �re its laser guns at thestati
 ship when appropriate, but that will not a

elerate or rotate. I found that, onthe training set, a stationary dynami
 ship a
hieves a �tness of 0.362. If the �tnessfor the stati
 ship is
al
ulated a

ording to formula 4.1, the stati
 ship's �tness is
1 − F , where F is the dynami
 ship's �tness. Sin
e it is reasonable to assume thatthe stati
 ship performs better than a stationary ship, a �tness of 1− 0.362 = 0.638
an be
onsidered an upper bound to the �tness of the dynami
 ship's
ontroller.Table 4.1 presents the results a
hieved for evolving neural-network
ontrollers forthe dynami
 ship. For ea
h of the neural-network ar
hite
tures tested, from left toright, the
olumns indi
ate (i) the neural-network ar
hite
ture, (ii) the number ofhidden layers, (iii) the number of hidden nodes (the hidden nodes are evenly distrib-uted over the hidden layers), (iv) the number of tests, (v) the average �tness value,(vi) the lowest �tness value a
hieved, and (vii) the highest �tness value a
hieved.The best results for the average and highest �tness values a
hieved are printed inboldfa
e. Two
on
lusions are derived from Table 4.1.First, it is evident that, in this environment, two-layered feed-forward networksoutperform all other networks in terms of both average and maximum �tness values.The network with �ve nodes in ea
h hidden layer did not s
ore signi�
antly betterthan the network with ten nodes in ea
h layer.Se
ond, a layered feed-forward neural network with 10 hidden nodes in two layersa
hieved a �tness of 0.579. Compared to the theoreti
al upper bound of 0.638, a�tness value of 0.579 indi
ates very su

essful duelling behaviour.It should be noted, that from the perspe
tive of game-play experien
e, the �tnessrating as
al
ulated in the experiment is not as important as the obje
tive resultof a �ght. A �ght
an end in a vi
tory, a defeat, or a tie.3 For the best
ontroller3A tie means that both ships survive the en
ounter. It does not mean that both ships aredestroyed. The destru
tion of both ships is
onsidered to be a loss for the dynami
 ship.

60 Evolutionary Game AIevolved, we found that 42 per
ent of the en
ounters ended in a vi
tory for thedynami
 ship, 28 per
ent in a defeat, and 30 per
ent in a tie. This means that 72per
ent of the en
ounters ended in a situation not disadvantageous to the dynami
ship. The dynami
 ship a
hieved 50 per
ent more vi
tories than the stati
 ship.Clearly, on the training set the dynami
 ship performs
onsiderably better than thestati
 ship. This supports the statement that the �tness value of 0.579 indi
atessu

essful duelling behaviour.4.1.4 Analysis of Su

essful Duelling BehaviourAn analysis of the behaviour of the best-performing dynami
 ship showed that itexhibited appropriate following behaviour when it overpowered the stati
 ship. Inthe experiment, su
h following behaviour is never detrimental to the performan
e.The reason is that the stati
 ship's game AI ensures that, while �eeing, the stati
ship will only turn around to atta
k if the dynami
 ship's hull strength be
omes lessthan its own. As long as the dynami
 ship remains behind the stati
 ship, this willnot happen.While in pursuit, the dynami
 ship avoided bumping against the stati
 ship.Avoiding bumping is appropriate behaviour, be
ause bumping would redu
e the dy-nami
 ship's speed to zero, while leaving the stati
 ship's speed una�e
ted. Thiswould give the stati
 ship an opportunity to es
ape. However,
ontrary to expe
ta-tion the dynami
 ship did not avoid bumping by redu
ing its speed when approa
h-ing the stati
 ship, but by swerving as mu
h as needed to keep a
onstant relativedistan
e to the stati
 ship.The dynami
 ship did not try to �ee when losing a �ght. The probable reasonis that for a spa
eship to �ee, it must turn its ba
k toward the enemy. The �eeingship then be
omes a target that does not have the ability to �ght ba
k (sin
e laserguns only �re from the front of the ship). As a result, �eeing ships are almostalways destroyed before being able to es
ape. Attempts to es
ape seem thereforeof little use. From this observation it
an be
on
luded that in the a
tual game abetter balan
e between the power of the weapons and the versatility of the ships isrequired to enable e�e
tive es
aping behaviour.The purpose of the experiment was to dis
over possible improvements to thestati
 ship's game AI. I found two su
h improvements, whi
h are detailed below.The �rst possible improvement was suggested by the dynami
 ship's ability toexploit a weakness in the stati
 ship's game AI. The weakness spotted was thefollowing. The stati
 ship bases its de
ision to �ee on a
omparison between therelative hull strengths. The
omparison does not take into a

ount that it is the stati
ship's initiative (i.e., turn to a
t) when it makes the de
ision. If the
omparativehull strengths are
lose to ea
h other, this be
omes an important
onsideration. Forinstan
e, if on the initial approa
h the stati
 ship
omes within the dynami
 ship'slaser-gun range before being able to �re its own laser guns, it will be damaged whilethe dynami
 ship remains undamaged. Regardless of its own laser-gun strength andhull strength, this would
ause the stati
 ship's initial rea
tion to be attemptingto �ee. Sin
e in most
ases it would still be able to �re its laser guns on
e, this

4.1 � O�ine Evolutionary Game AI 61

Figure 4.3: The stati
 ship approa
hes the dynami
 ship from behind.behaviour had little in�uen
e when the stati
 ship signi�
antly overpowered thedynami
 ship. However, if the strengths of the ships were about equal, we found thedynami
 ship to exploit this weakness of the stati
 ship, by attempting to manoeuvreinto a position from whi
h it
ould �re the �rst shot.4 Removing this exploit fromthe stati
 ship's game AI
an be
onsidered as a possible improvement.The se
ond possible improvement was suggested by a surprising manoeuvre of thedynami
 ship, that was observed when the stati
 ship started behind the dynami
ship, as illustrated in Figure 4.3. In su
h
ases, the dynami
 ship often attemptedto in
rease the distan
e between the two ships, up until the point where a furtherin
rease in separation would imply a tie. At that point, the dynami
 ship turnedaround and either (i) started to atta
k, or (ii) in
reased the distan
e between the twoships again, and atta
ked after a se
ond turn. Figure 4.4 illustrates this sequen
e ofevents. In the �gure, the right panel displays a tra
e of the movements of the dynami
ship up to the moment that it �res its �rst shot. The stati
 ship is overpowered (itshull strength is very low
ompared to the hull strength of the dynami
 ship, as
an be observed at the top of the display) and tries to �ee, but the dynami
 shipfollows, as shown in the left panel. An explanation for the su

ess of the observedbehaviour is that, if the distan
e between the two ships is maximal, the dynami
ship will have a maximal amount of time to turn around and fa
e the stati
 shipbefore the stati
 ship
an �re its laser guns. Sin
e fa
ing the opponent is requiredto
ounter-atta
k, the observed behaviour is bene�
ial to the dynami
 ship's ta
ti
s.Below this behaviour is reformulated as a possible improvement of the stati
 ship'sgame AI.4It is noteworthy that in many
ommer
ial turn-based games similar short
omings in the gameAI
an be observed. For instan
e, in many games it is a good ta
ti
 for the player to pass gameturns until the enemy has approa
hed to a
ertain distan
e, so that the player
an initiate the �rstatta
k. Game designers will seldom let game-playing agents employ su
h a ta
ti
, be
ause it
ouldlead to a stalemate, where both the player and the
omputer refuse to move, sin
e whoever makesthe �rst move is at a disadvantage. Similarities with tren
h warfare are striking.

62 Evolutionary Game AI

Figure 4.4: The dynami
 ship evades the stati
 ship before it atta
ks.4.1.5 Deriving Duelling ImprovementsThe two possible improvements derived from the analysis of the most su

essfuldynami
 ship (4.1.4), resulted in two possible
hanges to the stati
 ship's game AI.The
hanges are the following.Fleeing
hange: Before
omparing the hull strength ratios of the two ships, thestati
 ship assumes that it is able to shoot the dynami
 ship on
e more beforeevaluating the ratios. This
hange e�e
tively removes the possibility for thedynami
 ship to tri
k the stati
 ship into attempting to �ee, when the dynami
ship is able to strike �rst.Aft-atta
k
hange: When atta
ked from behind it may be bene�
ial for the stati
ship to attempt to in
rease the distan
e between the two ships before turningaround. This was implemented as follows. First, three
onditions are
he
ked,namely (i) whether the dynami
 ship is behind the stati
 ship, (ii) whether thestati
 ship is undamaged, and (iii) whether the distan
e between the ships is inthe range [75, 150] (180 being the distan
e beyond whi
h a �ght ends in a tie).If all three
onditions are true, then the stati
 ship does not rotate, but simplyin
reases its speed to maximum, in order to in
rease the distan
e between

4.1 � O�ine Evolutionary Game AI 63AI AI-0 AI-1 AI-2 AI-3AI-0 0.499 (15/16) 0.481 (15/18) 0.504 (13/15) 0.505 (15/16) 0.497AI-1 0.525 (18/17) 0.491 (16/17) 0.500 (13/17) 0.504 (15/17) 0.505AI-2 0.501 (13/14) 0.485 (13/15) 0.494 (10/13) 0.489 (11/13) 0.492AI-3 0.507 (14/14) 0.487 (13/14) 0.497 (10/13) 0.492 (11/13) 0.4960.508 0.486 0.499 0.498 Avg.Table 4.2: Comparison of four game-AI variations.the two ships. If the distan
e be
omes larger than 150, it is
onsidered to besu�
iently large to let the stati
 ship turn around safely. If the distan
e issmaller than 75, the stati
 ship is assumed to be unable to outrun the dynami
ship, so it always turns towards the dynami
 ship.With these two possible
hanges, four variations of the stati
 ship's game AI
an be de�ned. These are the following. `AI-0' is the un
hanged, original gameAI. `AI-1' is the original game AI, enhan
ed with the �eeing
hange. `AI-2' is theoriginal game AI, enhan
ed with the aft-atta
k
hange. `AI-3' is the original gameAI, enhan
ed with both the �eeing
hange and the aft-atta
k
hange.The relative strengths of these four game-AI variations
an be derived by pittingthem against ea
h other. The results of the
ross-
omparison are shown in Table4.2. The rows and
olumns represent the game AI variations used for the two ships;the ship represented by a row is allowed to move �rst. The
ells of the table showthe resulting �tness of the game AI of the �rst-moving ship. Next to the �tness,between bra
kets, the number of wins and losses (`wins/losses') is shown. The right
olumn shows the average �tness over the rows, and the bottom row the average�tness over the
olumns.It is
lear from Table 4.2 that the four game-AI variations do not greatly di�er instrength. This
omes as no surprise, be
ause their implementations are very similar.The average �tness is highest for AI-1 (0.505), and the average �tness is lowest whenit is
al
ulated against an opponent using AI-1 (0.486). Therefore, AI-1 seems to bethe most e�e
tive of the four variations. However, the di�eren
e between AI-1 andthe other three variations is too small to be
onsidered signi�
ant.Two unexpe
ted results
an be derived from Table 4.2. The �rst unexpe
tedresult is that the �tness values on the main diagonal deviate from 0.5, despite thefa
t that the
ompeting variations on the diagonal are equal. The deviation is
ausedby the turn-based handling of the en
ounters. Sin
e all values on the diagonalare slightly lower than 0.5, it
an be
on
luded that on the 50 training-set
asesthe se
ond-moving ship has a small advantage over the �rst-moving ship. Notethat this does not entail that initiative is disadvantageous per se, only that it isdisadvantageous in the training set.The se
ond unexpe
ted result
on
erns the �tness values and the asso
iated win-loss ratios, whi
h in some
ases seem
ounter-intuitive. For instan
e, AI-0 for the

64 Evolutionary Game AIAI Tests Average Lowest Highest Win/loss Average Win/losson test set on test setAI-0 8 0.537 0.498 0.576 19/14 0.490 16/19AI-1 6 0.486 0.471 0.528 9/12 0.434 9/20AI-2 6 0.547 0.479 0.615 16/8 0.476 10/16AI-3 7 0.517 0.463 0.570 17/11 0.442 13/19Table 4.3: Results of testing o�ine evolutionary game AI against four game-AIvariations.�rst-moving ship, pitted against AI-2 for the se
ond-moving ship, has a �tness valueof 0.504. This value, whi
h is slightly greater than 0.5, indi
ates that AI-0 performsbetter than AI-2. However, this is
ombined with 13 wins against 15 losses. Despitethe higher �tness value, AI-0 appears weaker than AI-2 in terms of number of wins.The explanation is that the �tness is not based on the number of wins and losses,but on the
hange of the relative hull strengths during a �ght. A fast win mightyield a higher �tness than a slow win. As a result, in the �tness rating a few fastwins
an
ompensate for a few extra (slow) losses.4.1.6 Validating Duelling ImprovementsTo validate the improvements to the stati
 ship's game AI, the experiment detailedin Subse
tion 4.1.2 was repeated with three
hanges: (i) for the stati
 ship I tested allfour variations of the game AI de�ned in Subse
tion 4.1.5, (ii) be
ause preliminarytests revealed that a feed-forward
ontroller with 5 nodes in ea
h layer was notpowerful enough to oppose the new versions of the stati
 ship, for the neural-network
ontroller only a feed-forward
ontroller with two 10-node hidden layers was used,and (iii) the best results a
hieved on the training set were re-evaluated on �ve testsets, ea
h
onsisting of 50 novel en
ounters.Table 4.3 shows the results of the validation experiment. From left to right,the eight
olumns represent: (i) the game AI of the stati
 ship, (ii) the number ofexperiments performed against this game AI, (iii) the average �tness of the dynami
ship, (iv) the lowest �tness value, (v) the highest �tness value, (vi) the number ofwins and losses of the dynami
 ship with the highest �tness value, (vii) the average�tness of the best dynami
 ship re-evaluated on �ve test sets, and (viii) the averagenumber of wins and losses for the re-evaluation.Clearly, on the training set the dynami
 ship outperforms three out of four game-AI variations. Only the stati
 ship using AI-1 (whi
h implements the �eeing
hange)outperforms the dynami
 ship. Against AI-1, the dynami
 ship has an average �tnesslower than 0.5, and even the dynami
 ship with the highest �tness value against AI-1 loses more often than the stati
 ship. It is also
lear that AI-2 (the game-AIvariation that implements the aft-atta
k
hange) does not in
rease the e�e
tivenessof the stati
 ship. AI-2 performs even worse than the original (un
hanged) AI-0.

4.1 � O�ine Evolutionary Game AI 65The results of the best dynami
 ships on the test sets show that the average �tnessdrops
onsiderably from its original value. This indi
ates that, unsurprisingly, thedynami
 ship is fo
used too mu
h on the en
ounters
omprising the training set,i.e., it is over�tting the training set. Interestingly, both the �tness and the win-lossratio de
rease to a larger extent for AI 2 and AI 3 (the game-AI variations that both
ontain the aft-atta
k
hange) than for AI-0 and AI-1. Therefore, over�tting seemsto be a more severe problem when trained on AI-2 and AI-3, than when trainedon AI-0 and AI-1. Moreover, the dynami
 ships evolved against AI-0 and AI-2(the two game-AI variations that do not implement the �eeing
hange) end up witha signi�
antly higher average �tness on the test sets than the other two game-AIvariations. This means that for the dynami
 ship it is easier to deal with a game-AI variation that does not implement the �eeing
hange, than with one that does.Therefore, the
on
lusion is warranted that implementation of the �eeing
hangeimproves the e�e
tiveness of the stati
 ship's game AI.4.1.7 Dis
ussion of the Duelling ExperimentsWhile implementation of the �eeing
hange
learly improves the behaviour of the sta-ti
 ship, implementation of the aft-atta
k
hange seems to weaken it somewhat. Thisdoes not mean that the aft-atta
k
hange should not be implemented in a publishedgame. In a game su
h as Pi
overse there should be several di�erent game-AI vari-ations available to
omputer-
ontrolled agents. They must vary in strength and beappli
able in various situations. The aft-atta
k
hange may be more e�e
tive whenthe situations in whi
h it is a sound ta
ti

an be su

essfully identi�ed. In addition,allowing some (but not all) agents to use this ta
ti
 introdu
es heterogeneity whi
hmakes opponent behaviour less predi
table, and thus more entertaining.In Table 4.2 a dis
repan
y between the �tness results and the ratio of wins andlosses
an be observed. Sin
e in terms of game-play experien
e the win-loss ratio isa more important measure for su

ess than the
hange in hull strength, the �tnessfun
tion used is probably not the most suitable for these experiments. In itself, thewin-loss ratio is not a good alternative for a �tness measure, be
ause it does notreward small favourable
hanges in the behaviour of the dynami
 ship. However,extending the �tness fun
tion with penalties for losing a duel and with extra rewardsfor winning a duel may improve the
orresponden
e between the �tness rating andthe win-loss ratio.The fa
t that the results of the re-evaluation of the dynami
 ships on the test setsdi�ered
onsiderably from the results on the training set, indi
ates that the dynami
ship did not generalise to novel situations. A larger training set would probably yielda more general
ontroller, at the
ost of a
onsiderably in
reased
omputation time.However, in this parti
ular resear
h domain the la
k of the ability to generalise isnot a problem, as long as existing exploits in the game AI are dis
overed. The goalof the present experiments is not to generate good game AI, but to dis
over exploitsand new ta
ti
s.5 O�ine evolutionary game AI managed to a
hieve that goal.5Of
ourse, that does not mean game AI resear
hers and developers are not interested in usingo�ine learning to
reate generalised game AI. Su
h o�ine learning will be dis
ussed in Chapter 6.

66 Evolutionary Game AIChan et al. (2004) investigated the evolution of a
tion sequen
es for FIFA-99.As Spron
k et al. (2002)
on
luded, they, too, found that o�ine evolutionary gameAI
an be used to dete
t exploits and dis
over new ta
ti
s. However, instead ofa neural network to implement adaptive game AI, they used a Markov De
isionPro
ess (MDP), whi
h is arguably a better
hoi
e in this respe
t. Usually, gameAI needs to
ouple environmental
ir
umstan
es to spe
i�
 a
tions for an agent toundertake. The game AI should re�e
t the human thought pro
ess, whi
h gamedevelopers aspire to imitate in agents. For this, s
ripts (whi
h are preferred by mostgame developers), �nite-state ma
hines, and MDPs may be suitable
hoi
es, but aneural network is not. Neural networks are suitable to emulate non-linear fun
tions,not produ
tion rules. An approa
h to o�ine evolutionary learning based on dire
tlyevolving s
ripted AI will be used in Chapter 6.4.2 Online Evolutionary Game AIOnline evolutionary game AI
ontrols agents that are in
ompetition with humanplayers. It has two appli
ations: (i) to resolve weaknesses in the game AI whenthey are exploited by the human player (self-
orre
tion), and (ii) to
reate new ta
-ti
s in response to ta
ti
s employed by the human player (
reativity). For onlineevolutionary game AI to be appli
able in pra
ti
e, it must meet the
omputationalrequirements of (i) speed, (ii) e�e
tiveness, (iii) robustness, and (iv) e�
ien
y (2.3.4).In general, evolutionary algorithms are
omputationally intensive (i.e., they are notfast), generate noisy results (i.e., they are not e�e
tive), and require numerous exper-iments (i.e., they are not e�
ient). Furthermore, in an environment with inherentrandomness they
an be made robust, but only at the
ost of speed and e�
ien
y,whi
h for online learning
annot be spared. These
hara
teristi
s indi
ate that it isquite a
hallenge to implement online evolutionary game AI su

essfully.To investigate the potential of online evolutionary game AI, the Team-orientedEvolutionary Adaptability Me
hanism (TEAM) was designed. TEAM applies onlineevolution to game AI that
ontrols a team of agents, that play `
apture-the-�ag'in the a
tion game Quake III Arena (hen
eforth referred to as Quake).6 Thisse
tion des
ribes
apture-the-�ag inQuake (4.2.1), the design of online evolutionarygame AI that plays
apture-the-�ag (4.2.2), the experimental pro
edure used to testthe design (4.2.3), the results of an experiment in whi
h team game AI was evolved(4.2.4), and a dis
ussion of the results (4.2.5).4.2.1 Capture-the-Flag in QuakeQuake is a `3D shooter' (2.2.2). It has been used by several resear
hers in theirresear
h, be
ause it is popular, state of the art, and highly adaptable (Laird, 2001;Van Waveren and Rothkrantz, 2002). In Quake, a human player
ontrols an agentin a real-time 3D virtual world,
alled a `map'. In regular Quake game-play, a6This experiment was performed by Bakkes (2003), in
ollaboration with and under supervisionof the author.

4.2 � Online Evolutionary Game AI 67

Figure 4.5: Quake III Arena in
apture-the-�ag game-play mode. A shot is �redat an agent that
arries the �ag.player's obje
tive is to eliminate opponent agents. The opponent agents are either
ontrolled by other human players, or by the
omputer. The map provides agentswith obje
ts that
an be used to a
hieve their goals, su
h as weapons and armour.An eliminated agent is not removed from the game, but `respawns' at a designatedlo
ation on the map (Van Waveren and Rothkrantz, 2002).Capture-the-�ag is a team-oriented game-play mode for Quake. In
apture-the-�ag ea
h agent belongs to one of two opposing teams. Ea
h team has a base onthe map, and an obje
t representing a �ag, that is initially lo
ated at the team'sbase. A team's primary goal in
apture-the-�ag is to
apture the opposing team's�ag and bring it to its own base, whi
h s
ores a point. After delivery of the �ag,the �ag returns immediately to its starting lo
ation. The game is won by the teamthat s
ores the most points (Van Waveren and Rothkrantz, 2002). Figure 4.5 showsa s
reenshot of Quake during a
apture-the-�ag game.In
apture-the-�ag modeQuake
ontains two di�erent kinds of game AI, namely(i) agent AI, and (ii) team AI. Agent AI is the game AI that is lo
alised within ea
hindividual
omputer-
ontrolled agent, determining the behaviour of the agent, at an

68 Evolutionary Game AIState S
ore O�ensive Defensive N = 4No �ags stolen winning max(0.4N, 4) max(0.5N, 5) (2,2,0)No �ags stolen losing max(0.5N, 5) max(0.4N, 4) (2,2,0)Home �ag stolen winning max(0.7N, 6) max(0.3N, 3) (3,1,0)Home �ag stolen losing max(0.7N, 7) max(0.2N, 2) (3,1,0)Opponent �ag stolen winning max(0.3N, 3) max(0.6N, 6) (1,2,1)Opponent �ag stolen losing max(0.3N, 3) max(0.6N, 6) (1,2,1)Both �ags stolen winning max(0.5N, 5) max(0.4N, 4) (2,2,0)Both �ags stolen losing max(0.5N, 5) max(0.4N, 4) (2,2,0)Table 4.4: Role divisions of the Quake stati
 team AI.operational level of intelligen
e. Team AI is the game AI that is implemented asa
entralised
oa
h for the
omputer-
ontrolled team, determining the behaviour ofthe team as a whole, at a ta
ti
al level of intelligen
e. The team AI provides ea
hof the members of a team with behavioural guidelines. The agent AI takes de
isionswithin the boundaries set by the guidelines (Van der Sterren, 2002).The team AI implemented in Quake by the game developers assigns ea
h teammember a role,
orresponding to the
urrent game state and the
urrent s
ore. Threedi�erent roles are de�ned, namely (i) o�ensive, (ii) defensive, and (iii) roaming. Fourdi�erent game states are de�ned, distinguishing whether or not ea
h of the two �agsis lo
ated at its base. Two di�erent s
ore situations are de�ned, namely whetherthe team is winning or losing. The implementation of a role di�ers between gamestates. For instan
e, when the opposing team's �ag is at its base, an agent withan `o�ensive' role attempts to
apture that �ag. When the opposing team's �agis
aptured, an agent with an `o�ensive' role fo
uses on atta
king members of theopposing team.The Quake team AI is stati
, i.e., the role division and the role assignments arepre-programmed, although di�erent
on�gurations are used for the four di�erentgame states and the two di�erent s
ore situations. The
al
ulations for the eightdi�erent role divisions are listed in Table 4.4. The �ve
olumns of the table represent(i) the game state, (ii) the s
ore situation (`winning' or `losing'), (iii) the
al
ulationfor the number of team members in an o�ensive role, (iv) the
al
ulation for thenumber of team members in a defensive role, and (v) the role division for a teamwith four members (respe
tively `o�ensive',`defensive', and `roaming'). In the
al
u-lations, N represents the total number of team members, and the
al
ulation resultsare rounded to the nearest integer value.Adaptive team AI has the ability to tune automati
ally the team behaviour tothe ta
ti
s of the opposing team. Therefore, enhan
ing the Quake team AI withadaptive
apabilities has the potential to improve a team's behaviour. In the presentresear
h, online evolutionary learning is used to implement adaptive team AI.

4.2 � Online Evolutionary Game AI 694.2.2 Adaptive Team AI with TEAMThe Team-oriented Evolutionary Adaptability Me
hanism (TEAM) is an online evo-lutionary learning te
hnique designed to adapt the team AI of Quake-like games(Bakkes et al., 2004). TEAM is appli
able under the
ondition that the behaviourof a team in a game is de�ned by a small number of parameters, spe
i�ed per gamestate. A spe
i�
 instan
e of team behaviour is de�ned by values for ea
h of the para-meters, for ea
h of the states. TEAM is de�ned as a regular evolutionary algorithm,su
h as a geneti
 algorithm, applied to team-behaviour learning, with the followingsix properties.State-based evolution: TEAM employs a separate evolutionary pro
ess for ea
hstate, ea
h with its own population of
hromosomes. The idea is that su
-
essful behaviour for ea
h of the separate states
an be evolved faster thansu

essful behaviour for all states, a
knowledging the requirement that onlineevolutionary game AI must be e�
ient. The
ombination of the best solutionsfor ea
h of the states is
onsidered to be the best solution for the team AI asa whole.State-based
hromosome en
oding: TEAM's
hromosomes en
ode the state'sparameters, using real values.State-transition-based �tness fun
tion: TEAM uses a �tness fun
tion basedon state transitions. Bene�
ial state transitions reward the
hromosome that
aused the state transition, while detrimental state transitions punish it. Usu-ally, an assessment of whether a state transition is bene�
ial or detrimental
annot be given immediately after the transition; it must be delayed until thegame has been observed for a while.7Fitness propagation: TEAM propagates �tness values from
hild
hromosomesto their parents. This ensures that a parent
hromosome with a high �tnessvalue, that mostly produ
es
hildren with low �tness values, will get a low�tness value over time. The idea is that su
h a parent probably a
hieved high�tness due to
han
e, and not due to the quality of the solution it represents.This a
knowledges the requirement that online evolutionary game AI must berobust.Elitist sele
tion: TEAM always sele
ts the highest-ranking
hromosome to use asparent for the evolution pro
ess, a
knowledging the requirement that onlineevolutionary game AI must be e�e
tive. While in most appli
ations elitistsele
tion is risky when randomness is involved in the �tness
al
ulation (as isgenerally the
ase in games), the �tness-propagation me
hanism prote
ts theevolution against inferior top-ranking
hromosomes.7For instan
e, if a state transition happens from a state that is neutral for the team to a statethat is good for the team, the transition seems bene�
ial. However, if this is immediately followedby a se
ond transition to a state that is bad for the team, the �rst transition
annot be
onsideredbene�
ial, sin
e it may have been the primary
ause for the se
ond transition.

70 Evolutionary Game AIManually-designed initialisation: TEAM's population is initialised with
hro-mosomes that are designed manually. This ensures that the team AI is e�e
-tive from the outset, a
knowledging the requirement that online evolutionarygame AI must be e�e
tive.TEAM di�ers from reinfor
ement learning, a

ording to the spe
i�
ations givenby Sutton and Barto (1998), for two of its features, namely that (i) TEAM uses apopulation (admittedly, in a minor role), and (ii) TEAM uses undire
ted geneti
operators to s
an the sear
h spa
e, whereas reinfor
ement learning uses a gradient-based sear
h.4.2.3 Experimental Pro
edureTo evaluate the suitability of TEAM for implementing adaptive team AI, it wastested with the
apture-the-�ag game-play mode in Quake III Arena. Similar tothe experimental pro
edure used for the duelling experiment (4.1), a dynami
 teamemploying TEAM was pitted against a stati
 team. The stati
 team used the defaultQuake team AI, whi
h has the ability to adapt the team behaviour to the
urrentstate of the game. Ea
h team
onsisted of four agents.The four game states of Quake in
apture-the-�ag mode, with their state tran-sitions, are illustrated in Figure 4.6. Using D and S to denote the dynami
 team's�ag and the stati
 team's �ag respe
tively, and the subs
ripts b and s to denotea �ag being at its base and a �ag being stolen respe
tively, the states are de�nedas (Db, Sb), (Ds, Sb), (Db, Ss), and (Ds, Ss). Sin
e events in Quake are handledsequentially, in theory transitions are impossible between states that are lo
ated di-agonally opposite ea
h other in Figure 4.6. From the point of view of the dynami
team, state transitions
an be bene�
ial, indi
ated with a `+', or detrimental, indi-
ated with a `−'. Depending on the
ir
umstan
es, some transitions
an be both.For instan
e, when a transition (Ds, x) → (Db, x) o

urs, the reason is either thatthe dynami
 team inter
epted its stolen �ag, whi
h is bene�
ial, or that the stati
team s
ored a point, whi
h is detrimental.The
hromosome used to represent ea
h state was kept small, to eli
it speedyevolution. It
ontained only two parameters, namely (i) the ratio of `o�ensive' agents
ro, and (ii) the ratio of `defensive' agents rd. Both ro and rd were de�ned as realvalues in the range [0,1℄. Translation of a ratio to the number of agents in the
orre-sponding role, was exe
uted by multiplying the ratio with the total number of agents,rounding up for `o�ensive' agents, and rounding down for `defensive' agents. Theassignment of sele
ted roles to spe
i�
 agents was
opied from the default Quaketeam AI. Agents that were assigned neither an `o�ensive' role, nor a `defensive' role,were assigned a `roaming' role.After ea
h state transition, a new
hromosome was generated for the state inwhi
h the game then resided. This
hromosome was used to determine the team AI.The team's behaviour under guidan
e of the new team AI was used to determinethe
hromosome's �tness F ∈ [0, 1], a

ording to the following equation.

4.2 � Online Evolutionary Game AI 71

Figure 4.6: State transitions in a
apture-the-�ag game.
F =

T+d
∑

i=T

Fi

(T − i) + 1
(4.2)In this equation, T is the number of the state transition after whi
h the
hromosomewas generated, and d is the `depth' of the
al
ulation, i.e., the number of statetransitions that pass before the
hromosome's �tness is
al
ulated. In the experiment

d = 2 was used. The value Fi ∈ [0, 1] represents the per
eived �tness between statetransitions i and i + 1. Fi is
al
ulated a

ording to the following equation.
Fi =











1 − min
(

0.1
(√

ti −
√

ti/3
)

, 1
) {+ transition}

min
(

0.1
(√

ti −
√

ti/3
)

, 1
) {− transition} (4.3)In this equation, ti is the number of se
onds that pass between state transitions iand i + 1. The e�e
t of equations 4.2 and 4.3 is that the �tness value awarded toa
hromosome is higher when the team AI it represents promotes bene�
ial statetransitions (marked `+' in Figure 4.6), and lower when the team AI it representspromotes detrimental state transitions (marked `−' in Figure 4.6). The longer theresulting game states are maintained, the bigger the e�e
t is.

72 Evolutionary Game AIRe
ombination operators (geneti
 operators that use geneti
 material from mul-tiple parents) often generate
hildren that are radi
ally di�erent from their parents(Davis, 1991), and thus often produ
e inferior results, whi
h should be avoided ona

ount of the requirement of e�e
tiveness. Therefore, it was de
ided that only ageneti
 mutation operator was to be used to generate new
hromosomes.The geneti
 mutation operator was always applied to the best
hromosome in thepopulation. Its e�e
t was s
aled in
orresponden
e to the �tness of the parent
hro-mosome it mutated: a parent with a high �tness got a small mutation, while a parentwith a low �tness got a large mutation. The mutation was implemented as a biasedmutation on one or both genes in the
hromosome, while ensuring that the resulting
hromosome always represented a legal role division. Newly generated
hild
hro-mosomes either repla
ed the bottom-ranking
hromosome in the population, or weredis
arded, if their �tness did not ex
eed the bottom-ranking
hromosome's �tness.With respe
t to �tness propagation, the �tness
al
ulated for
hild
hromosomeswas also fa
tored into the �tness of the parent
hromosome.Sin
e the population's only fun
tion is to support the �tness-propagation me
h-anism, by o�ering a repla
ement for the population's top-ranking position in
asethe
urrent top was removed, a small population size su�
es. In the experimentthe population size was set to 5. The population was initialised with �ve
opies ofa
hromosome representing the parameters used by the default Quake team AI, toensure e�e
tive behaviour even with the initial dynami
 team AI.4.2.4 Evolving Team AIThe experiment to evaluate the suitability of TEAM for implementing adaptiveteam AI
onsisted of �fteen tests. In ea
h test a team using dynami
 team AIplayed Quake III Arena
apture-the-�ag against a team using stati
 team AI.The game was played on an `open' map, i.e., a map without walls, allowing theagents an unrestri
ted view of their environment.Ea
h test ran for at least six real-time hours, in whi
h between 250 and 600points were s
ored. The points s
ored by ea
h team were tra
ked, and
omparedafter the tests. The following two measures were de�ned to rate the su

ess of thedynami
 team.Absolute turning point: The absolute turning point is the number of the lastpoint s
ored, after whi
h the dynami
 team's total s
ore ex
eeds the stati
team's total s
ore for the remainder of the test. Figure 4.7 illustrates theabsolute turning point with a graph displaying the dynami
 team's lead in oneof the tests. After point 52 is s
ored, the dynami
 team's s
ore ex
eeds thestati
 team's s
ore for the remainder of the test. Therefore, in this examplethe absolute turning point is 52.Relative turning point: The relative turning point is the number of the last pointin the �rst sliding window of twenty points, in whi
h the dynami
 team s
ored�fteen, and the stati
 team s
ored �ve points. At the relative turning point thedynami
 team's behaviour is more su

essful than the stati
 team's behaviour

4.2 � Online Evolutionary Game AI 73

Figure 4.7: A test run with an absolute turning point of 52.with a reliability > 97% (Cohen, 1995). Figure 4.8 illustrates the relativeturning point with a graph displaying the dynami
 team's number of wins ina sliding window of 20 points s
ored, in the same test used for Figure 4.7. Atthe s
oring of point 57, the dynami
 team's s
ore in the window of the lasttwenty points s
ored is �fteen for the �rst time. Therefore, in this examplethe relative turning point is 57. Note that, due to the window size of 20, thelowest possible value for the relative turning point is 20.Fifteen tests were performed. In all tests the dynami
 team managed to evolveteam AI whi
h allowed it to defeat the stati
 team
onsistently. Table 4.5 provides an

Figure 4.8: A test run with a relative turning point of 57.

74 Evolutionary Game AIAverage St.dev. Median Highest LowestAbsolute turning point 108 62.0 99 263 38Relative turning point 71 44.8 50 158 20Table 4.5: Results for the team-AI experiment.overview of the results. From these results it
an be
on
luded that TEAM is
apableof su

essfully adapting team behaviour in Quake
apture-the-�ag. Analysing thebehaviour of the evolved team AI, it was observed that the dynami
 team used risky,but su

essful, ta
ti
s against the stati
 team. The ta
ti
s
an best be des
ribedas `rush' ta
ti
s, aimed at qui
kly obtaining o�ensive �eld suprema
y.8 The defaultQuake team AI only applies `moderate' ta
ti
s, leaving at least one agent in a`defensive' role, and is therefore unable to deal e�e
tively with rush ta
ti
s.4.2.5 Dis
ussion of the Team-AI ExperimentIn the introdu
tion of Se
tion 4.2, is was indi
ated that it is hard to
reate onlineevolutionary game AI that meets the four
omputational requirements for onlinelearning in games (detailed in 2.3.4). The four requirements are now dis
ussed forthe team-AI experiment.
• Speed : The implementation of the dynami
 team AI, using a small
hromosomeand a small population, needed relatively few pro
essing
y
les. During thetests, the game-play was never interrupted or slowed down be
ause of theevolutionary pro
ess. Therefore, it
an be
on
luded that the dynami
 teamAI meets the requirement of speed.
• E�e
tiveness: Table 4.5 shows that, on average, the absolute turning pointis signi�
antly higher than the relative turning point. This means that, ingeneral, the dynami
 team has be
ome the dominant team on the map a
on-siderable period of time before it a
tually gains the lead in the number ofpoints s
ored. The reason for the gap between the two turning points is thatinitially the dynami
 team tends to be weaker than the stati
 team. How-ever, it was observed during all �fteen tests that its s
ore never was more thanabout a dozen points behind the stati
 team's s
ore. In
ontrast, as soon asthe absolute turning point was rea
hed, the dynami
 team's lead in
reased tohundreds of points. Therefore, it
an be
on
luded that the dynami
 team AImeets the requirement of e�e
tiveness.8The dynami
 team AI assigns all agents an `o�ensive' role in the state (Db, Sb). In translation,this means that in a situation where its own �ag is in no immediate danger, and the opponent's�ag is not
aptured, the dynami
 team will laun
h an all-out atta
k to get the opponent's �ag asqui
kly as possible, whi
h is the �rst step that needs to be taken to s
ore a point. Rush ta
ti
s areoften applied in real-time strategy games, whi
h are dis
ussed in Chapter 6.

4.2 � Online Evolutionary Game AI 75
• Robustness: In almost all tests the dynami
 team AI did not su�er from theinherent randomness in the Quake environment. Only in one of the �fteentests, the dynami
 team AI, after having in
reased its lead to about 375 points,suddenly seemed to `forget' the su

essful ta
ti
s it had learned, and startedlosing again. After its lead had dropped to about 340 points, it re
overed.The explanation for this phenomenon is that the dynami
 team AI had di�-
ulties dealing with a long run of �tness values that, due to
han
e, were notrepresentative for the quality of the
hromosome they were assigned to. It ispossible to prote
t the dynami
 team AI better against su
h
han
e runs, bynot repla
ing the team AI after ea
h state transition. Instead, the time gainedis used to
on�rm the assigned �tness values. The drawba
k is that this willhurt the e�
ien
y of the pro
ess. Moreover, statisti
ally it is impossible torule out su
h
han
e runs
ompletely. Taking all these fa
ts into a

ount, it
an be
on
luded that the dynami
 team AI is fairly robust.
• E�
ien
y : When in a
apture-the-�ag game the relative turning point isrea
hed, the dynami
 team's superiority is
lear. Table 4.5 shows that theaverage relative turning point is 71, i.e., after the s
oring of only 71 points thedynami
 team signi�
antly outperforms the stati
 team. A relative turningpoint of 71 is quite low,
onsidering that, in general, evolutionary algorithmsneed thousands of trials (or more) to �nd an a

eptable solution. Therefore,at �rst glan
e the dynami
 team AI seems to be e�
ient. However, for threereasons we should be
autious in regarding this result too optimisti
ally. Thereasons are the following. (i) As the high standard deviation of 44.8 indi
ates,the relative turning point has a high varian
e, whi
h is in
on�i
t with thefun
tional requirement of
onsisten
y (2.3.4). (ii) With four states and ba-si
ally only �fteen di�erent allele
ombinations per
hromosome,9 the sear
hspa
e for team AI
overing all four states only
ontains 154 = 50625 di�erentsolutions, and thus is very small. (iii) The dynami
 team started with ta
ti
sequal to the already e�e
tive ta
ti
s used by the stati
 team. On average,the dynami
 team needed about two hours of real-time play to turn the ef-fe
tive initial ta
ti
s into superior ta
ti
s. In general, Quake
apture-the-�agmat
hes do not last that long. Taking the three reasons into a

ount, it
anbe
on
luded that the dynami
 team AI is moderately e�
ient, provided thesear
h spa
e is small.TEAM
an be applied in pra
ti
al situations, be
ause it does not slow downgame-play, its ta
ti
s do not degrade, and it is fairly robust. While it is la
king ine�
ien
y, in
apture-the-�ag mat
hes that run for long periods of time, it may beexpe
ted that TEAM will dis
over su

essful ta
ti
s, under the provision that thesear
h spa
e is small.9Let No ∈ N be the number of agents that gets an `o�ensive' role, Nd ∈ N be the number ofagents that gets a `defensive' role, and N ∈ N be the total number of agents in a team. Then itholds that No + Nd ≤ N . With N = 4 agents in a team, as used in the team-AI experiment, only�fteen di�erent role divisions are possible.

76 Evolutionary Game AI4.3 Dis
ussion of Evolutionary Game AIO�ine evolutionary game AI a
hieved good results in exploiting weaknesses in gameAI, and in dis
overing new ta
ti
s, in the duelling-spa
eships environment des
ribedin Se
tion 4.1. This is of no surprise, sin
e the only requirement for use of evolution-ary learning is that an adequate �tness fun
tion
an be designed (Goldberg, 1989).A �tness fun
tion for the evolution of ta
ti
s in a game may be designed by takinginto a

ount the speed by whi
h an en
ounter is played out, and the e�e
tivenessby whi
h agents defend themselves and atta
k the human player. In general, gamesprovide su
h information. Thus, it may be
on
luded that evolutionary learning
anbe used to dete
t exploits in game AI, and to design new ta
ti
s for game AI.In the duelling-spa
eships experiment, a neural network was used to implementthe game AI. It was argued that a neural network is not a suitable ar
hite
tureto store game AI, be
ause it
annot
reate the equivalent of s
ripts
onsisting ofprodu
tion rules. In Chapter 6, where o�ine evolutionary game AI will be appliedto a di�erent problem, an alternative learning stru
ture will be used, spe
i�
allydesigned to evolve produ
tion rules. However, the same overall design as used inthe present
hapter will be used, namely evolving strong ta
ti
s by pitting o�ineevolutionary game AI against strong stati
 game AI.In the Quake
apture-the-�ag experiment des
ribed in Se
tion 4.2, online evo-lutionary game AI a
hieved good results in improving ta
ti
s against a spe
i�
 op-ponent during Quake game-play. The opponent was the standard opponent im-plemented by the Quake developers, with the ability to swit
h between di�erent
on�gurations in response to
hanging
ir
umstan
es. Despite the good results, thelearning me
hanism was shown to be only moderately e�
ient.Laird (2000) is skepti
al about the possibilities o�ered by online evolutionarygame AI. He states that, while neural networks and evolutionary algorithms may beapplied to tune parameters, they are �grossly inadequate when it
omes to
reatingsyntheti

hara
ters with
omplex behaviours automati
ally from s
rat
h�. In
on-trast, the results a
hieved with dynami
 team AI in Quake show that it is
ertainlypossible to use online evolutionary algorithms for game AI design. A similar dis
ov-ery, using online evolutionary learning to evolve agent AI, was made by Demasi andCruz (2002).However, the team AI designed for Quake
apture-the-�ag, and the agent AIdesigned by Demasi and Cruz (2002), are both simple,
ontrolled by just a fewparameters. Regarding the `
omplex behaviours' referred to in Laird's sentiment,it is highly doubtful whether an evolutionary approa
h
an generate those in ane�
ient manner. It is likely that the sear
h for
omplex behaviour takes pla
e ina large sear
h spa
e. In general, the larger the sear
h spa
e, the less e�
ient anevolutionary algorithm (or, indeed, any other sear
h algorithm) will be (Russell andNorvig, 2003). When online evolutionary game AI is no longer e�
ient, its pra
ti
aluse is negligible.It may be
on
luded that evolutionary game AI is suitable for the o�ine adap-tation of game AI, and for the online adaptation of game AI for simple behaviour.However, for la
k of e�
ien
y it is not the right approa
h for the online adaptation

4.4 � Chapter Summary 77of game AI for
omplex behaviour. A di�erent approa
h to online adaptation ofgame AI, targeted at the adaptation of
omplex behaviour, will be introdu
ed inChapter 5.4.4 Chapter SummaryIn this
hapter both o�ine and online evolutionary game AI were investigated. O�-line evolutionary game AI was shown to be able to exploit weaknesses in game AI,and to dis
over new ta
ti
s, when pitted against strong stati
 game AI. Online evolu-tionary game AI was shown to be able to improve ta
ti
s against a spe
i�
 opponentduring game-play. However, the su

ess of online evolutionary game AI dependedon the potential solutions residing in a small sear
h spa
e. In general, when evolvinggame AI that is
omplex, online evolutionary game AI will not be su�
iently e�-
ient. E�
ien
y is a requirement to apply online adaptation of game AI in pra
ti
e.Therefore, to adapt
omplex game AI, a di�erent approa
h needs to be used.

Chapter 5Dynami
 S
riptingWhen error is
orre
ted whenever it is re
ognised as su
h,the path of error is the path of truth.� Hans Rei
henba
h (1891�1953).In Chapter 4 it was shown that online evolutionary game AI fails to meet one of the
omputational requirements for online-learning, namely the requirement of e�
ien
y(2.3.4). The present
hapter1 dis
usses online learning of game AI using a novelte
hnique
alled `dynami
 s
ripting'. Dynami
 s
ripting has been designed to meetall four
omputational online-learning requirements. With a few enhan
ements, itis also able to meet all four fun
tional requirements. Se
tion 5.1 introdu
es thedynami
-s
ripting te
hnique. Experiments performed for evaluating the adaptiveperforman
e of dynami
 s
ripting are des
ribed in Se
tions 5.2 to 5.5. Se
tion 5.2des
ribes the experimental pro
edure, and investigates the performan
e of dynami
s
ripting in a simulated CRPG. Se
tion 5.3 investigates enhan
ements to dynami
s
ripting to redu
e the number of ex
eptionally long adaptation runs. Se
tion 5.4investigates enhan
ements to dynami
 s
ripting to allow s
aling of the di�
ulty levelof the game AI to the experien
e level of the human player. In Se
tion 5.5, the resultsa
hieved in the simulated CRPG are validated in an a
tual state-of-the-art CRPG.A summary of the
hapter is provided in Se
tion 5.6.5.1 Dynami
-S
ripting Te
hniqueThis se
tion des
ribes the dynami
-s
ripting te
hnique (5.1.1), provides pseudo-
odefor two of its main pro
ess (5.1.2), and explains to what extent it meets the
ompu-tational and fun
tional requirements for online learning of game AI (5.1.3).1This
hapter is based on three papers by Spron
k, Sprinkhuizen-Kuyper, and Postma (2004a;2004b; 2004
).

80 Dynami
 S
ripting

Figure 5.1: Dynami
 s
ripting.5.1.1 Des
ription of Dynami
 S
riptingDynami
 s
ripting is an online ma
hine-learning te
hnique for game AI, that
an be
hara
terised as a sto
hasti
 optimisation te
hnique. Dynami
 s
ripting maintainsseveral rulebases, one for ea
h agent
lass in the game. Every time a new instan
e ofan agent is generated, the rulebases are used to
reate a new s
ript that
ontrols theagent's behaviour. The rules that
omprise a s
ript
ontrolling a parti
ular agentare extra
ted from the rulebase asso
iated with the agent's
lass. The probabilitythat a rule is sele
ted for a s
ript is in�uen
ed by a weight value that is atta
hedto ea
h rule. Adaptation of the rulebase pro
eeds by
hanging the weight values tore�e
t the su

ess or failure rate of the
orresponding rules in s
ripts. The weight
hanges are determined by a weight-update fun
tion.The dynami
-s
ripting te
hnique is illustrated in Figure 5.1 in the
ontext of a
ommer
ial game. In the �gure, the team dressed in grey is
ontrolled by a humanplayer, while the
omputer
ontrols the team dressed in bla
k. The rulebase asso
i-ated with ea
h
omputer-
ontrolled agent (named `A' and `B' in Figure 5.1)
ontainsmanually-designed rules derived from domain-spe
i�
 knowledge. It is imperativethat the majority of the rules in the rulebase de�ne e�e
tive, or at least sensible,agent behaviour.At the start of an en
ounter (i.e., a �ght between two opposing teams), a news
ript is generated for ea
h
omputer-
ontrolled agent, by randomly sele
ting a spe-
i�
 number of rules from its asso
iated rulebase. There is a linear relationshipbetween the probability that a rule is sele
ted and its asso
iated weight. The orderin whi
h the rules are pla
ed in the s
ript depends on the appli
ation domain. A

5.1 � Dynami
-S
ripting Te
hnique 81priority me
hanism
an be used to let
ertain rules take pre
eden
e over other rules.Su
h a priority me
hanism is only required if a general ordering of rules and a
tionsis pres
ribed by the domain knowledge. More spe
i�
 a
tion groupings, su
h as twoa
tions whi
h must always be exe
uted in a spe
i�
 order, should be
ombined inone rule.The learning me
hanism in the dynami
-s
ripting te
hnique is inspired by rein-for
ement learning te
hniques (Sutton and Barto, 1998; Russell and Norvig, 2003).`Regular' reinfor
ement learning te
hniques, su
h as TD-learning, in general needlarge amounts of trials, and thus do not meet the requirement of e�
ien
y (Manslow,2002; Madeira et al., 2004). Reinfor
ement learning may be suitable for online learn-ing of game AI when the trials o

ur in a short time-span. Su
h may be the
aseon an operational level of intelligen
e, as in, for instan
e, the work by Graepel et al.(2004), where �ght movements in a �ghting game are learned. However, for thelearning on a ta
ti
al or strategi
 level of intelligen
e, a trial
onsists of observingthe performan
e of a ta
ti
 over a fairly long period of time. Therefore, for theonline learning of ta
ti
s in a game, reinfor
ement learning will take too long to beparti
ularly suitable. In
ontrast, dynami
 s
ripting has been designed to learn froma few trails only.In the dynami
-s
ripting approa
h, learning pro
eeds as follows. Upon
om-pletion of an en
ounter (
ombat), the weights of the rules employed during theen
ounter are adapted depending on their
ontribution to the out
ome. Rules thatlead to su

ess are rewarded with a weight in
rease, whereas rules that lead to failureare punished with a weight de
rease. The in
rement or de
rement of ea
h weightis
ompensated for by de
reasing or in
reasing all remaining weights as to keep theweight total
onstant.Dynami
 s
ripting
an be applied to any form of game AI that meets threerequirements: (i) the game AI
an be s
ripted, (ii) domain knowledge on the
har-a
teristi
s of a su

essful s
ript
an be
olle
ted, and (iii) an evaluation fun
tion
an be designed to assess the su

ess of the s
ript. Note that the maximum playingstrength game AI
an a
hieve using dynami
 s
ripting depends on the quality of thedomain knowledge used to
reate the rules in the rulebase. In the present
hapter,it is assumed that the game developer provides high-quality domain knowledge. InChapter 6, I dis
uss the automati
 generation of high-quality domain knowledge.5.1.2 Dynami
 S
ripting CodeThe two
entral pro
esses of the dynami
-s
ripting te
hnique are s
ript generationand weight adjustment, whi
h are spe
i�ed in pseudo-
ode in this subse
tion. Inthe
ode, the rulebase is represented by an array of rule obje
ts. Ea
h rule obje
thas three attributes, namely (i) weight, whi
h stores the rule's weight as an integervalue, (ii) line, whi
h stores the rule's a
tual text to add to the s
ript when the ruleis sele
ted, and (iii) a
tivated, whi
h is a boolean that indi
ates whether the rulewas a
tivated during s
ript exe
ution.Algorithm 1 presents the s
ript generation algorithm. In the algorithm, thefun
tion `InsertInS
ript' add a line to the s
ript. If the line is already in the s
ript,

82 Dynami
 S
riptingAlgorithm 1 S
ript Generation1: ClearS
ript()2: sumweights = 03: for i = 0 to rulecount − 1 do4: sumweights = sumweights + rule[i].weight5: end for6: for i = 0 to scriptsize − 1 do7: try = 08: lineadded = false9: while try < maxtries and not lineadded do10: j = 011: sum = 012: selected = −113: fraction = random(sumweights)14: while selected < 0 do15: sum = sum + rule[j].weight16: if sum > fraction then17: selected = j18: else19: j = j + 120: end if21: end while22: lineadded = InsertInS
ript(rule[selected].line)23: try = try + 124: end while25: end for26: FinishS
ript()the fun
tion has no e�e
t and returns `false'. Otherwise, the line is inserted andthe fun
tion returns `true'. The algorithm aims to put scriptsize lines in the s
ript,but may end up with less lines if it needs more than maxtries trials to �nd a newline. The fun
tion `FinishS
ript' appends one or more lines to the s
ript, to ensurethat the s
ript will always �nd an a
tion to exe
ute. For
omputational speed, allnumbers in the algorithm are integer values.Algorithm 2 presents the weight adjustment algorithm. The fun
tion `Cal
u-lateAdjustment'
al
ulates the reward or penalty ea
h of the a
tivated rules re
eives.The parameter Fitness is a measure of the performan
e of the s
ript during the en-
ounter. For
omputational speed, all numbers in the algorithm are integer values,ex
ept for the value of Fitness, whi
h is a real value.Note that in Algorithm 1 the
al
ulation of sumweights in lines 3 to 5 shouldalways lead to the same result, namely the sum of all the initial rule weights. How-ever, the short
al
ulation that is used to determine the value of sumweights ensuresthat the algorithm will su

eed even if Algorithm 2 does not divide the value ofremainder
ompletely (to avoid using too many pro
essing
y
les).

5.1 � Dynami
-S
ripting Te
hnique 83Algorithm 2 Weight Adjustment1: active = 02: for i = 0 to rulecount − 1 do3: if rule[i].activated then4: active = active + 15: end if6: end for7: if active <= 0 or active >= rulecount then8: return {No updates are needed.}9: end if10: nonactive = rulecount − active11: adjustment = Cal
ulateAdjustment(Fitness)12: compensation = −round(active ∗ adjustment/nonactive)13: remainder = −active ∗ adjustment − nonactive ∗ compensation14: {Awarding rewards and penalties:}15: for i = 0 to rulecount − 1 do16: if rule[i].activated then17: rule[i].weight = rule[i].weight + adjustment18: else19: rule[i].weight = rule[i].weight + compensation20: end if21: if rule[i].weight < minweight then22: remainder = remainder + (rule[i].weight − minweight)23: rule[i].weight = minweight24: else if rule[i].weight > maxweight then25: remainder = remainder + (rule[i].weight − maxweight)26: rule[i].weight = maxweight27: end if28: end for29: {Division of remainder:}30: i = 031: while remainder > 0 do32: if rule[i].weight <= maxweight − 1 then33: rule[i].weight = rule[i].weight + 134: remainder = remainder − 135: end if36: i = (i + 1) mod rulecount37: end while38: while remainder < 0 do39: if rule[i].weight >= minweight + 1 then40: rule[i].weight = rule[i].weight − 141: remainder = remainder + 142: end if43: i = (i + 1) mod rulecount44: end while

84 Dynami
 S
ripting5.1.3 Dynami
 S
ripting and Learning RequirementsDynami
 s
ripting meets �ve of the eight
omputational and fun
tional requirements(2.3.4) by design, as follows.
• Speed (
omputational): Dynami
 s
ripting is
omputationally fast, be
auseit only requires the extra
tion of rules from a rulebase and the updating ofweights on
e per en
ounter.
• E�e
tiveness (
omputational): Dynami
 s
ripting is e�e
tive, be
ause all rulesin the rulebase are based on domain knowledge. Therefore, every a
tion whi
han agent exe
utes through a s
ript that
ontains these rules, is an a
tion thatis at least reasonably e�e
tive (although it may be inappropriate for
ertainsituations). Note that if the game developers make a mistake and in
ludean inferior rule in the rulebase, the dynami
-s
ripting te
hnique will qui
klyassign this rule a low weight value. Therefore, the requirement of e�e
tivenessis met even if the rulebase
ontains a few inferior rules.
• Robustness (
omputational): Dynami
 s
ripting is robust, be
ause rules arenot removed immediately when punished. Instead, they get sele
ted less of-ten. Their sele
tion rate will automati
ally in
rease again, either when theyare in
luded in a s
ript that a
hieves good results, or when other rules arepunished.
• Clarity (fun
tional): Dynami
 s
ripting generates s
ripts, whi
h
an be easilyunderstood by game developers.
• Variety (fun
tional): Dynami
 s
ripting generates a new s
ript for every agent,and thus provides a high variety in behaviour.The remaining three requirements, namely the
omputational requirement ofe�
ien
y and the fun
tional requirements of
onsisten
y and s
alability, are not metby design. The dynami
-s
ripting te
hnique is believed to meet the requirement ofe�
ien
y, be
ause with appropriate weight-updating parameters it
an adapt aftera few trials only. This is investigated empiri
ally in Se
tion 5.2. Enhan
ements tothe dynami
-s
ripting te
hnique that make it meet the requirements of
onsisten
yand s
alability are investigated in Se
tions 5.3 and 5.4, respe
tively.5.2 E�
ien
y ValidationSin
e the dynami
-s
ripting te
hnique is designed to be used against human players,ideally an empiri
al evaluation of the te
hnique is derived from an analysis of gamesit plays against humans. However, due to the huge number of tests that mustbe performed, su
h an evaluation is not feasible within a reasonable amount oftime (Madeira et al., 2004). Therefore, I de
ided to evaluate the dynami
-s
riptingte
hnique by its ability to dis
over s
ripts
apable of defeating strong, but stati
,ta
ti
s. Translated to a game played against human players, the evaluation tests

5.2 � E�
ien
y Validation 85

Figure 5.2: The CRPG simulation.the ability of the dynami
-s
ripting te
hnique to for
e the human player to seek
ontinuously new ta
ti
s, be
ause the game AI will automati
ally adapt to deal withta
ti
s that are used often. The evaluation was performed in a simulated CRPG.This se
tion des
ribes the simulation environment (5.2.1), the s
ripts and rulebases(5.2.2), the weight-update fun
tion (5.2.3), the ta
ti
s against whi
h the dynami
-s
ripting te
hnique is tested (5.2.4), the measures used to evaluate the results (5.2.5),and the a
hieved experimental results (5.2.6).5.2.1 Simulation EnvironmentThe CRPG simulation used to evaluate dynami
 s
ripting is illustrated in Figure 5.2.It is modelled after the popular Baldur's Gate games. These games (along witha few others)
ontain the most
omplex and extensive game-play system found inmodern CRPGs,
losely resembling
lassi
 non-
omputer roleplaying games (Cook,Tweet, and Williams, 2000). The simulation entails an en
ounter between two teamsof similar
omposition. The `dynami
 team' is
ontrolled by dynami
 s
ripting.The `stati
 team' is
ontrolled by un
hanging s
ripts, that represent strong ta
ti
s.Ea
h team
onsists of four agents, namely two `�ghters' and two `wizards' of equal

86 Dynami
 S
ripting`experien
e level'. The armament and weaponry of the teams is stati
, and ea
hagent is allowed to sele
t two (out of three possible) magi
 potions. In addition, thewizards are allowed to memorise seven (out of 21 possible) magi
 spells. The spellsin
orporated in the simulation are of varying types, amongst whi
h damaging spells,blessings,
urses,
harms, area-e�e
t spells, and summoning spells.The simulation is implemented with hard
onstraints and soft
onstraints. Hard
onstraints are
onstraints that are submitted by the games rules, e.g., a hard
on-straint on spells is that they
an only be used when they are memorised, and ahard
onstraint on agents is that they
an only exe
ute an a
tion when they are notin
apa
itated. Soft
onstraints are
onstraints that follow as logi
al
onsequen
esfrom the rules, e.g., a soft
onstraint on a healing potion is that only an agent thathas been damaged should drink it. Both hard and soft
onstraints are taken intoa

ount when a s
ript is exe
uted, e.g., agents will not drink a healing potion whenthey are in
apa
itated or undamaged.In the simulation, the pra
ti
al issue of
hoosing spells and potions for agents issolved by making the
hoi
e depend on the (generated) s
ripts, as follows. Beforethe en
ounter starts, the s
ripts are s
anned to �nd rules
ontaining a
tions thatrefer to drinking potions or
asting spells. When su
h a rule is found, a potion orspell that
an be used in that a
tion is sele
ted. If the agent
ontrolled by the s
riptis allowed to possess the potion or spell, it is added to the agent's inventory.More details on the CRPG simulation environment
an be found in AppendixA, Se
tion A.1.5.2.2 S
ripts and RulebasesThe s
ripting language was designed to emulate the power and versatility of thes
ripts used in the Baldur's Gate games. The s
ripting language is explained indetail in Appendix A, Se
tion A.2.Rules in the s
ripts are exe
uted in sequential order. For ea
h rule the
ondition(if present) is
he
ked. If the
ondition is ful�lled (or absent), the a
tion is exe
utedif it obeys all relevant hard and soft
onstraints. If no a
tion is sele
ted when the�nal rule is
he
ked, the default a
tion `pass' is used.When dynami
 s
ripting generates a new s
ript, the rule order in the s
ript isdetermined by a manually-assigned priority value. Rules with a higher priority takepre
eden
e over rules with a lower priority. In
ase of equal priority, the rules withhigher weights take pre
eden
e. For rules with equal priorities and equal weights,the order is determined randomly.The sele
tion of s
ript sizes was motivated by the following two
onsiderations,namely that (i) a �ghter has less a
tion
hoi
es than a wizard, thus a �ghter's s
ript
an be shorter than a wizard's s
ript, and (ii) a typi
al �ght will last �ve to tenrounds, thus a maximum of ten rules in a s
ript seems su�
ient. Therefore, the sizeof the s
ript for a �ghter was set to �ve rules, whi
h were sele
ted out of a rulebase
ontaining twenty rules. For a wizard, the s
ript size was set to ten rules, whi
hwere sele
ted out of a rulebase
ontaining �fty rules. At the end of ea
h s
ript,default rules were atta
hed, to ensure the exe
ution of an a
tion in
ase none of the

5.2 � E�
ien
y Validation 87rules extra
ted from the rulebase
ould be a
tivated. The rulebases used are listedin Appendix A, Se
tion A.3.5.2.3 Weight-Update Fun
tionThe weight-update fun
tion is based on two so-
alled `�tness fun
tions', namely (i)a team-�tness fun
tion F (g) (where g refers to the team), and (ii) an agent-�tnessfun
tion F (a, g) (where a refers to the agent, and g refers to the team to whi
h theagent belongs). The �tness fun
tions have been designed with the aim to assignhigh �tness to behaviour that manages to defeat the opposing team, or that at leastmanages to put up a good �ght.Both �tness fun
tions yield a value in the range [0, 1]. The �tness values are
al
ulated at time t = T , where T is the time step at whi
h all agents in one ofthe teams are `defeated', i.e., have their health redu
ed to zero or less. A team ofwhi
h all agents are defeated, has lost the �ght. A team that has at least one agent`surviving', has won the �ght. At rare o

asions both teams may lose at the sametime.The team-�tness fun
tion is de�ned as follows.
F (g) =

∑

c∈g















0 {g lost}
1

2Ng

(

1 +
hT (c)

h0(c)

) {g won} (5.1)In this equation, g refers to a team, c refers to an agent, Ng ∈ N is the total numberof agents in team g, and ht(c) ∈ N is the health of agent c at time t. A

ording theequation, a `losing' team has a �tness of zero, while the `winning' team has a �tnessex
eeding 0.5.The agent-�tness fun
tion is de�ned as follows.
F (a, g) =

1

10

(

3F (g) + 3A(a) + 2B(g) + 2C(g)
) (5.2)In this equation, a refers to the agent whose �tness is
al
ulated, and g refers to theteam to whi
h agent a belongs. The equation
ontains four
omponents, namely (i)

F (g), the �tness of team g, derived from equation 5.1, (ii) A(a) ∈ [0, 1], whi
h is arating of the survival
apability of agent a, (iii) B(g) ∈ [0, 1], whi
h is a measure ofhealth of all agents in team g, and (iv) C(g) ∈ [0, 1], whi
h is a measure of damagedone to all agents in the team opposing g. The weight of the
ontribution of ea
hof the four
omponents to the �nal out
ome was determined arbitrarily, taking intoa

ount the
onsideration that agents should give high rewards to a team vi
tory, andto their own survival (expressed by the
omponents F (g) and A(a), respe
tively).The fun
tion assigns smaller rewards to the survival of the agent's
omrades, and tothe damage in�i
ted upon the opposing team (expressed by the
omponents B(g)and C(g), respe
tively). As su
h the agent-�tness fun
tion is a good measure of thesu

ess rate of the s
ript that
ontrols the agent.

88 Dynami
 S
riptingThe
omponents A(a), B(g), and C(g) are de�ned as follows.
A(a) =

1

3























min(D(a)

Dmax
, 1

) {hT (a) ≤ 0}
2 +

hT (a)

h0(a)
{hT (a) > 0} (5.3)

B(g) =
1

2Ng

∑

c∈g











0 {hT (c) ≤ 0}
1 +

hT (c)

h0(c)
{hT (c) > 0} (5.4)

C(g) =
1

2N¬g

∑

c/∈g











1 {hT (c) ≤ 0}
1 − hT (c)

h0(c)
{hT (c) > 0} (5.5)In equations 5.3 to 5.5, a and g are as in equation 5.2, c, Ng and ht(c) are as inequation 5.1, N¬g ∈ N is the total number of agents in the team that opposes g,

D(a) ∈ N is the time of `death' of agent a, and Dmax is a
onstant (Dmax was set to100 in the experiments, whi
h equals ten
ombat rounds, whi
h is longer than most�ghts last).The agent �tness is translated into weight adaptations for the rules in the s
ript.Weight values are bounded by a range [Wmin,Wmax], with ex
ess rewards beingredistributed over all weights. Only the rules in the s
ript that are a
tually exe
utedduring an en
ounter are rewarded or penalised. A new weight value is
al
ulated as
W + △W , where W is the original weight value, and the weight adjustment △W isexpressed by the following formula.

△W =























−⌊Pmax
b − F

b
⌋ {F < b}

⌊Rmax
F − b

1 − b
⌋ {F ≥ b} (5.6)In this equation, Rmax ∈ N and Pmax ∈ N are the maximum reward and maximumpenalty respe
tively, F is the agent �tness, and b ∈ 〈0, 1〉 is the break-even value. Atthe break-even point the weights remain un
hanged. To keep the sum of all weightvalues in a rulebase
onstant, weight
hanges are exe
uted through a redistributionof all weights in the rulebase. The weight-adjustment formula is visualised later inthis
hapter, in �gure 5.6 (left).In the e�
ien
y-validation experiment, values for the
onstants were set as fol-lows. The break-even value b was set to 0.3, sin
e in the simulation this value isbetween the �tness value that the `best losing agent' a
hieves and the �tness valuethat the `worst winning agent' a
hieves (about 0.2 and 0.4, respe
tively). The ini-tialisation of the rulebase assigned all weights the same weight value, Winit = 100.

5.2 � E�
ien
y Validation 89
Wmin was set to zero to allow rules that are punished a lot to be e�e
tively removedfrom the s
ript-generation pro
ess. Wmax was set to 2000, whi
h is su
h a highvalue that it allows weights to grow more or less unrestri
ted. Rmax was set to 100to in
rease the e�
ien
y of dynami
 s
ripting by allowing large weight in
reases foragents with a high �tness. Pmax was set to 30, whi
h is relatively small
omparedto Rmax, to prote
t the rulebase from degradation as soon as a lo
al optimum isfound. Intuitively, the argument for the low value of Pmax seems to be
orre
t, sin
ethe penalty is similar to the mutation rate in evolutionary algorithms, whi
h shouldbe small in the neighbourhood of an optimum (Bä
k, 1996). However, in Se
tion5.3 it will be shown that a higher value for the maximum penalty gives a betterperforman
e for dynami
 s
ripting.5.2.4 Ta
ti
sFour di�erent basi
 ta
ti
s and three
omposite ta
ti
s were de�ned for the stati
team. The four basi
 ta
ti
s, implemented as a stati
 s
ript for ea
h agent of thestati
 team, are as follows (in these des
ription, an `enemy' is a member of thedynami
 team).O�ensive: The �ghters always atta
k the nearest enemy with a melee weapon,while the wizards use the most damaging o�ensive spells at the (a

ording todomain knowledge) most sus
eptible enemies.Disabling: The �ghters start by drinking a potion that prote
ts them from anydisabling e�e
t, then atta
k the nearest enemy with a melee weapon. Thewizards use all kinds of spells that in
apa
itate enemies for several rounds.Cursing: The �ghters always atta
k the nearest enemy with a melee weapon, whilethe wizards use all kinds of spells that redu
e the enemies' e�e
tiveness, e.g.,they try to
harm enemies (i.e., turn them into allies), physi
ally weaken enemy�ghters, deafen enemy wizards (whi
h
auses many of the spells they
ast tofail), and summon minions in the middle of the enemy team.Defensive: The �ghters start by drinking a potion that redu
es �re damage, afterwhi
h they atta
k the
losest enemy with a melee weapon. The wizards useall kinds of defensive spells, to de�e
t harm from themselves and from their
omrades, in
luding the summoning of minions.Details of the basi
 ta
ti
s are listed in Appendix A, Se
tion A.4.To assess the ability of the dynami
-s
ripting te
hnique to
ope with sudden
hanges in ta
ti
s, the following three
omposite ta
ti
s were de�ned.Random team: For ea
h en
ounter, one of the four basi
 ta
ti
s is sele
ted ran-domly.Random agent: For ea
h en
ounter, ea
h agent randomly sele
ts one of the fourbasi
 ta
ti
s, independent from the
hoi
es of his
omrades.

90 Dynami
 S
ripting

Figure 5.3: Average �tness in size-10 window progression.Conse
utive: The stati
 team starts by using one of the four basi
 ta
ti
s. Forea
h en
ounter, the team will
ontinue to employ the ta
ti
 used during theprevious en
ounter if that en
ounter was won, but will swit
h to the next ta
ti
if that en
ounter was lost. This strategy is
losest to what human players do:they sti
k with a ta
ti
 as long as it works, and swit
h when it fails. Thisdesign makes the
onse
utive ta
ti
 the most di�
ult ta
ti
 to defeat.5.2.5 Measuring Performan
eIn order to identify reliable
hanges in strength between teams, the notion of the`turning point' is de�ned as follows. After ea
h en
ounter the average �tness forea
h of the teams over the last ten en
ounters is
al
ulated. The dynami
 team issaid to `outperform' the stati
 team at an en
ounter if the average �tness over thelast ten en
ounters is higher for the dynami
 team than for the stati
 team. Theturning point is the number of the �rst en
ounter after whi
h the dynami
 teamoutperforms the stati
 team for at least ten
onse
utive en
ounters.Figure 5.3 illustrates the turning point with a graph displaying the progressionof the average team-�tness in a size-10 window (i.e., the values for the average team�tness for ten
onse
utive en
ounters) for both teams, in a typi
al test. The hori-zontal axis represents the en
ounters. Be
ause of the size-10 window, the �rst valuesare displayed for en
ounter number 10. In this example at en
ounter number 29 thedynami
 team outperforms the stati
 team, and maintains its superior performan
efor ten en
ounters. Therefore, the turning point is 29. The absolute �tness valuesfor the same typi
al test are displayed in Figure 5.4. Sin
e after ea
h en
ounterthe �tness for one of the teams is zero, only the �tness for the winning team isdisplayed per en
ounter (the
olour of the bar indi
ates whi
h is the winning team).

5.2 � E�
ien
y Validation 91

Figure 5.4: Absolute �tness F (g) as a fun
tion of the en
ounter number.Evidently, after en
ounter 25, the dynami
 team wins more often than the stati
team. Note that, regardless how long training lasts, the dynami
 team will neverrea
h a point where it is able to win always, due to (i) the randomness inherent inthe simulation, (ii) the variety of the s
ripts generated by dynami
 s
ripting, and(iii) the e�e
tiveness of the stati
 ta
ti
s.A low value for the turning point indi
ates good e�
ien
y of dynami
 s
ripting,sin
e it indi
ates that the dynami
 team
onsistently outperforms the stati
 teamwithin a few en
ounters only.5.2.6 E�
ien
y-Validation ResultsFor ea
h of the ta
ti
s I ran 100 tests to determine the average turning point. Theresults of these tests are presented in Table 5.1. The
olumns of the table represent,from left to right, (i) the name of the ta
ti
, (ii) the average turning point, (iii) thestandard deviation, (iv) the median, (v) the highest value for a turning point found,and (vi) the average of the �ve highest values.The aim of the �rst experiment was to test the viability and e�
ien
y of dynami
s
ripting. The a
hieved results show that dynami
 s
ripting is both a viable, and ahighly e�
ient te
hnique (at least in the present domain of
ombat in CRPGs). Forall ta
ti
s, dynami
 s
ripting yields low turning points. In addition to this generalobservation, I give three more spe
i�
 observations.First, the `disabling' ta
ti
 is easily defeated by the dynami
 team. Apparentlyit is not a good ta
ti
, be
ause dealing with it requires little or no adaptation of therulebase.Se
ond, the `
onse
utive' ta
ti
, whi
h was argued to be
losest to human-player

92 Dynami
 S
riptingTa
ti
 Average St.dev. Median Highest Top 5O�ensive 58 35.0 53 314 155Disabling 12 5.2 10 51 31Cursing 137 333.6 35 1767 1461Defensive 31 18.8 27 93 77Random team 56 74.4 34 595 310Random agent 53 67.0 27 398 289Conse
utive 72 100.3 47 716 424Table 5.1: Turning-point values for dynami
 s
ripting pitted against seven di�erentta
ti
s, averaged over 100 tests.behaviour, is overall the most di�
ult to defeat with dynami
 s
ripting.2 Never-theless, the dynami
-s
ripting te
hnique is
apable of defeating this ta
ti
 ratherqui
kly, espe
ially
onsidering the fa
t that the rulebase started out with all weightsbeing equal, while in an a
tual game the weights would be biased from the start togive the obje
tively better rules a higher sele
tion probability.Third, it is striking that for all ta
ti
s the average turning point is signi�
antlyhigher than the median. The explanation is the rare o

urren
e of extremely highturning points. These so-
alled `outliers' are explained by the high degree of ran-domness that is inherent to the simulated CRPG, and to games in general. A longrun of en
ounters where pure
han
e drives the learning pro
ess away from an opti-mum (e.g., a run of en
ounters wherein the dynami
 team is lu
ky and wins despiteemploying inferior ta
ti
s, or wherein the dynami
 team is unlu
ky and loses de-spite employing good ta
ti
s) may pla
e the rulebase in a state from whi
h it hasdi�
ulty to re
over. Due to the randomness inherent in games, su
h o

asionallong runs are unavoidable, but their probability of o

urren
e may be redu
ed. Two
ountermeasures against outliers are dis
ussed in Se
tion 5.3.5.3 Outlier Redu
tionThe o

asional o

urren
e of outliers withholds dynami
 s
ripting from meetingthe requirement of
onsisten
y. To redu
e the number of outliers o

urring withthe appli
ation of dynami
 s
ripting, I propose two
ountermeasures, namely (i)penalty balan
ing, and (ii) history fallba
k. The two
ountermeasures are explainedin Subse
tions 5.3.1 and 5.3.2, respe
tively. The
ountermeasures are evaluated inan experiment, of whi
h the results are presented in Subse
tion 5.3.3, and dis
ussedin Subse
tion 5.3.4.2At �rst glan
e the `
ursing' ta
ti
 might seem harder to defeat, but the median value showsthat this is not the
ase; the `
ursing' ta
ti
's high average is
aused by its high sus
eptibility tooutliers, whi
h are dis
ussed in Se
tion 5.3

5.3 � Outlier Redu
tion 935.3.1 Penalty Balan
ingThe magnitude of the weight adaptation in a rulebase depends on a measure of thesu

ess (or failure) of the agent whose s
ript is extra
ted from the rulebase. It is
al
ulated a

ording to equation 5.6. `Penalty balan
ing' is balan
ing the magnitudeof the maximum penalty Pmax against the maximum rewardRmax, to optimise speedand e�e
tiveness of the adaptation pro
ess. The experimental results presented inSe
tion 5.2 relied on a maximum penalty that was substantially smaller than themaximum reward (namely, Pmax = 30 and Rmax = 100). As stated in Subse
tion5.2.3, the argument for the relatively small maximum penalty is that, as soon asa lo
al optimum is found, the rulebase should be prote
ted against degradation.However, when a sequen
e of undeserved rewards leads to wrong settings of theweights, re
overing the appropriate weight values is hampered by a relatively lowmaximum penalty. Penalty balan
ing attempts to take this into a

ount by balan
ingthe need to re
over from erroneous weight values against the risk of moving awayfrom an optimum.5.3.2 History Fallba
kIn the formulation of dynami
 s
ripting in Se
tion 5.1, the old weights of the rules inthe rulebase are erased when the rulebase adapts. With history fallba
k all previousweights are retained in so-
alled `histori
 rulebases'. When learning seems to bestu
k in a sequen
e of rulebases that have inferior performan
e, it
an `fall ba
k' toone of the histori
 rulebases that seemed to perform better.Caution should be taken not to be too eager to fall ba
k to earlier rulebases.The dynami
-s
ripting te
hnique is quite robust, and learns from both su

esses andfailures. Returning to an earlier rulebase means losing everything that was learnedafter that rulebase was generated. Furthermore, an earlier rulebase may have a high�tness due to
han
e, and returning to it might therefore have an adverse e�e
t.It was empiri
ally
on�rmend that the performan
e of dynami
 s
ripting worsenedwhen extended with a history-fallba
k me
hanism that was eager to return to aprevious rulebase. Therefore, history fallba
k should only be a
tivated when thereis a high probability that a truly inferior rulebase is repla
ed by a truly superior one.The implementation of history fallba
k is as follows. The
urrent rulebase R isused to generate s
ripts that
ontrol the behaviour of an agent during an en
ounter.After ea
h en
ounter i, before the weight updates, all weight values from rulebase
R are
opied to histori
 rulebase Ri. With Ri are also stored: the team-�tnessvalue F (g), the agent-�tness value F (a, g), and a number representing the so-
alled`parent' of Ri. The parent of Ri is the histori
 rulebase whose weights were updatedto generate Ri (usually the parent of Ri is Ri−1). A rulebase is
onsidered `inferior'when both its own �tness values and the �tness values of its N immediate an
estors,are low (i.e., below a threshold value T). A rulebase is
onsidered `superior' whenboth its own �tness values and the �tness values of its N immediate an
estors, arehigh (i.e., above T). If at en
ounter i we �nd that Ri is inferior, and in Ri's an
estrywe �nd a histori
 rulebase Rj that is superior, the next parent used to generate the

94 Dynami
 S
ripting
urrent rulebase R will not be Ri but Rj . Be
ause it is useless to return to a histori
rulebase that has not yet learned, the me
hanism only falls ba
k to a rulebase Rjfor j > J . In the experiments N = 3, T = 0.4, and J = 10 were used.Though unlikely, with this me
hanism it is still possible to fall ba
k to a histori
rulebase that does not perform well in the
urrent situation, although it seemedto perform well in the past. While this will be dis
overed by the learning pro
esssoon enough, the risk of returning to su
h a rulebase over and over again should beminimised. I propose two di�erent ways of avoiding this risk. The �rst is by simplynot allowing the me
hanism to fall ba
k to a histori
 rulebase that is `too old', butonly allow it to fall ba
k to the last M an
estors (in the experiment M = 15 wasused). This is
alled `limited-distan
e fallba
k' (LDF). The se
ond is a
knowledgingthat the agent-�tness value of a rulebase should not be too di�erent from that ofits dire
t an
estors. This is realised by propagating a newly
al
ulated �tness valueba
k through the an
estry of a rulebase, and fa
toring it into the �tness values forthose an
estors. As a
onsequen
e, a rulebase that has
hildren with low agent-�tness values will be assigned an agent-�tness value that is also small. This is
alled`�tness-propagation fallba
k' (FPF). Both versions of history fallba
k allow dynami
s
ripting to re
over earlier rulebases, that are truly better than the
urrent one.5.3.3 Outlier-Redu
tion ResultsTo test the e�e
tiveness of penalty balan
ing and history fallba
k, I ran an ex-periment in the simulated CRPG. The experiment
onsisted of a series of tests,exe
uted in a manner equal to the e�
ien
y-validation experiment (5.2). I de
idedto use the `
onse
utive' ta
ti
 for the stati
 team, sin
e this ta
ti
 is the most
hal-lenging for dynami
 s
ripting. I
ompared nine di�erent
on�gurations, namelylearning runs using maximum penalties Pmax = 30, Pmax = 70 and Pmax = 100,
ombined with the use of no fallba
k (NoF), limited-distan
e fallba
k (LDF), and�tness-propagation fallba
k (FPF). All other parameters were set equal to the valuesused in the e�
ien
y-validation experiment.Table 5.2 gives an overview of the experimental results. The
olumns of thetable represent, from left to right, (i) the value for Pmax, (ii) the history-fallba
kme
hanism used, (iii) the average turning point, (iv) the standard deviation, (v) themedian, (vi) the highest value for the turning point, and (vii) the average of the �vehighest values.Figure 5.5 shows histograms of the turning points for ea
h of the series of tests.The turning points have been grouped in ranges of 25 di�erent values. Ea
h barindi
ates the number of turning points falling within a range. Ea
h graph starts withthe leftmost bar representing the range [0, 24]. The rightmost bars in the topmostthree graphs represent all turning points of 500 or greater (the other graphs do nothave turning points in this range).From Table 5.2 and Figure 5.5 I derive the following four observations. (i) Penaltybalan
ing is a ne
essary requirement to redu
e the number of outliers. All experi-ments that have a higher maximum penalty than the original Pmax = 30 redu
e the

5.3 � Outlier Redu
tion 95
Pmax Fallba
k Average St.dev. Median Highest Top 530 NoF 72 100.3 47 716 42430 LDF 99 229.3 49 2064 83730 FPF 80 145.0 54 971 60570 NoF 62 69.4 44 336 30170 LDF 52 56.2 37 393 23870 FPF 60 57.3 32 391 245100 NoF 66 59.5 59 322 246100 LDF 68 56.7 60 271 225100 FPF 57 50.6 53 331 202Table 5.2: Turning-point values for dynami
 s
ripting pitted against the
onse
utiveta
ti
, averaged over 100 tests.number and magnitude of outliers.3 (ii) There is no dis
ernable di�eren
e in thee�e
t of limited-distan
e fallba
k and the e�e
t of �tness-propagation fallba
k. (iii)If penalty balan
ing is not applied, history fallba
k seems to have no e�e
t or evenan adverse e�e
t. (iv) If penalty balan
ing is applied, history fallba
k has no ad-verse e�e
t and may a
tually have a positive e�e
t. One of the reasons why historyfallba
k is so e�e
tive in
ombination with penalty balan
ing may be the following.In Subse
tion 5.3.1 it was stated that penalty balan
ing runs the risk of losing adis
overed optimum due to
han
e. History fallba
k
ountera
ts this risk.As a �nal test, a
ombination of penalty balan
ing with Pmax = 70 and limited-distan
e fallba
k was applied to all the di�erent ta
ti
s available in the simulationenvironment. The results are summarised in Table 5.3. A
omparison of Table 5.3and Table 5.1 shows a signi�
ant, often very large redu
tion of the both the highestturning point and the average of the highest �ve turning points, for all ta
ti
s ex
eptfor the `disabling' ta
ti
 (note, however, that the in
reased turning points for the`disabling' ta
ti
 are in
onsequential, sin
e the `disabling' ta
ti
 already has thelowest turning points in both tables). Therefore, the results of the �nal test
learlysupport the positive e�e
t of the two
ountermeasures against outliers.5.3.4 Dis
ussion of Outlier-Redu
tion ResultsIt is
lear from the results in Table 5.2 that the number of outliers has been sig-ni�
antly redu
ed with the proposed
ountermeasures. However, ex
eptionally longlearning runs still o

ur in the simulation experiments, even though they are rare,and less extreme than without the
ountermeasures. Does this mean that dynami
3After the �rst publi
ation of dynami
 s
ripting by Spron
k, Sprinkhuizen-Kuyper, and Postma(2003b), I was
onta
ted by Dahlbom on the question how to apply dynami
 s
ripting to real-time strategy games. Independently of the results reported by Spron
k, Sprinkhuizen-Kuyper,and Postma (2004b), Dahlbom (2004) later arrived at a similar
on
lusion regarding the e�e
t ofpenalty balan
ing on the redu
tion of outliers.

96 Dynami
 S
ripting

Figure 5.5: Histograms for the turning points in 100 tests, for the outlier-redu
tionexperiment.s
ripting, enhan
ed with the
ountermeasures, still does not meet the requirementof
onsisten
y?I argue that the
ountermeasures do make dynami
 s
ripting meet the require-ment of
onsisten
y. The argument is twofold: (i) Be
ause dynami
 s
ripting is anon-deterministi
 te
hnique, outliers
an never be prevented
ompletely. However,entertainment value of a game is guaranteed even if an outlier o

urs, be
ause dy-nami
 s
ripting meets the requirement of e�e
tiveness by design. (ii) Ex
eptionallylong learning runs mainly o

ur be
ause early in the pro
ess
han
e in
reases thewrong weights. This is not likely to happen in a rulebase with pre-initialised weights.When dynami
 s
ripting is implemented in an a
tual game, the weights in the rule-base will not all start out with equal values, but they will be initialised to values thatare already trained against
ommonly used ta
ti
s. This will not only prevent theo

urren
e of outliers, but also in
rease the speed of the dynami
 s
ripting pro
ess,and provide history fallba
k with a likely
andidate for a superior rulebase.It should be noted that, besides as a target for the history-fallba
k me
hanism,histori
 rulebases
an also be used to store ta
ti
s that work well against a spe
i�
ta
ti
 employed by a human player. If human-player ta
ti
s
an be identi�ed, theserulebases
an simply be reloaded when the player starts to use a parti
ular ta
ti
again after having employed a
ompletely di�erent ta
ti
 for a while.

5.4 � Di�
ulty S
aling 97Ta
ti
 Average St.dev. Median Highest Top 5O�ensive 53 24.8 52 120 107Disabling 13 8.4 10 79 39Cursing 44 50.4 26 304 222Defensive 24 15.3 17 79 67Random team 51 64.5 29 480 271Random agent 41 40.7 25 251 178Conse
utive 52 56.2 37 393 238Table 5.3: Turning-point values for dynami
 s
ripting pitted against di�erent ta
ti
s,using Pmax = 70 and limited-distan
e fallba
k, averaged over 100 tests.5.4 Di�
ulty S
alingFor non-expert players, a game is most entertaining when it is
hallenging but beat-able (S
ott, 2002). To ensure that the game remains interesting, the issue is not forthe
omputer to produ
e o

asionally a weak move so that the human player
anwin, but rather to produ
e not-so-strong moves under the proviso that, on a balan
eof probabilities, they should go unnoti
ed (Iida, Handa, and Uiterwijk, 1995). `Dif-�
ulty s
aling' is the automati
 adaptation of a game, to set the
hallenge that thegame poses to a human player. When applied to game AI, di�
ulty s
aling aims ata
hieving an `even game', i.e., a game wherein the playing strength of the
omputerand the human player mat
h.Many games provide a `di�
ulty setting', i.e., a dis
rete value that determineshow di�
ult the game will be. The purpose of a di�
ulty setting is to allow bothnovi
e and experien
ed players to enjoy the appropriate
hallenge the game o�ers(Charles and Bla
k, 2004). The di�
ulty setting
ommonly has some problemati
issues, of whi
h I indi
ate three. First, the setting is
oarse, with the player havinga
hoi
e between only a limited number of di�
ulty levels (usually three or four).Se
ond, the setting is player-sele
ted, with the player unable to assess whi
h di�-
ulty level is appropriate for his skills. Third, the setting has a limited s
ope, (ingeneral) only a�e
ting the
omputer-
ontrolled agents' strength, and not their ta
-ti
s. Consequently, even on a `high' di�
ulty setting, the opponents exhibit similarbehaviour as on a `low' di�
ulty setting, despite their greater strength.The three issues mentioned may be alleviated by applying dynami
 s
riptingenhan
ed with an adequate di�
ulty-s
aling me
hanism. Dynami
 s
ripting
hangesthe
omputer's ta
ti
s to the way a game is played. As su
h, (i) it makes
hangesin small steps (i.e., it is not
oarse), (ii) it makes
hanges automati
ally (i.e., it isnot player-sele
ted), and (iii) it a�e
ts the
omputer's ta
ti
s (i.e., it does not havea limited s
ope).This se
tion des
ribes three di�erent enhan
ements to the dynami
-s
riptingte
hnique that let agents learn how to play an even game, namely (i) high-�tnesspenalising, (ii) weight
lipping, and (iii) top
ulling. The three enhan
ements are

98 Dynami
 S
ripting

Figure 5.6: Comparison of the original weight-adjustment formula (left) and thehigh-�tness-penalising weight-adjustment formula (right), by plotting the weightadjustments as a fun
tion of the �tness value F . The middle graph displays therelation between F and F ′.explained in Subse
tions 5.4.1, 5.4.2, and 5.4.3, respe
tively. The enhan
ements areevaluated in an experiment, of whi
h the results are presented in Subse
tion 5.4.4,and dis
ussed in Subse
tion 5.4.5.5.4.1 High-Fitness PenalisingThe weight adjustment expressed in equation 5.6 gives rewards proportional to the�tness value: the higher the �tness, the higher the reward. To eli
it medio
re insteadof good behaviour, the weight adjustment
an be
hanged to give highest rewards tomedio
re �tness values, and lower rewards or even penalties to high �tness values.With high-�tness penalising the weight adjustment is expressed by formula 5.6,where F is repla
ed by F ′ de�ned as follows.
F ′ =



















F

p
{F ≤ p}

1 − F

p
{F > p} (5.7)In this equation, F is the
al
ulated �tness value, and p ∈ [0.5, 1], p > b, is thereward-peak value, i.e., the �tness value that should get the highest reward. Thehigher the value of p, the more e�e
tive agent behaviour will be. Figure 5.6 illustratesthe weight adjustment as a fun
tion of the original �tness (left), the mapping of F to

F ′ (middle), and the weight adjustment as a fun
tion of the high-�tness-penalising�tness (right). Angles α and β are equal.Sin
e the optimal value for p depends on the ta
ti
 that the human player uses,it was de
ided to let the value of p adapt to the per
eived di�
ulty level of a game,

5.4 � Di�
ulty S
aling 99as follows. Initially p starts at a value pinit. After every �ght that is lost by the
omputer, p is in
reased by a small amount pinc, up to a prede�ned maximum pmax.After every �ght that is won by the
omputer, p is de
reased by a small amount
pdec, down to a prede�ned minimum pmin. By running a series of tests with stati
values for p, I found that good values for p are found
lose to 0.7. Therefore, in theexperiment I used pinit = 0.7, pmin = 0.65, pmax = 0.75, and pinc = pdec = 0.01.5.4.2 Weight ClippingDuring the weight updates, the maximum weight value Wmax determines the maxi-mum level of optimisation a learned ta
ti

an a
hieve. A high value for Wmax allowsthe weights to grow to large values, so that after a while the most e�e
tive rules willalmost always be sele
ted. This will result in s
ripts that are
lose to optimal. Alow value for Wmax restri
ts weights in their growth. This enfor
es a high diversityin generated s
ripts, most of whi
h will be medio
re.Weight
lipping automati
ally
hanges the value of Wmax, with the intent toenfor
e an even game. It aims at having a low value for Wmax when the
omputerwins often, and a high value for Wmax when the
omputer loses often. The imple-mentation is as follows. After the
omputer wins a �ght, Wmax is de
reased by Wdecper
ent (but not lower than the initial weight value Winit). After the
omputerloses a �ght, Wmax is in
reased by Winc per
ent.Figure 5.7 illustrates the weight-
lipping pro
ess and the asso
iated parameters.The shaded bars represent weight values for four arbitrary rules on the horizontalaxis, numbered 1 to 4. After a �ght, before weight adjustment, Wmax is eitherin
reased by Winc per
ent, or de
reased by Wdec per
ent, depending on the out
omeof the �ght. After the
hange of Wmax, in the �gure the weight value for rule 4 is toolow, so it is in
reased to Wmin (the arrow marked `a'). Similarly, the weight value forrule 2 is too high, so it is de
reased to Wmax (the arrow marked `b'). As pres
ribedby dynami
 s
ripting, after the weights are brought within the range [Wmin,Wmax],the ex
ess weights are redistributed again over all weights.In the experiment I de
ided to use the same initial values as I used for thee�
ien
y-validation experiment, i.e., I used Winit = 100, Wmin = 0, and an initialvalue for Wmax of 2000. Winc and Wdec I both set to 10 per
ent.5.4.3 Top CullingTop
ulling is quite similar to weight
lipping. It employs the same adaptationme
hanism for the value of Wmax. The di�eren
e is that top
ulling allows weights togrow beyond the value of Wmax. However, rules with a weight greater than Wmax willnot be sele
ted for a generated s
ript. Consequently, when the
omputer-
ontrolledagents win often, the most e�e
tive rules will have weights that ex
eed Wmax, and
annot be sele
ted, and thus the agents will use weak ta
ti
s. Alternatively, whenthe
omputer-
ontrolled agents lose often, rules with high weights will be sele
table,and the agents will use strong ta
ti
s. So, while weight
lipping a
hieves weak ta
ti
s

100 Dynami
 S
ripting

Figure 5.7: Weight-
lipping and top-
ulling pro
ess and parameters.by promoting diversity, top
ulling a
hieves weak ta
ti
s by removing a

ess to themost e�e
tive domain knowledge.In Figure 5.7,
ontrary to weight
lipping, top
ulling will leave the value of rule2 un
hanged (the a
tion represented by arrow `b' will not be performed). However,rule 2 will be unavailable for sele
tion, be
ause its value ex
eeds Wmax.5.4.4 Di�
ulty-S
aling ResultsTo test the e�e
tiveness of the three di�
ulty-s
aling enhan
ements, I ran an ex-periment in the simulated CRPG. The experiment
onsisted of a series of tests,exe
uted in the same way as the e�
ien
y-validation experiment (Se
tion 5.2). Theexperiment aimed at assessing the performan
e of a team
ontrolled by the dynami
-s
ripting te
hnique using a di�
ulty-s
aling enhan
ement (with Pmax = 100, �tness-propagation fallba
k, and all other parameters equal to the values used in thee�
ien
y-validation experiment), against a team
ontrolled by stati
 s
ripts. If thedi�
ulty-s
aling enhan
ements work as intended, dynami
 s
ripting will balan
e thegame so that the number of wins of the dynami
 team is roughly equal to the numberof losses.For the stati
 team, I added an eighth ta
ti
 to the seven ta
ti
s des
ribed inSubse
tion 5.2.4,
alled the `novi
e' ta
ti
. The `novi
e' ta
ti
 resembles the playingstyle of a novi
e CRPG player, who has learned the most obvious su

essful ta
ti
s,but has not yet mastered the subtleties of the game. While normally the `novi
e'ta
ti
 will not be defeated by arbitrarily
hoosing rules from the rulebase, thereare many di�erent ta
ti
s that
an be employed to defeat it, whi
h the dynami
team will dis
over qui
kly. Against the `novi
e' ta
ti
, without a di�
ulty-s
alingenhan
ement, the dynami
 team's number of wins in general will greatly ex
eed itslosses.

5.4 � Di�
ulty S
aling 101High-Fitness Weight TopPlain Penalising Clipping CullingTa
ti
 Avg. Dev. Avg. Dev. Avg. Dev. Avg. Dev.O�ensive 61.2 16.4 46.0 15.1 50.6 9.4 46.3 7.5Disabling 86.3 10.4 56.6 8.8 67.8 4.5 52.2 3.9Cursing 56.2 11.7 42.8 9.9 48.4 6.9 46.4 5.6Defensive 66.1 11.9 39.7 8.2 52.7 4.2 49.2 3.6Novi
e 75.1 13.3 54.2 13.3 53.0 5.4 49.8 3.4Random team 55.8 11.3 37.7 6.5 50.0 6.9 47.4 5.1Random agent 58.8 9.7 44.0 8.6 51.8 5.9 48.8 4.1Conse
utive 51.1 11.8 34.4 8.8 48.7 7.7 45.0 7.3Table 5.4: Experimental results of testing the di�
ulty-s
aling enhan
ements todynami
 s
ripting on eight di�erent ta
ti
s, averaged over 100 tests.For ea
h of the ta
ti
s, I ran 100 tests in whi
h dynami
 s
ripting was enhan
edwith ea
h of the three di�
ulty-s
aling enhan
ements, and, for
omparison, alsowithout di�
ulty-s
aling enhan
ements (
alled `plain'). Ea
h test
onsisted of asequen
e of 150 en
ounters between the dynami
 team and the stati
 team. Be
ausein ea
h of the tests the dynami
-s
ripting te
hnique starts with a rulebase withall weights equal, the �rst 50 en
ounters were used for �nding a balan
e of well-performing weights. I re
orded the number of wins of the dynami
 team over thelast 100 en
ounters.The results of these tests are displayed in Table 5.4. For ea
h
ombination ofta
ti
 and di�
ulty-s
aling enhan
ement the table shows the average number of winsover 100 tests, and the asso
iated standard deviation. To be re
ognised as an evengame, it was de
ided that the average number of wins over all tests must be
loseto 50. To take into a

ount random �u
tuations, in this
ontext `
lose to 50' means`within the range [45,55℄'.4 In Table 5.4, all
ell values indi
ating an even game aremarked in bold font. From the table the following four results
an be derived.First, dynami
 s
ripting without a di�
ulty-s
aling enhan
ement (`plain') resultsin wins signi�
antly ex
eeding losses for all ta
ti
s ex
ept for the `
onse
utive' ta
ti
(with a reliability > 99.9%; Cohen, 1995). This supports the viability of dynami
s
ripting as a learning te
hnique, and also supports the statement in Subse
tion 5.2.4that the `
onse
utive' ta
ti
 is the most di�
ult ta
ti
 to defeat. Note that the fa
tthat, on average, dynami
 s
ripting plays an even game against the `
onse
utive'ta
ti
 is not be
ause it is unable to defeat this ta
ti

onsistently, but be
ause4De
iding when a game
an be
alled an `even game' by observing the number of wins, seems tobe
omparable to de
iding whether a
oin is fair by observing a series of
oin tosses, and thus besubje
t to a standard statisti
al evaluation to determine the range of the number of wins. However,the
omparison is not apt. While
oin tosses are random, the di�
ulty-s
aling enhan
ementsa
tively for
e a game to equal wins and losses. Imagine a
oin that moves the
entre-point of itsweight after every toss.

102 Dynami
 S
riptingdynami
 s
ripting
ontinues learning after it has rea
hed a lo
al optimum. Therefore,it
an `forget' what it previously learned, espe
ially against an superior ta
ti
 likethe `
onse
utive' ta
ti
.Se
ond, high-�tness penalising performs
onsiderably worse than the other twoenhan
ements. It
annot a
hieve an even game against six out of the eight ta
ti
s.Third, weight
lipping is su

essful in enfor
ing an even game in seven out ofeight ta
ti
s. It does not su

eed against the `disabling' ta
ti
. This is
aused bythe fa
t that the `disabling' ta
ti
 is so easy to defeat, that even a rulebase withall weights equal will, on average, generate a s
ript that defeats this ta
ti
. Weight
lipping
an never generate a rulebase worse than `all weights equal'.Fourth, top
ulling is su

essful in enfor
ing an even game against all eight ta
ti
s.Histograms for the tests with the `novi
e' ta
ti
 are displayed in Figure 5.8.On the horizontal axis the number of wins for the dynami
 team out of 100 �ghtsis displayed. The bar length indi
ates the number of tests that resulted in theasso
iated number of wins.From the histograms the following result is derived. While, on average, all threedi�
ulty-s
aling enhan
ements manage to enfor
e an even game against the `novi
e'ta
ti
, the number of wins in ea
h of the tests is mu
h more `spread out' for thehigh-�tness-penalising enhan
ement than for the other two enhan
ements. Thisindi
ates that the high-�tness penalising enhan
ement results in a higher varian
eof the distribution of won games than the other two enhan
ements. The top-
ullingenhan
ement seems to yield the lowest varian
e. This is
on�rmed by an approximaterandomisation test (Cohen, 1995), whi
h shows that against the `novi
e' ta
ti
, thevarian
e a
hieved with top
ulling is signi�
antly lower than with the other twoenhan
ements (reliability > 99.9%). I observed similar distributions of won gamesagainst the other ta
ti
s, ex
ept that against some of the stronger ta
ti
s, a fewex
eptional outliers o

urred with a signi�
antly lower number of won games. Therare outliers were
aused by the fa
t that, o

asionally, dynami
 s
ripting requiresmore than 50 en
ounters to �nd a well-performing set of weights when playing againsta strong stati
 ta
ti
.In
on
lusion, the results show that, when dynami
 s
ripting is enhan
ed withthe top-
ulling di�
ulty-s
aling me
hanism, it meets the fun
tional requirement ofs
alability.5.4.5 Dis
ussion of Di�
ulty-S
aling ResultsOf the three di�erent di�
ulty-s
aling enhan
ements the top-
ulling enhan
ement isthe best
hoi
e. It has the following three advantages: (i) it gives the most reliableresults, (ii) it is easily implemented, and (iii) of the three enhan
ements, it is theonly one that manages to for
e an even game against inferior ta
ti
s.Obviously, the worst
hoi
e is the high-�tness-penalising enhan
ement. In anattempt to improve high-�tness penalising, some tests were performed with di�erentranges and adaptation values for the reward-peak value p, but these worsened theresults. However, the possibility
annot be ruled out that with a di�erent �tness

5.4 � Di�
ulty S
aling 103

Figure 5.8: Histograms of 100 tests of the a
hieved number of wins in 100 �ghts,against the `novi
e' ta
ti
.fun
tion high-�tness penalising will give better results.5An additional possibility with the weight-
lipping and top-
ulling enhan
ementsis that they
an also be used to set a di�erent desired win-loss ratio, by
hangingthe rates with whi
h the value of Wmax �u
tuates. For instan
e, by using top
ulling with Wdec = 30 per
ent instead of 10 per
ent, leaving all other parametersun
hanged, after 100 tests against the `novi
e' ta
ti
 I derived an average numberof wins of 35.0 with a standard deviation of 5.6. The histogram of this experimentis given in Figure 5.9.Notwithstanding the su

essful results, a di�
ulty-s
aling enhan
ement shouldbe an optional feature in a game, that
an be turned o� by the player, for thefollowing two reasons: (i) when
onfronted with an experien
ed player, the learningpro
ess should aim for superior ta
ti
s without interferen
e from a di�
ulty-s
alingenhan
ement, and (ii) some players will feel that attempts by the
omputer to for
ean even game diminishes their a

omplishment of defeating the game, so they mayprefer not to use it.5In independent resear
h (see footnote 3) Dahlbom (2004) applied dynami
 s
ripting to a simu-lated real-time strategy game. He used a te
hnique whi
h he
alled `�tness mapping' for di�
ultys
aling, for whi
h he reported good results. Fitness mapping is similar to what I
all `high-�tnesspenalising' (Spron
k, Sprinkhuizen-Kuyper, and Postma, 2004a), without dynami
ally
hangingthe reward-peak value p.

104 Dynami
 S
ripting

Figure 5.9: Histogram of the a
hieved number of wins over 100 tests against the`novi
e' ta
ti
, using dynami
 s
ripting with the top-
ulling enhan
ement, with
Wdec = 30 per
ent.5.5 Validation in Pra
ti
eTo investigate whether the su

essful results a
hieved with dynami
 s
ripting ina simulated CRPG hold in a pra
ti
al setting, I de
ided to test the te
hnique inan a
tual state-of-the-art
ommer
ial game. For this purpose, I
hose the gameNeverwinter Nights (2002), developed by BioWare Corp. In this se
tion I presentthe Neverwinter Nights environment (5.5.1), the s
ripts and rulebases (5.5.2),the weight-update fun
tion (5.5.3), the ta
ti
s used by the stati
 team (5.5.4), theresults of an evaluation of dynami
 s
ripting in Neverwinter Nights (5.5.5), anda dis
ussion of the results (5.5.6).5.5.1 Neverwinter NightsNeverwinter Nights is a CRPG of a
omplexity similar to the Baldur's Gategames. A major reason for sele
ting Neverwinter Nights for evaluating dynami
s
ripting is that the game is easy to modify and extend. It is delivered with a toolsetthat allows the user to develop
ompletely new game modules. The toolset providesa

ess to the s
ripting language and all the s
ripted game resour
es, in
luding thegame AI. While the s
ripting language is not as powerful as modern programminglanguages, I found it to be su�
iently powerful to implement dynami
 s
ripting.I implemented a small module inNeverwinter Nights, similar to the simulatedCRPG used previously. The module
ontains an en
ounter between a dynami
 teamand a stati
 team of similar
omposition. As a result, the Neverwinter Nightsexperiment is very similar to the CRPG simulation experiments des
ribed earlier.This is on purpose, be
ause the present experiment is meant to demonstrate that thesimulation results
an be repeated in a
ommer
ially available game. In
ontrast,Chapter 6 will demonstrate the general appli
ability of dynami
 s
ripting.The testing environment is illustrated in Figure 5.10. Ea
h team
onsists of a

5.5 � Validation in Pra
ti
e 105

Figure 5.10: A �ght between two teams in Neverwinter Nights.�ghter, a rogue, a priest, and a wizard of equal experien
e level. In
ontrast to theagents in the simulated CRPG, the inventory and spell sele
tions in the Never-winter Nights module
annot be
hanged, due to the toolset la
king fun
tions toa
hieve su
h modi�
ations. This has a restri
tive impa
t on the ta
ti
s. Details ofthe module are found in Appendix B, Se
tion B.1.5.5.2 S
ripts and RulebasesTo fa
ilitate the development of new game modules, the default game AI in Nev-erwinter Nights is implemented in a very general way, suitable for agents of all
lasses and levels (e.g., it does not refer to
asting of a spe
i�
 magi
 spell, butto
asting of spells from a spe
i�

lass). It distinguishes between about a dozenagent
lasses. For ea
h agent
lass it sequentially
he
ks a number of environmentalvariables and attempts to generate an appropriate response. The behaviour gener-ated is not
ompletely predi
table, be
ause it is partly probabilisti
. Details of theNeverwinter Nights game AI are found in Appendix B, Se
tion B.2.For the implementation of the dynami
-s
ripting te
hnique, �rst the rules em-ployed by the default game AI were extra
ted, and then entered in every appropriaterulebase. To these standard rules several new rules were added. The new rules weresimilar to the standard rules, but slightly more spe
i�
, e.g., referring to spe
i�
enemies instead of referring to a random enemy. Additionally, a few `empty' ruleswere added, whi
h, if sele
ted, allow the game AI to de
rease the number of e�e
-tive rules. Priorities were set similar to the priorities used in the simulated CRPG.

106 Dynami
 S
riptingNote that sin
e the rules extra
ted from the default game AI are generalised, therules used by dynami
 s
ripting are generalised too. The use of generalised rules inthe rulebase has the advantage that the rulebase gets trained for generating AI foragents of any experien
e level.The size of the s
ripts for both a �ghter and a rogue was set to �ve rules (thesame as the number of rules of the �ghter in the simulated CRPG), whi
h weresele
ted out of rulebases
ontaining 21 rules. The size of the s
ripts for both a priestand a wizard was set to ten rules (the same as the number of rules of the wizardin the simulated CRPG),
ontaining 55 rules and 49 rules, respe
tively. To the endof ea
h s
ript a
all to the default game AI was added, in
ase no rule
ould bea
tivated. Details of the rulebases are found in Appendix B, Se
tion B.3.5.5.3 Weight-Update Fun
tionThe weight adjustment me
hanism used in Neverwinter Nights was similar tothe me
hanism used in the simulated CRPG (5.2.3). I de
ided to di�er slightly fromthe implementation of these fun
tions in the simulation, mainly to avoid problemswith the Neverwinter Nights s
ripting language, and to allow varying team sizes.These
hanges are not
riti
al for the performan
e of dynami
 s
ripting, sin
e the�tness fun
tions only need to provide a general indi
ation of the measure of su

essof a team and its agents.The team-�tness F (g), whi
h yields a value in the range [0,1℄, was de�ned asfollows.
F (g) =



















0 {g lost}
1

5
+

∑

c∈g,hT (c)>0

2

5Ng

(

1 +
hT (c)

h0(c)

) {g won} (5.8)All variables in this equation were de�ned as those in equation 5.1. The agent-�tness
F (a, g), whi
h yields a value in the range [0,1℄, was de�ned as follows.

F (a, g) =
1

2
F (g) +

1

2























min(2D(a)

Dmax
,
3

5

) {hT (a) ≤ 0}
3

5
+

2hT (a)

5h0(a)
{hT (a) > 0} (5.9)All variables in this equation were de�ned as those in equations 5.2 to 5.5.Weight adjustment was implemented a

ording to equation 5.6, with all para-meter values as in the e�
ien
y-validation experiment, ex
ept for the maximumpenalty Pmax, whi
h was set to 50. Furthermore, rules in the s
ript that were notexe
uted during the en
ounter, instead of being treated as not being in the s
riptat all, were assigned half the reward or penalty re
eived by the rules that were ex-e
uted. The main reason for this is that if there were no rewards and penalties forthe non-exe
uted rules, the empty rules would never get rewards or penalties.

5.5 � Validation in Pra
ti
e 1075.5.4 Ta
ti
sIn our experiment three di�erent ta
ti
s were used for the stati
 team, all based onthe default game AI, implemented by the Neverwinter Nights developers. Thethree ta
ti
s are the following.AI 1.29: AI 1.29 is the default game AI used in Neverwinter Nights version1.29. This version of Neverwinter Nights was used for the earliest tests.AI 1.61: AI 1.61 is the default game AI used in Neverwinter Nights version1.61. This version of Neverwinter Nights was used for the later tests.Between version 1.29 and 1.61 the game AI was signi�
antly improved by thegame developers.Cursed AI: A `
ursed' version of AI 1.61 was
reated. With
ursed AI in 20 per
ent of the en
ounters the game AI deliberately misleads dynami
 s
riptinginto awarding high �tness to purely random ta
ti
s, and low �tness to ta
ti
sthat have shown good performan
e during earlier en
ounters.5.5.5 Neverwinter Nights ResultsTable 5.5 summarises the results from the repetition of (parts of) the e�
ien
y-validation experiment and the outlier-redu
tion experiment in the NeverwinterNights environment. The
olumns of the table represent, from left to right, (i) theta
ti
 used, (ii) the fallba
k me
hanism used, (iii) the number of tests exe
uted,6(iv) the average turning point, (v) the standard deviation, (vi) the median, (vii)the highest value for the turning point, and (viii) the average of the �ve highestvalues. No tests were performed with penalty balan
ing, sin
e already in the earliestexperiments with Neverwinter Nights higher maximum penalties were used thanin the simulated CRPG. From the results in Table 5.5 the following two
on
lusionsare derived.First, sin
e the a
hieved turning points in all tests are (very) low, dynami
 s
ript-ing meets the requirement of e�
ien
y easily.Se
ond, history fallba
k has little or no e�e
t on the results. However, sin
eeven `
ursed AI' does not
ause signi�
antly in
reased turning points, it seems thatdynami
 s
ripting in Neverwinter Nights is so robust that remote outliers donot o

ur. Therefore,
ountermeasures against outliers are not needed, and dynami
s
ripting in Neverwinter Nights meets the requirement of
onsisten
y withoutspe
ial measures.The results a
hieved with the top-
ulling enhan
ement were also validated inNeverwinter Nights. Without top
ulling, in ten tests dynami
 s
ripting a
hieved6The number of tests for the Neverwinter Nights experiment is lower than for the simulationexperiment, where I performed 100 tests for ea
h
on�guration. Sin
e the Neverwinter Nightsdevelopers stated that it was not possible to in
rease the speed of the game exe
ution, a test lasted8 hours on average (for the �tness-s
aling tests even 24 hours on average). To limit the time neededto do the tests, I de
ided to be satis�ed with a number of tests su�
ient to obtain statisti
allysound results.

108 Dynami
 S
riptingTa
ti
 Fallba
k Tests Avg. St.dev. Median Highest Top 5AI 1.29 NoF 50 21 8.8 16 101 58AI 1.61 NoF 31 35 18.8 32 75 65AI 1.61 FPF 30 32 21.8 24 104 71Cursed AI NoF 21 33 21.8 24 92 64Cursed AI FPF 21 32 28.1 18 115 69Table 5.5: Turning-point values for dynami
 s
ripting in Neverwinter Nights.an average number of 79.4 wins out of 100 �ghts, with a standard deviation of 12.7.With top
ulling, in ten tests dynami
 s
ripting a
hieved an average number of49.8 wins out of 100 �ghts, with a standard deviation of 3.4. The results
learlysupport that dynami
 s
ripting, enhan
ed with top
ulling, meets the requirementof s
alability.5.5.6 Dis
ussionThe Neverwinter Nights experiment supports the results a
hieved with dynami
s
ripting in a simulated CRPG. Comparison of all results even seems to indi
ate thatdynami
 s
ripting performs better in Neverwinter Nights than in the simulatedCRPG. This is
aused by the fa
t that the default game AI inNeverwinter Nightsis designed to be e�e
tive for all agents that
an be designed in the toolset. Sin
eit is not spe
ialised, for most agents it is not optimal. Therefore, there is a greatvariety of ta
ti
s that
an be used to deal with it, whi
h makes it fairly easy fordynami
 s
ripting to dis
over a su

essful
ounter-ta
ti
.In general, the more e�e
tive the ta
ti
 against whi
h dynami
 s
ripting is tested,the longer it will take for dynami
 s
ripting to gain the upper hand. Moreover, be-
ause dynami
 s
ripting is designed to generate a wide variety of ta
ti
s (in
ompli-an
e with the requirement of variety), it will never gain the upper hand if the ta
ti
against whi
h it is pitted is so strong that there are very few viable
ounter-ta
ti
s.Against human players, this means that dynami
 s
ripting will a
hieve the mostsatisfying results against non-expert players.In a game that allows the design of `super-ta
ti
s', whi
h are almost impossibleto defeat, dynami
 s
ripting may not give satisfying results when used against ex-pert players who know and use these super-ta
ti
s. However, every ma
hine-learningte
hnique will require more
omputational resour
es �nding rare solutions than �nd-ing ubiquitous solutions. Therefore, against super-ta
ti
s, instead of using an onlinema
hine-learning te
hnique, in general it will be more e�e
tive to use
ounter-ta
ti
sthat have been trained against these super-ta
ti
s in an o�ine-learning pro
ess. Itshould be noted that the existen
e of super-ta
ti
s in a game is a
tually an indi
ationof bad game-design, be
ause they make the game too hard when employed by the
omputer, and they make the game too easy when employed by the human player.

5.6 � Chapter Summary 1095.6 Chapter SummaryBy design, dynami
 s
ripting meets the requirements of speed, e�e
tiveness, robust-ness,
larity, and variety. In Se
tion 5.2 it was shown that it meets the requirement ofe�
ien
y. In Se
tion 5.3 it was shown that by applying penalty balan
ing, possibly
ombined with history fallba
k, dynami
 s
ripting meets the requirement of
onsis-ten
y. In Se
tion 5.4 it was shown that by applying top
ulling, dynami
 s
riptingmeets the requirement of s
alability. The results a
hieved in a simulated CRPGwere
on�rmed in the state-of-the-art CRPG Neverwinter Nights. Thereforeit may be
on
luded that dynami
 s
ripting meets all eight requirements spe
i�edin Subse
tion 2.3.4, and thus
an be applied in a
tual
ommer
ial games for theimplementation of online adaptive game AI.

Chapter 6Professional Adaptive Game AIIn the s
ale of destinies, brawn will never weigh as mu
h as brain.� James Russell Lowell (1819�1891).This
hapter1 dis
usses how adaptive game AI is to be applied by professional gamedevelopers. Se
tion 6.1 des
ribes the game-development pro
ess, and indi
ates atwhi
h stages of the pro
ess adaptive game AI must be taken into a

ount. While theo�ine appli
ation of adaptive game AI is relatively risk-free, game developers willonly
onsider applying it online if it is of high reliability. A pro
edure is proposedto in
rease the reliability of online adaptive game AI by using o�ine adaptive gameAI. The pro
edure is illustrated in Se
tions 6.2 to 6.4. Se
tion 6.2 dis
usses adaptivegame AI in a Real-Time Strategy (RTS) game. In Se
tion 6.3 improved ta
ti
s forthe game are generated with o�ine evolutionary game AI. In Se
tion 6.4 the derivedresults are used to improve the reliability of the adaptive game AI introdu
ed inSe
tion 6.2. Se
tion 6.5 dis
usses to what extent the investigated te
hniques
an bea

epted by game developers. A summary of the
hapter is provided in Se
tion 6.6.6.1 Game Development and Adaptive Game AIThis se
tion des
ribes how adaptive game AI
an be integrated in the game-development pro
ess. It dis
usses the game-development pro
ess (6.1.1), the stagesof the pro
ess that are a�e
ted by adaptive game AI (6.1.2), and how o�ine adaptivegame AI
an be used to in
rease the reliability of online adaptive game AI (6.1.3).6.1.1 The Game-Development Pro
essCrawford (1984) des
ribes the game-development pro
ess as
onsisting of the follow-ing seven phases.21Se
tions 6.2 to 6.4 of this
hapter are based on a paper by Ponsen and Spron
k (2004).2I repla
ed some of the terms used by Crawford (1984) with terms that are more
ommonnowadays.

112 Professional Adaptive Game AICon
ept: The `
on
ept' phase
onsists of setting a topi
 and a goal for a game. Ea
hgame must have a goal, that is expressed in terms of the e�e
t the game hason human players. Setting a
lear goal at the start of the game-developmentpro
ess supports game designers in taking de
isions, espe
ially when trade-o�sbetween features must be
onsidered.Pre-produ
tion: After
hoosing a goal and a topi
 for a game, resear
h must bedone into the game's ba
kground, to give designers a feeling for the game'ss
ope. This is an exploratory phase, in whi
h little is put on paper.Design: In the `design' phase, designers
reate do
uments outlining three interde-pendent stru
tures: (i) the I/O stru
ture, (ii) the game stru
ture, and (iii)the program stru
ture. The I/O stru
ture des
ribes the game's interfa
e, withrespe
t to both input and output. The game stru
ture des
ribes how thegame's goal and topi
 translate into game elements, to be experien
ed andmanipulated by human players. The program stru
ture des
ribes how the I/Ostru
ture and game stru
ture are translated into a real produ
t.Pre-development: In the `pre-development' phase, the design do
uments aretranslated into a detailed te
hni
al design of the game.Development: In the `development' phase the game is implemented (whi
h in-
ludes game debugging). Crawford (1984)
alls this �the easiest of all phases�.His argument is that �[p℄rogramming itself is straightforward and tedious work,requiring attention to detail more than anything else.� At the time he wrotethis, it was
ertainly true, sin
e games were mu
h simpler then than they aretoday. Whether his statement is true for a modern game depends on howinnovative and
ompetitive the game intends to be.Quality Assuran
e: `Quality assuran
e', also referred to as `playtesting', is meantto polish and re�ne the game design. Often during this phase fundamental�aws are dis
overed, that require major
hanges to the design or implementa-tion.Post-mortem: After the game has been deployed, the `post-mortem' phase starts.Rea
tions of reviewers and the gaming publi
 are measured. Nowadays, formost games during the `post-mortem' phase one or more `pat
hes' are released,to resolve design and programming mistakes dis
overed only after a game'spubli
ation.6.1.2 Integrating Adaptive Game AIBefore the late 1990s, game AI only be
ame an issue late in the `development'phase. However, sin
e game AI has be
ome an element of
ompetition betweengame developers, as early as in the `design' phase attention is given to game AI(Champandard, 2004). When adaptive game AI is introdu
ed in a game, it a�e
tsthe game-development pro
ess in even earlier phases, as explained below.

6.1 � Game Development and Adaptive Game AI 113Sin
e adaptive game AI is still new for published games, its introdu
tion in agame will not be taken lightly. In parti
ular online adaptive game AI has a majorimpa
t on the game-play experien
e of the human players. Sin
e online adaptivegame AI will be a unique selling point of a game, it be
omes one of the game's goals.Therefore, the de
ision to in
lude online adaptive game AI is taken in the `
on
ept'phase. This will remain the
ase until adaptive game AI be
omes a proven te
hniquethat most games developers in
lude by default.For both o�ine and online adaptive game AI, the `design' phase will be used todetermine exa
tly what
an be learned, and how the learning pro
ess is integratedinto the game engine. In the `pre-development' phase, detailed data stru
tures aredesigned that store parameters used by the adaptive game AI. During the `develop-ment' phase, the adaptive game AI is implemented.With o�ine adaptive game AI, during the `quality assuran
e' phase the gameAI
an be �ne-tuned, in two ways. The �rst way is to let the manually-designedgame AI play the game against o�ine adaptive game AI, to dete
t short
omingsand alternative ta
ti
s, as was dis
ussed in Se
tion 4.1. The se
ond way is to storethe ta
ti
s that are used by the playtesters, after whi
h o�ine adaptive game AI isused to play against the stored ta
ti
s that playtesters seem to use often, to dete
tways of defeating them.For online adaptive game AI, spe
ial
are must be taken during the `qualityassuran
e' phase to test the e�e
t the adaptive me
hanism has on the behaviour ofthe
omputer-
ontrolled agents. Sin
e the agents adapt to the human player, thehuman player has plenty opportunities to `mess' with the game AI while playingthe game. During the `quality assuran
e' phase, it must be as
ertained that theadaptive game AI meets the four
omputational and four fun
tional requirementsspe
i�ed in Subse
tion 2.3.4. Adaptive game AI that meets all eight requirementsis
alled `reliable'. Game publishers
an rest assured that the quality of reliableadaptive game AI is guaranteed, even against human players that deliberately try toexploit the adaptation pro
ess to eli
it inferior game AI. However, be
ause adaptivegame AI is not stati
, the game developers must take into a

ount that the `qualityassuran
e' phase for a game will take longer with than without adaptive game AI.6.1.3 Combining O�ine and Online Adaptive Game AITo ensure the reliability of online adaptive game AI, it must in
orporate a su�
ientamount of
orre
t prior domain knowledge (Manslow, 2002). However, if the in-
orporated domain knowledge is in
orre
t or insu�
ient, online adaptive game AIwill not be reliable, and unable to generate satisfying results. If a
ombination ofo�ine and online game AI is available during the `quality assuran
e' phase, o�ineadaptive game AI
an be used to in
rease the reliability of online adaptive game AIby improving the domain knowledge. To this end, I propose a pro
edure
onsistingof the following three steps.1. Online adaptation: During the `quality assuran
e' phase, online adaptive gameAI is used against the playtesters and against manually-designed game AI, as

114 Professional Adaptive Game AIwas shown in Chapter 5. The adaptive game AI will improve itself to generatesu

essful ta
ti
s, that are hard to defeat.2. O�ine adaptation: O�ine adaptive game AI is used to dis
over new ta
ti
sthat
an deal with the best results found by online adaptive game AI, andwith the manually-designed ta
ti
s that online adaptive game AI was unableto deal with, as was shown in Se
tion 4.1.3. Improving : The ta
ti
s dis
overed with o�ine adaptive game AI are analysed,and the results of the analysis are used to improve the domain knowledgeemployed by online adaptive game AI. The improved online adaptive game AIshould be better able to deal with strong human player ta
ti
s, and shouldbe more e�
ient in �nding ta
ti
s of a desired e�e
tiveness. Step 1
an berepeated to validate the improvements. If ne
essary all three steps
an berepeated to further improve the domain knowledge.In the following three se
tions, the e�e
tiveness of the pro
edure is demon-strated.36.2 Dynami
 S
ripting in an RTS GameThe �rst step in
ombining online and o�ine adaptive game AI is the implementa-tion and use of online adaptive game AI. The most
omplex game AI is en
ounteredin CRPGs and in strategy games (2.2.2). Chapter 5 already showed that dynami
s
ripting
an be su

essfully applied to a CRPG. To demonstrate the general ap-pli
ability of dynami
 s
ripting, for the experiment des
ribed in the present
hapterit was de
ided to apply dynami
 s
ripting to a Real-Time Strategy (RTS) game.In the experiment, dynami
 s
ripting is evaluated against several stati
 ta
ti
s, todetermine to what extent it is able to defeat the stati
 ta
ti
s.Subse
tion 6.2.1 introdu
es RTS games and the Wargus environment used forthe experiment. Subse
tion 6.2.2 des
ribes the implementation of dynami
 s
ript-ing in Wargus. Subse
tion 6.2.3 dis
usses the evaluation of dynami
 s
ripting inWargus. Subse
tion 6.2.4 presents the a
hieved results.6.2.1 RTS GamesRTS games are simple military simulations (often
alled `war games') that allow thehuman player to
ontrol a `
ivilisation' on a map. Typi
ally, a
ivilisation
onsistsof buildings, te
hnology, and armies. Armies
onsist of `units' of several di�erenttypes. A unit is an obje
t that separately moves on a game's map, under the
ontrolof either a human player or the
omputer. A unit is di�erent from an agent, in thata unit does not take autonomous de
isions. All de
isions are taken by the humanplayer, or the
entralised game AI used by the
omputer.3This demonstration is based on the work by Ponsen (2004), whi
h was performed in
ollabo-ration with and under supervision of the author.

6.2 � Dynami
 S
ripting in an RTS Game 115The goal that an RTS game assigns to a human player is to defeat all opposing
ivilisations. Usually, defeating a
ivilisation equates eliminating all armies of the
ivilisation. In most RTS games, the key to winning lies in e�
iently
olle
ting andmanaging resour
es, and appropriately distributing the resour
es over the variousgame elements. Typi
al game elements in RTS games in
lude the
onstru
tion ofbuildings, the resear
h of new te
hnologies, and
ombat.Game AI is of
riti
al importan
e to RTS games. It determines the ta
ti
s ofthe
ivilisations
ontrolled by the
omputer, in
luding the management of resour
es.Designing game AI for RTS games is parti
ularly
hallenging for game developers,be
ause of two reasons: (i) RTS games are
omplex, i.e., a wide variety of ta
ti
s
an be employed, and (ii) de
isions have to be made under severe time
onstraints.Buro (2003b)
alls RTS games �an ideal test-bed for real-time AI resear
h�.Game AI in RTS games is global, i.e., it determines all de
isions for a
ivilisationover the
ourse of the whole game.4 For RTS games, Ramsey (2004) des
ribes amulti-tiered game-AI framework, whi
h
onsists of di�erent managers for di�erenttasks. Five examples of managers are (i) a `build manager' that is responsible forpla
ement of stru
tures and towns, (ii) a `resour
e manager' that is responsible forgathering resour
es, (iii) a `resear
h manager' that sele
ts new te
hnologies based ontheir usefulness and
ost, (iv) a `
ombat manager' that is responsible for
ons
ript-ing and deploying military units, and (v) a `
ivilisation manager', that
oordinatesthe intera
tion between the other managers. In pra
ti
e, the managers are often
ombined in one game-AI s
ript, whi
h de�nes a strategy.Be
ause of the high
omplexity of the game AI of RTS games, usually the gameAI employs a goal-dire
ted approa
h (Harmon, 2002). The �nal goal for the game AIis to win the game, but this goal is too
ompli
ated to address dire
tly. Therefore,the game AI aims at a
hieving subgoals, that
an be
onsidered su

essful steps onthe road to a
hieving the �nal goal. Examples of subgoals are `expanding the terrainunder
ontrol' and `disabling the opponent's resour
e gathering'. Usually, the gameAI is enhan
ed with a variety of domain-spe
i�
 ta
ti
s, whi
h may in
rease theentertainment experien
ed by human players (Kent, 2004).Contrary to publishers of CRPGs, publishers of RTS games have not yet releasedgame engines that allow repla
ement of the game AI by an adaptive me
hanism(Buro, 2004). Therefore, in the present
ontext, an open-sour
e game was sele
tedto experiment with online and o�ine adaptive game AI in RTS games.The game sele
ted is Wargus, illustrated in Figure 6.1. Wargus is a faithfulopen-sour
e
lone of the game War
raft II, developed by Blizzard. War
raftII was �rst released in 1995, and re-released in 1999. While its graphi
s are not toup to today's standards, its game-play
an still be
onsidered state of the art. WhileWar
raft II andWargus allow
on�i
ts between more than two
ivilisations, forthe experiments des
ribed here, the number of
ivilisations on a map was limitedto two. A game-AI s
ript for Wargus determines a
omplete strategy for a wholegame. Details of the Wargus game AI are found in Appendix C.4Depending on the level of detail of an RTS game, it may also in
lude lo
al game AI, whi
h
ontrols unit behaviour. However, in strategy games the lo
al game AI is trivial
ompared to theglobal game AI.

116 Professional Adaptive Game AI

Figure 6.1: Wargus.6.2.2 Dynami
 S
ripting in WargusThe design of dynami
 s
ripting for RTS games has a major di�eren
e with dynami
s
ripting for CRPGs, as dis
ussed in Chapter 5. While dynami
 s
ripting for CRPGsemploys di�erent rulebases for di�erent agent
lasses in the game, the RTS imple-mentation of dynami
 s
ripting employs di�erent rulebases for di�erent `states' ofthe game. A `state' of an RTS game is a game situation that the game-AI designertypi�es as fundamentally di�erent from other game situations. The reason for thedeviation from the CRPG implementation of dynami
 s
ripting is that the ta
ti
sthat a
ivilisation
an use in an RTS game depend on the
urrent military, te
hno-logi
al, and e
onomi
al situation of the
ivilisation. Thus, rules that deserve highweights in one state, may not deserve high weights in another state. For instan
e,atta
king with weak units might be the only viable
hoi
e in early game states, whilein later game states, when strong units are available, usually weak units will havebe
ome useless.In Wargus the availability of di�erent unit types and resear
h options deter-mines mainly what ta
ti
s are possible. The available buildings determine the unittypes that
an be trained, and the possibilities for resear
h. Therefore, an obvious
hoi
e for de�ning di�erent game states is by the buildings that have been
on-

6.2 � Dynami
 S
ripting in an RTS Game 117stru
ted. Consequently, the
onstru
tion of a building that allows the training ofunit types that were previously unavailable, or that allows new resear
h, spawns astate transition.The twenty states forWargus, and the possible state transitions, are illustratedin Figure 6.2. In the �gure, ea
h box represents a state. Inside a box the buildingsthat are available are listed. The arrows between boxes, labelled with a buildingthat is
onstru
ted, represent state transitions. Note that a
ivilisation starts outwith a `town hall' and with `barra
ks' already available. Note also that buildingsthat do not allow the training of new unit types, new resear
h, or the
onstru
tionof new buildings, are left out of the �gure.ForWargus, dynami
 s
ripting was implemented as follows. To generate a newgame-AI s
ript, dynami
 s
ripting starts by randomly sele
ting rules for the �rststate, from the rulebase
orresponding to the �rst state. When a rule is sele
tedthat spawns a state transition, from that point on rules will be sele
ted for thenew state, using the rulebase
orresponding to the new state. To avoid monotonebehaviour, ea
h rule is restri
ted to be sele
ted only on
e per state. Rule sele
tion
ontinues, until either a total of N rules has been sele
ted, or until a �nal state isrea
hed from whi
h no state transition is possible. For the �nal state (whi
h, as
anbe observed in Figure 6.2, is state number 20), a maximum of Nend rules is sele
ted.At the end of a s
ript, a manually-designed group of
ommands is atta
hed thatinitiate
ontinuous atta
ks against the opposing
ivilisation.In the experiment the values N = 100 and Nend = 20 were used. The value for
N is similar to the size of the s
ripts
reated by the Wargus developers. The valuefor Nend is largely irrelevant, sin
e only in rare
ases a game lasts until the �nalstate.To design rules for the rulebases, domain knowledge was a
quired from strategyguides for War
raft II. Fifty rules were de�ned this way, divided into four basi

ategories, namely (i) build rules (12 rules, for
onstru
ting buildings), (ii) resear
hrules (9 rules, for a
quiring new te
hnologies), (iii) e
onomy rules (4 rules, for gath-ering resour
es), and (iv)
ombat rules (25 rules, for military a
tivities). To
reaterulebases for the twenty states, ea
h rule was
opied to all rulebases for states inwhi
h the rule
an be exe
uted.5 This resulted in ea
h of the rulebases
ontain-ing between 21 and 42 rules. Details of the rulebases are supplied in Appendix C,Subse
tion C.5.1.Be
ause there are separate rulebases for ea
h state, the size of weight updates isdetermined mainly by a so-
alled `state �tness', i.e., an evaluation of performan
eof the game AI for ea
h separate state. To re
ognise the importan
e of winning orlosing the game, weight updates also take into a

ount a so-
alled `overall �tness',i.e., an evaluation of the performan
e of the game AI for the game as a whole. Theuse of both �tness fun
tions for the weight updates in
reases the e�
ien
y of thelearning me
hanism (Manslow, 2004).A
ivilisation that uses dynami
 s
ripting is
alled a `dynami

ivilisation'. The5For instan
e, sin
e in Wargus a `
astle' is a prerequisite for building an `airport', and sin
e a
ivilisation only needs one `airport', the rule `build airport' is only in
luded in rulebases for statesin whi
h a `
astle' is available, and in whi
h an `airport' has not been built yet.

118 Professional Adaptive Game AI

Figure 6.2: Game states in Wargus.

6.2 � Dynami
 S
ripting in an RTS Game 119state-�tness fun
tion Fi for state i, i ∈ N/{0}, for dynami

ivilisation d is de�nedas follows.
Fi =

Sd,i

Sd,i + Sc,i
− Sd,i−1

Sd,i−1 + Sc,i−1
(6.1)In this equation, Sd,x represents the s
ore of the dynami

ivilisation after state x,

Sc,x represents the s
ore of the
ivilisation opposing d after state x, Sd,0 = 0, and
Sc,0 = 1. The s
ore is a value that measures the su

ess of a
ivilisation up to themoment the s
ore is
al
ulated.The overall-�tness fun
tion F∞ for dynami

ivilisation d yields a value in therange [0, 1]. It is de�ned as follows.

F∞ =



























min(Sd,L

Sd,L + Sc,L
, b

) {d lost}max(Sd,L

Sd,L + Sc,L
, b

) {d won} (6.2)In this equation, Sd,x and Sc,x are as in equation 6.1, L is the number of the statein whi
h the game ended, and b ∈ 〈0, 1〉 is the break-even value. At the break-evenpoint, weights remain un
hanged.The s
ore fun
tion is domain dependent, and should su

essfully re�e
t the rela-tive strength of the two opposing
ivilisations in the game. For Wargus, the s
ore
Sx,y for
ivilisation x after state y is de�ned as follows.

Sx = Cm Mx,y + (1 − Cm)Bx,y (6.3)In this equation, for player x after state y, Mx,y represents the `military points's
ored, i.e., the number of points awarded for killing units and destroying buildings,and Bx,y represents the `building points' s
ored, i.e., the number of points awardedfor
ons
ripting units and
onstru
ting buildings. Cm ∈ [0, 1] represents the weightgiven to the military points in the �tness. Sin
e experien
e indi
ates that militarypoints are a better indi
ation for the su

ess of a ta
ti
 than building points, Cmwas set to 0.7.After ea
h game, the weights of all rules employed are updated. Weight valuesare bounded by a range [Wmin,Wmax]. A new weight value is
al
ulated as W +△W ,where W is the original weight value, and the weight adjustment △W is expressedby the following formula.
△W =



























−Pmax

(

Cend
b − F∞

b
+ (1 − Cend)

b − Fi

b

) {F∞ < b}
Rmax

(

Cend
F∞ − b

1 − b
+ (1 − Cend)

Fi − b

1 − b

) {F∞ ≥ b} (6.4)In this equation, Rmax ∈ N and Pmax ∈ N are the maximum reward and maximumpenalty respe
tively, F∞ is the overall �tness, Fi is the state �tness, for the state

120 Professional Adaptive Game AI
orresponding to the rulebase
ontaining the weight, and b is the break-even point.
Cend ∈ [0, 1] represents the fra
tion of the weight adjustment that is determinedby the overall �tness. Sin
e it
an be expe
ted that rulebases for di�erent stateswill be
ome su

essful at di�erent times, the
ontribution of the state �tness Fi tothe weight adjustment should be larger than the
ontribution of the overall �tness
F∞. Moreover, it is desirable that, even if a game is lost, rulebases for states whereperforman
e was su

essful are not punished (too mu
h). Therefore, Cend was setto 0.3.To keep the sum of all weight values in a rulebase
onstant, weight
hanges areexe
uted through a redistribution of all weights in the rulebase. In the experiment,the values Wmin = 25, Wmax = 1250, Rmax = 200, Pmax = 175, and b = 0.5 wereused. These values were determined to give good results during preliminary tests.The value of 0.5 for b is the only logi
al
hoi
e, sin
e at this value the s
ores for thetwo
ivilisations are equal, indi
ating equal performan
e for both of them.Note that it
an be argued that, sin
e the dynami
-s
ripting implementation inWargus exe
utes weight updates only after a game has been played, the des
ribedadaptive game AI is a
tually an o�ine me
hanism. However, an RTS game typi
ally
onsists of a series of so-
alled `levels', where ea
h level is equivalent to a game asdis
ussed above, i.e,
ivilisations start with little, and have to expand their territo-ries and defeat all opposing armies, before moving on to the next level. Therefore,the des
ribed adaptive game AI learns during the playing of a full RTS game. Fur-thermore, with a �tness fun
tion that only uses state �tness, and with game AIgenerated for ea
h state on the �y, learning
an even take pla
e during the playingof a level, if states
an be revisited, or if the human player is pitted against multiple
omputer-
ontrolled
ivilisations.6.2.3 Evaluating of Dynami
 S
ripting in WargusSimilar to the experiments reported in Chapter 5, the performan
e of dynami
 s
ript-ing inWargus was evaluated by testing a dynami

ivilisation against a
ivilisationusing manually-designed game AI,
alled a `stati

ivilisation'. Ea
h test
onsistedof a sequen
e of 100 games played.For the �rst game in ea
h test, the dynami

ivilisation started with rulebaseswith all weights equal. The dynami

ivilisation was allowed to update the rulebasesafter ea
h game. A game lasted until one of the
ivilisations was defeated, or untila
ertain period of time had elapsed. If a game ended due to the time restri
tion(whi
h was rarely the
ase), the
ivilisation with the highest s
ore was
onsideredthe winner of the game.Games were played on two di�erent maps, a small map and a large map. Gameson a small map are usually de
ided swiftly, with �er
e battles between weak armies.A large map allows for a slower-pa
ed game, with long-lasting battles between strongarmies. The two maps are dis
ussed in detail in Appendix C, Se
tion C.1.Four di�erent manually-designed game-AI variations, or `ta
ti
s', were used forthe stati

ivilisation, namely the following.

6.2 � Dynami
 S
ripting in an RTS Game 121Small Balan
ed Ta
ti
: A `balan
ed' ta
ti
 keeps a balan
e between o�ensivea
tions, defensive a
tions, and resear
h. It is e�e
tive against many di�erentplaying styles employed by humans. The `small balan
ed ta
ti
' is employedon the small map.Large Balan
ed Ta
ti
: The `large balan
ed ta
ti
' is similar to the `small bal-an
ed ta
ti
', but is employed on the large map.Soldier Rush: The `soldier rush' aims at overwhelming the opponent with
heapo�ensive units in an early state of the game. Sin
e the `soldier rush' is moste�e
tive in fast games, it is employed on the small map.Knight Rush: The `knight rush' aims at qui
k te
hnologi
al advan
ement, laun
h-ing large o�en
es as soon as strong units are available. Sin
e the `knight rush'works best in slower-pa
ed games, it is employed on the large map.Details of the ta
ti
s are listed in Appendix C, Se
tion C.3.To quantify the relative performan
e of the dynami

ivilisation against the stati

ivilisation, the notion of the `turning point' is de�ned as follows. After ea
h game,an approximate randomisation test (Cohen, 1995) is performed using the overall�tness values over the most re
ent ten games, with the null hypothesis that both
ivilisations are equally strong. The dynami

ivilisation is said to outperform thestati

ivilisation if the randomisation test
on
ludes that the null hypothesis
anbe reje
ted with a probability of 90%, in favour of the dynami

ivilisation beingstronger. The `turning point' is the number of the �rst game in whi
h the dynami

ivilisation outperforms the stati

ivilisation. Low values for the turning pointsindi
ate good e�
ien
y of dynami
 s
ripting.6.2.4 Evaluation ResultsThe results of the evaluation of dynami
 s
ripting inWargus are displayed in Table6.1. From left to right, the table
olumns represent (i) the ta
ti
 used by the stati

ivilisation, (ii) the number of tests, (iii) the average turning point, (iv) the medianturning point, (v) the lowest turning point, (vi) the highest turning point, (vii) thenumber of tests that did not �nd a turning point within 100 games played, and (viii)the average number of games won during the test.From the low values for the turning points for the two `balan
ed' ta
ti
s, itmay be
on
luded that the dynami

ivilisation adapts e�e
tively and e�
iently.Therefore, dynami
 s
ripting
an be applied su

essfully to RTS games. However,the dynami

ivilisation was unable to adapt to the two `rush' ta
ti
s within 100games. The reason for the inferior performan
e of the dynami

ivilisation againstthe two `rush' ta
ti
s is twofold, namely (i) the `rush' ta
ti
s are optimised, in thesense that it is quite hard to design game AI that is able to deal with them, and (ii)the rulebase does not
ontain the appropriate knowledge to easily design game AIthat is able to deal with the `rush' ta
ti
s.Note that this does not mean that dynami
 s
ripting
annot use the rulebases todesign an answer to the rush ta
ti
s. It
an, and does so o

asionally. However, the

122 Professional Adaptive Game AITa
ti
 Tests Average Median Lowest Highest > 100 WonSmall balan
ed 31 50 39 18 99 0 59.3Large balan
ed 21 49 47 19 79 0 60.2Soldier rush 10 10 1.2Knight rush 10 10 2.3Table 6.1: Evaluation results of dynami
 s
ripting in Wargus.rulebases generate su
h an answer only on rare o

asions. Therefore, it takes quitea long time before the rules of whi
h su
h an answer
onsists have weights that aresu�
iently high so that the answer o

urs regularly. The requirement of e�
ien
ydisallows su
h a long learning time.Perhaps not surprisingly, against the `balan
ed' ta
ti
s, in some of the testsdynami
 s
ripting en
ouraged the rulebases to
reate s
ripts that were very similarto the `rush' ta
ti
s. Therefore, even if the `rush' ta
ti
s had not been implementedmanually, they would have been dis
overed automati
ally by dynami
 s
ripting.6.3 Evolutionary Ta
ti
sThe se
ond step in
ombining online and o�ine adaptive game AI, is to use o�ineadaptive game AI to dis
over new ta
ti
s that
an deal with the best results foundby online adaptive game AI, and with the manually-designed ta
ti
s that onlineadaptive game AI was unable to deal with. In Se
tion 4.1, o�ine evolutionarylearning was used to design neural-network-based game AI for a strategy game. Itwas
on
luded that o�ine evolutionary learning is
apable of evolving su

essfulgame AI, but that a neural network is not a suitable stru
ture to store game AI.In the present se
tion, a similar approa
h as in Se
tion 4.1 is used to evolve s
ript-based game AI. The goal is to design game AI for Wargus, that has the abilityto deal su

essfully with the two `rush' ta
ti
s dis
ussed in Se
tion 6.2, whi
h weredi�
ult for dynami
 s
ripting to deal with. This se
tion dis
usses the experimentalpro
edure used (6.3.1), the
hromosome en
oding (6.3.2), the �tness fun
tion used bythe evolutionary algorithm (6.3.3), the geneti
 operators (6.3.4), the results a
hievedagainst the two `rush' ta
ti
s (6.3.5), and a qualitative examination of the dis
overedsolutions (6.3.6).6.3.1 Experimental Pro
edureAn evolutionary algorithm was designed to evolve new ta
ti
s to be used in theWar-gus environment against a stati

ivilisation using either the `soldier rush' or the`knight rush' ta
ti
. The evolutionary algorithm used a population of size 50. Thepopulation was initialised with random (but legal)
hromosomes. To sele
t parent
hromosomes for breeding, size-3 tournament sele
tion was used (Goldberg, 1989).

6.3 � Evolutionary Ta
ti
s 123Newly generated
hromosomes repla
ed existing
hromosomes in the population,using size-3
rowding (Goldberg, 1989).The evolution
ontinued until one of two stop
riteria was ful�lled, namely (i)the �tness-stop
riterion, or (ii) the run-stop
riterion. The �tness-stop
riterionaborts the evolution pro
ess when a
hromosome with a target �tness value hasbeen
reated. During preliminary experiments suitable target �tness values weredetermined, namely 0.75 against the `soldier rush', and 0.70 against the `knightrush'. The run-stop
riterion aborts the evolution pro
ess when a maximum numberof generations has been produ
ed.During preliminary experiments it was found that a maximum of only �ve gener-ations (i.e., 250 new
hromosomes) was su�
ient to evolve su

essful game AI. Whenthe evolution pro
ess ends, the
hromosome with the highest �tness is
onsideredthe solution.6.3.2 En
oding of Ta
ti
sThe evolutionary algorithm works with a population of
hromosomes. In the present
ontext, a
hromosome represents a game-AI s
ript. To en
ode a game-AI s
ript forWargus, ea
h gene in the
hromosome represents one rule.Four di�erent gene types are distinguished,
orresponding to the four basi
 rule
ategories mentioned in Subse
tion 6.2.2, namely (i) build genes, (ii) resear
h genes,(iii) e
onomy genes, and (iv)
ombat genes. Ea
h gene
onsists of a `rule ID' thatindi
ates the type of gene (`B', `R', `E' and `C', respe
tively), followed by values forthe parameters needed by the gene.6 The genes are grouped by states, and the startof a state is indi
ated by a separate marker (`S'), followed by the state number. Ruledetails
an be found in Appendix C, Se
tion C.4.The
hromosome design is illustrated in Figure 6.3. A s
hemati
 representationof the
hromosome, divided into states, is shown at the top. Below it, a s
hemati
representation of one state in the
hromosome is shown,
onsisting of a state markerand a series of rule genes. Rule genes are identi�ed by the number of the state forwhi
h they o

ur, followed by a period, followed by a sequen
e number. Below thestate representation, a s
hemati
 representation of one rule is shown. At the bottom,part of an example
hromosome is shown.7Chromosomes for the initial population are generated randomly. The generatingme
hanism starts by randomly produ
ing genes for the �rst state, allowing onlygenes that are legal in this state. When a build gene is produ
ed that spawns astate transition, the generating me
hanism swit
hes to produ
ing genes for the newstate. This
ontinues until the last state is rea
hed, for whi
h �ve genes are produ
ed,6Of the
ombat gene, there are a
tually twenty variations, one for ea
h possible state. Ea
hvariation uses di�erent parameters. They use rule ID's marked `C1' to `C20'.7The example
hromosome translates as follows. In state 1, �rst a defensive army is
reated withnumber 2,
onsisting of �ve soldiers. Then building type 4 is
onstru
ted. The
onstru
tion of thisbuilding spawns a transition to state 3 (thus, from Figure 6.2 it
an be derived that building type4 is a `bla
ksmith'). In state 3, �rst e
onomy a
tion 8 is exe
uted, whi
h is followed by resear
ha
tion 15. Finally, building type 3 (a `lumbermill') is
onstru
ted, whi
h spawns a transition tostate 6.

124 Professional Adaptive Game AI

Figure 6.3: Chromosome design to store game AI for Wargus.and to whi
h a loop is atta
hed that
ontinuously atta
ks with strong units. Thusit is ensured that only legal game-AI s
ripts are
reated.6.3.3 Fitness Fun
tionTo determine the �tness of a
hromosome, the
hromosome is translated to a game-AI s
ript. The game-AI s
ript
ontrols a dynami

ivilisation against a stati

ivi-lisation. A �tness fun
tion F measures the relative su

ess of the game-AI s
riptrepresented by the
hromosome. Fitness fun
tion F for the dynami
 player d, yield-ing a value in the range [0, 1], is de�ned as follows.
F =



























min(CT

Cmax
· Md

Md + Mc
, b

) {d lost}max(Md

Md + Mc
, b

) {d won} (6.5)In this equation, CT represents the timestep at whi
h the game was �nished (i.e.,lost by one of the players, or aborted be
ause time ran out), Cmax represents themaximum timestep the game is allowed to
ontinue to, Md represents the `militarypoints' for the dynami
 player, Mc represents the `military points' for the dynami
player's opponent, and b is the break-even point. When a game is aborted be
ausetime ran out, the highest s
oring
ivilisation wins (as
al
ulated by equation 6.3).The fa
tor CT

Cmax

ensures that a game AI that loses after a long game, is awarded ahigher �tness than a game AI that loses after a short game.Sin
eWargus is
ompletely deterministi
, the �tness does not
hange if multiple

6.3 � Evolutionary Ta
ti
s 125
Figure 6.4: State
rossover.games are played. Were this not the
ase, the �tness would have been determinedby playing several games and averaging over the �tness values per game.6.3.4 Geneti
 OperatorsTo breed new
hromosomes, four geneti
 operators were implemented. By design,all four geneti
 operators ensure that a
hild
hromosome always represents a `legal'game-AI s
ript. Parent
hromosomes are sele
ted with a
han
e
orresponding totheir �tness values.The geneti
 operators take into a

ount `a
tivated' genes. An a
tivated gene is agene that represents a rule that was exe
uted during the �tness determination. If ageneti
 operator produ
es a
hild
hromosome that is equal to a parent
hromosomefor all a
tivated genes, the
hild is reje
ted and a new
hild is generated. Thereason is that genes that are not a
tivated, are irrelevant to the game-AI s
ript the
hromosome represents.The four geneti
 operators are the following.

• State Crossover sele
ts two parent
hromosomes, and
opies states from ei-ther parent to the
hild
hromosome. The geneti
 operator is
ontrolled by`mat
hing states'. A `mat
hing state' is a state that exists in both parent
hromosomes. Figure 6.2 makes evident that, for Wargus, there are alwaysat least four mat
hing states, namely state 1, state 12, state 13, and state 20.State
rossover will only be used when there are least three mat
hing stateswith a
tivated genes. A
hild
hromosome is
reated as follows. States are
opied from the �rst parent
hromosome to the
hild
hromosome, starting atstate 1 and working down the
hromosome. When there is a state transitionto a mat
hing state, there is a 50 per
ent probability that from that point on,the role of the two parents is swit
hed, and states are
opied from the se
ondparent. When the next state transition to a mat
hing state is en
ountered,again a swit
h between the parents
an o

ur. This
ontinues until the laststate has been
opied. The pro
ess is illustrated in Figure 6.4. In the �gure,parent swit
hes o

ur at state 8 and at state 13.
• Rule Repla
ement Mutation
opies one parent
hromosome to a
hild
hromo-some. Then, all a
tivated resear
h, e
onomy, and
ombat genes have a 25 per

126 Professional Adaptive Game AITa
ti
 Average Lowest Highest > 250Soldier rush 0.78 0.73 0.85 2Knight rush 0.75 0.71 0.84 0Table 6.2: Evolutionary game AI in Wargus results.
ent probability to be repla
ed with a random di�erent e
onomy, resear
h, or
ombat gene. It is allowed to repla
e a gene of a
ertain type by a gene of adi�erent gene type (e.g., it is allowed to repla
e a resear
h gene by a
ombatgene). Build genes are ex
luded both for and as repla
ements, be
ause they
an spawn a state transition, whi
h might
orrupt the
hromosome.
• Biased Rule Mutation
opies one parent
hromosome to a
hild
hromosome.Then, all parameters for e
onomy and
ombat genes have a 50 per
ent prob-ability to be mutated. Mutation
hanges the parameter value by adding arandom integer value in the range [−5, 5].
• Randomisation generates a random new
hild
hromosome.For ea
h new
hild
hromosome that is generated, randomisation has a 10 per
ent probability to be sele
ted, and the other three geneti
 operators ea
h have a 30per
ent probability to be sele
ted.6.3.5 Evolutionary-Ta
ti
s ResultsAs a remedy against ea
h of the two `rush' ta
ti
s, ten tests were performed thatgenerated a
ounter-ta
ti
 by evolutionary means. The results of the two seriesof ten tests are listed in Table 6.2. From left to right, the
olumns of the tablerepresent (i) the ta
ti
 used by the stati

ivilisation, (ii) the average of the solution-�tness values, (iii) the lowest solution-�tness value, (iv) the highest solution-�tnessvalue, and (v) the number of tests that ended on the run-stop
riterion. The tableshows surprisingly high average, highest, and even lowest solution-�tness values.Therefore, it may be
on
luded that o�ine adaptive game AI was su

essful inrapidly dis
overing game-AI s
ripts able to defeat both `rush' ta
ti
s used by thestati

ivilisation.6.3.6 Evolutionary-Ta
ti
s Dis
ussionAbout the solutions evolved against the `soldier rush' ta
ti
, the following observa-tions were made. The `soldier rush' is used on a small map. As is usual for a smallmap, the game played by the solutions was always short. Most solutions in
ludedonly two states with a
tivated genes. Basi
ally, all ten solutions
ounter the `soldierrush' ta
ti
 with a `soldier rush' ta
ti
 of their own. In eight out of ten solutions,the solutions in
luded building a `bla
ksmith' very early in the game. Then, the

6.4 � Improving Online Adaptive Game AI 127solutions sele
ted at least two out of the three possible resear
h advan
ements, afterwhi
h large atta
k for
es were
reated. These eight solutions su

eed be
ause theyensure their soldiers are qui
kly upgraded to be very e�e
tive, before they atta
k.The remaining two solutions overwhelmed the stati

ivilisation with sheer numbers.About the solutions evolved against the `knight rush', the following observationswere made. The `knight rush' is used on a large map, whi
h enti
ed longer games. Onaverage, for ea
h solution �ve or six states were a
tivated. Against the `knight rush',all solutions in
luded training large number of `workers' to be able to expand the
ivilisation qui
kly, and boosting the e
onomy by exploiting additional resour
e sitesafter setting up defenses. Almost all solutions worked towards the goal of qui
kly
reating advan
ed military units, in parti
ular `knights'. Seven out of ten solutionsa
hieved this goal by employing a spe
i�
 building order, namely a `bla
ksmith',followed by a `lumbermill', followed by a `keep', followed by `stables'. Two out of tensolutions preferred a building order that rea
hed state 11 as fast as possible. State11 is the �rst state that allows the building of the `knights'.Surprisingly, in several solutions against the `knight rush', the game AI employedmany `
atapults'. War
raft II strategy guides generally
onsider `
atapults' to beinferior military units, be
ause of their high
osts and
onsiderable vulnerability. Apossible explanation for the su

essful use of `
atapults' by the evolutionary gameAI is that, with their high damaging abilities and large range, they are parti
ularlye�e
tive against tightly pa
ked armies, su
h as groups of `knights'.6.4 Improving Online Adaptive Game AIThe third step in
ombining online and o�ine adaptive game AI, is to use the resultsa
hieved with o�ine adaptive game AI to improve the domain knowledge employedby online adaptive game AI. In Se
tion 6.2, it was dis
overed that dynami
 s
riptingdid not a
hieve satisfying results against the two `rush' ta
ti
s. Se
tion 6.3 des
ribesthe evolution of new game-AI s
ripts, whi
h are able to defeat the two `rush' ta
ti
s.The present se
tion dis
usses how the evolved game-AI s
ripts
an be used to in
reasethe reliability of dynami
 s
ripting by improving the rulebases. Subse
tion 6.4.1dis
usses how the evolved game-AI s
ripts are translated into rulebase improvements.Subse
tion 6.4.2 evaluates the new rulebases by repeating the experiment des
ribedin Se
tion 6.2. Subse
tion 6.4.3 dis
usses the evaluation results.6.4.1 Improving the RulebasesSubse
tion 6.3.6 des
ribes typi
al
hara
teristi
s of the solutions dis
overed by theevolutionary game AI. The observations were used to manually
reate four new rulesfor the dynami
-s
ripting rulebases.
• Eight out of ten solutions against the `soldier rush'
ontained a spe
i�
 patternof building and resear
h, namely �rst building a `bla
ksmith', then resear
hingbetter weaponry and armour, followed by the
reation of large o�ensive for
es.A new rule was
reated that
ontained exa
tly this pattern.

128 Professional Adaptive Game AI
• Against the `knight rush', almost all solutions aimed at
reating advan
edmilitary units qui
kly. This was a
knowledged by
reating a new rule, that
he
ks whether it is possible to rea
h a state that allows the
reation of ad-van
ed military units, by
onstru
ting one new building. If this is possible,the rule
onstru
ts that building, and
reates an o�ensive for
e
onsisting ofthe advan
ed military units.
• Against the `knight rush', all solutions in
luded boosting the e
onomy by
on-stru
ting a new `townhall'. The original rulebases, used in Se
tion 6.2,
on-tained rules for
onstru
ting a `townhall', but these were invariably assignedlow weights. The explanation is that a new `townhall' is easily destroyed, andthus
an only be su

essful if it
an be defended against enemy interferen
e.The solutions a
knowledged this by �rst building up defenses. A new rulewas
reated that
ombined the building of a defensive army, followed by the
onstru
tion of a new `townhall'.
• The best solution found against the `knight rush' was translated into a newrule without interpretation. All a
tivated genes for ea
h state were translatedand
ombined in one rule, and stored in the
orresponding rulebase.To keep the total number of rules
onstant, the new rules repla
ed existing rules.The repla
ed rules were rules that dealt with air
ombat. In the experiment des
ribedin Se
tion 6.2, the air-
ombat rules always ended up with low weights.Besides the
reation of the four new rules, small
hanges were made to the exis-ting
ombat rules,
hanging their parameters to in
rease the number of units of typespreferred by the solutions, and to de
rease the number of units of types avoided bythe solutions. Through these
hanges, the use of `
atapults' was en
ouraged.Details of the improved rulebase are supplied in Appendix C, Subse
tion C.5.2.6.4.2 Evaluation of the Improved RulebasesThe experiment des
ribed in Se
tion 6.2 was repeated, with dynami
 s
ripting em-ploying the improved rulebases. To en
ourage high weights, the maximum reward

Rmax and the maximum penalty Pmax were both set to 400. The
hange of the max-imum reward and penalty has little impa
t on the results a
hieved with dynami
s
ripting, sin
e the weight values are
ompared to ea
h other � it is not the absolutevalue of a weight that is important, but the value of a weight relative to
ompetingweight values. However, with the higher values for Rmax and Pmax, the boundariesset to the weight values, Wmin and Wmax, are rea
hed faster.Table 6.3 summarises the a
hieved results. The
olumns represent the samevariables as in Table 6.1. A
omparison of Table 6.1 and Table 6.3 shows that theperforman
e of dynami
 s
ripting is
onsiderably improved with the new rulebases.Against the two `balan
ed' ta
ti
s, the average turning point is redu
ed by morethan 50 per
ent. Against the two `rush' ta
ti
s, the number of games won out of100 has in
reased
onsiderably. It was observed that dynami
 s
ripting assignedlarge weights to all four new rules,
reated in Subse
tion 6.4.1. Therefore, it may be

6.4 � Improving Online Adaptive Game AI 129Ta
ti
 Tests Average Median Lowest Highest > 100 WonSmall balan
ed 11 19 14 10 34 0 72.5Large balan
ed 11 24 26 10 61 0 66.4Soldier rush 10 10 27.5Knight rush 10 10 10.1Table 6.3: Evaluation results of dynami
 s
ripting in Wargus, using improvedrulebases.
on
luded that the new rules are e�e
tive, and are the likely
ause for the improvedperforman
e. The improved performan
e against all ta
ti
s indi
ates an improvedreliability of dynami
 s
ripting with the new rulebases,
ompared to dynami
 s
rip-ting with the original rulebases.6.4.3 Dis
ussionDespite the improvement of the reliability of dynami
 s
ripting e�e
tuated by thenew rulebases, dynami
 s
ripting is still unable to outperform the two `rush' ta
ti
sstatisti
ally. The explanation of this fa
t is as follows. The two `rush' ta
ti
s are'super-ta
ti
s', that
an only be defeated by very spe
i�

ounter-ta
ti
s, with littleroom for variation. By design, dynami
 s
ripting generates a variety of ta
ti
s at alltimes. Therefore, it is unlikely to make the appropriate
hoi
es enough times in arow to rea
h the turning point.As was noted in Subse
tion 5.5.6, the fa
t that su
h super-ta
ti
s as the `rush'ta
ti
s are possible at all,
an be
onsidered a weakness of the game design.8 Adap-tive game AI may be able to deal with super-ta
ti
s, if it is able re
ognise that asuper-ta
ti
 is used, and has a pre-programmed `answer' stored whi
h it
an usewithout a
tivating a learning me
hanism. However, a better solution would be to
hange the game design to make super-ta
ti
s impossible. If adaptive game AI isused during the `quality assuran
e' phase of game development, super-ta
ti
s
an bedis
overed before a game is released to the publi
, when there is still time to improvethe game design.One might wonder whether using
ounter-ta
ti
s against super-ta
ti
s to im-prove the domain knowledge stored in rulebases, may lead to the rulebases over�t-ting against the super-ta
ti
s. Sin
e the experiment improved the performan
e ofdynami
 s
ripting not only against the `rush' ta
ti
s, but also against the `balan
ed'ta
ti
s, it seems over�tting has been avoided.A
tually, there is a good reason why the proposed pro
edure to improve therulebases manages to avoid over�tting. The reason is a
onsequen
e of the prin
ipledis
ussed in Chapter 3, that solutions to hard instan
es en
ompass
hara
teristi
s8This is not to suggest that War
raft II, on whi
hWargus is based, has a weak game design.War
raft II is a
lassi
 game that has gained lasting respe
t. However, `rush' ta
ti
s are possiblein the game, and
an be
onsidered detrimental to the game's entertainment value.

130 Professional Adaptive Game AIof solutions to easy instan
es. The `rush' ta
ti
s
an be
onsidered hard instan
es,the `balan
ed' ta
ti
s easy instan
es. The new rules derived from observing thesolutions (i.e., the evolved
ounter-ta
ti
s) to the `rush' ta
ti
s, implement typi
al
hara
teristi
s of the solutions to the `rush' ta
ti
s. These
hara
teristi
s are likelyto be able to deal su

essfully with easier ta
ti
s, too. Furthermore, as long as thenew rules are added to a rulebase that
an deal with easy ta
ti
s, or repla
e rulesthat are inferior anyway, then at worst the new rules are in
onsequential againsteasy ta
ti
s. Therefore, over�tting is unlikely to o

ur.To improve the domain knowledge for online adaptive game AI, the pro
edurepres
ribes extra
ting typi
al
hara
teristi
s of o�ine evolved ta
ti
s. This step re-quires understanding and interpretation of the evolved ta
ti
s, whi
h are a
tivitiesthat are di�
ult to perform automati
ally. Therefore, in the experiment the extra
-tion was done manually. However, to some extent it should be possible to automatethe extra
tion of new rules, espe
ially sin
e the e�e
tiveness of the new rules
an betested by running the pro
edure again. This will be investigated in future work.6.5 A

eptan
eO�ine adaptation of game AI, when applied before the game is released, is withoutrisk. Therefore, game developers will not hesitate to apply o�ine adaptation ifthey
onsider the possible advantages it will bring worthwhile. In
ontrast, gamedevelopers will regard online adaptation of game AI with
onsiderable suspi
ion.Sin
e online adaptation of game AI
an be used during playtesting to help improvingstati
 game AI, they might
onsider using online adaptation during the `qualityassuran
e' phase, as a �rst step on the road to in
lude it in a released game.I expe
t that, before game developers take a de
ision with regard to experiment-ing with online adaptive game AI, they will need some guarantee that the te
hniquesdis
ussed in this resear
h generalise to their games. Three issues with regard to thegeneralisation of adaptive game AI are dis
ussed below, namely (i) to what extentadaptive game AI generalises over the
ourse of a game (6.5.1), (ii) to what extentadaptive game AI generalises to di�erent game types (6.5.2), and (iii) to what extentthe adaptive te
hniques generalise to di�erent fun
tionalities (6.5.3). A major issuefor the a

eptan
e of adaptive game-AI te
hniques is whether they
ontribute tothe entertainment experien
ed by the human player of a game. This is dis
ussed inSubse
tion 6.5.4. Finally, Subse
tion 6.5.5 dis
usses the future of adaptive game AI.6.5.1 Generalisation over the Course of a GameIn the experiments des
ribed in Chapter 5 and 6, the adaptation te
hniques aretested against a stati
 game AI in an e�e
tively un
hanging situation. In
ontrast,in modern games situations en
ountered by human players
hange over the
ourse ofthe game. In general, the agents
ontrolled by the human player will be
ome morepowerful when the game progresses. At the same time, the
omputer-
ontrolledagents that oppose the human player will be
ome more powerful too. The question

6.5 � A

eptan
e 131is warranted whether adaptive game AI
an be expe
ted to perform well in these
hanging
ir
umstan
es.The answer is that it depends on the design of the domain knowledge (e.g., thedynami
-s
ripting rulebases) employed by the adaptive game AI. Adaptive gameAI
an be expe
ted to fun
tion well over the
ourse of the game, if the domainknowledge is formulated su�
iently general to des
ribe rules and fa
ts that hold formost situations in the game. As Appendix A shows, the rulebases designed for theCRPG simulation des
ribed in Chapter 5 are not su�
iently general. For instan
e,a rule that
asts a `Fireball' spell works �ne as long as the `Fireball' spell is a goodspell to use, but fails when there are better alternatives available. Contrariwise, asAppendix B shows, the rulebases designed for Neverwinter Nights only refer toa
tions in a general manner, taking into a

ount the
urrent status of the game.Of
ourse, to a
hieve a generalised implementation of game AI, the game shouldallow generalised domain knowledge to be formulated. For instan
e, a rule statingthat `an e�e
tive a
tion against a group of enemies standing
lose together is at-ta
king them with an area-e�e
t weapon' should hold for the whole
ourse of thegame, otherwise it does not re�e
t
orre
t domain knowledge. However, even forgames where it is di�
ult to formulate domain knowledge in general, adaptive gameAI
an be implemented by using di�erent rulebases for di�erent game states. In thepresent
hapter, this approa
h has been used, with great su

ess, to deal with the
hanging
ir
umstan
es over the
ourse of an RTS game.6.5.2 Generalisation to Di�erent Game TypesTo what extent
an the te
hniques for adaptive game AI, dis
ussed in this thesis, beused in di�erent games types?For o�ine adaptive game AI, there are no real restri
tions to game types, sin
eo�ine adaptive game AI
an generate literally anything. A major obstru
tion tousing o�ine adaptive game AI is that o�ine learning te
hniques
an take a hugeamount of
omputational resour
es before results are a
hieved. Usually, the amountof required
omputational resour
es
an be kept relatively small by
arefully design-ing and implementing the o�ine adaptive game AI. However,
areful design andimplementation require a
onsiderable, and thus expensive, investment on the partof the game developers. Therefore, o�ine adaptive game AI should be applied togames where it
an be really worthwhile. Typi
ally, these are games with
omplexgame AI, su
h as CRPGs and strategy games.For online adaptive game AI, dynami
 s
ripting has already been shown appli-
able to two
ompletely di�erent types of games with highly
omplex game AI,namely CRPGs (Chapter 5) and RTS games (the present
hapter; furthermore,Dahlbom (2004) o�ers an alternative implementation of dynami
 s
ripting in RTSgames). By extrapolation, dynami
 s
ripting is also appli
able to di�erent gametypes, that use s
ripted game AI with a
omplexity less than CRPGs and RTSgames. This is the majority of games on the market today.To games that use game AI not implemented in s
ripts, dynami
 s
ripting is notdire
tly appli
able. However, based on the idea that domain knowledge must be the

132 Professional Adaptive Game AI
ore of an online adaptive game-AI te
hnique, an alternative for dynami
 s
riptingmay be designed. For instan
e, if game AI is based on a �nite-state ma
hine, statetransitions
an be extra
ted from a rulebase to
onstru
t the �nite-state ma
hine,in a way similar to dynami
 s
ripting's sele
tion of rules for a game-AI s
ript.6.5.3 Generalisation of Fun
tionsIn the resear
h dis
ussed in this thesis, game AI is developed with as its mainfun
tion
ompeting with the human player. However, the investigated te
hniquesare not restri
ted to that fun
tion.Obviously, o�ine adaptive game AI, investigated in Chapter 4 and in the present
hapter, is based on evolutionary learning, whi
h
an be applied to many di�erentproblem domains (
f. Goldberg, 1989; Davis, 1991; Mi
halewi
z, 1992). For evolu-tionary learning, the only requirement for use is that an adequate �tness fun
tion
an be designed (Goldberg, 1989).Online adaptive game AI in the form of dynami
 s
ripting, investigated in Chap-ter 5 and in the present
hapter,
an be applied to any fun
tion that meets threerequirements (as mentioned before in Subse
tion 5.1.1): (i) the fun
tion
an bes
ripted, (ii) domain knowledge on the
hara
teristi
s of a su

essful fun
tion
an be
olle
ted, and (iii) an evaluation fun
tion
an be designed to assess how su

essfulthe fun
tion was exe
uted. Su
h fun
tions are not only found in games, but also inless `frivolous' appli
ation areas, su
h as multi-agent systems.6.5.4 Learning to EntertainThe main goal of a game is to provide entertainment. If online adaptive game AI isnot bene�
ial to the entertainment experien
ed by human players, game developerswill not be interested in implementing it. Therefore, the question is warrantedwhether online adaptive game AI really improves a game's entertainment fa
tor.It is evident that not every human player is entertained by the same aspe
ts ofa game. Charles and Livingstone (2004) di�erentiate between players that desire tomaster a game, and players that desire to experien
e variety in a game. Obviously,the �rst group of players will not enjoy adaptive game AI, sin
e the game will adaptwhen players are getting
lose to mastering it. However, the se
ond group of playerswill enjoy the variety adaptive game AI provides.How
an be assessed whether the te
hniques dis
ussed in this thesis, in parti
ulardynami
 s
ripting, improves the entertainment of a game, for at least those playersthat enjoy the variety and the in
reased
hallenge? An answer to this question maybe dis
overed by a large-s
ale psy
hologi
al investigation of players of a game that
an be experien
ed with or without adaptive game AI. However, su
h an investi-gation is beyond the s
ope of this thesis. Still, literature provides indi
ations thatadaptive game AI improves the entertainment of games, as explained below.Most players are intrinsi
ally motivated to play a game, i.e., they are not for
edto play the game, but do so purely for pleasure. Empiri
al studies have linkedintrinsi
 motivation to the
on
ept of `presen
e' (also referred to as `immersion'

6.5 � A

eptan
e 133or `suspension of disbelief'); the stronger the sense of `presen
e', the higher theintrinsi
 motivation, and thus the greater the entertainment experien
ed (Heeter,1992; IJsselsteijn et al., 2004). Sin
e adaptive game AI allows
omputer-
ontrolledagents to avoid the
ontinuous repetition of mistakes, it improves the feeling ofimmersion experien
ed by the human player, and thus
ontributes positively to theentertainment provided by the game.To measure the entertainment provided by analyti
al games, Iida and Yoshimura(2003) formulated a theory of game re�nement. A

ording to the theory, gamere�nement is expressed by the formula √
B

D , where B represents the bran
hing fa
torof the game, and D represents the game depth, i.e., the average number of moves inthe game until the out
ome is de
ided. Game re�nement was
al
ulated for severalChess variations (Iida, Takeshita, and Yoshimura, 2002) and for the game of MahJong (Iida et al., 2004). Iida et al. (2002) surmised that for optimal entertainment,the re�nement value of a game must be in the neighbourhood of 0.07.Unfortunately, the re�nement formula
annot be easily translated from analyt-i
al games to
ommer
ial games, sin
e the bran
hing fa
tor for
ommer
ial gamesis very di�
ult to determine.9 It seems
lear that, in order to apply the re�nementformula to
ommer
ial games, theory must be developed to determine how the
on-
epts of `bran
hing fa
tor' and `game depth'
an be translated to
ommer
ial games.Yannakakis and Hallam (2004) proposed a metri
 to measure the `interest value' of
ommer
ial predator-prey games (where the human player is the `prey'), based onthe prey's `lifetime', and the predator's `diversity in ta
ti
s'. However, their met-ri
 might be
riti
ised for the fa
t that it equates in
reased lifetime for the humanplayer with in
reased entertainment value, while it seems evident that humans arenot entertained by a game that drags on endlessly.Even though the re�nement formula
annot be applied to games dire
tly, thebasis for the theory of re�nement is appli
able to all games. Iida and Yoshimura(2003) derive the theory of re�nement from the observation that the entertainmentexperien
ed from a game results from three essential properties of games, namely (i)
omplexity, (ii) fairness, and (iii) re�nement.Complexity is translated as `noble un
ertainty', i.e., to be entertaining, the rulesof the game must be of su�
ient
omplexity that players feel that it is possible(and useful) to dis
over new, more advan
ed ta
ti
s. In
ommer
ial games, againstinferior game AI, there is no need to design new ta
ti
s. Adaptive game AI hasthe ability to in
rease the playing strength of
omputer-
ontrolled agents, and thusstimulates
omplexity.Fairness is translated as `draw ratio', i.e., the better two opponents are mat
hed,the higher the entertainment they will experien
e. Stati
 game AI always plays agame with the same level of skill, and thus is likely to play the game signi�
antly9For example, in a CRPG, a wizard may have spells that
an be unleashed to any lo
ationwithin range. Use of su
h a spell
annot be
onsidered just one possible move, sin
e the spell e�e
tdepends on its target lo
ation. However, use of su
h a spell also
annot be
onsidered a virtuallyendless number of moves, sin
e the pra
ti
al number of useful lo
ations will be limited. Still, formost
omplex
ommer
ial games the bran
hing fa
tor will be mu
h higher than the bran
hingfa
tor for most analyti
al games.

134 Professional Adaptive Game AIworse than human players.10 To
ompensate for inferior game AI, game developerswill often supply
omputer-
ontrolled agents with `physi
al' attributes that outrankhuman-
ontrolled agents. Su
h design detra
ts from the fairness of mat
hing thephysi
al aspe
ts of the agents
ontrolled by the human player and the
omputer.Adaptive game AI has the ability to improve the playing strength of
omputer-
ontrolled agents against a human player, even when the physi
al attributes of the
omputer-
ontrolled agents are equal to those of the agents
ontrolled by the humanplayer. Thus, adaptive game AI stimulates fairness.Re�nement is translated as the `seesaw game', i.e., the optimal length of timefor whi
h the out
ome of the game is un
ertain. Entertainment is high if the gameis not de
ided `too fast', and does not drag on after the out
ome has been de
ided.In this respe
t, adaptive game AI in
reases the period of time needed for a humanplayer to master a game. Furthermore, when adaptive game AI is enhan
ed withdi�
ulty s
aling, it will also ensure that novi
e players experien
e a well-mat
hedgame. Thus, adaptive game AI stimulates re�nement.In
on
lusion, adaptive game AI has a bene�
ial e�e
t on all aspe
ts whi
h formthe basis of the theory of re�nement. Therefore, as far as the theory of game re�ne-ment is appli
able to
ommer
ial games, the entertainment provided by
ommer
ialgames bene�ts from adaptive game AI.6.5.5 The Future of Adaptive Game AIObserving the state of the art in games today, it is
lear that game AI has a long roadto travel before truly believable
omputer-
ontrolled
hara
ters are implemented.The ability to
orre
t mistakes (self-
orre
tion), and the ability to adapt to
hanging
ir
umstan
es (
reativity), are essential elements of a believable
hara
ter. Despitethis, the
onsensus amongst game developers and publishers seems to be that adap-tive game AI is something to be avoided. Their distrust stems not so mu
h from ala
k of interest, but more from laziness (Rabin, 2004b) and a fear of breaking gameAI that more or less worked when designed manually (Wood
o
k, 2002). However,as soon as one
ompany manages to pull o� adaptive game AI su

essfully, the othersare for
ed to join in, lest they will be unable to
ompete.Dynami
 s
ripting has been shown to be able to implement su

essful onlineadaptive game AI, proving that online adaptive game AI is possible in state-of-the-art games. The question is therefore not if, but when adaptive game AI will be
omea standard element of games.6.6 Chapter SummaryThis
hapter dis
ussed how adaptive game AI
an be applied in pra
ti
e. O�ineadaptive game AI
an be used during the `quality assuran
e' phase of game develop-10One might assume that it is also possible for stati
 game AI to play the game better than humanplayers, but human players that lose a game too often will, in general, quit playing (Livingstoneand Charles, 2004).

6.6 � Chapter Summary 135ment to �ne-tune and improve manually-designed game AI. Online adaptive game AIallows the game AI to adapt to human-player ta
ti
s after a game has been released.Sin
e game developers
onsider online adaptive game AI risky, during the `qualityassuran
e' phase the reliability of the game AI must be ensured by
on�rming thatit meets the requirements spe
i�ed in Subse
tion 2.3.4.To in
rease the reliability of online adaptive game AI, o�ine adaptive game AI
an be used to improve the domain knowledge used by online adaptive game AI. Athree-step pro
edure is proposed to e�e
tuate this, namely (i) using online adaptivegame AI to dis
over strong ta
ti
s, (ii) using o�ine adaptive game AI to evolve
ounter-ta
ti
s against the dis
overed ta
ti
s, and against manually-designed strongta
ti
s, and (iii) extra
ting
hara
teristi
s from the evolved
ounter-ta
ti
s to addto the domain knowledge used by the online adaptive game AI. The pro
edure wasempiri
ally validated by applying it to dynami
 s
ripting in a Real-Time Strategy(RTS) game.The
hapter also dis
ussed several generalisation issues of adaptive game AI. Itwas argued that the te
hniques dis
ussed in this thesis generalise over the
ourse ofa game, and to di�erent game types. The te
hniques are not limited to game AIthat
ompetes with human players, but
an be applied to other fun
tionalities ingames, and in other appli
ations as well. Finally, it was argued that adaptive gameAI will
ontribute to the entertainment experien
ed by human players of a game,and that, in the future, adaptive game AI will be
ome a standard element of games.

Chapter 7Con
lusionThe real danger is not that
omputers will begin to think like men,but that men will begin to think like
omputers.� Sydney J. Harris (1917�1986).This
hapter provides a
on
lusive answer to the problem statement and resear
hquestions posed in Chapter 1. Se
tion 7.1 restates and answers the four resear
hquestions. Se
tion 7.2 translates the answers to the resear
h questions to an answerto the problem statement. Se
tion 7.3 looks at future work. The
hapter ends with
on
luding remarks in Se
tion 7.4.7.1 Answer to Resear
h QuestionsThe four resear
h questions, stated in Se
tion 1.5, are answered in the present se
-tion. Subse
tion 7.1.1 answers the �rst resear
h question, on o�ine adaptive gameAI. Subse
tion 7.1.2 answers the se
ond resear
h question, on online adaptive gameAI. Subse
tion 7.1.3 answers the third resear
h question, on di�
ulty s
aling. Sub-se
tion 7.1.4 answers the fourth resear
h question, on the integration of adaptivegame AI in the game-development pro
ess.7.1.1 O�ine Adaptive Game AIThe �rst resear
h question reads:Resear
h question 1: To what extent
an o�ine ma
hine-learningte
hniques be used to in
rease the e�e
tiveness of game AI?The answer to the �rst resear
h question is derived from Chapters 3, 4, and 6.Chapter 3 dis
ussed the
reation of su

essful agent
ontrollers with evolution-ary learning. It showed that by `doping' (or `seeding') the initial population with asolution to a hard problem instan
e, evolved agent
ontrollers are signi�
antly more

138 Con
lusione�e
tive than agent
ontrollers evolved without doping. Sin
e game AI that deter-mines the behaviour of an in-game agent, is equivalent to an agent
ontroller, it maybe
on
luded that the appli
ation of o�ine ma
hine-learning te
hniques to game AIwill a
hieve more e�e
tive results if it
on
entrates on hard game situations �rst.As stated in Chapter 6, the bene�
ial e�e
t of fo
ussing on hard instan
es for de-riving generalised game AI, is an explanation for the fa
t that over�tting is avoidedwhen generalised game AI is improved by exploiting ta
ti
s used by game AI thatis designed to defeat a superior opponent.Chapter 4 dis
ussed evolutionary game AI. It showed that o�ine evolutionarygame AI is suitable for dete
ting possible exploits in manually-programmed gameAI, and for dis
overing new ta
ti
s. It also indi
ated that, for o�ine evolutionarygame AI, the use of a learning stru
ture that is less suitable for storing game AIwill negatively in�uen
e the su

ess of the a
hieved results. Furthermore, it willnegatively in�uen
e the e�
ien
y by whi
h results are generated. For game AI thatis best stored in produ
tion rules, a learning stru
ture should be used that is designedto evolve s
ripts. In Chapter 6, evolutionary game AI was used to evolve s
ripts,and proved to be not only su

essful, but also very e�
ient.Chapter 6 dis
ussed the appli
ation of o�ine evolutionary game AI in pra
ti
e.The
hapter des
ribed a three-step pro
edure to use o�ine evolutionary game AIto improve the domain knowledge used by online adaptive game AI during the`quality assuran
e' phase of game development, thereby improving the reliabilityof online adaptive game AI. It showed that this appli
ation of o�ine adaptive gameAI
ould be very su

essful. Sin
e the
omputational requirements for adaptivegame AI set no restri
tions to o�ine adaptive game AI, the only limitations tothe appli
ation of o�ine ma
hine-learning te
hniques are available resour
es (i.e.,time and money). Furthermore, the use of o�ine adaptive game AI during `qualityassuran
e' is essentially risk-free. Therefore, an appli
ation of o�ine adaptive gameAI as des
ribed by the three-step pro
edure is likely to be su

essful in the pra
ti
eof game development, and easily adopted by game developers.In
on
lusion, the answer to the �rst resear
h question is that:
•
omputational requirements form no obsta
le for the appli
ation of o�inema
hine-learning te
hniques to game AI;
• o�ine ma
hine-learning te
hniques
an in
rease the e�e
tiveness of game AIby (i) dete
ting exploits, (ii) suggesting new ta
ti
s, and (iii) improving thedomain knowledge used by online ma
hine-learning te
hniques; and
• o�ine ma
hine-learning te
hniques a
hieve superior results when designinge�e
tive game AI, when they
on
entrate on hard problem instan
es.7.1.2 Online Adaptive Game AIThe se
ond resear
h question reads:Resear
h question 2: To what extent
an online ma
hine-learningte
hniques be used to in
rease the e�e
tiveness of game AI?

7.1 � Answer to Resear
h Questions 139The answer to the se
ond resear
h question is derived from Chapters 2, 4, 5, and 6.Chapter 2 listed four
omputational requirements (namely the requirements ofspeed, e�e
tiveness, robustness, and e�
ien
y) and four fun
tional requirements(namely the requirements of
larity, variety,
onsisten
y, and s
alability) for ma
hine-learning te
hniques to adapt game AI online. When a te
hnique meets the four
om-putational requirements, it is able to in
rease the e�e
tiveness of game AI. Whenit also meets the fun
tional requirements of
larity, variety, and
onsisten
y, it isa

eptable to game developers to in
rease the e�e
tiveness of game AI online. Itwas also argued that any online ma
hine-learning te
hnique for improving the e�e
-tiveness of game AI is ne
essarily based on domain knowledge.Chapter 4 dis
ussed evolutionary game AI. It showed that online evolutionarygame AI is able to in
rease the e�e
tiveness of game AI during game-play. However,the su

ess of online evolutionary game AI was shown to depend on the potentialsolutions residing in a small sear
h spa
e. In general, when evolving game AI that is
omplex, online evolutionary game AI will not meet the
omputational requirementof e�
ien
y. Therefore, to adapt
omplex game AI online, a di�erent approa
h needsto be used.Chapter 5 presented `dynami
 s
ripting', an online ma
hine-learning te
hniquefor game AI. Dynami
 s
ripting was shown to meet all four
omputational require-ments, and the fun
tional requirements of
larity and variety. Furthermore, anoutlier-redu
tion enhan
ement was presented for dynami
 s
ripting, whi
h allowsit to meet the fun
tional requirement of
onsisten
y. Therefore, dynami
 s
riptingis a ma
hine-learning te
hnique suitable for in
reasing the e�e
tiveness of game AIonline.The su

ess of dynami
 s
ripting heavily depends on the quality of the do-main knowledge it uses (in the form of ta
ti
al rules). Chapter 6 shows how o�-line ma
hine-learning te
hniques
an be used to in
rease the quality of the domainknowledge used by dynami
 s
ripting, thereby improving its reliability.In
on
lusion, the answer to the se
ond resear
h question is that:
• online ma
hine-learning te
hniques for game AI are heavily dependent on do-main knowledge;
• online ma
hine-learning te
hniques
an improve the e�e
tiveness of game AI,while meeting all requirements for a

eptan
e; and
• o�ine ma
hine-learning te
hniques
an be used to improve the reliability ofonline adaptive game AI.7.1.3 Di�
ulty S
alingThe third resear
h question reads:Resear
h question 3: To what extent
an ma
hine-learning te
hniquesbe used to s
ale the di�
ulty level of game AI to meet the human player'slevel of skill?

140 Con
lusionThe answer to the third resear
h question is derived from Chapter 5. The
hapterpresents dynami
 s
ripting as a ma
hine-learning te
hnique for the online adaptationof game AI. Dynami
 s
ripting was initially designed to in
rease the e�e
tiveness ofgame AI. As the answer to the se
ond resear
h question indi
ates, this initial versionof dynami
 s
ripting did not meet the fun
tional requirement of s
alability. Thus, it
ould only be used to in
rease the e�e
tiveness of game AI, not to mat
h the playingstrengths of the game AI and the human player.A di�
ulty-s
aling enhan
ement to dynami
 s
ripting was presented that al-lows it to mat
h automati
ally the playing strength of the game AI and the play-ing strength of the human player. Of the several possible implementations of adi�
ulty-s
aling enhan
ement, `top
ulling' was most su

essful, being reliable, easyto implement, and able to mat
h the playing strength of both inferior and superioropponents.1 Top
ulling fun
tions by automati
ally making the most su

essful ta
-ti
al domain knowledge unavailable when the game AI is dete
ted to be too strong,and by automati
ally making it available again when the game AI is dete
ted to betoo weak. After applying top
ulling, dynami
 s
ripting meets all four
omputationalrequirements and all four fun
tional requirements.In
on
lusion, the answer to the third resear
h question is that online adaptivegame AI
an be made to s
ale its playing strength to meet the human player's levelof skill, by
hanging automati
ally the availability of domain knowledge that realisesthe most e�e
tive game AI.7.1.4 Integration in State-of-the-Art GamesThe fourth resear
h question reads:Resear
h question 4: How
an adaptive game AI be integrated in thegame-development pro
ess of state-of-the-art games?The answer to the fourth resear
h question is derived from Chapters 5 and 6.Chapter 5 presents dynami
 s
ripting as a te
hnique for online adaptive gameAI. The
hapter shows that dynami
 s
ripting
an be used in state-of-the-art games,by implementing it in the game Neverwinter Nights (2002), and showing it to besu

essful. The
hapter also argues that online adaptive game AI gives best resultsagainst human players that do not use highly-su

essful ta
ti
s, i.e., non-expertplayers.Chapter 6 spe
i�
ally dis
usses the integration of adaptive game AI in the de-velopment pro
ess of state-of-the-art games. For games that use only manually-designed game AI, o�ine adaptive game AI
an be used before the game's release,during the `quality assuran
e' phase of game development, for dete
ting possibleexploits in the game AI, and for dis
overing new ta
ti
s. Sin
e there is little risk as-so
iated with the use of o�ine adaptive game AI, game developers will not hesitateto use it when they feel it is worth their while.1Of
ourse, using di�
ulty s
aling the game AI will never get more e�e
tive than the moste�e
tive results a
hieved with online adaptive game AI without a di�
ulty-s
aling enhan
ement.

7.2 � Answer to Problem Statement 141Sin
e online adaptive game AI is still new to games, its in
lusion must be
onsid-ered during the earliest phases of game development. Game developers and publi-shers feel adaptive game AI is risky. Only when they are
onvin
ed that adaptivegame AI is reliable (i.e., meets the requirements spe
i�ed in Chapter 2), they will bewilling to use it in released games. O�ine adaptive game AI
an be used to in
reasethe reliability of online adaptive game AI, by improving the quality of the domainknowledge used.In
on
lusion, the answer to the fourth resear
h question is that:
• o�ine adaptive game AI
an be used during the `quality assuran
e' phase ofgame development to improve the quality of manually-designed game AI;
• online adaptive game AI
an be used in released games when game developersand publishers are
onvin
ed of its reliability;
• the reliability of online adaptive game AI
an be guaranteed by showing thatit meets the four
omputational and four fun
tional requirements; and
• the reliability of online adaptive game AI
an be in
reased by using o�ineadaptive game AI to improve the quality of the domain knowledge used.7.2 Answer to Problem StatementThe problem statement reads:Problem statement: To what extent
an ma
hine-learning te
hniquesbe used to in
rease the quality of
omplex game AI?Taking into a

ount the answers to the the resear
h questions in Se
tion 7.1, theanswer to the problem statement is that:
• reliability of online adaptive game AI is guaranteed if it meets the four
om-putational and four fun
tional requirements;
• o�ine ma
hine-learning te
hniques
an be used during the `quality assuran
e'phase of game development to in
rease the e�e
tiveness of game AI by (i)dete
ting exploits, (ii) suggesting new ta
ti
s, and (iii) in
reasing the reliabilityof online adaptive game AI by improving the quality of the domain knowledgeused;
• after a game's release, online ma
hine-learning te
hniques
an (i) improve thee�e
tiveness of game AI, and (ii) s
ale the di�
ulty level of game AI to mat
hthe playing strength of the human player; and
• game developers and publishers will
onsider using online adaptive game AIwhen they are
onvin
ed that it is reliable.

142 Con
lusion7.3 Future WorkThe resear
h dis
ussed in this thesis indi
ates three areas of future resear
h.1. DECA Validation: Chapter 3 presents the Doping-driven Evolutionary Con-trol Algorithm (DECA). The
hara
teristi
s of DECA require further inves-tigation in future work. It must be determined for whi
h tasks and underwhi
h
onditions DECA performs better or worse than alternative te
hniques.In parti
ular, in empiri
al studies DECA should be
ompared to hill
limbing(3.5.2), multitask learning (3.5.3), multi-obje
tive learning (3.5.4), and boost-ing (3.5.5). In addition to these empiri
al studies, a solid explanation for thedoping e�e
t is required to identify problems to whi
h DECA
an be appliedsu

essfully. To this purpose, the key assumption in the explanation for thedoping e�e
t, namely the supposed asymmetry of the sear
h spa
e with respe
tto easy and hard solutions (3.1.3), needs veri�
ation. Furthermore,
on�rma-tion is needed for the belief that solutions to harder task instan
es en
om-passing
hara
teristi
s of solutions to easier task instan
es underlies DECA'ssu

ess (3.5.1). To this end, DECA should be tested on a variety of ben
h-mark problems, designed to exhibit spe
i�

hara
teristi
s with respe
t to thestru
ture of the sear
h spa
e. Tra
ing the lineage of the best evolved solutionsba
k to the doped solutions will be a key a
tivity in understanding the fa
torsresponsible for DECA's su

ess.2. Entertainment Validation: Chapter 1 stated that the goal of games is to pro-vide entertainment. Entertainment is a subje
tive experien
e of human play-ers. While this thesis argued that adaptive game AI is able to in
rease theentertainment value of games, it used only experiments wherein stati
 gameAI repla
ed the human player. In future work, an empiri
al study should in-vestigate the e�e
tiveness and entertainment value of online adaptive gameAI (e.g., dynami
 s
ripting) in games played against a
tual human players.While su
h a study requires many subje
ts and a
areful experimental design,the game-play experien
es of human players are important to
onvin
e gamedevelopers to adopt dynami
 s
ripting in their games.3. Adaptive Game AI for Multi-player Games: The adaptive game AI dis
ussedin this thesis fo
ussed on learning from a single human player. For futurework, a logi
al extension is adaptive game AI that learns from multiple parallelplayers. A data store
an be used to store samples of game-play experien
esagainst multiple human players. Game AI
an use the data store (i) to guideits de
isions using a
ase-based reasoning approa
h, and (ii) as a model topredi
t the e�e
t of a
tions whi
h it deliberates. An approa
h to adaptivegame AI based on a data store
an a
hieve at least the same reliability asthe adaptive game AI dis
ussed in this thesis, and probably even a higherreliability. Moreover, it provides an approa
h to redu
e the e�e
t of non-determinism in games (sin
e the number of samples in
reases with the numberof human players), and to design
ompletely new ta
ti
s online (sin
e the data

7.4 � Final Thoughts on Dynami
 S
ripting 143store
an be used as a model). Three problems that this resear
h must dealwith are (i) the design of a rapidly a

essible data store that
ontains game-play samples and allows a relevant mapping of game-play situations to thestored samples, (ii) the design of an algorithm that uses the data store toallow game AI to respond to new game-play situations, and (iii) the design ofan algorithm that uses the data store to allow game AI to mat
h the playingstrength of the human player, without a�e
ting negatively the entertainmentderived from the game.7.4 Final Thoughts on Dynami
 S
riptingA famous folk �gure in the Arabi
 world is the Mullah Nasrudin. Nasrudin is a sageand a s
oundrel, whose wisdom of words seems to be ever
louded by his reputationas a prankster. While some of the tales about Nasrudin are outright jokes, mosthave a deeper meaning that is intended to transfer philosophi
al thinking in anamusing pa
kage. One of the stories about Nasrudin, re
anted by Shah (1968), goesas follows:Nasrudin stood up in the market-pla
e and started to address the throng.�O people! Do you want knowledge without di�
ulties, truth withoutfalsehood, attainment without e�ort, progress without sa
ri�
e?�Very soon a large
rowd gathered, everyone shouting: �Yes, yes!��Ex
ellent!� said the Mulla. �I only wanted to know. You may rely uponme to tell you all about it if I ever dis
over any su
h thing.�The meaning behind this story is evident: Nasrudin's appeal to the
rowd listsfour desirable features of progression, whi
h the
rowd would love to believe arepossible, but whi
h he feels are evidently unattainable regardless how mu
h people
ovet them.When I read this story, I noti
ed by how similar the four features whi
h Nas-rudin mentions are to the four
omputational requirements of online adaptive gameAI, dis
ussed in Se
tion 2.3.4. `Knowledge'
an be interpreted as game AI, and so`knowledge without di�
ulties' be
omes the requirement of e�
ien
y: qui
k, easysteps towards su

essful game AI. `Truth'
an be interpreted as
orre
t domainknowledge, and so `truth without falsehood' be
omes the requirement of robustness:
orre
t domain knowledge that does not get tainted by inferior domain knowledge.`Attainment'
an be interpreted as the dis
overy of su

essful game AI, and so `at-tainment without e�ort' be
omes the requirement of speed: the a
hievement ofsu

essful game AI without investing mu
h in the name of resour
es. `Progress'
an be interpreted as the pro
ess of
reating in
reasingly e�e
tive game AI, andso `progress without sa
ri�
e' be
omes the requirement of e�e
tiveness:
ontinuousimprovements of game AI without sa
ri�
ing intermediate results by installing gameAI of inferior quality.

144 Con
lusionNasrudin believes that the features are impossible to a
hieve, and the
rowd,slightly embarrassed by its initial enthusiasm, will probably agree to that. Indeed,the features do sound too good to be true. Yet, for online adaptive game AI thesefeatures are requirements. And, as has been shown in this thesis, they a
tually areattainable.When presenting some of the results dis
ussed in this thesis at
onferen
es, o

a-sionally I have been
onfronted with the remark that the dynami
-s
ripting te
hniqueis rather simple. In these instan
es, the remark was meant to be
riti
ising, as ifsomething simple is somehow unworthy of s
ienti�
 merit. I would like to point out,that I sin
erely believe that it is pre
isely the simpli
ity of dynami
 s
ripting thatallows it to meet all four
omputational requirements. While more
omplex te
h-niques may be designed, and may dis
over even more su

essful game AI, if theyfail to meet the four
omputational requirements they are of no interest to game de-velopers. In this thesis I sought the
ombination of s
ienti�
 progress and pra
ti
alappli
ability, and the mere fa
t that a su

essful approa
h to this
ombination la
ks
omplexity is no reason to disqualify it.Interestingly, when I �rst
ame up with the dynami
-s
ripting te
hnique, I almostdisquali�ed the te
hnique myself, thinking �it is too easy� and �if it would work,surely someone else would have thought of it �rst�. Mu
h to my surprise, dynami
s
ripting worked better than I had expe
ted. For me, the surprise has gone now,but what remains is the realisation that dynami
 s
ripting is one of those te
hniquesthat are only obvious in hindsight.

Referen
esAdamatzky, A. (2000). CREATURES - Arti�
ial Life, Autonomous Agents andGaming Environment. Kybernetes: The International Journal of Systems &Cyberneti
s, Vol. 29, No. 2.Aha, D.W. and Molineaux, M. (2004). Integrating Learning in Intera
tive GamingSimulators. Pro
eedings of the AAAI-04 Workshop on Challenges in GameArti�
ial Intelligen
e (eds. D. Fu, S. Henke, and J. Orkin), pp. 49�53, AAAIPress, Menlo Park, CA.Alba, E., Aldana, J.F., and Troya, J.M. (1993). Geneti
 Algorithms as Heuristi
s forOptimizing ANN Design. Arti�
ial Neural Nets and Geneti
 Algorithms (eds.R.F. Albre
ht, C.R. Reeves, and N.C. Steel), pp. 683�690, Springer-Verlag,Wien, Austria.Albre
ht, R.F., Reeves, C.R., and Steel, N.C. (1993). Arti�
ial Neural Nets andGeneti
 Algorithms. Springer-Verlag, Wien, Austria.Aleksander, I. and Morton, H. (1990). An Introdu
tion to Neural Computing. Chap-man and Hall, London, UK.Allen, M.J., Suliman, H., Wen, Z., Gough, N.E., and Mehdi, Q.H. (2001). Dire
tionsfor Future Game Development. Pro
eedings of the Se
ond International Con-feren
e on Intelligent Games and Simulation (eds. Q. Mehdi, N. Gough, and D.Al-Dabass), pp. 22�32, SCS Europe Bvba, Ghent, Belgium.Arkin, R.C. (1998). Behaviour-Based Roboti
s. MIT Press, Cambridge, MA.Asada, M. and Kitano, H. (1999). The Robo
up Challenge. Roboti
s and Au-tonomous Systems, Vol. 29, No. 1, pp. 3�12.Bä
k, T. (1996). Evolutionary Algorithms in Theory and Pra
ti
e. Oxford UniversityPress, Oxford, UK.Bakkes, S. (2003). Learning to Play as a Team: Designing an Adaptive Me
hanismfor Team-Oriented Arti�
ial Intelligen
e. M.S
. thesis. Universiteit Maastri
ht,Maastri
ht, The Netherlands.

146 Referen
esBakkes, S., Spron
k, P.H.M., and Postma, E.O. (2004). TEAM: The Team-orientedEvolutionary Adaptability Me
hanism. Entertainment Computing � ICEC2004 (ed. M. Rauterberg), Le
ture Notes in Computer S
ien
e 3166, pp. 273�282, Springer-Verlag, Berlin, Germany.Ballard, D. (1997). An Introdu
tion to Natural Computation. MIT Press, Cam-bridge, MA.Baratz, A. (2001). The Stage of the Game. Ars Te
hni
a. www.arste
hni
a.
om/reviews/01q3/gaminghistory/ghistory-1.html.Baxter, J., Tridgell, A., and Waever, L. (1998). Experiments in Parameter learningUsing Temporal Di�eren
es. ICCA Journal, Vol. 21, No. 2, pp. 84�99.Biasillo, G. (2002). Training an AI to Ra
e. AI Game Programming Wisdom (ed.S. Rabin), pp. 455�459, Charles River Media, In
., Hingham, MA.Bishop, C.M. (1995). Neural Networks for Pattern Re
ognition. Clarendon Press,Oxford, UK.Braun, H. and Weisbrod, J. (1993). Evolving Neural Feedforward Networks. Arti�-
ial Neural Nets and Geneti
 Algorithms (eds. R.F. Albre
ht, C.R. Reeves, andN.C. Steel), pp. 25�32, Springer-Verlag, Wien, Austria.Bro
kington, M. and Darrah, M. (2002). How Not to Implement a Basi
 S
riptingLanguage. AI Game ProgrammingWisdom (ed. S. Rabin), pp. 548�554, CharlesRiver Media, In
., Hingham, MA.Buro, M. (1997). The Othello Mat
h of the Year: Takeshi Murakami vs. Logistello.ICCA Journal, Vol. 20, No. 3, pp. 189�193.Buro, M. (2003a). ORTS: A Ha
k-Free RTS Game Environment. Computers andGames: Third International Conferen
e, CG 2002 (eds. J. S
hae�er, M. Müller,and Y. Björnsson), Vol. 2883 of Le
ture Notes in Computer S
ien
e, pp. 280�291, Springer-Verlag, Heidelberg, Germany.Buro, M. (2003b). RTS Games as Test-Bed for Real-Time AI Resear
h. Pro
eedingsof the 7th Joint Conferen
e on Information S
ien
e (JCIS 2003) (eds. K. Chen,S-H. Chen, H-D. Cheng, D.K.Y. Chiu, S. Das, R. Duro, Z. Jiang, N. Kasabov,E. Kerre, H.V. Leong, Q. Li, M. Lu, M. Grana Romay, D. Ventura, P.P. Wang,and J. Wu), pp. 481�484.Buro, M. (2004). Call for AI Resear
h in RTS Games. Pro
eedings of the AAAI-04Workshop on Challenges in Game Arti�
ial Intelligen
e (eds. D. Fu, S. Henke,and J. Orkin), pp. 139�142, AAAI Press, Menlo Park, CA.Caruana, R. (1997). Multitask Learning. Ma
hine Learning, Vol. 28, pp. 41�75.Champandard, A.J. (2004). AI Game Development. New Riders, Indianapolis, IN.

Referen
es 147Chan, B., Denzinger, J., Gates, D., Loose, K., and Bu
hanan, J. (2004). Evolu-tionary Behavior Testing of Commer
ial Computer Games. Pro
eedings of the2004 IEEE Congress on Evolutionary Computation, pp. 125�132, IEEE Press,Pis
ataway, NJ.Charles, D. and Bla
k, M. (2004). Dynami
 Player Modelling: A Framework forPlayer-Centri
 Digital Games. Computer Games: Arti�
ial Intelligen
e, Designand Edu
ation (CGAIDE 2004) (eds. Q. Mehdi, N.E. Gough, S. Natkin, andD. Al-Dabass), pp. 29�35, University of Wolverhampton, Wolverhampton, UK.Charles, D. and Livingstone, D. (2004). AI: The Missing Link in Game Interfa
eDesign. Entertainment Computing � ICEC 2004 (ed. M. Rauterberg), Le
tureNotes in Computer S
ien
e 3166, pp. 351�354, Springer-Verlag, Berlin, Ger-many.Charles, D. and M
Glin
hey, S. (2004). The Past, Present and Future of Arti�
ialNeural Networks in Digital Games. Computer Games: Arti�
ial Intelligen
e,Design and Edu
ation (CGAIDE 2004) (eds. Q. Mehdi, N.E. Gough, S. Natkin,and D. Al-Dabass), pp. 163�169, University of Wolverhampton, Wolverhamp-ton, UK.Clarke, A.C. (1968). 2001: A Spa
e Odyssey. Sidgwi
k and Ja
kson, Ltd, London,UK.Cohen, P.R. (1995). Empiri
al Methods for Arti�
ial Intelligen
e. MIT Press, Cam-bridge, MA.Cook, M., Tweet, J., and Williams, S. (2000). Dungeons & Dragons Player's Hand-book. Wizards of the Coast, Renton, WA.Crawford, C. (1984). The Art of Computer Game Design. M
Graw-Hill.www.van
ouver.wsu.edu/fa
/peabody/game-book/Coverpage.html.Dahlbom, A. (2004). An Adaptive AI for Real-Time Strategy Games. M.S
. thesis.Högskolan i Skövde, Skövde, Sweden.Darwin, C. (1859). The Origin of Spe
ies by Means of Natural Sele
tion: Or, thePreservation of Favored Ra
es in the Struggle of Life. John Murray Publishers,London, UK.Davis, L. (1991). Handbook of Geneti
 Algorithms. Van Nostrand Reinhold, NewYork, NY.Dawkins, R. (1976). The Sel�sh Gene. Oxford University Press, Oxford, UK.Dawkins, R. (1986). The Blind Wat
hmaker. Penguin Books, London, UK.Demasi, P. and Cruz, A.J. de O. (2002). Online Coevolution for A
tion Games.International Journal of Intelligent Games and Simulation, Vol. 2, No. 2, pp.80�88.

148 Referen
esDemasi, P. and Cruz, A.J. de O. (2003). Anti
ipating Opponent Behaviour UsingSequential Predi
tion and Real-Time Fuzzy Rule Learning. Pro
eedings of the4th International Conferen
e on Intelligent Games and Simulation (GAME-ON 2003) (eds. Q. Mehdi, N. Gough, and S. Natkin), pp. 101�105, EUROSIS,Ghent, Belgium.Donkers, H.H.L.M. (2003). Nos
e Hostem: Sear
hing with Opponent Models. Ph.D.thesis, Universiteit Maastri
ht. Universitaire Pers Maastri
ht, Maastri
ht, TheNetherlands.Dumitres
u, D., Lazzerini, B., Jain, L.C., and Dumitres
u, A. (2000). EvolutionaryComputation. CRC Press, Bo
a Raton, FL.Elman, J.L. (1990). Finding Stru
ture in Time. Cognitive S
ien
e, Vol. 14, pp.179�211.Enzenberger, M. (2003). Evaluation in Go by a Neural Network Using Soft Segmen-tation. Advan
es in Computer Games: Many Games, Many Challenges (eds.H.J. van den Herik, H. Iida, and E.A. Heinz), pp. 97�108, Kluwer A
ademi
Publishers, Boston, MA.Evans, R. (2001). The Future of Game AI: A Personal View. Game DeveloperMagazine, Vol. 8, No. 8, pp. 46�49.Evans, R. (2002). Varieties of Learning. AI Game Programming Wisdom (ed. S.Rabin), pp. 567�578, Charles River Media, In
., Hingham, MA.Fair
lough, C., Fagan, M., Ma
Namee, B., and Cunningham, P. (2001). Resear
hDire
tions for AI in Computer Games. 12th Irish Conferen
e on Arti�
ial In-telligen
e & Cognitive S
ien
e (AICS 2001) (ed. D. O'Donoghue), pp. 333�344.Fleming, P.J. and Purhouse, R.C. (2001). Geneti
 Algorithms in Control SystemsEngineering. Te
hni
al Report 789, University of She�eld, She�eld, UK.Fogel, L.J. (1962). Autonomous Automata. Industrial Resear
h, Vol. 4, pp. 14�19.Forbus, K.D. and Laird, J. (2002). AI and the Entertainment Industry. IEEEIntelligent Systems, Vol. 17, No. 4, pp. 15�16.Fu, D. and Houlette, R. (2004). Constru
ting a De
ision Tree Based on Past Expe-rien
es. AI Game Programming Wisdom 2 (ed. S. Rabin), pp. 567�577, CharlesRiver Media, In
., Hingham, MA.Funge, J.D. (2004). Arti�
ial Intelligen
e for Computer Games. A K Peters, Ltd.,Wellesley, MA.Fyfe, C. (2004). Independent Component Analysis Against Camou�age. ComputerGames: Arti�
ial Intelligen
e, Design and Edu
ation (CGAIDE 2004) (eds. Q.Mehdi, N.E. Gough, S. Natkin, and D. Al-Dabass), pp. 259�262, University ofWolverhampton, Wolverhampton, UK.

Referen
es 149Gold, J. (2004). Obje
t-oriented Game Development. Addison-Wesley, Harrow, UK.Goldberg, D.E. and Deb, K. (1991). A Comparative Analysis of Sele
tion S
hemesUsed in Geneti
 Algorithms. Foundations of Geneti
 Algorithms (ed. G.J.E.Rawlins), pp. 69�93, Morgan Kaufmann Publishers, San Fran
is
o, CA.Goldberg, D.E. (1989). Geneti
 Algorithms in Sear
h, Optimization & Ma
hineLearning. Addison-Wesley Publishing Company, Reading, MA.Goldberg, D.E., Deb, K., and Korb, B. (1991). Don't Worry, Be Messy. FourthInternational Conferen
e on Geneti
 Algorithms (eds. R.K. Belew and L.B.Booker), pp. 24�30, Morgan Kaufmann Publishers, San Fran
is
o, CA.Graepel, T., Herbri
h, R., and Gold, J. (2004). Learning to Fight. ComputerGames: Arti�
ial Intelligen
e, Design and Edu
ation (CGAIDE 2004) (eds. Q.Mehdi, N.E. Gough, S. Natkin, and D. Al-Dabass), pp. 193�200, University ofWolverhampton, Wolverhampton, UK.Grefenstette, J. and Ramsey, C. (1992). An Approa
h to Anytime Learning. Pro-
eedings of the Ninth International Conferen
e on Ma
hine Learning (eds. D.H.Sleeman and P. Edwards), pp. 189�195, Morgan Kaufmann, San Mateo, CA.Hal
k, O.M. and Dahl, F.A. (1999). On Classi�
ation of Games and Evaluation ofPlayers � with Some Sweeping Generalizations About the Literature. Pro
eed-ings of the ICML-99 Workshop on Ma
hine Learning in Game Playing (eds. J.Fürnkranz and M. Kubat), J. Stefan Institute, Bled, Slovenia.Han
o
k, P.J.B. (1992). Geneti
 Algorithms and Permutation Problems: a Com-parison of Re
ombination Operators for Neural Stru
ture Spe
i�
ation. Inter-national Workshop on Combinations of Geneti
 Algorithms and Neural Net-works (eds. L.D. Whitley and J.D. S
ha�er), pp. 108�122, IEEE ComputerSo
iety Press, Los Alamitos, CA.Harmon, V. (2002). An E
onomi
 Approa
h to Goal-Dire
ted Reasoning in an RTS.AI Game Programming Wisdom (ed. S. Rabin), pp. 402�410, Charles RiverMedia, In
., Hingham, MA.Hause, K. (1999). What to Play Next: Gaming Fore
ast, 1999�2003. ReportW21056. International Data Corporation, Framingham, MA.Heeter, C. (1992). Being There: The Subje
tive Experien
e of Presen
e. Presen
e:Teleoperators and Virtual Environments, Vol. 1, No. 2, pp. 262�271.Herik, H.J. van den (1983). Computers
haak, S
haakwereld en Kunstmatige Intel-ligentie. A
ademi
 Servi
e, 's Gravenhage, The Netherlands.Herik, H.J. van den, Uiterwijk, J.W.H.M., and Rijswij
k, J. van (2002). GamesSolved: Now and in the Future. Arti�
ial Intelligen
e, Vol. 134, pp. 277�311.

150 Referen
esHerik, H.J. van den, Iida, H., and Heinz, E.A. (2003). Advan
es in Computer Games:Many Games, Many Challenges. Kluwer A
ademi
 Publishers, Boston, MA.Hertz, J., Krogh, A., and Palmer, R.G. (1991). An Introdu
tion to the Theory ofNeural Computation. Addison-Wesley Publishing Company, Reading, MA.Holland, J.H. (1975). Adaptation in Natural and Arti�
ial Systems: An Introdu
toryAnalysis with Appli
ations to Biology, Control and Arti�
ial Intelligen
e. MITPress, Cambridge, MA.Horn, J. (1997). Multi
riterion De
ision Making. Handbook of Evolutionary Com-putation (eds. T. Bä
k, D. Fogel, and Z. Mi
halewi
z), pp. F1.9:1�15. OxfordUniversity Press, Oxford, UK.Hsu, F-h. (2002). Behind Deep Blue: Building the Computer that Defeated theWorld Chess Champion. Prin
eton University Press, Prin
eton, NJ.Ierusalims
hy, R., de Figueiredo, L.H., and Celes, W. (2003). Lua 5.0 Referen
eManual. Te
hni
al Report MCC-14/03. PUC-Rio, Rio de Janeiro, Brazil.Iida, H. and Yoshimura, J. (2003). A Logisti
 Model of Game's Re�nement. CGRITe
hni
al Report EG 2003�1. Department of Computer S
ien
e, Shizuoka Uni-versity, Hamamatsu, Japan.Iida, H., Handa, K-i, and Uiterwijk, J. (1995). Tutoring Strategies in Game-TreeSear
h. ICCA Journal, Vol. 18, No. 4, pp. 191�204.Iida, H., Takeshita, N., and Yoshimura, J. (2002). A Metri
 for Entertainment ofBoardgames: Its Impli
ation for Evolution of Chess Variants. EntertainmentComputing: Te
hnologies and Appli
ations (eds. R. Nakatsu and J. Hoshino),pp. 65�72, Kluwer A
ademi
 Publishers, Boston, MA.Iida, H., Takahara, K., Nagashima, J., Kajihara, Y., and Hashimoto, T. (2004). AnAppli
ation of Game-Re�nement Theory to Mah Jong. Entertainment Com-puting � ICEC 2004 (ed. M. Rauterberg), Le
ture Notes in Computer S
ien
e3166, pp. 333�338, Springer-Verlag, Berlin, Germany.IJsselsteijn, W., de Kort, Y., Westerink, J., de Jager, M., and Bonants, R. (2004).Fun and Sports: Enhan
ing the Home Fitness Experien
e. Entertainment Com-puting � ICEC 2004 (ed. M. Rauterberg), Le
ture Notes in Computer S
ien
e3166, pp. 46�56, Springer-Verlag, Berlin, Germany.Jakobi, N. (1997). Evolutionary Roboti
s and the Radi
al Envelope of Noise Hy-pothesis. Adaptive Behavior, Vol. 6, No. 2, pp. 325�368.Johnson, S. (2004). Adaptive AI: A Pra
ti
al Example. AI Game ProgrammingWisdom 2 (ed. S. Rabin), pp. 639�647, Charles River Media, In
., Hingham,MA.

Referen
es 151Jones, J. and Goel, A. (2004). Hierar
hi
al Judgement Composition: Revisiting theStru
tural Credit Assignment Problem. Pro
eedings of the AAAI-04 Workshopon Challenges in Game Arti�
ial Intelligen
e (eds. D. Fu, S. Henke, and J.Orkin), pp. 67�71, AAAI Press, Menlo Park, CA.Karunanithi, N., Das, R., and Whitley, D. (1992). Geneti
 Cas
ade Learning forNeural Networks. International Workshop on Combinations of Geneti
 Algo-rithms and Neural Networks (eds. L.D. Whitley and J.D. S
ha�er), pp. 134�145,IEEE Computer So
iety Press, Los Alamitos, CA.Kent, T. (2004). Multi-Tiered AI Layers and Terrain Analyses for RTS games.AI Game Programming Wisdom 2 (ed. S. Rabin), pp. 447�455, Charles RiverMedia, In
., Hingham, MA.Khoo, A. and Zubek, R. (2002). Applying Inexpensive AI Te
hniques to ComputerGames. IEEE Intelligent Systems, Vol. 17, No. 4, pp. 2�7.Kinnear, K.E. (1994). Advan
es in Geneti
 Programming. MIT Press, Cambridge,MA.Kirby, N. (2004). Getting Around the Limits of Ma
hine Learning. AI Game Pro-gramming Wisdom 2 (ed. S. Rabin), pp. 603�611, Charles River Media, In
.,Hingham, MA.Knowles, B., Watamaniuk, P., Kristjanson, L., Soleski, K., Oster, T., M
Cabe, B.,and Bishop, J. (2002). Neverwinter Nights Manual. BioWare Corp., Edmonton,Canada.Ko
sis, L. (2003). Learning Sear
h De
isions. Ph.D. thesis, Universiteit Maastri
ht.Universitaire Pers Maastri
ht, Maastri
ht, The Netherlands.Koller, D. and Pfe�er, A. (1997). Representations and Solutions for Game-Theoreti
Problems. Arti�
ial Intelligen
e, Vol. 94, No. 1, pp. 167�215.Koza, J.R. (1992). Geneti
 Programming: On the Programming of Computers byMeans of Natural Sele
tion. MIT Press, Cambridge, MA.Laird, J.E. and Lent, M. van (2001). Human-Level's AI Killer Appli
ation: Inter-a
tive Computer Games. Arti�
ial Intelligen
e Magazine, Vol. 22, No. 2, pp.15�26.Laird, J.E. (2000). Bridging the Gap Between Developers & Resear
hers. GameDevelopers Magazine, Vol. 8 (August).Laird, J.E. (2001). It Knows What You're Going To Do: Adding Anti
ipation to aQuakebot. Pro
eedings of the Fifth International Conferen
e on AutonomousAgents (eds. J.P. Müller, E. Andre, S. Sen, and C. Frasson), pp. 385�392, ACMPress, Montreal, Canada.

152 Referen
esLaramée, F.D. (2002a). Geneti
 Algorithms: Evolving the Perfe
t Troll. AI GameProgramming Wisdom (ed. S. Rabin), pp. 629�639, Charles River Media, In
.,Hingham, MA.Laramée, F.D. (2002b). Using N-Gram Statisti
al Models to Predi
t Player Behav-ior. AI Game Programming Wisdom (ed. S. Rabin), pp. 596�601, Charles RiverMedia, In
., Hingham, MA.Laurel, B. (1993). Computers as Theatre. Addison-Wesley Publishing Company,Reading, MA.Le Diberder, A. and Le Diberder, F. (1993). Qui A Peur des Jeux Vidéo? ÉditionsLa Dé
ouverte, Paris, Fran
e.Le Hy, R., Arrigoni, A., Bessièrre, P., and Lebeltel, O. (2004). Tea
hing BayesianBehaviours to Video Game Chara
ters. Roboti
s and Autonomous Systems,Vol. 47, Nos. 2�3, pp. 177�185.Lebling, P.D. (1980). Zork and the Future of Computerized Fantasy Simulations.Byte, Vol. 5, No. 12, pp. 172�182.Ledwi
h, M. (2003). Developing an Agent that Learns to Play Pa
man. B.S
. thesis.University of Queensland, Queensland, Australia.Lee, W-P., Hallam, J., and Lund, H.H. (1997). Applying Geneti
 Programming toEvolve Behavior Primitives and Arbitrators for Mobile Robots. Pro
eedings ofIEEE 4th International Conferen
e on Evolutionary Computation, pp. 495�499,IEEE Press.Leen, G. and Fyfe, C. (2004). Agent Wars with Arti�
ial Immune Systems. En-tertainment Computing � ICEC 2004 (ed. M. Rauterberg), Le
ture Notes inComputer S
ien
e 3166, pp. 420�428, Springer-Verlag, Berlin, Germany.Levy, S. (1984). Ha
kers: Heroes of the Computer Revolution. Penguin Putnam,New York, NY.Lidén, L. (2002). Strategi
 and Ta
ti
al Reasoning with Waypoints. AI GameProgramming Wisdom (ed. S. Rabin), pp. 211�220, Charles River Media, In
.,Hingham, MA.Lidén, L. (2004). Arti�
ial Stupidity: The Art of Making Intentional Mistakes. AIGame Programming Wisdom 2 (ed. S. Rabin), pp. 41�48, Charles River Media,In
., Hingham, MA.Livingstone, D. and Charles, D. (2004). Intelligent Interfa
es for Digital Games.Pro
eedings of the AAAI-04 Workshop on Challenges in Game Arti�
ial Intelli-gen
e (eds. D. Fu, S. Henke, and J. Orkin), pp. 6�10, AAAI Press, Menlo Park,CA.

Referen
es 153Livingstone, D. and M
Glin
hey, S.J. (2004). What Believability Testing Can TellUs. Computer Games: Arti�
ial Intelligen
e, Design and Edu
ation (CGAIDE2004) (eds. Q. Mehdi, N.E. Gough, S. Natkin, and D. Al-Dabass), pp. 273�277,University of Wolverhampton, Wolverhampton, UK.Loe, C. and Cro
kett, F. (2002). Neverwinter Nights O�
ial Worldbuilder Guide.Versus Books, Alameda, CA.Louis, S.J. and Johnson, J. (1999). Robustness of Case-Initialized Geneti
 Algo-rithms. Pro
eedings of the 12th International Florida Arti�
ial Intelligen
eResear
h Symposium (ed. AAAI Press California Edts), pp. 129�133.Louis, S.J. and Li, G. (1997). Combining Robot Control Strategies Using Geneti
Algorithms with Memory. Evolutionary Programming VI (eds. P.J. Angeline,R.G. Reynolds, J.R. M
Donnell, and R. Eberhart), Le
ture Notes in ComputerS
ien
e 1213, pp. 431�441, Springer-Verlag, Berlin, Germany.Louis, S.J. (2002). Learning from Experien
e: Case Inje
ted Geneti
 AlgorithmDesign of Combinational Logi
 Cir
uits. Adaptive Computing in Design andManufa
ture V (ed. I.C. Parmee), pp. 295�306, Springer-Verlag.Madeira, C., Corruble, V., Ramalho, G., and Ratit
h, B. (2004). Bootstrappingthe Learning Pro
ess for the Semi-automated Design of Challenging Game AI.Pro
eedings of the AAAI-04 Workshop on Challenges in Game Arti�
ial Intel-ligen
e (eds. D. Fu, S. Henke, and J. Orkin), pp. 72�76, AAAI Press, MenloPark, CA.Man, K.F. and Tang, K.S. (1997). Geneti
 Algorithms for Control and SignalPro
essing. 23rd International Conferen
e on Industrial Ele
troni
s, Controland Instrumentation, Vol. 4, pp. 1541�1555.Maniezzo, V. (1993). Sear
hing Among Sear
h Spa
es: Hastening the Geneti
 Evo-lution of Feedforward Neural Networks. Arti�
ial Neural Nets and Geneti
Algorithms (eds. R.F. Albre
ht, C.R. Reeves, and N.C. Steel), pp. 635�642,Springer-Verlag, Wien, Austria.Manslow, J. (2002). Learning and Adaptation. AI Game Programming Wisdom (ed.S. Rabin), pp. 557�566, Charles River Media, In
., Hingham, MA.Manslow, J. (2004). Using Reinfor
ement Learning to Solve AI Control Problems.AI Game Programming Wisdom 2 (ed. S. Rabin), pp. 591�601, Charles RiverMedia, In
., Hingham, MA.Marthi, B., Latham, D., Russel, S., and Guestrin, C. (2004). Integrating Learningin Intera
tive Gaming Simulators. Pro
eedings of the AAAI-04 Workshop onChallenges in Game Arti�
ial Intelligen
e (eds. D. Fu, S. Henke, and J. Orkin),pp. 55�59, AAAI Press, Menlo Park, CA.

154 Referen
esMatthews, K.B., Craw, S., Elder, S., Sibbald, A.S., and Ma
Kenzie, I. (2000). Ap-plying Geneti
 Algorithms to Multi-Obje
tive Land Use Planning. Pro
eedingsof the Geneti
 and Evolutionary Computation Conferen
e, pp. 613�620, MorganKaufmann Publishers, San Fran
is
o, CA.M
Cullo
h, W.S. and Pitts, W. (1943). A Logi
al Cal
ulus of the Ideas Immanentin Nervous A
tivity. Bulletin of Mathemati
al Biophysi
s, Vol. 5, pp. 115�133.M
Glin
hey, S.J. (2003). Learning of AI Players from Game Observation Data. Pro-
eedings of the 4th International Conferen
e on Intelligent Games and Simula-tion (GAME-ON 2003) (eds. Q. Mehdi, N. Gough, and S. Natkin), pp. 106�110,EUROSIS, Ghent, Belgium.Mendel, G. (1866). Versu
he über P�anzen-Hybriden. Verhandlungen des natur-fors
henden Vereines, Abhandlungen, Brünn, Vol. 4, pp. 3�47.Mi
halewi
z, Z. and Fogel, D.B. (2000). How To Solve It: Modern Heuristi
s.Springer-Verlag, Berlin, Germany.Mi
halewi
z, Z. (1992). Geneti
 Algorithms + Data Stru
tures = Evolution Pro-grams. Springer-Verlag, London, UK.Minsky, M.L. and Papert, S.A. (1988). Per
eptrons: Introdu
tion to ComputationalGeometry. Expanded edition. MIT Press, Cambridge, MA.Mit
hell, T.M. (1997). Ma
hine Learning. M
Graw-Hill, Singapore, China, Interna-tional edition.Mommersteeg, F. (2002). Pattern Re
ognition with Sequential Predi
tion. AI GameProgramming Wisdom (ed. S. Rabin), pp. 586�595, Charles River Media, In
.,Hingham, MA.Mondada, F., Franzi, E., and Jenne, P. (1993). Mobile Robot Miniaturisation: ATool for Investigating in Control Algorithms. Pro
eedings of the Third In-ternational Symposium on Experimental Roboti
s (eds. T. Yoshikawa and F.Miyazaki), pp. 501�513, Springer-Verlag.Montana, D. and Davis, L. (1989). Training Feedforward Neural Networks UsingGeneti
 Algorithms. Pro
eedings of the 11th International Joint Conferen
e onArti�
ial Intelligen
e, pp. 762�767, Morgan Kaufmann Publishers, San Fran-
is
o, CA.Montfort, N. (2004). Twisty Little Passages: An Approa
h to Intera
tive Fi
tion.MIT Press, Cambridge, MA.Nareyek, A. (2002). Intelligent Agents for Computer Games. Computers and Games,Se
ond International Conferen
e, CG 2000 (eds. T.A. Marsland and I. Frank),Vol. 2063 of Le
ture Notes in Computer S
ien
e, pp. 414�422, Springer-Verlag,Heidelberg, Germany.

Referen
es 155Nareyek, A. (2004). AI in Computer Games. ACM Queue, Vol. 1, No. 10, pp. 58�65.NWN Lexi
on Group (2004). Neverwinter Nights Lexi
on. www.nwnlexi
on.
om.Ohlen, J., Kristjanson, L., Karpyshyn, D., and Muzyka, R. (2000). Baldur's GateII: Shadows of Amn Manual. BioWare Corp., Edmonton, Canada.Orkin, J. (2002). 12 Tips from the Tren
hes. AI Game Programming Wisdom (ed.S. Rabin), pp. 29�35, Charles River Media, In
., Hingham, MA.Orkin, J. (2004a). Constraining Autonomous Chara
ter Behavior with Human Con-
epts. AI Game Programming Wisdom 2 (ed. S. Rabin), pp. 189�197, CharlesRiver Media, In
., Hingham, MA.Orkin, J. (2004b). Simple Te
hniques for Coordinated Behavior. AI Game Pro-gramming Wisdom 2 (ed. S. Rabin), pp. 198�206, Charles River Media, In
.,Hingham, MA.Pabst, T. (2000). 3D Ben
hmarking: Understanding Framerate S
ores.graphi
s.tomshardware.
om/graphi
/20000704/.Philips-Mahoney, D. (2002). Meeting of the Minds. Computer Graphi
s World,Vol. 25, No. 1, pp. 28�33.Ponsen, M. and Spron
k, P.H.M. (2004). Improving Adaptive Game AI with Evo-lutionary Learning. Computer Games: Arti�
ial Intelligen
e, Design and Ed-u
ation (CGAIDE 2004) (eds. Q. Mehdi, N.E. Gough, S. Natkin, and D. Al-Dabass), pp. 389�396, University of Wolverhampton, Wolverhampton, UK.Ponsen, M. (2004). Improving Adaptive Game AI with Evolutionary Learning. M.S
.thesis. Delft University of Te
hnology, Delft, The Netherlands.Pyeatt, L.D. and Howe, A.E. (1998). Learning to Ra
e: Experiments with a Simu-lated Ra
e Car. Pro
eedings of the Eleventh International Florida Arti�
ial In-telligen
e Resear
h Symposium Conferen
e (ed. D.J. Cook), pp. 357�361, AAAIPress, Sanibel Island, FL.Rabin, S. (2004a). Filtered Randomness for AI De
isions and Game Logi
. AI GameProgramming Wisdom 2 (ed. S. Rabin), pp. 71�82, Charles River Media, In
.,Hingham, MA.Rabin, S. (2004b). Promising Game AI Te
hniques. AI Game ProgrammingWisdom2 (ed. S. Rabin), pp. 15�27, Charles River Media, In
., Hingham, MA.Ramsey, M. (2004). Designing a Multi-Tiered AI Framework. AI Game Program-ming Wisdom 2 (ed. S. Rabin), pp. 457�466, Charles River Media, In
., Hing-ham, MA.Rijswij
k, J. van (2003). Learning Goals in Sports Games. Pro
eedings of the 2003Game Developers Conferen
e, San Jose, CA. www.gd
onf.
om/ar
hives/2003/Van_Ryswy
k_Ja
k.do
.

156 Referen
esRosenblatt, F. (1958). The Per
eptron: A Probabilisti
 Model for Information Stor-age and Organization in the Brain. Psy
hologi
al Review, Vol. 65, pp. 386�408.Russell, S. and Norvig, P. (2003). Arti�
ial Intelligen
e: A Modern Approa
h.Prenti
e Hall, Pearson Edu
ation, Upper Saddle River, NJ, Se
ond edition.Sawyer, B. (2002). Serious Games: Improving Publi
 Poli
y through Game-basedLearning and Simulation. Foresight & Governan
e Proje
t, Woodrow WilsonInternational Center for S
olars, Washington, DC. wwi
s.si.edu/topi
s/do
s/ACF3F.pdf.S
hae�er, J. and Herik, H.J. van den (2002). Chips Challenging Champions: Games,Computers and Arti�
ial Intelligen
e. Elsevier, Amsterdam, The Netherlands.S
hae�er, J. (1997). One Jump Ahead: Challenging Human Suprema
y in Che
kers.Springer-Verlag, New York, NY.S
hae�er, J., Billings, D., Peña, L., and Szafron, D. (1999). Learning to Play StrongPoker. Pro
eedings of the Sixteenth International Conferen
e on Ma
hine Learn-ing, J. Stefan Institute, Bled, Slovenia.S
hae�er, J. (2001). A Gamut of Games. Arti�
ial Intelligen
e Magazine, Vol. 22,No. 3, pp. 29�46.S
ha�er, J.D., Whitley, D., and Es
helman, L.J. (1992). Combinations of Geneti
 Al-gorithms and Neural Networks: A Survey of the State of the Art. InternationalWorkshop on Combinations of Geneti
 Algorithms and Neural Networks (eds.D. Whitley and J.D. S
ha�er), pp. 1�37, IEEE Computer So
iety Press, LosAlamitos, CA.S
hapire, R. (2002). The Boosting Approa
h to Ma
hine Learning: An Overview.MSRIWorkshop on Nonlinear Estimation and Classi�
ation (eds. D.D. Denison,M.H. Hansen, C.C. Holmes, B. Malli
k, and B. Yu), Le
ture Notes in Statisti
s171, pp. 149�172, Springer-Verlag, New York, NY.S
hwefel, H.-P. (1965). Kybernetis
he Evolution als Strategie der experimentellenFors
hung in der Strömungste
hnik. M.S
. thesis. Universität Berlin, Berlin,Germany.S
ott, B. (2002). The Illusion of Intelligen
e. AI Game Programming Wisdom (ed.S. Rabin), pp. 16�20, Charles River Media, In
., Hingham, MA.Shah, I. (1968). The Pleasantries of the In
redible Mulla Nasrudin. John CarpenterLtd, London, UK.Slater, S. (2002). Enhan
ing the Immersive Experien
e. Pro
eedings of the 3rdInternational Conferen
e on Intelligent Games and Simulation (eds. Q. Mehdi,N. Gough, and M. Cavazza), pp. 5�9, SCS Europe Bvba, Ghent, Belgium.Snider, M. (2002). Where Movies End, Games Begin. USA Today, May 23, 2002.

Referen
es 157Sprinkhuizen-Kuyper, I.G., Kortmann, R., and Postma, E.O. (2000a). Fitness Fun
-tions for Evolving Box-Pushing Behaviour. Pro
eedings of the Twelfth Belgium-Netherlands Arti�
ial Intelligen
e Conferen
e (eds. A. van den Bos
h and H.Weigand), pp. 275�282.Sprinkhuizen-Kuyper, I.G., Postma, E.O., and Kortmann, R. (2000b). EvolutionaryLearning of a Robot Controller: E�e
t of Neural Network Topology. Pro
eedingsof the Tenth Belgian-Dut
h Conferen
e on Ma
hine Learning (ed. A. Feelders),pp. 55�60, Tilburg University.Sprinkhuizen-Kuyper, I.G. (2001). Arti�
ial Evolution of Box-pushing Behav-iour. Report CS 01-02. Universiteit Maastri
ht, Fa
ulty of General S
ien
es,IKAT/Department of Computer S
ien
e, Maastri
ht, The Netherlands.Spron
k, P.H.M. and Herik, H.J. van den (2003). Complex Games and Palm Com-puters. Entertainment Computing: Te
hnologies and Appli
ations (eds. R.Nakatsu and J. Hoshino), pp. 41�48, Kluwer A
ademi
 Publishers, Boston, MA.Spron
k, P.H.M. and Ker
kho�s, E.J.H. (1997). Using Geneti
 Algorithms to DesignNeural reinfor
ement Controllers for Simulated Plants. Pro
eedings of the 11thEuropean Simulation Conferen
e (eds. A. Kaylan and A. Lehmann), pp. 292�299, SCS Europe Bvba, Erlangen, Germany.Spron
k, P.H.M. (1996). Elegan
e: Geneti
 Algorithms in Neural Reinfor
ementControl. M.S
. thesis. Delft University of Te
hnology, Delft, The Netherlands.Spron
k, P.H.M., Sprinkhuizen-Kuyper, I.G., and Postma, E.O. (2001a). InfusedEvolutionary Learning. Pro
eedings of the Eleventh Belgian-Dut
h Conferen
eon Ma
hine Learning (eds. V. Hoste and G. de Pauw), pp. 61�68, University ofAntwerp.Spron
k, P.H.M., Sprinkhuizen-Kuyper, I.G., and Postma, E.O. (2001b). Island-based Evolutionary Learning. Pro
eedings of the 13th Dut
h-Belgian Arti�
ialIntelligen
e Conferen
e (eds. B. Kröse, M. de Rijke, G. S
hreiber, and M. vanSomeren), pp. 441�448, Universiteit van Amsterdam.Spron
k, P.H.M., Sprinkhuizen-Kuyper, I.G., and Postma, E.O. (2002). EvolvingImproved Opponent Intelligen
e. GAME-ON 2002 3rd International Confer-en
e on Intelligent Games and Simulation (eds. Q. Mehdi, N. Gough, and M.Cavazza), pp. 94�98, SCS Europe Bvba, Ghent, Belgium.Spron
k, P.H.M., Sprinkhuizen-Kuyper, I.G., and Postma, E.O. (2003a). ImprovingOpponent Intelligen
e through O�ine Evolutionary Learning. InternationalJournal of Intelligent Games and Simulation, Vol. 2, No. 1, pp. 20�27.Spron
k, P.H.M., Sprinkhuizen-Kuyper, I.G., and Postma, E.O. (2003b). OnlineAdaptation of Game Opponent AI in Simulation and in Pra
ti
e. Pro
eedings of

158 Referen
esthe 4th International Conferen
e on Intelligent Games and Simulation (GAME-ON 2003) (eds. Q. Mehdi and N. Gough), pp. 93�100, EUROSIS, Ghent, Bel-gium.Spron
k, P.H.M., Sprinkhuizen-Kuyper, I.G., Postma, E.O., and Kortmann, L.J.(2003
). Evolutionary Learning of a Box-Pushing Controller. ComputationalIntelligen
e in Control (eds. M. Mohammadian, R.A. Sarker, and X. Yao), pp.104�121, Idea Group Publishing, Hershey, PA.Spron
k, P.H.M., Sprinkhuizen-Kuyper, I.G., and Postma, E.O. (2004a). Di�
ultyS
aling of Game AI. GAME-ON 2004 5th International Conferen
e on Intelli-gent Games and Simulation (eds. A. El Rhalibi and D. Van Welden), pp. 33�37,EUROSIS, Ghent, Belgium.Spron
k, P.H.M., Sprinkhuizen-Kuyper, I.G., and Postma, E.O. (2004b). Enhan
-ing the Performan
e of Dynami
 S
ripting in Computer Games. EntertainmentComputing � ICEC 2004 (ed. M. Rauterberg), Le
ture Notes in Computer S
i-en
e 3166, pp. 296�307, Springer-Verlag, Berlin, Germany.Spron
k, P.H.M., Sprinkhuizen-Kuyper, I.G., and Postma, E.O. (2004
). OnlineAdaptation of Game Opponent AI with Dynami
 S
ripting. International Jour-nal of Intelligent Games and Simulation, Vol. 3, No. 1, pp. 45�53.Spron
k, P.H.M., Sprinkhuizen-Kuyper, I.G., and Postma, E.O. (2005). DECA: TheDoping-driven Evolutionary Control Algorithm. Submitted.Spu�ord, F. (2003). Masters of their Universe. The Guardian, O
tober 18, 2003.Sterren, W. van der (2002). Squad Ta
ti
s: Team AI and Emergent Manoeuvres. AIGame Programming Wisdom (ed. S. Rabin), pp. 233�246, Charles River Media,In
., Hingham, MA.Sutton, R.S. and Barto, A.G. (1998). Reinfor
ement Learning: An Introdu
tion.MIT Press, Cambridge, MA.Tesauro, G. (1992). Pra
ti
al Issues in Temporal Di�eren
e Learning. Ma
hineLearning, Vol. 8, pp. 257�277.Tesauro, G. (2002). Programming Ba
kgammon Using Self-Tea
hing Neural Nets.Arti�
ial Intelligen
e, Vol. 134, Nos. 1�2.Thierens, D., Suykens, J., Vandewalle, J., and Moor, B. de (1993). Geneti
 WeightOptimization of a Feedforward Neural Network Controller. Arti�
ial NeuralNets and Geneti
 Algorithms (eds. R.F. Albre
ht, C.R. Reeves, and N.C. Steel),pp. 658�663, Springer-Verlag, Wien, Austria.Tomlinson, S.L. (2003). Working at Thinking about Playing or A Year in the Life ofa Games AI Programmer. Pro
eedings of the 4th International Conferen
e onIntelligent Games and Simulation (GAME-ON 2003) (eds. Q. Mehdi, N. Gough,and S. Natkin), pp. 5�12, EUROSIS, Ghent, Belgium.

Referen
es 159Tozour, P. (2002a). Building an AI Diagnosti
 Toolset. AI Game ProgrammingWisdom (ed. S. Rabin), pp. 39�45, Charles River Media, In
., Hingham, MA.Tozour, P. (2002b). The Evolution of Game AI. AI Game ProgrammingWisdom (ed.S. Rabin), pp. 3�15, Charles River Media, In
., Hingham, MA.Tozour, P. (2002
). The Perils of AI S
ripting. AI Game Programming Wisdom (ed.S. Rabin), pp. 541�547, Charles River Media, In
., Hingham, MA.Tsang, E.P.K. (1993). Foundations of Constraint Satisfa
tion. A
ademi
 Press.Turing, A.M. (1950). Computing Ma
hinery and Intelligen
e. Mind, Vol. 59, No.236, pp. 433�460.Ulam, P., Goel, A., and Jones, J. (2004). Re�e
tion in A
tion: Model-Based Self-Adaptation in Game Playing Agents. Pro
eedings of the AAAI-04 Workshop onChallenges in Game Arti�
ial Intelligen
e (eds. D. Fu, S. Henke, and J. Orkin),pp. 86�90, AAAI Press, Menlo Park, CA.Veldhuizen, D.A. van and Lamont, G.B. (2000). Multiobje
tive Evolutionary Al-gorithms: Analyzing the State-of-the-Art. Evolutionary Computation, Vol. 8,No. 2, pp. 125�147.Wang, Q., Spron
k, P., and Tra
ht, R. (2003). An Overview of Geneti
 AlgorithmsApplied to Control Engineering Problems. Pro
eedings of the Se
ond Interna-tional Conferen
e on Ma
hine Learning and Cyberneti
s, pp. 1651�1656.Waveren, J.M.P. van and Rothkrantz, L.J.M. (2002). Arti�
ial Player for QuakeIII Arena. International Journal of Intelligent Games and Simulation, Vol. 1,No. 1, pp. 25�32.Werf, E.C.D. van der (2004). AI Te
hniques for the Game of Go. Ph.D. thesis,Universiteit Maastri
ht. Universitaire Pers Maastri
ht, Maastri
ht, The Nether-lands.Winands, H.H.M. (2004). Informed Sear
h in Complex Games. Ph.D. thesis, Univer-siteit Maastri
ht. Universitaire Pers Maastri
ht, Maastri
ht, The Netherlands.Wood
o
k, S. (1999). Game AI: The State of the Industry. Game Developer Maga-zine, Vol. 6, No. 8.Wood
o
k, S. (2002). AI Roundtable Moderator's Report. www.gameai.
om/
gd
02notes.html.Wright, I. and Marshall, J. (2000). Ego
entri
 AI Pro
essing for Computer Enter-tainment: A Real-Time Pro
ess Manager for Games. Pro
eedings of the 1stInternational Conferen
e on Intelligent Games and Simulation (eds. Q. Mehdi,N. Gough, and D. Al-Dabass), pp. 34�41, SCS Europe Bvba, Ghent, Belgium.

160 Referen
esYannakakis, G.N. and Hallam, J. (2004). Intera
tive Opponents Generate Interest-ing Games. Computer Games: Arti�
ial Intelligen
e, Design and Edu
ation(CGAIDE 2004) (eds. Q. Mehdi, N.E. Gough, S. Natkin, and D. Al-Dabass),pp. 240�247, University of Wolverhampton, Wolverhampton, UK.Yao, X. (1995). Evolutionary Arti�
ial Neural Networks. En
y
lopedia of ComputerS
ien
e and Te
hnology (eds. A. Kent and J. Williams), Vol. 33, pp. 137�170,Mar
 Dekker, In
., New York, NY.

Appendix ACRPG Simulation Game AIIn Chapter 5, experiments with dynami
 s
ripting in a simulated CRPG were dis-
ussed. This appendix des
ribes implementation details of the CRPG simulation(A.1), the s
ripting language used to de�ne game AI (A.2), the rulebases used togenerate su

essful game AI for the dynami
 team (A.3), and the ta
ti
s employedby the stati
 team (A.4).A.1 CRPG simulationThe CRPG simulation is modelled after the Baldur's Gate games. The implemen-tations of agent attributes,
ombat, and magi
 are all to the spe
i�
ations of Bal-dur's Gate II: Shadows of Amn (Ohlen, Kristjanson, Karpyshyn, and Muzyka,2000). The simulation entails an en
ounter between two teams of similar
ompo-sition. Ea
h team
onsists of four agents, namely two �fth-level `�ghters' and two�fth-level `wizards'. The initial position of all agents in the CRPG simulation isillustrated in Figure 5.2. The front row of ea
h team
onsists of the two �ghters,and the ba
k row of the two wizards. The
ombat area (the large square in whi
hthe agents are lo
ated) measures 1000 × 1000 units, whi
h equals �fty by �fty feet.The initial distan
e between two �ghters on opposite sides is 800 units.The armament and weaponry of the teams is stati
, and ea
h agent is allowedto
arry two magi
 potions. In addition, the wizards are allowed to memorise sevenmagi
 spells. Potions and spells are implemented a

ording to Baldur's Gatespe
i�
ations (Ohlen et al., 2000). Three di�erent potions are available, namely of(i) Healing, (ii) Fire Resistan
e, and (iii) Free A
tion. Twenty-one magi
 spells areavailable, namely eight of the �rst level, eight of the se
ond level, and �ve of the thirdlevel. The eight �rst-level spells are (i) Blindness, (ii) Charm Person, (iii) Chromati
Orb, (iv) Grease, (v) Larlo
h's Minor Drain, (vi) Magi
 Missile, (vii) Shield, and(viii) Sho
king Grasp. The eight se
ond-level spells are (i) Blur, (ii) Deafness, (iii)Lu
k, (iv) Melf's A
id Arrow, (v) Mirror Image, (vi) Ray of Enfeeblement, (vii)Stinking Cloud, and (viii) Strength. The �ve third-level spells are (i) Dispel Magi
,

162 CRPG Simulation Game AI

Figure A.1: The CRPG simulation.(ii) Fireball, (iii) Flame Arrow, (iv) Hold Person, and (v) Monster Summoning I.A �fth-level wizard
an memorise four �rst-level spells, two se
ond-level spells, andone third-level spell.A.2 S
ripting LanguageTo implement game-AI s
ripts, the CRPG simulation employs a s
ripting language,whi
h has been designed to be as powerful as the s
ripting language used for theBaldur's Gate games. It makes use of keywords and literals, whi
h are listedin Table A.1. Besides the literals listed, names of potions and spells
an also beused as literals. In the table, self refers to the agent whose s
ript is exe
uted,`opponent agent' refers to a member of the team opposing self, and `
omradeagent' refers to a member of self's team (in
luding self). Game-AI s
ripts
onsistof a sequen
e of
onditional statements, with an (optional)
onditional part and ana
tion part, stru
tured as if <
onditional> then <a
tion>. When the game AIneeds to sele
t a new a
tion, the statements in the s
ript are
he
ked in sequen
e.Of ea
h statement, the
onditional part is evaluated. If it evaluates to `true' (or ifit is absent), the
orresponding a
tion is
he
ked. If the a
tion obeys all relevanthard and soft
onstraints, it is sele
ted and evaluation ends. Otherwise, the nextstatement in sequen
e is
he
ked, until either an a
tion is sele
ted, or the s
ript ends.The sele
ted a
tion is exe
uted. If no a
tion is sele
ted, the default a
tion pass isexe
uted, though it is good pra
ti
e to add a
tions to the end of the s
ript that
analways be exe
uted.The
onditional part
an
he
k many di�erent
onditions,
ombined with thelogi
al operators and, or and not. Conditions
onsist of either a logi
al method thatreturns a boolean, or a
omparison between numeri
al expressions. The numeri
alexpressions
an use the numeri
al operators + (addition), - (substra
tion), * (mul-tipli
ation), and / (division). Besides integers, the numeri
al expressions
an usenumeri
al methods.

A.2 � S
ripting Language 163Table A.1: Simulation s
ripting language: keywords and literals.A
tions
ast Called with a spell as parameter. Casts the spell.drink Called with a potion as parameter. Drinks the potion.meleeatta
k Called with an agent as parameter. Atta
ks the agentwith the default melee weapon.movefrom Called with a lo
ation or an agent as parameter. Movesaway in a dire
t line from the lo
ation, or from the agent.moveto Called with a lo
ation or an agent as parameter. Movesin a dire
t line towards the lo
ation, or towards the agent.pass Passes.rangedatta
k Called with an agent as parameter. Atta
ks the agentwith the default ranged weapon.Agents
losestenemy The opponent agent
losest to self.
losestfriend The
omrade agent
losest to self, ex
luding self.defaultenemy In the
onditional statement, the most re
ently referredagent among the opponent agents.defaultfriend In the
onditional statement, the most re
ently referredagent among the
omrade agents.enemy Used with boolean methods; returns a random opponentagent for whi
h the method returns true.friend Used with boolean methods; returns a random
omradeagent for whi
h the method returns true.furthestenemy The opponent agent furthest from self.furthestfriend The
omrade agent furthest from self.randomenemy A random opponent agent.randomfriend A random
omrade agent.self The agent whose s
ript is exe
uted.strongestenemy The opponent agent with the most health.strongestfriend The
omrade agent with the most health.weakestenemy The opponent agent with the least health.weakestfriend The
omrade agent with the least health.In�uen
esbadinfluen
e A detrimental in�uen
e.freezinginfluen
e A disabling in�uen
e.goodinfluen
e A bene�
ial in�uen
e.Literals"A
id" In�uen
e. Caused by a `Melf's A
id Arrow' spell.
ontinued on the next page

164 CRPG Simulation Game AITable A.1:
ontinued from the previous page"Animal" Agent type. Summoned monster."Blinded" In�uen
e. Caused by a `Blindness' spell."Blurred" In�uen
e. Caused by a `Blur' spell."Charmed" In�uen
e. Caused by a `Charm Person' spell."Deafened" In�uen
e. Caused by a `Deafness' spell."Fighter" Agent type. Fighter
lass."Fire Resistant" In�uen
e. Caused by a potion of `Fire Resistan
e'."Freedom" In�uen
e. Caused by a potion of `Free A
tion'."Held" In�uen
e. Caused by a `Hold Person' spell."Lu
ky" In�uen
e. Caused by a `Lu
k' spell."Mirrored" In�uen
e. Caused by a `Mirror Image' spell."Nauseating Fumes" Cloud. Caused by a `Stinking Cloud' spell."Shielded" In�uen
e. Caused by a `Shield' spell."Slippery Surfa
e" Cloud. Caused by a `Grease' spell."Strengthened" In�uen
e. Caused by a `Strength' spell."Stunned" In�uen
e. Caused by a `Chromati
 Orb' spell or by a`Nauseating Fumes'
loud."Weakened" In�uen
e. Caused by a `Ray of Enfeeblement' spell."Wizard" Agent type. Wizard
lass.Lo
ationsanywhere A random lo
ation anywhere in the
ombat area.ba
kenemy Just behind the opponent agent furthest to the ba
k.ba
kfriend Just behind the
omrade agent furthest to the ba
k.
entreall The mathemati
al
entre of all agents.
entre
louds The mathemati
al
entre of all
louds in whi
h themethod-
alling agent is lo
ated.
entreenemy The mathemati
al
entre of all opponent agents.
entrefriend The mathemati
al
entre of all
omrade agents.frontenemy Just in front of the frontline opponent agent.frontfriend Just in front of the frontline
omrade agent.randomenemyhalf A random lo
ation in the
ombat area at the side of theopponent team.randomfriendhalf A random lo
ation in the
ombat area at the side of the
omrade team.Methods
han
eper
entage Called with a number as parameter. Returns `true' witha
han
e equal to the parameter when it is interpreted asa per
entage.
ontinued on the next page

A.2 � S
ripting Language 165Table A.1:
ontinued from the previous pagedistan
e Called with one or two agents as parameter. With oneagent as parameter, it returns the distan
e between thatagent and the method-
alling agent. With two agents asparameter, it returns the distan
e between the two agents.health The health of the method-
alling agent as an integer.healthper
entage Called with a number as parameter. Returns the per
ent-age that the
urrent health of the method-
alling agent isof its starting health.influen
e Called with an in�uen
e e�e
t as parameter. Returns`true' if the method-
alling agent is under said e�e
t.lo
atedin Called with a
loud e�e
t. Returns `true' if the method-
alling agent is within the area
overed by the
loud e�e
t.maxhealth The initial health of the method-
alling agent.random Called with a number as parameter. Returns a randominteger less than the parameter.roundnumber The number of the
urrent
ombat round.segmentnumber The number of the
urrent
ombat-round segment.spell
ount The number of spells the method-
alling agent has mem-orised.stepsize The movement speed of the method-
alling agent.Potionsrandompotion A random potionSpellsrandomareaeffe
t A random area-e�e
t spell.random
urse A random
urse.randomdamaging A random damaging spell.randomdefensive A random defensive spell.randomoffensive A random
urse or damaging spell.randomspell A random spell.strongareaeffe
t One of the highest-level area-e�e
t spells.strong
urse One of the highest-level
urses.strongdamaging One of the highest-level damaging spells.strongdefensive One of the highest-level defensive spells.strongoffensive One of the highest-level
urses or damaging spells.weakareaeffe
t One of the lowest-level area-e�e
t spells.weak
urse One of the lowest-level
urses.weakdamaging One of the lowest-level damaging spells.weakdefensive One of the lowest-level defensive spells.weakoffensive One of the lowest-level
urses or damaging spells.

166 CRPG Simulation Game AILogi
al and numeri
al methods are
alled as <agent>.<method>(<parameters>).The agent whose s
ript is exe
uted
an be referred to as self. If <agent> is self,the <agent>-part and the dot need not be in
luded. If <method> does not haveparameters, the part (<parameters>)
an be ignored. Some methods are polymor-phi
, i.e., they have di�erent implementations when used with di�erent types ofparameters.Agents
an be referred to using keywords. Ex
ept for defaultenemy, default-friend, and self, an agent keyword
an be used with an agent-type literal, restri
t-ing the agent
lass to the value of the parameter.As parameters, a method
an take keywords and literals. `Agent' parameters, `in-�uen
e' parameters, `lo
ation' parameters, `potion' parameters, and `spell' parame-ters
an be referred to using keywords. `In�uen
e' parameters, `potion' parameters,and `spell' parameters
an also be referred to using literals. A numeri
al parameteris a numeri
al expression, whi
h
an
ontain numeri
al methods.The a
tion part of a
onditional statement is
alled as a method, without spe
i-fying the <agent>, be
ause it is always self that exe
utes the a
tion. Five a
tionsare possible, namely (i) atta
king (two varieties, namely with a melee weapon orwith a ranged weapon), (ii) moving (two varieties, namely away from or towards),(iii)
asting a spell, (iv) drinking a potion, and (v) passing.A.3 RulebasesIn the simulated CRPG their are two
lasses of agents for whi
h game AI
an bede�ned, namely �ghters and wizards. Ea
h of these
lasses has its own rulebase fordynami
 s
ripting to employ. The rulebase for �ghters is presented in Subse
tionA.3.1, and the rulebase for wizards is presented in Subse
tion A.3.2.A.3.1 Fighter RulebaseThis subse
tion presents the rulebase used by dynami
 s
ripting for the �ghter
lassin the simulated CRPG. The rulebase
onsists of twenty rules. In front of ea
h ruleare the rule number, and, between bra
kets, the priority of the rule. `[0℄' is thelowest priority, while `[9℄' is the highest priority.1. [9℄ if roundnumber <= 1 thendrink("Potion of Fire Resistan
e");2. [9℄ if roundnumber <= 1 thendrink("Potion of Free A
tion");3. [5℄ if healthper
entage < 50 thendrink("Potion of Healing");4. [5℄ if healthper
entage < 25 thendrink("Potion of Healing");5. [5℄ if influen
e("Slippery Surfa
e") thendrink("Potion of Free A
tion");6. [3℄ movefrom(
entre
louds);

A.3 � Rulebases 1677. [3℄ if segmentnumber >= 1 thenmovefrom(
entrefriend);8. [3℄ if lo
atedin("Nauseating Fumes") thendrink("Potion of Free A
tion");9. [1℄ meleeatta
k(
losestenemy("Wizard"));10. [1℄ meleeatta
k(
losestenemy("Fighter"));11. [1℄ if distan
e(weakestenemy) > 300 thenrangedatta
k(defaultenemy);12. [1℄ if distan
e(weakestenemy("Wizard")) > 300 thenrangedatta
k(defaultenemy);13. [1℄ if not influen
e("Slippery Surfa
e") thenmeleeatta
k(
losestenemy);14. [1℄ if distan
e(
losestenemy) > 300 thenrangedatta
k(randomenemy);15. [1℄ if distan
e(
losestenemy) > 300 thenrangedatta
k(weakestenemy);16. [1℄ if distan
e(
losestenemy) < 200 thenmeleeatta
k(defaultenemy);17. [1℄ drink(randompotion);18. [0℄ meleeatta
k(weakestenemy);19. [0℄ rangedatta
k(weakestenemy);20. [0℄ meleeatta
k(
losestenemy);Rule 1 and 2 for
e the agent to perform a spe
i�
 a
tion in the very �rst round,but not later. These rules have the highest priority, be
ause they are only usefulwhen at the very beginning of the s
ript.Rule 6 states that the agent should move away from the
entre of a
loud. Thelo
ation
entre
louds only returns a valid value for the a
tion movefrom if theagent is a
tually lo
ated in a
loud. All
louds in the CRPG simulation have adetrimental e�e
t, and rule 6 helps agents to avoid them.Rule 7
he
ks a segment number. A
ombat round
onsists of ten segments. Inthe �rst segment of a
ombat round an agent
hoses an a
tion, whi
h is exe
uted inone of the later segments (it depends on the a
tion when that will be exa
tly). Afteran a
tion is exe
uted, an agent has to wait until the next round to
hoose a newa
tion. However, the agent still has the ability to move. Rule 7 gives an agent extramove a
tions after the agent's main a
tion for the
ombat round has been exe
uted.A �ghter game-AI s
ript
onsists of �ve rules extra
ted from the rulebase, towhi
h at the end the rule meleeatta
k(
losestenemy) is atta
hed.A.3.2 Wizard RulebaseThis subse
tion presents the rulebase used by dynami
 s
ripting for the wizard
lassin the simulated CRPG. The rulebase
onsists of �fty rules. In front of ea
h rule arethe rule number, and, between bra
kets, the priority of the rule. `[0℄' is the lowestpriority, while `[9℄' is the highest priority.

168 CRPG Simulation Game AI1. [9℄ if influen
e("A
id") thenrangedatta
k(
losestenemy("Wizard"));2. [9℄ if roundnumber <= 1 thendrink("Potion of Fire Resistan
e");3. [9℄ if roundnumber <= 1 thendrink("Potion of Free A
tion");4. [9℄ if roundnumber <= 1 then
ast("Monster Summoning I",
entreenemy);5. [9℄ if roundnumber <= 1 then
ast("Hold Person", randomenemy);6. [9℄ if roundnumber <= 1 then
ast("Fireball",
entreenemy);7. [9℄ if roundnumber <= 1 then
ast("Mirror Image");8. [7℄ if roundnumber <= 1 then
ast(randomdefensive);9. [5℄ if lo
atedin("Nauseating Fumes") thendrink("Potion of Free A
tion");10. [5℄ if enemy.influen
e("Charmed") then
ast("Charm Person", defaultenemy);11. [3℄ if healthper
entage < 50 thendrink("Potion of Healing");12. [3℄ movefrom(
entre
louds);13. [3℄ if segmentnumber >= 1 thenmovefrom(
entrefriend);14. [3℄ if segmentnumber >= 1 thenmovefrom(
losestenemy);15. [3℄ if friend.influen
e(badinfluen
e) andnot defaultfriend.influen
e(goodinfluen
e) then
ast("Dispel Magi
", defaultfriend);16. [2℄
ast("Fireball", furthestenemy);17. [2℄
ast("Charm Person", randomenemy("Fighter"));18. [2℄
ast("Charm Person", randomenemy("Wizard"));19. [2℄
ast("Deafness", randomenemy("Wizard"));20. [2℄
ast("Monster Summoning I", randomenemyhalf);21. [2℄
ast("Ray of Enfeeblement", randomenemy("Fighter"));22. [2℄ if friend.influen
e("Weakened") then
ast("Strength", defaultfriend);23. [2℄ if friend("Wizard").influen
e("Deafened") then
ast("Dispel Magi
", defaultfriend);24. [2℄
ast("Mirror Image");25. [2℄
ast("Blindness", randomenemy("Fighter"));26. [2℄
ast("Blur");27. [2℄
ast("Shield");28. [2℄
ast("Lu
k", randomfriend);

A.3 � Rulebases 16929. [2℄
ast("Chromati
 Orb", randomenemy);30. [2℄ if roundnumber <= 1 then
ast("Stinking Cloud",
entreenemy);31. [2℄
ast("Stinking Cloud", randomenemy("Wizard"));32. [2℄
ast("Stinking Cloud", randomenemy("Fighter"));33. [2℄
ast("Hold Person",
losestenemy);34. [2℄
ast("Flame Arrow", randomenemy);35. [2℄ if (health < maxhealth - 4) and (weakestenemy.health >= 4) then
ast("Larlo
h's Minor Drain", defaultenemy);36. [2℄
ast("Grease", randomenemy("Fighter"));37. [2℄
ast("Magi
 Missile", weakestenemy("Wizard"));38. [2℄
ast("Magi
 Missile", weakestenemy);39. [2℄
ast("Melf's A
id Arrow", randomenemy("Wizard"));40. [2℄
ast("Sho
king Grasp",
losestenemy);41. [2℄
ast("Blur");42. [1℄
ast(randomoffensive, randomenemy);43. [1℄
ast(randomblessing, randomfriend);44. [1℄
ast(random
urse, randomenemy);45. [1℄
ast(randomdefensive);46. [1℄
ast(randomareaeffe
t, randomenemy);47. [1℄ drink(randompotion);48. [0℄ rangedatta
k(weakestenemy("Wizard"));49. [0℄ rangedatta
k(weakestenemy);50. [0℄ if distan
e(
losestenemy) < 100 thenmeleeatta
k(defaultenemy);Rule 1 for
es the agent to use a ranged weapon to atta
k, when under the in�u-en
e of a
id. A
id damage
auses any spell the wizard has sele
ted to fail. Therefore,whilst under the in�uen
e of a
id, spell-
asting is not useful. Rule 1 takes this intoa

ount by for
ing the wizard to use ranged atta
ks until the a
id has dissolved.Rule 6 for
es the agent to
ast a `Fireball' spell the very �rst round. A `Fireball'is an area-e�e
t spell, whi
h seriously damages anyone in its range of e�e
t. It ismost useful against a group of opponents that are standing
lose together, while
omrades are still a good distan
e away. This is the situation at the start of
ombat.Rule 10
he
ks whether there is an opponent that is
harmed. An opponent thatis
harmed, is a
tually a friend under the in�uen
e of a `Charm Person' spell, whois now �ghting for the opposing team. A se
ond `Charm Person' spell
ast at theopponent will remove the e�e
t of the �rst spell, turning the erstwhile opponentfriendly again.Rule 15
he
ks whether a
omrade is under any detrimental spell e�e
t, whilenot being under any bene�
ial spell e�e
t. If so, the wizard attempts to removeseveral detrimental spell e�e
ts with the `Dispel Magi
' spell. Sin
e `Dispel Magi
'makes no di�eren
e between detrimental and bene�
ial spell e�e
ts, `Dispel Magi
'is best applied at a
omrade that is only a�e
ted by detrimental e�e
ts. The ruletakes this into a

ount.

170 CRPG Simulation Game AIRule 19 makes the agent
ast `Deafness' at an opponent wizard. While `Deafness'
an be
ast at �ghters, it only a�e
ts wizards detrimentally.Rule 21 makes the agent
ast `Ray of Enfeeblement' at an opponent �ghter. `Rayof Enfeeblement' saps the strength of an opponent. While `Ray of Enfeeblement'
an be
ast at wizards, wizards do not have high strength to begin with. Therefore,the spell is most useful against �ghters.Rule 23 makes the agent
ast `Dispel Magi
' to a
omrade wizard that su�ersfrom the `Deafness' spell. Within the CRPG simulation, `Dispel Magi
' is the onlyremedy against being deafened.Rule 30 is a
tually a mistake; it should have priority 9, but it has priority 2.When this rule is sele
ted for a s
ript, its
han
e to be a
tivated is remote.A wizard game-AI s
ript
onsists of ten rules extra
ted from the rulebase,to whi
h at the end the rules
ast(strongoffensive,
losestenemy) andrangedatta
k(
losestenemy) are atta
hed.A.4 Stati
 Ta
ti
sChapter 5 refers to �ve di�erent basi
 ta
ti
s used by the stati
 team. The ta
ti
s
onsist of a game-AI s
ript for ea
h of the members of the stati
 team. The team
onsists of two �ghters and two wizards. For all ta
ti
s, the two �ghters use the sames
ript. The following �ve subse
tions present the s
ripts used for ea
h of the �vestati
 ta
ti
s, namely the `o�ensive' ta
ti
 (A.4.1), the `disabling' ta
ti
 (A.4.2), the`
ursing' ta
ti
 (A.4.3), the `defensive' ta
ti
 (A.4.4), and the `novi
e' ta
ti
 (A.4.5).A.4.1 The O�ensive Ta
ti
For the `o�ensive' ta
ti
, the two �ghters use the following s
ript:if healthper
entage < 50 thendrink("Potion of Healing");meleeatta
k(
losestenemy);With the `o�ensive' ta
ti
, the two �ghters will use their melee weapon to atta
kopponents. In general, �ghters are mu
h more e�e
tive when using melee atta
ksthan when using ranged atta
ks. The �ghters will attempt to heal when they aredamaged too mu
h.The two wizards both use the following s
ript:if healthper
entage < 50 thendrink("Potion of Healing");
ast("Fireball",
entreenemy);
ast("Melf's A
id Arrow",
losestenemy("Wizard"));
ast("Melf's A
id Arrow",
losestenemy);
ast("Magi
 Missile", weakestenemy);rangedatta
k(
losestenemy);

A.4 � Stati
 Ta
ti
s 171With the `o�ensive' ta
ti
, the very �rst round of an en
ounter, both wizards willthrow a `�reball' at the
entre the opponent team. The e�e
t is that usually the twowizards of the opposing team will be killed outright, unless they immediately startmoving or take prote
tive measures. In the following rounds, the two wizards will�rst attempt to kill opponents with damaging magi
 spells, starting any remainingopponent wizard. When the wizards are out of spells, they will use ranged atta
ks.A.4.2 The Disabling Ta
ti
For the `disabling' ta
ti
, the two �ghters use the following s
ript:if roundnumber <= 1 thendrink("Potion of Free A
tion");if healthper
entage < 50 thendrink("Potion of Healing");meleeatta
k(
losestenemy);With the `disabling' ta
ti
, the two �ghters will �rst drink a potion of free a
tion,ensuring that they will be una�e
ted by the area-e�e
t spells used by the wizardsin the team. The remainder of the s
ript is equal to the o�ensive ta
ti
 s
ript.The �rst wizard uses the following s
ript:if healthper
entage < 50 thendrink("Potion of Healing");drink("Potion of Free A
tion");if not
losestenemy("Fighter").influen
e(freezinginfluen
e) then
ast("Stinking Cloud", defaultenemy);
ast("Chromati
 Orb",
losestenemy("Fighter"));
ast("Hold Person", randomenemy);
ast("Stinking Cloud", randomenemy);
ast("Chromati
 Orb", randomenemy);rangedatta
k(
losestenemy);The se
ond wizard uses the same s
ript, ex
ept that in lines 4 and 6, the referen
esto �Fighter� are repla
ed by �Wizard�. With the `disabling' ta
ti
, the two wizardswill �rst drink a potion of free a
tion, ensuring that they will be una�e
ted by thearea-e�e
t spells they use.1 After that they use all kinds of spells that disable theiropponents, su
h as freezing them in pla
e, or making them nauseous. When thewizards are out of spells, they will use ranged atta
ks.1As Chapter 5 showed, the `disabling' ta
ti
 is rather weak. The main reason for its weaknessis that all four stati
-team members drink a potion in the �rst
ombat round. Sin
e they do notmove from their starting position, they are rather sus
eptible to their opponents atta
king themwith damaging area-e�e
t magi
, similar to the `o�ensive' ta
ti
.

172 CRPG Simulation Game AIA.4.3 The Cursing Ta
ti
For the `
ursing' ta
ti
, the two �ghters use the same s
ript as with the `o�ensive'ta
ti
. The �rst wizard uses the following s
ript:if healthper
entage < 50 thendrink("Potion of Healing");
ast("Hold Person",
losestenemy("Fighter"));
ast("Deafness",
losestenemy("Wizard"));
ast("Charm Person",
losestenemy("Wizard"));
ast("Ray of Enfeeblement",
losestenemy("Fighter"));
ast("Blindness",
losestenemy("Fighter"));if not furthestenemy("Fighter").influen
e(freezinginfluen
e) then
ast("Chromati
 Orb", defaultenemy);if not furthestenemy("Wizard").influen
e(freezinginfluen
e) then
ast("Chromati
 Orb", defaultenemy);
ast("Chromati
 Orb", randomenemy);rangedatta
k(
losestenemy);The se
ond wizard uses the following s
ript:if healthper
entage < 50 thendrink("Potion of Healing");
ast("Monster Summoning I",
entreenemy);
ast("Deafness",
losestenemy("Wizard"));
ast("Charm Person",
losestenemy("Fighter"));
ast("Ray of Enfeeblement",
losestenemy("Fighter"));
ast("Blindness",
losestenemy("Fighter"));if not
losestenemy("Wizard").influen
e(freezinginfluen
e) then
ast("Chromati
 Orb", defaultenemy);if not
losestenemy("Fighter").influen
e(freezinginfluen
e) then
ast("Chromati
 Orb", defaultenemy);
ast("Chromati
 Orb", randomenemy);rangedatta
k(
losestenemy);The `
ursing' ta
ti
 aims at the wizards hampering their opponents in severaldi�erent ways, while the �ghters atta
k them up-
lose. While the two wizards mostlyuse the same spells, they attempt to
hose di�erent targets for their spells. The`
ursing' ta
ti
 relies heavily on
han
e. Espe
ially the use of
harming spells isrisky: they have a 50 per
ent
han
e to fail. However, if they su

eed, they
an bede
isive in determining the out
ome of the �ght. The `
ursing' ta
ti
 is quite strongif
han
e is in favour of the stati
 team, but it is medio
re otherwise. As a result,the `
ursing' ta
ti
 is most sus
eptible to the o

urren
e of extreme outliers.A.4.4 The Defensive Ta
ti
For the `defensive' ta
ti
, the two �ghters use the following s
ript:

A.4 � Stati
 Ta
ti
s 173if roundnumber <= 1 thendrink("Potion of Fire Resistan
e");if healthper
entage < 50 thendrink("Potion of Healing");meleeatta
k(
losestenemy);With the `defensive' ta
ti
, the two �ghters will �rst drink a potion of �re re-sistan
e, ensuring that �re-damaging spells, whi
h are the most
ommon damagingspells at this level, are less e�e
tive when used against them. The remainder of thes
ript is equal to the o�ensive ta
ti
 s
ript.The �rst wizard uses the following s
ript:if healthper
entage < 50 thendrink("Potion of Healing");
ast("Mirror Image");
ast("Monster Summoning I",
entreenemy);
ast("Shield");
ast("Larlo
h's Minor Drain",
losestenemy);rangedatta
k(
losestenemy);The se
ond wizard uses the same s
ript, ex
ept that line 5 is repla
ed by�
ast("Fireball",
losestenemy("Fighter"));�. The `defensive' ta
ti
aims at the stati
 team's wizard using mainly defensive spells. Espe
ially the `MirrorImage' spell is, in the Baldur's Gate implementation,2 quite e�e
tive in keepingthe wizards from su�ering any damage.A.4.5 The Novi
e Ta
ti
For the `novi
e' ta
ti
, the two �ghters use the same s
ript as with the `o�ensive'ta
ti
. The �rst wizard uses the following s
ript:if healthper
entage < 50 thendrink("Potion of Healing");
ast("Hold Person",
losestenemy("Fighter"));
ast("Mirror Image");if not
losestenemy("Fighter").influen
e(freezinginfluen
e) then
ast("Stinking Cloud", defaultenemy);
ast("Magi
 Missile",
losestenemy("Wizard"));
ast(randomoffensive, randomenemy);
ast("Chromati
 Orb", randomenemy);rangedatta
k(
losestenemy);The se
ond wizard uses the following s
ript:2The Baldur's Gate implementation of the `Mirror Image' spell is a
tually quite di�erent fromo�
ial spe
i�
ation (Cook et al., 2000); so mu
h, in fa
t, that the Baldur's Gate implementationmay be
onsidered a programming bug, for the spell is mu
h too powerful for the level at whi
h itis available in the game.

174 CRPG Simulation Game AIif healthper
entage < 50 thendrink("Potion of Healing");
ast("Mirror Image");
ast("Fireball",
losestenemy("Wizard"));
ast(randomoffensive, randomenemy);rangedatta
k(
losestenemy);The `novi
e' ta
ti
 aims at imitating a ta
ti
 that a novi
e player might use. Anovi
e player will probably have dis
overed the power of the `Mirror Image' spelland the `Fireball' spell, but other than that will not know whi
h spells are e�e
tiveand whi
h are not. In the ta
ti
, this is implemented as the wizards using mostlyrandom spells.

Appendix BNeverwinter Nights Game AIIn Chapter 5, experiments with dynami
 s
ripting in the game NeverwinterNights were dis
ussed. This appendix des
ribes Neverwinter Nights and themodule implemented for the experiments (B.1), the stati
 game AI implemented bythe game developers (B.2), and the rulebases used to generate su

essful game AIfor the dynami
 team (B.3).B.1 Neverwinter Nights ModuleNeverwinter Nights is a CRPG, developed by BioWare Corp (lo
ated in Ed-monton, Canada), released in 2002. One of the major gimmi
ks of the game isthe availability of an extensive toolset,
alled `Aurora', that
an be used to develop
ompletely new game modules based on the Neverwinter Nights game engine.Aurora s
ales fairly well from novi
e users without programming experien
e, who
an easily �t together existing game elements, to experien
ed programmers, who
anrebuild the inner workings of the game from s
rat
h. BioWare proved the power ofthe toolset, by
ommer
ially releasing two new Neverwinter Nights modules in2003, whi
h were developed by a third party.The Neverwinter Nights module developed to perform the experiments dis-
ussed in Chapter 5 entails an en
ounter between two teams of similar
omposition.Ea
h team
onsists of four agents, namely a �ghter, a priest, a rogue, and a wizard,all of the eighth experien
e level. The initial position of all agents in the CRPGsimulation is illustrated in Figure B.1. The front row of ea
h team
onsists of the�ghter and the priest, and the ba
k row of the wizard and the rogue. The
ombatarea (the arena in whi
h the agents are lo
ated) has a diameter of one-and-one-halfNeverwinter Nights
ells, or �fty feet.The armament, weaponry, spell sele
tion and inventory of the teams is stati
.Ea
h �ghter
arries a potion of `Cure Serious Wounds' and a potion of `Speed'. Ea
hwizard
arries a potion of `Cure Light Wounds' and a potion of `Speed'. Ea
h priest
arries a potion of `Cure Moderate Wounds', a potion of `Owl's Wisdom', and a

176 Neverwinter Nights Game AI

Figure B.1: The Neverwinter Nights module.potion of `Bless'. Ea
h rogue
arries a potion of `Cure Moderate Wounds', a potionof `Speed', and a potion of `Invisibility'. Wizards have a

ess to the following spells(one
opy of ea
h spell, unless indi
ated otherwise): `Daze' (two
opies), `Ray ofFrost', `Resistan
e', `Burning Hands', `Magi
 Missile' (two
opies), `Negative EnergyRay', `Melf's A
id Arrow' (two
opies), `Summon Creature II', `Fireball', `FlameArrow', `Negative Energy Burst', `Evard's Bla
k Tenta
les', and `Minor Globe ofInvulnerability'. Priests have a

ess to the following spells (one
opy of ea
h spell,unless indi
ated otherwise): `Cure Minor Wounds', `Light' (two
opies), `Resistan
e',`Virtue' (two
opies), `Cure Light Wounds', `Doom', `San
tuary', `Summon CreatureI', `Aid', `Silen
e', `Sound Burst', `Animate Dead', `Cure Serious Wounds', `Prayer',`Cure Criti
al Wounds', `Divine Power'. A detailed des
ription of NeverwinterNights is given by Knowles et al. (2002).I
hose not to in
lude a `sor
erer' in the teams. The reason is that sor
erersare not limited to the spells they memorise, but
an use any of the spells of thelevels they have a

ess to. Therefore, a sor
erer
an always exe
ute the �rst rule ina s
ript that
asts a spell, and will
ontinue
asting the same spell over and overagain until all
asting power is gone. Therefore, for a sor
erer, s
ripting is not ideal.

B.2 � Stati
 Game AI 177As an alternative, a sor
erer
ould be
ontrolled by the rulebase as a whole, wherefor ea
h a
tion a rule is sele
ted at random from the rulebase, with a probability
orresponding to the rules' weights. This system has a
tually been implemented inthe Neverwinter Nights module as an alternative to the s
ripting system, butno experiments have been performed with it yet.B.2 Stati
 Game AIThe Neverwinter Nights game AI is implemented in the Neverwinter Nightss
ripting language
alled `NWS
ript'. NWS
ript is derived from C++. Although itla
ks many of the powerful features of C++,1 it is a fairly powerful language thatallows the implementation of advan
ed
on
epts. NWS
ript is do
umented by Loeand Cro
kett (2002) and by the NWN Lexi
on Group (2004).The Neverwinter Nights game AI is implemented in NWS
ript. This se
tiondis
usses the three di�erent variations of the Neverwinter Nights game AI usedin this thesis, namely (i) the game AI of Neverwinter Nights version 1.29 (B.2.1),(ii) the game AI of Neverwinter Nights version 1.61 (B.2.2), and (iii) the
ursedversion of the game AI of Neverwinter Nights version 1.61 (B.2.2),B.2.1 Game AI 1.29The game AI in
luded in Neverwinter Nights version 1.29
onsists of a straight-forward s
ript, titled DetermineCombatRound() (found in the �le nw_i0_generi
).exe
uted for all agents in the game. Basi
ally, ea
h line of the s
ript
onsists ofa
he
k whether the
lass of the agent is allowed to exe
ute that line (e.g., a line
on
erning magi
 will only be exe
uted for spell
asters), followed by a `talent'. A`talent' is a
all to a fun
tion that may perform an a
tion of a
ertain type. If thetalent indeed generates an a
tion, it returns the value `true' and the s
ript ends.If not, it returns the value `false' and the next line in the s
ript is exe
uted. Forinstan
e, the following is a short
ode snippet from the game AI s
ript:if (nClass == CLASS_TYPE_BARD){ if (TalentHeal())return;if (TalentBardSong())return;}This
ode tests whether the
lass of the agent that exe
utes the s
ript is `bard'. If so,then the fun
tion TalentHeal() is
alled. This fun
tion
he
ks whether the agenthas healing
apabilities, and whether it is useful at this point to perform a healinga
tion. If no healing a
tion is generated, the fun
tion TalentBardSong() is
alled,1For instan
e, other than `string', `integer' and `�oat' there are no variable types, and it is notpossible to
reate new
lasses.

178 Neverwinter Nights Game AIwhi
h
he
ks whether it is useful at this point for the agent to perform a singinga
tion.The game AI uses random numbers to provide variety. For instan
e, at the startof the s
ript a random number de
ides whether the agent will perform an o�ensive(with 75 per
ent probability) or a defensive a
tion (with 25 per
ent probability).The game AI of Neverwinter Nights version 1.29 is not so strong. For in-stan
e, when
omputer-
ontrolled agents are distan
ed further from their enemiesthan they
an
over in one
ombat round, they will use ranged weapons. They willsti
k to using ranged weapons, even if their enemy
loses in. Sin
e usually agentsdo more damage with melee weapons than with ranged weapons, an e�e
tive wayto deal with agents using ranged weapons is to run towards them and atta
k withmelee weapons. This is a
tually one of the ta
ti
s dis
overed by dynami
 s
riptingagainst game AI 1.29.B.2.2 Game AI 1.61The Neverwinter Nights game AI was
ompletely rewritten about a year afterthe �rst release of the game. The game AI for version 1.61 is signi�
antly moree�e
tive than the game AI for version 1.29.Game AI 1.61 starts by assigning integer values to three variables, namednOffense, nCompassion, and nMagi
. These variables represent a per
entage prob-ability to use an o�ensive atta
k, to help
ompanions, and to use magi
, respe
tively.A fourth variable, named nCrazy, is a modi�er that de
ides how big the variety inde
isions is. The variables get typi
al values for the
lass and attributes of the agentfor whi
h the game AI is exe
uted. Then, the values of the variables are used tode
ide whi
h part of the s
ript is exe
uted. For instan
e, the following is a short
ode snippet from the game AI s
ript:if ((nOffense <= 50) && (nMagi
 > 50) && (nCompassion > 50)){ if (TalentHeal())return;if (TalentCureCondition())return;if (TalentUseProte
tionOthers())return;if (TalentEnhan
eOthers())return;}This
ode tests whether the agent is not o�ensive, has a

ess to magi
, and feels
ompassionate. If so, it attempts to sele
t a `talent' that supports its
ompanions.It �rst attempts healing, then
uring (e.g., removing poison), then prote
tive magi
,and �nally general enhan
ements of others.The game AI provides variety by using random values for the four variables,ensuring that the values whi
h the variables re
eive are in a

ordan
e with the
lass

B.3 � Rulebase 179and attributes of the agent that exe
utes the s
ript. The talents themselves havebeen updated to remove some randomness, and to make them more e�e
tive.The game AI ofNeverwinter Nights version 1.61 is
onsiderably stronger thanthe game AI of Neverwinter Nights version 1.29. For instan
e, �ghter agentsthat are able to use strong melee atta
ks, will often atta
k with melee weapons, evenif they start out far from their enemies. They are also more limited in their ability to
hoose less e�e
tive a
tions. For instan
e, while in Neverwinter Nights version1.29 they often wasted time by drinking useless potions, in Neverwinter Nightsversion 1.61 �ghters will never drink potions ex
ept to heal.Interestingly, the redu
ed amount of randomness allows dynami
 s
ripting todesign ta
ti
s that are able to easily defeat game AI 1.61. For instan
e, a dynami
�ghter agent will qui
kly learn to drink a potion of `Speed' at the start of a �ght,allowing it more e�e
tive melee atta
ks than a stati
 �ghter agent that refuses todrink any potion.B.2.3 Cursed Game AICursed game AI is a
tually equal to game AI 1.61. However, there is a di�eren
ein the way the
ombat is handled. With
ursed game AI, after every twelve �ghts,three `
ursed' �ghts are exe
uted. At the start of a
ursed �ght, the average �tnessfor both teams over the last ten �ghts is
al
ulated. If the dynami
 team has ahigher average �tness than the stati
 team, the stati
 team gets
ursed, otherwisethe dynami
 team gets
ursed. The
ursing of a team
onsists of disabling themembers of the team for the �rst 60 se
onds of a �ght. Furthermore, if the stati
team is
ursed, the dynami
 team sele
ts rules from the rulebase using all equalweights.Consequently, when the dynami
 team is winning (i.e., has a higher average�tness), during the
ursed �ghts it will be at a great disadvantage to the stati
team. Therefore, it is likely that a dynami
 team that employs a su

essful rulebaseAI will lose a
ursed �ght despite using good AI. Contrariwise, when the dynami
team is losing (i.e., has a lower average �tness), during the
ursed �ghts it will beat a great advantage to the stati
 team, and thus will probably win despite usingrandom AI.In summary, for 20 per
ent of the �ghts,
ursed game AI attempts to fooldynami
 s
ripting into rating good AI as being inferior, and rating random AI asbeing good.B.3 RulebaseDynami
 s
ripting as implemented in Neverwinter Nights uses one
entral rule-base for all
lasses. For ea
h rule in the rulebase an indi
ation is given for whi
h
lasses the rule is meant. At the start of a test (i.e., a series of �ghts), a separaterulebase is
reated for ea
h
lass by extra
ting those rules from the
entral rulebase
orresponding to the
lass.

180 Neverwinter Nights Game AIThe
entral rulebase is listed below. In front of ea
h rule are the rule number,and, between bra
kets, the priority of the rule. `[0℄' is the lowest priority, while `[4℄'is the highest priority. Instead of
ode, a des
ription of ea
h rule is given, followedby the
lasses for whi
h the rule is appli
able. `F' indi
ates the �ghter
lass, `P'indi
ates the priest
lass, `R' indi
ates the rogue
lass, and `W' indi
ates the wizard
lass. The implementation of the rules is always by
alling a `talent' fun
tion, inmany
ases the same `talent' fun
tions the standard game AI uses.1. [4℄ Heal self when health < 25% (F,P,R,W)2. [4℄ If not yet in
ombat, buff self (F,R)3. [4℄ Cast `Immunity to Death Magi
' (P)4. [4℄ Cast `Freedom' (P)5. [4℄ Cast `Regenerate' (P)6. [4℄ Cast `Mass Haste' or `Haste' (P,W)7. [4℄ Cast `Time Stop' (W)8. [4℄ Heal self when health < 50% (F,P,R,W)9. [4℄ Empty rule (F,P,R,W)10. [3℄ Cast highest magi
-absorption spell (W)11. [3℄ Cast highest summoning spell at nearest enemy (P,W)12. [3℄ Cast highest summoning spell at nearest enemy spell
aster(P,W)13. [3℄ Cast highest area-effe
t damaging spell at nearest enemy(P,W)14. [3℄ Cast highest area-effe
t damaging spell at nearest enemyspell
aster (P,W)15. [3℄ Cast highest damaging-
loud spell at nearest enemy (P,W)16. [3℄ Cast highest damaging-
loud spell at nearest enemyspell
aster (P,W)17. [3℄ Cast highest
ursing-
loud spell at nearest enemy (P,W)18. [3℄ Cast highest
ursing-
loud spell at nearest enemy spell
aster(P,W)19. [3℄ Cast highest area-effe
t
ursing spell at nearest enemy (P,W)20. [3℄ Cast highest area-effe
t
ursing spell at nearest enemyspell
aster (P,W)21. [3℄ Cast highest
one spell at nearest enemy (P,W)22. [3℄ Cast highest
one spell at nearest enemy spell
aster (P,W)23. [3℄ Cast highest damaging spell at nearest enemy (P,W)24. [3℄ Cast highest damaging spell at nearest enemy spell
aster (P,W)25. [3℄ Cast highest
ursing spell at nearest enemy (P,W)26. [3℄ Cast highest
ursing spell at nearest enemy spell
aster (P,W)27. [3℄ Cast highest anti-invisibility spell (P,W)28. [3℄ Cast highest anti-mind-affe
ting spell (P,W)29. [3℄ Cast highest damage-absorption spell (P,W)30. [3℄ Cast highest brea
h spell at nearest enemy (P,W)31. [3℄ Cast highest brea
h spell at nearest enemy spell
aster (P,W)

B.3 � Rulebase 18132. [3℄ Melee-atta
k nearest enemy (F,R)33. [3℄ Melee-atta
k nearest enemy spell
aster (F,R)34. [3℄ Ranged-atta
k nearest enemy (F,R)35. [3℄ Ranged-atta
k nearest enemy spell
aster (F,R)36. [3℄ Melee-atta
k nearest enemy fighter or rogue (F,R)37. [3℄ Ranged-atta
k nearest enemy fighter or rogue (F,R)38. [3℄ Empty rule (F,P,R,W)39. [2℄ Heal a
ompanion (P)40. [2℄ Heal self (F,P,R,W)41. [2℄ Use advan
ed prote
tive magi
 on self (P,W)42. [2℄ Use prote
tive magi
 on self (P,W)43. [2℄ Use prote
tive magi
 on
ompanions (P,W)44. [2℄ Buff self (F,P,R,W)45. [2℄ Buff
ompanions (P,W)46. [2℄ Respond to a melee-atta
ker against self, preferably aspell
aster (P,W)47. [2℄ Respond to a ranged-atta
ker against self, preferably aspell
aster (P,W)48. [2℄ Use offensive magi
 at an enemy that atta
ks from a distan
e,preferably a spell
aster (P,W)49. [2℄ Use summoning magi
 (P,W)50. [2℄ Use offensive magi
 against the nearest spell
aster (P,W)51. [2℄ Melee-atta
k nearest spell
aster (F,P,R,W)52. [2℄ Cure self of a disability (P)53. [2℄ Turn undead (P)54. [2℄ If there are multiple melee-atta
kers against self, respondto them, preferably to nearest spell
aster (P)55. [2℄ Buff self (F,R)56. [2℄ Sneak atta
k (F,R)57. [2℄ Melee-atta
k nearest fighter or rogue (F,R)58. [2℄ Use offensive magi
 against nearest fighter or rogue (P,W)59. [2℄ Empty rule (F,P,R,W)60. [1℄ Respond to a melee-atta
ker against self (P,W)61. [1℄ Respond to a ranged-atta
ker against self (P,W)62. [1℄ Use offensive magi
 at an enemy that atta
ks from a distan
e(P,W)62. [1℄ Use offensive magi
 (P,W)63. [1℄ Melee-atta
k (F,P,R,W)64. [1℄ If there are multiple melee-atta
kers against self, respondto them (P)65. [1℄ Empty rule (F,P,R,W)66. [0℄ Melee-atta
k (F,P,R,W)Rule 2 for
es the agent to use a potion or spe
ial ability that enhan
es its
har-a
teristi
s (whi
h is
alled `bu�ng'). Be
ause of the
ombat
he
k, this will only be

182 Neverwinter Nights Game AIexe
uted at the start of a �ght.Rule 3 to 7 are `bu�ng' rules for priests and wizards. However, the spells usedin these rules are unavailable at the experien
e level of the priest and wizards usedin the experiments. Therefore, these rules are e�e
tively empty rules, for the
lassesthat are allowed to use them.Rule 39 to 58 are extra
ted without
hange from the Neverwinter Nightsgame AI version 1.29.Priests and wizards game-AI s
ripts
ontain ten rules extra
ted from their re-spe
tive rulebases, while the game-AI s
ripts of �ghters and rogues
ontain �ve rules.Rule 9, rule 38, rule 59, and rule 65 are empty rules, that
an be sele
ted to makes
ripts e�e
tively shorter than the number of rules extra
ted from the rulebase. Atthe end of a generated s
ript, a
all is added to the standard Neverwinter Nightsgame AI. Note that, sin
e version 1.29 and version 1.61 of the standard game AI aredi�erent, the e�e
t of this
all is dependent on the Neverwinter Nights versionused.

Appendix CWargus Game AIIn Chapter 6, experiments with dynami
 s
ripting in the game Wargus were dis-
ussed. This appendix1 des
ribes Wargus and the maps used for the experiments(C.1), the s
ripting language used to implement game AI (C.2), the stati
 game AI(C.3), the gene types used to design
hromosomes (C.4), and the rulebases used togenerate su

essful game AI for the dynami
 team (C.5).C.1 WargusWargus is a faithful
lone of the game War
raft II, released by Blizzard in1995 (and released again in 1999). Wargus is built on the open-sour
e game en-gine Stratagus. Stratagus was formerly known as FreeCraft, but for legalreasons the engine has been renamed. Stratagus is implemented in C. Wargusis a game module for Stratagus, implemented in the high-level Lua s
ripting lan-guage (Ierusalims
hy, de Figueiredo, and Celes, 2003).2 In the a
ademi

ommunity,Stratagus is gaining popularity as a resear
h environment for RTS games (Ahaand Molineaux, 2004; Marthi, Latham, Russel, and Guestrin, 2004).The experiments in the Wargus environment, des
ribed in Chapter 6, wereperformed on two di�erent maps; in the tests where the stati
 game AI employedthe `small balan
ed ta
ti
' or the `soldier rush', a small map was used, while in thetests where the stati
 game AI employed the `large balan
ed ta
ti
' or the `knightrush', a large map was used. The two maps are illustrated in Figure C.1. The smallmap, measuring 64 by 64
ells, is displayed left. The large map, measuring 128 by128
ells, is displayed right. The bla
k areas on the maps represent water. Themark `A' indi
ates the starting base of the dynami

ivilisation, and the mark `B'indi
ates the starting base of the stati

ivilisation. Note that on the large map the
ivilisations are far apart, unless they approa
h ea
h other by sea. However, sin
enaval units were not used during the experiments, the sea route was disabled.1The
ontents of this appendix are based on the work by Ponsen (2004)2Lua is not an abbreviation. It is the word for `moon' in Portuguese, and is pronoun
ed `loo-ah'.

184 Wargus Game AI

Figure C.1: The two maps used in the Wargus tests.C.2 S
ripting LanguageThe Wargus game AI, implemented in Lua, is based on the
on
ept of `for
es'. A`for
e' refers to a group of units,
ombined in a numbered army. Ea
h unit in thegame belongs to a for
e, and a unit without a for
e is assigned to a random for
eautomati
ally. Any
ommands assigned to a for
e are assigned to ea
h unit thatbelongs to the for
e. Wargus supports a maximum of ten di�erent for
es. A for
e
an be either o�ensive or defensive. An o�ensive for
e will move towards and intothe area
ontrolled by the opposing
ivilisation, atta
king enemy units and buildingsalong the way. A defensive for
e will stay in the area
ontrolled by its
ivilisation,responding to enemy atta
ks. The for
e numbered zero is always defensive.A game-AI s
ript for Wargus is exe
uted sequentially. Ea
h rule in the s
riptis exe
uted (at most) on
e, starting at the top, and
ontinuing to the bottom, untilthe game ends.C.3 Stati
 Ta
ti
sIn theWargus experiments, the stati

ivilisation uses four di�erent ta
ti
s. Two ofthese ta
ti
s, the `small balan
ed ta
ti
' and the `large balan
ed ta
ti
', use the samegame-AI s
ript, but apply it to a small and a large map, respe
tively. The threegame-AI s
ripts are dis
ussed in the following subse
tions. Subse
tion C.3.1 presents

C.3 � Stati
 Ta
ti
s 185the `balan
ed ta
ti
', Subse
tion C.3.2 presents the `soldier rush', and Subse
tionC.3.3 presents the `knight rush'.C.3.1 Balan
ed Ta
ti
The `balan
ed ta
ti
' is an improved variation of the `land atta
k' game AI, whi
hwas developed by theWargus designers. The (rather long) s
ript starts with build-ing a large group of `workers', whose fun
tion is to gather resour
es and
onstru
tbuildings. The s
ript then de�nes a few for
es, using them for both atta
k anddefense. When the for
es are in pla
e, it
onstru
ts all buildings needed to get tostate 4 (see Figure 6.2), followed by an extension of the existing for
es, followed bythe resear
h of all possible weapon and armour upgrades. At that point, the s
riptis able to build fairly strong for
es. It mixes the
onstru
tion of new buildings withextending its existing for
es and the
reation of new ones, whi
h are used for botho�ense and defense. If the
ivilisation manages to get to state 20 (see Figure 6.2),the s
ript
ontinues to build units, whi
h are assigned an o�ensive or a defensiverole, with a ratio of 2 to 1.C.3.2 Soldier Rush Ta
ti
The `soldier rush' ta
ti
 aims at overwhelming the enemy with simple soldiers at thestart of the game. Sin
e a ta
ti
 that is based on the deployment of low-level unitsworks best on a map where the opposing
ivilisations are
lose to ea
h other, duringthe experiments the `soldier rush' was applied to the small map. The `soldier rush's
ript
ontains the following seventeen steps:1. Indi
ate the need for a `townhall'.2. Set the amount of needed `workers' to 1.3. Set the amount of needed `workers' to 10.4. Indi
ate the need for a `barra
ks'.5. Build for
e 0 as two `soldiers'.6. Build for
e 1 as ten `soldiers'.7. Atta
k with for
e 1.8. Set the amount of needed `workers' to 15.9. Indi
ate the need for a `bla
ksmith'.10. Indi
ate the need for an extra `barra
ks'.11. Resear
h two weapon and two armour upgrades.12. Build for
e 0 as four `soldiers'.13. Build for
e 1 as ten `soldiers'.14. Atta
k with for
e 1.15. Build for
e 1 as five `soldiers'.16. Atta
k with for
e 1.17. Loop ba
k to step 15.

186 Wargus Game AIC.3.3 Knight Rush Ta
ti
The `knight rush' ta
ti
 aims at overwhelming the opposing
ivilisation with ad-van
ed units. The (rather long) s
ript starts similar to the `soldier rush', but insteadof
ontinuously atta
king as happens in the `soldier rush' s
ript after step 12, the`knight rush' doubles the amount of workers and builds a `keep', `stables', a `lum-bermill', and a `
astle', followed by several even more advan
ed buildings. Thenit starts
hurning out huge for
es,
onsisting of high-level units, and uses them toatta
k
ontinuously.C.4 Rule DesignThe evolutionary game AI uses a
hromosome to spe
ify Wargus ta
ti
s. As de-tailed in Subse
tion 6.3.2, a
hromosome
onsists of rule genes. There are fourdi�erent gene types, namely (i) build genes, (ii) resear
h genes, (iii) e
onomy genes,and (iv)
ombat genes.Build genes
onsist of a rule ID `B', followed by one numeri
al parameter, thatindi
ates the type of building to be
onstru
ted. The parameter takes an integervalue in the range [1, 12]. The di�erent parameters for build genes are de�ned asfollows:31 = Townhall 4 = Bla
ksmith 7 = Castle 10 = Temple2 = Barra
ks 5 = Keep 8 = Airport 11 = Guard tower3 = Lumbermill 6 = Stables 9 = Mage tower 12 = Cannon towerResear
h genes
onsist of a rule ID `R', followed by one numeri
al parameter,that indi
ates the type of resear
h to be done. The parameter takes an integer valuein the range [13, 21]. The di�erent parameters for resear
h genes are de�ned asfollows:13 = Missile upgrade 16 = Catapult upgrade 19 = Mage upgrade 314 = Armour upgrade 17 = Mage upgrade 1 20 = Mage upgrade 415 = Weapon upgrade 18 = Mage upgrade 2 21 = Mage upgrade 5E
onomy genes
onsist of a rule ID `E', followed by one numeri
al parameter,that indi
ates the number of workers to be trained. The parameter takes any positiveinteger value.Combat genes
onsist of a rule ID,
onsisting of a `C' and a number, followedby several parameters. The number takes an integer value in the range [1, 20] (
or-responding to the twenty possible states, illustrated in Figure 6.2), and determineswhi
h parameters the gene has. Combat genes de�ne for
es. The �rst of the para-meters is the number of the for
e to be de�ned, as an integer value in the range [0, 9].The last of the parameters is the role of the for
e, namely `o�ensive' or `defensive'.3Note that the `guard tower' and the `
annon tower' do not allow new resear
h or the
reationof new unit types, therefore they do not spawn state transitions, and thus do not o

ur in Figure6.2.

C.5 � Rulebases 187The parameters are unit
ounts, that spe
ify how many units of a spe
i�
 type areassigned to the for
e. For the twenty
ombat genes, the unit
ounts are as follows:C01: soldiersC02: soldiers, shootersC03: soldiersC04: soldiersC05: soldiers, shooters,
atapultsC06: soldiers, shootersC07: soldiersC08: soldiersC09: soldiers, shooters,
atapultsC10: soldiers, shootersC11: soldiers, knightsC12: soldiers, shooters,
atapults, knightsC13: soldiers, shooters,
atapults, knightsC14: soldiers, shooters,
atapults, knights, flyersC15: soldiers, shooters,
atapults, knights, magesC16: soldiers, shooters,
atapults, knightsC17: soldiers, shooters,
atapults, knights, flyers, magesC18: soldiers, shooters,
atapults, knights, flyersC19: soldiers, shooters,
atapults, knights, magesC20: soldiers, shooters,
atapults, knights, flyers, magesFor example, a gene with the value �C09,1,3,7,2,offensive� de�nes for
e 1 asan o�ensive for
e that
onsists of three soldiers, seven shooters, and two
atapults.C.5 RulebasesChapter 6 spe
i�ed two basi
 dynami
-s
ripting rulebases, namely (i) an originalrulebase, used in Se
tion 6.2, and (ii) an improved rulebase, used in Se
tion 6.4.From the basi
 rulebases, separate rulebases for ea
h of the twenty states were
onstru
ted, by extra
ting those rules from the basi
 rulebases that are appli
ablein the
orresponding states. The two basi
 rulebases are presented in this se
tion,in Subse
tions C.5.1 and C.5.2, respe
tively.C.5.1 The Original RulebaseThe original Wargus rulebase, used in Se
tion 6.2,
ontains �fty rules. The rulespe
i�
ations use spe
ial terms to indi
ate for
es of �ve di�erent sizes. A `squadron'is a tiny for
e (
onsisting of 2 units), a `platoon' is a small for
e (
onsisting of 4units), a `battalion' is a medium-sized for
e (
onsisting of 6 units), a `
ompany' is alarge for
e (
onsisting of 8 units), and a `division' is a huge for
e (
onsisting of 12units). The �fty rules are listed below, with a rule number, a rule name, and a shortexplanation of the rule
ontents.

188 Wargus Game AI1. Townhall Constru
t townhall2. Barra
ks Constru
t barra
ks3. Lumbermill Constru
t lumbermill4. Bla
ksmith Constru
t bla
ksmith5. Keep Constru
t keep6. Stables Constru
t stables7. Castle Constru
t
astle8. Airport Constru
t airport9. Magetower Constru
t mage tower10. Temple Constru
t temple11. Guardtower Constru
t guard tower12. Cannontower Constru
t
annon tower13. MissileUpgrade Resear
h better missiles14. ArmorUpgrade Resear
h better armour15. WeaponUpgrade Resear
h better weapons16. CatapultUpgrade Resear
h better
atapults17. MageUpgrade1 Resear
h mage spell 118. MageUpgrade2 Resear
h mage spell 219. MageUpgrade3 Resear
h mage spell 320. MageUpgrade4 Resear
h mage spell 421. MageUpgrade5 Resear
h mage spell 522. LightWorkers Train a few new workers23. NormalWorkers Train a several new workers24. HeavyWorkers Train a many new workers25. ExtremeWorkers Train a very many new workers26. DefenseSquadron Define a defensive squadron27. DefensePlatoon Define a defensive platoon28. DefenseBattalion Define a defensive battalion29. DefenseCompany Define a defensive
ompany30. DefenseDivision Define a defensive division31. OffenseSquadron Define an offensive squadron32. OffensePlatoon Define an offensive platoon33. OffenseBattalion Define an offensive battalion34. OffenseCompany Define an offensive
ompany35. OffenseDivision Define an offensive division36. SoldiersDefense Define a defensive for
e of soldiers37. ShootersDefense Define a defensive for
e of shooters38. CatapultDefense Define a defensive for
e of
atapults39. KnightsDefense Define a defensive for
e of knights40. MagesDefense Define a defensive for
e of mages41. SoldiersOffense Define an offensive for
e of soldiers42. ShootersOffense Define an offensive for
e of shooters43. CatapultOffense Define an offensive for
e of
atapults44. KnightsOffense Define an offensive for
e of knights45. MagesOffense Define an offensive for
e of mages

C.5 � Rulebases 18946. AirDefenseBattalion Define a defensive air battalion47. AirDefenseCompany Define a defensive air
ompany48. AirOffenseBattalion Define an offensive air battalion49. AirOffenseCompany Define an offensive air
ompany50. AirOffenseDivision Define an offensive air divisionAt the end of a game-AI s
ript generated from a rulebase, a
ontinuous loop isadded that initiates
onstant atta
ks.C.5.2 The Improved RulebaseThe improvedWargus rulebase, used in Se
tion 6.4, is based on the original rulebasepresented in Subse
tion C.5.1. The di�eren
es are the following.
• Rule 1 has been repla
ed by a new rule, that de�nes a defensive for
e before
onstru
ting a new `townhall'. The reason is that a new townhall will bequi
kly overrun by enemy units, if it is not defended.
• A new rule has been added, named AntiSoldierRush. The rule exists in therulebase for the state 1. It builds a `bla
ksmith' followed by resear
hing twoweapon upgrades and two armour upgrades. Then, two o�ensive for
es arede�ned, one with four soldiers and one with eight soldiers. This rule is meantas a
ounter-ta
ti
 against the `soldier rush' ta
ti
. When exe
uted, it stemsthe �rst wave of `soldier rush' atta
ks, and prepares a strong o�ense withsimple units.
• A new rule has been added, named AntiKnightRush. The rule exists in therulebases for states 7 to 11. In state 7 and 8, it builds `stables'. In state 9and 10, it builds a `bla
ksmith'. In state 11, it builds a `lumbermill'. In all�ve states, the
onstru
tion of the new building is followed by de�ning twoo�ensive for
es
onsisting of soldiers and knights. The rule aims at qui
klyswit
hing to a state that allows the
onstru
tion of `knights', and exploits thisswit
h by setting up a strong atta
k using `knights'.
• A new rule has been added, named Chromosome. The rule is a literal
opyof a su

essful
hromosome. The rule has implementations for states 3, 4, 8,12, and 14. The rule is strongly defensive in states 3, 4 and 8, and stronglyo�ensive in states 12 and 14.
• The parameters of rules 26 to 35 have been
hanged. Four di�erent for
e sizeshave been in
reased. A `squadron' now
onsists of 4 units, a `platoon' of 6units, a `battalion' of 8 units, and a `
ompany' of 10 units. The size of a`division' remains at 12 units. Furthermore, the numbers of the units typeshave been redistributed, to give more weight to `
atapults'.
• Rule 46 to 50, the `air for
e' rules, have been removed, to make room for thenew rules.

Index3D graphi
s, 113D shooter, 24adaptive game AI, 8�10a

eptan
e, 130, 139bene�ts, 8�9de�nition, 8entertainment, 10future, 134ne
essity, 9�10o�ine, 12, 26, 55, 113�115, 122, 126,127, 130, 131, 137�138, 140, 141online, 12, 27�28, 53, 66, 69, 80,113�115, 122, 127, 130�132, 134,138�142, 144supervised, 26�27aft-atta
k
hange, 62, 65agent, 5, 31, 85
lass, 80, 105opponent, 5role, 68, 70, 74situated, 32, 34agent AI, 67�68AI 1.29, 107, 177�178AI 1.61, 107, 178�179approximate randomisation test, 121Ba
kgammon, 1, 22ba
kpropagation, 18balan
ed ta
ti
, 120�122, 128�130, 185Baldur's Gate, 1, 8, 24, 85, 86, 104, 161behaviourhuman-like, 7inferior, 6boosting, 50�51, 142box-pushing, 34�38, 48, 51, 52

break-even point, 88, 119, 124build manager, 115building point, 119
apture-the-�ag, 67, 70, 72, 74, 75
ase inje
tion, 32
ase-based reasoning, 142
atapult, 127, 128
hallenge, 97, 132
heating, 6Che
kers, 1, 2Chess, 1, 2, 133
hromosome, 16, 69, 70, 74, 75, 123�126
ivilisation, 114
ivilisation manager, 115
larity, see fun
tional requirement,
la-rity
lassi�er system, 16
lipping, see weight
lipping
ombat manager, 115
ommer
ial game, see game
ompeting
onventions, 19, 35, 58
omplexity, 2, 133
omputational requirement, 28�29, 74,113, 138�141, 144e�e
tiveness, 28, 66, 69, 70, 72, 74,84, 96, 121, 139, 143e�
ien
y, 28, 66, 69, 75, 81, 84, 91,107, 121, 138, 139, 143robustness, 28, 66, 69, 75, 84, 139,143speed, 28, 66, 70, 74, 84, 139, 143
omputer requirement, 2
omputer roleplaying game, see CRPG
omputer s
ien
e, 11

192 Index
onsisten
y, see fun
tional requirement,
onsisten
y
onstraint satisfa
tion, see CSR
ontrol loop, 20
reativity, 7, 8, 66, 134
rossovernodes, 35, 57state, 125uniform, 34, 57
rowding, 35, 58, 123CRPG, 8, 24, 85, 104, 114, 116, 131CSR, 51�52
ulling, see top
ulling
ultural s
ien
e, 11
ursed AI, 107, 179DECA, 33�34, 44, 142performan
e, 41, 45di�
ulty s
aling, 10, 12, 97�98, 100, 134,139�141di�
ulty setting, 97diversity, 99, 100domain knowledge, 29, 80, 84, 113, 114,117, 131, 132, 139�141improvement, 114, 127, 129, 130,138doping, 32�33, 40, 45, 49, 50, 137doping e�e
t, 47�51, 142Doping-driven Evolutionary Control Al-gorithm, see DECAdragon, 8drama, 3draw ratio, 133duelling behaviour, 58�61improvement, 60�65duelling task, 54�57dynami

ivilisation, 117dynami
 s
ripting, 80�84, 91, 96, 100�102, 105, 107, 108, 116�117,120, 121, 128, 129, 131, 132,134, 139, 140, 144dynami
 ship, 56dynami
 team, 70, 85easy instan
e, 34, 40, 47�49, 51, 130, 142

de�nition, 32e�e
tiveness, see
omputational require-ment, e�e
tivenesse�
ien
y, see
omputational requirement,e�
ien
yElegan
e, 20�21, 34, 36, 56, 58Elite, 54elitism, 35, 58, 69entertainment, 4, 5, 10, 53, 65, 96, 97,132�134, 142, 143es
aping behaviour, 60evolutionstate-based, 69evolutionary algorithm, 15�16, 34�35,57�58, 89evolutionary
ontrol, 20�21, 31evolutionary game AIo�ine, 53, 76, 122, 138online, 66, 69, 74, 76�77fairness, 133�134feed-forward network, 34, 59, 64general, 18layered, 18�ghter, 85, 105, 106�nite-state ma
hine, 132�tness, 16, 47�48, 58�60, 63�65, 70�72,90, 93, 98, 124agent, 93, 94, 106overall, 117propagation, 69, 94state, 117team, 90, 93, 106�tness fun
tion, 38�39, 42�44, 58, 65, 69,76, 87, 106, 124�125, 132agent, 87�88, 106overall, 119state, 119team, 87, 106�tness propagation, 72�tness-propagation fallba
k, see FPF�tness-stop
riterion, 123�eeing
hange, 62, 65following behaviour, 60food-gathering, 34, 41, 52

Index 193example solution, 45FPF, 94, 95, 100fun
tional requirement, 29, 113, 140, 141
larity, 29, 84, 139
onsisten
y, 29, 75, 84, 92, 96, 107,139s
alability, 29, 84, 102, 108, 139, 140variety, 29, 84, 108, 129, 132, 139gamea
tion, 23�24adventure, 24AI, see game AIanalyti
al, 1, 26, 133art, 4availability, 11bran
hing fa
tor, 133
hallenge, 5, 8, 10
lassi�
ation, 2depth, 133design, see game development, de-signenvironment, 6even, 97, 99, 101goal, 4, 5, 112graphi
s, 4, 5, 7, 23history, 22�23I/O stru
ture, 112multi-player, 142predator-prey, 133program stru
ture, 112puzzle, 24real-time strategy, see RTS gamere�nement, see re�nementroleplaying, see CRPGsimulation, 24state, see statestrategy, 24, 54, 114, 131stru
ture, 112type, 23�25game AI, 4�7adaptive, see adaptive game AI
omplex, 25, 76, 131, 141de�nition, 5doping, 52

evolutionary, see evolutionary gameAIexploit, 6, 8, 10, 27, 60�61, 65, 66,138, 140, 141goal, 5�7, 115inferior, 113, 133, 134operational level, 5, 24, 68, 81resear
h, 25�26RTS, 115s
ript, 9, 66, 76, 80, 81, 84, 86�87,115, 117, 123, 126state of the art, 5, 7stati
, 55�56, 63�65, 76, 84, 89�90,100, 107, 113, 114, 120, 133,140, 141strategi
 level, 5, 24, 81subgoal, 115ta
ti
al level, 5, 24, 68, 81game development, 5, 13, 23, 28, 66,84, 111�112, 115, 130�132, 134,138, 140�141
on
ept, 112, 113design, 108, 112, 113, 129development, 112, 113post-mortem, 112pre-development, 112, 113pre-produ
tion, 112quality assuran
e, 6, 8, 9, 26, 112,113, 129, 130, 138, 140, 141game resear
hanalyti
al, 4goal, 2game-play, 5, 59, 65, 75, 113, 143genea
tivated, 125build, 123, 126, 186
ombat, 123, 125, 126, 186�187e
onomy, 123, 125, 126, 186resear
h, 123, 125, 186generalisation, 41, 42, 45, 47, 49, 65, 130,131, 138generation, 35, 123geneti
 algorithm, 15geneti
 operator, 16, 34�35, 57�58, 70�72, 125�126

194 Indexgeneti
 programming, 16HAL 9000, 10hard instan
e, 34, 40, 44, 45, 47�49, 51,129, 138, 142de�nition, 32problem, 31�51high-�tness penalising, 98�99, 102hill
limbing, 49, 142history fallba
k, 93�96, 107human-like intelligen
e, 11immersion, 132infusion, 32instan
e, 31, 37�38, 42, 49easy, see easy instan
ehard, see hard instan
einterest value, 133island-based evolutionary learning, 51Khepera robot, 36�37knight, 127knight rush, 121, 122, 127, 128, 186LDF, 94, 95learningo�ine, see o�ine learningonline, see online learningsupervised, 26�27unsupervised, see online learninglimited-distan
e fallba
k, see LDFLua, 183, 184ma
hine learning, 11, 12, 15, 108, 137,138, 141o�ine, see o�ine learningonline, see online learningmanually-designed initialisation, 70map, 72, 120, 126, 127, 183Markov De
ision Pro
ess, 66mGA, 33military point, 119, 124motivation, 132multi-agent system, 11, 132multi-obje
tive learning, 50, 142multitask learning, 49�50, 142

mutationbiased, 72biased nodes, 35biased rule, 126biased weight, 34, 57
onne
tivity, 35, 57node existen
e, 35, 57rule repla
ement, 125mutation rate, 89Nasrudin, 143�144neural
ontroller, 34, 37, 41�42, 57, 64,76neural network, 16�18, 66arti�
ial, see neural networkevolutionary, 18�20Neverwinter Nights, 104�105, 108, 131,140, 175�177game AI, 105noble un
ertainty, 133NWS
ript, 177o�ine learning, 12, 26, 108, 138, 139, 141online learning, 6, 12, 27�28, 108, 138,141high performan
e, 29requirement, 28�29outlier, 92, 95, 96, 139over�tting, 18, 65, 129, 130, 138pa
ing, 2Palm
omputer, 54parent, 16, 93penalising, see high-�tness penalisingpenalty balan
ing, 93�95, 107per
eptron, 17Pi
overse, 54�55plant, 20plant
ontrol, 20player skill, 3, 10, 12, 97, 133, 139�141,143playing strength, see player skillplaytesting, see game development, qual-ity assuran
epopulation, 16, 35, 69, 70, 72, 74, 122,123

Index 195pra
ti
e, 75presen
e, 132priest, 105, 106priority, 81problem of hard instan
es, see hard in-stan
e, problemproblem statement, 12, 141psy
hology, 132Quake, 1, 24, 66�70, 72, 74, 75randomisation, 58, 126randomisation test, 121re
urrent network, 18, 34re�nement, 133�134reinfor
ement learning, 21�22, 28, 70, 81reliability, 113, 129, 138, 139, 141, 142repla
ement, 35, 58, 123requirement
omputational, see
omputational re-quirement
onstri
ting, 11fun
tional, see fun
tional require-mentresear
h manager, 115resear
h question, 12�13, 137�141resour
e, 115resour
e manager, 115reward peak, 98, 102robot so

er, 36roboti
s, 11robustness, see
omputational require-ment, robustnessrogue, 105, 106role reversal, 3roleplaying game, see CRPGRTS game, 24, 114�116, 120, 121, 131goal, 115rule, 80, 81, 84, 86, 87, 127�128build, 117
ombat, 117, 128e
onomy, 117empty, 105, 106resear
h, 117rulebase, 80, 84, 86, 93�94, 96, 116, 117

degredation, 93�ghter, 166�167histori
, 93�96improved, 127, 129, 189inferior, 93Neverwinter Nights, 105�106, 179�182original, 117, 187�189superior, 93wizard, 167�170run-stop
riterion, 123rush ta
ti
, 74, 121, 122, 126, 128�130s
alability, see fun
tional requirement,s
alabilitys
ore fun
tion, 119s
ripting language, 86, 104, 162�166sear
h spa
e, 32, 47�49, 75, 76, 139, 142assymetry, 34, 48dimensionality, 47seeding, 32seesaw, 134sele
tion, 16, 35, 58, 69, 122probability, 80, 92tournament, 35, 58, 122self-
orre
tion, 6, 8, 66, 134self-play, 26simulationCRPG, 85�86, 92, 94, 100, 105, 108,131, 161�162Khepera, 36�37reality, 11so
ial s
ien
e, 11soldier rush, 121, 122, 126, 127, 185sor
erer, 176Spa
ewar, 22speed, see
omputational requirement,speedstate, 69, 70, 116, 117, 123, 127mat
hing, 125transition, 70, 71, 117, 123, 125, 126stati

ivilisation, 120stati
 ship, 56stati
 team, 70, 85, 90Stratagus, 183

196 Indexsuper-ta
ti
, 108, 129suspension of disbelief, 133ta
ti
balan
ed, see balan
ed ta
ti

omposite, 89�90
onse
utive, 90, 91, 94, 101, 102
ursing, 89, 172defensive, 89, 172�173disabling, 89, 91, 95, 102, 171knight rush, see knight rushlarge balan
ed, 121novi
e, 100, 102, 103, 173�174o�ensive, 89, 170�171random agent, 89random team, 89rush, see rush ta
ti
small balan
ed, 120soldier rush, see soldier rushstati
, see game AI, stati
task instan
e, see instan
eTD-Gammon, 21TEAM, 66, 69�70, 72, 74, 75team AI, 67�70, 73, 74Quake, 70, 72, 74Team-oriented Evolutionary AdaptabilityMe
hanism, see TEAMtest set, 18, 42, 64, 65top
ulling, 99�100, 102, 103, 107, 140tournament sele
tion, see sele
tion, tour-namenttraining set, 18, 42, 58, 63�65trial, 81turning point, 90�92, 94, 95, 107, 121,129absolute, 72, 74randomisation, 121relative, 72�75unit, 114, 116unpredi
tability, 6varian
e, 75variety, see fun
tional requirement, va-riety

war game, see RTS gameWarCraft, 1, 24, 115, 117, 127, 183Wargus, 115�117, 120, 123, 124, 183weight, 80, 81, 84, 93adjustment, see weight-update fun
-tioninitialisation, 88, 92, 96weight
lipping, 99, 102, 103weight-update fun
tion, 80, 87�89, 98,106, 119win-loss ratio, 63�65, 103wizard, 85, 105, 106

SummaryThe behaviour of agents in
ommer
ial
omputer games is determined by so-
alled`game AI'. When enhan
ed with an adaptive me
hanism, game AI may learn fromits mistakes (`self-
orre
tion'), and may
hange the agents' behaviour in response tounfamiliar situations (`
reativity'). Su
h enhan
ed game AI is
alled `adaptive gameAI'. The fo
us of this thesis is on the design and implementation of ma
hine-learningte
hniques that
an be used to
reate su

essful adaptive game AI.The �rst
hapter provides a motivation for the resear
h, and formulates a prob-lem statement and four resear
h questions. The resear
h is motivated by the fa
tthat game AI in state-of-the-art games la
ks sophisti
ation. While the audiovisualqualities of games have undergone
onsiderable improvements in re
ent years, gameAI has been largely negle
ted by professional game developers. Usually, the suspen-sion of disbelief that modern games attempt to evoke is shattered by the inferiorde
ision-making
apabilities of the
omputer-
ontrolled agents. Adaptive game AIhas the potential to extend the time span that a game is
hallenging for the humanplayer, and to s
ale the level of di�
ulty to the human player's level of skill. Im-plementation of these features may allow adaptive game AI to in�uen
e a game'ssuspension of disbelief positively. So far, a
ademi
 resear
h in adaptive game AI,small as it is, has fo
used on simple game AI.The problem statement derived from the motivation is: to what extent
anma
hine-learning te
hniques be used to in
rease the quality of
omplex game AI?To answer the problem statement, four resear
h questions are formulated: (i) towhat extent
an o�ine ma
hine-learning te
hniques be used to in
rease the e�e
-tiveness of game AI? (ii) to what extent
an online ma
hine-learning te
hniques beused to in
rease the e�e
tiveness of game AI? (iii) to what extent
an ma
hine-learning te
hniques be used to s
ale the di�
ulty level of game AI to meet thehuman player's level of skill? and (iv) how
an adaptive game AI be integrated inthe game-development pro
ess of state-of-the-art games?The se
ond
hapter provides ba
kground information. First, it dis
usses thema
hine-learning te
hniques used in the thesis: evolutionary algorithms, arti�
ialneural networks, evolutionary arti�
ial neural networks, evolutionary
ontrol, andreinfor
ement learning. Then, it dis
usses modern games and state-of-the-art gameAI. Finally, it dis
usses how ma
hine-learning te
hniques
an be applied to gameAI, and gives an overview of related resear
h in this area. The three ways by whi
hma
hine learning
an be applied to game AI are (i) o�ine learning, (ii) supervised

198 Summarylearning (whi
h is ex
luded from this thesis), and (iii) online learning. O�ine adap-tive game AI is game AI that adapts using self-play, typi
ally during the `qualityassuran
e' phase of game development. Online adaptive game AI is game AI thatadapts while the game is being played by a human player. Online adaptive game AImust meet four
omputational and four fun
tional requirements to be appli
able inpra
ti
e. The four
omputational requirements are (i) speed, (ii) e�e
tiveness, (iii)robustness, and (iv) e�
ien
y. The four fun
tional requirements are (i)
larity, (ii)variety, (iii)
onsisten
y, and (iv) s
alability.The third
hapter dis
usses how to evolve su

essful agent
ontrollers in game-likeenvironments. When evolving agent
ontrollers, the evolutionary algorithm tends toseek solutions in the sear
h spa
e in the neighbourhood of solutions to easy probleminstan
es. Consequently, the solutions found tend to work well with easy instan
es,but give inferior results with hard instan
es. This is
alled `the problem of hardinstan
es'. To deal with this problem, a novel evolutionary algorithm is introdu
ed,
alled the Doping-driven Evolutionary Control Algorithm (DECA). DECA `dopes'the initial population of potential solutions with a very good solution to a singlehard instan
e. Through experiments with a box-pushing task and with a food-gathering task, the
hapter empiri
ally shows that DECA evolves agent
ontrollersthat are signi�
antly more e�e
tive than agent
ontrollers evolved with a `regular'evolutionary algorithm.The fourth
hapter explores evolutionary game AI, whi
h is game AI that employsevolutionary algorithms to adapt. The �rst part of the
hapter dis
usses o�ineevolutionary game AI. By an experiment that
ontrols the a
tions of a spa
eshipin a strategy game with a neural network, it shows that o�ine evolutionary gameAI
an be su

essful in dete
ting exploits, and in dis
overing new ta
ti
s. However,the �rst part
on
ludes with the observation that a neural network is not a suitablelearning stru
ture for game AI. The se
ond part dis
usses online evolutionary gameAI. By an experiment that evolves team behaviour in the
apture-the-�ag mode ofthe a
tion game Quake III Arena, it shows that online evolutionary game AI
anbe used to
reate su

essful ta
ti
s. However, it is
on
luded that online evolutionarygame AI is only reasonably e�
ient if the sear
h spa
e is small.The �fth
hapter dis
usses a novel te
hnique for online adaptive game AI
alled`dynami
 s
ripting'. Dynami
 s
ripting maintains game-domain knowledge in theform of rules in an adaptive rulebase. Ea
h rule has a weight atta
hed to it, whi
hdetermines the probability that the asso
iated rule is sele
ted for a game-AI s
ript.The weights adapt automati
ally to re�e
t the su

ess or failure of the game AI asobserved in the game. The
hapter shows that dynami
 s
ripting meets by designall four
omputational requirements, and two of the four fun
tional requirements(namely
larity and variety). The
hapter then explores (i) outlier-redu
tion en-han
ements to dynami
 s
ripting to allow it to meet the requirement of
onsisten
y,and (ii) di�
ulty-s
aling enhan
ements to allow it to meet the requirement of s
al-ability. With `penalty balan
ing' as an outlier-redu
tion enhan
ement, and `top
ulling' as a di�
ulty-s
aling enhan
ement, dynami
 s
ripting meets all four
om-putational and all four fun
tional requirements. Therefore, it is
on
luded thatdynami
 s
ripting
an be applied in pra
ti
e. The
on
lusion is supported by the

Summary 199su

essful implementation of dynami
 s
ripting in the state-of-the-art roleplayinggame Neverwinter Nights.The sixth
hapter dis
usses how adaptive game AI
an be integrated in profes-sional game development. It shows that game developers and publishers will nothesitate to use o�ine adaptive game AI when they believe that they
an bene�tfrom it. However, at present they are still suspi
ious of online adaptive game AI,and need to be
onvin
ed of its reliability to start
onsidering applying it in theirgames. The reliability of online adaptive game AI
an be improved by using o�ineadaptive game AI to dis
over new domain knowledge. A three-step pro
edure toexe
ute this improvement is illustrated by an experiment with the game AI in thereal-time strategy game Wargus. The experiment shows that a dynami
-s
riptingrulebase for Wargus
an be improved by using o�ine evolutionary game AI to de-sign
ounter-ta
ti
s against `super-ta
ti
s', whi
h are quite di�
ult to defeat. The
hapter ends by dis
ussing some generalisation issues, and by providing argumentsthat support the
onje
ture that adaptive game AI is bene�
ial to the entertainmentvalue derived from games.The seventh
hapter returns to the problem statement and resear
h questions.The answers to the resear
h questions are all given above. They provide the follow-ing, four-part answer to the problem statement:
• reliability of online adaptive game AI is guaranteed if it meets the four
om-putational and four fun
tional requirements;
• o�ine ma
hine-learning te
hniques
an be used during the `quality assuran
e'phase of game development to in
rease the e�e
tiveness of game AI by (i)dete
ting exploits, (ii) suggesting new ta
ti
s, and (iii) in
reasing the reliabilityof online adaptive game AI by improving the quality of the domain knowledgeused;
• after a game's release, online ma
hine-learning te
hniques
an (i) improve thee�e
tiveness of game AI, and (ii) s
ale the di�
ulty level of game AI to mat
hthe playing strength of the human player; and
• game developers and publishers will
onsider using online adaptive game AIwhen they are
onvin
ed that it is reliable.The
onsensus amongst game developers and publishers seems to be that adap-tive game AI is something to be avoided. Still, adaptive game AI is an essentialelement for truly believable
hara
ters in
omputer games. This thesis shows thatadaptive game AI
an be su

essful, and be reliable, both in o�ine and online im-plementations. The question is therefore not if, but when adaptive game AI willbe
ome a standard element of games.

SamenvattingHet gedrag van agenten in
ommer
iële
omputer games1 wordt bepaald door zo-geheten game AI. Als game AI wordt uitgebreid met een adaptief me
hanisme, kanze leren van de eigen fouten (zelf-
orre
tie), en het gedrag van de agenten aan-passen aan ongewone situaties (
reativiteit). Een dergelijke game AI wordt adaptivegame AI genoemd. Dit proefs
hrift fo
ust op het ontwerp en de implementatie vanma
hine-learning te
hnieken die su

essvolle adaptive game AI mogelijk maken.Het eerste hoofdstuk geeft een motivatie voor het onderzoek, en formuleert eenprobleemstelling en vier onderzoeksvragen. Het onderzoek wordt sterk gemotiveerddoor een gebrek aan ra�nement bij de game AI van moderne games. Terwijl de au-diovisuele kwaliteiten van games de laatste jaren met sprongen vooruit zijn gegaan,hebben professionele game-ontwikkelaars de game AI grotendeels genegeerd. Game-ontwikkelaars tra
hten bij spelers de beleving op te roepen dat de wereld voorgesteldin een game werkelijkheid is (dit wordt aangeduid met de term `immersie'). Dezebeleving wordt meestal teniet gedaan door het inferieure gedrag van de
omputer-gestuurde agenten. Adaptive game AI heeft de mogelijkheid de tijdsduur te verlen-gen dat een game uitdagend blijft voor een menselijke speler. Daarnaast kan ze demoeilijkheidsgraad van een game automatis
h aanpassen aan de speelsterkte vande menselijke speler. Implementatie van deze eigens
happen kan ervoor zorgen datadaptive game AI het gevoel van immersie bij de menselijke speler versterkt. Totvoor kort was a
ademis
h onderzoek naar adaptive game AI beperkt tot de game AIvoor eenvoudige games.De probleemstelling, dire
t afgeleid uit de bovenges
hetste motivatie, luidt: Inhoeverre is het mogelijk om ma
hine-learning te
hnieken te gebruiken om de kwaliteitvan
omplexe game AI te verhogen? Om deze vraag te beantwoorden, zijn vier on-derzoeksvragen geformuleerd: (i) In hoeverre is het mogelijk om o�ine ma
hine-learning te
hnieken te gebruiken om de e�e
tiviteit van game AI te vergroten? (ii)In hoeverre is het mogelijk om online ma
hine-learning te
hnieken te gebruiken omde e�e
tiviteit van game AI te vergroten? (iii) In hoeverre kunnen ma
hine-learningte
hnieken gebruikt worden om de moeilijkheidsgraad van game AI te s
halen naarde speelsterkte van de menselijke speler? en (iv) Hoe kan adaptive game AI wordengeïntegreerd in het pro
es van game-ontwikkeling van moderne games?1De Nederlandse vertaling van `
omputer games' is `
omputerspelen', maar in het dagelijksgebruik geniet de Engelse benaming de voorkeur. Daarnaast worden
ommer
iële
omputer gamesmeestal aangeduid met de verkorte term `games'. Dit gebruik is in het proefs
hrift overgenomen.

202 SamenvattingHet tweede hoofdstuk geeft enige a
htergrondinformatie bij het onderzoek. Hethoofdstuk begint met een bespreking van de ma
hine-learning te
hnieken die in hetproefs
hrift gebruikt worden: evolutionaire algoritmen, neurale netwerken, evolutio-naire neurale netwerken, evolutionaire besturing, en reïnfor
ement leren. Daarnavolgt een bespreking van moderne games en hun game AI. Tenslotte bespreekt hethoofdstuk de toepassing van ma
hine-learning te
hnieken op game AI, en geeft heteen overzi
ht van aanpalend onderzoek op dit gebied. De drie manieren waaropma
hine learning kan worden toegepast op game AI zijn: (i) o�ine learning, (ii)supervised learning (die niet wordt behandeld in dit proefs
hrift), en (iii) onlinelearning. O�line adaptive game AI is game AI die zi
h aanpast door tegen zi
hzelfte spelen. Gewoonlijk gebeurt dit tijdens de testfase van een game. Online adaptivegame AI is game AI die zi
h aanpast tijdens het spelen van een game door een mens.Om praktis
h toepasbaar te zijn, moet online adaptive game AI voldoen aan vier
omputationele eisen, en aan vier fun
tionele eisen. De vier
omputationele eisen zijn:(i) snelheid, (ii) e�e
tiviteit, (iii) robuustheid, en (iv) e�
iëntie. De vier fun
tioneleeisen zijn: (i) helderheid, (ii) variëteit, (iii)
onsistentie, en (iv) s
haalbaarheid.Het derde hoofdstuk bespreekt hoe su

esvolle agent-besturing geëvolueerd kanworden in een spel-a
htige omgeving. Wanneer agentbesturing geëvolueerd wordt,zoekt een evolutionair algoritme over het algemeen in de zoekruimte een oplossingin de buurt van oplossingen voor een eenvoudige probleem-instantie. Het gevolg isdat de uiteindelijke oplossing vaak goed werkt op eenvoudige instanties, maar sle
htop moeilijke instanties. Dit heet `het probleem van de moeilijke instanties'. Om ditprobleem op te lossen, introdu
eert het hoofdstuk een nieuw evolutionair algoritmedat het Doping-driven Evolutionary Control Algorithm (DECA) wordt genoemd.DECA voorziet een initiële populatie van mogelijke oplossingen van een zeer goedeoplossing voor een moeilijke instantie. Met behulp van twee experimenten met iedereen vers
hillende taak (namelijk het verplaatsen van een doos door een robot, en hetvergaren van voedsel door een agent) toont het hoofdstuk aan dat DECA agentbestu-ringen evolueert die signi�
ant e�e
tiever zijn dan agentbesturingen die geëvolueerdzijn met reguliere evolutionaire algoritmen.Het vierde hoofdstuk handelt over evolutionaire game AI. Dit is game AI diezi
h aanpast middels evolutionaire algoritmen. Het eerste deel van het hoofdstukbespreekt o�ine evolutionaire game AI. Met behulp van een experiment waarbijeen neuraal netwerk wordt geëvolueerd voor de aansturing van een ruimtes
hip ineen strategis
h spel, wordt aangetoond dat o�ine evolutionaire game AI su

esvolkan zijn in het ontdekken van exploiteerbare zwakheden, en van nieuwe ta
tieken.Niettemin wordt ge
on
ludeerd dat neurale netwerken niet bijster ges
hikt zijn voorhet leren van game AI. Het tweede deel bespreekt online evolutionaire game AI.Met behulp van een experiment, waarbij groepsgedrag wordt geëvolueerd voor hetvlagveroveren in het a
tie-spelQuake III Arena, wordt aangetoond dat online evo-lutionaire game AI gebruikt kan worden voor het genereren van su

esvolle ta
tieken.Er wordt e
hter ge
on
ludeerd dat online evolutionaire game AI sle
hts redelijk ef-�
iënt is indien de zoekruimte klein is.Het vijfde hoofdstuk bespreekt een nieuwe te
hniek voor online adaptive gameAI, dynami
 s
ripting genaamd. Dynami
 s
ripting onderhoudt domeinkennis over

Samenvatting 203een game in de vorm van regels in een adaptieve kennisbank. Elke regel is voorzienvan een gewi
ht, dat de kans aangeeft dat de geasso
ieerde regel gebruikt wordt ineen game-AI s
ript. De gewi
hten passen zi
h automatis
h aan naar aanleiding vanhet geobserveerde su

es of falen van de game AI tijdens het spelen. Het hoofdstuktoont aan dat dynami
 s
ripting voldoet aan alle vier de
omputationele eisen, enaan twee van de vier fun
tionele eisen (namelijk helderheid en variëteit). Daarnawordt in het hoofdstuk onderzoek gedaan naar maatregelen ten behoeve van debevordering van
onsistentie, en van de s
haalbaarheid. Met penalty balan
ing als
onsistentie-bevorderende maatregel, en top
ulling als s
haalbaarheids-maatregel,voldoet dynami
 s
ripting aan alle vier de
omputationele, en alle vier de fun
tioneleeisen. Er wordt daarom ge
on
ludeerd dat dynami
 s
ripting in de praktijk kanworden toegepast. Deze
on
lusie wordt gestaafd door de su

esvolle implementatievan dynami
 s
ripting in het moderne
omputer roleplaying game NeverwinterNights.Het zesde hoofdstuk bespreekt hoe adaptive game AI kan worden geïntegreerdin de praktijk van game-ontwikkeling. Het hoofdstuk laat zien dat ontwikkelaars enuitgevers van games niet zullen aarzelen om o�ine adaptive game AI toe te passenwanneer ze denken daarmee winst te kunnen behalen. Op dit moment staan ze e
hterwantrouwend tegenover online adaptive game AI. Ze zullen overtuigd moeten wordenvan de betrouwbaarheid van online adaptive game AI, voordat ze zullen overwegenhet toe te passen in hun games. De betrouwbaarheid van online adaptive game AIkan worden vergroot door o�ine adaptive game AI in te zetten voor het ontdekkenvan nieuwe domeinkennis. Een drie-stappen pro
edure die dit bewerkstelligt, wordtgeïllustreerd aan de hand van een experiment met adaptive game AI in het real-time strategy game Wargus. Het experiment toont aan dat een dynami
-s
riptingkennisbank voor Wargus verbeterd kan worden door o�ine evolutionaire game AIte gebruiken voor de weerlegging van `super-ta
tieken', die sle
hts met veel moeiteverslagen kunnen worden. Het hoofdstuk sluit af met een dis
ussie over generalisatie-mogelijkheden, en het geven van een argument waarom adaptive game AI positiefkan bijdragen aan de entertainment-waarde die mensen ervaren bij het spelen vaneen game.Het zevende hoofdstuk keert terug naar de probleemstelling en onderzoeksvragen.De antwoorden op de onderzoeksvragen zijn hierboven gegeven. Zij leiden dire
t tothet volgende antwoord op de probleemstelling, dat bestaat uit vier delen:
• De betrouwbaarheid van online adaptive game AI is gegarandeerd als de gameAI voldoet aan de vier
omputationele eisen en aan de vier fun
tionele eisen.
• O�ine ma
hine-learning te
hnieken kunnen worden gebruikt tijdens de test-fase van een game, om de e�e
tiviteit van de game AI te vergroten door (i)zwakheden bloot te leggen, (ii) nieuwe ta
tieken te suggereren, en (iii) de be-trouwbaarheid van online adaptive game AI te vergroten door de kwaliteit vande domeinkennis te verbeteren.
• Nadat een game op de markt is gekomen, kunnen online ma
hine-learningte
hnieken gebruikt worden om (i) de e�e
tiviteit van game AI te vergroten,

204 Samenvattingen (ii) de moeilijkheidsgraad van de game AI te s
halen naar de speelsterktevan de menselijke speler.
• Game-ontwikkelaars en uitgevers zullen het gebruik van online adaptive gameAI in overweging willen nemen als ze overtuigd zijn van de betrouwbaarheidervan.Onder game-ontwikkelaars en uitgevers lijkt de
onsensus te zijn dat adaptivegame AI vermeden dient te worden. To
h is adaptive game AI een essentieel elementvoor de
reatie van werkelijk geloofwaardige personages in een game. Dit proefs
hrifttoont aan dat adaptive game AI su

esvol en betrouwbaar kan zijn, in zowel o�ineals online implementaties. De vraag is daarom niet zozeer of, maar wanneer adaptivegame AI een standaard element in games zal zijn.

Curri
ulum VitaeMen do not quit playing be
ause they grow old;they grow old be
ause they quit playing.� Justi
e Oliver Wendell Holmes (1809�1894).Pieter Spron
k was born in Maastri
ht, on June 6, 1963. He attended se
ondarys
hool at the S
holengemeens
hap Jeanne d'Ar
 in Maastri
ht, where he re
eived hisGymnasium diploma in 1981. He studied mathemati
s at the Utre
ht University, butleft without graduating. He be
ame a programmer with Coss Holland, Nieuwegeinin 1987. In 1990 he started a part-time study of
omputer s
ien
e at the DelftUniversity of Te
hnology, while keeping a full-time day-job. In 1993 he swit
hedjobs, and be
ame a designer and programmer of ele
troni
-banking systems at CreditLyonnais Bank, Rotterdam. He re
eived his master's degree
um laude in 1996, witha thesis on the use of geneti
 algorithms to design neural
ontrollers. In 1997 hejoined the Netherlands Organisation for Applied S
ienti�
 Resear
h (TNO), Delft,where he designed and built knowledge-based systems. In pursuit of a Ph.D., in 2001he was appointed at the Institute for Knowledge and Agent Te
hnology (IKAT) ofthe Universiteit Maastri
ht. There he investigates adaptive behaviour in games, andis involved with
ontra
t resear
h. He lives in Maastri
ht with his wife, Muriël, andtheir daughter, Myrthe. His homepage
an be found at www.spron
k.net.Pieter admits to be something of a gaming geek. His favourite
omputer gamesin
lude M.U.L.E. (1983), Elite (1985), Quest of the Avatar (1985), MartianDreams (1991), The Fate of Atlantis (1992), The Stygian Abyss (1992),System Sho
k (1994), Master of Magi
 (1995), The Curse of Monkey Is-land (1997), Grim Fandango (1998), Planes
ape: Torment (1999), Shadowsof Amn (2000), Deus Ex (2000), The Metal Age (2000), Morrowind (2002),Knights of the Old Republi
 (2003), and Deadly Shadows (2004). He is�er
ely proud of the fa
t that, in his early twenties, he solved the original Zorktrilogy unassisted. It took him almost two years.

SIKS Dissertation Series19981 Johan van den Akker (CWI1) DEGAS � An A
tive, Temporal Database ofAutonomous Obje
ts2 Floris Wiesman (UM) Information Retrieval by Graphi
ally Browsing Meta-Information3 Ans Steuten (TUD) A Contribution to the Linguisti
 Analysis of Business Con-versations within the Language/A
tion Perspe
tive4 Dennis Breuker (UM) Memory versus Sear
h in Games5 Eduard W. Oskamp (RUL) Computerondersteuning bij Straftoemeting19991 Mark Sloof (VU) Physiology of Quality Change Modelling; Automated Mod-elling of Quality Change of Agri
ultural Produ
ts2 Rob Potharst (EUR) Classi�
ation using De
ision Trees and Neural Nets3 Don Beal (UM) The Nature of Minimax Sear
h4 Ja
ques Penders (UM) The Pra
ti
al Art of Moving Physi
al Obje
ts5 Aldo de Moor (KUB) Empowering Communities: A Method for the LegitimateUser-Driven Spe
i�
ation of Network Information Systems6 Niek J.E. Wijngaards (VU) Re-Design of Compositional Systems7 David Spelt (UT) Veri�
ation Support for Obje
t Database Design8 Ja
ques H.J. Lenting (UM) Informed Gambling: Con
eption and Analysis of aMulti-Agent Me
hanism for Dis
rete Reallo
ation20001 Frank Niessink (VU) Perspe
tives on Improving Software Maintenan
e1Abbreviations: SIKS � Dut
h Resear
h S
hool for Information and Knowledge Systems; CWI� Centrum voor Wiskunde en Informati
a, Amsterdam; EUR � Erasmus Universiteit, Rotterdam;KUB � Katholieke Universiteit Brabant, Tilburg; KUN � Katholieke Universiteit Nijmegen; RUL� Rijksuniversiteit Leiden; RUN � Radboud Universiteit Nijmegen; TUD � Te
hnis
he UniversiteitDelft; TU/e � Te
hnis
he Universiteit Eindhoven; UL � Universiteit Leiden; UM � UniversiteitMaastri
ht; UT � Universiteit Twente, Ens
hede; UU � Universiteit Utre
ht; UvA � Universiteitvan Amsterdam; UvT � Universiteit van Tilburg; VU � Vrije Universiteit, Amsterdam.

208 SIKS Dissertation Series2 Koen Holtman (TU/e) Prototyping of CMS Storage Management3 Carolien M.T. Metselaar (UvA) So
iaal-organisatoris
he Gevolgen van Kennis-te
hnologie; een Pro
esbenadering en A
torperspe
tief4 Geert de Haan (VU) ETAG, A Formal Model of Competen
e Knowledge forUser Interfa
e Design5 Ruud van der Pol (UM) Knowledge-Based Query Formulation in InformationRetrieval6 Rogier van Eijk (UU) Programming Languages for Agent Communi
ation7 Niels Peek (UU) De
ision-Theoreti
 Planning of Clini
al Patient Management8 Veerle Coupé (EUR) Sensitivity Analyis of De
ision-Theoreti
 Networks9 Florian Waas (CWI) Prin
iples of Probabilisti
 Query Optimization10 Niels Nes (CWI) Image Database Management System Design Considerations,Algorithms and Ar
hite
ture11 Jonas Karlsson (CWI) S
alable Distributed Data Stru
tures for Database Man-agement20011 Silja Renooij (UU) Qualitative Approa
hes to Quantifying Probabilisti
 Net-works2 Koen Hindriks (UU) Agent Programming Languages: Programming with Men-tal Models3 Maarten van Someren (UvA) Learning as Problem Solving4 Evgueni Smirnov (UM) Conjun
tive and Disjun
tive Version Spa
es withInstan
e-Based Boundary Sets5 Ja

o van Ossenbruggen (VU) Pro
essing Stru
tured Hypermedia: A Matter ofStyle6 Martijn van Welie (VU) Task-Based User Interfa
e Design7 Bastiaan S
honhage (VU) Diva: Ar
hite
tural Perspe
tives on Information Vi-sualization8 Pas
al van E
k (VU) A Compositional Semanti
 Stru
ture for Multi-Agent Sys-tems Dynami
s9 Pieter Jan 't Hoen (RUL) Towards Distributed Development of Large Obje
t-Oriented Models, Views of Pa
kages as Classes10 Maarten Sierhuis (UvA) Modeling and Simulating Work Pra
ti
e BRAHMS: aMultiagent Modeling and Simulation Language for Work Pra
ti
e Analysis andDesign11 Tom M. van Engers (VU) Knowledge Management: The Role of Mental Modelsin Business Systems Design20021 Ni
o Lassing (VU) Ar
hite
ture-Level Modi�ability Analysis

SIKS Dissertation Series 2092 Roelof van Zwol (UT) Modelling and Sear
hing Web-based Do
ument Colle
-tions3 Henk Ernst Blok (UT) Database Optimization Aspe
ts for Information Re-trieval4 Juan Roberto Castelo Valdueza (UU) The Dis
rete A
y
li
 Digraph MarkovModel in Data Mining5 Radu Serban (VU) The Private Cyberspa
e Modeling Ele
troni
 EnvironmentsInhabited by Priva
y-Con
erned Agents6 Laurens Mommers (UL) Applied Legal Epistemology; Building a Knowledge-based Ontology of the Legal Domain7 Peter Bon
z (CWI) Monet: A Next-Generation DBMS Kernel For Query-Intensive Appli
ations8 Jaap Gordijn (VU) Value Based Requirements Engineering: Exploring Innova-tive E-Commer
e Ideas9 Willem-Jan van den Heuvel (KUB) Integrating Modern Business Appli
ationswith Obje
ti�ed Lega
y Systems10 Brian Sheppard (UM) Towards Perfe
t Play of S
rabble11 Wouter C.A. Wijngaards (VU) Agent Based Modelling of Dynami
s: Biologi
aland Organisational Appli
ations12 Albre
ht S
hmidt (UvA) Pro
essing XML in Database Systems13 Hongjing Wu (TU/e) A Referen
e Ar
hite
ture for Adaptive Hypermedia Ap-pli
ations14 Wieke de Vries (UU) Agent Intera
tion: Abstra
t Approa
hes to Modelling,Programming and Verifying Multi-Agent Systems15 Rik Eshuis (UT) Semanti
s and Veri�
ation of UML A
tivity Diagrams forWork�ow Modelling16 Pieter van Langen (VU) The Anatomy of Design: Foundations, Models andAppli
ations17 Stefan Manegold (UvA) Understanding, Modeling, and Improving Main-Memory Database Performan
e20031 Heiner Stu
kens
hmidt (VU) Ontology-Based Information Sharing in WeaklyStru
tured Environments2 Jan Broersen (VU)Modal A
tion Logi
s for Reasoning About Rea
tive Systems3 Martijn S
huemie (TUD) Human-Computer Intera
tion and Presen
e in VirtualReality Exposure Therapy4 Petkovi
 (UT) Content-Based Video Retrieval Supported by Database Te
hnol-ogy5 Jos Lehmann (UvA) Causation in Arti�
ial Intelligen
e and Law � A ModellingApproa
h

210 SIKS Dissertation Series6 Boris van S
hooten (UT) Development and Spe
i�
ation of Virtual Environ-ments7 Ma
hiel Jansen (UvA) Formal Explorations of Knowledge Intensive Tasks8 Yong-Ping Ran (UM) Repair-Based S
heduling9 Rens Kortmann (UM) The Resolution of Visually Guided Behaviour10 Andreas Lin
ke (UT) Ele
troni
 Business Negotiation: Some ExperimentalStudies on the Intera
tion between Medium, Innovation Context and Cult11 Simon Keizer (UT) Reasoning under Un
ertainty in Natural Language Dialogueusing Bayesian Networks12 Roeland Ordelman (UT) Dut
h Spee
h Re
ognition in Multimedia InformationRetrieval13 Jeroen Donkers (UM) Nos
e Hostem � Sear
hing with Opponent Models14 Stijn Hoppenbrouwers (KUN) Freezing Language: Con
eptualisation Pro
essesa
ross ICT-Supported Organisations15 Mathijs de Weerdt (TUD) Plan Merging in Multi-Agent Systems16 Menzo Windhouwer (CWI) Feature Grammar Systems - In
remental Mainte-nan
e of Indexes to Digital Media Warehouse17 David Jansen (UT) Extensions of State
harts with Probability, Time, and Sto-
hasti
 Timing18 Levente Ko
sis (UM) Learning Sear
h De
isions20041 Virginia Dignum (UU) A Model for Organizational Intera
tion: Based onAgents, Founded in Logi
2 Lai Xu (UvT) Monitoring Multi-party Contra
ts for E-business3 Perry Groot (VU) A Theoreti
al and Empiri
al Analysis of Approximation inSymboli
 Problem Solving4 Chris van Aart (UvA) Organizational Prin
iples for Multi-Agent Ar
hite
tures5 Viara Popova (EUR) Knowledge Dis
overy and Monotoni
ity6 Bart-Jan Hommes (TUD) The Evaluation of Business Pro
ess Modeling Te
h-niques7 Elise Boltjes (UM) VoorbeeldIG Onderwijs; Voorbeeldgestuurd Onderwijs, eenOpstap naar Abstra
t Denken, vooral voor Meisjes8 Joop Verbeek (UM) Politie en de Nieuwe Internationale Informatiemarkt, Gren-sregionale Politiële Gegevensuitwisseling en Digitale Expertise9 Martin Caminada (VU) For the Sake of the Argument; Explorations intoArgument-based Reasoning10 Suzanne Kabel (UvA) Knowledge-ri
h Indexing of Learning-obje
ts11 Mi
hel Klein (VU) Change Management for Distributed Ontologies12 The Duy Bui (UT) Creating Emotions and Fa
ial Expressions for EmbodiedAgents

SIKS Dissertation Series 21113 Woj
ie
h Jamroga (UT) Using Multiple Models of Reality: On Agents whoKnow how to Play14 Paul Harrenstein (UU) Logi
 in Con�i
t. Logi
al Explorations in Strategi
Equilibrium15 Arno Knobbe (UU) Multi-Relational Data Mining16 Federi
o Divina (VU) Hybrid Geneti
 Relational Sear
h for Indu
tive Learning17 Mark Winands (UM) Informed Sear
h in Complex Games18 Vania Bessa Ma
hado (UvA) Supporting the Constru
tion of QualitativeKnowledge Models19 Thijs Westerveld (UT) Using Generative Probabilisti
 Models for MultimediaRetrieval20 Madelon Evers (Nyenrode) Learning from Design: Fa
ilitating Multidis
iplinaryDesign Teams20051 Floor Verdenius (UvA) Methodologi
al Aspe
ts of Designing Indu
tion-BasedAppli
ations2 Erik van der Werf (UM) AI Te
hniques for the Game of Go3 Fran
 Grootjen (RUN) A Pragmati
 Approa
h to the Con
eptualisation of Lan-guage4 Nirvana Meratnia (UT) Towards Database Support for Moving Obje
t Data5 Gabriel Infante-Lopez (UvA) Two-Level Probabilisti
 Grammars for NaturalLanguage Parsing6 Pieter Spron
k (UM) Adaptive Game AI

