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Preface

Computer Scrabble programs have achieved a level of performance that exceeds that of
the strongest human players. MAVEN was the first program to demonstrate this against
human opposition. Scrabble is a game of imperfect information with a large branching
factor. The techniques successfully applied in two-player games such as chess do not
work here. MAVEN combines a selective move generator, simulations of likely game
scenarios, and the B* algorithm to produce a Scrabble-playing program of super-human
skill.

I became involved in computer Scrabble because of a personal fascination with creating
high-performance game-playing engines. That fascination alone sustained the project for
many years., Truly, I never conceived of this work becoming a doctoral dissertation.
Credit for believing that this work was worthy must go to Professor Jaap van den Herik
and Professor Jonathan Schaeffer. [ was content to continue my career in professional
programming, without a care for publishing anything about MAveN. However, Jaap and
Jonathan would have none of that. Jonathan firmly stated that MAVEN merited a serious
academic paper. While I did not mind writing a paper, | had no patience for finding ¢
publisher. Well, Jonathan went out and found a publisher, so 1 had to write a paper. Jaap
then said that an expanded version would make a fine dissertation, and would [ mind
writing one? Jaap removed all obstacles and objections to completing this thesis, until 1
had no alternative.

I am grateful to my family, and especially to my wife, who supports my efforts
unfailingly.

I thank the many Scrabble experts who contributed to my understanding of the domain. 1
must single out Joel Wapnick, Joe Edley, and Nick Ballard, who have taught me a great
deal. I have an enduring admiration for your artistry and an enduring affection for you
personally.

I thank Hasbro, Inc., for their support of Scrabble in general and MAVEN in particular.






Chapter 1 — Introduction

Scrabble is a board game in which players build words with tiles containing letters of
varying point values. Players from across the world enjoy Scrabble as a pleasant family
board game for two to four players. In this thesis, we consider only its tournament
variant, which is a two-player game. The game's rules are in Appendix A,

1.1 Why Scrabble?

Scrabble is a good platform for testing Artificial Intelligence (Al) techniques. The game
has an active competitive tournament scene, with numerous national and international
Scrabble associations and a biennial world championship for English-language players.
There are many levels of skill. Creating a program that simply plays legal moves i$ a
significant challenge. Once the program plays legal moves, you find that it is too weak to
challenge top humans, and nothing obvious will address the shortcomings.

Even though Scrabble is one of the most popular games in the world, with millions of
game sets sold annually, little has been published in the computer literature about the
game. In part, this is because the game-Al tradition focuses on deterministic games.
Chess, checkers, reversi, awari, hex, go, renju, amazons, Pente, etc., dominate the game
AT literature. Some of these games did not even exist when serious investigations into
Scrabble began in the mid-1970s, vet the literature still emphasizes deterministic games.
In a small way, this thesis will redress the balance by publishing investigations into a
game having a significant random component.

Similarly, the game-AT literature focuses on perfect-information games. The games listed
above are all perfect-information games. Additionally, there is a computer literature for
backgammon, which is a stochastic game of perfect information. We are starting to see
some literature about games with private information, like poker and bridge, and this
thesis will add to that trend.

1.2 Some Characteristics of Scrabble
Scrabble has a large state space. The state space is much bigger than chess, and is even
bigger than Go. The number of states is perhaps 2'™". The number of legal moves is

large, too. An average game position has about 800 moves, and positions can have over
8000 moves.

However, these imposing parameters of the state space are perhaps misleading, since
expert Scrabble play is not predominantly concerned with exhaustively searching the
state space. In part, this is because Scrabble has a random component, as the players draw
tiles blindly. The random component gives the state space a high variance, so that the
way that a move turns out depends on many imponderable factors. Because you cannol
calculate the outcome of a move in most cases, in Scrabble evaluation takes precedence
over search,

Move generation in Scrabble is a challenging task. To figure a rough order of magnitude
for the task, on each turn you can place any subset of your 7 tiles in any order either
horizontally or vertically starting at any of 225 squares of the board. A rough order of
magnitude calculation shows 2 * 225 * 7! = 2,268,000 polential words to check for



legality. Checking a move for legality involves looking up all words created or’modjﬁed
by a pl’ay in a dictionary containing about 150,000 words of from two through 15 letters.

On a modern computer you could use brute-force calculations for t]his‘ computation, bm
even with today's computers the program would be too 5?0w for certain purposes. With
the computers of the mid-1970s, when serious investigation of} computer Strab‘blg first
began, a brute-force approach was impossible. It was essential to dls_cower ways to
systematically prune the decision process to generate all legal moves with a minimum

number of blind alleys.

Move generation is, at Jeast, feasible for computers. Human Qpponqnts, in contrast, hay’e
great difficulty with move generation. If you compare Scrabble with chess, you would
find that human Scrabble champions have a best-play percentage of about 50%, wherneas
chess champions are close to 99%.' Simply finding legal moves is a difficult cognitive
challenge in Scrabble, whereas it is not a challenge in chess.

Additionally, Scrabble poses challenges beyond move generation. For example, consider
a computer program that selects the highest scoring move on each twm. A human master
would brush aside such a program without difficulty, winning about 75% of all games,
with a spread of about 50 points per game.

Therefore, move evaluation is a crucial skill. Moreover, computer programs might be at a
disadvantage, since a human’s ability to integrate a wealth of experience should be
difficult to reproduce in software.

Nevertheless, there is reason for hope that programs can master move evaluation. For one
thing, human experts ofien do not agree on the merits of moves. Of course, some moves
are clearly best and every player (even computer programs) would agree. However, we
find that when a decision is close, there are bound fo be human experts on all sides.

This suggests that even if human experts had perfect move generation, there would still
be differences in skill attributable to evaluation.

1.3 Problem Statement

Is it possible to build a computer program that outplays all human Scrabble experts?
Taking the extreme case, suppose that the best human expert specifically prepared for a
maich by playing training games against the program, so that there is no possibility that
the human will lose because he is unfamiliar with the program. We desire that the
program nevertheless retain an edge.

MAVEN is a computer program designed to answer that question. At the time of MAVEN’s
debut, it was laughable to even ask the question. Human experts were familiar with two

i F('ar. nstance, Karpov and Kasparov have played 143 games in championship marches, with 40
dcc}smft} games. Af roughly 80 moves per game, the rate of decisive (i.e., msi‘ng) moves is about
0.0035. This caleulation is vulnerable to the possibility that the game-theoretic value of some
games may have changed multiple times, with compensating errors lFCSUHil‘]Q in a draw. The réﬁdér
may Juhdge‘ for himself the impact of this factor. Regardless, it is c:learvﬂmt the a'ct cﬁ‘ ‘n“:cwe
generation 1s not an impediment to chess players. ‘ |
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specific computer programs. Neither one played a solid game. The programs had several
basic flaws.

1) They were slow, and could not complete a game in tournament time.
2) They did not have the full list of legal words.
3y They applied weak strategies.

Thus, the first question leads to three others. Can a computer program compete in real
time? Can a program play using the full list of legal moves? Can a program select moves
using a strafegy having clear benefits over the highest-point strategy?

Even if the program passed these hurdles, there remain others. Human masters can adapt
their play to trick programs. For example, there are specific techniques that humans apply
when they need to come back from a deficit. In addition, they have a set of techniques
that they apply to hold onto a lead. To take an example from a different domain, early
expert backgammon programs were vulnerable against players that deliberately adopted
specific tactics that created positions that the programs bandled badly [1]. The same is
true in chess; it is well-known that David Levy adopted successful anti-computer tactics
in his famous matches against computers [2].

4) Can programs play correctly when holding a lead?
5) Can programs play correctly when trying to come from behind?
6) Can programs succeed despite anti-computer strategies?

Going further, is it possible to build a computer program that plays perfectly? Given that
Scrabble is a game of imperfect information, is it even possible to define perfection? The
ideal strategy implied by classical game theory would be a mixed strategy, where even if
the payoff matrix could be calculated (which it cannot) the matrix would be so large that
it is unclear whether the normal methods [3] could find the solution in & reasonable time,

Suppose that we relax the requirements a little, and ask about “practical” perfection. Is it
possible to build a program that always chooses the move that maximizes winning
percentage, given reasonable limitations on the opponent’s ability to infer what tiles we
keep after our move? You can use an “adversarial” test to measure practical perfection. IT
you declare that your program played a perfect game, and no one can prove io an
objective third party that you are wrong, then your program is practically perfect.

If we back off practical perfection a little, then we can wonder about “asymptotic”
practical perfection. Your program has this property if it will achieve practical perfection
running on computers that are sufficiently fast. Microcomputer chess programs, which
attained this property 25 years ago, demonstrate the value of achieving asympiotic
practical perfection. Now, thanks in part to a 4000-fold increase in CPU power, these
programs are knocking on the Champion’s door [4]. Can Scrabble programs be
asymptotically practically perfect?



1.4 Research Questions

1.4.1 Domain Analysis |
What aspects of the domain are essential to strong play? We l.m,ve already nwntmpec;
move generation and evaluation. Move generation is a challenging yet purely tec.‘r‘m.mca
problem, so the crucial research guestion is how to evaluate. Is there an established

positional theory to guide move selection?

What techniques will human opponents wield against the program? Must we develop
strategies to avoid specific types of positions?

1.4.2 Move Generation

What is the best approach for generating and scoring moves? There are several
reasonable approaches for generating moves, with different strengths. Which ones stand
out, and under what conditions?

Besides the algorithm used, there is a software-engineering question. How do you create
a move generator that is useful in different contexts? Some classic software design
patterns apply.

1.4.3 Move Selection

What algorithms and heuristics sort moves in order of quality? Obviously, the score of
moves is important. What other factors contribute to the decision? What computations
correspond to concepts in the positional theory of the game?

Given a system of evaluation, how should we tune its parameters? We expect that any
evaluation system for Scrabble will involve many parameters. We would prefer not to
tune them by hand, but if we use an automated systemy then what metrics should the
tuning process maximize? Besides the evaluation system, there is an implementation
question. How can you evaluate all of the moves without adversely affecting the
program’s speed?

1.4.4 Competitive Proof

Can a program compete with humans in real time with competitive success? What
metrics can we use (o gauge the difference between human and computer play? Can we
accumulate sufficient evidence to claim superiority?

1.5 Overview of Thesis

Chapter 2 describes the game of Scrabble, concentrating on the nature of the game and
the skills needed to perform at a high level.

Chapter 3 sketches a MAVEN-centric view of the history of computer Scrabble. The
computer science literature has little information about computer Scrabble.

F,hzmtf:r 4 covers the purely algorithmic problem of move generation. In many games, it
Is trivial to generate moves, but in Scrabble it is difficult. Moreover, if you want to play



Scrabble at a high level, then move generation must be exhaustive and fast. Programmers
have devised ingenious algorithims and data structures for meeting these requirements.

Chapters 5 and 6 cover the evaluation of moves. Scrabble stands in contrast to chess, in
which a highly developed positional theory was available to computer researchers from
the beginning. The opposite was true in Scrabble: computer investigations have disproved
much of human expert theory. Computer Scrabble researchers needed to develop a
positional theory largely from scratch. Chapter 5 shows how to evaluate changes to the
rack of tiles. Chapter 6 discusses how to evaluate changes to the board.

Chapters 7, 8, and 9 show how the game evolves in stages. The first stage is the Early
Game, characterized in Chapter 7. The final stage of the game is the Endgame, which
Chapter 8 covers in detail. Chapter 9 deals with the Pre-Endgame, which is the transition
between the two. We will tackle the Pre-Endgame last because it has aspects of both the
Farly Game and Endgame.

Chapter 10 describes Simulation, a technique that revolutionized computer Scrabble. The
technique goes by the name rollowr in backgammon research, and by the generic terms
stochastic lookahead and Monte Carlo search. In addition to Scrabble and backgammon,
the technique applies to bridge and poker,” so it is widely applicable. The application to
Scrabble is successful, so it is worth studying closely.

Chapter 11 presents MAVEN’s competitive results. MavenN has played in three
tournaments and three maitches. These results wvalidate the quality of MAVEN's
implementation.

Chapter 12 describes opportunities for further investigation. While research on MAVEN
has been a resounding success, there remain areas where further investigations may be
fruitful.

Chapter 13 summarizes research results.

Appendix A gives the rules of the game.

Appendix B presents four annotated games. The material illustrates the caliber of strong

human players, which never ceases to amaze, The annotations also illustrate the power of
simulation, and the occasional shortcomings of MAVEN’s implementation of simulation.

* And there might be some practical applications, too.






Chapter 2 — The Game of Scrabble

The goal in Scrabble is to create words, using the same constraints as in crossword
puzzles. In this chapter we refrain from providing a full description of the game. We
assume that any reader is familiar with Scrabble to an extent and that this superficial
knowledge of Scrabble rules is sufficient to understand the essence of this chapter. Full
rules are in Appendix A.

Section 2.1 describes the notations and conventions that describe moves and positions,

Section 2.2 gives fundamental metrics and statistics of the game, focusing on how to
scoTe points.

Section 2.3 describes how humans play the game. How humans cope with cognitive
limitations is an interesting psychological guestion, and yields insight into the nature of
potential computer advantages and disadvantages.

2.1 Basic Notation

This thesis makes extensive use of
position diagrams like Position 2-1.

The board’s premium squares are
labeled 2L, 3L, 2W, and 3W to
indicate double and triple premiums
for letters and words. All other squares
are non-premium squares.

The columns are labeled A through O,
and the rows are labeled | through 15.
This establishes a coordinate system
that we can use to identify individual
squares. For instance, square 3C is the
first double-word square along the
third row.

The players’ names, racks, and scores
are shown underneath the board. The
rack of the side to move is given first,
followed by the opponent’s. Usually
only the rack of the side to move is
shown, since the opponent’s rack is not known. In that case, the opponent’s last move is
given, because sometimes the mover can draw inferences from it. However, the position
in the diagram is an endgame, so the opponent’s tiles can be calculated exactly. In
endgames we will show the opponent’s tiles, it keeping with the principle of showing the
reader all of the information that the mowver might use to make his decision.

Position 2-1 Example Position

The tiles have face values. The “blank™ tile, which can be used as any letter, is
represented in the player’s racks as a tile with a blank face with a point value of zero. In



the diagram, MAVEN’s rack has a blank. A blank (:‘m the b‘D‘aer is_ drawn fis a lzﬁ‘er ;zlu% zf;
outlined border and a point value of zero. In the diagram, there is a blank used as :

square 10K.

Mowves are shown by giving a word followed by a square, a score, and posmbily
information about the tiles left on the rack after the play. E'Iﬂor‘ e’}cagfx’lple, MAVI?N § move 121
the diagram was MOUTHPART (1A, 92+8), whicl? midxcat‘es‘ that Fhe wm
MOUTHPART was played, starting at square 1A. The dfasngnatmm of the stanm% square
as “1A” rather than “A1” indicates that the word was horizontal. The blank was pmye.d.as
a P, which accounts for the underlining of “P” in the notation, but we could have omitted
the underline because MOUTHPART allows only one way to use 'the blank. In Tth_& rest of
this thesis, the blank will be designated only when necessary, since the underlines are
distracting. The “92” is the score of the play. Since MOUTHPART was the lag;? move of
the game, it also scored a bonus equal to double the sum of the face va{ues‘”(]fule”s leﬁ on
the opponent’s (Adam Logan’s) rack, which accounts for the “+8 . designation.
MOUTHPART was a bingo, so there were no tiles remaining. Logan’s previous play was
QUAL (J2, 35, 11O), which means that the word QUAI was played, vertically down from
12, scoring 35 points, and leaving the tiles 11O on the rack.

Once a move is introduced into the text, we may abbreviate by omitting inessential
information. For instance, we may remark that MOUTHPART was a crushing blow,
leaving out the “(1A, 92+8)” part because we have already given it and there is only one
possible place for MOUTHPART to play. Sometimes we may need 1o supply additional
information to disambiguate moves, and the convention is to give only the starting
square. For instance, we may comment on Adam Logan’s previous play with language
like, “QUAI (J2, 35, T1O) is definitely besi. He should consider QUAI (M11, 26, 110y,
but QUAI (J2) is much better than QUAIL (M11).

2.2 Basic Aspects of the Space

This section presents statistics about the nature of high-level Scrabble. The goal is to
build the reader’s intuition, since later chapters will present models of the game based on
this understanding.

2.2.1 Imperfect Information

Most of the Scrabble state space is imperfect information, because the opponent’s tiles
are unknown. However, the state space has perfect information in an important special
case. The endgame is defined to be the phase of the game where the bag’ contains no
tiles, and therefore it is possible to calculate exactly which tiles remain on the opponent’s
rack.

The split of the state space into perfect and imperfect information components suggests
that playing Scrabble requires search engines and evaluation functions that handle that
distinction. Minimax search addresses perfect-information states, at least in principle.

Definition: the bag is the set of tiles that have not yet entered the game. These are kept in a cloth
blg to slyeﬂd their identities from the players. The bag is distinct from the concept of “unseen
tiles,” which would also include the tiles on the opponent’s rack. The set of unseen tiles can be

x:ﬁrn.;lmted by subtracting the visible tiles (i.e., on the board or on your rack) from the initial pool of
att tiles.
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Programs can address imperfect-information states with combinations of shallow search
and evaluation functions, but it is not obvious what to search, nor how to evaluate.

2.2.2 Non-Deterministic and Imperfect Information

The non-deterministic phase of the game has two extremes. At the start of the game, there
are 100 tiles in the bag, and therefore the probabilities of what remains hidden shifi
almost continuously. At the end of the game, there are few unseen tiles, and therefore
programs can completely enumerate aspects of the space.

The distinction between an almost continuous space and almost perfect-information space
suggests that programs will use different methods on each. A simple linear evaluation
model addresses broad imperfect-information states. Probability-weighted  search
addresses narrow imperfect-information states.

2.2.3 Gross Characteristics of Turns

In Scrabble the players alternate tums, so they have roughly an equal number of moves.
This is said with the understanding that exchanges, passes, and lost challenges are turns
that score zero points, rather than lost turns, as some people {(must not be programmers!)
do. The way MAVEN counts, the plavers have the same number of turns unless the player
that moves first also moves last, in which case the first player has an extra turn.

Please note that scoring characteristics of

turns depend on both the dictionary and the | Length | TWL98 | SOWPODS
quality of the opposition. For example, | 2 96 121
players average higher scores in the United | 3 972 1229
Kingdom than in North America. Are UK | 4 3903 5155
players better? The North Americans deny | 5 8636 11812
it, so the difference must be the dictionary; | 6 15232 20964
the UK’s word list (SOWPODS) is a |7 23109 31229
superset Morth America’s TWL98. Table 2- | 8 28419 33043
1 shows the distribution of vocabulary by |9 24792 36845
length within TWL98 and SOWPODS. In | 10 20194 32178
this thesis, the reference vocabulary is | 11 15407 25225
TWL98,  unless  specifically  noted | 12 11273 18366
otherwise. Similarly, if the dictionary is | 13 7781 12563
held fixed then the level of scores rises with | 14 5100 8115
the quality of opposition. Since top humans [ 15 3179 5002

are rtoughly comparable to MAVEN in
strength, their scoring characteristics are
similar. For example, MAVEN averages 34.3 points per turn, whereas top-flight humans
average about 33 points.

Table 2-1 Vocabulary by Word Length

One technical point regarding point totals concerns how to apply end-of-game bonuses.
In tournament games, when one player uses all of his tiles, he scores a bonus equal to
double the sum of the tiles on his opponent’s rack. But the rules printed in the game box
state that at the end of the game the players are penalized by the sum of their unplayed
tiles, and the side playing out scores a bonus equal to the sum of the opponent’s tiles. For
two-player games, these definitions result in identical point differentials, so it does not
matter which definition you use. However, in multiplayer games there is a difference, so

9



MaVEN implements the rules as printed in the box. While point d“ﬁferanrt'lgls tia:;z
unchanged, point totals are higher under the tournament rules, 50 you must gfmsx‘ c.: rihm
difference if you compare MAVEN with other programs. O:ther progjra‘n:trs may ‘r]’:“,E‘O ; .ﬂ !
they average 35 points per turn, compared with MAVEN's 34.3, vet the results of the

programs are identical.

Obviously, it is an advaniage to move first, since having a 50-50 chance of an extra @um
must have value. Perhaps that it is not truly obvious, since there could be a disadvantage
to opening the board. To be completely accurate, the first tum fioes not score as well as
the second turn on average, so there actually is compensation for moving second.
Nevertheless, the first turn scores comfortably more than half of the score of an average
turn, so moving first is an advantage. Moving first corresponds to a winning percentage
of 56%, and a point differential of 14.2 points.

There is considerable variance in the score of a turn. The standard deviation is about 22
points per turn. When you consider that it is impossible to score less than zero poimg, it
must strike you as surprising to have a standard deviation so high. What makes it possible
is that bingos occur frequently, Thus, the distribution of scores is not symmetric about the
mean. The distribution of scores in MAVEN-MAVEN games is roughly as follows:

1) Bingos, averaging 78.3 points, occur on 14.3% of turns.

2) Non-bingos average 27.0 points, with most between 18 and 40 points.

3) Nearly every game has a few non-bingo plays in the 40 to 55 point range, often using
the J, Q, X, Z, or a combination of other heavy tiles, or playing to a triple-word

square,
4) A few turns are dumps, which rid the rack of awkward tiles while scoring from 8 to
16 points,

5)  Exchanges happen with awful racks, about 1.7% of all turns.

2.2.4 Gross Characteristics of Games

Computer games average 11.7 turns per player, or 23 .4 for a whole game. Human games
are somewhat longer, averaging about 12.5 turns per player. Both humans and computers
average about 400 points per player per game,

The standard deviation in the difference in scores of a whole game is about 95 points.
(Note that this is not the same as the standard deviation of the score of a single player.)
Accordingly, most Scrabble games are not close. It is common for one side to score a
couple of quick bingos and then coast to a win while the other side struggles.

For the same reason, only the largest leads are safe. Even when a game is half over, the
standard deviation remains about 65 points, so it is possible to come back. One bingo will
rrg:ake you a favorite, and it is even possible to come back from such a deficit without a
Im‘ngq. »1 va leader could be mrcc_id to exchange a bad rack, or could be stuck with the Q,
or the trailer could score well using J, Q, X, or Z.

10



2.2.5 Scoring as a Function of Stage of Game

Table 2-2 shows how scoring changes
over the course of the game. The first turn
averages 28.8 points, and the second turn
(ie., the second player’s first move)
averages 34.7. The high average of the
second turn is due to the many
opportunities to play bingos on a wide-
open board after the first turn. Scores are
high for a while and then drift downward
as the board clogs up.

You can see that bingo frequency
accounts for most of the difference in
scores. The average scores of both bingos
and non-bingos is a remarkably constant
function of the turn number. The average
score of non-bingos remains relatively
constant until a sudden decline around
turn 17. At that point, many games go
into the endgame phase.

Most games are finished by move 23, so
all statistics after that reflect the subset of
games that happen to last that long. For
instance, the board may have been very
constricted. Or one player may have been
stuck with the Q, which leads to long
games because it is in the interest of the
other player to play out one tile at a time.
The extremely low frequency of bingos
past move 25 reflects the fact that such
positions are almost always endganies.

Turn | Mean | Bingo% | Bingoe | Other
i 288 12.7% 733 1 21.8
2 347 | 203% | 75.7 | 242
3 394 | 232% | 770 | 279
4 398 | 204% | 779 | 296
5 40.0 19.9% | 78.5 | 303
6 39.9 19.1% | 788 | 308
7 40.2 18.4% 789 | 310
8 39.8 17.9% | 79.1 310
9 39.7 17.5% | 792 1 311
10 39.2 17.1% | 79.1 311
11 39.0 16.5% | 789 | 31.0
12 38.5 15.9% | 791 30.8
13 38.0 I59% | 792 | 307
14 319 153% | 791 | 303
13 37.2 14.7% | 788 | 30.]
16 36.4 13.7% | 789 | 29.8
17 354 1 129% | 782 | 29.
(s 33.7 11.8% | 785 | 279
19 31.2 10.0% | 774 | 2066
20 28.6 8.6% 712 | 247
21 253 6.4% 769 | 224
22 22,0 4.4% 76.4 19.8
23 19.3 2.7% 76.2 17.2
24 16.6 1.5% 74,5 15.2
25 14.2 1.0% 77.0 | 137
26 11.9 0.7% 73.9 | 117
27 10.1 0.2% 71.8 10.3
28 8.5 0.1% 74.3 8.7
29 7.7 0.09% 101 7.4
30 6.9 0.07% 74 58

Table 2-2 Score as a Function of Turn

2.2.6 Scoring as a Function of Tiles

An enlightening view of scoring is to see how it depends on the tiles you possess in the
rack. Table 2-3 shows the average score of moves’ as a function of tiles. The “Tile in
Rack” column shows the average score given that a specific file is in the rack. Notice that
the frequent tiles (AEIONRT) have scores that are around average, but the infrequent
tiles (especially Blank and Q) strongly affect the score. This is to be expected; frequent
tiles are present on most racks, so their average must be close to the average play,
whereas infrequent tiles can affect the score of a small number of racks.

* Like all data in this chapter, these are from MAVEN-MAVEN games.




Another thing you can gather from the “Tile
in Rack” column is a rough ordering of the
quality of tiles. Obviously, the blank. 8, Z,
and X are standouts, whereas Q, V, U, W,
and G are millstones.

The “Two in Rack™ column shows how
holding duplicates of tiles affects scoring. Of
course, the duplicate blank is excellent. We
see that duplicate S is just like a smg‘le‘ S,
duplicate E is bearable, and every remaining
duplicate tile reduces scoring.

The “When Played” column shows how the
score of a play depends on the tiles used to
make that play. Again, the good tiles are
evident, Moves that use Blzgnk, 8, X, and 7
have above-average scores,” whereas moves
using Q, V., W, U, and G have poor average
scores. This confirms previous assertions.

Another group of tiles is interesting because
of a difference between the “Tile in Rack™
and “When Played” columns. The tiles A, E,
N, R, and T have high values when played,
whereas they were near average when in the
rack. What can we make of that? The
explanation is that these are bingo-making
tiles. They tend to be saved for bingos. This
raises the average score when they play, but
their average score when held is normal
because of the turns spent sitting in the rack.

The | Tile Twoin | When |
| Tile | in Rack Rack Played
7 48.5 67.9 70.6
A 36.4 31.7 39.4
B 34.2 30.2 35.5
C 35.9 30.4 40.9
D 36.1 31.6 39.5
E 36.6 34.5 41.8
F 33.9 33.6 353
G 33.2 27.6 35.2
H 37.2 32.6 394
1 35.3 28.9 38.5
J 34,0 - 35.6
K 351 - 36.6
L 35.2 29.6 39.1
M 364 32.7 39.3
N 36.0 30.9 409
O 34.7 29,5 36.6
P 335.6 314 38.4
0 27.4 - 30.7
R 36.5 31.4 42,4
S 39.3 394 51.3
T 36.0 3.7 40.3
U 32.9 24.7 35.4
A% 31.7 241 32.7
W 33.1 28.0 33.8
X 38.6 - 43.0
Y 35.2 29.7 36.1
Z 38.4 437

Table 2-3 Score as a Function of Rack

These views show how important it is to have good tiles. For instance, moves that use a
Blank average 70.6 points, which means that almost all are bingos. [T one side draws both
Blanks, then what chance has the other side of winning? Tournament players win only [
game out of 4 when the opponent draws both Blanks. Fortunately, the Blanks split evenly

it almost 30% of the games.

* One m:hnif:al detail 10 note is a bias regarding “average.” The scores in the “When Plaved”
m!qu are higher than you might expect because the scores in this table caount fm‘ each tile lcai—;\xecﬂ
which increases the weight of Jong words relative to short words. This is OK. vzuc, lon k'xs W ap'l(; t
compare a 40 point average in this table to a 40 point average elsewhere. T B medona
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2.2.7 Scoring as a Function of Vocabulary
The tables in this section show how scoring is distributed
as a function of the words used in the game. Some words
are more important than others, either because they play
more frequently, or for higher scores, or both.

Table 2-4 shows how scoring is distributed as a function of
the tile turnover (i.e., tiles played). The top row, showing
data for 7 tiles of turnover, tell us about bingos. While
bingos are 14.3% of all moves, they account for 20% of all
scoring. This confirms the importance of bingos.

Tiles Freg Score
7 14.3% 78.3
6 6.7% 329
3 18.3% 30.5
4 24.7% 28.5
3 21.5% 26.8
2 10.3% 232
1 2.6% 11.5

Table 2-4 Score by Tile

Turnover

The table shows that the average move turns over 4.2 tiles. This confirms that games
should end in a little less than 100 / 4.2 = 23.8 turns, where the “little less” is required
because at least one player must be stuck with at least one tile at the end of a game,

The observation that score increases with Length Freg Score | Per Game
tile turnover influenced pre-computer 2 5.2, 231 132
strategists to try to play more tiles per 3 16.9% 24.2 470
turn. This is a little like believing that 4 29,99, 272 7.6
playing basketball will make you taller, 5 23.0%, 20 4 778
and is further explored in Chapter 5. 6 12.9% 29.7 44.1

7 9.4% 59.4 64.2
Table 2-5 shows how plays vary by 8 9 .29, 754 79 R
length of word, along with scoring > Q 0.5% 64.5 3.7

characteristics. Note that words up to 5
letters constitute 68% of all words played,

Table 2-5 Score by Word Length

despite TWL98 having only 13,607 such words! This illustrates an important attribute of
the game: it is relatively easy to gain skill up to a point. If a player masters the short
words alone then he will play most moves correctly. Alas, the short words do not account
for most of the difference in skill between players. Genuine mastery only accrues to those
who multiply their efforts six-fold, to cover the full 80,367 words of length up to & letters
in TWL98. In addition to the larger number of words, it must be considered that
anagramming the eight-letter words is harder than anagramming the fives.

JQXZ words are imporiant. In fact, the |8 most useful
words are all JQXZ words.” An average game contains
4.5 JQXZ words. Table 2-6 shows how the top ten score.
Note that QAT accounts for almost 1% of all the words
played in a game, and these ten words account for 2.4%
of the words.

The column labeled “Score™ in Table 2-6 shows the
average score achieved by each word. Pairwise
comparisons of the average scores reveals insights into
rack evaluation. For example, note that mowves that play X
score more than moves that play J, Q, and Z. This reflects

Word Freq Score
QAT | 0.73% 24.2
QAID | 0.29% 27.2
X1 0.25% 383
EX 0.20% 40.3
0X 0.20% 40.7
JO 0.17% 29.1
AX 0.15% 40.9
SUQ 0.15% 29.9
QuA | 0.14% 26.9
XU 0.14% 36.2

Table 2-6 Top Ten JQXZ

® The only words in the top 44 that don’t contain JQXZ are OF, |F, EF, and FA.




the value of an X. The table shows 3 plays that use X: AX, EX, XL Oﬁ(, m;]d X[:,Q]Slng
each vowel is represented, we can leam something about the vafigg of each vc;vb 9. -
in: ‘ ‘ erage only 36.2 points, whereas AX averages 40.9. We
instance, moves XU plays average only 36.2 p , ‘ cs 40.9. 1

might infer that A is more valuable than U, and we would be right. Another 111t§restlmlg
comparison is QAT versus QATS. The presence of an S increases the average score from

24.2 10 33.0. Obviously, an § is a terrific tile.

Yet such comparisons do not tell the whole truth. For example the mo:a?t Va,l:,lable VDW‘.E[ is
actually E, whereas the table shows EX averaging 40.3 points against AX’s ‘40.9‘pomtlséi
EX averages less because EX implies that the player has no clmu.:e. For _example, it cqu

be that the E is the only vowel on the rack, or because the player is clearing a duplicate E.
This tends to lower the average scores for EX. To see the whole truth, you must do more

complicated analysis.

The foregoing tables show how | Utility Word Freqg Scoring
categories of wvocabulary affect | Decile Count Percenfage
scoring. Another dimension is | Most useful 11380 | 62.5% | 53.1%
utility. Some words occur more | 9ge 22760 | 75.6% | 68.3%
often than others do. Some words 80% 34139 | 83.5% | 78.2%
(bingos, in particular) score more T70% 45519 | 88.9% | 85.3%,
than others do. Table 2-7 shows 60% 56899 | 92 8% 90.5%
how scormg m distributed ‘within 50% 68279 1 95.7% | 94.294
the S(“)WPODS vocabulary’. In a 40%, 79659 | 97.6% | 96.8%
run of 13].100.0‘ games, there were 30% 91038 | 98.9% | 98 504
I’1397’98 chslmc‘lt words played. 20% 102418 | 99.5% | 99,504
qhe most useful 11,380 words | [ oodi et | 113798 | 1oner 100%
accounted for 53.1% of the

scoring. Table 2-7 Score by Word Frequency

This statistic confirms that the threshold of expertise is tantalizingly low, because
mastering 11,380 words is an achievable goal for any aspiring player. The rest of the
table shows how difficult genuine mastery is. Suppose that a player has true mastery (to
the extent that he never misses a move) of the most useful 56,899 words, but is unfarniliar
with the rest of the words. Then he would only find 92.8% of the best plays. It is unclear
what this would cost in score, because the table does not capture the quality of second-
best moves,

The most useful 10% of words are mostly short words and high-frequency bingos. This
should surprise no one,

You might be surprised at the identity of the least useful words. One’s first instinct is that
the least useful words are low-frequency bingos. Actually, they tend to be non-bingo
plurals of short words that contain high-frequency tiles. This makes sense, when you
think about it. Such words are rarely best plays, and when they are there is usua]l} a
secn;md—hest play that is almost as good. So one would lose little by not knowing such a
word.

TTWLOS is expected to show a similar distribution,
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2.2.8 Scoring as a Function of Position

Finally, here are two positional views of the
game. Figure 2-8 shows how often tiles cover
each square at the end of the game. MAVEN’s
first move is always horizontal through the
center square, which accounts for the square
being solid black, and also for the relatively
dark squares along the center row. You can see
how games tend to evolve along the major
diagonals, where the double-word squares
reside. You can also see how play “stretches”
o cover the premium squares. If your vision is
very sharp, you may detect that play tends to
evolve more down and fo the right.

Figure 2-8 Usage of Square.

Darker is More Frequent.

Figure 2-9 shows the average score of moves
covering each square. The diagramy makes clear
how the use of premium squares dominates
scoring. You can see the dark squares near the
triple word squares at the center of each side.
The corner triple word squares also have dark
squares, though not as dark as the center triples.
You can also make out a box near the double-
double region. Most of the rest of the board is
fairly light, including the double-word squares.
As a general rule, double word squares are not,
by themselves, significant contributors to big
SCOTES.

Figure 2-9 Score by Square.

Darker is Higher Scoring.

2.2.9 Summary

The preceding subsections give you a good overview of the game. You have seen:

1} How the score of a turn varies, in general.

2) How the variance of turns affects the competitive balance of the game.
3) How the score of moves depends on tiles.

4) How the words affect scoring.

5) How the premium squares influence turns.

Besides contributing to your understanding of Scrabble as an abstract space, the author
hopes that you are fmpressed by the exceptional balance of the game. Scrabble is a
masterpiece of game design, in which balanced, conflicting forces interact to create and
maintain competitive tension.



2.3 Human Scrabble Strategy

The human cognitive process that finds high-scoring plays Lciﬂffers from t“he mmpu&;&;
algorithms that generate all plays. For a human the process involves anagramming
rack and looking for hotspots.® Many techniques help experts to carry out this process.

2.3.1 Vocabulary )
Adult native speakers of English typically have vocabularies of about 23,‘000 wqrds.
Alas, that vocabulary will not get anywhere over a Scrabble boar‘d_ The obvious
shortcoming is that the vocabulary is too small. Top class qS_crabMe masters neeq t(:t
recognize all words up to eight letters, and there are 80,36}7 such words. Amothem
deficiency is that normal vocabulary does not include the weird, short wqrds that are
vitally imvpormm to skillful play, as described by the previous section. Therefore, the first
task of fledgling experts is to learn the words.

Humans generally learn high-frequency words first, The National Scrabble Association
(NSA) publishes the Cheat Sheet, a single sheet of paper that lists all of the 2-letter and 3-
letter words, plus the vowel dumps and short JQXZ words. Simply mastering the words
on the Cheat Sheet will turn a family player into a tournament player. However, of course
there are many more words to learn.

Generally, human experts that are inclined to work systematically will learn words in
categories. For example, they may learn the 7-letter words having the letters RETINA.
Lists of words from important categories are available from several sources.

However, learning words within categories has limitations. First, people have not created
lists that cover the low-frequency words, so this approach will only take you so far. In
addition, even some high-frequency words manage to slip into the cracks between
published categories.

Ultimately, if you want to learn the words then you must read the dictionary (or another
exhaustive source). This has the advantage that you learn definitions, which improves
retention. For high efficiency, most players use a highlighter pen to mark the words that
are uncommon, so they do not spend time refreshing familiar words,

Another key concept. introduced by Charlie Carroll and published by Nick Ballard [5], is
to learn the words in frequency order. In this strategy, a playver commits to learning, éav,
eﬂl of the seven letter words. He accomnplishes this by scanning the words in order ;')f‘
frequency of getting that word in a seven-tile draw from the bag. For example, the
relative frequency of AREINRT is 9 * I2¥11/2%9%6%6 %6 and the word FREESIA
has frequency 2 % 6 * 12 % | [/2 * 4*9* 9 which is only 2/9 as often as TRAINEE. (See
Appendix A for a table of the tile frequencies,)

There are two advantages to learning words in frequency order. First is that you learn the
most wsefil words first, rather than by category. Second is that you have Ja methodlof
cc‘mﬁciemly challenging unfamiliar words, For example, suppose that an opponent plays
MARINET against you, and you have memorized the words down to FR.EESIA

. .
" A hotspot is a place on the i € i i

spot is ¢ n the board where high-scoring moves are likely fi
. i gh-scor s are likely. Hotspots frequentlv
involve premium squares, N ¥ Hotspots ooy
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MARINET is unfamiliar, so you can challenge with 100% confidence. The reason is that
MARINET has frequency 2 ¥ @ * 6 * 9 % ¢ * 12 * 8, which is greater than FREESIA, so
if MARINET is unfamiliar then it must be phony.”

2.3.2 Anagramming

Recognizing legal words is only the beginning. You still need to find the plays, especially
the bingos. The process of rearranging letters to make words is called anagramming, and
it is the fundamental skill of expert players.

General anagramming skill consists of the ability to mentally rearrange racks in all
possible orders in one’s mind. However, no human can really go through all 5040
permutations of seven tiles, so every human makes some approximation to the ideal
behavior. Generally, the approximation has something to do with prefixes and suffixes.

Humans look for 3-letter prefixes or suffixes that they can make out of their tiles. They
physically move these 10 one end of their rack, and mentally anagram the remaining tiles.
Let us take the example of DFGIINN. A human would see the —ING suffix, and move
these tiles to the end of the rack, to form DFIN-ING. Then he would mentally shuffle the
remaining tiles, and the word FINDING is easy to see. An expert can carry out this
process in about a second.

Anagramming using prefixes and suffixes is more efficient than you might expect. The
top 267 prefixes and suffixes (see Table 2-10) are contained in 80% of all seven and eight
letter words. Therefore, if you can carry out the technique perfectly then you expect 1o
find at least 80% of the legal bingos.

However, brute-force anagramming is too slow for many purposes. Some racks scream
for a Q play, for instance. In that situation, it is helpful to be able to run down a list of
high-frequency Q words. Most humans have memorized such lists.

Additionally, humans have mnemonic tricks for recalling the anagrams of certain words.
One cute idea is to “fix-up” a case where prefix search does not work. For example,
consider the rack ADNOSTU. Prefix search turng up OUT + SAND, but OUTSAND is
phony. The trick is to memorize that OUT + SAND == ASTOUND. Thus, a failure in
prefix search is converted to a success.

? Should have played MINARET or RAIMENT!



Prefixes

Tile | Suffixes SUB BRA BAR BRO BRI BUR BED BLA BLO
B BLE BLU BAN BAC BOO BEA e —
"S CES NCE CAL | CON CAR CRA CO CAL CLA REC CRE
ICRIC TIC ICS CES NCE CAL | CON CAR CRA COR CRO CAL
¢ 2%2 KIe COL CLO CAN CAT INC CRI COA
b | ED DES OID IDS ARD NDS RDS | [ oo o o
IDE AND EAD -
F | FULIFY FOR FLA REF FE DEF FLO INF
; NG NGS GES AGE GRA GRI GRO REG GAL ‘
U NG NGS GESAG CHA CHI CHE CHO SHA SHE SHI SHO HAL
H ISH HES HAMN HAR HEA
K | IKE CKS OCK ACK .. SKJ
Lo | LTS ALS BES JAL ILS LAS NAL | g\1 SOLREL LEA LIN LAN
LLS OLE OLS TAL LET ILE ‘ | ,
MEN MAN ISM UMS 1UM MES | MIS MAN MON MIN COM MAR MOR IMF
M1 SMS MIC ORM MIL REM
N | ONS INS NES INETION ENS ANS | oo oo
ONE NASIAN ANT - |
— PRE PRO PAR PLA PER REP PRI POL PIN
P ups PAN PEN EPI PAL PLU CAP
) QUI QUA SOU
ER ERS RES ORS ARS TOR RTS | RES TRI STR TRA RET REA TRO SER TRE
R | RAS LAR RAL AIR TER
;| IESISE ESS SESTAS EES OSE OES | SEA 1SO CAS SCA SCO SCR SPA SPE Spi
5 lgs SPO POS
EST ATE TES ETS IST STS ITE | . . . T
STA STE & ] " N ol
T | ENTNTS ITS OT% ate STA STE STI STO ANT ENT INT TEN
v | ous ure uTs URs UEs SO&JJ UNS UNC CUR CRU COU TUR TRU
V| IVE VES OVE REV VER }
W | WAY OWS WHI WIN WAR SWA SWI WO
X TXES
ILY ITY ERY LLY AYS DLY ELY

EYS ARY BLY TLY

IZE ZES

Table 2-10 Prefixes and Suffixes

A popular trick is to memorize the letters that go along with a “stem” word to make a

bingo.
CDEFGHIKLMNPRSTUW. |
can avoid looking for b

For example, the six-letter

stem  RETINA makes a bingo  with

f you remember this, then if you have RETINA + B you
Ingos entirely, and if an opponent tries to slip BANTIER past you

then you can challenge with 100% confidence.

While you
letters that go along with each
stem by rote, there is 3 more
efficient way. You can remember

the

RETINA by recalling the phrase
THE
MUCH WINKING.
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can  memorize the

letters  that with

bingo

RED  PUPIL PREFERS

TORIES
LADIES
INMATE

This phrase is called

Anamonic
BUNCH OF OLD GRUMPS

' LOVELY BRIDES MUST NOT HOP
RELAXING BY HIS CELL DOOR

| CAP, SCARF, AND BELT

e —

Table 2-11 Anamonics

an anamonic, since it is a mnemonic for



anagrams. It is easy for a native English speaker to remember this phrase, because of the
association between RETINA and PUPIL, which are both parts of the eye. Table 2-11
shows a few more anamonics.

Human experts have devised anamonics for at least the 200 most frequent six-letter
stems, and the 3500 most frequent seven-lefter stems, covering over 10,000 letter
combinations including those of highest frequency [72]. Players who master anamonics
seldom miss high-frequency bingos. What 1s more they play quickly because they do not
spend time looking for bingos that are not there.

An important technique is to make up a list of all words not covered by any tricks. These
are the difficult anagrams, which include such beauties as AEEIINRT, which is one of
the most important bingos of all (INERTIAE, which is known 1o have come up twice in a
single game). These must be practiced relentlessly.

Of course, humans do practice constantly. Humans make up flashcards listing ten
anagram questions on one side of the card, and the answers on the other. With practice,
they can go through the whole card in less than 30 seconds. If they happen to get a
question wrong, then they stick that card into the middle of the deck. Otherwise, they
stick that card at the end of the deck.

Because 2/3 of all bingos in human games use a blank, it is Important (o practice
anagramming with blanks. Of particular interest are racks in which the blank can be used
for only a single letter. For example, the rack PAEIORT is a so-called unistem, because
the only word that matches is EROTICA. Unisters are particularly important to practice,
because there is likely to be only one legal bingo, so you stand to lose a lot by missing it.

Some humans use computer programs for practice. Ilashcard programs [6] can emulate a
deck of cards, and provide extra functionality, like showing related words and other
mnemonic tricks. It can also track a user’s training record, and bias training towards
words that are likely to be missed.

The principles that work for finding bingos also apply to other categories of words.

You are probably impressed by the mgenuity that humans apply to this difficult task.
Indeed, humans perform better than you might expect. However, keep in mind that
humans need these tricks because unaided human cognitive capabilities are hopelessly
inadequate for the task. Even with these tricks, humans still miss plenty of moves.

2.3.3 Hotspots

A hotspot is a place on the board where productive scores are possible. Of course, some
hotspots require specific tiles to create the high score, in which case we speak of a
“hotspot for an F.” for instance.

Hotspots are important to human move generation, since it helps focus the search in two
ways. First, humans save time by only considering spots where productive scores are
possible. Second, the hoispot often provides clues as to where specific tiles should go.

For instance, the Q should go on the Triple Letter Square, or only an M can play adjacent
to the Y from the board.



A bingo line is a spot where a bingo can land. A bingo line n_eeds seven empty squares
and a minimum of contact with the board. The quality of a bingo line depends on how

many words play there.

A triple-word line is a hotspot that allows a move to cover a triple word square. Tripling
the value of the tiles played will usuaily yield an above-average score.

A hook is a single-tile extension to a word on the board, which is used in conjunction
with a move going in the other direction. The most common hook tile is an S, used to
pluralize a word, and any tile (even (3 and Z) can be a hook tile if the right word is on the
board.

An overlap is a move that scores points using crosswords.

Some hotspots are hot simply by virtue of the quantity of premium squares located there.
For example, we speak of a double-double spot for a hotspot that contains two double

word squares. Similarly, there are DLS-DWS spots, where a double letter square and a
double word square reside.

An extension is a move that adds several tiles to a word already on the board, usually to
hit a word multiplier.

Table 2-12 and Position 2-3 illustrate types of hotspots.

Twpe Examples

S8 LB Through JOVIALLY.
[3A triple-triple.

7LB 7LB overlap JOINT
or VIXEN on row 7,
9,0r 11, or column 1.

TWS I5A or HIQ

Hook JOINTS or VIXENS

Overlap Row 11, using 11E.
Column C, using C13.
Bonus ES double-double

14B DWS-TLS

13C DWS-DLS
Extension | 8A CONJOINT .‘

L 8A DISIOINT

Position 2-2 Hotspots Hlustrated Table 2-12 Hotspots

2.3.4 Evaluation

Of course, a human will find more than one move. How does he decide which is better?
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Obviously, the score is the most important factor. Usually the question will be whether
thedifference in score is compensated by gqualitative advantages of the lower-scoring
move.

2.3.4.1 Heuristic Judgment
Normally the judgment is purely heuristic. The human isolates the difference between the
plays, and only evaluates the tradeoff. For example, one word might play an E, whereas
the other plays an A. Such a difference might be worth, say, 4 points to the move that
plays the A (and keeps the E).

In the case of rack evaluations, a human will probably make conscious tradeoffs of points
versus tiles. However, sometimes the judgment is hard to render into units of points. For
example, consider a player trying to protect his lead. He might have a high scoring play
and a low scoring play blocking a hotspot that the opponent might use to come from
behind. Which is better? It is hard to give rules of thumb.

2.3.4.2 Search

Search resolves some situations. The obvious case is when the bag is empty, since we can
deduce the opponent’s rack and compute the best tactics. When the bag is not empty, it
may be possible to foresee specific outcomes. An offensive instance is called a serup. Ina
setup, you foresee that the tiles you keep play productively afier your move. A defensive
instance is called a block. You foresee that a spot on the board benefits the opponent, and
play to interfere with it.

Humans can search spaces that : V JKLMNO
computers cannot easily search. For
example, humans might evaluate a
tradeoff by breaking the set of positions
into two cases: those in which the
opponent holds an S, and those where
he does not. Then the player evaluates
the risks and rewards in both cases.
This is a search of a conceptual space.
Consider the Position 2-3, which first
appeared in Medlevs [7]. Which move
has a higher point differential:
OBSCURED (A2, 86), or the volatile
ROSEBUD (0O8,98), which hangs a
double-crossed triple word square?

One expert’s conceptual search of this )

position consisted of the following Moving: S
comment to Medleys: ROSEBUD is Opponent’s last: OW (N9, 32) 154
“horrible.  Very few extra points
enables a homicidal reply. What if Opp
has ZITS, QATS, JOTS, or bingo?”
Ah, the frequently useful zits, qats, jots and bingo search space. This example shows that
the mere fact that humans are capable of conceptual search does not imply that they can
actually carry it out. Someone should tell this plaver that the Q and Z are already on the

Position 2-13 Conceptual Search
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board, and if the opponent held a J he would have plaved JOWL(H1, 42) instead of OW
(N9, 32).

This example of bad human reasoning emphasizes that ’Ehemm is a difference berfween
conceptual search and parancia. Every position allows dgyastanon if the opponent holds
perfect tiles. For example, a search of the ‘“‘AGJI,NNU” ‘S‘pac:ff‘ results in a strong
preference for OBSCURED, since it blocks opponent’s JAUNCING (A1, 221).

Randy Hersom’s conceptual search resulted in the following cmmmgnt: “]‘"‘h.e d-ifferenw:e
between leaving a double-crossed 8 and a direct triple, possibly a trlple~mple., is not 12
points.” Hersom is breaking the position down into a choice between lefwmg the A-
column open (where a triple-triple could possibly land) and leaving the big hook after
ROSEBUD. He concludes that ROSEBUD will have a higher differential.

The evaluation of ROSEBUD depends on which side gets the first S, and how many
points they will score by using the TWS at 15-O. It is actually possible to calculate a
reasonable value for the cost of ROSEBUD’s big hotspot. The basic formula is

Value = Extra Points Scored * (Chance you get it — Chance opponent gets it)

To calculate the components of this relation is fairly involved, and perhaps bevond the
scope of this thesis. Table 2-14 shows, without justification, the steps in the calculation.

Name | Meaning Formulas Value

K Number of Key tiles (S, here) 3

u Number of Unseen 49

S Score in spot 5 tile play, ending in S at 15- | 72
O

M Average score in position 40

R Rack value of key tile 8

X Extra points scored in spot S-M-R 24

A Probability of drawing S K/(U-3) 0.0652

P Probability opponent has S now. THEA*(1-3*A+5*A*| 03769
A)

E Opponent’s chance of getting S [ P/(2-P) 0.2322

first.
A% Value of opening X*E 5.57
‘ points

Table 2-14 Example of a “Key Tile” Conceptual Search

In Engliajl;‘l: ROSI’?iBUD’s point differential loses 5.57 points because of the hook it
creates. Since ROSEBUD outscores OBSCURED by 12 points, ROSERBUD has higher
average point differential. Simulations confirm that ROSEBUD 7-poi

advantage over OBSCURED o e about a 7-point

V‘t.".hxle perhaps ne human could carry out the calculation above during a game, some
pld‘a)‘nm's have an uncanny ability to evaluate hotspots because they have sBﬂVed’ nany
stmilar problems in the past. Charlie Carroll is one such plaver. He z;@praised RO?.EL!I];?}]I?;
accurately and wrote, “Mosgt people focus on the immediate effects of a hugé {;pmﬁﬂg

22




forgeiting that they might be the one to cash the opening. Another point people miss is
that the openness of the rest of the board has a large effect on the wisdom of this type of
play.”

2.3.4.3 Trickery

Sometimes humans can resort to desperation plays akin to throwing a Hail Mary
touchdown pass. Usually a search has indicated that against good play by the opponent
there is no way to win, but one alternative allows a comeback if the opponent misplays.

For example, if you trail by less than a bingo going into the endgame, you can try to fish
a bingo out of the bag. For example, you might play one tile, keeping RETINA. Against a
savvy opponent who knows what you are up to, this might be a futile gesture. On the
bright side, the opponent may be unable to respond to all possible places where you
might play a bingo.

2.3.5 Human Expertise: Putting it all Together

Human experts always have a focused move generation strategy, usually consisting of
mentally scanning a list for words that play key tiles. They supplement that with shuffling
the tiles for prefix and suffix searching.

Human move generation focuses the search effort by seeking moves that exploit hotspots.
Once they find a good move, they can focus their search by trying fo improve upon that
move, For instance, given a 30-point move, they might restrict their attention to spots that
could potentially yield more than that.

While generating plays, they weigh the pros and cons of moves, with a heavy emphasis
on scoring points, and secondary emphasis on keeping good tiles. If two moves affect the
board differently then they may try to factor that impact into the comparison as well.
Usually the judgment is heuristic, but search may be invelved in specific cases.

Afier a human searches for a while he may switch attention to asking whether a different
move could surpass the one he has found. In this mode of thought, the player tries to
prove that no other spot could yield more than he has found already.



2.3.6 Example ok Lun
We will illustrate the process using ] ‘ ‘

Position 2-3. In this position, the plz.aym
is Adam Logan, North American
Champion in 1996. He holds several
awloward tiles, Nevertheless,
experience teaches that it is always
waorth checking for a bingo. Using the
prefix and suffix table, we try lhre
possibilities shown in Table 2-15.
There are (probably} no bingos.

Mext, we consider dumping a few bad
tiles. We have a duplicate U (very bad)
and a V (bad). Our duplicate E and G
are poor. The L is s0-s0. We would like
to keep an E, which is a good tile. See

B

any plays that dump the EUV? Yes, 66
UVEA from BS is an automatic find for
human experts because UVEA is a “3- Mavew's last: GOWD {11C, 18) 88
vowelled-4,” wlm’xi‘g:l1 all Sxperts would Position 2-3 Human Move Selection
know by heart. (They might not know
what it means, though!)

- r Particle | Spot , Anagram f Find‘ﬂ
UVEA scores 15, and k‘e;eps EGLU. 'l“_‘hls | _AGE B3 | ELUUV-AGE No |
is not great, so we look for more. Having JLE G3 | EGUUV-ILE | No
studied the “4-to-make-5" list, we know JIVE G3 | EGLUU-IVE | No

::nmﬂ UVEA ta‘kes” a bagk L hogk? s0 Try -ULE, | Any YEGUV-ULE No
UVEAL from BS5 is possible, scoring 16
and keeping EGU. UVEAL seems Table 2-15 Prefix and Suffix Search
slightly superior to UVEA, because it

Scores an extra point, and playing the L should garner a 1.5-point improvement in rack.
Why 1.5 points? You will find out in Chapter 5!

Against UVEAL is the two-vowel, two-consonant rack of EGLU wersus the two-vowel,
one-consonant rack of EGU, where the 2.2 balance is obviously better. Vowel-consonant
balance of 2-2 is valued at 0.5, and a 2-1 balance is —0.5, so UVEAL takes a I-point hit.
Figure UVEAL 1o be 16 — L5 (for score) + 1.5 (for eliminating the L) — 1 (for worse
vowel/consonant balance) = 1.5 points better than UVEA.

The “3-vowelled-5" |ist produces UVULA, which plays from B4. We should pluralize it
to make UVULAE, which Scores an extra point and eliminates the duplicated E.
UVULAE scores 11, keeping EG. Normally I would rate UVULAE as slightly better than
UVEAL, because ridding the rack of the other U is worth 4.5 points, and refaining a -}
count of vowels and consonants is worth 1 point over UVEAL’s EGU. That makes a 5.5
point edge whereas UVULAE scores 4 points less. However, UVULAE has a posn’tmna;l
downside: it opens the Al triple-word square by allowing a big overlap on the A4
dmxh]e»lmter Square. An opponent need only hold an N to get a decent score (e.g F]LAN
(A1) scores 27y, and an M would vield a great score (FLAM (A1) scores 43y, am;:i do not
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even contemplate what happens when the opponent holds X. (OK, put away that
calculator. FLAX scores 83. XU is a currency unit of Vietnam.) The opening to Al is not
the only defensive liability. The opponent could now be sitting with an unplayable Q, and
jumping for joy because he can dump his Q from 4A, scoring over 46 points because he
hits the double word square at 4D. With UVULAE projected to hold only a 1.5-point
edge over UVEAL, it seems that the defensive liabilities are too large. The triple-word
square exposure is over 3 points by itself. (Simulation (chapter 10} shows that the actual
defensive liability is about 5 points.)

The question remains whether anything can beat UVEAL. In this position, probably
nothing does. The V does not make any two-letter words, so hotspots that involve
overlaps are not feasible. The G only overlaps an A (for AG) or O (for GO), and these
opportunities do not exist on the board (e.g., GLEE 7F is only 14 points, and keeps the
hideous tiles UUV). UVEAL gets 3 times the V, and it seems impossible to get 4 times
the V. Because the penalty from keeping a duplicate U is so heavy {about 12 points), we
are forced to play at least one U this turn. [t is hard to imagine any better rack leave than
EGU, EGLU, or EG. There is no way to play these same tiles at another spot on the
board. So UVEAL is the best play.

In the game, Logan chose UVEA, probably judging that vowel/consonant balance is more
significant than stated above. Simulations give UVEAL an edge of about a tenth of a
point over UVEA, so we can regard these two as equal. UVULAL is 3.7 points back. The
human process works well here.

2.4 Comparison of Computer and Human Expertise

Human masters are excellent players—far better than you might expect after considering
human cognitive limitations. Appendix B gives annotated games that show how accurate
they can be.

Despite the ingenuity of human masters, human Scrabble strategy should have a tough
time against expert computer programs. The difficulty is that human move generation
skills are deficient. If a human misses bingos in even 20% of his games, that will add up
against computers that never miss. Add in the inevitable errors on non-bingos, and the
best humans would face a deficit of 15 to 20 points per game,

It is questionable whether humans have any ftricks in their arsenal to counterbalance that
disadvantage. The end-of-game fishing trick has potential to swing about 5% of games,
and humans can count on endgame errors for additional compensation. Nevertheless, it is
doubtful that total amounts to 20 points per game.

2.4.1 Validation against Wapnick's Book

When MAVEN"s drive to achieve world dominance started, the author obtained a copy of
the book The Champion’s Guide to Winning ar Scrabble, by Joel Wapnick. This book,
sadly out of print,'” is to this day the deepest exposition of the game. Joel Wapnick won
the North American Championship in 1983 and was runner-up in 1992, and won the

i . . . e - , ] . _ . )
Actually, there is an electronic second edition [26], in which Wapnick reexamines the theories of

the first edition in light of computer data. Maven simulations play a large role in the revisions, and
this author is grateful that Joel was able to benefit from this research.
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World Championship in 1999 and was runner-up in 1993 and 2001, so he is amply
qualified to enlighten aspiring experts.

MavVEN went through all of the examples in the book. MAVEN mmp&md“m‘he. Move
recommended by Wapnick, or the move made in a game by an actual player, with a:'ts owlj
move. There were over 50 sample positions and 8 fully annotated games, m‘vermg all
phases of the game, with an emphasis on the fine points. The author concluded that

1y computer play should be superior through the early game, contingent solely upon the
program’s ability to evaluate rack leaves, and

2} human weakness in move generation continues through the pre-endgame and
endgame, but there are significant difficulties in evaluation for this phase, so naive
computer programs are al best break-even against top masters.

For a typical example of human weakness, consider the opening rack of EHJQPSS_.One
player played JOSHES (8D). which scored 48 points. Unfortunately, he missed
JOSEPHS, a 104-point bingo. JOSEPHS rarely occurs, but when it does, it is well worth
finding. This example is typical; the word is infrequent and the player probably never
studies that far down in the frequency list. Humans do not even notice such errors unless
a computer checks the moves.

I J KL MN Q
ES ‘DL

For a typical example of human ABCDETFGH
strength, consider Position 2-4, which
occurred first in Letters for Expert
Game Players, a newsletter published
in the 1980°s. Wapnick reprinted it in
his book, and it is so remarkable that
the author feels compelled to publish
it once more [8]. Please note that this
position occurred before 1993, when
QAT was introduced to the lexicon, so
QAT (D3) is not possible.

.
S WO~ DO W =

=k

1
Best is the peculiar play LEK (4K, 14,
EEIOR). Why is LEK better than the
obvious move OKE (8A, 23, E “IR)?
Many factors contribute equity. First,
the vowel/consonant balance of OKE .
seems better, until you look at the Mover. E, E, v
unseen tiles and discover that there are Opponent's last: CAY (7H, 1 7)
Just two vowels left among 15 tiles. Unseen: ACEFGHJLMQRRSTT

LEK’s 4-1 leave is actually better than

OKE’s 3-1 leave. Another difference Position 2-4 Polatnick’s Brilliant PEG-8

is that OKE creates a new line for the

opponent (o play a bingo. Since OKE takes an 8 I-point lead, it is likely that you will win
even it the opponent does bingo, but why court trouble? Besides the gem:raj admonition
against mmtmg trouble, in this position there is a specific danger: there is a Q in the bag
and there is no U available. Therefore, if you draw the Q after playing OKE and rhfé
opponent plays a bingo then you will lose. Thus, we see another ad':ran?age df” L‘I‘EK; it
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plays only two tiles, which reduces the chance of drawing the Q. It appears to reduce the
chance from 3/15 to 2/15, but the actual reduction is greater. We know that the opponent
did not keep the Q last turn, because he would have exchanged the Q rather than play
CAY. Since the 5 tiles the opponent kept were not Q, the true reduction is from 3/10 to
2/10.

MAVEN actually contains these heuristics in some form, so MaveN ranks LEK close to
OKE. LEK has additional things going for it, which are hard to see.

1) Because of the surplus of consonants in the bag, it is valuable to interfere with
useable vowels on the board. LEK interferes with a cluster of vowels, whereas OKE
opens another vowel.

2y JURA (L.1) plays for 44, so we take away a play that could help the opponent to win.
OKE blocks JAR (BA), but that scores only 32. The extra 12 points make a
difference when we are stuck with the Q.

3} Here is the kicker: LEK sets up QUEER (L1, 29) if we draw the Q, which eliminates
the stuck-with Q scenario. Therefore, the game is impossible to lose, unless the
opponent somehow blocks (or plays) QUEER, and then bingos. That scenario is
unlikely, because there are few tiles in the bag.

How would you write computer programs to see these things? It is hard to generate such
insighis, and hard to evaluate them. When this problem was presented to a panel of 24
experts [9], only one (Steven Polatnick) found the best move. Scrabble choice-of-move
decisions can be difficult indeed. Despite the difficulty, human masters regularly have
such insights in the pre-endgame. This document gives other examples elsewhere.

2.4.2 Variance

Another possibility is that humans can manipulate variance to their advantage, with the
idea that they can lose games by large margins, provided that they win more games by
close margins. Examination of the table of average scores should convince you that
variance is hard to manipulate in the early game. Positions show relatively uniform
variance through the first half of the game, whereupon the variance decreases towards the
end. This is a natural consequence of the size of the board; as the tile configuration
expands, new hotspots arise for every hotspot consumed, bui eveniually that dynamic
peters out. During the expanding phase of the game, a player can do little to affect
variance.

Moreover, because winning chances in a long game are approximated by a cumulative
normal distribution function (a consequence of the Central Limit Theorem [10]), the
winning chance is determined by the lead and variance using a function of the form Lead
/ NVariance. Accordingly, the variance has a second-order impact on winning chances.
The average score has to fall by a lot before changes in the variance are large enough to
outweigh changes in score.

The author’s conclusion is that manipulating the variance is generally a useful tactic only
towards the end of the game. At the end of the game, the Central Limit Theorem no
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longer applies, and the Variance of the next turn is more significant relative 1o future

furns.

2.4.3 Generalities

The general shape of a computer-human game, then, is that the program will haye the
edge until near the end of the game, whereupon it is up to the human to snatch victory
from the jaws of defeat. Scoring dominates the early part of the game, so computers
should be adept at it. This assumes, of course, that computer programs can do a
reasonable job of evaluating which tiles to keep. Computers will misevaluate moves by a
few points, but these will be infrequent and of little consequence. More frequent and
more significant will be human move generation errors.

The late stages of the game, however, are up for grabs. As the bag empties, the human
ability to calculate specific variations becomes more valuable. Therefore, it is
increasingly likely that humans will select moves that have higher point differentials.

In addition, as the game shortens, the ability of a human expert to manipulate the
variance of the game becomes significant. In the early game, this is not important because
the normal approximation of the Central Limit Theorem is a good approximation to
winning chances. However, if the number of moves remaining is so small that the normal
approximation is not valid, then variance can be a significant factor.

2.5 Plan of Attack
These insights into the space and into computer and human play suggest the following
plan of attack.

1) Make a program that generates all legal moves.

2)  Add the ability to evaluate racks.

3) Improve the play of the program in the endgame.

4) Improve the play of the program in the pre-endgame.

If the analysis of this chapter is correct, then stage 2 should be approximately at the level
of the best human players. Therefore, stages 3 and 4 should put the program in the
superhuman category. '

The remainder of this thesis will show that this plan basically succeeded. However, at the
et it 30 v OV ety : fFae Fie y .
start of the project it was far from clear that success was assured, even though the author
was overflowing with confidence.



Chapter 3 — Brief History of MAVEN

The history of computer Scrabble is poorly documented, which the author recognizes as
partly his fault. The goal of this chapter is to make amends. The chapter covers factors
that influenced MAVEN’s development, in historical order.

The theme of this chapter is that human and computer expertise coevolved. MAVEN'S
early development established a statistical basis for positional play in Scrabble, which
trumped a logical, but unsound, human theory. There followed an “arms race” between
MavEeN and human masters, in which MAVEN's tactics were refined to match the best of
human practice, while humans adopted many of MAVEN's methods.

3.1 The Early Literature

Around 1980 the question arose as to whether computer programs were able to play
competitive Scrabble. In 1982, the first attempts were published [13,14].

These early programs were weak. They were constrained by small memory sizes, as they
ran on the microcomputers of the day. Because these computers were slow as well, they
limited themselves to selective search of hotspots. Truly, it is remarkable that they were
able to average even 20 points per move.

3.2 My First Experience

The author read the early literature in the summer of 1983. Surpassing the published
results seemed feasible. 1 had heard that human experts averaged 30 points per move, so
there was a lot of room on the upside. Moreover, the limited vocabulary and selective
search of the early programs seemed like obvious targets for improvement.

My first program was writtert in PL/1 on an IBM mainframe in the summer of 1983. The
program generated all legal moves using a fixed word list, which contained about 25,000
words out of the Official Scrabble Player’s Dictionary (OSPD) [15]. I typed in all the
short words and all JQXZ words, as my instinct was that these were the most important
words. The contents of a spell-checking dictionary supplemented this list, which gave the
program an occasional bingo.

This was sufficient to significantly surpass the programs described in the early literature.
The program averaged about 23 points per move. [t also yielded a glimpse of the future,
as it averaged over 30 points per move in one game. It seemed that the advantage over the
earliest programs was attributable to better move generation (both larger vocabuiary and
exhaustive generation rather than selective), since there was no improvement on the
strategic side.

The program’s rack was often clogged with multiple I's and U’s. Of course, this is
symptomatic of a program that always chooses the highest scoring move: the tiles that
tend to occur in high-scoring moves are played off, leaving tiles that are less playable.
Several turns of this dynamic can result in an accumulation of such drek,”’ especially if
there are few words that play multiple instances of bad tiles.

' A colortul term used by players to describe bad racks.
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The author wondered what would happen if the program had a bias towards keepmg 8
and blank and playing away duplicates. To avoicﬂ interfering thﬁ the stmleg%/ ﬂf;l cléuosmﬁ
the highest scoring move, this bias became a Meb';eaker m’appl'y when mg\«es a heq‘;{r
score. To my delight, the program scored almost 25 points _per furn with this
modification. It seemed that rack management was another opportunity.

3.3 First Commercial Software

The middle 1980°s saw the release of early commercial efforts. Alas, nothing fmr‘n the
author! A clever entrepreneur obtained worldwide rights to Scrabble computer software
from the copyright holders, who basically gave away the farm for a period of 15 years.

The commercial software (published by Virgin Games) was a financial success, but a
catastrophe for Al, in the author’s opinion. The programmers were not at fault, because
the positioning of the products required that they operate on computers that had
extremely limited amounts of RAM. Accordingly, these programs had deficient
vocabularies and ran slowly.

Experts were familiar with a handheld game machine named MONTE PLAYS SCRABBLE.
MONTE was introduced with great fanfare, including a demonstration match against a
human expert. I recall that the human, who was expert but not of championship caliber,
won 50 games without a loss. The experience convinced human experts that computer
programs could not compete.

Of course, poor vocabulary doomed the early programs from the start. Human experts
also criticized their strategy, but this criticism is misplaced. If a program scores only 20
points per move then strategy is simply not an issue. No strategy will overcome a
deficient vocabulary.

However, human experts took the strategic weakness of these early programs as evidence
that Scrabble was too hard for computers. They believed that expertise required human
intuition, and considered human champions invulnerable.

3.4 The First MAven

MAVEN's first incarnation debuted in 1986. It ran ona VAX 11/780 and was written in C.,
It contained the full OSPD dictionary (well, almost) and a rack evaluation function that
was tuned by self-play. It was named MAVEN, a word of Yiddish origin, because the
OSPD defines MAVEN as “expert”. Later on, someone who actually knows Yiddish told
me that the connotation is more “know-it-all” than “expert.” So much the better!

MAVEN performed many self-play experiments. These showed that MAVEN averaged
3 A e S oy N H =
34.5 points per turn, which was higher than the standards of human experts. At that time
the program was, in the author’s opinion, already the world’s best player.

The r@k evaluator was a great success. It routinely played reasonable rack management
strategies, such as keeping Q and U together, saving blanks for bingos, and s;)littin '
duplicates. It showed great ingenuity in saving better tiles when it had tl’w‘opl‘ion Fb%
example, on an opening turn it would play BLOCK rather than BLACK, because keé ih

an A is better than keeping an O. ) rie
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It was fascinating to see how the simple tradeoffs in the rack evaluator combined to
produce intuitive solutions to complex problems. When two moves that had little in
common were compared, MAVEN was adept at choosing what seemed (to me) to be the
maore promising alternative.

The program generally showed great strength in the early and middle game, where many
moves were forced for scoring reasons. However, there were some clear glitches, For
example, it opened triple word squares too readily. It had difficulty with vowel/consonant
balance, in that it would rate a rack like ANST as worse than NRST because R is
generally better than A. However, if you already have 3 other consonants then surely the
reverse is true. Nevertheless, the program seemed fantastically strong overall in the early
and middle game.

In the endgame, however, the program made obviously shortsighted plays. The general
rack evaluation concept was too imprecise to guide play in the endgame, which is a
deterniinistic game. Some adjustments to rack evaluation slightly improved matters, but
MavVEN obviously needed a search engine. | implemented a rudimentary endgame search
engine that selectively searched three plies.' It would be able to avoid some errors.

The author met with Steven Root and Michael Wolfberg, two Boston-area experts who
had some experience with computer programs. They played a game against MAVEN,
which MAVEN won resoundingly. They were impressed by MAVEN’s overall play, and
made several suggestions for how it might be improved. When asked if they thought
MavEN was championship caliber, they politely doubted that it was, even though it had
just drubbed them while playing an entire game of reasonable moves. They asserted that
there existed experts far superior to them, and from the reverence with which they spoke
of Ron Tiekert and Joe Edley, the author envisioned invincible Gods of Scrabble, |
wondered how much better any player could be, since Root and Wolfberg had missed
little in their game against MAVEN. It turned out that “far superior” was not as great a
difference as one might imagine.

Root and Wolfberg were using a program that was distributed on a Digital Equipment
Corporation User Group (DECUS) tape.” They set up a game between MAVEN and the
DECUS program, but we only made a few moves before our Internel connection
dropped. The DECUS program had a complete dictionary and plaved a reasonable game.
It made some dubious moves, so it might not have been as well tuned as MAVEN.
Mevertheless, it should have been close, since it was an exhaustive move generator. Since
Root and Woltberg played it frequently, they should know whether it was championship
caliber; I figured that MAVEN could not be much better.

3.5 First Tournament
MAVEN entered in its first Scrabble tournament in December 1986. The tournament
organizer was Alan Frank, the author of TyLER. Frank wanted to fest TYLER in a

2 A ply of search consists of a move by one side. Thus, three plies would look ahead through our
move, the opponent’s reply, and our reply to that.

" The program was an early version of CRAB, originally developed by Appel and Jacobson. A later
version of Crap appeared in the Computer Olympiads, with modifications by Scrabble experts
Steven and Graeme Thomas.
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towrnarnent against top experts, so he arranged a tournament for this purpose. Frank was
congenial about allowing another program into the act.

I talked to a few players at the start of the event. The parti‘ciy‘nam’s were polite, bpt
skeptical about the program’s chances. Or doubtful, or downright dlsxms‘swe, Forrgsm
Tellis described MONTE and Virgin’s program and averred there was little chance that
any program could stand up to real experts. He a.liowed that maybe TY‘LI:R wmuld be a{l;im.lde
play well, since Frank was a master player, but | ;shoulc] not be surprised "ng“‘*VW, i
not do well. Tellis is a nice fellow, and he was trying to prepare me for the worst. When
told that MavVEN averaged 34.5 points per turn, Tellis said that was a lot, but we v:mpld
not know what it meant until MAVEN played real experts. You see, it is a self-fulfilling
prophecy; MAVEN is unknown, so no statistics of it are knowable. In order to eam
respect, MAVEN would just have to kick some real expert butt.

MAVEN’s first game was against Alan Frank. MAVEN got off to a good start, and laid
down two quick bingos. Then Frank came back with two bingos of his own. MAVEN kept
a steady lead through the end of the game, and that is the way it ended. When asked what
he thought, Frank gestured to a move and said, “I thought this was a horrible play.” Then
he got up and left! Frank was top-ten ranked, so this must have been a terrible blow. He
was the first player of real standing to lose to a compuler program.

In the first round TYLER was kicking expert butt, too. Chris Reslock was one of the top
ten players, and at one time was the highest rated player, one of only 10 players to this
day who can claim that distinction. TYLER was winning until the last move, when Chris
dumped all seven of his tiles to score a gazillion points. The word was phony, but Chris
was relying on a programming error: that TYLER would test for end-of-game before
testing for whether to challenge. Chris lucked out, and TYLER accepted the play. A
double-whammy for Alan Frank in the first round. I scurried to verify that MAVEN
implemented the challenge test correctly, which was handy when Edley tried the same
ploy on MAVEN in a later round. (SWARTZI, indeed!)

In the second round MAVEN lost to Michael Wolfberg. MAVEN was cruising along when
it hit the endgame. It made a play, and Michael suddenly seemed energized, He scarnned
the board carefully and made his move. With a sinking feeling, 1 looked at MAVEN’S
reply; Michael had blocked the only place where MAVEN could play its last tile, a C.
MAVEN was stuck with the C while Michael played out one tile at a time, maximizing his
total. In the end, MAVEN lost by 8.

MAVEN"s endgame code should have prevented that. I could not find any coding errors.
MAVEN’s endgame code also failed in another game, though it did not cause a loss. [ then
di.'szub‘liecl that section of code. | found the bug after the tournament: | flipped the sign in a
minimax operation, with the result that the search engine always chose the same n‘;we as
the heuristic play would have, MAVEN would have defeated Michael Wolfberg were it
not for that bug. |

Qven: the rest of tlm fournament MAVEN went 7-1, including wins over Robert Felt
(National bfﬁ:rabble Champion, 1990), Joe Edley (National Champion in 1980, 1997 and
ifOO), Chms' Reslock, and twice Jim Neuberger (twice runner-up in the Nationals)
AVEN was impressive in the substance of its wins as w 3 Sint

the g ; -8 wins as well, since it averaged 5 70-n
per game spread, ' ged @ T0-point
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MaVEN"s other loss in the event came largely because of operator error. Early in a game
against Rose Kreiswirth, I neglected to enter Kreiswirth’s play, whereupon MaviN
generated a move as if Kreiswirth had passed. The tiles that MAVEN played overlapped
the tiles that Kreiswirth had played, creating a phony. 1 did not notice the discrepancy.
Kreiswirth challenged. 1 appealed to the tournament director that correctable operator
errors are not normally charged against programs, but the tournament director disagreed.
I still think the decision was wrong. MAVEN lost its turn, and eventually lost by 30 points.
There is no guarantee that MAVEN would kave won if it had not lost a turn, of course.

However, one of MAVEN’s wins was tainted by operator error, so I cannot complain,
Robert Felt was winning big when MAVEN laid down 3 consecutive 86-point bingos to
take the lead. The words were JOUNCES, JAUNTIER, and OVERTOIL. (Some things
you never forget.) Then several moves followed. Late in the game, MAVEN wanted 1o
challenge a word (BA) that had been played several turns before. The towmnament director
came over, and MAVEN lost its turn, but won anyway because it had a large lead at that
point. The win is tainfed because had 1 noticed that MAVEN wanted to challenge when
BA was actually played then the course of the game would have been significantly
altered. MAVEN still would have had its large lead, but no lead is ever safe.

3.6 Impressions from First Contact

My impression is that MAVEN was better than the humans of the day were,
notwithstanding holes in its vocabulary. While MaveN could make errors because its
vocabulary was not 100% accurate, it more than made up for them with superior
understanding of rack evaluation.

At the time, humans evaluated racks by relying on a notion of “turnover.”" They
observed that the player that played more tiles was usually the winner. Accordingly, they
emphasized moves that played many tiles. This theory confuses cause and effect; surely
the player that won had better tiles, and therefore was able to play more of them! Alas,
without computer support humans could not statistically validate theories about the game,
so they invented models to support the turnover theory.

For instance, the theory went that turning over tiles would improve your odds of drawing
a blank, which helps twice. Not only do you draw the blank, but your opponent does not
draw it. With this fallacy, human expert effectively doubled the value of a blank in the
bag relative to one in the rack. The error was in considering a blank in the bag to be
worth something to the oppenent. In reality, the tiles in the bag will split equally, so a
blank in the bag has no net value to either side.

To make the theory concrete, Joel Wapnick recommended [8] that in the early game each
tile played is worth 2 to 3 points, with the exceptions that keeping an 8 is worth 8 points
and keeping a blank is worth 40 points. To see the internal inconsistency of this model
you need only compute the average value of all of the tiles in the bag. Specifically, 2
blanks make 80 points, and 4 S’s make 32 points, whereas 94 other tiles at -2.5 points

" Except for Dan Prait, who had a penchant for setups and fishing and was, according to Joel
Wapnick, “way ahead of the rest of us.” Ron Tiekert may also have been ahead of the curve, thanks
to his pioneering use of simulations.
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each make ~235 points. Is the average tile in the bag acmally worth (80 ~ 32 - %35) ipgDO
= 1,23 points? s it possible for the average of all tile values to be anything but zero?

These inconsistencies in model were insurmountable. MA‘VE‘WS opponents conmde;eg
MAVEN's moves to be fishing, a style of play that was deprecated among mfastersu A fis

is a move that accepts a smaller score now in order to increase the chanpg of a bingo neit
turn. For example, MAVEN might take 15 points with a 1/3 chanc? of; k')mgo‘ nexF ‘mm A
human considers this to be fishing, and prefers to score 30 points .ﬂ'lls }l‘l:lm. But he n‘s
wrong-—if a bingo is 75 points then the average score of a sequence in whwh yv'f)u get 15
with chance 2/3 and 75 with chance 1/3 is 35 points per turn. If anything, MAVEN should

fish more often.

Human masters observed MaVvEN getting great racks on turn afier turn. At first, it looked
like a mere hot streak, but no streak cam last so long., MAVEN dominated both the
tournament games, and the informal games. In most informal games, MAVEN played
against a team of humans, which reduced their chance of move generation error. MAVEN

dominated anyway,

Surprisingly, it seemed that MAVEN had better positional understanding than human
experts did. Human experts criticized MAVEN’s positional play for being too aggressive,
but it is likely that human experts of the day actually hurt themselves by overestimating
the significance of positional factors. To be sure, MAVEN can place itself at risk with
wide-open play. However, it is equally clear that humans of the day hurt themselves by
playing timidly.

After repeated thumpings, some players began to wonder what was going on. Robert Felt
discussed MAVEN’s positional data with the author until the early morning hours. He was
disenchanted with his approach to positional evaluation, and thought that some of
MAVEN’s data had the potential to revolutionize Scrabble.

Peter Morris was something of a maverick among top masters, since he eschewed
studying low probability words.'® Morris was a big advocate of tile turnover, and he saw
MAVEN’s play as validating his approach to the game.'” But while MAVEN did turn more
tiles than its opponents {(by a margin of 55 t0 45 in the first tournament) the mechanism it
used to achieve that outcome differed from the method Morris was using. Morris would
sacrifice points to turn over more tiles, whereas MAVEN would sacrifice points to turn
over bad tiles. This distinction would not be clear until several years passed.

Other players still did not get it. There is a doctrinaire streak in many top players, and one
good tournament was not about to overturn the theories that had brought them to the top

e
Actually, if you value the draw of a tile from the bag at the average of all unseen tiles, then it
does not matter whether the tites average to zero. In effect, the value assigned to 3 draw from the
bag compensates for any non-zero bias in the average tile value. This does not save the human
system, however, ‘
1 At the end of one game he asked, “SUINT? 5 that a word?” Other players, most much weaker
lﬂmn he, were amazed that he did not know the anagram of UNITS. “I’s an almost useless word,”
he mmm_ked reply. Peter is right; SUINT is in the bottom 10% of all words ranked by utility ’
But with better vocabulary. i '
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of the game. These players greeted each win with disbelief. They actually expected
MAVEN’s streak to end.

By the end of the tournament, it was hard to find players who thought they could beat
MavVEN. Finally, Joe Edley announced, “1 am geing to beat this thing. All by myself” He
refused help from other players, and he did win.

In addition to its move generation edge, its superior evaluation of racks, and its positional
understanding, MAVEN had two practical advantages in over-the-board play. First is that
it is never tired. The tournament schedule had 2 games on Friday, 3 on Saturday and 3 on
Sunday. The games afier lunch on Saturday were grueling. You could sense the energy
level in the tournament hall was lower from the amounrt of talking, the number of errors,
and some general lethargy. The players nevertheless played expertly, but long tournament
days are a definife advantage for MAVEN. In a modern North American Championship,
the schedule is brutal: 7 games on 4 consecutive days, followed by 3 games on the fifth
day, making 31 games over a 5 day period. Computer programs would have an additional
edge down the stretch and in all afternoon games.

MavEN's second practical advantage was its speed of play. MAVEN took about § seconds
to choose its moves, so with operator time included MAVEN's furns averaged about 20
seconds. Compare that with a typical average rate of 100 seconds per turn in a human
game. On many turns, the opponent had not even drawn replacement tiles when it was his
turn again. Games at this event used with 30-minute clocks instead of the usual 25, but
opponents were in time trouble anyway. Rose Kreiswirth remarked, “MAvVEN plays at
a...good pace.” She was putting a good face on the matter; it was obvious how
disconcerting it was.

3.7 Further Development of MAVEN

MaVEN's first tournament turned up several defects. First was that the vocabulary was
not 100% accurate. MAVEN had lost two turns by playing phonies (not including the
operator error against Rose Kreiswirth) and lost a challenge of a valid word. It also
played a phony that was not challenged. Validation of a section of MAVEN’s word list
revealed a 3% rate of missing words and a 1% rate of misspelled words.

Joe Edley played METHADONE, a nine-letier bingo. The OSPD containg no words
whose stemn is longer than 8 letters, so MAVEN could not have found such a play.

It was uncertain that vocabulary was MAVEN’s biggest defect, but the path to
improvement was at least clear, so work started on tasks to improve the accuracy of the
dictionary.

MAVEN's endgame was a fiasco. A simple bug played a role, but the program would not
play perfectly even if that bug were fixed. Some endgame plays at the tournament
involved significant tactical lookahead. It was possible to revive the endgame code, but
upon reflection, I decided (correctly) to restart from scratch, so | threw out the old engine
{(a mistake). With the benefit of hindsight, I should have fixed the bugs in the original
search engine, so that the new engine would have a basis for comparison.
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Rack evaluation needed attention. Human experts confirmed a suspicion that MAVE? did
not always play well when vowels and consonants were out of balance. MAVEN received
a rack evaluation heuristic that corrected that limitation.

Human experts maintained that MAVEN was too aggressive about opening up the board.
Testing showed that they were mistaken, and suggested that the human approach was
self-defeating.

In addition to polishing MAVEN's intelligence, [ distributed MAVEN to experts who could
provide feedback about the program’s play. Many early adopters were not of
championship caliber, but they were experts, so their feedback about its occasional lapses
was valuable.

3.8 Olympiads

In 1989, 1990, and 1991 there were Computer Olympiad events in Scrabble. I had heard
about these events, but declined to participate. Participating in the first event was
impossible, since I heard about it too late to prepare. MAVEN could have focused on
preparing for the second Olympiad, but there were several reasons not to.

1)  The Olympiad dictionary was SOWPODS, whereas MAVEN used the OSPD. Typing
in a new dictionary had little appeal, especially since MAVEN had no users that
played SOWPODS.

2) The Olympiad was too short to distinguish the programs. MAVEN had about a 10-
point per game edge over the other programs, owing to its endgame engine, but that
margin is not decisive in a short series. For example, the 10-point edge would
produce a winning percentage of about 53%. So a 100-game series should end at 53-
47, but there is about a 30% chance that MAVEN would actually finish under 50%.

3) I'wanted to work on simulation instead.
Therefore, the Olympiads took place without MAVEN’s participation, and they do not

seem to have suffered from the omission. Table 3-1 shows the participants, who made a
worthy demonstration of the state of the art in those years.

Name Authors Results

TSP Homan 1™ in 1990 and 1991

CRAB Appel, Jacobson, Thomas and Thomas | 1™ 1989, 2™ 1990

TyLErR | Frank 2" 1989 and 1991, 3 1990
QueTzal, | Hooker and Guilfoyle Competed in 1989 and 1990

Table 3-1 Olympiad Participants

CRrRAB, TYLER, and TSP had indistinguishable results, with no more than 3 games
separating first from third place in any event.

Because MAVEN never entered an Olympiad, there is little experience in direct

comparison of MAVEN against other programs. There are occasional rumors that some
program or other is better than MAVEN, but | do not take such claims seriously. MAVEN
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has no automated mechanism for playing against any opponent, so any head-to-head
comparisons are necessarily short. Moreover, the only public copies of MAVEN are at
least 7 years old, and were tuned to OSPDI and then upgraded to TWL98 without
retuning. Anyhow, I have always regarded that other Scrabble programs were equal to
MAVEN except for endgame skill, so competitions against other programs seemed
pointless. Would you believe that I have witnessed only 11 games played by MAVEN
against other computer programs? It is true.

The 11 games mentioned above occurred in 1989 because TYLER and MAVEN were “seat
racing” for the right to sit on first board in a “team tournament.”" MAVEN won the first
game handily, but then Alan Frank found that TYLER was set to play at its default skill
level rather than its top skill level, so we threw that game out. MaveN and TYLER then
split the other 10 games evenly. TYLER had higher point differential, so it played first
board for the computer team, and MAVEN played second board.

Unfortunately, I lacked awareness that history was being made, and did not preserve the
game scores. Therefore, I have no actual competitive games 1o show you. Instead, I will
annotate a game from a Computer Olympiad. The course of this game will show other
programs playing at their best, and will represent how MAVEN played in 1986. The
annotations also reveal much about how the 2002 edition of MaVEN differs.

This game is from the Second Computer Olympiad. Computer Olympiads use the
SOWPODS dictionary, which consists of a merger of North America’s OSPD and the
United Kingdom’s OSW. The same dictionary is used in the World Championship, and in
regular play in much of the world. The merged dictionary exceeds its constituents by
about 50%, making the game a sterner test of skill than when using either dictionary
alone.

It seems that the Olympiads had recurring hitches involving vocabulary and challenge
adjudication. For instance, in the 1989 event, none of the programs had reliable
vocabularies. In the 1990 competition, QUETZAL played 64 out of 96 games without part
of its vocabulary, but fixed the bug for the final 32 games. Because games were played in
matches of 16, QUETZAL’s last two opponerts had a harder time than QuUETZAL's first
four opponents did. In the 1990 competition, TSP lost when it played GALEN, which an
opponent challenged. GAEN is a valid North American word, but was incorrectly omitted
from an early printing of the OSPD. The Olympiad tournament director did not possess
an up-to-date listing of corrections to the OSPD, and ruled incorrectly. In the 1991
competition, TSP was unaware that Webster’s Ninth Collegiate Dictionary was the
reference dictionary for nine-letter words, and failed to include such words in its
vocabulary, TSP actually challenged two nine-letter words played by TYLER, but the
towrnament director did not have a copy of Webster’s Ninth at the tournament hall, and
allowed TSP 1o escape without losing a turn [47].

TSP seems the equivalent of 1986 Mavekn, consisting of a move generator and rack
evaluator with a more-or-less complete dictionary. Its author wrote [12],

" In a team tournament the players are grouped into teams that play matches. Similar to the
organization of chess Olympiads.
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“Surprisingly, TSP won the competition despite employirmg less
strategy than the other programs. TSP uses rack management, but pays
no attention to defense and has only a very crude endgame strategy.

Chapter 6 will show that the fact that TSP won using less strategy is nof surprising.
Nevertheless, it would have been surprising to the observers of the day.

CraB’s racks have not been preserved (it seems I am not the only Scrabble programmer
lacking a sense of history), so | am constrained to annotating TSP’s moves.

CraB's first move was to exchange tiles, so TSP played to an empty board with the tiles
FIKLNTU. TSP’s move FLUNK (8H, 34, IT) is obviously best. CRAB responded by
playing QUIPO (37, 22) through the U in FLUNK to bring up the position at right.

TSP played AWEE (K10, 28, 1IT),
which has the obvious drawback of
keeping II. Mow I suspect that TSP was
not penalizing the retention of [l
enough, because WAIT (K11, 24, EED)
seems better from the perspective of
score + rack leave. Nevertheless, TSP
found what may have been the best
move. MNowadays we would
recommend WAIN (K5, 25, AEEIT),
but I recall that QI was unacceptable at
the time,

The phenomenon of finding a better
play  because  your  evaluaiion
parameters are off is actually typical.
Rack evaluation parameters represent
only an average over all positions, and
therefore might not be representative of
this position.

DEFG

2L

Crag’s last: QUIPO (J7, 22) 22
After CRAB’s QUIPO (J7, 22)



Crap played DERM (L10, 34),
overlapping AWEE, 1o bring up the
position at right. TSP played OUSTITI
(7B, 63), which is the only playable
bingo. One characteristic of Scrabble is
that it is difficult to tell which racks
have bingos. TSP found a bingo in this
scrap heap of a rack, yet in the
promising rack ADEINOT you will
find nothing.

After Crab’s TALIPOTS (B2, 82),
which was CRAB’s only playable bingo,
TSP found the beautiful double-double
BOTCHED (E5, 60). Note the
contribution of the premium squares.
Racks laden with heavy consonants can
be unproductive if the premium squares
do not cooperate, or they can be huge.
CraB replied with the clever extension
FLUNKEYS (8H, 54), adding EYS to
FLUNK to hit a triple word square.

TSP then held ADENRVV. TSP played
VANED (A1, 40, RV), which is clearly
best. The alternative is the fish VAV
(3A, 18, ADENR), which has a high
bingo potential. The average score of
TSP’s twn after playing VAV would
be 63 points. Perhaps VAV would be
the best play if TSP needed a bingo to
caich up.

i L o Y 2L
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TSP u B L0 T T U 62
CrAB's last: DERM (L10, 34) 56

After CRAB’s DERM (L10, 34)
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TSP: BLC.D E H.M.O. 125
Crag's last: TALIPOTS (B2,82) 138
After CRAB’s TALIPOTS (B2, 82)



Crab played AIERY (A8, 44). TSP
found the nice move OVERBUY (N2,
423, which is clearly best. Nothing
else comes close. Note the accuracy of
the programs when the moves are
obvious. Also, note that when the
moves are not obvious, the programs
choose something reasonable.

6
7

CraB's last: AIERY (A8, 44) 236
After CRAB’s AIERY (A8, 44)

CraB played ADIT (D9, 21), and now
TSP played a move that is just plain
wrong. TSP played CENT (Cl1, 24,
GIlO), which keeps terrible tiles.
MAVEN rates INCOGS (D2, 23, ET) as
14 points better than CENT. Is it
possible that OB was not in
SOWPODS in 19907 If not, then why
not play COIGNE (41, 18, ET), which
is also obviously better than CENT?
My conclusion is that TSP’s rack
evaluator was off,

After CraB’s LANAL (14K, 26), a
pretty play that hooked an L onto
AWEE and an A onto DERM, TSP
held  GGINORW. TSP played
CROWING (IC, 42, G), which was

[ S N U YL Sy

obviously best. In such situations, TSP GEG LN O T 267
weaker humans {including the author) Crap’s last: ADIT (D9, 21) 257
oftery go into a funk contemplating the _

bingo sitting on their rack that has no After CRAB’s ADIT (D9, 21)

place to fit on the board. “If I had an N

I would have WRONGING, or an L would make GROWLING. But of course neither one
plays, and neither does GROWING, ...” If luck has been very bad, then the train of
thought can go for several minutes.
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Cras playved AXE (F9, 63) to reclaim
the lead. The normal move for TSP in
this position is FUGIO (O11, 30, HIS),
and I cannot see any reason not to play
it. FUNG (M12, 32, HIOS) is plausible,
but one should prefer FUGIO based on
rack leave alone. When you factor in
the benefit of blocking the O-column,
which is important because of the
unseen Z, then FUGIO stands out.
MAVEN’s simulations give FUGIO an
edge of 12 points over FUNG.

TSP’s preference for FUNG over
FUGIO is revealing. It shows that TSP
had no triple word evaluator, since the
012-015 opening would be worth 3
points at a minimum, and 1 cannot
imagine that TSP would rate FUGIO
more than 3 points behind FUNG.
After all, FUGIO only scores 2 points
less, and the O it keeps must be at least
a slight negative. Another inference is

ABCDEFGH

J KLMNDO

LRE

TSP (B G L 333
CraR’s last: AXE (F9, 83) 346
15 Unseen: ?AEEGJLMNOORRSZ

After CRAB’s AXE (F9, 63)

that TSP’s rack value for O is greater than -2 points. Or, we might infer that TSP’s
vowel-consonant bonus was inappropriately weighted to prefer 2-2 distributions over 1-2
distributions. Careful analysis of AWEE and CENT could vield additional information.

I believe that an analysis of the moves of a handful of Scrabble games played by a
computer program would produce accurate estimates for the rack evaluation parameters
employed by that program. This information would form an opponent model for use in
simulations, with the result of specifically defeating that program.
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The worst happened when CRAB
played ZEIN (012, 69), to take a 50-
point lead. To come back from such a
deficit, TSP needs to play a bingo.
Since there is no bingo in AHILOOS
on this board, TSP’s problem is to play
off the tiles that maximize the chance
of a bingo next turn.

ABCDEFGHI JKLMNO
W ; N

TSP played OOH (6D, 28, AILOS).
OCH is a routine move, following
normal midgame principles.
Unfortunately, OOH empties the bag,
which allows the opponent to block
bingos that might come out of the bag.
In such situations, it normally pays to
leave one tile in the bag. For example,

OH (6E, 26, AILOOS), unfortunately, Liki B Bos 365
this leaves a duplicate O on the rack, Crag’s last: ZEIN (012, 69) 415
and reduces the chance of drawing a 9 Unseen Tiles: ?EGJMORRS

blank out of the bag. On balance, After CRAB’s ZEIN (012, 69)

emptying the bag is not as bad as it

normally is, because the blank gives

TSP a reason to draw more tiles out of the bag. But there is a more accurate move: AH
(O1, 20, ILOOS), which wins about 16% against OOH’s 10%.

At last, we know CRAB’s rack, because
all of the tiles are out of the bag. The
tournament book noted [12],

“An analysis of the game shows
that CrRAB, leading by 22 points
with no tiles left to be drawn,
could have won by choosing any
of a number of different moves on
its last play. TSP’s only chance of
winning was to play GASOLIER
for 74 points at 4H or GIRASOLE
at 4G for 70 points. No other play
by TSP could get more than 25
points, CRAB needed only to block
the area around 4G-40 while
scoring reasonably well to sew up
the game. A large number of plays
would  have accomplished  this
including:

After TSP’s OOH (6D, 8)

41 OJIMES 30 points
4K JAMES 28 points



41 REJONES 28 points
51 MAJORS 28 points
G3 JOIST 26 points”

Note that the commentary above does not state which play is best. Without using
MAVEN’s endgame analyzer there is no way to know which play was best. The best play
was RESTEM (41, 20, JO). TSP’s best response would be ISOLOG (2J, 9, AR), which is
needed to block JO (01, 29). Then CrRaB would play out with JOB (6L, 12+4), for a net
of 27. JURORS (5], 24, EM) is as good as RESTEM, after TSP's SIGLA (C11, 19, OR)
and CrAB’s EME (4L., 18+4). The best of the moves given above is MAJORS, which has
a net of 25 after RIOJA (L2, 24, GLS) and RE (2E, 13+8).

Instead, CraB played JO (01, 29, 7ZEMRS). This shows that Cras did not modify its rack
evaluation parameters in endgame situations. Better endgame play results from assuming
that each tile left on the rack will be collected by the opponent. This produces correct
play for the last two moves in the endgame (i.e., going out and the preceding turn), and
the accuracy is pretty good before then, too,

After JO, TSP won the game with GASOLIER (4H, 74+12).
To quote from the tournament report [12],

“An adversary search to analyze the game tree would find one of the
winning sequence of moves. But looking at some numbers from this
example points out how time-consuming a complete endgame analysis
could be in some cases. With seven tiles including a blank, CraB had
4,137 possible moves to choose from. TSP also had seven promising
tiles left and would have had about 800-900 possible moves in response
to CRAB’s move.”

This game shows the state of the art around the year 1990. We have seen that the
programs usually chose the besi plays. There were exceptions involving close decisions,
but if a move was obvious then the programs never missed. Then in the endgane one
program completely missed the point and threw away a game that ir should have won.

3.9 Maven’s Analytic Skill Evolves
By 1988, an intensive review of MAVEN"s word lists had almost eliminated vocabulary
errors. Endgame analysis then became the highest priority.

MAVEN’s first (1986} endgame analyzer failed because of a simple bug. With that fault
corrected, the search engine resulted in a clear improvement in play. However, a careful
domain analysis showed that the results would be far short of perfection.

Examples from Wapnick’s book [8] contributed to the domain analysis, and I slowly
gained appreciation for the complexity of the endgames. MAVENs first truly successful
endgame player dates from late 1988. The engine made several sparkling plays, and
contributed insights into the post-mortem analysis of other games. Human masters were
excited by the ability of a computer program to analyze endgames, since that had always
been a weakness of computer Scrabble programs.
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My second engine was successful, but still not perfect, as careful analysis s‘howedi
Maven spent much of 1989 working on endgame analysis, The result Was a r‘m‘:'e‘
application of the B* search algorithm, which set a standami for gndga.me play thatfwﬁs
not equaled by human or computer for at least a decade. That 1«mp:l‘ememamgl‘1 of the
endgame analyzer has proven so robust that the last 13 vears have uncovered only a

handful of bugs.

A monograph published in 1990 entitled MaveEN's Endgame Abi![?})~nﬂfa Comparative
Analysis [16] compared MavEN’s anaiysis of 54 endgame instances with the moves qf
human experts. About two dozen experts reviewed this dmcumem. Before ’thls
publication, no one knew how many errors humans committed in gw}dgan1es. The
examples showed that MAVEN was remarkably accurate even in specially concocted
endgame situations.

With endgame play practically perfect by the end of 1990, MAVEN’s biggest opportunity
lay in the pre-endgame phase. Wapnick’s book contained many pre-endgame instances,
and MAVEN generated others. | developed a domain analysis of the pre-endgame based
upon these examples, and then developed an algorithm that seemed to have good
properties. Implementing that algorithm accurately was harder than expected, and it
remained rife with bugs for the next 7 years. Notwithstanding the bugs, from 1990
onward MAVEN had a pre-endgame module that improved upon standard computer play.

3.10 MAVEN and Simulation

A simulation is a Monte Carlo search of the positions near a move-selection point. The
goal of simulation is to estimate the point differentials of the moves that you might make,
under the theory that the move with the highest point differential is probably best.

MAVEN’s simulation capability dates to 1989. At first, simulations took so long that they
ran overnight. However, simulations became faster as computers became faster, and it
was not long before you could complete a simulation in less than 30 minutes.

Simulations revealed a wealth of information about Scrabble. MAVEN’S human
colleagues regularly published amazing MAVEN simulations. For example, simulations
revealed that on the first turn it was generally better to play a short word, other things
being equal. This was exactly the opposite of the conventional wisdom.

MAVEN's ability 1o perform simulations made it an essential tool for experts who were
serious about positional theory. Several experts even purchased Macintosh COmpUters in
order to run MAVEN, since at the time MAVEN was not available on PCs,

By 1996, computers were sufficiently fast that MAVEN could use simulations to select
moves in real time. By 1998, MavEN's implementation of simulation was robust enough
that it was a huge advantage in practical games.

3.11 MAVEN's Evolution and Human Expertise

Human expert play has gotten considerably more sophisticated since 1986, and in the

author’s opinion, MAVEN has driven much of the progress. It is interesting to compare
e Yo COITERE T 5 VT a4 Iy . ‘

MAVEN’s progress with human progress over the period from 1986 and 1997
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At first MAVEN’s advantage was attributable to accurate move generation (in principle, it
considered all possible moves) and fine-funed rack evaluation. However, my constant
preaching about the advantages of MAVEN’s rack evaluation steadily eroded that
advantage. By the early 1990's, several experts had adopted MAvVEN's theories. Their
successes attracted the attention of other experts. Table 3-2 shows how talented MAVEN'S
early adopters were.

Plaver Peak Achievements
Peter Morris 1989 National Champion, 1991 World Champion
Robert Felt 1990 National Champion

Charlie Carroll | 1991 Masters Champion

Adam Logan 1996 National Champion

Joel Sherman 1997 World Champion

Matt Graham 1997 World runner-up

Joel Wapnick | 1999 World Champion. 1993 and 2001 World runner-up.
1992 National runner-up.

Table 3-2 Remarkable Achievements of Early Adopters of MAVEN

One particularly industrious expert was Nick Ballard, the publisher of the Medleys
newsletter. Ballard used cleverly designed simulations to determine the value of each tile
and every vowel/consonant balance, which he published in Medlevs [17]. Ballard also
exposed the fallacies of the turnover theory. Many players learned the theory of rack
evaluation by reading Medleys.

The historical progression of human expertise started with a transition from the crude
turnover theory to MAVEN’s statistically based theory of rack evaluation. Even players
such as Joe Edley, who shy away from quoting numerical values for tiles, have
incorporated MAVEN’s theory into their repertoire somehow. For instance, Edley quotes
[18] the order of tile quality as Blank, S, E, X, Z, R, A, H, N, C,D,M, T, 1, ], K, L, P, O,
Y, F, B, G, W, U, V, Q. This is exactly the order that MAVEN gives, except that MAVEN
places the J lower than Edley does. Why the exception? It is my fault. Edley asked what
the tile values were, and I mistakenly quoted ~1.5 for the [ instead of the correct -2.5. 1
did not realize that I have been quoting the wrong value until [ prepared this hesis.

MavEN’s demonstration that humans make many endgame errors changed the play of
experts. For example, Charlie Carroll allocated his time so that 10 full minutes remained
for the last few turns. Plavers mow specifically practice endgames. Players have
techniques that search for sequences that go out in two moves. Top humans still cannot
play endgames as well as MAVEN, but they have taken a definite step up.

The lessons of simulations are perhaps the most far-reaching lessons of all. Every master
has learned something from simulations, even if he is not himself a MAVEN user.
Simulation results have become the gold standard of positional analysis. In this respect,
simulation has the same standing in Scrabble that rotlouts have in backgammon.

The trend started with my circulation of a few fascinating results, by word of mouth.

Then Nick Ballard published many simulation results in Medleys. Soon experts such as
Robert Felt and Charlie Carroll were checking every game they played using MAVEN
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simulations. Carroll, in particular, was very generous in sharing his insights in the pages
of Medleys.

The trend towards relying on simulation received official sanction when Joe Edley
required that computers check all games published in Scrabble Players News. Soon t:he
trend was sweeping the Scrabble world. By the end of the 1990°s, you could not publish
Scrabble analysis without simulation results because someone would surely ask for them.
The trend may have gone overboard, to the extent that simulation has become a substitute
for thinking in certain circles. In particular, simulation does not always result in
statistically significant conclusions, and simulation does not address all issues.

However, while players may go overboard in using simulations, | can say with
confidence that human experts have learned much from them. In the years between 1990
{when simulation became available as an analytical tool) and 1996 (when simulations
were first used in competitive play) humans improved their positional skills by studying
simulation results. However, it may be doubted that the improvement ever compensated
for MAVEN"s advantages in move generation and endgame play.

Human improvement notwithstanding, the author believes that MAVEN has maintained
at least a slight superiority over human experts since its debut in 1986. This may be the
earliest time at which a computer program achieved world-class status over human
masters in a non-trivial game of skill. With the advent of competitive play using
simulated games, MAVEN is now out of reach of human experts. No human will ever
challenge MAVEN on equal terms. In brief* a program that plays almost perfectly is
technically feasible at this point, and MAVEN is close.

3.12 Commercialization of MAVEN

Another aspect of MAVEN was its commercialization. MAVEN became part of Hasbro’s
Scrabble CD-ROM in 1995. In the author’s opinion (admittedly biased), it was a huge
success for Al. The commercialization of the technology has spread the news that
computer programs can compete in Scrabble at the highest levels of play. By 2001, well
over | million copies have shipped. Many hundreds of thousands of people have played
against MAVEN using this product. The author hopes that MAVEN has brought new
players into the game of Scrabble, and increased the understanding of those who already
love the game. ’

3.13 MAVEN’s Future

The author has produced new versions of MAVEN for Hasbro as needed, but most of the
development is now on issues that do not affect the peak strength of the Al. We consider
that MAVEN's “endgame” has been reached,
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Chapter 4 — Move Generation

As noted in the domain analysis, move generation is the most critical skill in Scrabble,
and in contrast to many games, it is a challenging technical problem. We wish to generate
all legal moves using simple, fast, and flexible algorithms.

One of the crucial elements of move generation is to have a complete list of legal words.
Nowadays such a list is available in electronic form, but this was not always true. The
first section lays out the process used to create MAVEN"s vocabulary.

Early versions of MAVEN used a constraint satisfaction algorithm to generate moves, as
described in the second section. While this algorithm is no longer the best general
algorithm, it is of technical and historical interest, and may stili be optimal for certain
situations. It can be used in conjunction with data structures introduced by the next two
algorithms.

In 1988, Appel and Jacobson published a beautiful algorithm that MaviN adopted
instead of its homegrown technique. This algorithm is described in section three. This is
MAVEN’s algorithm to this day, but there may be an even better choice.

In 1993, Steven Gordon followed up some suggestions from Appel and Jacobson to
create the fastest published algorithm, which is summarized in the fourth section.
Gordon's dictionary representation uses 5 times the RAM that Appel-Jacobson uses, but
it pays off by doubling the speed of move generation.

The fifth section presents an algorithm devised by James Cherry for ACBoT. Cherry’s
algorithm is based upon permuting the tiles and looking up the resulting word in a
dictionary. This is less efficient than Appel and Jacobson’s algorithm, but simpler. It is
the method of choice when working on computers with extremely limited RAM, such as
microcontrollers.

Finally, some important architectural considerations influence the move generator. The
final section describes these.

4.1 The Vocabulary

It is vitally important to know all of the words in order to avoid 3 types of errors. First,
vou do not want fo miss a chance 1o play a word. Second, if your opponent plays a word
you do not want to challenge incorrectly and lose a turn. Third, you want to avoid
misspellings because you do not want to play a phony word yourself.

We extensively discuss vocabulary because massive knowledge bases are an important
component of Al systems. There is a tendency to dismiss problems of scale as mere
matters of technigue, but this author disagrees with that viewpoint. Intelligent behavior
often confronts issues of scale. For example, we have the examples of chess and checkers
endgame databases and opening libraries. We have exhaustive solutions of hex, renju,
awari, and so on. In natural language processing, we have the example of Word Net. In
information retrieval, we have the example of search engines for specialist domains. It is
best 1o have an arsenal of methods for dealing with large knowledge bases.



4.1.1 The OSPD

The early years of tournament play were marked by confusion over which words were
good. The rules state only that all players must agree on a dictionary, and English
dictionaries differ considerably. The earliest tournaments used several dictionaries in an
effort to satisfy all, but this merely resulted in delays when challenges were resolved.
Later tournaments standardized on Funk & Wagnalls, but that solution had drawbacks as
well,

Merging the vocabularies of the five major dictionaries used by North American
tournament players created the Official Scrabble Players Dictionary (OSPD) in 1978.
This event standardized tournament vocabulary, making efficient tournament direction a
possibility. The OSPD was the ruling authority when the word was 8 letters or shorter.
Longer words still had to be looked up in both the OSPD and Webster’s Tenth Collegiate
Dictionary [46], but such words come up infrequently. Standardizing the vocabulary
made meaningful comparison against human players possible, so it was a necessary
precondition for achieving a computer champion.

4.1.2 Word List Creation

Computerizing the words was a big job. The OSPD contained about 50,000 main entries,
and with inflected forms totaled about 95,000 words, averaging 8 letters long. At the
author’s typing speed the data entry task would have taken about 4 months of full time
effort, and I was not working on MAVEN full time. The prospect of delaying gratification
for up to a year while typing the book was unappealing.

Fortunately, a technique inspired by the OSPD itself greatly reduces the typing effort.
One can write the main entries and then represent the inflected forms as suffixes. For
example, a line from MAVEN’s original source text might have read

v enter —er —ers
where the “v” means that “enter” is a verb, which implies that “enters,” “entered,” and
“entering” are valid. The —er and —ers notations mean that you can make the noun forms
“enterer™ and “enterers.”

This method reduced the number of entries to 40,000. Additionally, the data could be
read off the page, which is easier than mentally composing every word while typing.
Typing took about 60 hours."

4.1.3 Postprocessing

Next, a postprocessor transformed the input into actual words. The postprocessor was a
small rule-based system, where the rules handled how nouns and verbs take their
inflective suffixes as a function of the root word’s vowel and consenant pattern.

Duriﬂ_g the initial quality assurance pass, I worked with the original source form, fixing
bugs in the postprocessor. After a few days of bug fixing, it was easier to fix the output

Y ey ; e . o . . . e o
The OSPD has 660 pages, each of which required a little over § minutes of typing per page.
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than to fix the postprocessor, so | discarded the manually entered text and the
postprocessor, which had served their purposes.

4 1.4 Editorial Review

MAVEN’s first tournament showed that the vocabulary was deficient. The first pass had
omitted about 3% of the entries in the OSPD, and mistyped an additional 1%. Most of the
missing words were inflections, so the rate of missing words was not as damaging as it
seems. Typos and omissions both tended to occur more often on the longer words, so
actually the error rate was not too bad as a practical matter. Still, it is obviously not
acceptable to have such an error rate, so the word list needed a thorough editorial review.

The first goal was to absolutely prevent errors among the most important words. The
“Cheat Sheet” from the National Scrabble Association (NSA) was invaluable. This
invaluable resource occupies just one sheet of paper, and contains all 2 and 3 letter word,
all short JQXZ words, and vowel dumps. Preventing errors within these words was
important, as the domain analysis shows that such words account for a tremendous
fraction of all plays, and their significance is even higher when you add in their
participation in hooks and overlaps.

After validating the Cheat Sheet, the author scanned every entry of the OSPD and
verified that it occurred in MAVEN’s list, and vice versa. This caught a large percentage
of the remaining errors. For example, if my editorial review had a 3% rate of omissions
distributed independently from the errors of the first pass, then the omission rate after the
review would have been 3% of 3% = 1/1111. Such a rate would be barely noticeable in
practice, especially if the words tended to be long.

The error rate after the editorial review was about 1/9000, or even lower than expected by
chance. Possibly the low error rate is attributable to a technique of searching for errors
similar to those already found. For instance, an adjective had been “pluralized” because
the entry was marked with “n” (for noun) rather than “a” (for adjective). 1 searched the
dictionary for strings such as "ESTS" and “OUSES,” and did find other instances of
improper pluralization.

Occasionally a published list of words could be used for validation purposes. For
example, consider the list of SATIRE bingos. I a book contained this list, or many pages
of similar lists, how would that help validate? The approach of going through such a list
one word at a time is expensive, because each word would require an alphabetical search.
The prospect of typing such a list is unappealing, especially since it will probably turn up
no errors. Moreover, validation should find misspellings as well and omissions, but the
approach of looking up words only turned up omissions.

The solation was to write programs that generated the list as formatied in the book. |
could then visually compare the generated list with the published list. Most lists are
arranged in columns, so it is easy to determine when a word has been omitted, since

omissions cause the columns to line up differently. This procedure also detects
misspellings that cause words to appear on this list that should not be there.
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Several vears later, 1 crosschecked MavVEN's list against the lists of another group that
had undertaken the same ordeal. There were exactly 8 errors, so the error rate was
significantly lower than expected.

Crosschecking turned up an annoying fact: the OSPD containg errors that are curreqed ‘in
later printings. The NSA maintains a list of known errors in the OSPD, along with the
editicns that corrected them. Tracking this list was a new editorial task.

4.1.5 Long Words

Waiching Joe Edley find the word METHADONE through separated tiles inspired me to
add the 9-letter and longer words to MAVEN. Scanning Merriam-Webster’s Tenth
Collegiate Dictionary for nine-letter words took 100 hours, which is nearly twice as long
as the OSPD took. A few vears later the result was crosschecked against the work of
another person for the 9-letter words, but the 10-letter and longer words remained rife
with errors until 1996, when the NSA developed an official, exhaustive, computerized
list. Fortunately, 10-letter words rarely come up, so errors among such words have
negligible impact on playing strength.

Nowadays there is an electronic form of the official tournament word list {TWL98) for
North America. TWL98 differs from the OSPD by its inclusion of offensive words
(ethnic slurs, scatological words, and other barbarisms are legal in tournament play, but
have been excluded from the OSPD since 1993) and the long words up to 13 letters.
TWL98 also omits definitions, and gives every inflection in full, rather than representing
it as a suffix to a stem word. The entire list is alphabetized, whereas the OSPD contains
special lists of RE- and UN- words.

4.1.6 SOWPODS

Tournaments outside of North American use a different vocabulary. For instance, in the
third Computer Olympiad in Maastricht 1991, two dictionaries were used to decide
whether a word was acceptable: the United Kingdom’s “Official Scrabble Words”
(OSW) and the OSPD. This vocabulary is known as SOWPODS, since Scrabble players
cannot look at the letters OSWOSPD without making some kind of word out of it.

MAVEN added SOWPODS support when Joel Wapnick was preparing for the inaugural
human World Championship. Wapnick contributed his hand-typed list of high frequency
OSW words. Later, MAVEN received the OSW in computerized form. (A relief!)

4.1.7 Summary

This example shows how computerization of a knowledge base of reasonable scale
(roughly 150,000 words) is made practical by manual and computerized validation
methods. There was a lot of labor involved, even with programmatic assistance. Overall,
entering the vocabulary took about 160 hours, and validating it took about 200 hours. It
was a grueling, mind-numbing task even with all of the tricks. The effort was similar to
the work of early chess developers in creating opening books [20]

4.2 Bit Parallel Move Generator

MAVEN'S f‘wsl move generator searched for spots to place words on the board such that
the rules of the game were satisfied. Let us take a specific word (QUA) and see how this
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might operate. The question is to identify the set of all squares on which the word QUA
may start.

without loss of generality, assume that QUA is horizontal. To play QUA, several
constraints must be satisfied simultanecusly:

1) Anempty square (or the edge) to the left of the Q (since Q is the first letter).

2} An empty square that is adjacent to an occupied square between 0 and 2 squares
of the Q (since QUA must connect to the board).

3) Either a Q in our rack or a Q on the board.

4) A U in our rack or lying one square to the right of the Q.

5y Either an A in our rack or an A two squares to the right of the Q.

6) An empty square (or the edge) to the right of the A (since A is the last letter in
QUA).

7y The Q, U, and A must not form crosswords or they must make valid crosswords
with letters already on the board.

To make it easier to find solutions to such constraints, MAVEN pre-computed the set of all
squares that satisfied any such constraints (e.g., the set of all squares that had a U one
square to the right). The constraints were represented as bit vectors, using one bit per
square. [ntersecting a number of these bit vectors identified all squares satisfying all of
the corresponding constraints.

This “bit-parallel” method works well on machines with large words (e.g., 64-bits). lis
overhead is excessive, however so it is suitable only for whole-board move generation.
The other generators are suitable for incremental generation, such as generating setups
off of a move.

A crucial efficiency technique exploits the fact that adjacent words in an alphabetically
sorted lexicon share a common prefix. The average number of letters that differ between
successive words is about 3, whereas the average length of a word is about 9. So you gain
a factor of 3 by sefting up the dictionary so that shared prefixes are easy to exploit. For
example, the DAWG representation of the next section works well.

4.3 Appel-Jacobson Move Generator

in 1988, Appel and Jacobson's algorithm came to my attention [21]. It represents the
dictionary as a directed acyclic word graph [IDAWG) [11]. A DAWG is a reduction of a
letter trie, which will be described first. Given a list of words you construct a letter trie
by subdividing the list according to the initial letter. In Scrabble, you start with 150,000
words, then break that down into 26 lists. You can index the lists by creating a search tree
whose root node has 26 pointers, one for each list. If you continue this procedure
recursively until every list has zero entries then you have a letter trie. Among the nodes
of the trie are many duplicates. For example, the following pattern is repeated thousands
of times: “the prefix that you have traversed thus far is a word, and you can add an ‘S,
but there is no other way to extend this prefix to make a longer word.” A DAWG is a trie
after all identical subtrees have been reduced. Also, among the 26 pointers in cach node
many null pointers exist, and it is wasteful to represent them. Instead, a node is
represented as a variable-length packet of edges, where only the non-null pointers are
represented. A DAWG is isomorphic to the minimal finite-state recognizer for the regular
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language represented by the word list. A DAWG is a compamnrepresematmn‘ of the‘word
list. For example, the 95,000 words in the OSPD take about 73‘DKB‘when represemm‘ed as
a word list. The DAWG represents the same list using about 275KB. The efficiency
comes from “sharing” common prefixes and suffixes over many words.
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Code Sample 1 shows how to use a DAWG for anagramming. The task is to generate all
words that can be played using a given rack. The code assumes that the contents of the
rack are represented as an array of counters.

WalkTheDawg needs only four features to make a complete move generator: using
blanks, handling of tiles on the board, checking for the edge of the board, and handling of
crossword constraints. It is easy to add features for the first three, so we will not go into
those issues. Crossword constraints are interesting, and the solution introduces a new
concept, so we will give the solution in detail.

A crossword constraint is a restriction on the set of letters that can be placed on a square
imposed by letters that lie in the adjacent rows. By traversing the DAWG you can
determine the set of all tiles that satisfy the constraint (i.e., letiers that make a valid word
with the crossing letters). The best way to represent that set of letters is as a word of bit
flags, using one bit to represent the playability of each letter. Such a word of 26 flags is
called a “checkset.” Once checksets have been computed, it is a simple matter to test
crosswords for validity in WalkDawg.

To summarize, you can make a simple move generator by looping first over all squares,
and trying to find all moves that start on that square. The algorithm is WalkDawg, after it
has been improved by the addition of handling for blanks, letters on the board, edge
limitations, and crosswords.

Though complete, this algorithm is inefficient. In particular, there is a lot of redundant
traversing of the DAWG near the start of a word. For instance, suppose that the starting
square is 6 squares away from the nearest letter on the board. Then WalkDawg would
traverse all combinations of 6 tiles from the rack, at least insofar as the combinations
make prefixes of valid words. This is not bad, inasmuch as it is unavoidable. But when
we generate the moves one square to the right, then the inefficiency of the algorithm is
clear, since it traverses all prefixes consisting of up to 5 tiles from the rack, which is a
subset of the prefixes already generated.

Appel-Jacobson eliminated that inefficiency by defining the concept of “spot” in a better
way. They introduced the concept of anchor square, which is the lefimost square ol a
move that is adjacent to a square already occupied. With the exception of the first tum
and exchanges (which are handled as special cases), every move has an anchor square.

An anchor square is an important concept because the letters to the left of an anchor
square are not constrained by the board (except that the left part cannot occupy a square
adjacent to an occupied square), whereas those to the right are. Appel and Jacobson
exploit this property by generating words in two parts: the left part, which is constrained
only by length and tiles, and the right part, which is additionally constrained by the board.

Appel-Jacobson is a fast algorithm. The bit-paralle] algorithm is faster in the early game,
because the expense of generation is dominated by left-part traversals in that stage, which
the bit-parallel algorithm handles in parallel. However, as the board fills up, the bit-
parallel algorithm loses this advantage, and eventually its overhead for maintaining the
possibility of parallelism is too high.

53



A comparison of their algorithm against MAVEN's algorithm showed equal spged, b;ut
Appel-Jacobson was simpler thanks to the DAWG. Therefore, we replaced the bit-

parallel algorithm with their algorithm, and have not switched since.

Appel-Jacobson has another advaniage that is important when designing for‘ em.dg?gme
search engines: Appel-Jacobson can be adapted to generate moves for only a subset of jthe
board. For example, you can generate setups off of the opponent’s Ia@t play by generatm’g
only those anchor squares that can be affected by the squares ‘occup:ui:d by the opponent’s
last play. Performing such an incremental move generation using the bit parallel
algorithm would be comparatively expensive,

A CDAWG (Compact DAWG) is a DAWG in which edges are labeled with character
strings rather than only single characters [35]. A CDAWG potentially reduces space and
time by identifying forced sequences of transitions that the program can follow in an
inline loop rather than by a recursive call. However, in tests using MAVEN, CDAWGs
were unable to maich the speed of DAWGs. My assessment is that the CDAWG
representation is efficient for relatively sparse state machines, but suffers from overhead
on dense state machines.

4.4 GADDAG Move Generator

The largest inefficiency in Appel-Jacobson is that the left-parts are almost the same for
all anchor squares. Moreover, it is expensive to enumerate left parts because they are
consirained only by length and tiles. In effect, at each anchor square one generates all
possible left parts, then check to see whether any of them can be exiended to be
compatible with the constraints of the right part. Appel and Jacobson speculated that it
might be possible to build a faster algorithm if you could generate the right parts first,
and then generate only the lefi parts that were compatible.

Following a suggestion of Appel and Jacobson, Steven Gordon (mathematician and
master player) implemented a move generator that uses a “two-way DAWG,” dubbed a
GADDAG [22], which is really a new lexicon rather than a new data structure. In the
GADDAG, you represent the word FADGE as the following list of words:

FADGE#, ADGE#F, DGEKFA, GE#FAD, E#FADG, #FADGE,

where the symbol # means “end-of-word.” A GADDAG is a DAWG that contains all
such words. Generating moves using the GADDAG is simple: you traverse the
GADDAG starting at the anchor square and moving to the right. When you hit the # you
swilch to traversing the lefi part,

People have experimented with different methods of representing the left parts so as to
minimize the cost of traversing them. Some programmers list the left parts in reverse
order (e.g., instead of GE#FAD, the entry would be GE#DAF). Tests show small
diﬂ‘“ ences in performance and GADDAG size depending on this decision, but the
fterences are so small that they could be due to irrelevant factors. Perhaps there are
significantly better ways to order the left parts. The author speculates that ordering the
Ic:l‘l"e.r‘s in order of decreasing frequency may be better, so that instead of GE#FAD the
GADDAG contains GE4FDA . This ordering would rapidly eliminate left parts that do




not match the rack. Unfortunately, vou would have to augment the GADDAG with
information about how to reorder the left part so as to reconstitute the word.

MaveN did not switch to Gordon’s algorithm even though this algorithm is twice as fast
as the method MAVEN uses. The reason is that the GADDAG uses 5 times as many byles
as the DAWG, and that was too much RAM. MAVEN was designed to run on computers
having only 1 MB of RAM, where the GADDAG alone used 2.5 MB. With some regret, |
declined to implement the GADDAG, though 1 should probably reverse this decision,
with RAM being in abundant supply nowadays.

4.5 Permutation Move Generator

James Cherry devised a move generator for ACBOT based upon permuting the letters in
the rack. Cherry’s algorithm is not as fast as Appel-Jacobson but it can be implemented
on small-memory computers. For example, we implemented it once on an 8-bit
microprocessor using only 96 bytes of RAM.

The idea is to loop over all starting squares for words, and then generate all permutations
of our tiles. Lay those tiles down in the empty squares starting at that point and sece
whether they make a word. In order to make this algorithm fast you need to determine the
leftmost prefix of your word that does not begin a valid word. Then you can backtrack
your permutation generator to the point where that tile was placed.

4.6 Assessment

Steven Gordon’s generator is the generator of choice now. It uses more memory than
Appel-Jacobson, but that is an insignificant downside nowadays. On the upside, it is
about twice as fast. Cherry’s algorithm is best when RAM is at an absolute premium but
ROM is cheap. A handheld game machine could have such characteristics. The bit-
parallel algorithm may be best on wide word machines, or if integer SIMDD operations are
available. Intersecting two bit vectors requires just 7 bitwise ANDs of 64-bits words.
However, it is not suitable if incremental generation is needed.

Maven still uses the Appel-Jacobson algorithm. Historically, MAVEN ran on
microcomputers that did not have 2.5 megabytes in total, so the GADDAG algorithm was
not available. MAVEN should switch if it wants top speed.

4.7 Architecture

There is a significant implementation decision beyond the choice of the algorithm.
Because Scrabble has several phases of play, you need to structure the move generator so
that it can be used in every phase. MAVEN’s architecture is helpful.

MAVEN's move generator generates and scores each move, then passes 1t to a caller-
supplied handler function for further processing. This “handler function” architecture
facilitates reuse of the move-generator module in a variety of search engines. All search
engines in MAVEN use the same move generator with different handlers.

MAVEN’s generator is not reentrant, but there is no need for that capability. If Scrabble
required recursive search then reentrant move generation would be necessary. However,
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since eéxcellent plausible move generation using static evaluation is feasible in Scrabble,
recursive generation is not beneficial.



Chapter 5 — Rack Evaluation

At first, MAVEN’s advantage over human experts was attributable to the fact that MaveN
evaluated the tiles lefi on its rack after a move better than humans did. This chapter
describes that capability, which remains largely unchanged from its original form of the
vear 1986.

The first section describes the problem. That there is a problem can be seen from the fact
that top human masters average 33 points per move despife inaccurate move generation,
whereas a perfect mowve generator with no rack evaluation will average only 30 points per
move.

The next section describes the requirements of a rack evaluator. Some of the
requirements arise out of the problem statement, and some arise out of software
engineering goals that make the rack evaluator faster and more flexible.

The third section describes the architecture that MAVEN uses. The architecture leaves two
points of flexibility for tuning purposes. First is the concept of a tile pattern, which is a
set of tiles left on the rack. Second is the concept of a pattern value, which is a value that
is accumulated into the evaluation when a tile pattern matches.

There follows a section that describes the actual tile patterns in the original 1986-era
MaveN, and then some extensions that increased MAWVEN’s robustness in extreme
situations.

In many domains, there is an established theory that describes the values of evaluation
patterns. However, Scrabble is not one of those domains. The tile patterns were largely
self-evident, but there was no reliable theory to guide their settings. Accordingly, MAVEN
used a tuning process that automatically set the values of parameters. This process is
described in the fifth section.

The sixth section gives the so-called *Basic” evaluation model, which is a humanly
executable model derived from MAVEN simulations. This model differs from MAVEN'S
internal representation, but agrees with the moves selected by MaAvEN with almost perfect
correlation.

Some situations that can be viewed as rack evaluation problems are specifically excluded
from consideration in this chapter. The natwre of these exclusions is described in the
seventh section.

Mext, we will cover the methods used to validate these parameters. Several people have
approached rack evaluation from different directions, and we have all come to the same
conclusion: that it is hard to surpass the Basic evaluation model.

Finally, we close the chapter with a historical assessment of the significance of MAVEN"s
rack evaluation methods.



5.1 Problem | ‘. '
It is clear that there is 2 need to evaluate rack leaves. A program havmg no lmas agamsﬁ
bad tiles will often hold racks like IIIUVVW, because it plays away its good .mlezs un?cn‘]
only bad tiles remain. After all, there are more moves that 'use good tiles, so wuhgut any
effort specifically directed at playing bad tiles it is certain that the program will play

more good tiles.

Holding bad tiles is worse than it looks. You might figure that if you held II,I'U'VVW then
vou could take a few turns to play off the tiles and you would be free and clear. However,
the situation is not so simple for several reasons:

I} You cannot afford to score badly for a few turns. For instance, MAVEN’s average
score with rack leave evaluation is 5 points per turn higher than its score without
rack evaluation. Obviously, IITUVVW is worse than an average random rack, so
suppose that it costs 8 points per turn to play off these tiles. A few turns of that will
leave you well off the pace. You can exchange if the bag holds at least 7 tiles, but
exchanging costs a whole turn.

2) The assumption that you can replace these with random tiles from the bag is
mistaken. For a simplified model, divide the tiles into two equally likely groups: the
good tiles and the bad tiles. If you play two tiles off your rack, with the goal of
clearing the drek, then you siand to draw one good and one bad tile. Next turn you
face the choice: should you keep your good tile, or play it to help get rid of other bad
tiles or to get a higher score? Odds are good that you must play it, meaning that over
two turns you have made little progress towards balancing your rack.

3)  Accordingly, it is likely that you will hold a significantly negative rack for more
turns than you think. If you scored 5 turns at 8 points below average, then you have a
net loss of 40 points over the sequence.

This example shows how bad racks act like aftractors in the space of all possible racks.
Once you hold INUVVW, you are guaranteed to have another bad rack next turn. The
bad tiles on a rack devour the good tiles. Additionally, good tiles have a repelling guality.
[ you have an opening rack of ADEINOT, you would start anagramming gleefully,
looking for the bingo that must be there, Alas, while you have several six-letter words,
there are no sevens. Should you play a six-letter word? That is what a program that
maximizes score alone would do: DETAIN (8D scores 18 points, keeping O. You would
be better off to exchange the O, keeping ADEINT. Exchanging scores Zero, but retains a
huge bingo potential,

5.2 Requirements

The overriding goal is to cause MAVEN to trade off the current score against future
scm‘@ng..The balance between present and future scoring is at an optimal level when total
scormng 1s maximized over the whole game. Therefore, we want to keep good tiles, but we
do not want to give up too many points as a consequence. To achieve this goal it is
necessary, at a minimum, for the evaluator to express all of the basic tradeoffs between
tiles. This is the ability to discriminate.
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Please note that the resulting evaluation function cannot be a first-order function of the
tiles. Consider, for an extreme example, the rack EEBEEEE. Obviously, the first E cannot
be too bad, but each successive E hurts, and probably hurts more than the one before.
Another example is QU. Obviously a Q is a bad tile, since you usually need a U to play it
away. In addition, a U is not a great tile. Nevertheless, the QU combination is about
neutral.

One technical point is that the evaluation is expressed in terms of the tiles kept, rather
than the tiles played away. These seem equivalent, but a subtle difference is hugely
important to the ability of the program to learn tile values. The difference is that the value
of a tile played away depends heavily on what was on the rack in the first place, whereas
the walue of a tile kept is largely independent. For example, if you hold EE and play away
an E, then that is good, improving the rack by about 3.5 points. If you hold E and play
away the E then that is bad, worsening the rack by 4 points. These perspectives are
rationalized by observing that the value of keeping a single E is 4 points, whereas the
value of keeping two E’s is 0.5 points,

Finally, the rack evaluator should be sufficiently fast that it does not interfere with move
generation speed. Speed might not seem like a necessary condition, since MAVEN is
much faster than seems necessary. However, the need for speed arises from the CPU
burden of simulation, as described in Chapter 10,

5.3 Architecture

5.3.1 Ability to Discriminate

Since the evaluator will definitely encounter racks consisting of individual tiles, it cannot
achieve its discrimination goal without having values for keeping each tile.

The examples of QU and 1l show that combinations of tiles may have joint values.
Therefore, the evaluation uses a list of combinations of tiles, each combination having an
evaluation parameter. In MAVEN, a tile pattern may include from | to 7 tiles of any
identity including duplicates.

Each tile pattern has an associated walue, which is added into the evaluation of racks that
match., Note that the addition is independent of other patterns that might match. Let us
take an example. Suppose we want a QU to have value 0, and the value of a Q is —13 and
the value of a U is —5. What value should the QU pattern have? The answer is such that Q
+ U+ QU =0, so QU is valued at 18. This value does not mean that racks that contain
QU score 18 points above average, nor that the score of a game that contains the QU is
18 points above average. It does mean that holding a Q@ and U together is 18 points better
than holding them in separate turns.

Mote that the evaluator is linear, but combinations enable modeling of complicated
factors [29]. The combinations may include any group of tiles, and the list may be
arbitrarily long. An implementation trick, described in the next section, prevents the size
of the pattern list from affecting performance. A later section lists the patterns actually
used.
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5.3.2 Performance Requirement

The requirement to express the evaluation in terms of M‘}es ]-fem implies that‘ we ?.gad tﬁ
evaluate a group of from zero to seven tiles. E&A;o‘rmver, th«i" tiles @re‘t“he ones on the rac ,
at the start of the move, o0 there are at most 2’ = 128 possible combinations of tiles that
figure into the rack evaluations of moves on a single tum.

‘The average number of moves per turn is about 800, and since this: exce‘ed,s 128 it
transpires that we benefit from pre-computing the values of ‘all possible rack leaves.
Accordingly, in MAVEN the rack evaluations of all 128 possible rack leaves are pre-
computed and stored in a table.

The index of that table is an integer between 0 and 127 that uniquely idaennl‘iﬁes the
combination of tiles still on the rack. A bit mask is initialized to 127 and a bit is cleared
for each tile played away. The only complexity is the treatment of duplicated tiles.

The pre-computation of rack values means that MAVEN’s rack evaluation cost is largely
independent of the number of patterns used in evaluating racks. The HITECH chess
engine, which was state-of-the-art when MAVEN debuted, inspired this design [23].

Moreover, the total rack evaluation cost is minor, consisting only of a few bit mask
operations and an array lookup for each move generated. Therefore, the speed
requirement is met.

5.4 Necessary and Sufficient Tile Patterns

The first version of MAVEN’s rack evaluator included a value for every tile (Blank, A, B,
C, ...) and every duplicated tile (Blank-Blank, AA, BB, ...), and every triplicated tile
(AAA, DDD, EEE, ...). For quadruples and higher the value used for triples was taken.
There was a value for QU, since these are individually bad tiles, but not bad when held
together,

This model alone was sufficient for championship caliber play when MAVEN debuted,
owing to the fact that MAVEN’s evaluation parameters were significantly more accurate
than the heuristics employed by humans. Nevertheless, those patterns alone are logically
unsatisfying, and some extensions proved beneficial.

Some value should be associated with drawing a tile from the bag. For instance, the rack
leave AET should be thought of as “AET plus 4 tiles from the bag.” This is important
because AET may be compared with “AERT plus 3 tiles from the bag.” MAVEN’s tile
turnover value is the average of the values of the unseen tiles. Thus, if the tiles in the bag
are better than the tiles in the rack then MAVEN has a reason to play its tiles, but if the
tiles in the bag are worse then MAVEN prefers to keep its tiles.

Another heuristic is called “Vowel / Consonant Balance”. For example, NRST is not as
good as the sum of its tiles because there are too many consonants. At first MAVEN
‘mchuxded bonuses for all possible counts of vowels and consonants. This improved
scoring by 3 points per game. Later, we switched to a dynamic bonus that depends on the
ratio of vowels to consonants among the unseen tiles. This measure does not improve
performance in any noticeable way. since it only really matters in the infrequent case
where the distribution of unseen tiles is significantly out of normal. Nevertheless, MAVEN
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retains it because it does occasionally result in better moves in the pre-endgame stage,
and it does not hurt any other time.

One measure we tried was to include a term in the evaluation function for every pair of
tiles (i.e., 351 pairs). We found that there was a positive value associated with almost
every Vowel + Consonant combination, and a negative value associated with almost
every Vowel + Vowel or Consonant + Consonant combination, whereupon the simpler
Wowel / Consonant balance term seemed like a better choice.

The second heuristic, “U-With-Q-Unseen”, is sometimes important. The idea is that
holding a U when there is a Q unseen is better than it seems because a U-less Q cosis 12
points, whereas a QU together is neutral. A linear function implements this concept.

The third heuristic is called “First-turn Openness”. This heuristic expresses the theory
that it pays to play the first turn “tightly” by using a few tiles only. The reason is that the
reply to the first move can be awkward if the opponent has no access to double word
squares and few letter to form bingos. We have computed a table of bonuses associated
with starting games by playing 2, 3, ... up to 7 tiles. MAVEN has implemented this
feature, but we are uneasy about it because it is in MAVEN's general interest to open the
board against humans.

Finally, a recent refinement adjusts the values of tiles according to the probability of
drawing a duplicate out of the bag. The theory is that if a tile is in plentiful supply then
we should give it less weight. MAVEN has a linear function that implements this factor.
Usually this factor has no effect, but it does give MAVEN a reasonable bias when a
situation is extreme. This is called the tile density evaluation.

5.5 Parameter Tuning

What remained was to estimate all parameters. Various alternatives were considered, like
simulated annealing [24], which was all the rage in those days (i.e., 1986). We decided to
learn parameters through a feedback loop. The idea was to play games, then value each
combination according to the impact that it had on future scores.

We want to choose a move that maximizes the sum of the score of the turn plus the value
of the rack. With the goal of trying to maximize scores over the game as a whole, we can
define the value of a pattern to be the amount by which your score increases over the
duration of the game by keeping that pattern on your rack after a turn. We can create a
feedback system that directly measures the value of a pattern.

For example, suppose that the rack leave of a particular move 1s EQU. This rack contains
the following tile patterns: E, Q, QU, and U. Therefore, this turn is an observation for
four parameters. The future score is the difference in score between the side to move and
the opponent over the rest of the game. After collecting many such observations, you
have an over-constrained system of linear equations. You can solve that system in a
number of ways. The solution we used at the time exploited domain-specific properties.
Possibly, we should choose least squares, following the recommendation by Michael
Buro [29].
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Let us take an E as the pattern in question. The fqedback system keeps a record of jﬂﬂf:
results from every situation in which an E remains in the rack. ’sWe deﬁm‘: an wo\bjsfewaél‘m;‘
as the difference between the player's scores and the opponent’s scores for the: peu‘o Lo

time over which an E remains in the rack. For example, suppose we observe the sequence

of plays from Table 3-1.

Rack Tiles Played | Tiles Left | Score | Opponent’s Score
ABCDEFG | ABDC EFG 20 17
EFGWXYZ | FXY EGWZ 35 43
EGWZRST | WZ EGRST 30 29
EGRSTRE | REGRETS - L2

Table 5-1 Exampie of Rack Parameter Tuning

In this case, the E that remains after the first turn is on the rack for 3 more turns. The
value of this observation of the E is the difference in scores over the next 3 turns for each
side. The turns start with the opponent's next score, so the value observed is -17 + 35 - 43
+ 30 - 29 + 72, plus the values of any tiles left on the rack at the end, but here there are
none.

[t is important to regard an observation as spanning multiple turns because some tiles can
persist on the rack for several tumns. A Q, in particular, often sits for several tums while
you await a U or QAID, QAT, FAQIR, or another rare word that plays the Q without a U,
During that time you are essentially playing with 6 tiles against an opponent playing with
7, 50 you have a significant disadvantage on every twrn.

Another situation that can last for a while is the possession of duplicated vowels. Let us
say that you keep AA on your rack. You have a significant chance of drawing another A
to make triplicates. If you play away one of the A's next turn then you may be back to
duplicates. The I is an easy tile to play, but it is hard to play two I's at once, so Il is a
terrible rack leave that tends to accumulate additional bad tiles. It is also hard to play two
U's at once, so U's tend to accumulate, and keeping UU is even worse than keeping II
because playing a U is harder than playing an L.

One final situation. Humans had historically given the blank a value of 40 points,
meaning that you play the blank if you have a move using the blank that scores 40 points
more than the highest play not using the blank. The basic point is that you should hold
blanks for making bingos, which typically score 75 or more points, where a typical play
i8 35 or fewer points. As it turns out, blanks are worth closer to 25 points. The reason is
that the high value of a blank often prevents it from being used for several turns as you
await bingo tiles. During those moves, you must eftectively play with only 6 tiles, which
hurts your scores. A lower value for a blank allows the blank to be used for crucial non-
bingo moves, such as dumping a Q. or using a Z to hit a triple word square,

One key point is that patterns match independently. For example, the value of a rack
containing EE equals the value of EE plus the value of E. Therefore, if you observe that
?mlding EE results in a | point improvement in scoring, and holding E results in a 4 point
Improvement, then the value of F is 4, and the value of EE is -3, In general, to compute
thce1 \flaln.xe of a pattern you must subtract the value of all other patterns that necessarily
match.
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Each game contains many observations of many patterns, so if you automatically play
games overnight then sufficient data accumulates for firm conclusions. Computers
nowadays are fast enough that MAVEN can tune iiself to changes in the dictionary in less
than an hour.

Note that this is not an online learning system. In other words, the values do not change
the program’s play while data is collected. It follows that the data collection task is
stationary. After playing overnight, MAVEN assigned each pattern the average value of all
observations. This changed the play of the program, and that changed the observed values
in & new overnight run. Then MAVEN repeated the process, which converged on the third
iteration.

Instead, we could have used temporal differences (TD). MaVEN’s evaluation model is W
* P, where W is a vector of weights, P is a Boolean vector that indicates which patterns
match, and * is the dot product operation. Then play games, using temporal differences to
adjust the weights between every turn. That is, backpropagate a fraction of the evaluation
of the future of the game into the evaluation of the present. Would that be simpler?

It would be simpler, but it did not work when it was tried in MAVEN, MAVEN tested
several feedback systems but the weights never came out right. The weights seemed
compressed towards zero compared with the true weights. For example, MAVEN's weight
for an E is about 4.2, whereas TD learned a value near 2.0. MavEN's weight is
indisputably better, which MAVEN proved in a self-play test. Why did TD not work?

Our explanation is our deficient exploration policy: an on-line learner learns to avoid
terrible racks like Il before their values have converged to their true (and truly awful)
values. It is not that learning stops, but the program can almost always choose not to keep
111, if only by exchanging, and therefore the learning system is deprived of examples that
would move the weight towards the true value.

A comparison between backgammon and Scrabble is in order, since TD works like a
charm in backgammon [38], whereas it did not work in Scrabble (which has a much
simpler parameter space). Sutton’s theoretical arguments show that TD should work if
given occasional opportunities to “explore™ paths that seem sub-optimal [30]. In Scrabble
you are almost never forced to keep Ill, so learning can stop even the start of an awful
convergence. In backgammon, by contrast, the dice often force vou to accept all sorts of
positional defects, even if you play ideally. The lesson is that in applying TD vou must
ensure adequate exploration.

5.6 Basic Rack Evaluation Model

Maven’s actual tile valuations have six decimal digits of accuracy, so they do not form a
theory that is useable by a human. However, one does not need such precision. I
MavEN's rack evaluation parameters were rounded to the nearesi 0.5 then the quality of
play would be indistinguishable. The observation that this level of precision is sufficient
is due to James Cherry, who employs such truncated weights in ACBOT [25].

Table 5-2 shows tile parameters computed by Nick Ballard (a Scrabble master, but better
known as a backgammon World Champion} and Charlie Carroll. They computed this

63



table by designing pairs of MAVEN simulations that iml‘ated the va}ue of a single tile.
This is tricky because adding a single tile to a rack changes the tiles and the vuwel—
consonant balance. Ballard and Carroll computed the values by carefully crosschecking
simulation results.

"File | First | Second | | Tile | First | Second Tile | First | Second |
' Tile Tile Tile |

A +0.5 -8 1 EXE S +75 +1
B 3.5 2 K 15 T 1.0 -6
C 0.5 -7 L 1.5 -6 U 4.5 12
D 1.0 -6 M 0.5 -6 \Y% 6.5 -8
E +4.0 3.5 N 0.0 5.5 W 4.0 -8
F 3.0 -6 0 25 -8 X +3.5

G 3.5 -10 p 1.5 -6 Y 2.5 -10
H +0.5 -6 Q 115 Z +3.0

1 15 ] -10 R +1.0 9 ? 24.5 +12

Table 5-2 "Basic-1" Rack Evaluation Model

Table 5-2 was published in Medleys [17), and dubbed the “Basic™ evaluation model,
They are here because they illustrate the actual state of MAVEN"s rack evaluator in the
year 1987, and to show normal rack evaluation priorities. In this thesis, we will use
exactly these rack evaluation parameters for expository purposes, bearing in mind that
MaAVEN's implementation is slightly different.

The “First Tile” column shows the bonus added to the rack evaluation when a tile is
present in the rack leave. The “Second” column shows the bonus added if there are at
least two. Note that the second bonus is in addition to the first.

Table 35-3 gives Ballard and CONSONANTS

Carroll’s vowel-consonant 1] | 2 3 4 5 6
balance heuristic. The data show |v ol 0 0.5 1.5 Q -3.5 -6 -6
that having a roughly equal [ O 1! -05 1.5 1 05 25 -55
number of vowels and consonants | w2 | .2 =05 0.5 O -2

is good, and one should give a E 3] -3 ) 0.5 1.5

slight preference to consonants. L4 -5 4.5 -3

As described above, the current S5 .75 -7

MAVEN does not use this type of 61-12.5

function, but it did around 1988. ‘ ;
This table of parameters has the Lable 5-3 Basic Vowel-Consonant Balance Table

advantage of being humanly
executable, whereas MAVENs current function has the advantage of improving quality
when the vowel-consonant balance of the bag is extreme.
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Table 5-4 shows a few wvalues for Pattern Value
compound tile patterns. Note that these QU +17.0
values are in addition to the values of GIN +6.0
the individual tiles. MAVEN has many IVE 1.7
such patterns, but we show only a few. OTU +3.0

The values of compound patterns can be
hard to interpret in isolation, because of Table 5-4 Sample Compound Tile Patterns
interactions with pattermns that share

tiles. The patterns in the table are comparatively easy to understand; they represent a
group of tiles that often occur as a substring of a word.

5.7 Specific Exclusions

Some concepts that arise in Scrabble
are not encoded in MAVEN’s rack
evaluator. These have to do with how
the values of tiles are interrelated to
specific situations on the board. This
thesis contains a number of examples,
but one more will not hurt. Position 5-
I was published by Nick Ballard in
Medleys [27].

Table 5-5 shows the moves
considered by the consensus panel.
ZEBU (1E, 36, AHIN) is the
conventional move in this position,
since higher scoring moves either
keep the U or leave the triple-word
line open for only a few points more.
KHAZEN is exceptional: it scores 8 Moving: . ’ : 145
points more than ZEBU, but the IU Opponent's last. BRAWLING (G1 63) 215
rack leave has such bad synergy that
12 points is probably required for
adequate compensation. One move
having a nice hidden advantage is BIZE (1G, 36, ANHU), which is as good as ZEBU
despite keeping a U instead of an I because it sels up our H at 2J.

Position 5-1 Surprising Rack Synergy
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Not surprisingly, ZEBU was the consensus Wm@ Spot | Score | Rack
choice when this position was given in | KHAZEN 12H 44 lU
Medleys. Probably most readers wondered | HAZIER 2B 40 | NU
what s;u,rprjs“e Ballard had in store for them. | BAIZE ]C} .39 HNU
The surprise is that UH (104 26, AEW'NZ} is | ZEBU 1E 36 AHINI
the best play. The advantage of UH over | BIZE IG 36 AH.Li
ZEBU is only 3 points, but the advantage | ZANIER 2B 34 [Hr-!
looms large at this score because UH’s rack | B1zZ 1G 33 A.EHL!
leave AEINZ has a surprisingly high bingo | NAZI B8 33 A}EHD
chance: about 15%, which is much more | NAZI 6D 33 MMU
than any other move. This is because the | UH o10A 26 | AEINZ

AEINZ rack leave makes many bingos
ending in IZE through the letters in
BRAWLING. Moreover, when you do not
bingo, you still have a big play for the Z. Since the B at 1G is a blank, the opponent
leaves the top row open 74% of the time, whereupon BAIZE (1G, 39} can follow if
nothing beiter turns up.

Table 5-5 Good Moves for Position 5-1

Synergy between the rack and the board occurs regularly, and it is tempting to try to cram
such concepts into the rack evaluator. For example, add an EIZ tile pattern and away you
go! However, the EIZ tile pattern (which MAVEN has) does not increase UH to the level
that is appropriate in this position. The EIZ tile value represents the average value of that
tile pattern, which is too low.

To properly understand how tiles interact with the board requires simulation, so we will
postpone discussion of synergy until Chapter 10.

5.8 Testing and Validation

This section will evaluate the rack evaluator on two criteria. The first criterion is whether
the set of patterns that it encodes is sufficient. The second criterion is whether the
patterns are valued appropriately.

5.8.1 Sufficiency of the Tile Pattern Set

The first criterion is whether the pattern set is sufficient. Well, we can answer “Yeg™
because MAVEN plays a championship-caliber game, but that answer is somewhat
superficial. We do not mind Jjudging by results in this situation, but the deeper question of
why the pattern set is sufficient deserves an answer, {oo.

One key property of our tile ser is that every rack receives a distinct value, and that value
depends on the contexi (specifically, it depends on the unseen tiles). This property is
required of any evaluator that is sufficient for championship play. While it is nice to see
that the rack evaluator is capable of discrimination, that property alone does not
guarantee  that the evaluator is sufficient. MAVENs evaluator includes several
components that possess this property on their own, vet | am not considering removing
the other pieces! )

Anm‘h‘er consideration is that MAVEN implements all of the factors that human experts
use. The writings of human analysts mention four concepts: the quality of individual tiles,
vowel/consonant balance, the desirability of splitting up duplicates, and svnergies



between specific pairs of tiles. All of these concepts are in the rack evaluator, so it seems
likely that MAVEN incorporates the necessary concepts.”

Still, one has to wonder how we know that humans actually have all of the necessary
concepts. After all, the computerization of Scrabble transformed humanity's theory of the
game, so why should they not be in error on this topic?

Ultimately the answer is that the author tried for a whole vear to improve the rack
evaluator, and was unable to do so. During that year, MAVEN tested many tile patterns,
and only found a few patterns that were worth having. For example, the patterns ING,
OUT, IVE and IZE were beneficial. In addition, the vowel pair U is sufficiently
destructive that inclusion is beneficial, but other than a few such patterns, nothing helps
much.

One of the reasons why longer tile patterns make little difference is that they are unlikely
to arise. The value of the ING pattern is large, but MAVEN will only rarely hold all three
tiles at once. Moreover, in few of these will it pay to keep those tiles, since keeping all of
them means the move must be made out of the remaining 4 tiles. Even then, the best
move may be clear without reference to the pattern value of ING.

Now you can see why MAVEN’s tile patterns are sufficient. They included everything of
high frequency, and every short pattern. Longer patterns arise too rarely to make :
difference.

5.8.2 Optimality of Pattern Values

We are convinced that MAVEN's parameters are close to optimal. Several tests confirm
this.

5.8.2.1 Self-Play Testing

We conducted tests pitting MAVEN against MAVEN with slightly different rack
parameters. The number of games needed to obtain statistical significance with this
method can be large if the parameter sets are close together, but gross differences are
readily detected. For example, if you tested a value of 2.0 for the E then you would
guickly find that performance has deteriorated. 1 would not assert that the tesls were
exhaustive, since there were limits to my patience, but we have done the testing for
significant tiles such as E, Blank, S, and Q.

One finding from that test is that there is a broad, flat region atop the parameter space.
That is, changing the value of individual patterns by a point or so makes no difference to
playing strength. You could not change the value of a pattern by 3 points and get away
with it, but small changes are insignificant. There are two reasons for this.

First is that the two highest-scoring moves in a position usually differ by more than a
point. If so, then a one-point change in the evaluation cannot change anything. Even
when the fop two moves are close, you still need two specific conditions to apply. You
need the pattern to match for one move but not for the other, and you need the evaluation

¥ OF course, these concepts may have a richer form in human understanding than in MAVEN'S
implementation.
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difference to be supportive of the inferior play. The entire set of conditions is unlikely to
apply simultaneously.

Second, suppose that you do make an error and choose a move that is one poim n*ffermr:
What of it? One point changes the outcome of a game less than 1% of the time. It is hard
to measure such differences.

This reasoning shows why MAVEN’s rack evaluator leads. to championship caliber play,
at least with respect to rack evaluation. It is because the filﬂﬂ'erences between moves rﬁencﬂ‘
to be larger than the standard érror in the measurement of tile values. Thus? the ranking of
moves is usually right, and when an error occurs it usually 1“¢d'uc‘es winning changes by
little. (Again, the caveat is that there are ways to make errors besides sirmply
misevaluating the quality of a rack.)

5.8.2.2 Word Counts
The conclusion of the last section is disturbing. If we can vary the tile values Wlmmﬁr
changing the outcome, then why would we believe that the parameters are near optimal?

Qualitative criteria show that the relative order of the tiles is correct. | Vowel Bingos

These criteria involve counting words and making inferences about j E 13‘424%"
how that would affect tile valuation. For example, consider the I 126089 |
vowels. Table 5-6 shows how many bingos use each vowel. Is it 7 A 124855
surprising that E is more valuable than the other vowels? I o f‘ 19047 J

| U i2sss|

Another issue that can help to rank tiles is the relative frequency. For
example, the Il is more damaging than AA, and vet A and I have the Table 5-6 Bingo

S S

same fnreQLmen]p:\)/ in the tile pool. Is it any wonder that A is more Counts by
valuable than I7 Vowel

Comparisons of word counts establish a collection of relative rankings. Although these
rankings are insufficient to totally order the tiles, they do validate the Basic model.

5.8.2.3 Hill-Climbing Search

Another approach is to do a hill-climbing search of the parameter space. In 1994, Steven
Gordon published the results of such a search [28]. Gordon’s method was to modify
paramelers by steps of 0.5 using a competitive co-evolution strategy. The results agree
with MAVEN's parameiers (on the whole) to within 0.5.

5.8.2.4 Other Developers

th"er Scrabble developers (e.g., Jim Homan on CROSSWiSE and James Cherry on
ACBOT) have reported similar results. For a full understanding of the method and the
reported results, we refer to the references [25, 48].

oty

5.8.2.5 Simulations

Perhaps the most convincing evidence of optimality is the Basic model. Carroll and
Bal.lm'd constructed the Basic model by external observation of MAVEN’s behavior. Yet
th‘ex‘r rack parameters agree with MAVEN’s internal values. This shows that MAVEN’s rack
evaluator is internally consistent. Upon learning the details of simulation in Chapter 10,
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vou might think that there is an clement of self-fulfilling hypothesis in validating
Maven's rack evaluator by using MAVEN simulations. After all, Maven chooses moves
during simulations using MAVEN’s rack evaluator, and MAVEN evaluates the endpoints
using the same rack evaluator again. Shouldn’t MaveN simulations confirm MAVEN’s
rack evaluator?

Well, it would confirm the rack evaluator’s values if the rack evaluator were externally
consistent, which means “consistent with the Scrabble space.” The dominating factor
influencing the outcome of a simulation is not the tiles kept at the endpoints, but the
scores achieved along the variations, so to have an evaluation function consistent with
such a process is significant.

5.8.3 Overall Assessment

MavEN’s rack evaluator is thorough and accurate. It is genuinely hard to surpass without
simulating how racks interact with the board position.

5.9 Historical Significance

Before MAVEN’s results, humans used rules of thumb that were significantly in error. The
rules of thumb failed the test of sufficiency, in that they were unable to discriminate
between all possible racks. For example, Wapnick recommended [8] sacrificing two to
three points for each tile played, subject to his other recommendation to play the S only if
you score 8 points more and the blank only if you score 40 points more, and take 13
points less if you can play the Q. This advice essentially values every tile except Q, S,
and blank at -2.5 points. Which is about right if the tile is a J, but substantially wrong if
the tile is E.

Another human goal was to split up duplicates. Wapnick recommended giving up 3
points to split up a duplicate, except §S and Blank-Blank, of course. While you should be
willing to forego more than 5 points for any duplicate except EE, this recommendation
will result in good play; five points will overturn most move decisions.

This is an instance of an important principle, which I will dub the “Flatland principle:”
evaluation parameters need not lie exactly on their true optima, but merely need to lie in a
region nearby such that the gradient of skill is essentially zero as that parameter changes.
The author's experience suggests that evaluation functions often have “flatlands” near
their optima, and this is certainly true in Scrabble. The reason is that a small change in an
evaluation parameter will change only a small fraction of moves, and the number of
points lost is necessarily small. In effect, as an evaluation parameter nears its optimum
the gradient of skill is like a quadratic function, since errors decrease in both frequency
and size.

Vowel-consonant balance was another goal. Wapnick recommended docking 2 points for
every tile deviation from ideal, which he regarded to be a 0-0 vowel-consonant balance.
The gradient of this function is a little too steep near the ideal, and too shallow farther
away, but it improves over having no function at all. Alas, it has the nasty side effect of
further reducing the value of an E.

Humans also had a theory about awkward pairs of consonants. The theory went that
specific pairs of heavy consonants played poorly together, so there was value to splitting
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them up. MAVEN was unable to detect the eﬂ:’fc_fc@ ofi tl‘q.lis rfeﬁnemem, posg}lxbh]ly b?caufgii
pairs such as PZ occur rarely, and when they do it is highly i;}(e.iy that O‘rl‘e of the mm Wg
be played anyway. Also, vowel-consonant balancg heur'l.sncs subsgme marily su(fdm
patterns. In contrast to the consonant pairs, l'mwever, is a pair of VOWL’iS; MAVEN‘ pmvi

a significant negative value for the [U pair. Other programs, however, do appear to
incorporate pairwise synergy values [31].

5.9.1 Classical Human Theory in Action

For example, here is an assessment from Joe Edley: Ljisg Odom played KHI (18, EIOPT)
in a game against Edley. Edley thought KHI was weak, and recmmmegdedl KEF{W‘, 12,
HIOT), with POTICHE (14, 1) as second choice. Table 5-7 shows an evaluation of these
moves under classic turnover theory. Note the strong bias towards long moves.

 Word | Score | Leave %h”l"ummver Theory : V/C value ; Total g
KHI | 18 |EIOPT| 2%25=5 I 2 210
KEPL | 12 [HIOT | 3#25=75 | 0 | 195 |
POTICHE | 14 |1 | 6%25=15 2 270 |

Table 5-7 Turnover Theory Illustrated. Do Not Do This!!

Nowadays, Edley would not make such a recommendation, so greatly has positional
understanding grown since 1991. This recommendation is so far off the mark that you do
not even need to see the board. However, back then, concepts such as tumover still held a
powerful grip on players, and notions like the Basic model were just beginning to gain
credibility.

Based on score and rack leave, KHI is vastly superior to any other play. Compare KHI
with KEPI and POTICHE using the Basic model, as shown in Table 5-8.

~ f,'EéqzeﬁrwLﬁéaewjﬁasi;qi.il:lygoz.y‘,‘::f:f@ﬁ@?@[ﬁmﬂ
| 18 JEIOPT ! 4-15-25.15-1=25] 41 |

(KEPL | 12 [HIOT | 05-15-25-1--45 | 1o |95

%

|POTICHE | 14 |1 l-Ls

1

Table 5-8 Same Exa mple Using Basic Model

Lest you think it is selfdestructive to choose moves without considering the situation on
the board, please be reassured thar it is less destructive than playing in accordance with
the turnover theory. (Actually, as the next chapter will show, choosing moves without
considering the board is essentially what MAVEN does, and that procedure is likely to
work.) Anyway, to satisfy skeptical readers, simulations showed that KHI was even more
superior than the table shows. KH] was 11 points better than KEPI, and 20 points better
than POTICHE. In the actual position, POTICHE had the drawback of opening a triple
word square.

5.9.2 But Humans Have Changed

Nc)an;iﬂ;,fSw F:A.ﬂ\fl;N’s rack valuations are well known and widely accepted. The
pl\lhhcan_mj of the Basic model started the process off, and tournament successes by some
of MAVEN's early users built interest. The author unabashedly takes credit for spreading
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the gospel of rack evaluation, despite the fact that other computer programs (CROSSWISE,
in particular) evolved similar rack evaluation theories at the same time, The difference
hetween MAVEN and CROSSWISE was that MAVEN made its rack theory accessible to
users, whereas CROSSWISE hid its theory.

For instance, if you asked MAVEN to list the best moves in a position, MAVEN would list
the moves in order of evaluation, showing both score and rack leave. MAVEN could give
you an English-language explanation of the difference between two plays, using the
Basic model for expository purposes. (A fascinating feature, but one that is beyond the
scope of this thesis.) These features, and the constant preaching by Edley, Ballard, Felt,
Carroll, and other masters who believed in the system, made an impact. By contrast, if
you asked CROSSWISE for the best plays in a position, it would show the list in order of
highest score, which purposely hid what users really wanted to know,
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Chapter 6 — Positional Evaluation

The last chapter gave an example of a move in which MAVEN recommends KHI over
KEPI and POTICHE without even seeing ihe board. Surely, that is a risky practice! The
shape of the board must have some influence over the quality of moves. In this chapter,
we consider that influence.

The first section describes the approach MAVEN used in the late 1980°s. and the
surprising successes that MAVEN had with a simple strategy. The next section describes
some theories that MAVEN tested, which were in common use by human experts of the
early days. The third section outlines the final form of MAVEN’s positional evaluator, and
Justifies the choice using qualitative reasoning based on the domain analysis. The fourth
section describes MaAVEN"s triple-word square evaluator. We find that MAVEN has
changed how humans evaluate positions, and the fifth section gives a brief outline of
those changes. The chapter closes with three sections that describe evaluation functions
for special circumstances.

6.1 Board Evaluation in the Early MAVEN

It is obvious that each move changes the board. At first, it was not clear what to make of
this, so we decided to assign the board a value of 0. In other words, MavEN assumed that
changes on the board were neutral. We will revisit that assumption in a later section.

The only exception to the general rule that MAVEN’s positional evaluations were zero
concerned triple word squares. The earliest MAVEN included a penalty of 3 points for
leaving a triple word square open (i.e., directly accessible without requiring possession of
a hook tile),

The resulting program is heavily biased towards maximizing score + rack, and therefore
the early MAVEN played a wide open, high scoring game. Humans criticized MAVEN for
being too aggressive about opening the board, but it was hard for the author to see how
this tendency hurt MAVEN. It seemed that MAVEN's opponents were hurling! Still,
MavEN’s first tournament produced a long list of theories to test.

6.2 Human Positional Theory

MAVEN's first tournament proved that humanity was more vigorous about evaluating
boards than MAVEN was. It is obvious to human experts that the board had a huge effect
on scoring, and therefore controlling the board should have a beneficial effect on
winning.

Human expert comtacts described several positional considerations, which the next 5
subsections cover. Each subsection describes one positional theory, and the impact of that
theory on Maven. This section concludes with some sweeping generalizations about
human expert positional reasoning.

6.2.1 Opening the Board

One widespread expert theory is that “opening the board” (i.e., creating spots where
bingos could be played) is bad, on the theory that the opponent obtains a first crack at
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plaving a bingo, and if the opponent has no bi]‘n«gm “then he could “Sli:l]‘_lt dmwry the boajr:q‘d
This seems like a promising “grand strategy,” but it does not wc_)rk in practice. We trie
several functions that included significant understanding of bingo chances. All were
worse than including no openness function at all. T‘hf:re.is no general penalty for board
openness. To understand board openness requires simulation.

Even if openness were slightly negative, it would be bad tactics to include sucfhﬂ a factor
in MAVEN, since the program never misses a bingo, whereas human masters miss 10 to
20 percent of bingos. Obviously, this makes up for any “first mover” advantage.

6.2.2 Vowel-Bonus Adjacency

Experts expounded the general principle of not placing vowels adjacent to bonus squares.
The idea is that a high-scoring tile can be “double-crossed” on the bonus square, leading
to a good score for the opponent. For instance, from Ozag and Lawrence [32] we leamn
that it is appropriate to sacrifice 6 points to avoid placing a vowel next to the double letter
squares at 7G and 71 on the initial tumn. This penalty turns out to be laughably large.
When we used computer analysis to estimate this factor, it transpired that the largest such
penalty is only 0.7 points! Most vowel-bonus square combinations had penalties of 0.0]
points, meaning that you should avoid it only if there were no other consideration.

The worst case i3 placing a U to the right or below a triple-letter square. Such a
placement has two drawbacks. First, if the opponent holds X then he is set up for a
possible 50-point XU play. Second, if the opponent holds @ then he can rid himself of
that unplayable millstone with a play scoring 31+ points. Playing off the Q in that fashion
is a huge gain, since you get an above-average score using terrible tiles. Nevertheless,
because the opponent is unlikely to hold the key tiles, only 7/10 of a point rides on the
outcome.

MAVEN includes this factor in its evaluation function, but it serves as a tiebreaker. For
example, on the first turn you can play BARED, BREAD or BEARD, all at 8D and all
scoring 22 point and keeping the same rack leave. The best of the three is BEARD.
BARED and BREAD leave a vowel next to double-letter squares at 7G and 9G, and
BEARD does not. It is not worth sacrificing points, but it makes MAVEN look more
polished when it has a choice.

6.2.3 Building a QAID

Before the “discovery™ of the word QAT in 1993, the simplest way to get rid of a U-less

Q was to ‘plﬂy QAID. There are other words (FAQIR, QINTAR, QOPH among them) but
they require either more letters or less frequent tiles.

Human experts explained the strategy of creating a QAID. The idea is that the Qand D
are the pnly scarce commodities, so if you happen to have a U-less Q with a D then you
;hmuid keep the pair together until you accumulate an AJ from either the bag or board.

Ihis strategy shows how rack evaluation can implement complex positional theories,

MAIVI%N tested the patterns QA, QL. QOD, QAI, QAD, QID, and QAID in the rack
evaluator.
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Mavew discovered that the whole theory is wrong. Instead of having a positive weight,
the QD had a negative weight, which means that MAVEN had determined that it pays to
split up the QD! The next few paragraphs explain why MAVEN reached this conclusion.

First, simply accumulating the tiles for QAID does not guarantee that QAID will be
playable. You might sacrifice points for nothing.

Second, even if QAILD is playable, you might not get a good score. QAID might only
score 14 points. Consider that being stuck with the Q carries a penalty of 20 points, and
the average score of a turn is 35. If you score only 14 then you have paid full price for the
Q, despite the success of the QAID-building strategy.

Third, the odds of success are lower than they appear. Let us split up the space of U-less
Q situations in two. One piece will contain situations where all the U’s have been drawn,
and other will have situations where U's are still available. If a U is available, then the
overriding priority is to turn over tiles to draw a U from the bag. Accordingly, hanging
onto a D is a hindrance in that the I} should be turned over to make room for a U. Besides
that consideration, there is the likelihood that it will be easier to draw one U than to draw
both an A and an L. Moreover, it will be easier to play a QU word than to play QAID,
which might not fit anywhere. If no U is available then there must be 4 1F*s on the board.
Statistically, that implies that the game is 80% completed. 1t is unlikely that you will be
able to complete a QAID-building strategy before the game ends.

Finally, there is the general observation that Q has negative reaction with every
consonant.

Thus, the strategy did not work, or at least this implementation did not wotk. The author
would not have faith in any implementation that did not calculate whether QALD has a
profitable place to play, or did not consider the tradeoff against reduction in the chance
for QU plays.

-l
LA



6.2.4 Setups

Humans who hold several heavy tiles
often find plays that create spots for
follow-up plays. Such a move is called
d setup. Position 6-1 is an example
from game 9 of MAVEN’s 1998 match
against Adam Logan.”

DEFGHI JKLMNO

i

Rt

MAVEN’s move was the beautiful
double-double PORTION (11E, 36, I).
PORTION keeps a J that can go on the
triple-letter squares at 10F or 101,
making the crossword JO. For example,
10F JAR scores 53, as does 10H RAJ.
We speak of PORTION “setting up”
the J.

PORTION would be the best play even
if it were not a setup. Thus, to some
extent this example is misleading Logan's last: QUOD (1H, 50) 207
because it does not demonstrate how
consideration of setups can improve on
the Basic model. Nevertheless, the
reader should see the potential.

Position 6-1 Example of a Setup

MAVEN tried to find setups. The idea is to look for moves off of the tiles just played using
tiles kept on the rack, If the potential score is high, then perhaps the setup is worthwhile.
For example, if a setup promised 25 points then it would be worth little. But a 50-point
setup is worth something.

However, there are still contingencies. Consider PORTION » keeping J. The biggest actual
move using the I is 25 points. In order to get 53 you need to draw a vowe! from the bag,
plus possibly a cooperative consonant. Now this is not a stretch here, but what should
MAVEN think about a situation where a setup can score 102 points if the draw includes
an I? Consider the following example, from Wapnick’s book [8].
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In Position 6-2, Stephen Fisher”
eschewed several high-scoring moves
to play TOD (01, 12, BQSUZ). The
reason? He keeps BZQU, so all he
needs is to fish an [ for BEZIQUE (N2,
102)! With 2 draws at 4 I’s out of 19
tiles, Mr. Fisher has a good chance
39%). The author recalls that
simulations do not quite justify this
play on the grounds of point
differential, but since Fisher is 100
points down this is just what he needs
to get back in the game.

JK LM

B

1258

In the end, the whole subject of
contingencies derailed the effort.
Consider the typical logic: if we draw a ‘
specific set of tiles, and the opponent Fisher: 269
does not block the spot, and we have Opponent’s last: VIAL (154, 30) 360
no better play, then we have a specific
score, which increases our equity by
something, but it is unclear how much.
I doubt that a robust evaluation function can be fashioned out of this type of reasoning.

Position 6-2 Fisher’s Fish for a Non-Bingo

The author’s sense is that humans overrate such considerations. Nearly every board
promises a large score if ideal tiles are drawn.

6.2.5 Fishing for Bingos

On an opening rack of AEIORST, you have no bingos. You can play the six-letter word
SATIRE, but you should keep the S, if possible, so RATIO, keeping ES, comes to mind.
That is what MAVEN would play.

A better move is probably to exchange the O, since the only tiles that do not make a
bingo with the letters in SATIRE are JKOQYZ, or only 13 out of the 93 in the bag. Of
course, the opponent will make his play, and you might not get a seven-letter bingo
down, but there are tons of eight-letter bingos, and you might be a favorite to bingo even
if vou draw badly.

Such a play is called a fish. The example given above is about as pure a fish as there is,
but there is a continuum of fishing plays that range from plays that are almost normal
moves to outright speculative draws for a bingo.

MAVEN’s inability to fish to draw a bingo is a genuine weakness. Humans fish quite
often. Among weaker humans, the factic is helpful even though many players overdo
fishing. The SATIRE bingos are well known to weak tournament players, so fishing is
one way to ensure that they will not miss a bingo.

2 What a great name for a Scrabble player!
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Curiously, strong players probably do not fish often &nougb. They dis:rrrust‘ ﬁshrgg
because they usually play weaker opponents and therefore do not z<1e:ed m.play the
maximum r;‘umber of bingos to win, provided that they d'o nm. sacrifice points on a
regular basis. Consistently laying down good scores has merit against weak‘ef oppgnemt,&
However, if the anti-fishing bias carries over into games against peers, then that is

probably wrong.

Fishing is complex to implement if you aspire to ideal play. It is easy to Ewerdq fishing.
For example, the play RATIO keeping ES is a good move, thanks to tbe ES reiramgd and
12 points scored. The fishing play is only justified because the board is open for bingos,
and the opponent is unable to block,

It is one thing to know that fishing can be beneficial, and another to generate all of the
beneficial fishes and only those. Or, for that matter, even to improve on the Basic
evaluator. Many moves have low turnover and keep good tiles, but only a small fraction
of these are better than the best normal move. Even though we know the key metric—
high bingo chance—it is still difficult.

One of the difficulties is to trade off fishing chances against normal scoring. The danger
of evaluating using incompatible evaluation functions was first described by Berliner
[34]. If the program orders the moves based upon score and rack on the one hand, and
orders the moves based upon bingo chances on the other hand, how does the program
produce an ordering that rationalizes the two lists?

Another issue is that many fishes are not selected based on point differential, but rather
based on winning chances. A winning percentage evaluator could provide the basis for
rationalizing two move lists. On the downside, this introduces a third metric into the mix.

Fishing is a challenging research topic. Top humans have largely ignored the issue by
adopting the philosophy of rarely fishing. It may be possible to do a better job than
MAVEN does. Chapter 10 will introduce a solution to this problem and more.

6.2.6 Playing Phonies

Top human players pain by playing phonies against their weaker human opponents,
whereas MavEN does not. The author recognizes that this is an issue, MAVEN is designed
to play top champions directly, whereas tournaments are decided by play against the
field, which will be composed of players much weaker than MAVEN is, Historically, a
player having a rating around 2050 (pre-tournament) usually wins the National Scrabble
Championship (NSC), but the average entrant is only a little over 1900 strength,

I~Il‘n0w significant is this factor? Human masters play few phonies. First, they are usually
winning against their weaker Opponents, so phonies are not even required. Second, when
they are losing it will often not be a phony that gives them their best chance. Third, any
phony they do play might be challenged. Finally, they might get away with a phom; and
lcm, anyway. What is the ability to play phonies worth? It is unclear, but the aém is
limited because when a player overuses phonies then his opponents chavl‘lénge morehbﬂen.



The best possible design would endow MavEN with the ability to play plausible phonies.
However, do not count on the program being as effective as humans are at judging
whether an opponent will challenge.

MaveN does not play phonies, but there is a curious compensating factor: human
opponents hesitate to play any word that they are not 100% sure of. [n one tournament
game, a player pondered playing a bingo for so long that he went 4 minutes overtime.
The bingo was good, but he lost the game on the 40-point penalty for excess clock time.

Against other humans, the attitude is different. Some players (myself included) will slap
down a plausible word that they are not sure of, thinking, “Now it’s the opponent’s
problem.”

6.2.7 Creating Bingo Lines

When MAVEN trails, it is often best to create new lines for bingos. Maven does not do so
deliberately, so it can fail to create chances to come from behind. Of course, MAVEN's
normal style is wide open, so whether this is a significant shortcoming is open to doubt.
MAVEN has come from behind in many tournament games.

6.2.8 Defensive Play

When one side is so far ahead that his only fear is that the opponent will score a bingo,
then “shutting down the board” is an important concept. Humans criticize MAVEN for not
implementing this concept.

It is not that the author has not tried, but the question of how to hold onto a lead is harder
than human positional theory alfows. It is hard to decide whether to sacrifice point
differential for defensive considerations. The typical human instinct of trying to block
every bingo opening as soon as a 50-poini lead is achieved is overly simplistic. When
playing against top-level experts (human or computer) such a strategy is likely to
backfire.

MAVEN is not as defenseless as some players think. MAVEN's favorite technigue is to
continue 1o lay down big scores, so thai the opponent will lose even if he does bingo. If
you implement only one policy then this is definitely the right choice because it is the
most widely applicable policy. It works in the early game, middle game, and pre-
endgame.

There is a side point concerning the decision to implement only one policy. Many people
have advised MavEN to implement one policy if it is 50 points down and a different
policy if it is 50 points up. The author’s experience suggests that this is unlikely to work
well. The stumbling block is the “blemish” near the dividing line between the two
policies. Berliner described the issues when creating his Smooth, Non-linear Application
Coefficients (SNAC) architecture for evaluating backgammon positions [34]. SNAC
allows an evaluation function to implement subdomain experis, bul requires the
evaluation function to integrate them by using continuously changing siate variables
called application coefficients. For instance, an application coefficient would be 1.0 if'a
subdomain expert were definitely applicable, and (L0 if inapplicable, and smoothly vary
between those limits when approaching the “boundary” of applicability.
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SNAC seems like a solution to our problem, but there is a technical cqmpilicatmn: S?:v‘AC
requires that all subdomain experis have the same units, so that applymcathn cqefﬁmer}ms
can “mix” their evaluations at appropriate weights, How would you mix point d].ﬁerex?thl
with bingo probability? How would you even estimate bingo prc‘)‘babilii}f? Became It is
hard to compare apples and oranges, I term this difficulty the “Fruit Basket Effect.”

It is possible (or even probable) that there is a way to finesse this particular iss‘u?, and
maybe even a few others. But complicating an evaluation function runs the risk of
degrading its performance. In practice, it can be better to stick to one overarching theme,
and do that one thing as well as possible. In MAVEN, the one thing is point differential.
MAVEN is willing to make sacrifices as long as it can keep a high point differential. When
this results in a weakness, as when defensive plays are best, MAVEN accepts the downside
because there is a practical benefit to keeping the design pure. Chapter 10 will describe
how simplicity works out for the best in the end.

To return to the subject of defense, there are techniques besides blocking and scoring that
help maintain the lead. These techniques are so subtle that it is hard to recognize them as
defensive play, vet they can be just as effective as scoring and blocking.

Simply turning over many tiles is beneficial because it shortens the game. If the opponent
has fewer turns, then he will lay down fewer bingos. MAVEN is good at turning tiles, so it
plays this strategy well.

Another technique applies to wide-open middle game positions. It is hopeless to try to
block the bingo lines, since in the middle game bingo lines are like the heads of the
Hydra; cut one off and another will grow in its place. It pays to view the problem from
the perspective of minimizing the opponent’s chances over the whole game. You can
actually reduce the opponent’s chances by giving him more bingo lines, because if he
cannot use them immediately then the board will be filled up. The point is that a board is
not truly closed until every quadrant contains tiles. In the middle game, the defensive
goal is not to block the board, but to fill it up. MAVEN is good at filling the board, but it
does not do it deliberately.

Blocking can be the best strategy, but it is difficult to find such moves without doing a

simulation. The interaction of many factors, including the availability of alternative
strategies, makes defending a lead a complicated decision,
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Analysis  and  experience  have
convinced me that the opportunities for
mechanically blocking the board are
limited to the last few turns (i.e., the
pre-endgame) and that in the rest of the
game most humans overdo blocking to
the detriment of their winning chances.
An example is in order.

Nick Ballard had Position 6-3 in a
game, and then published the position
in Medleys [36]. The strategic situation
is that the opponent is down 77 points,
s0 he probably needs two bingos to
win the game. The expert panel spread
their votes over nine moves, as in
Table 6-1. These options pale,

15 8, a E n

however, beside the truly brilliant Ballard: E G |, L, M. 8, 249
move played in the game—a move not Opponent's last: JISM (110, 40) 172
even cousidered by the expert panel. N . e e
Nick Ballard played "EULOGISM" Position 6-3 Many Defensive Tactics

(4G, 74). This is definitely the play, if
you can get away with it.

Word Spot | Score | Leave | Comments
VUG 5] 4 EILMS | A fish for a killing bingo.

KALIUM | 6l 18 EMS Higher score & turnover than VUG. Big S-hook.
MOGUL 41 16 EIS Good leave. Fills top quadrant. Mice S-hook.

REGULI | 14A | I8 MS Turnover and a partial biock of the bottom row.
EMU J13 118 GILS Shuts row 15 and the K-column.

SMUG K6 19 EIL Blocks K-column. Scores well, but burns the S.
MOIL 3¢ 122 EGSU | High score with a good-but-niot-great rack leave.
VELUM 55120 GIS Like KALIUM + higher score and weaker leave,
UM 20 1 20 EGILS | Like VUG. More points, weaker leave.

Table 6-1 Best Plays for Position 6-3
In Brian Cappelletto’s * view, the solution is to prevent the opponent from bingoing. By
making one bingo a little harder, we substantially cut the chance of two bingos. For
example, cutting the opponent’s chance of bingoing from 1/7 to 1I/8 would drop his
chance of getting two bingos from 15% to 12%. Cappelletto was convinced that EMU
(J13}) was obvious, with no other choices worth a thought.

Peter Morris's™ view was that it was too early to try to close down the board, because the
opponent could keep it open. After all, there are still plenty of tiles in the bag, including a
blank. Morris figures that the goal should not be to close the board, but to fill it up.
Accordingly, he likes KALIUM because it starts to make plays in the upper left.

* World and North American Champion.
# Also World and North American Champion, which tells you a lot about the diversity of opinion
among Scrabble experts.
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A move like REGULI has high turnover. The idea here is that by turning over tmleg we
can end the game more quickly. This is valuable because the ghance_ of Z‘bmagqs mlj’
turns (at 1/7 chance per turn) is 15.2%, but the chance of 2 bingos in 4 turns is only
10.0%. Of course, REGULI does not take a whole turni ofif the game. To take; a Wl:mlﬁ
turn off the game requires 8.4 tiles of turnover, a feat that is seldom accomplished in a

single move.

Then there is VUG, which has the highest point differential of all plays. The attituc%e here
is, “You lay down your plays, I will lay down mine, and when the game over we will find
out who won.” VUG is a fish for a killing bingo.

There is still another point of view. MOIL scores 22, the point being thai racking up
points makes it harder for the opponent to catch up.

Which play is best? Obviously “EULOGISM.” Ballard said that his opponent did not
even blink at the phony. Analysis, including simulations to the end of the game, suggests
that the mechanical block of EMU is premature, and that MOGUL is the best play.
MOGUL is not the extreme play from any perspective, but it does many things well. It
scores a little more than most plays, twns over an extra tile, blocks a bingo line, creates a
hook spot {or our S, but the hook spot is not in the O-column so we do not risk losing our
lead in one turn, it fills up one sector of the board and gets a start on the upper right
quadrant. In short, a move that should make everyone happy, right? Well, actually,
nobody but the author thought MOGUL was best, though everyone thought MOGUL was
decent.

Obviously there are many ways to defend a lead. All of the perspectives given here can
be the most important, depending on the situation. MAVEN’S actual design plays to
maximize point differential until the pre-endgame, and then introduces mechanical
blocking into the mix. Chapter 9 outlines the technique.

6.2.9 Skepticism Sets In

These experiences showed four things. The first was to treat expert guidance with
skepticism. FExperts often do not know which move is best, let alone why it is best. We
resolved to rely primarily upon rigorous testing rather than expert guidance.

The second lesson was that humans overestimate the significance of positional factors. A
later section will explain why positional factors are generally small.

Third, the author learned that even when a positional theory had some validity it was still
difficult to implement in the context of all of the tradeofTs, limitations, contingencies,
probabilities and suppositions. Incomplete implementations of valid theories were worse
I]jz:ln having nothing at all. Humans, too, suffered from misconceptions having the nature
of “implementation errors,” often choosing inappropriate moves even when they had
unlimited time for pondering. ’



6.2.10 Historical Significance
Humans have historically overestimated the significance of positional factors. Consider,
for example, the following advice from a Web site {37]:

“Play the board not the rack - don’t go chasing bonuses and forget the
state of the game.”

Do not listen to this advice!! If you take this advice literally, it will absolutely destroy
yvour game. Far better is to ignore the board completely. Moreover, definitely chase
bonuses (which is Aussie for “fish for bingos™).

In particular, humans overestimate the impact of defensive considerations. Players try to
“shut down the board” as soon as they get the lead, as if having the opponent play a bingo
was the only way they could lose. In competitions, MAVEN has won games despite being
out-bingoed, simply because MAVEN’s other moves were not self-defeating.

Echoing a common reaction of early adopters of MavEnN, Joel Wapnick said thar at first
he thought MAVEN would suffer from its risky style of play. However, time after time he
found that he could not punish MavenN, and then to make matters worse, sometimes
Maven punished him! This is exactly what theory predicts. Wapnick eventually
concluded that MAVEN’s style was actually not as risky as it seemed.

MAVEN legitimized the style of playing wide-open games. Besides being stylish and
exciting, this style actually results in the greatest tournament success.

6.3 Generally Neutral

MAVEN has used 0.0 as the positional value since its inception. At first, this was because
its author did not understand Scrabble theory. Now that the author has investigated the
issues in some depth, we find that 0.0 is actually a good approximation! There are three
reasons why positional evaluations (except for rack leave) are generally neutral.

First, you must subtract off the average score of all plays from the average score of a
hotspot. For example, if the opponent scores 40 points in a spot, it does not mean that the
spot cost 40 points. If the opponent’s average score is 35 points, then the net loss is just 5
points, which is not a big deal considering that you are not sacrificing points to block the
spot.

Second, creating a spot does not maiter unless it is the biggesr spot. Il MAVEN creates the
second-biggest spot and the opponent takes the biggest, then MAvEN benefits.

Third, the board is shared between MavEN and the opponent. Maybe the opponent
benefits, but maybe no one does, and maybe you do. Granted, the opponent does move
first, so the opponent’s chances are higher, but how much higher? Suppose that there are
11 moves left in the game {which there are, on average) so the opponent takes a particular
hotspot 6 times, and you take it 3 times. What is the net deficit, on average? One-eleventh
of the extra points gained. It is insignificant.

Thus, gqualitative and quantitative arguments substantiate the initial theory that the board
is neulral. Exceptional situations are characterized by synergy between your own rack
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feave and the board (an exceplion because your rack ﬂ@ave‘ 1s privai‘e, “3‘0 this 11$s a‘ “Efﬁ;
way” opportunity) or a spot on the board {:’bm the opponent Wi“’ u.su,elilbly ?ak.e for a ‘xnb’.
score. Few such exceptional situations exist, and only one‘that I know of is easy to
characterize. That one exception is the subject of the next section.

6.4 Triple Word Squares |
Triple Word Squares are exceptional because it is easy to score 30+ pgi.ms by covering
one such square. Moreover, most racks contain the tiles neecl"ed to gxploxt the opening, so
the opponent is highly likely to benefit. It is so easy to (.)bmm a big score that this is the
only exception to the general rule that board factors are n.rr?elevam. MAVEN has a Fablg of
parameters that determine how damaging it is to open a triple word square as a function
of the “shape” of the opening.

The penalties range from 0 (e.g., for putting a Q on Al4) to 12 points (e.g., for Puttiﬂng an
Eon 1E when both 1A and 1H are open). The highest penalty is for placing an E adjacent
to the DLS. This makes sense. Not only is the triple-triple chance high, but an opponent
merely needs a single heavy tile to score 36+ points, and it is possible to hit 72+ with a Z
or X in hand. The lowest penalty is for a Q in the seventh position, which has a penalty of
0. When you think about it, it makes sense; the only words that could use the spot are
SUQS and TRANQS, but these words were not in the dictionary when this table debuted.

6.5 Bingo Openness

MAVEN incorporates a measure of bingo openness that encapsulates significant
understanding of bingo chances. This section describes how it works. The key element is
the quantity and quality of bingo lines. A bingo line is defined as a place where a seven
or eight letter word can go on the board without interference from unnecessary tiles. We
will break up the evaluation of bingo lines into rules for seven-letter lines and for eight-
letter lines.

6.5.1 Evaluating Lines for Eight-Letter Bingos

An eight-letter bingo line consists of eight consecutive squares, of which exactly one is
occupied, and having no interference from the rest of the board. The location and identity
of the occupied tile is the crucial issue. A line consisting of 22797778 is relatively likely
to be used for a bingo, whereas a line 7727222Q cannot be used for a bingo.

As our proxy for the value of a bingo line, then, we take the number of words that fit the
pattern. For 77227228 there are 9663 words that would fit. For ?2722?7Q there are zero
words. If we add up this figure over all possible bingo lines then we get a measure that
correlates well with bingo probabilities.

6.5.2 Evaluating Lines for Seven-Letter Bingos

Seven-letter lines are a little different. A seven-letter bingo line consists of seven empty
squares including one hook square. The letters that hook are crucial. For instance, if
BDEGHLMNRSTWXY are the valid hook tiles and the pattern is *792979, wheré *
stands for the hook square, then the chance of a bingo is relatively large. If the only hook
tile is A and the pattern is 227797 then the chance is small. T o



To maintain comparability with the eight-letter evaluation, we count how many words
have a hook letter in the correct relative location. Any rack containing the tiles from such
a word will make a bingo. However, you must account for the depletion of the bag. For
instance, if the bag has no B’s, then the availability of bingos starting with B is not
helpful. So we prorate the word counts according to the relative density of the tile in the
bag. An example is in order. Suppose that there are 40 tiles remaining, including one D,
which is a hook tile. Suppose that 1000 words have a D in the right spot for the bingo
line. Suppose that the bag has only | D in 40 tiles (a 1/40 rate) whereas the full bag has 4
D’s in 100 tiles (a 1/25 rate). In this case, we would prorate the 1000 words by 25/40 to
reflect D’s frequency in this bag. Note that it is possible for prorating to increase the
weight of a hook tile. The final step for evaluating a seven-letter bingo line is to add up
the prorated weights.

6.5.3 Putting it Together

To evaluate the openness of a board, we add up the weights for all bingo lines. We then
adjust this by a lactor that reflects the impact of the blanks. A higher than average
number of blanks increases bingos, which in MAVEN's model is a multiplicative
adjustment. If you want to get sophisticated then vou can adjust for the availability of
every type of tile. Such adjustments are likely to be small for tiles other than blanks.

The measure is a proxy for the receptiveness of the board to bingos. You can convert this
to a probability by using logarithmic regression. Actually, if you want to convert this into
a probability then you should separately consider the board and the tiles, and use multiple
logarithmic regression.

What can you do with this measure? The first thought is to use it as an evaluation feature,
but unfortunately, it does not explain any of the variance in point differential. That is, it is
a useless feature; as noted elsewhere, there is no general adjustment for bingo openness.

MAVEN uses this measure as an input to a neural network that estimates the chance of
winning a game. The dominant factor in winning chances is the difference in score, of
course. The next largest factor is the variance in scoring, of which bingo chance is a
major component. The impact is indirect, but worth considering since it is inexpensive.

6.6 Winning Percentage Evaluation

You may want to know the chance of winning from a position. The best estimate comes
from simulating the game to the end for an ungodly number of trials. Chapter 10 covers
simulation, but all you need to know for this section is that simulation involves playing
out games using random racks.

For example, suppose that a position is about even, and you want to know the actual
winning percentage. The standard deviation of 2500 trials is V(2500 * 0.5 * 0.5) = 25,
Therefore, the estimate of the mean would have a standard deviation of 25/2500 = 1%. If
all vou wanted to know were, "about how often will I win?" then this is good enough. If
you wanted to know “does DICES or DEICES win more often?” then this might not be
good enough. In addition, simulations to the end of a game take a long time: up to 20
moves per trial.
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Is there a faster way to get an approximate answer? Can me me‘mod produce accurate
answers when used within shallow simulations? The answer is "Yes" to both questions. A
neural network can provide reasonable evaluations of winning chances. The estimates %re
not as accurate as those produced by long simulations, but they are good enough for
practical purposes. It is quick to evaluate, whi‘c:hv means that you can add such
computations to shallow simulations without compromising throughput.

Tesauro pioneered the use of neural networks for evalp@timg-backgammon positions [38].
His procedure was to use self-play to generate training msvlances, and use temporal
difference training to evolve the neural network. This method should do well in Scrabble,
too, but there are procedures that are more effective because the Scrabble space has two
key resources that are not available in backgammon.

First, we have the MAVEN engine to supply training examples. In backgammon, the
quality of play evolves along with the network, which starts out making arbitrary moves
and learns from experience how to distinguish good positions from bad. It is good tlmt
backgammon programs can bootstrap in this way, but it causes long training fimes. In
Scrabble, we have an inexhaustible supply of training games whose quality does not vary
with the evolution of the network.

Second, each Scrabble position generalizes to many training instances for a neural
network because the score is an independent, separable component of the position. Let us
take an example. Suppose you play out a position and observe that the side to move gains
75 points over the rest of the game. If that player were 75 points down at the start then the
game is a tie, if he is 74 or fewer points down then he wins, and if 76 or more points
down then he loses. MAVEN uses one training position to train the neural network at
several scores. One training score is the score that ties the game, and then we train the
network using other scores that are symmetrically placed about the tying score.

There are several advantages to this method. First, training is faster because we do not
need to recompute all of the inputs for every training instance. Second, the resulting
network is sensitive to changes in the score input, which is important because it is the
dominant contributor to winning chances. Third, the network never has positions where it
thinks that increasing the score is bad owing to statistical noise in training; in this
procedure, the training instances always force higher scores to have higher evaluations
regardless of the other input settings.

The result is good. An informal comparison of the network estimates with actual games
suggests that the standard error is small, on the order of 3%. This is accurate enough for
roughly evaluating how often a position wins. It is not obvious that it is sufficiently
accurate for choosing good moves, but it definitely is. You might think that if plays were
randomly misevaluated by 3% then the wrong move would often be selected. However,
the errors committed by a neural network when evaluating the descendants of a given
position are highly correlated. For example, suppose the network consistently
overestimates certain positions. If the network has to choose a move in such a position,
then the network overestimates all of the moves, and therefore it selects the best one. On
an emotional level, you hate the thought that your program consistently makes an error,
but in practice that is far superior to making random errors.
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The network is useful in conjunction with shallow simulations for making accurate
evaluations of winning chances. The procedure is to simulate random variations to a fixed
depth. For example, suppose that you simulate to a fixed depth of 3 ply. Such a
simulation will run much more quickly than simulating to the end of the game, which
would involve 21-ply variations. In addition to completing each iteration 7 times faster,
there is lower variance. The variance of a sequence of 21 moves is 7 times the variance of
a sequence of 3 moves, so the simulation converges V7 times faster.

The preceding analysis shows that truncated simulations converge faster than simulating
to the end of the game. Is it problematic that correlated errors occur in neural network
evaluations? In theory it is. In practice, making three moves from the root produces a
wide variety of positions, so errors in endpoint evaluation are likely to cancel.

6.7 Evaluating Endgames

An endgame is a position in which all of the tiles have been drawn from the bag, and
therefore the game is deterministic. Evaluating endgame positions quickly and accurately
has an important role in the algorithms for using simulations (Chapter 10) to estimate
winning percentage. This section describes a process that evaluates endgames.

In Chapter 9, you will find that MavEeN has an endgame search engine that can play out
an endgame with extraordinary accuracy. MAVEN could just play out an endgame and see
what the result is. However, that would take time. In particular, it is too slow to use in
simulations. Is there a procedure that returns an evaluation of an endgame position
without requiring a deep search?

First, let us qualify what we mean by "fast and accurate enough." The goal is to surpass
two alternatives. One alternative is to evaluate endgames by playing them out using the
endgame search engine. The other alternative is to play endgames out using MAVEN’s
midgame evaluator, with tile values tuned for endgame play.

The search engine is accurate. Almost perfect, actually. We estimate its standard error at
less than 1 point per evaluation. Unfortunately, the rate of evaluations per second is only
about 1. The speed is also highly variable, since individual moves may take much longer,

Evaluation by playing the endgame out using the midgame evaluator is possible. For
selecting moves in endgames, we would change the rack evaluation parameters. The
method actually used is to set the evaluation parameters to -2 times the face value of the
tile, plus a bonus of double the opponent’s rack if a moves uses all of the tiles. This
evaluation is correct if we can go out in one move, or if the opponent is guaranteed to go
out in one. Moreover, is reasonable for longer sequences as well.

Such a rack evaluator can select moves in the endgame at great speed. A typical endgame
lasts for 3 maves, but the last one is unusually fast because the racks are almost empty. It
is best to think of the speed as 2 move generations. Thus, this process can evaluate
endgames at a rate exceeding 100 per second. The speed is consistent, too.

The accuracy of the general evaluator is poor, however. The estimate has a standard error

of 13 points. Such an error rate is too large, since about 9% of all games are decided by
13 points or less. Moreover, it is in the close games that you really need accurate
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endgame evaluation, so this evaluator hurts most when it is most llie‘eded, In addmciim t.(;
the large standard error, there is the possibility that errors can“be huge. Fm‘f;xamp‘u, i

the second player to move threatens a bingo out, then the.hrst player‘wxiﬂ predict a
variation such as Play for 30, Bingo for -80 minus tiles, which has a net c:f about -60.
However, the actual game will proceed as follows: Block for 15, quy for —_aQ, Pl;;;y Qm
for 18 plus tiles, which has a net of about +10. ’ﬂ!‘he total error is 70 points!™ The
implication is that even a large predicted lead is not truly safe.

Mow we can qualify what it means to be fast and accurate. We want to compute the
estimate using only a few move generations. And we want a standard error well under 13

points.

MAVEN contains such an evaluation function. It costs the equivalent of about 4 move
generations, so it runs at one-half the speed of the midgame analvzer. Its comput@tiona]f
speed is essentially constant, which is an advantage over the endgame search engine. Its
standard error is 5 points, so it is much more accurate than the midgame analyzer.

The endgame evaluator has two large advantages over using the midgame analyzer. One
advantage is important when the game is close. Only 4% of all games end with a point
differential less than one standard error, compared with 9% when using the midgame
evaluator.

The second advantage is that the analyzer returns an estimate of the winning chance. For
instance, if the endgame evaluator predicts an 8-point margin of victory, then experience
shows that this corresponds to a 96% chance of victory. This is an improvement for two
reasons. First, the midgame analyzer would simply predict a win (i.e., 100% chance of
victory), which is inaccurate given a 13-point standard error. Second, if vou have extra
time and want to be really sure about which variations actually win, you can apply the
endgame search engine to the positions that are too close to call, using the evaluator’s
winning percentage estimate to prioritize the variations, Only a small fraction of all
positions will have uncertain winning percentages, so you can get essentially perfect
evaluations while using few endgame searches.

The second advantage helps when the game is not close. The evaluator is virtually never
in error by 15 poinis, so when a predicted point differential exceeds 15 points then the
prediction is certain, Only 10% of all games end with differentials less than 15 points, so
uncertainty in winning percentage is lower. In addition, as described above, the endgame
search engine can be applied to the undecided games if time allows, with the computation
performed in priority order.

There is a human dimension to Judging close endgames accurately. When using the
midgame analyzer to play out endgames, a 1-point loss is recorded as 0% chance of a
win, whereas when the endgame evaluator sees a l-point loss it will rate the position as a
47.8% chance of a win, The impact of this difference is to encourage the creation of more
close endgames. Since MAVEN plays the endgame much more accurately than humans
do, this is to MAVEN’s advantage. [f MAVEN obtains an endgame that a lmr;]an has to play
perfectly, MavEN will chalk up a win more often than not,

Refer to the end of the game CRAB-TYLER, from Chapter 3.
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The endgame evaluator works by generating the plays using the endgame search engine’s
move generator. That generator returns each move with a set of evaluation bounds, Low
and High. The bounds can be wide, and are subject to all sorts of suppositions regarding
the future of the endgame. Those suppositions are tested and validated in the endgame
search engine. However, in the endgame evaluator there is no time for search, so we must
predict the value using largely static analysis (i.e., using no additional full-board move
generations).

The evaluation process is a tree search, but the constraint is that all of the moves are pre-
generated. (Well, we generate setups off of the tiles of the side-to-move on the first turn,
but this incremental generation is smaller than a full-board generation.) Within that
constraint, we conduct a tree search that aims (o narrow the bounds of the search. In
outline, then the algorithm is the following:

1y Generate many plausible moves.
2} Search the endgame as if these were the only legal moves,
3) Well, sometimes we will generate setups, but only when necessary.

This process is less accurate than the endgame player, but still accurate. Difficulties arise
when the move generation process is obviously insufficient. For example, suppose we
determine that the opponent is stuck with a tile, Then the variations will often involve
little one-tile plays and small setups. The opponent will have little flexibility, However,
the static view of the tree is limiting because key moves may not have been saved for
incorporation into the tree. There is a chicken-and-egg problem; we must generate plays
and analyze them before we discover that the opponent is stuck. If we prioritize moves by
immediate scoring value then we are unlikely to keep one-tile plays. The heuristic we
employ in that case is to guess near the High bound, and we are right more often than not.

Another case is to save several moves for the opponent’s tiles, and then discover that they
were all blocked. Odds are excellent that the opponent has some moves, but we have noi
saved enough of them. We resolve this by guessing a residual value close to the upper
bound. Sometimes we guess that we missed a key move for the opponent. For example,
consider a play that has a lot of uncertainty because we are unsure whether we can play
our follow-up play. For example, we threaten to go out, but we have only one such move.
Will that move be blocked? Sometimes we know for sure that it will, because among the
opponent’s plays is a blocking move that seems best. Suppose that the opponent should
block, but we just have not saved such a play? Then we must specifically generate moves
that block the follow-up play, and consider how they work out.

Ultimately the tree search concludes with narrowed bounds for the true value. Then we
have to pick a point inside. Whether the score tends to work out at the high end or at the
low end depends on several factors, the most significant of which is the side to move at
the end of the variation we are predicting. Whoever moves at the end of the variation will
have first crack at improving the score.

Finally, we compute a winning percentage by looking up the predicted point differential
in a table. Actually there are several tables, according to the length of the predicted
variation. Short variations have low standard error. For example, consider the extremes of
variation length. A variation of length 1 means that the side-to-move bingoed out, and
such moves are always best (in practice) and the evaluation is always accurate. A
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variation of length 2 means that the opponent pdiaﬂtyed out on his tun, -and the ﬁear;f:
engine would only allow such a thing if it were basically forced, so t[‘fn‘ere is low error.
the other extreme, when one player is stuck, then the evaluation involves many

suppositions, and the error rates are highest.

Please note that we could have computed winning percemgges in the same way if we
continued using the midgame analyzer. That is, we could use the predmcte‘d point
differential as an index into a table that predicts winning percemague; H@yfever, becau:?e
of the frequency of bingo outs, that table would have a lot of uncertainty. For example, ng
a variation of length 2, should we assume that the opponent’s out play was unblockable?
The difference between blockable and unblockable could be huge, and the average case
estimate may be misleading. Additionally, the reason for using a winning percentage
estimate is that the winning percentage is a nonlinear function of the point dlfferexm_aﬂ.
For the endgame evaluator that is normally true; that curve has a sharp rise between point
differentials of -5 to +5. When the curve spreads out because of a higher standard error,
and is distorted by errors exceeding 70 points, then it is not clear that the curve will have
the desired effect.

The endgame evaluation function meets the goals of acceptable speed and accuracy.
Simulations are half as fast as when using the general analyzer for the same purpose, but
it pays off by cutting the standard error by 60%.

The value of reducing the error rate is evident when we consider MAVEN’s ability to
evaluate moves that empty the bag. Before implementing this evaluator, MAVEN could
compute exact winning percentages (i.e., exact with respect to the assumed probability
distribution of opponent’s racks) for situations with one tile in the bag only. The reason
was that the evaluation of the 8 possible endgames was an expensive proposition because
the endgame search engine was called on each one. To extend that to two tiles in the bag
would have involved analyzing up to 36 possible endgames. It may be feasible using
today’s faster computers.

However, the endgame evaluator substantially raises the bar. If a move empties the bag
with 5 tiles remaining then MAVEN can compute an almost perfect estimate of the
winning chances. With 5 tiles remaining there are up to 792 endgames to evaluate. Each
involves the equivalent of 4 move generations, so the total cost is 3960 move generations.
Expensive, perhaps, but suddenly feasible. Accuracy will be practically perfect in those
cases that have a point differential greater than 15, In the remaining cases (usually less
than 10%) the endgame search engine can improve the analysis as time allows or until the
move is either proven or eliminated.

This evaluator significantly raises the accuracy of simulations. However, there is a hidden
cl()wnsi«:ﬁ@. (There is always a downside.) That is the classic two-player game error of
presuming that the opponent will see whar the program sees, which [ will dljb the “Mirror
bﬁ'ect.v” There may be times when the only chance of victory is to hope for an opponent’s
error. This is illustrated by the next example. .



Position 6-4 occurred in the 1992
National Championship. The author
reviewed the play as a member of the
commitiee responsible for awarding
the tournament’s Brilliancy Prize. In
submitting this position, the player to
move noted

CDEFGHI JKLMNDO
: o

“Since | was down 64 points with
the rack ABGGIU?, and with one
tile in the bag (ELNNORUW
unseen), I knew that I needed a
bingo to have any chance to win.
But what should 1 draw for? My
opponent was tile tracking, so 1
knew that if 1 played for an S

bingo (ie. BUGGIES, e
BAGWIGS, etc.), he could simply Moving: &« A ~ 300
block with ON, EN, OR or ER 15] Opponent's last: ZEE (6B, 32) 364

or other, better plays through the E 8 Unseen Tiles: ELNNORUW
at F13. However, if 1 use the B
and draw the R for ZIGGURAT
B6, he might not notice it.”

Position 6-4 Fantastic Fish for a Swindle

The player realized that he has no chance if his opponent played perfectly. Indeed,
against MAvVEN he could resign himself to defeat. However, against a human, there is a
chance. This player did not give up, but continued to calculate his best moves. (Recall
that Chapter 4 mentioned that humans are amazing.) What happened in the game is a
classic example of the good luck that comes to those who prepare for it. Here is the
story, as told by the winner:

“Ironically, after playing BE 10N 10pt., I drew the R, the opponent saw
ZIGGURAT and mistakenly played EWE C6 to block, allowing the formerly
unplayable ARGUING BE, 76pt., winning.”

This is a classic example of how winners make their own luck. Hats off to the victor! It
turned out that the lucky winner was Joe Edley. Brilliancy Prize submissions are
anonymous, so that player reputations are not considered when the prize is awarded. The
opponent was Randy Hersom, who finished in the top 10 of this event.

Against MAVEN, Edley’s move would have no chance. Edley’s move emptied the bag,
leaving an endgame that MAVEN would analyze with certainty. Alas, because of the
Mirror Effect, if MAVEN were in Edley’s seat it would not fish, because it would assume
that Hersom would see ZIGGURAT and block.

It is possible that if MAVEN were using the general analyzer to play out endgames then it
would fish for ZIGGURAT. If it generated Edley’s BE it would then enter an endgame
with Hersom moving and ZIGGURAT pending in 1/8 of all cases. Whether MAVEN's
move would accidentally block ZIGGURAT (or inadvertently set up a different bingo) is
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unknown. So there are many uncertainties. If yvou want to generate swindles then you
need to be aware of the Mirror Effect and take specific calculated risks to counteract it.

it is an open question whether to exploit human errors, and how. See Chapter 12 for a list

of possibilities.



Chapter 7 — Early Game Play

The early game covers that part of the game in which the score of the game is not a
significant factor in the move selection process. Normally the early game covers about 7
moves for each side. The play of computers is truly dominating in the early game.
Computerized evaluation functions correlate well with the quality of moves, so the
program’s exhaustive move generation is a formidable asset.

This section gives the selection criterion for choosing moves in the early game, and then
gives several examples of computer play. We finish with a summary of the characteristics
of computer play in the early game.

7.1 Selection Criterion

MAVEN chooses moves according to its estimate of point differential. In particular,
MAVEN does not directly estimate winning chances. This is a closer approximation than
you might guess. The justification for choosing moves based upon point differential is
that the difference between the scores of the players over the rest of a long game is
approximately normally distributed. Therefore,

winning percentage = Cumulative Normal ((Our Score — Opp Score) / Vvariance)

Thus, the point differential is directly related to winning percentage. If a move has lower
point differential it must have a difference in variance large enough to compensate.
However, the variance over the rest of a long game is hard to influence. You might be
able to affect the wvariance of the next turn or two, but the board will evolve and the
variance is likely to return to normal, or at any rate, is likely to be about the same across
the immediate successors of a root position. Reducing the variance on this turn has little
impact on the variance of the game as a whole.

Exceptional situations have few turns left. Even there, only rarely does it transpire that
the best move has a lower point differential than another play. In the early game, the best
move almost always has the highest point differential.

7.2 Characteristics of MAVEN’s Early Game Strategy

In the early game, MAVEN is hard to beat. Errors are usually minor. Errors occur because
MAWVEN misevaluates a move. Often the board or rack is extreme in some way, and the
positional averages do not apply exactly. Usually the move selected by MAVEN is good
anyway.

It is useful to single out positions where the best move falls outside of the top [0 moves
in the ordering. That case is interesting because il means that MAVEN is missing some
substantial concept. In the current implementation, such plays are usually fishing plays.

Consider the opening rack ADEHORT. MAVEN is content to take 28 points by playing
THREAD. Fishing is better. OH (8H) scores only 10, but it compensates by taking points
from the opponent and by increasing chances for landing a bingo. Table 7-1 shows
simulation results.



Word Square | Simulated Differential

OH 8H 26.6

THREAD 8C 22.4

HATRED 8D | 21.9 i

Table 7-1 MAVEN Plays THREAD instead of OH

Asg yvou can see from simulation results, OH is better than THREA_;D by abou? 4 points.
Overlooking fishing moves like OH happens regularly, and is a significant loss in total.

But as a practical matter, MAVEN benefits from opening the board. MAVEN never misses
the bingos that occur after THREAD, and human opponents do. It is probably still correct
to play OH, but MaveEn's style of play offers definite compensation for missing
occasional fishes.

David Gibson submitted the opening rack AFNNORT. Gibson plaved FRONT
(8D,24,NR} in the game, which is the move MAVEN would play. He noted the
alternatives NONFAT, FANON, and FON. Gibson wondered if FON should get the edge,
because of defense (fewer bingo lines), rack leave (ANRT is better than AR). The
question is Do these advantages outweigh the downside of FON, which scores 12 points
less than FRONT?

Word Square | Score | Rack | Simulated Differential
FRONT 8D 24 AN 26.8
FANON 8D 24 RT 26.2
NONFAT 8D 20 R 23.7
FON 8G 12 ANRT 21.4
FONT 8G 14 ANR 20.1
FANO 8G 14 | NRT 17.9

FAN 8G 12 | NORT 17.6

Table 7-2 Example Showing that Fishing is Often Wrong

A MAVEN simulation collected the data in Table 7-2. The data show that FON regains
value, but too little to catch FRONT. The bingo synergy and defensive value of FON do
not overcome a 12-point sacrifice. FRONT is superior to FON by 5.4 points. Since FON
sacrifices 12 points, but finishes only 5.4 points back in equity, it must have advantages
that regain 12 - 5.4 = 6.6 points. Most of this difference is due to defensive factors,
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FROWT ws FON shows that bingo
synergy does not necessarily accrue to
racks that have low and non-duplicate
tiles. There are other qualities, which
are often not obvious by inspection.

DEFGHI! JKLMNO

e

R

In Position 7-1, Joe Edley bingoed to
start the game, and Robert Felt held
drek. Felt played KEV (17, 19,
GNSTT).*® Edley was aghast. He was
certain that exchanging was best.
Mevertheless, Felt stuck to his play,
and with good reason. Exchanging
(keeping ST, most likely) would have

-y

a net value of about 7 or 8 points

under the Basic model, and KEV’s s
Basic evaluation is about 10.

B, T 0
For a second opinion, Edley called Edley's last: GIRDLED (8D, 74) 74

Nick Ballard, who spotted TSKING
(ES5, 22, TV). Edley and Ballard were
certain that TSKING was best, and
MAVEN’s Basic model concurs. The Basic model sees that KEV scores 3 fewer points,
and the GNNST rack leave is consonani-laden and has a duplicated N. There is some
compensation from the S, but overall GNNST seems pretty bad. The NV rack leave after
TSKING is also bad, but at least that rack has only one negative (the V) so there is hope
in the draw from the bag. For GNNST, by contrast, there are 3 negatives (G, NN, §
consonants) against 1 positive (the S) and the draw is only two tiles so not much can
happen. [ recall that Bob preferred KEV over TSKING, which seemed like pure
stubbornness in light of the analysis of score and rack leave.

Position 7-1 Example of Typical Small Error

Table 7-3 shows the Basic | Word Leave Score | Basicl | V/C | Total

assessment of the two moves. | TSKING | NV 22 ~6.5 +1.5 17
MAVEN's Basic model regards | KEV ONNST 19 -3.0 0.5 10

TSKING 1to be 7 points
superior to KEV. In 1'hepeaur‘ly Table 7-3 Basic Evaluation of KEV and TSKING
game, such a margin is usually proofl of superiority. However, this situation is a [ittle
peculiar. MAVEN simulations showed KEV was best. KEV actually gets its points back,
and Felt was right all along.

Simulations show that the GNSTT leave bingos 19.6% of the time, usually through the |
in GIRDLED, making an ING ending. After TSKING, the rack is NV, and we get a bingo
only 11.3% of the time. KEV also has a defensive superiority, in that the opponent’s
bingo frequency drops from 22.8% to 18.9%.

* KEV was in the OSPD3, but not valid in TWL98. | have always wondered how that happens.
Does a lexicographer wake up one day and say, “Hey! That’s not a word! Who put that in here?”
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The total edge in bingo scoring over the next two turns is 19.6% - 11.3% + 22.8% -
18.9% times 50 points (the average difference between bingo and non-bingo moves)
which equals 6.1 points. This almost makes up the difference by itself.

KEV has about a point edge over TSKING when all is said and done. Thus, MAVEN
makes an ervor but it is not particularly significant,

7.3 Overall Assessment of Early Game Play

The play of the Basic model in the early game is remarkably robust. The moves are
usually correct. When a move is wrong, the error is usually small. Besides, many errors
pay stylistic dividends owing to the exploitable weakness of humans in open positions.
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Chapter 8 — Endgame Play

The endgame is a game of perfect information. That is because each player can subtract
the known tiles (i.e., those on the player’s rack and those on the board) from the fixed
initial distribution to arrive at the set of tiles that the opponent must have. 1t was
surprising to find out that human experts do this routinely, a process known as iile
fracking. Some players even allocate their time so that they have 10 minutes (out of 25)
for thinking through the endgame and pre-endgame moves.

What characterizes good endgame play? Well, scoring is important, as always, but not at
the expense of going out, which means using all of your tiles, thereby ending the game.
Going out first is important since if your opponent goes out then you lose points in three
ways: your opponent gets an extra turn, you do not receive his tile penalty, and he obtains
vour tile penalty.

There are defensive aspects to endgame play. Here are three examples. First, if your
opponent has one big hotspot then you want to block. Second, if your opponent has just
one place to play a specific tile, then you want to take that opportunity away. Third, if
vour opponent cannot play out because he is stuck with a tile, then you want to maximize
the value of your tiles by playing out slowly.

What sort of algorithm leads to good endgame moves? Let us start by investigating the
obvious. Full-width alpha-beta search is the conventional technique for perfect-
information two-player games. However, it works badly in Scrabble for many reasons.

1) The branching factor is rather large: about 200 for a 7-tile versus 7-tile endgame.

2) Search depth can be an issue. When one player is stuck with the Q, it may take 14
ply to justify the correct sequence, which is often to play off one tile at a time.

3) Alpha-beta’s performance depends critically on good move ordering. Unfortunately,
Scrabble move generators produce moves in prescribed orders. Of course, you can
generate the moves and then sort them, but a good general-purpose heuristic for
scoring moves is not obvious. For example, in stuck-with-QQ endgames the best move
is often low scoring.

4) Move generation in Scrabble is computationally expensive. The author considers
MAVEN to be fast, but MAVEN is much too slow to perform a real-time 14-ply full-
width search.

Therefore, we rejected full-width alpha-beta search. However, a personal communication
from John Chew indicated that he and James Cherry were investigating Scrabble
endgames by adding a full-width component to ACBOT. Perhaps alpha-beta will stage a
comeback using faster computers and clever adaptations to the domain. We have doubis,
since branching factors of 200 and depths of 14 ply are not so easily dismissed. Indeed, at
that time Chew indicated that ACBOT’s endgame engine was not useable during games,
because it took too long. More recent communication suggests that ACBot has a capable
real-time endgame player based upon alpha-beta [39].
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To highlight the profundity  of
endgames we provide an example
where one player is stuck with the Z.
Position 8-1 occurred in a game
between Joe BEdley and Paul Avrin,
with Edley to move [40]. Edley’s rack
was IKLMTZ and Avrin's was
2AEINRU.?” Edley wishes fo set up
his Z. which is unplayable in the
position now.

Edley’s move, TSK (4L, 18), is
strongest. [t threatens to follow with
ZITI (L2, 13). Table 8-1 shows the
most  straightforward plan  for the
defender .

332

To surpass the game continuation
300

requires a truly deep assessment of the Awrin
position. Avrin missed Edley’s setup
of the Z, but his move is pretty strong
nonetheless. If Avrin bad seen the

¥

Position 8-1 Deep Endgame Example

threat then he migllt have considered three Player | Word Spot | Score
blocking moves. The block that MaVEN Edley TSK 4L 8
selected was URN (2J, 3, 2AEIU). Two ey . .

‘ . LT ) Avrin DRIVEN 8] -36
blocks that loel Wapnick pointed out are UN Edley Z1T1 2 03
gzl11 f)?FIRU) 81?{]1{”5 (l;;t:&& "’?l};il:Ul)S Avin | AUK N2 4
ustifying any of these three mo ‘ Edley | (LM) §=.27

difficult, because there is an immediate,
tangible loss from blocking: Avrin will not  Table 8-1 Game Moves of Position 8-1
be able to take the TWS using DRIVEN, and

to make matters worse, Edley will take the TWS using VIM. This is a huge initial
investment, and the gain from sticking Edley with the Z is, by itself, insufficient
compensation. To justify the block, Avrin must manufacture many more points than he
can score with DRIVEN.

MavEN’s play was URN. It seems to me that MAVEN’s variation (which is given below)
Wapnick’s suggestion of UN is intriguing, since it preserves an R that can score decently
{e.g.. PAR (2K, 7) or BEER (4D, 6)). Someday the author will have io investigate why
URN was selected instead of UN. Perhaps URN is actually better because of an obscure
subtlety. Another factor to consider is that MAVEN’s endgame search would have been
terminated by a timeout. so the search may have stopped having proven only that URN
was a good move, but without a proof that it was best. 1 ran this case over 10 years ago on
a 20 MHz computer, so it is likely that modern hardware would yield different results.

27 14 ig " Oy vdeame wi i i i

it is unusual o see an endgame with 6 tiles moving against 7. The onlv way this can happen is if
the Stdc':‘, with 7 tiles played zero tiles on his previous turn. In this game, Avrin lost his previous turn
when Edley challenged a phony.
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The tactics that justify blocking ZITI are surprisingly deep. MAVEN quotes the variation
of Table B-2 as best. The author suspects that Wapnick's UN is better. I1f UN is the best
play, then the variation for UN is probably similar.

Player | Word Spot | Score | Commentary

Edley | TSK 4L 18 Best for offense. What should defense do?
Avrin | URN 2] -3 Blocks ZITL (1.2}, but that allows. ..

Edley | VIM 8M 24 Edley to get the triple-word square.

Avrin | MU 08 -4 Avtin plays out one time at a time

Edley 0

Avrin | ENJOYS 19 -16 Can Avrin get back enough poinis?

Edley 0

Avrin | IN 12K -4 What is Avrin getting at?

Edley | PAL 2B 7 Avrin threatens to go out, so Edley plays.
Avrin | VIATICA | 5H -18 Oh!

Edley 0 No play for the 7, of course.

Avrin | HE oM -16 Oh!! Avrin gets 34 points on his last moves!
Edley | (£) -20=-32

Table 8-2 Best Play Variation for Position §-1

This wvariation, 12 moves long, need not be seen in ils entirety in order ta choose TSK.
TSK may be selected after noting that it is high scoring and sets up a strong threat o
counter the opponent’s play DRIVEN,

By contrast, to choose URN requires seeing the entire 11-move sequence that follows,
since only the stunning setup VIATICA followed by HE justifies the initial sacrifices of’
points. Note that the opponent passes to delay VIATICA, because it can be followed by
VIATICAL. The defender finally forces his opponent to play off the L. with PAL, and
then VIATICA and HE follow.

8.1 First Try

We have previously described MaveN's first effort, which was to naively look ahead at
the top N moves using a forward search. This system should have improved Mavin, but
a buggy implementation failed. Upon reflection, we decided that this approach was
doomed, because

1} blocking the opponent happened largely as a matter of chance,

2) there was no incentive to play one tile at a time when the opponent was stuck,

3y finding plans that went out in two moves was unreliable, and

4y depth of search was only two plies.

In short, there was no underlying plan that guided move selection, so the top N moves
were likely to miss key resources. Therefore, MAVEN started over from scratch.
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8.2 Domain Analysis and Requirements

An endgame is a perfect-information game, with a high branching factor and pmemiaiqy"a
requirement for deep search. Nevertheless, humans manage to find strong moves, and it is
worth investigating how they do this.

One helpful property is that Scrabble is a converging game. Tlml iS', rEE1e compleml}!
declines along every variation as tiles are placed onto the l?oard. Thus, it ls_posm.b‘le thaVF
an analysis made at the root of the search tree will turn up information that is valid (or at
least useful) throughout the search.

A second attribute is that the board is largely fixed during the endgame. An endgame may
add up to 13 tiles to the board, but there are already at least 86 tiles on the bpm'd‘ when it
starts. That the board is largely frozen supports the notion that a static analysis of the root
will be useful in the search.

A third trait is that the outcome of a variation is the sum of the scores of the branches
(with the opponent’s scores taken as having a negative sign). Moreover, the number of
moves added together is normally small, and often only 3. It follows that simply choosing
high scores is a key tactic.

Nevertheless, playing out quickly must be paramount. Allowing your opponent to play
out before you do is too painful to contemplate. Letting the opponent get an extra move,
using tiles that you could have taken as a penalty, and then having to pay him a tile
penalty often adds up to over 20 points, and it can be worse than that. Therefore, the key
goal is to play out as quickly as possible, while maximizing the sum of the moves.

Since you start with a rack of tiles and never add any tiles to that rack, you can envision
how you might plan to play off your own tiles using dynamic programming. Specifically,
generate all moves, and then devise a plan that combines moves that eventually use all
tiles. You can even extend this to compute the best plan that is N moves long, for every
value of N from 0 to 7. Now, how do you handle the opponent’s moves?

One consideration must be to reduce the opponent’s score. We hawve already mentioned
that playing out quickly is a vitally important component of the strategy. There is
additionally the move-by-move tactics of blocking the opponent’s high-scoring plays.
How would you achieve thai goal?

IT you generated a sorted list of the opponent’s high-scoring moves then you could scan
that list for the highest-ranking move that is not blocked by each of your moves.
Actually, that description is a little misleading, because which of the opponent’s moves is
optimal depends on the tiles you keep. In reality, you must consider many opposing plays
and pick the one that plays best against the tiles you keep. ‘

So the idea, then, is to form a plan through static analysis, then validate it using search.
These notions sketch a solution, but there is more to do. Obviously, the generators are not

pen‘!“ect‘, and we must embed them in a search somehow, and so on. Still, the basic notion
1s established: the solution will compute an oracie that is specially tuned to this position.
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That oracle is expected to be reasonably expert for evaluating the entire space underneath
the root, since the entire space differs from the root relatively litile.

8.3 Evaluation Function

Since we have rejected exhaustive search, we must necessarily be selective, which
implies the need for an accurate evaluation function. We can construct such a function
because Scrabble endgames are converging and largely static, as described in the
previous section.

These properties are exploited by using dynamic programming. Because endgame
positions are largely static, the evaluation depends largely on the two racks that the
players hold. In other words, if the position reduces to one where we hold ER and our
opponent holds AW, then the evaluation of that position is largely determined. It might
vary as a function of changes made to the board position, but we can deal with that in the
search engine.

It is impractical to build a table of all possible racks that we hold versus all possible racks
that our opponent holds, as there are up to 128 possible racks for each side. Fortunately,
we do not need the full set. Simply knowing what one side can achieve within N turns
{for N=20, ..., 7) is sufficient.

For mstance, suppose that the side to move can play out in two turns, and the opponent
cannot play out in one turn. Then a good estimate of the endgame is the largest possible
two-turn plan that plays out for the side to move minus the best one-turn plan for the
opponent.

Of course, the best two-turn plan for the side-to-move depends on many things. It
depends on the whole position, actually. But the board is largely static. There are already
at least 86 tiles on the board, and the few that will be added during the endgame are only
a small fraction of the total. It follows that the legal moves that are possible from a given
rack are largely fixed.

The opponent’s rack may have an impact on the best plan. In particular, the opponent will
try to resist, so you can expect the best plan to be somewhat worse than the best plan in
the absence of opposition. While this is a complicating factor, it does suggest that
searching moves in order of the value of the “opposition-less™ plan will work well. It is
true that the evaluation is not perfect, but the intention is to place the evaluation within a
search engine, which should be able to overcome the defects.

These considerations suggest that an excellent approximation to the value of an endgame
is a plan computed under the assumption that there is no opposition and the board never
changes. Specifically, for each value of N =0, ..., 7, and for each rack that a player may
hold in this endgame™, we wish to compute the largest sum of N turns thal can be made
from that rack, and set a flag indicating whether the N turns play out all tiles.

** There are no more than 128 possible racks thai each player may hold, since tiles are never
introduced into play once the endgame staris.
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We can statically compute the values of the racks if N=(]' (e, if tl‘}e opponent goes m:n
before we move). That is simply —2 times the sum of the tiles. For N > 0 we use d},i'ﬂﬂ]:ﬂl]v?
programming. For every move that plays out (_)f each rac.k, we compute the s‘coreﬁof }I{*‘mi
move plus the evaluation of the remaining tiles assuming that N-1 tumﬁ remain. The
value of a rack in N turns is the largest value of that function over all possible moves.

Constructing the evaluation table for a player requires just one ﬁmp-board move
generation, since the computation assumes that the set of legal moves is static. 'ljhe power
of the evaluation function computed by dynamic programming is that it approximates the
results of a deep search, and the beauty of it is that it is cheap fo compute.

We can then do an evaluation of any position in the search space by using a type of
quiescence search [41]. In a classical quiescence search from chess programming theory,
the player to move at a frontier node as the choice between “standing pat” (which ends
the variation) or trying to improve his score by generating captures. A similar process
occurs in Scrabble endgames, where the player has the option between playing out and
playing on. Normally it is best 10 play out as soon as possible, but when the opponent’s
tiles are bad then it can pay 1o play on instead, compounding the opponent’s difficulties.
We have seen such a case when Joe Edley was stuck with a 7, and it was in Paul Avrin’s
favor to play out slowly. What Avrin would be thinking on his turn is, “Should I play out
now, or should I try for more?” That question is exactly a quiescence search. MAVEN
includes such a search in its endgame player.

For example, suppose that MAVEN needs to evaluate a position where the tiles DERTTT
move first against the tiles EIVY. If DERTTT can play out, then that establishes a lower
bound on the value of the variation, Otherwise, DERTTT follows its best plan, and then
EJVY has the chance to play. The process repeats with EJVY to move. Since the number
of tiles decreases monotonically, eventually the process ends.

The previous paragraph describes the process as a search, but because the options are all
static and the search “tree” never has branching factor > 1, it is possible to write a loop
that computes the same result. The loop actually computes the value “bottom up” by
figuring out first what will happen if the side to move is allowed to make 8 turns (and the
opponent makes 7). Then the opponent is given the option of playing out in 7 turns, and
so on. At each iteration the players try to improve upon their fate by playing out sooner.

This evaluation function is static and fast. It takes two full-board move generations to
construet the evaluation tables. We can then do an evaluation of any position in the
search space.

8.4 Second Search Engine

Our first successful endgame player did a two-ply search of moves ordered by this
evaluation function. This program was good, because it could execute the key skills. It
scored points, because it included all the high-scoring plays. It could block, if any
blocking play was included among the top N moves (which is usually true; hotspots fOJ:r
the opponent are usually at least somewhat hot for us). It could play out in two moves
because the evaluation of positions after 2 plies includes the observation that the tiles we
l\up will be out in one. It could play out one tile at a time if the opponent is stuck
because it would see that it scores more points in seven turns than in two turns, ’
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Position 8-2 is from a December 1987
tournament game, with MAVEN moving
versus Charlene White. White had only
one way to use the K on her rack:
PINK (K4, 10). MAVEN noticed this
and blocked. There were a few ways 1o
block PINK, but two moves stand out:
PINON (K4, 7) and OBELI (J4, 7). The
first is stronger; the one-tiling value of
1L exceeds that of NO because of LAX
{B13). The whole variation is in Table
8-3.

Word Spot Score

PINON K4 +7

EMEU 13G -6

COZIES C7 +20 400
WHARFS 1D +14

LAX B13 +10 300
IT 4 +7 Position 8-2 MAVEN’s First Sharp

(K) +10 = 62

, Endgame Play
Table 8-3 Best Play for Position 8-2

Prior to having an endgame player, MAVEN would never find a plan like this, MAVEN
would make a move like NOISE (15K, 30, L). White would reply with PINK (K4, 10),
and MAVEN would play out with LAX (B13, 10+2). That dreadful sequence nets only 22,
so MAVEN's error would cost 40 points. PINON is well worth finding, as it is the
equivalent of scoring an extra bingo.

8.5 Weakness of Second Engine

The engine was not perfect, but it was a big step forward. We suspected that it was better
than human experts were, and indeed, it was a huge advance for computer programs.
Unfortunately, the approach had at least four deficiencies that were hard to address
without extensions to the framewaork.

D Blocking occurred largely as a matter of chance.
2) The engine found setups largely as a matter of chance.
3) Negative setups, where the opponent can use MAVEN's tiles beneficially,

unpleasantly surprised the engine.
4) As it stood, the algorithm spent the same amount of time on every play.
Part of the problem was that the plausible-move generator did not take into account the

opponent’s possibilities. That was easy to fix, since we were already generating the
opponent’s plays while building the evaluation tables. We simply saved a set of
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promising opposing moves. Then, afier generating moves for the side-to-move we copld
determine which of these opposing moves were not blocked, and score the resulting

variations after a two-move sequence was played.

This tweak was a big improvement, but there remained shortcomings that suggested that
the search did not faithfully model the domain. For example, suppose the opponent holds
ROADWAY, and he can play ROAD for a small score, and WAY for a big score.
Actually, WAY is the opponent’s only big score, and we must block it. However, when
we evaluate a blocking move, we find that the evaluation may be inaccurate. For
example, among the opponent’s replies we find ROAD. If we are not out-in-one after our
initial move then the evaluation of the future is “way off,” because the evaluation tables
believe that holding WAY is valuable. The change in position is not reflected in the
evaluation tables until the opponent generates plausible moves.

To generalize this example, the plan constructed by the evaluation function maximizes
the score achieved by the sum of the moves, but two factors are unspecified. One factor is
the order of the moves; the moves of the plan can be played in any order. It is up to the
search engine to determine whether any of our moves interfere with one another. Another
factor unspecified by the plan is the amount of risk—what happens if a move is not
playable? These issues are delegated to the search engine, but the search engine fails 1o
accept the responsibility.

The problem afflicted MAVEN for a ABCDEFGHI JKLMNO
while. We considered modifying the g

evaluation function to account for the
block of WAY, but that would just
introduce  other  problems. For
example, suppose that WAY could be
played in two locations, one scoring
25 points and the other 28 points. The
gain from blocking the high-scoring
spot is only 3 points. How would the
evaluation function know what the
gain was?

© 0~ O B W R s

A different deficiency was that the
engine had no ability to foresee
resources deeper in the position,
because the static analysis was only
done once. Position 8-3 shows what MAVEN:
can happen. This position is from an Opponent's tiles: |
October 1987  tournament, before

MAVEN had any endgame player. The ~ Position 8-3 Blocking, Going Out in Two
move actually plaved was FASHED

(LB, 40), the hj ghest-scoring play.

lﬁﬂhe plmﬁu l‘: mmscme wellﬂusi.‘ngtlw -S hook at 10L, while interfering with the opponent’s
=DDY (151, 30) and DEWY (12L, 30} A secondary priority is scoring highly with FA
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(014, 29).” Thus, MAVEN likes the plays from L10 using 7ADES (keeping AF) that
begin with S. There are many such plavs — SABED, SADES, SANED, SATED,
SAVED, SAWED, SADHE, SEDAN, SHADE, SPADE, SPAED, STADE, and STEAD
— and it is unclear which one works.

SEDAN is best (see Table 8-4) because |Best |Spot|Score||Actual |Spot|Score
ather plays allow the opponent to block |SEDAN|L10| +24 |[FASHED| L8 | +40
FA (0O14). The words ending in ED— [EDGY | 24 | -18 ||EDDY |15L] -30

SABED, SANED, SATED, SAVED, |pa 014] +29 |lAT 3E | +7
SAWED, and SPAED —are refuted by (EN) 4 =39/ (GN) 6 =23

EYNE (13L, 14), which nets 35 after
FAD (141, 15). EYNE also refutes Table 8-4 Variations from Position 8-3
SADES, but with a net of 33. SHADE,

SPADE, and STADE are refuted by DYNE (13L, 16). STEAD is refuted by DYED (15K,
26). After SEDAN, the opponent can block FA, but only at a price: after YENNED (14,
17) the opponent is stuck with the G! Then FOXY {(6H, 17) and DA (15N, 18) are
unstoppable, and the net is 46. To see these complexities requires that the position be
reanalyzed at every node.

8.6 B* Search Algorithm

The classic approach to a search engine that fails to accept responsibility is massive
overkill. That is, simply search more moves more deeply. It is true that this is a reliable
way of riding the technology curve. In effect, the search engine can delegate the problem
to Intel.

Nowadays that solution would stand a good chance of working. However, the computers
of 1990 were not so fast, and it did not seem like overkill would prevail any time soon. It
must also be considered that overkill applies just as well to clever algorithms, so the
author set about trying to find one.

The analysis of how MAVEN’s ad hoc algorithm failed lit the path to a solution. The real
issue is the difference between the highest and second-highest score using a set of tiles.
Accordingly, the evaluation function generalized to including an analysis of the risk
associated with an N-turn sequence. In effect, there was an optimistic evaluation and a
pessimistic evaluation for every variation. The idea was that the true evaluation would be
within those bounds. Computing such bounds is tricky, but with sufficient test cases you
can eventually make a system that usually works.

At that point MaVEN had an evaluation function that faithfully modeled the domain. It
remained to find a search engine that worked with evaluations expressed as intervals. The
answer is Hans Berliner’s B* algorithm [19]. The B* algorithm is an admissible™ search
algorithm that addresses single-agent or adversarial search problems. In Scrabble, we use
the adversarial formulation.

* FA ereates the crossword DA, which was removed from TWL98 when someone realized that it is
a foreign word that occurs only in names.

* That is to say that it always finds the optimal solution if certain conditions are meL. In B*’s case
the conditions include unlimited time, unlimited space, and an cvaluation function that returns an
interval that always contains the true value of a position.
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The outermost loop of B* is to select a frontier node of ithe‘ search trg(a w(which nms:t \bg
kept in memory) for “expansion,” which means that thejstauc e‘{a.ﬂuatnuon Qf ﬂye sel?me
node is replaced by a one-ply search of its successors. Changes in Fl?e walu.:mmn ‘0 ’thm
node are “backed up” through the search tree using a process akm to minimax. The
outermost loop terminates when a stopping criterion is met. [he dgtalls; of fhg
implementation of these steps distinguish B* from other in-memory alggrlthms hawng
the same basic selective-extension framework. The rest of this section will describe the
algorithm in detail.

The first distinctive feature of B* is that the evaluation of nodes is an interval. The
algorithm assumes that the interval necessarily contains the true ‘va!ue of t]'me n‘c.)deﬁ but the
exarmple of MAVEN demonstrates that B* is fairly robust to occasxion\al violations of this
condition. The lower bound of an evaluation is called the Pessimistic score, and the upper
bound is called the Optimistic score. MAVEN uses a “negamax™' formulation of the
update rule for backing up scores through the tree, so the update rule takes the form

Optimistic(Parent) = Max(-Pessimistic(Children))
Pessimistic(Parent) = Max(-Optimistic{ Children)),

where the Max operation is taken over all children. Note the negation that is
characteristic of negamax. Notice how intervals are minimaxed: by setting the parent's
optimistic bound to its child’s pessimistic bound. Another peculiarity of B* is that the
optimistic and pessimistic bounds need not come from the same child. One of the
strengths of B* is that it can identify cases where one child provides a secure pessimistic
bound, while another node provides upside.

The criterion for stopping any in-memory search engine must include practical criteria
refated to resource exhaustion, and MAVEN follows in this practice. However, such limits
are seldom invoked because the search process usually terminates because of a criterion
that is unique to B*: separation. A B* search achieves separation when the pessimistic
score of one move is at least as large as the optimistic score of all other moves. Under the
assumption that the true value of every node is always contained within the interval, the
separation condition amounts to a proof that one move is at least as good as any other.

There is one last decision to make in a B* algorithm: which node should be expanded?
B* provides two strategies, called Prove-Best and Disprove-Rest, for making this
decision. The goal of Prove-Best is to raise the pessimistic bound of the move that has the
highest optimistic bound. If the pessimistic bound of that move rises enough, then
separation will be achieved. The goal of Disprove-Rest is to lower the optimistic bound
of the move having the second-highest optimistic bound. The reader can verify that there
is no point in working on changing the bounds of any other moves, since it is impossible
to achieve separation until progress is made on at least one of these two goals.

If the strategy is Prove-Best, then the frontier node to expand is found by following the

sequence of nodes that establish optimistic bounds for the root node with the highest
optimistic bound until a frontier node is found. If the strategy selection is Disprove-Rest,

Inanegamax formulation of a m mimax tree, the value of a node is always measured with respect
to the side to move in that node. Thus, high scores are always good for the side to move. When vou
back up a negamax score, you always have to negate the value from level to level,
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then the node is found by tracing the second-highest optimistic bound. It follows that one
of at most two nodes is the node to expand. But which should be selected?

It is clear that Prove-Best should be selected until the node having the highest optimistic
score is also the node having the highest pessimistic score. Until that condition applies, it
is impossible for Disprove-Rest to achieve separation even if it is completely successful.
Once that level of proof is achieved, Disprove-Rest is a viable strategy, and sometimes it
is faster to work on disproving moves than to work on proving moves. This can happen,
for example, 1f the tree under the best optimistic move is large. Such a tree might have a
large “conspiracy number,”” [42] whereas smaller trees under other moves might be
easily solved.

It is also obvious that Prove-Best should not be selected if its optimistic bound equals its
pessimistic bound, since then there is nothing to learn. With the easy cases resolved, we
turn to the complex case where there is still uncertainty in both the biggest and second
biggest moves, and the intervals overlap. What heuristic should we use to choose a
strategy?

Berliner’s original paper proposed a few heuristics for selecting the strategy, and later
papers by Palay [43] and Berliner and McConnell [44] consider the issue in elaborate
detail. But MAVEN does not use any of these because they seemed unwieldy. In keeping
with MAVEN’s engineering-oriented implementation philosophy, MAVEN adopts a simple
strategy that cannot be fooled. MAVEN alternates between Prove-Best and Disprove-Rest.
This guarantees that MAVEN will search any position with at most twice the minimum
possible number of node expansions.

B* works like a charm. In part, this is because the evaluation function and plausible-
move generator are tremendously accurate, In part, this is because the domain is
converging and shallow. We know of only one other domain [33] where B* is superior to
all other known techniques.

32

A tree’s conspiracy number equals the smallest number of nodes whose values must change in
order to propagate a different value to the root of the tree.
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8.7 Execution Trace
We will use Position §-4 to illustrate

ABCDEFGH JKLMN]O
the progression of B* as it searches. ; ‘

2

When the engine examines this
position, the first thing it notices is that
the opponent has few threats. The
opponent’s highest scoring play is JAIL
(15L, 19, FN), but it has the drawback
of keeping only FN, and the only play
for FN 15 FEN (M2, 6). It follows that
if the opponent plays JAIL then he is at
risk of being unable to play oui in two
moves.

In situations like this, the real challenge
is to find plays that do not improve the
opponent’s prospects. This is hard to do
with a rack like AAESTXL, because
these tiles are easy to overlap. It
follows that we may need to try several
moves to determine which creates the
least counterplay.

Posifion 8-4 Endgame execution trace

The best play on first glance is AXELS (N5, 35, AT). AXELS scores well, keeps an out-
in-two, and also interferes with several moves the opponent might like to make, such as
FIN (3M, 12) and RANI (3K, 12). The evaluation function bounds on AXELS are
[39,67], meaning that MAVEN believes that a net of 39 points is guaranteed, and the total
may reach as high as 67,

You might wonder how 67 points could possibly be achieved. With full insight into the
dynamics of the position we know that only 40 points can be achieved, but a static view
sees additional potential. On the defensive side, MAVEN sees that AXELS interferes with
several moves that the opponent would like to use to play an out-in-two. MAVEN thinks it
is possible that AXELS will force the opponent to go out-in-three, which could be a big
win. Additionally, AXELS sets up TAN (M6, 19), making the crossword HOAX with the

X played by AXELS. This is a S-point upgrade over the biggest play for AT prior to
AXELS, which is AT (J5, 14). Accordingly, MAVEN upgrades the optimistic bound for

AXIELS,

The optimism proves to be a false hope when MAVEN expands AXELS. The opponent
replies FAN (M6, 25, JINY, scoring well and also blocking both TAN (M®6), and AT (J3).
The opponent’s 1IN threatens to play out at O3, so there is no possibility of one-tiling the
opponent. MAVEN accepts that the variation AXELS, FAN, followed by TA (N14,
10--20) is forced, with a net of 40.

The new high move is AXEL (NS5, 34, AST), with a similar theme, but this time the AST
rack leave promises more punch if the opponent cannot play out in two. MAVEN expands

AXEL. and sees the opponent’s reply JAIL (150, 19, F N). The opponent threatens to play
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out with FEN {M2, 6). There is no profitable way to block FEN using AST, so MAVEN
accepts that AXEL, JAIL, followed by SAT (J13, 14+10) is forced, for a net of 39,

The next high move is SAT (J13, 14). MAVEN sees that AXEL (NS, 34) is a guaranteed
out play, and MAVEN threatens LATEX (15H, 60). This gives SAT a static evaluation of
[25,65] at first. When SAT is expanded, we discover that the opponent can use the s
row to play FAINT (15H, 24). Actually, MaveN saw this possibility when statically
analyzing SAT, but the node expansion gave MAVEN the chance to see if FAINT allows
any comeback shots that imiprove results. The biggest potential is that FAINT keeps a
bare J, which would often have trouble playing out, raising the hope of a one-tile attack.
Alas, the opponent threatens TAJ (B1, 10). Despite the fact that TAJ is blockable, this is
sufficient to forestall a one-tile attack. MAVEN accepts that the best-play variation is
SAT, FAINT, AXEL (N3, 34+16), which nets 40,

MAVEN’s next expansion is interesting: SHOAT (6J, 14, AELX). The motivation for
SHOAT is that it keeps AELX, which threatens AXEL (N5). What MAvEN has not
noticed until now is that SHOAT blocks AXEL, so the entire theory is doomed. Of
course, B* is meant to address situations like this. The expansion discovers that AELX
can only play out with LATEX (N4, 14), and the variation concludes with a bound of
[4,36], which effectively excludes SHOAT from further consideration because we
already have a guarantee of 40.

The sixth expansion is LAXEST (N4, 36, A). This move was initially ranked behind
AXELS because AXELS created larger setup possibilities, but those have proven illusory
so LAXEST now has the biggest upside. MAVEN sees that DITA (1 1C, 11) and the newly
created HOAX (6K, 16) imply a forced out play, and it remains to see if the opponent’s
setup of FAN (MS, 25) is as valuable as it seems. In fact, the best play variation is
LAXEST, FAN, DITA, for a net of 42. Thus, LAXEST achieves the highest pessimistic
bound.

There are still moves with higher optimistic bounds, so MAVEN continues using the
Prove-Best strategy. It tries TAS (12G, 13, AELX), a move with the same idea as SAT
(J13), but lacking any setup threats. TAS proves insufficient, and the variation terminates
with a bound of [3,38].

MAVEN next tries the idea HOAX (6K, 32). The point is that by playing HOAX rather
than LAXEST you prevent the opponent from playing FAN in reply. Moreover, the
AELST on the rack should have a good chance against AFIIN, even il AFIJN moves
first. Expansion shows that AELST poses two threats: LAXEST (N4, 20) and SETAL
(14D, 11). The low score of the latter play may doom HOAX if the opponent can block
LAXEST with a good score. If the opponent does not block then HOAX nets 43 afier
JAIL (15L, 19) and LAXEST. But the opponent has blocking plays (FAN (4M, 12, AJ)
and FIN (4M, 12, 1J)) that are wilder, and MAVEN could only place a lower bound of 24
on these. So this expansion terminates with a range of [24,43]. This interval straddles the
net of 42 achieved by LAXEST, so the interval must be narrowed further to achieve
separation. But before we apply the Disprove-Rest strategy to HOAX, we must eliminate
a few other moves with higher optimistic scores.

A nice out-in-two threat is SEX (14D, 30, AALT), followed by RATAL (4K, 16) next
turn. Unfortunately, the opponent’s natural moves (JEAN(M2), FIN (4M), and FAN
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(4M)) interfere with RATAL, and do not generate setup opportunities. So this variation
fails to go out in two moves, and earns an evaluation of {9,26].

A better out-in-two threat is SAX (14D, 30, AELT), because it leaves two th?"eam to go
out: LATE (N4, 13) and RATEL (4K, 16). Unfortunately, the opponent can simply play'
JAIL (15L, 19, FN). Then SAX plus RATEL is 46, minus JAIL plus FN make? a net 0;f
only 37. The opponent might do even better with FIN (3M) or FAN (3M}, which block

both out plays.

Another out-in-two threat is RAX (3K, 31, AELST). This play scores well and interferes
with many of the opponent’s plays. Unfortunately, the threats to go out are not great;
SETAL (14D} scores only 11, and STEAL (N3) scores only 14. So the opponent can play
JAIL (15L, 19, FN}, after which STEAL nets only 36. To defeat JAIL you must exploit
the fact that FN cannot play out because RAX blocks FEN (M2). MAVEN’s evaluation
function estimates the upside of the situation as 42 points. Thus, this expansion returns an
interval of [36,42], which effectively eliminates RAX from contention.

A different plan is AT (15, 14), keeping the tiles for AXELS (NS, 35). Note the pattern of
trying high-scoring plays like AXELS first, then trying moves like AT that keep the tiles
(e.g., AELSX) for high-scoring plays. This pattern is sensible, but it is not coded into the
engine. It arises out of the Prove-Best strategy, which starts with the move having the
highest optimistic bound (AXELS), then progresses to other moves having high upsides.
The evaluation function sees that AT has a high upside because there is the potential of
following with AXELS, so eventually the engine gets around to AT. When AT is
expanded, alas, MAVEN discovers that AXELS can be blocked by FIN (3M) and FAN
(3M), so the new bounds are only [11,40].

MAVEN now changes tack, by blocking
JAIL with LA (N14, 10, AESTX). This
keeps a threat of TAXES (N4, 35) as an
out play. MAVEN's static estimate was
that this position is bounded by [-
15,44]. Expansion shows that the
opponent should block TAXES with
FIN (3M), FAN (3M), or JEAN (M2,
and now the position is complicated
apain because there are no guaranteed
out plays. Mavin ligures that the
opponent should play FIN, followed by
MAVEN's HOAX (6K, 32, EST), but 12
can only issue a bound of [13,48] on
that variation.

CDEFGHI JKLMNO

It might seem to the reader that there is
a bug here, because the original
estimate was that the score of LA was
less than 44, and now MAVEN is raising
m bound to 48. That is an interesting issue. From the perspective of internal consistency
1t 1s not necessarily a bug, because any value in the range [13,44] would satisfy both 1‘.{;&;
original and the refined estimates, A disagreement with previmxs estimates 0]11\&? arises

375
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when the true value lies in the range [45 48], Note that B* does not necessarily produce
the wrong answer if the evaluations are wrong. For instance, if the value of LA were 48,
the engine would discover that afier one more expansion, and its developer would
trumpet that discovery as evidence of the “robustness” of the algorithm. On the
downside, if the true value of RAX were 43 instead of the estimated [36.42) then the
wrong move will be selected, because RAX has been permanently eliminated. (Well, not
quite. More on that later.)

To return to the trace, LA is still the move with the highest optimistic score, but its
pessimistic score is less than the 42 achieved by LAXEST, so Prove-Best is again
selected. We descend through LA and FIN (the move that established the optimistic
bound for LA) and we find that HOAX does indeed achieve a value of 48. So the range
of LA remains at [13,48] while we look at better moves for the opponent.

The next expansion is LA followed by FAN, which is better because the opponent now
threatens JIN (A2, 10) playing out. The move that blocks JIN with the highest optimistic
score is TA (SN, 6), which threatens to go out with SEX (14D, 30%. But this is a small
threat, and the net of the variation is only 35 at best. This reduces the bounds on LA to
[17,35], which eliminates LA.

Another concept for blocking JAIL is TA (N14, 10), keeping AXELS. The original
bounds were [30,44]. MAVEN expects FIN, FAN or JEAN after TA, with an evaluation in
the range [6,46].

TA is again the biggest move, and we check TA followed by FIN first. But FIN is not a
good move because 1t does not preserve an out play. The bounds change to [9,46], and
TA is expanded again. This time the opponent plays FAN, and the threat of JIN (A2) out
is refuting, with bounds of [17,30].

The biggest move is now HOAX, which was previously expanded and has bounds of
[24.43]. The engine searches the reply 11 (8M, 8) first. This looks dangerous, because [F
runs up against the TWS at 8-0, but the danger is actually small because it is impossible
to play out on the O-column owing to interference from HOAX and HAIL. Stilt, IF is a
bad move because it does not preserve an out play, and afterwards the bounds on HOAX
still stand at [24,43]. The next expansion is HOAX followed by FIN, and the same thing
is discovered.

HOAX followed by FAN is the next expansion. MAVEN sees the threat of JIN (A2}, and
sees that it can play out with SETAL (14D, 11). This guarantees a value of 40 for HOAX,
but the upper bound remains at 43 because MAVEN can try to block JIN with LEANT
{01, 15, S) instead, and this has potential to hit 43, So this expansion terminates with a
bound of [40,43].

HOAX is still the highest optimistic score, so MAVEN looks at the expansion of HOAX
and FAN again. Maven concludes that LEANT does not achieve a value of 43. If you
want to block then you should play TA (4N, 16), with an optimistic bound of 40. This
bounds HOAX at [40,40], so HOAX is eliminated.

At this point the highest optimistic score is 42, achieved by LAXEST and RAX. The
highest pessimistic score is also 42, achieved by LAXEST. Strictly speaking, MAVEN
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ST § ¢ ion function

uld stop at this point because RAX cannot surpass LAXEST if the evaluation fu? 1 "

gg‘undg are corr;ect. But that is a dangerous assumption, so MAVET\_( does‘hnsot gop}ml.
eq‘ualiﬂw ’bm instead goes for strict separation. And that is forfunate, since otherwise y

would not get to see the Disprove-Rest strategy.

xt expands RAX followed by JAIL, as selected hy the D‘ispmve—,'Rest‘lsﬁa't?ﬁiyé
The bounds of this alternative are [36542}4bef0m the gxpa,nsxmn. The ex»ginsxgn s 'n;)twi tjég
variation SET (3A, 18, AL), FA (El, 5, N), LA.(QM, 1‘4-%2), for a net 91 1. knf:;j:;( H%
associated with the last two moves enlarge the interval to [38,47], which makes ‘

MAVEN ne

highest optimistic moves.

] v i e / i i A RAX is expanded,
The Prove-Best strategy is the only apphcable stra}tegy now, $o : :
following the variation RAX, JAIL, and FEZES, which es‘mbl;shc‘d the upper bound Uf}
47. MAVEN now sees that ARF (Cl, 12, N} followed by ‘LAT (2M, 16+2) is forced, but
the net is only 35. This narrows the range for RAX to [38,44].

The Prove-Best strategy descends to RAX, JAIL, and SET, which is strong becausg it
blocks ARF. The variation FA (E1, 5, N) followed by LA (2M, 14+2) is forced, showing
that the lower bound on RAX is 41, The upper bound is still 44, so RAX is selected by
Prove-Best again.

The upper bound of 44 is suggested by the variation RAX, JAIL, and ET (3C, 12, A:LS).
ET is good because it blocks ARF. Again the opponent has nothing better than F A (E1, 5,
NJ. So far so good. Compared with playing SET instead of ET, we have lost 6 points, but
we now have an S in the rack leave. Can we make something of it? Actually, no. The
biggest hook is the same whether the S is on the rack or not: SAL (2M, 16+2). So ET
fails to improve, but that does reduce the optimistic bound of RAX to 43.

The final try is RAX followed by JAIL and SHOAL (6K, 14, ET). This plan had a high
upper bound because ET plays for 13 points at 3B, However, the opponent’s ARF (C1,
12, N) blocks ET, so this plan turns out to be a fantasy. This reduces the range of RAX to
[41,41], which proves that LAXEST is the best play by a |-point margin.

The efficiency of the process amazes me, even after vears of watching it. This position,
for instance, involves hundreds of legal moves per side, and the search considered
variations that are 5 ply deep. Yet the engine achieved logical separation using only 27
nodes of search, which were completed in zero seconds on my 1GHz processor. On
MAVEN's 1986 machine, this same search would have taken less than a minute, which is
fast enough for tournament play.

8.8 Overall Evaluation

In 1990, the author conducted 2 study of endgame examples [45]. Cases came from
published games and from endgame compositions. The study showed that MAVEN
analyzes endgames much more accurately than humans do. In the game positions human
experts averaged 10.5 points of errors per player per game, whereas MAVEN'S error rate
was close to zero. Moreover, MAVEN was more accurate than human annotators, who
lmye l'!'le benefit of hindsight and the luxury of time for study. Annotators avemgéd 3.1
points in errors per game, )



The only positions where humans outperformed MAVEN were the endgame compositions.
Such positions were concocted to prove a point, rather than to maich the distribution of
endgame instances. MAVEN analyzed 21 out of 26 correctly, dropping 40 points, whereas
human annotators analyzed 24 of 26 correctly, dropping 17 points.

Since then, there have been a few bug fixes, but nothing major. The author’s enduring
impression is that the endgame player is overwhelmingly accurate. The error rate may be
less than one in a hundred games. It is hard to say because it is difficult to prove that any
of MAVEN"s moves is bad.

8.9 Still, it is not Perfect...

Here are examples of how MAVEN can go wrong. 1t does not go wrong often. Actually,
almosr all endgames are simple out-in-twos, which MAvEN nails every time. MAVEN also
plavs most complicated situations perfectly. Still, the complexities can confound even the
most robust implementations.

Position 8-5 was printed in Scrabble
Players News. The best play is SINE
(12K, 13), which sets up WART
(012, 45). MAVEN plays SNAW (121),
a move having some tactical merit,
but which nets 18 less than SINE.
SINE would be a terrific find in an
actual game. The opponent’s tiles
IINT are normally flexible enough to
block such setups. Many players who
find SINE rely on the score; if you are
45 points down then you need a big
play. Anything that draws attention to
relevant positional features is helpful.

[{ole-RN RN BNG; BN NN JVRN oS B

Maven cannot find setups for every

legal move. We must draw the line Moving: ‘A 300
somewhere because looking for setups Opponent's tiles: ! 345

15 expensive; MavEN already devotes
30% of its time to looking for
setups.” It is unclear that increasing

Position 8-5 MAvEN Misses Endgame Setup

that fraction would improve MAVEN,

Best |Spot] Score | MAVEN Spot| Score

because of the time subtracted from other

. SINE 12K | +13 [SNAW 121 +22
useful methods.

INET | D8 -13 |[[WIN OI12]-6(!)

After MAVEN's SNAW, the opponent has WART) O12 N 4I'ij4q ﬁ:;“ L;?j 47-287

a tough problem to solve, because LD o o
MAVEN threatens TWIER (013, 27 and () -4 =31]

out). The opponent’s tiles are 1INT.  pap10 8.5 Variations from Position 8-4
which cannot quite make a big play in the

* The rest goes to other mave generation tasks.
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O:=column. The solution to the puzzle is clever (see Table 8-5} , and many players would
raiss it.

The author is evaluating several methods that find SINE, but do not risk an e{(pl\msiﬂn in
search time. Most promising is to exploit MAVEN's high opinion of SINEW (12K):
MavEN would do a setup analysis for SINE because:

1) The opponent cannot play out,

2} You can hook a tile to the end to form a word that is already on the best list, and
3) You can score highly using the hook location.

However, this process has limits. ABCDE

Position 8-6 shows how complicated
the endgame can be. This position
occurred  between  Rita Norr  and
Steven Alexander. Alexander has just
played CINE (A6, 6), trying to
prevent Norr from playing her Q (e.g.,
QUEEN {A4) threaterned).
Unfortunately, the Q still plays, as
shown in Table 8-6.

Lo

MAVEN Spot| Score |

QUERCINE | A2 | +20 |

IODIN NI1 -1z

OVEN Li2) +16

L) +2 =26

Table 8-6 Variation Found Norr: 360
Alexander's tiles: ) 420

by MAVEN for Position 8-5
These maves, while sutpnsmga and Position 8-6 Amazing Endgame Setup
effective, are not best. In the game, from Rita Norr

Norr missed QUERCINE, and we are

lucky she did, since otherwise the beauty of this position would have been lost on us.
Norr's erushing, devastating move was OD (N12, 3).

The key point of OD is that |1f Block|Spot| ‘Scowﬂ}Besm Play Spot| Score |
Alexander cannot block the oD | {()D N
setup of QUEEN or QUERN 1ODIN UNDESERVED
(08, 48) without using his N, ER QUERN

for example with MINI TL. 7T om oM

or [ODIN (N11, 12). However, |o(pgN IbE

after the N is gone, the deadly O ' b
setup ER (HI3, 2) creates an © | an
unblockable threat of QUEEN Table 8-7 Variations from Position 8-5
(13D, 81). it is actu: 1y best not )
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to block OD, as Table 8-7 shows.

MAVEN actually finds the right moves for Alexander, correctly choosing not to block.™
But MAVEN does not find OD for Norr. It is hard to see that OD is so crushing, so OD is
cut off before any serious examination.

Finally, Position 8-7 is a tactically
complex endgame. The truth is that
MAVEN's move may be the best play in
practice, because it is hard to see the
refutation over the board. It is worth
wading through the wvariations to
appreciate both how MAVEN can err,
and how often things go right despite
the complexities.

ABCDEFG N

H

T
o
o2
N

Jan Dixon and Alan Frank played this
endgame in 1987. Dixon is moving and
leads by 14 points. Dixon has a blank
but her other tiles are awkward,
inchuding the Q. The diagram has only
one place to play the Q, through the A
at 10M. Thus, play will proceed by
either playing the Q there immediately, e
or making plays that set up other Frank's tiles: "Ei@:
moves.

N, PS U 300

Position 8-7 Tricky Endgame Example
[t is important to note that this position
occurred before the introduction of QAT to the lexicon. Dixon's decision is much simpler
if QAT is legal!

One thing to notice is that QUAG (10K, 17) is killed by UNPEGS (O35, 41 and out).
Dixon must proceed more carefully.

The best play is FLAG (6L), which [Best Spot| Score ||Bad Reply Spot| Score
leads to a tied games after best play |[FLAG | 6l +10 | |FLAG 6L | +I0
{Table 8-8). FLAG sets up QUA (71) IGAEN 10L| -7 LEAP SK 1 <15
for the Q, while interfering with |oua | 75 | +16 ||AQUA ok +14
Frank’s annoying -S hook onto |qup l14M| -25 ||lGNUS Ll 13

VEXIL. The column l.abeled “Best” (W) 8 =-14/|(w) 812
shows how Frank can tie the game by
choosing the correct out-in-two. The Table 8-8 Best Moves for Position 8-6

column labeled “Bad Reply” shows
that Frank can go wrong by choosing other, plausible out-in-twos.

** In the actual game, Alexander was not so fortunate. He played ta block Norr. The exira 35 points
that Norr scored were the difference between victory and defeat,
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MAVEN does not select FLAG. |MaVEN |Spot| Score | Bad Reply|Spot| Score
MAVEN is beguiled by the ricky |WAT C3 ] +17 |JWAT Cc31 +17
move WAT (C3, 17). WAT isa |p] 11M R NAP oMy -1t
tremendous shot, which requires |REF 13 +6 GAS 6l +20
precise defense to defeat (Table |gpy 14F ] -10 ECU 12 .5
8-9). The defense iz to keep VEXILS! K1 +15 FF 13M1 +10
SUEG to make SQUEG (1A) if BIG D4 -6 BIG D4 -6
Dixon plays QUA (Bl). Best |y, |om| +13 [[ECUS  |H2| -19
defense (Jeft-hand column) shows |5\ 1ppgipme | -5 (@) 20=-14
that WAT has a net of ~19 after Us 6] 3

best play. But it is easy to go OF 6F 2

wrong, 4s the defense (Q‘ 20=-19

recommended by Edley (right- | ) =

hand columns) shows. Table 8-9 A Tremendous Shot that Barely Fails

Note how, in the variation after NAP, the blank and FW score enough to hold off the
useful and flexible tiles EGNPSU. Heavy tiles are not a disadvantage in one-tile
endgames. MAVEN's ingenious attack against the defense NAP (10M) in the right-hand
variation is based on blocking high-scoring plays, so that a one-tile battle is necessary.
One challenge for Scrabble masters is to discover through the application of profound
principles what MAVEN discovers by concrete calculation.

Edley found FLAW (61.), which |Flawed ‘Spot| Score ||Flawless|Spot| Score
seems clearly winning as the left- |[FLAW | 6L | +12 ||[FLAW | 6L +12
hand column of Table 8-10 seems |SWUNG| 05| -27 ||LEAP 5K | -15(1)
obvious. But then he called back to  |oUAG [10L| +17 {|WAG 06 [ +21
say that he found a refutation, which D"EEP 9F 12 AN 10M .4
furns out to be the same refutation (A) ‘ 2= 12| lZAIRES | MO +14
that MAVEN found. The beautiful ) us N1 2
setup shot just barely defeats A D
FLAW, as the right-hand column g%é‘ PS ]5—)15; 'J().S
shows, o B
Q 20 =-15]
The variation that refutes FLAW Table 810 Another Tremendous Shot

illustrates a  profound principle;

when one player’s move is forced, the opponent may make a setup. The point is that the
opponent cannot both block the setup and make his forced play. The plays QUA (6HH) and
QUAG (10K) are obvious follow-ups to FLAW. LEAP blocks one of these and creates a
devastating out-threat. The threat of SWUNG (O5) is so strong that the first player has to
abandon his plan to play the Q.
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The most natural play is AQUA (10],
14). It was played in the game. The
game continuation is in Table 8-11,
below, in the leftmost column. The
column shows that after Dixon’s
AQUA, Frank played PUGS (6H, 27,
EN) to capitalize on the -S hook of
VEXIL, and to deny the same to
Dixon. Frank was in bad time trouble
in the game. If Dixon had found
WAT, for example, even though it is
objectively inferior to AQUA, Frank
might have been unable to physically
complete his moves before his flag
fell. In the game, Frank personified
concentration; the clock did not bother
him a bit. Judging from his comments
after the game, he clearly expected the
variation that was played in the game,
saving EN so he could refute WAG
with EMN (8N). For example, he quoted
the move PEGS (6H), which keeps
UN to play at IN, but does not defeat WAG. Amazing composure under pressure, and
amazing psychological mastery, too, since PUGS is objectively an error and Frank only
won because he foresaw exactly how Dixon would respond.

ABCDEFGHI JKLMNDO

R - 2

314
300

Dixon:

Frank's tiles:

Position 8-8 Repeat Peosition

Dixon basically walked into a knockout punch. If WAG were not played, then Frank’s
EN would score little. The column labeled “Refute PUGS” shows how Dixon could have
won the game by playing AW at 1N. This scores 17 versus WAG’s 18, and keeps a G on
the rack that will cost 4 points after Frank plays out. The net reduction in scoring for
Dixon is 5 points. But without the opportunity to hook WAG, and without having EN
(IN, 8}, Frank can only score 5 points for his EN, instead of the 14 he scores after WAG.
The net gain to Dixon is 4 points, which changes a close loss into a close win.

The best-play sequence after AQUA is in the column of Table 8-11 labeled “Refute
AQUA.” Frank should take the -8 hook of VEXIL, of course, with GUNSEL (6H, 235, P).
Frank’s P has two out plays, PUP (7E, 11) and OP (J13, 10), so Dixon must minimize her
loss by playing WAFT (1E, 10).

Player Game Spot| Score | Refute Spot| Score Refute  Spot| Score
PUGS AQUA
Dixon |[AQUA| 10J | +14 o +i4 AQUA 10| +14
Frank |PUGS| 6H | -27 6H -27 GUNSEL | 6H | -25
Dixoni WAG NS | +18 |IAW IN | +17 () WAFT IE | +10
Frank | EN | 8N | -14 [|EN o1 -5 PUP TE 1 -1
(F) -8 =- | [(FG) -12 = (G) = o
17 13 16

Table 8-11 Natural Variations, But Many Errors
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Another natural play is QUA (10K). ,Ed]ey Spot  Score MAVEN|Spot| Sfmre
Jeremiah Mead, a top-10 player who [QUA |[I0K| +11 QU{X 10K wl’)ﬂ
resides in WNew England, suggested |ENGS| 6H 25 DEEP 9]«: -12
QUA during the post-mortem analysis. |[WAG | 19 +23 WA(VJ MJ +] §
Edley refuted QUA as in the lefi-hand |yp IN -14 GUNS | 6H 23
column of Table &-12, and MAVEN's (AF) | “10=-15 (AF) 10 =-16
slightly better refutation is in the right-
hand column.

Table 8-12 QUA is Possible, But Beatable

FLAG succeeds because it creates a hook for Nice Try Spot Score
QUA. There is another way to do this, but it WAG N5 118
fails, as in Table 8-13. WAG creates an A-hook ENG 04 15
in the O-column because of AWA. AQUA 10] +14
Unfortunately, WAG creates a play for the EGN UPS 61 27
tile group, which played poorly before. The (F) 8=-18

combination of ENG and UPS refutes WAG.

Table 8-13 Another Setup for QUA
We are finished analyzing this complicated ‘ o
position, Let us ponder MAVEN's performance. On downside, MAVEN misses the idea of
keeping EGSU to refute QUA (B1) afier WAT. For this reason, MAVEN_ never rﬁf}ltgs
WAT. Though WAT is likely to work in practice because the defense is tricky, it is
objectively a 5-point error. On the upside, MAVEN found the rest of the best moves.
Significantly, MAVEN would play these same moves in over-the-board games, regardless
of time pressure.

The author has to decide whether to design methods that can defend against WAT. The
design decision must weigh how often the situation arises and how often MAVEN misses
the best play when it arises.

8.10 Opportunities
MAVEN does not include features that have become de rigueur in game tree searching.
Perhaps the methods described below would be helpful.

8.10.1 Transposition Table

A transposition table is an associative memory that stores previously searched positions
so that the search engine can reuse the search result if the position should occur again
[41]. Transposition tables have been intensively studied in the context of chess programs.

MavEN does not have a transposition table. This was not an oversight; the author
implemented a transposition table, but pulled it out afler encountering memory-
management difficulties. Thar was an oversight.

It turns out that transpositions are unlikely to occur except in one-tile endgames. The
reason is that transpositions cannot occur before the third ply, and most endgames are of
the out-in-two variety, so there is no third ply. However, in one-tile endgames it really
pays to have a transposition table, since the same moves reoccur in different orders.
However, it is a historical quirk that the word QAT entered the lexicon at the same time
that MAVEN was having these problems, and QAT has the side effect of greatly reducing
the frequency of stuck-tile endgames, since the Q can be played much more easily when
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QAT is legal. Besides, MAVEN plavs one-tile endgames with great accuracy anyway.
Nevertheless, if the goal is perfection then there should be a transposition table.

8.10.2 Killer Moves

It is potentially possible to speed up endgame search by reusing moves that were
calculated as good in other branches. Such moves are called “killers.” Specifically, when
following B*'s Disprove-Rest strategy we can speculatively insert a “killer” move into
the tree. If the killer does not cause a cutoff then we must generate, but the only goal in
many endgames is to narrow a search bound, and this trick can do it. This is particularly
true for one-tile endgames. This method is known as the “killer heuristic” [41].

8.10.3 Scalability

The efficiency of MAVEN's approach is clearly a strength, but has been achieved at the
cost of accepting a non-zero error rate. Classical full-width search algorithms will play
any situation perfectly if given enough time, but MAVEN’s algorithm will not. It would be
an improvement to use additional time to reduce the error rate somehow. To the best of
the author’s knowledge, no scalable variant of B* has been published. Possibly a
variation such as Palay’s PB* {43}, which is inherently tolerant of errors would be
effectively scalable in a Scrabble application. Error tolerance appears to imply scalability
in the Scrabble domain, because the depth of the domain is limited.

8.11 Assessment

The examples of this chapter have shown the difficulties and complexities of endgames,
and a great many positions involve MAVEN making an error. The auther hopes to convey
the complexity of endgames, but if the reader concludes that there is a lot of room for
improvement then I have misled you.

To be honest, the author hopes that these examples of MAVEN's errors have convinced
you that MAVEN’s endgame player is hard to fool. The position has to be complicated
before MAVEN chooses the wrong move, and then the move is likely to work out for
practical reasons.
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Chapter 9 — Pre-Endgame Play

The pre-endgame consists of the moves between the midgame and endgame, when the
bag 1s relatively empty. In terms of strategic decision-making, the key issue is whether
volatility is an Important consideration. Volatility is the Scrabble concept that
corresponds to statistical variance. In practical terms, a volatile position is one in which
come-from-behind wins are possible. During the midgame, we have the property that
winning percentage and point differential are almost perfectly correlated. That changes
during the pre-endgame, because volatility is not fairly constant in that phase.

The first section discusses the new aspects of the pre-endgame. The focus is on how the
space of positions changes. The next section illustrates the issues by giving three
examples. The architecture MAVEN uses to address pre-endgame requirements is in the
third section. The last section is an extended discussion of the pros and cons of the
implementation.

9.1 Requirements

A typical pre-endgame consideration is whether one side will come from behind with a
bingo. The historical development of MAVEN’s pre-endgame analyzer was that some
humans maintained that they could beat any computer by keeping things close and then
fishing a bingo out of the bag at the end, since computers would not take appropriate
defensive measures. 1t is the author’s contention that such assertions were exaggerated
extrapolations from small samples. At any rate, the author has witnessed many
tournament and casual games between MAVEN and top human experts, and has rarely
seen the successful application of any such strategy.

Nevertheless, the potential existed for this strategy to swing 5% of all games. With so
much at stake, MAVEN needed to take preemptive action.

9.1.1 Definition of Pre-Endgame

The first question is how to identify pre-endgame positions. The definition of the pre-
endgame in terms of volatility is too vague to implement. The simplest definition is that
every position after a certain point in the game (which we will measure according to the
number of unseen tiles) is a pre-endgame. This heuristic is good because the standard
deviation of the future {(which we have little influence over) increases monotonically with
the number of unseen tiles, whereas the standard deviation of the next two turns (which
we may be able to influence) is relatively constant at about 30 points. Therefore, il the
number of unseen tiles is large, then the effect of the next turn is small. Consider the
manner in which the “endgame-ness” of a pre-endgame position decreases as the number
of unseen tiles increases.

When one tile remains in the bag then the true endgame will commence with the next
move (barring a pass). Such a situation is a “PEG-1" (Pre-Endgame-1). There are up to
eight possible endgames to consider. In theory, we could enumerate all possible one-tile
draws from the bag and solve the resulting endgames, which would result in perfect play
(provided that the best move is considered). In a PEG-2, there are 36 endgames, and there
is a new possibility: the side-to-move can play exactly one tile, which would bring up a
PEG-1. We can no longer always reduce the problem to repeated use of the endgame
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analyzer, but any move that empties the bag could be exactly analyzeq th_a‘t way. Ina
PEG-8, it is no longer possible to empty the bag, so no endgames can arise lm.njledxz{te!y.
Every play leads to another PEG. Moreover, there is a plethora of possible continuations,
s0 the impact of the draw is immense.

It is clear from the sequence given above that the value of precise a.nalys%s decreases. as
the number of tiles in the bag increases. In other words, MAVENs statistical evaluation
model becomes progressively more accurate as the game lengthens. We only have to
worry about specifics close to the endgame.

A reasonable case can be made for starting the pre-endgame at anything from PEG-6
through PEG-14. Steven Gordon [49] defined the pre-endgame to start at PEG-6 because
in his view the key issue is that exchanging is illegal. If you prefer PEG-7, then you
regard the ability to create an endgame in one turn to be the defining characteristic of a
pre-endgame. Starting at PEG-14 is justified if you regard the possibility of having an
endgame on your next turn {(i.e., after an exchange of bingos) to be the defining
characteristic.

We made a design decision that the pre-endgame begins with PEG-9. This choice is
motivated by my belief that most pre-endgames feature relatively low bingo chances, so
the PEG-14 definition seems to be overdoing if. Then there is an implementation
consideration: we want to enumerate all moves using the unseen ftiles, a task that is
progressively more difficult as the tile counts increase. Finally, MAVEN specifically uses
PEG-9 rather than PEG-8 or PEG-10 because there are exactly 16 unseen tiles in a PEG-
9, and that is convenient because information about the unseen tiles can be coded as a 16-
bit unsigned integer. (Really deep strategic insight there.}

9.1.2 Pre-Endgame Tactics

Of course, scoring points is still important, as is keeping good tiles. These things are
always important, but in the pre-endgame, these factors should be balanced against other
issues. Below we discuss some of the issues.

You want to obtain a good endgame. Mostly this means that you want to move first
against an opponent who holds an almost full rack. If you move first then chances are you
can play out in two moves, which will gain in two ways. You will make one move more
than the opponent will, and you will gain from his remaining tiles, This advantage is
worth about 25 points on average.

Avoiding the Q can be an issue, If a Q is still unseen then you need to be cautious about
drawing tiles. This is true even if you hold a U, since late in the game there is no
guarantee that the board will be receptive to a Q.

These issues are “timing™ issues with respect Lo the end of the game. You want to score
well and to time your plays so that the opponent will empty the bag.

There are defensive issues. You want to block openings that your opponent can use to
score well. Usually this means blocking bingo lines, but it can be other things as well. For
;:)lmngiple, if you see a spot where the Q can be played profitably then you should often
block.
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Finally, we have fishing. You want to create chances for your own big plays, especially
bingos.

9.2 Examples
This section shows five quintessential ABCDEFGHI JKLMNGO
pre-endgame plays. The moves seem
ordinary, but there is always more
than meets the eve.

In Position 9-1, MAVEN had a small
lead over Adam Logan in game & of
their 1998 match. The unseen tiles are
bingoish, so MAVEN had to block the
key bingo line, which is the A-
column. There is also a bingo line on
the M-column, but the spot is less
flexible, as it requires a seven-letter
bingo ending in S, whereas the A-
column allows any eight-letter bingo
using an S.

W~ DO R

MAVEN played VERTS (A4, 12, PR). o BB
VERTS left one tile in the bag, which Logan’s last: KOA (0O1,7) 332
is the ideal endgame timing situation. 12 Unseen tiles: ADDEEINLRSTU

It is ideal because if Logan does not . ‘

have a bingo on this turn then he will Position 9-1 Pre-endgame Block, And

not be able to fish again. Leaving two Surprise

tiles would allow Logan to fish again.

Furthermore, emptying the bag would make any bingo that Adam played into a bingo out,
thereby depriving MAVEN of a turn.

We have seen that VERTS blocks bingos and has ideal timing. In addition, it is a nice
fishing play. VERTS keeps a P and R so that PERVERTS (A1, 39) is possible il MAVEN
drew an E from the bag. Alas, this is too little to win if Logan bingos—MAaAVEN would
need a little over 45 points to hold on, I reckon—but it would ice the game if Logan did
not bingo.



Position 9-2 is a PEG-1 is from game 5 ABCDEFGHI JK L MNDO

of the 1998 match between MAVEN and
Adam Logan. MAaveN had a lead, but
faced three bingo threats. Logan might
have had bingos through BIZE (eg,
MISENROLY}, along row 6 to hook KA
(e.g., MOANERS; SKA is legal) and
down the B-column to hook PAT (e.z.,
MOANERS again, making SPAT).

One move guaranteed to win by
blocking all threats: COTIDS (6C, 16,
G). Other moves allow bingos, which
would narrowly lose. For example,
GOOD (3B, 19, IST) is the normal
move, GOOD blocks bingos using PAT
and BIZE, but allows bingos to KA, so : 359
it wins only 7/8 of the time, -

Logan's last: PAT {(10C, 13) 293

8 Unseen tiles: 7EMMNORSX

Paosition 9-2 Exacting Play Required

Positin 9-3 is from a game between ABCDEFGHI JKLMNO

Dan Pratt and Ed Halper. It was “ o s
published in [8]. The author apologizes = L™

for not having an example from » GO
MAVEN’s praxis, but this position
illustrates the theme of Q-blocking and
Q-avoidance as well as any. Also, the
example has the benefit of giving two
lessons using one diagram.

In this PEG-9, Dan Pratt sees a Q in the
bag, and there are no U’s in the bag or
useable on the board. Just the previous
turn Pratt had exchanged the Q. Halper
Halper had played 3 tiles (PIT, 4K, 14),
so the Q is in the bag with probability
75%. Pratt has to minimize his chance
of drawing the Q.

280
Halper's last: PIT (4K, 14) 285
As Joel Wapnick noted [8], Pratt also 16 Unseen: AADDEEIILLNOOQTV
has to prevent Halper from playing
QAID, which is a real possibility Position 9-3 Classic Q Pre-endgame
considering that the bag contains
AADDIL, in addition to an available A in GLAND. (Note: this game predated the advent
of QAT, so QAID was the only realistic possibility for disposing of the Q.)
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Pratt’s play was AZO (E4, 24, CEENS). To quote Joel Wapnick, “This play doesn’t look
impressive, but it is. Not only did is score well while plaving away only two tiles, it also
blocked both spots for QAID {E4 and 6D).”

Ome aspect of this position is that AZO, despite its brilliance, might not be the best play.
Wapnick recommended RE (J13, 4, CENOSZ), because it keeps the tiles for COZENS
(157, 86). This brilliant shot has an excellent chance to put the game away regardless of
the Q. For Halper to hold on, Halper must block the 15" row without drawing the Q.
Many players would not realize the threat. Others would see the threat and overreact
(e.g., play DOOLIE (15J, 28) to block, but drawing 6 tiles and thus pulling the ¢ and
losing on 6/9 draws). Still others would block, but allow a big Z play {e.g. block with
RED (113, 4) or DO (153], 7) drawing only one or two tiles but setting up DOZENS (151,
78)). Others would block properly, but still draw more tiles than Pratt. The only ideal
block is a one-tile play like REV (J13, 6), which would truly be a miraculous find. In that
event, the exchange of one-tile plays for low scores is a breakeven proposition that keeps
AZO in reserve if nothing better comes up.

Wapnick told the author that Dan Pratt felt that RE was weak because Halper might score
too well with it. Fascinating! MAVEN’s pre-endgame player liked AZO, as played in the
game, but simulations {chapter 10) preferred RE. However, it is possible that simulations
would not handle Halper’s tiles properly in this complicated situation, so | will reserve
judgment.

Position 9-4 is an example of bingo
fishing. This example is from MAVEN
versus Adam Logan, Match Game 12,
1998. The rack seems too heavy to
justify fishing, despite the presence of a
blank. The board, too, offers little. In
addition, making a bingo seems
unlikely to help, since MAVEN starts
out 73 points down.

However, Scrabble positions often hide
deep secrets that simulations reveal.
MAVEN noticed that if it played off the
W and drew a U then it would have
MOUTHPART (1A, 92). This is an
amazing find, which was rewarded by a
U from the bag and a 2-point victory.
By the way, a drawing a U from the
bag seems like a long shot, with only 2 Logan's fast: LEI (05,13) 403
U's in 9 tiles. But the chance is higher 9 Unseen liles: AEINOQUU

than it seems, and may be as high as
35%, since the opponent is unlikely to
have kept both U’s last turn. He might
have kept one U to go along with a Q, but if he held two LJ’s then he would have played
LIEU (04, 15) instead of LEI {O3).

Position 9-4 Stunning Pre-endgame Fish
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Position 9-5 is a PEG-2 from the last
round of  the 1990  National
Championship. Joel Wapnick and I had
lunch on the last day, before the awards
ceremony. Wapnick was disappointed
with his result in this tournament, only
17-10%.  Characteristically, Wapnick
attributed this result to the quality of
his play, which he said was not as sharp
as it had been a few years agoe. Then he
brightened up considerably when he
produced the diagrammed position.

Wapnick explained that when the
position occurred he paused to ponder
it for some time. Of course, he could
play SWEET (O11, 43), but he thought

he might lose to VARIX (B2, 62)™. If Wapn‘@ck: 327
he drew awkward tiles after SWEET, Kramer's last: FRAG (D1, 24) 316
he might even lose to XI or XU (B10, 9 Unseen tiles: AAINRRUVX

52), or PAX (B8, 57). He then related
that he played STOLE (A5, 5). |
strained to disguise my incredulity.
Wapnick sacrificed 38 points and an S to block VARIX, keeping EE to boot. It did not
add up. Of course Wapnick regained points by blocking—without VARIX and XU there
did not seem to be even a 30 point play for the X. Thus, when the opponent held the X
Wapnick would regain 30 to 35 points. Still... It seemed like too much to give up.

Position 9-5 1990 Brilliancy Prize

I started to see how it could work when Wapnick explained a little more. Wapnick
reasoned that his lead would be enough to hold on, since his balanced rack leave virtually
guaranteed a good endgame, whereas the opponent might have difficulty going out-in-
two. So there is hidden equity: without VARIX, the opponent is forced to play his heavy
tiles one at a time, and therefore might be unable to go out in two moves. It followed that
STOLE virtually guaranteed that Wapnick would have the last move in the game. That
must be worth a few points,

Nevertheless, STOLE cannot possibly regain all the lost points. To post a higher winning
percentage despite what appears to be a 14-point sacrifice® would require that the
opponenl’s scoring variation be greatly cut down. Wapnick seemed confident that
without VARIX and XU the opponent would be unable to put together a big play. I was
doubtful, especially since Wapnick had only an I'l-point lead. Might Wapnick need
SWEET"s 43 points?

PReflect on this for a moment, as disappointment at a 17-10 result is not something that most of us
can relate 10. 1 would be satisfied with a 17-10 score, since such a result (in a Nationals) is a 2000+
pm“ﬁbr{nancg, A champion’s viewpoint differs. If & champion becomes satisfied with 17-10, he will
E;(?(m find himself out of championship class.

ﬂWL can see the value of tracking tiles even before the endgame.

UMy estimate of 10 points is derived as follows: 38 points for score - 30 points for blocking
YARIX + & points for the rack advantage of EL over EEW = 14 points. N
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Wapnick submitted his play for consideration for the wumament’s brilliancy prize. As
Iuck would have it, I was on the conunitiee judging the submissions. There was some
debate within the committee about what standards to use in awarding the prize. Peter
Morris submitted one of his moves in which he fished a tile figuring that if he drew an R
he could lay down EPICUREAN™ through two tiles on the board for a 90-point, 9-letter
bingo and a come-from-behind win. It turned out that Morris’s idea was correct, but he
could have fished his tile in another spot for a slightly higher chance of winning. Could
we award the prize to Morris, despite missing the best play? One commitiee member
indicated that he would vote for Morris’s play, saying, “Peter’s play is brilliant. So what
if he missed an even more brilliant play.” Then I asked how he would vote if Wapnick’s
move, STOLE, which no one believed could be the best play, turned out to be correct? “If
STOLE is best then that’s got to be the one.” Upon reflection, 1 agreed with this
committee member. | used MAVEN to determine whether STOLE really was the best play
in the position.

In this position, all of the plausible moves empty the bag, creating an endgarme. My plan
was to exhaustively analyze all of the endgames that arise from emptying the bag. By the
summer of 1990, MAVEN’s endgame player was already well established. Expert players
knew of its prowess because of a comparative study | had published and circulated
among master players.

Table 9-1 shows how STOLE, SWEET and seven other plays work out. The other seven
moves play in the A and B columns to block VARIX or PAX. There are 23 variations,
one for each distinct rack the opponent could have held. The 23 racks are not equally
likely. Because there are 2 A’s and 2 R’s among the unseen tiles, racks that use one A (or
R) are twice as likely as racks that use zero or two A’s {or R’s).

Table 9-1 shows the point differentials of the nine moves against each opponent’s rack.
Any positive number corresponds to a win for the move at the top of the column, and a
negative number is a loss. Note that the numbers across each row are highly correlated; in
other words, the tiles the opponent draws explain a large amount of the variation in
results. Notice that there are substantial variations within a row; in other words, the same
rack can work out differently depending on the board.”

Byoy Kaufman calls Peter’s 9-letter game-winning come-from-behind-bingos “Morrisoids.”
Serving on the brilliancy prize committee taught me that such plays are not accidental. Perer makes
them happen. o

¥Such juxtapositions of insights allow frue experts to argue convincingly for boih sides of an issue.
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STOLE| SWEET | WENT [WEEST| WEN [WEASEL| WEEP | WEST | WALE
Rack  |Weight| (A6, 5) (011, 43)[(AL, 18)|(5A, 25)\(A1, 15){ (BL, 22) |(BS, 13){(5B, 23) (B2, 14)
[UNRRVX| | 2] 10 10 12 2 7 9 1 9
AUNRRVX| 2 16 28 5 5 -2 -4 11 I -5
ATURRVX| 2 1l 16 3 13 3 7 -6 2 7
ATUNRVX| 4 1 9 i6 10 21 9 13 2 9
AINRRVX| 2 9 -5 3 -7 2 g i -5 -6
AIUNRRX| 2 24 31 12 3 1 6 16 10 6
AIUNRRV| 2 4 76 56 60 50 33 32 55 49
AAURRVX| 1 10 28 16 8 39 10 13 -1 -9
AAUNRVX| 2 1o 28 16 3 41 9 13 20 | -12
AANRRVX| | 2 6 -4 (12 | -14 3 235 | -10 | -12
AAUNRRX| | 14 31 8 13 8 10 5 5 I
AAUNRRV] | 1l 70 51 52 77 50 43 46 44
AAIURVX| 2 23 3 -l 1 33 1 13 | -13 9
AAIRRVX| 1 5 9 1 -10 32 -15 -7 9 | -2
AAIURRX| 1 16 27 8 11 6 10 -6 8 2
AAIURRV| 1 3 44 52 39 46 52 39 39 49
AAIUNVX| | 3 -1 -7 i -8 -1 -17 | -18 9
AAINRVX| 2 -4 -1 -4 -13 -4 -17 13 -8 -12
D.AUUNRX 2 3 27 7 11 19 10 -13 10 6
AAIUNRV| 2 10 51 44 39 43 43 28 26 40
AAINRRX| | -5 27 3 -5 2 -7 2 -5 0
AAINRRV| | 10 56 40 52 30 29 36 33 33
AAIUNRR| | 9 40 44 46 49 60 35 29 43
Diff | 986 | 2475 | 1578 | 14.64 | 2047 | 1233 | 1142 ] 922 | 992
Wins |33 31 30 29 28 27 27 25 | 245

Table 9-1 Game Outcome by Move and Opponent’s Rack

In my report to the Prize Committee, [ gave all variations after all moves. This
tremendous amount of information is obviously too much to check by hand, and [ doubt
that any committee member actually checked all of them. 1 hope that a diligent committee
member verified the variations predicting close victories. Such variations are the ones to
check because errors there can turn the game around.”

40

i you decide to investigate yourself, remember that in 1990 we used a slightly different

dictionary than we do now. A computer analysis by James Cherry using ACBot disputing some of
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The bottom line of the table is, well, the bottom line: STOLE wins in 33 / 36 cases, and
SWEET wins in 31 / 36 cases, which proves that Wapnick’s judgment was sound. Note
that STOLE surpasses SWEET despite a 14-point sacrifice. If vou have read Wapnick’s
book [8], then you know “Wapnick’'s Rule:” when in doubr, take the points. Qbviously
there must not have been any doubt. Great players know when to break rules.

Do you want to know something eerie? The opponent’s rack was AINRRVX, which
STOLE defeats, but SWEET loses to. This is how legends are born. (“It was like he could
see my rack...”)

Note that STOLE’s edge over SWEET is small. Because SWEET suffers 3 one-point
defeats, if Wapnick’s lead were even 2 points larger then SWEET would surpass STOLE
as the top choice. Similarly, because STOLE often hangs on for 2 or 3 point wins, if the
score were even 3 poinis closer then SWEET would again be best. In other words,
STOLE is the best play only when Wapnick leads by 9 to 12 points! This makes
Wapnick’s insight even more remarkable.

Did you realize how complicated our position is? | Wapnick’s Lead Best Move

Given any lead, some move maximizes winning | +13 or more SWEET
chances from that lead. That move can be | 49to+12
computed from the point differentials given in | +2 to +8
Table 9-1, by calculating how many games are | +]

won given each lead, breaking ties by using | -13t00
point differential. The result is Table 9-2. 27 to0 14
-61 to -28
Four moves could be best, depending on the | -62 WEN
score! What's more, some moves sneak in for | -63 or less SWEET

just a narrow scoring range; STOLE’s range is
just 4 points wide, and WEEP would be best if
and only if Wapnick led by 1 point!*! of Wapnick’s Lead

Table 9-2 Best Move as a Function

Wapnick’s level of insight is truly remarkable.

One has to wonder how he did it. Did Wapnick calculate all these variations? Certainly
not! Did Wapnick calculate a few sample variations? If so, then how did he select the
variations to try? Perhaps Wapnick just relied on years of accumulated experience in
playing tricky endgames.

One insight is that the opponent must hold the X if he is to have any chance, because if
Wapnick plays WAX (B2, 26) or EX (D14, 20) then the game is too one-sided for the
opponent to come back. You can verify this by noting that the opponent cannot get many

these variations apparently did not have the correct vocabulary. | am open to the possibility that
there are errors in the analysis, but 1 will never recheck the conclusions owing to the difficulty of
recreating the vocabulary.

1 refrospect, this analysis is unconvincing if Wapnick trails by a lot because it ignores fishing
moves. It also considers only moves that interfere with VARIX and PAX. Can Wapnick win more
often if he trails by 60+ points by fishing a bingo or other crusher out of the bag? A programmer’s
work is never done. ..
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points for blocking WAX, and that the opponent cannol get many points for playing off
the V.

The key insight, which is far from obvious, is that | Points | What for?
STOLE wins if the opponent holds a U. The 11 Wapnick’s lead
opponent must go oui-in-two while scoring well with 5 STOLE

his X, and after STOLE there are no good scores =27 For the X play
using X and U. It follows that the X and U must be 22 For our W play

played in separate turns. Thus, the U must go in a -14 | Opponent’s next play
move playing the V or RR which also turns 5 tiles, +7 Qur out play

since all the big X plays use 2 tiles. There are no +2 His tiles

such plays, which means the opponent will always =§ In total, a narrow win
hawve tiles left. Then Wapnick will win, as shown in

Table 9-3 How Wapnick Wins
if Opponent Holds U

Table 9-3.

Therefore, the key bag contents are AU, [U, NU,

RU, or UV. Adding these to EEW gives a sick rack,

but it should go out in two moves. The plan is to play the U and W in separate turns,
since these tiles do not go well together. The W will go with an E and perhaps the other
tile from the bag, and the U will go with an E and perhaps the other tile from the bag.
Wapnick has at least 15 for EW because of WE (13K), which sets up a nice hook: EAU
(M13, 18). The opponent cannot prevent this, because Wapnick has WANE (A1, 21) and
LEU (L4, 7) to go out in two. Thus, we
already have our variation when AU is
in the bag.

Another spot for the W is at Al, where
Wapnick can play WINE (21)if an I is
in the bag. Can the opponent prevent
this using AANRRVX? VARA (B2,
14} is possible, as is RAX (B2, 14).
The trouble with RAX is that our WEN
(A1) is still possible, so after Wapnick
clears vowels with LIEU (K4, 8) the
opponient will lose because Wapnick
scores 17 for WEN (A1) and 15 for
WE (13K): 16 - RAX + LIEU - NANA
(AT, 24) + WE + tiles (RV) = 5. VARA
fails because LIEU sets up a 15-point
play for the WE: WEEN (6)). It
follows that the best the opponent has

after VARA is AXE (F10, 27). but this Wapnick: £ 327
loses: 16 - VARA + LIEU - AXE + Kramer's last: FRAG (D1, 24) 316
WE -+ tiles (NR)Y =2, 9 Unseen tiles: AAINRRUVX

W NU is in the bag, then Wapnick

should do well because of WEN (131, 22): 16 - VINA + EAU (11G, 6) - OX (J9, 25) +
WEN + tiles (ARR) = 4 points. In this variation, EAU {11G, 6) blocks AXE (F10, 27);
the variation is a I-point win if Wapnick plays WEN first, then LEU (L4, 7) to go out.
The opponent will not block WEN (13J) because Wapnick has WEN (Al12, 19) as a
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backup 1?]?3"' MAVEN produced an even finer play: INURE (2A, 18), using the [ placed by
VINA. This gem of a play leads to a I-point better spread than my variation.

MNow we come to the losing variations. First is AAINRVX, where Wapnick loses because
the opponent has a forced out-in-two. After XENIA (F11) the opponent has VARA (B2)
and VARA (15F, 21). 1 think most players would miss this chance, though. To find
XENIA would take x-ray vision. Wapnick would do well if XENIA were missed, since
when Wapnick goes out-in-two the variations are narrowly in our favor, as before.

The second loser is AAINRRX versus EEUVW. This variation would win in the current
tournament dictionary because LUV (K4) helps us go out-in-two. However, in 1990 this
lost because the opponent cannot manage an out-in-two,

How much of this calculation Wapnick managed over the board is hard to say. It would
take several minutes of careful thought, even for a master of Wapnick’s caliber, to
produce this type of analysis.

9.3 Architecture

In this subsection, we provide solutions for two of the three issues mentioned in section
9.2. Good endgame timing is resolved by a simple table-lookup indexed by the number of
tiles left in the bag after the play. There are several cases, depending on whether blanks
and the Q are still in play, but that is just a detail. It is easy to code and creates better
endgame timing. This feature emphasizes endgame play, which is to MAVEN's advantage.

Blocking is much harder, and thereafter comes fishing for bingos, which is even harder.
Blocking requires, in theory, a two-ply search, and fishing for bingos requires a three-ply
search (or simulation). It seems clear that the two-ply problem must come before the
three-ply problem (i.e., before fishing), so we focus below on how to block the opponent.

The evaluation function of a two-ply search takes the form of
Our Score — Opponent Score + Future,

where the rack evaluator and endgame timing factors determine Future, and the scores
are determined by the moves. Our Score is known from the move we are generating, but
Opponent Score must be estimated because the opponent’s rack is unknown.

At first, we considered using simulations (Chapter 10), but when we faced the problem
(circa 1991), we did not have computers that were fast to simulate plays in real time.
Besides, the problem was to generate good moves and simulations depend on the quality
of the moves fed into them.

So, it was decided to compute an approximate distribution function of the opponent’s
move. Here is how it worked: we threw all of the unseen files into one large “rack” and
generated all of the moves that could be played. For each move, we computed the
probability of holding those tiles, and created a list of the high-scoring spots and
calculated the chances of playing there. Then we noticed that scores in a spot could be
different when a move used a Q, in particular, compared with the same spot not using the
Q. Therefore, the definition of “spot” was expanded to include a specification of the
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highly valued tiles used by the move. {(To our chagrin, such obvious facts had escaped
our attention during domain analysis.)

One of the key issues is to account for the quality of the tiles used by the opponent’s
move. If an opponent scores 24 points using a V and W then he has mbmmed_ a good
result. If he scores 32 using AERSTX then he has gotten a poor result. MAVEN adjusts th@
value of an opponent’s play by subtracting the Basic-1 values of the tiles used. Thl&:
would adjust a 24-point play using VW to 24 + 4 + 6.5 = 34.5, and adjust a 3‘2~p0§m
AERSTX play to 32 - 05 -4 -1 - 75+ 1 - 3.5 = 16.5. The point is there is no point

trying to stop AERSTX from scoring—those tiles will score well somewhere—but VW
should be reduced to its normal pathetic standing.

Once a distribution is created, we can approximate a two-ply search. For every move of
owurs, we scan the opponent’s distribution to determine which replies are not blocked.
Then we weight each reply according to its likelihood.

9.4 Discussion

The pre-endgame engine required extensive debugging. Table 9-4 cites some of the
issues that MAVEN has overcome. The pre-endgame analyzer was not reasonably
debugged until the simulation player was available as a comparison. It is not thoroughly
debugged to this day. The following quote from James Cherry (author of ACBoT) [60]
sums up one point of view:

“ACBOT knows absolutely zero about late-game strategy, and MAVEN’s
late-game analyzer tries hard, but falls pretty far short of being
intelligent, in my opinion.”

The author confesses that MAVEN’s pre-endgame evaluator has had many bugs. This is
particularly true of the versions of MAVEN that Cherry would have evaluated. Curiously,
versions of MAVEN that Hasbro distributes are more reliable, but tournament players, like
Cherry, dislike using those because of quibbles over the contents of the dictionary.
Consequently, these players have not seen how this component of MAVEN has improved
over the years,

Issue Typical Example
Constraints Project opp will always play the Q, though he is only 7/8 to hold Q.

Tile valuation | If there are two Vs in the bag, and a move plays one, to what extent is
that valued as splitting a duplicate?

Run-time With two blanks unseen, the search could run for several minutes.
Tactics Needed to add a post-processor that checks for setups off our moves.
Tuning Many parameters, some for rare cases for which we had no experience,
Double count | IF opp bingos out, we cannot score the tiles on our rack using Basic.

No count If opp has so many moves in one spot that we block all of the moves we

have saved, we must still project that he will move somewhere.,
| Responsibility | No feature was responsible for penalizing emptying the bag.

Table 9-4 Sample of Bugs in the Pre-endgame Analyzer
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MAVEN’s pre-endgame evaluator selects the best move on just under 50% of all moves,
which is close to the same level of skill as MAVEN's early game evaluator. On the
downside, the consequences of a misstep in the late game are large, so the number of
points lost is still high.

The engine unquestionably reduces the number of bingos and other big plays by the
opponent. However, it makes plenty of weird moves too. For instance, it could defend
against threats that are insignificant or sometimes biock spots that were favorable on
balance. Thus, the engine is sensitive to defensive considerations, but not sensitive to
other considerations. Benchmarking the new generator shows uneven results. Yes, the
insight is sharp, the algorithm is clever and the implementation is good, but these do
change which side wins the game (at least not in MAVEN self-play trials). The
explanation must be that the new generator helps when MAVEN is ahead, since it
unquestionably reduces the number of bingos played by the opponent. It must hurt when
MAWVEN is behind, since the overall results are even. What should we do?

The obvious answer is to use the new generator when ahead and the original when
behind, but we never did that. We intended to extend the new generator to cover the
come-from-behind case. Unfortunately, we never succeeded in doing so. The reason is
that it is not easy to extend the framework. The core concept of this technique is to
gvaluate moves on the basis of Qur Score minus the Opponent’s Score, whereas coming
from behind requires including our next turn as well. The framework covers our future
turns by using rack evaluation, but this is insufficient for guiding a comeback sirategy.

In summary, we regard the pre-endgame generator as a small positive asset to the
program. It eliminated one possible weakness in MAVEN (that an opponent might win by
fishing for bingos at the end), while it maintained MAVEN’s overall level of play. Since
humans will be in the trailing situation in most pre-endgames against MAVEN, the
defensive orientation is clearly beneficial.

The pre-endgame engine really shines as a generator of moves for simulations, since it

finds defensive moves that would otherwise be missed. For that reason alone, the pre-
endgame analyzer is worth all of the trouble it caused.
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Chapter 10 — Simulation, Scrabble’s Unified Field
Theory

Simulation leverages a fast but possibly inaccurate evaluation function into a slow but
accurate evaluation function. The idea is to play out the game for a few turns using the
basic engine to select moves. Moves that have a high average point differential in the
simulated games are best.

Befmie we describe the technical implementation, it is worth answer a few motivational
questions. For example, why settle for a slow but accurate evaluation function? Why not
implement a fast and accurate evaluation function? The answer is in the first section.

Another question: why does simulation work? There are several reasons why it would not
work, but it does work. That is the subject of the second section.

Simulation has an interesting historical development. A player suggested the idea to the
author after he had carried out the technique by himself. Simulation went on to illuminate
a great many mysteries of the game. Truly, the positional theory of Scrabble would be
immature without simulations. That story is in the third section.

Simulations were used as an investigative tool for almost a decade before MAVEN applied
them to selecting moves over the board. MAVEN was not the first to do this, but probably
was the first to have a thorough implementation that hit enough fine points to clearly
surpass what can be achieved without simulations. The technical implementation actually
used in the 1998 match against Adam Logan is the subject of the fourth through sixth
sections.

10.1 General Simulation Algorithm
The process of simulation is simple, as outlined in the following pseudo-code:

1) Generate plausible moves.
2) Decide how many moves to look ahead.
3} Select a sample of racks to give the opponent.
4) While time remains for further simulation
a. Select a rack for the opponent.
b. For all plausible moves
i. Follow up that move with the number of turns chosen in step
2.
ii. At the end, sum the scores of the moves along that variation.
iii. Fold in an assessment of the racks left at the end.
iv. Average with all previous results for this plausible move.
5) The move with the highest average is the best.

This process allows for many variations. You can determine which maves should be
simulated. You can control the length of the simulated variations. You can evaluale
endpoints using any mefric (winning percentage and point differential are the obvious
choices). You can vary the process that selects moves within the variations of step 4bi.
You can modify the condition that stops the simulation process. All of these choices
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affect the quality of the decisions that are reached by simulation. This gha\pt.er descn'b»:fs
an implementation of simulation in MAVEN, but the reader should bear in mind that it is

but one of an infinite family of aliernatives.

The technique that MAVEN calls simulation has an established piactice in other d‘is‘ciples.
Simulation goes by the names “rollout”, “Monte Carlo search”, and the generic name
“gtochastic lookahead” [54]. The technique has been applied to the games backgamm@n
[55], bridge [56], and poker [57], and in the fields of operations research and optimal

control.

These ideas have been floating around for a while. Practical applications have developed
within the last 15 years, as computer power has improved to the point where it is practical
1o apply them to real domains. The threshold for application varies. For instance, rollouts
have been used for exploring backgammon since the late 19807s, but to choose
backgammon moves in real time using rollouts is perhaps still impractical. Simulations
were first applied to Scrabble a couple of years afier backgammon, but the threshold for
real-time practical application was passed in 1996, or perhaps earlier. The threshold for
applicability depends on many factors. In backgammon, for instance, a key issue is that
an exhausiive three-ply search provides rollouts with stiff competition. Another factor in
backgammon is that players are expected to move quickly. In Scrabble, there is really no
other deep search technique, and tournament time controls offer plenty of time for
thought.

10.2 Extending the Basic Evaluation is Hopeless

A property that limits the effectiveness of evaluation functions is that they take a
“deconstructive” approach to positional analysis. Breaking a position down into
independent factors is helpful in that we can trade off factors, but it is self-limiting
because a “gynthesis™ of the position never occurs.

MAVEN’s Basic evaluation function incorporates only “first-order” factors. In other
words, we do not try to understand any interactions between factors. For example, a W is
usually a bad tile, but suppose that it happens to play well on a specific board. MAVEN
does not identify that situation, and can make an error. That specific combination of
events will rarely bappen, and when it does it is not a big deal.

[l is possible, in theory, to incorporate sophisticated factors into a positional evaluation.
One could, for example, analyze whether there are any productive hotspots for a W, and
if there are then increase the evaluation weight of the W. However, that would address
only that single, relatively miniscule, shortcoming. What about the numerous other
potential dependencies? Even the number of categories of possible dependencies is huge.
Extending the evaluation function is a bottomless pit.

10.3 Simulation as Oracle

One view of the problem is that the evaluation function applies “average” values of
individual factors to a specific position. Of what relevance are average values to this
position? Usually the relevance is good, but sometimes not.

Let us recall the discussion on how MAVEN's rack evaluation parameters were derived.
The value of a tile was the average amount by which it increased scoring over the rest of
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the game. Would better positional play result if we had an oracle that could tell us the
true walues of all evaluation parameters sfarting from the current position? Simulation is
the oracle we seek. Simulation provides a whole-position evaluation of moves that have
heen evaluated within the context of the current position. The mechanism is to average
the scores resulting from plaving out the game for a few moves. As long as the Basic
evaluator is reasonably accurate, the simulation will uncover whatever “tactical” factors
happen to exist in the position.

That is why simulation works. In effect, simulation constructs an evaluation function in
real time.

10.4 A Pre-Emptive Response to Skepticism

To understand this section you need only understand that simulation consists of using a
naive evaluation function to select the moves for a statistical sample of variations from
the search space. This section will state several reasons why simulations might not work,
and conclude with an assessment of why simulation nevertheless does work in Scrabble.

10.4.1 Quality of Simulated Moves

Simulation is subject to doubt along the lines of “garbage in, garbage out.” For example,
James Cherry, the author of ACBOT, has this to say [60]:

“Simulation, it appears, depends on how good the computer’s built-in
opinion of what the "opponent’s best response” and "our best response”
are.”

For an extreme situation, consider the impact of playing random moves during the
simulation. That may be better than nothing, but the Basic evaluator would play better
because it will have a higher signal to noise ratio, even though some of its errors may be
systematic.

For a less extreme position, consider MAVEN playing against a weaker opponent. During
simulations, MAVEN will choose moves as if the opponent is strong. Does this mismatch
with reality cause errors?

10.4.2 Statistical Noise

Another issue is the statistical noise of playing out random variations. Steven Gordon
published [28] a study of simulations in which a simple rack evaluator was beiter than all
variants of simulation tested by the author. The cause was a small number of iterations,
so that noise overwhelmed the differences between the moves. How many iterations do
you need before results are reliable?
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e 1

James Cherry published [60] the | Word |Spet Score| Siml | Sim2|Sim3|Simd
data in Table 10-1, showing the [ppiepn | gG | 24 | Best| 0.7 |Best| 0.0
results of four ACROT simulations DEICED ! 8D | 24 | 02 | 04 | 03 | 0.1

of the opening rack CCDDEEI, each . \ . ‘
with 2000 iterations. The data show | DICED | 8D 221 0.3 | 0.1 | 0.7 | Best

that three moves finished first inthe | DICED | 8H | 22 | 0.3 | Best| 0.6 | 0.3
simulations, and the values of some |DECIDE| 8H © 24 10 16 | 04 | 08
moves varied by as much as 1.3 |ppempE! 8D | 24 | 26 | 32 [ 23 | 24
points from ieration lo Aiierallmn. CEDED | 8D | 24 | 33 | 26 | 38 | 22
Cherry wmt‘% l;venA %0@9 nel‘_almns pick | sE | 12 | 41 | a4 | 46 | 40
can be not enough to give a »

conclusive answer. Longer | DICE | 8G | 12 | 44 45|49 | 39
simulations do not always seem to | DEICE | 8D 20 | 42 | 48 | 54 | 4.1
help sort things out much, which is ICED | 8E | 12 | 40| 47 | 52 | 48

even more distressing. Too bad I'm iIcep 18g | 12 | 47 48 | 56 | 48
not doing my thesis on Scrabble, or
I would spend the time to chase Table 10-1 Unstable? Opening Rack CCDDEEI
down exactly why simulation

doesn’t seem to converge very well.” At least he has his priorities in order...

Let us be practical about the matter. It appears that any of the top four moves are all
reasonable. Moreover, DEICED (8G) finished first or tied for first on 3 out of 4 trials. If
this is the worst we have to worry about then the problem is too easy!

10.4.3 How Many Moves?

Another issue is how many moves you must look at before finding one better than the
move preferred by the static evaluator. If the static evaluator is good, then what is the
peint of simulation? If the static evaluator is bad, then how many moves will you need to
simulate before finding the best one?

10.4.4 Which Racks?

Finally, there is the question of which racks to look at. Suppose that your opponent’s last
play was to exchange two tiles. [f you then simulate a rack containing ABCDEFG, are
vou making a mistake? Is it even possible for the opponent to hold those tiles? That rack
does not have five tiles that the opponent would have kept. James Cherry wrote [60],

“This brings up the following point: we really need a program that makes
sensible inferences from opponent’s plays at all stages of the game. Even
more basic than that would be a program that takes the score into account
when choosing a play. This is crucial both in mid-game, and perhaps even
more in late-game, sitvations.”

Is it possible that changes in the distribution of the opponent’s rack would change the
ranking of the moves? If so, then of what good is the simulation?



10.4.5 Applicability to Scrabble

The doubts expressed in the previous section are important issues that may prevent
simulation from being effective in other domains, but in Scrabble, they do not impede
SUCCESS.

The first doubt concerned the quality of the moves generated, on the theory that if
garbage goes in, then garbage comes out. Really, that is overreacting. The Basic
evaluator chooses the best move 57% of the time. That is perhaps more skillful than any
person. Therefore, simulation should provide a good approximation to ideal play.
Compare the situation of chess, for example, where a one-ply search represents an awful
level of play, yet deeper search nevertheless can leverage that small amount of skiil.
The other doubt is about whether MAVEN plays too well. Is MAVEN's strong play an
unrealistic representation of the actual play of opponents? Well yes, opponents will not
play that strongly, but the mismatch does not automatically invalidate the simulation
model. The situation is analogous to deterministic full-width search in games such as
chess; the search assumes that the opponent will play as strongly as its search engine. It is
an invalid model, but one that has demonstrated great practical success.

A key reason why simulation works is that the errors that the Basic evaluator makes tend
to cancel. There are two forms of cancellation.

First, a variation consists of an equal number of moves for both sides. This means that the
errors tend to cancel along the branches of the variation. If MAVEN plays weakly for one
side, then it also plays weakly for the other. This factor makes it less important how
strongly the program plays. In the business we cynically refer to this phenomenon as
“playing equally badly for both sides.”

Second, cancellation of errors tends to occur between the variations that follow two
moves. I MAVEN misplays the positions after one move, then it tends to misplay the
variations affer all moves, since the positions are similar to one another. Thus, if
MaVEN’s apponent cannot play as strongly as MAVEN’s simulated moves then that does
not necessarily invalidate the simulation, because all of MAVEN's alternatives would be
underrated by approximately the same amount.

Steven Gordon’s work [28] hints at the power of cancellation of errors. Gordon
performed simulations where the moves of the simulation were selected strictly based on
score, without considering rack leave. Gordon observed no difference between the results
of such simulations and simulations in which a rack evaluator was used. By comparison,
the difference between the Basic evaluator and perfect play is rather small.

Cancellation of errors is an important principle of the design of simulations. For an
example from another domain, backgammon engines systematically enumerate the dice
rolls for the early variations of their rollouts [38]. In Scrabble, cancellation of errors is
enhanced if you use the same sequence of tiles from the bag for all variations of an
iteration, randomizing only after exchanges. This procedure maximizes similarities
within the variations of each iteration.



The short answer to the question about statistical noise is “900 iterations.” The long
answer is that an individual wial has a standard deviation of 30 points, a value that is
remarkably consistent from move to move and game to game. It f@llows that ‘9:0‘0
iterations would narrow the estimate of the mean to a standard deviation of one point,
which is sufficient accuracy for practical purposes.

The example of James Cherry’s 2000 iteration simulations is easy to explain. In 2000
iterations, the standard deviation is reduced to about 0.7 points. In Cherry’s table, every
value is within 0.7 points of its mean. {The deviation we measured of 1.3 points was
between the lowest and highest of four measurements, which is approximately twice the
standard deviation from the mean, as it should be.)

The key criterion for choosing 900 iterations is that a one-point margin is “good enough
for practical purposes.” The “practical purpose” is to win the game, which we achieve by
plaving good moves. If two moves differ by less than | point then it is hard to distinguish
themn as a practical matter. Thus, Cherry’s table is not troubling at all. Nor is it troubling
that different simulations might prefer different moves. That simply means that the
moves are equally good, which is a property of the moves that simulation properly
reflects. The convergence of simulation is not slow at all.

The issue of how many moves is a good one, which we will address in a moment, but
there is a subtle issue in the comparison. The gquestion, “how any moves must we
simulate” begs the question, “for whai purpose?” The implication of the question is that
nothing less than perfection will do, but that is not the goal at all. The simplest possible
goal is to improve upon what you can achieve with static evaluation alone, and to
accomplish that you only need to simulate iwo moves. That is the simplest answer to the
question.

To raise the standards a little bit, we can get a more complicated answer. If you want to
achieve perfection, at least within the limitations imposed by imperfect static evaluation
functions, then how many moves must you simulate? The answer is that you can search
more moves as computers get faster. However, because the Basic evaluator ranks the best
move first on 57% of all turns, there is little need for simulating a zillion moves.

The question of which racks to simulate is interesting. On a theoretical level, it is
necessary to exactly match the distribution of unseen tiles to all information available
from the history of the game. In practice that is unnecessary because good moves tend 1o
work out regardless of the opponent’s tiles. There are extreme cases, but keep in mind
that an average move turns over 4.5 tiles, so the opponent could hold pretty much
anything. In a different domain (e.g., the game of bridge) then inferences would be huge,
but in Scrabble, you rarely need to consider inferences. When you do consider inferences
you usually end up playing what you would have played anyway. Moreover, when you
change your mind, it can work out badly.

If you harbored any of these doubts, then the author hopes that this section has at least
indicated that specific properties of the domain work to counteract the ill effects.
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10.5 Historical Development

The start was a fruitful discussion with Ron Tiekert at a tournament in December 1987,
Tiekert was (and still is) a legendary plaver, the 1985 National Champion, and the player
who achieved the highest NSA (National Scrabble Association) rating,” and is to this day
one of the top players in the game.. Tiekert was acclaimed for his skill at positional
evaluation, and the author hoped to learn from him. Evaluation is, after all, the only
mistake that MAVEN ever makes. The reasoning behind this statement is that for evar}w
game an Al program only makes evaluation errors, provided solely that the program
generates all legal moves (as MAVEN does).

One historically important position was the opening rack AAADERW. There are two
prominent moves: AWARD (8H, 22, AE) and WARED (8D, 26, AA). Expert opinion
favored AWARD, and MAVEN agreed. In dissension, Tiekert chose the unusual play
AWA (8G, 12), asserting that it was by far the best play. Tiekert said that he was initially
attracted to AWA because it had a nice balanced rack Jeave (ADER) that is more likely to
make a bingo on the next turn than the two-vowel leave of AE after AWARD. In
addition, AWA does not open access to the double-word squares, whereas AWARD
does. AWARD can be “hooked” with an S for big plays down the M-column.

But Tiekert was not certain that AWA was best until he played out both AWA and
AWARD using parallel racks fifty times each.”” Tiekert said that AWA finished with
much better results, so he was confident that AWA was better. Tiekert mentioned, in
passing, that with MAVEN being as fast as it is, it should be able to crunch the calculation
pretty quickly. For the author, this experience was like a ray of light from heaven.

Here is Tiekert’s procedure. First, he drew racks for the opponent. He ensured that the
racks had a balance of tiles representative of the unseen tiles. Then he played a move for
the opponent after each candidate play. Then he filled the rack of the side to move, using
parallel draws to the greatest extent possible. Then he played a move for that side. He
totaled the scores and folded in an estimate of the value of the two racks left at the end.

Word Spot| Equity | Opp | Our Opp Bingo| Our Bingo

AWA 8H [ 27.2 |31.0 47.8] 16.5% 39.7%
AWA 8G | 27.0 |34.9|50.8] 164% 39.0%
AWA 8F | 26.8 |30.3|46.6] 16.4% 37.9%

AWARD | 8H | 231 3621386 21.6% 22.8%
AWARE | 8D | 224 1339289! 21.6% 24.0%
WADER | 8D | 195 [1369i31.2) 22.7% 11.5%
WARED | 8D | 192 137.11309] 224% 11.7%

Table 10-2 Simulation Results for Opening AAADERW

22170, a record that still stands.

3 1 wonder if Tiekert was inspired by MNew York-area backgammon masters, who were al [hﬂ% ni.me
uncovering the mysteries of backgammon by using manual rollouts. Tickert was a hgxh:lué of New
York’s infamous Game Room, where the cily’s strongest game players gathered in the 1970%s.
Tiekert would surely have known some of these pioneering backgammon players.
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Results from the original simulation do not survive, but a recent version of MAVE‘NA has
run this case and produced Table 10-2. The Equity column shows the net poivms gained
by the side to move over the 3-move sequence. The Opp Move column shows the average
score of the opponent’s reply, and the Our Move column shows the average score of our
follow-up play. Opp Bingo and Our Bingo are the bingo percentages of the next two

plays.

Note that AWA finishes well on top (the 8H placement slightly preferable), with
AWARD second, and AWARE and WARED bringing up the rear. The key differences
are in bingo chances. AWA decreases the opponent’s chance and increases our own.

AWA varies in value depending on your placement: it does best at 8H, worst at 8F, and
intermediate at 8G. Probably 99% of players would guess wrong if asked where AWA
would have the worst result. The 8G placement is no worse than the others are. A
vowel/DLS square adjacency just is not dangerous.

Simulation provides the deepest insight into Scrabble positions. It is a tremendous tool.
You can control the moves to simulate and the number of moves you look ahead;
moreover, you can choose whether you evaluate endpoints by score or by winning
percentage. Any position can be evaluated using this technique. The only limitation is
whether MAVEN is playing the variations well. Even that limitation is lessened by the fact
that MAVEN plays “equally badly” after each candidate. Such “cancellation of errors™ is
an important factor in simulations. The only remaining drawback is that simulations are
long. The standard deviation of a two-move sequence in Scrabble is about 30 points. This
means that even after 900 iterations you have a 1-point standard error. If you want fo
achieve fine judgments it can take a simulation that runs overnight. Still, it is at least
possible.

10.6 Impact of Simulation on Tournament Scrabble

By the start of the 1990"s, MAVEN had proven that the game was not well understood,
and it had proven specific theories about rack and positional evaluation. However, these
results were known only within a small community of expert players that had worked
closely with the author. We started several initiatives to publicize MAVEN, with the goal
of increasing MAVEN's credibility within the expert community.

The first initiative was to publish a monograph [45] concerning MAVEN's endgame skill,
as described in Chapter 8. That monograph established credibility with a wider, but still
small, audience of experts.

The author’s second effort was to publish simulation results, primarily through three
media. First was the Serabble Players News (SPN). Editor Joe Edley encountered MAVEN
at its first tournament, (and departed the board with a rueful countenance after a classic
MAVEN romp) and had turned into MAVEN’s biggest and earliest promoter. Edley wanted
the author to write notes for a Scrabble game to be published in SPN. I carefully
simulated all of the moves and wrote clear, simple notes appraising the moves. The same
game is in Appendix B with slightly different notes. The annotations were well received,
and Edley invited the author back for two other annotations later on. Edley eventually
decreed that all games must be validated by computer analysis. Without this basic
safeguard, the annotator would probably miss something.
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MAvVEN’s simulation capabilities were packaged in a simple application, initially
available for Macintosh computers and later for Windows as well. Users could set up any
position and select any interesting moves for analysis. Users could simulate the pmsitzimh
for as long as they liked, using any number of moves of lookahead.

Another promoter of MAVEN’s capabilities was Nick Ballard, a master Scrabble player
who is better known as a Backgammon World Champion. Ballard published a newsletter,
dubbed Medleys, for three glorious years. Every issue of Medleys was jammed with
computer-based insights. Many of these involved Maven. For example, ‘evehry issue had a
Consensus Game, in which moves were chosen according to the votes of readers, backed
up by whatever analysis the readers submitted. Many readers submitted MAVEN
simulation results to support their opinions. Ballard organized and published the analysis,
and often relied on MAVEN to validate assertions made by players. Ballard also did
several large-scale studies using simulations, including the Basic rack evaluation model.

Then there was self-promotion. After Medlevs folded (as all Scrabble publications other
than SPN eventually do), the author published a series of 15 monographs entitled Rack
Your Brain (RYB). The highlight of each issue was an in-depth analysis of a single
position. The analysis typically occupied from 3 to 6 pages, containing text, tables,
diagrams, formulas, and whatever else was needed to illuminate the complexities.

Aside from the results published in SPN, Medleys, and RYB, there was a growing culture
of experts sharing simulation results. A group of four strong experts from Minnesota
(Charlie Carroll, Lisa Odom, Jim Kramer and Steve Pellinen) actively used MAVEN for
analysis, and published several results. Jim Geary published a newsletter after the demise
of RYB in which simulation results played a role. An on-line community started using
MAVEN for simulations, with Joel Sherman and Jim Geary taking active roles.

In addition to these public displays of the value of simulations, several experts analyzed
all of their games using computers. The practice of checking for missed moves was
available to users of TYLER and CROSSWISE, although the latter would only give you a
list of moves in decreasing order of score. However, MAVEN simulations took the process
of self-criticism to a completely new level.

Many of MAVEN's early adopters have had huge success in tournament play. Did
MAVEN’s early adopters win so many events because they adopted MaAVEN, or did they
adopt MAVEN because the type of people who win tournaments would also adopt
MAVEN? Good question. Obviously, the biggest reason for their success is that they were
great players to begin with. Still, the author likes to imagine that the expert comnunity
has benefited from MAVEN.

10.7 Simulation as Investigative Tool

This section will show some examples of the power of simulation. The idea is to use
simulations to determine the truth about a position. At a superficial level, the truth about
a position is expressible as a point differential. Usually that is as far as the analysis needs
to go. Sometimes it is helpful to examine the variations seen during simulation, so that a
more dynamic view of the situation emerges.
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The LUG versus GROSZ E%_HVQ :g“wt Net |Opp| Us | Opp Bingo {Our Bingo
controversy is a good example. iy 1 gG 146.6/26.449.7)  16.0% | 30.2%

{ heard about the gg’:;’;”,ff;m;i‘ LUG | 8G (45.1{273]488( 163% | 31.0%
PGLORUZ from PEIEr X0 |5RoSzZ | 8H |44.1(37.9(35.6]  19.1% | 18.9%
who was engaged i a 18.0%
theoretical dispute over the RUG 8G 143.4(27.8.49.1 17.2% 32.8%
relative merits of GROSZ (8H, |ZORIL | 8D |39.5/35.330.5 19.1% | 11.9%
48, LU). and a variety of §oyuRr | 8F |37.2{31.541.1] 188% | 18.8%
dumps/fishes, of which LUG -

and GUL (8G, 8, ORZ?) stand Table 10-3 Results for Opening Rack ?GLORUZ
out. Fishing must be best, .

because otherwise the author would not write about it. Table 10-3 should surprise no one.

GUL and LUG surpass GROSZ because of tremendous combined offensive and
defensive superiority. After GUL, the opponent’s score (column “Opp”) drops 11.5
points, and ours (column “Us”) rises 14.1 points. The combined 25.6 point difference is
enough to overcome a 40 point sacrifice because we usually keep the blank: we bingo
30.2%, so we keep the blank slightly under 70% of the time.

Of course, GROSZ has the edge when the opponent holds the Q because the U in GUL
allows him to get rid of it. Q is the only tile for which GROSZ surpasses GUL—GUL’s
advantage is consistent. Note this advantage of simulation: one can examine the
variations to determine why the evaluation is correct. One can isolate such variables as
the tiles in the opponent’s rack for further analysis. One can determine whether the
opponent exploits specific openings. These data help to explain simulation results in
terms that humans can understand. A table of values would only go so far towards
satisfying the curiosity of a human expert who has been playing a situation incorrectly for
years.

Note that GUL is slightly better than LUG because the hook chances favor GUL. When
the opponent holds E, he has LUG-E, and when he holds G, he has G-LUG. Predictably,
GUL outperforms LUG in these cases. In contrast, when the opponent holds L or F then
LUG is clearly superior, because of GUL-L and GUL-F. Then there is the S-LUG or
LUG-8 versus GUL-S, and P-LUG versus GUL-P, which are equal. So there are hook
chances after either move, but the huge chance for LUGE predominates.

To confuse the issue, note that the X plays better against GUL than against LUG. The
best score for an X comes from the 16, J10, F6, or F10 triple-letter squares, and GUL’s
hooks are more convenient for this purpose than LUG's: FIX, FAX, FOX, LAX, LEX,
and LOX versus GOX. The LUG-E chance makes little difference because AXLE,
NIXIE, AXMEN, etc., are all longer than 3 letters, so the combined frequency is low.
Also, note that -AX plays along the 7th row (and -OX plays along the 9th row) score an
extra point after GUL: BORAX (7D) is 28 after GUL, but only 27 after LUG. Owverall,
GUL has a slight edge defensively because hook considerations outweigh the "X-factor,"
which arises only 7.5% of the time.

One last observation: LOUR fares terribly, despite being philosophically similar to GUL.
The reasons:

1) By playing an extra tile, LOUR gives the opponent extra bingo chances.
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2} By playing another vowel, LOUR gives the opponent extra overlap chances.
While not generally significant, the overlap chances are important here because
our rack retains no overlap chances.

3} The rack ?GZ is singularly unharmonious. Our bingo chance drops from 30.2%
to 18.8%.

LOLUR shows that the correct idea (a dump/fish) is not enough—you must implement the
idea accurately.

By the way, many players scoff at GUL and LUG because of a practical consideration.
GUL appears to risk 40 points (the score difference between GROSZ and GUL) to gain
2.5 (the difference between the simulated equity). You would therefore require 93.75%
confidence in the simulation results to justify GUL. This is a good example of how fear,
uncertainty, and doubt paralyze humans. GUL regains a significant amount of equity on
rack evaluation grounds alone. The Basic model shows GUL’s 7ORYZ rack as worth 24.5
2.5 +1 +3 = 26, while GROSZ’s UL rack is worth —4.5 —=1.5 = -6. In words: you regain
32 points just on pure rack considerations alone. It is easy to believe that not opening
access to double word squares must be worth a few points, too. The degree of faith you
need is lower than it seems. Still, few humans would venture GUL instead of GROSZ.

The author believes that GUL is superior to GROSZ, but can imagine that the conclusion
is wrong because of a modeling issue. Specifically, the variations examined during
simulations are selected on the basis of Score + Rack, whereas in the actual game the
moves are selected by simulations. Under TWL98, the average improvement of a move
selected by simulation over a move selected by Score + Rack is about 1.5 points.
Therefore, in the two-move sequences after GUL and GROSZ there is enough room for
error to overcome a simulated advantage of 2.5 points. One could imagine that
simulations are less valuable in the variations after GUL, because the move decision tend
to be obvious, whereas simulation may have great value after GROSZ. The only way to
be certain is to simulate simulated games. This may be a fruitful area for further research.



A panel of experts analyzed Position
10-1 in Medleys. Eight moves were
rated as hest by the members of the
panel, and MAVEN’s Basic evaluator
preferred a ninth move! The consensus
analysis talked over the issues from
many angles, but just could not agree
on anything.

Such disagreement is typical for
consensus analysis, by the way. The art
of Scrabble analysis is simply not
advanced far enough to allow firm
conclusions when confusing cases
arise. This example will show how
expert players can talk themselves into
making serious errors, while basing
their opinions on concrete observations
of the position. Then we will see how Opponent’s last: POL (15A, 23) 172
simulation views the situation.

Position 10-1 Hidden Positional Issues

The consensus play was AY (D14, 24), though it gamered just 26% of the consensus
vote. Supporters and detractors of AY matched each other with points and counterpoints.
Table 10-4 shows the key points of disagreement.

Supporters of AY said: Detractors of AY said:

Biock opponent’s plays from 14B to 14F. We need [4B-14F to come from behind
Good POLY- extension plays on row 15", Those are not one-way openings.

CIOPT is good. High bingo chances. Low turnover. C is bad. Wantto keep Y. |

Table 10-4 Point and Counterpoint Regarding AY

High-powered players (Kramer, Logan, and Silberg) favored COPRA (B9, 23),
supporting their preference with positional reasons. But Rosen, Carroll, and others strong
players said that COPRA was poor, and flatly denied the assertions of COPRA’s
supporters, as in Table 10-5.

Supporters of COPRA said: Detractors of COPRA said:
COPRA leaves a tight board. We should not block when we trail.
COPRA keeps Y to score on K-column The ITY leave is poor.

Table 10-5 Point and Counterpoint Regarding COPRA

CAY was generally preferred in a head-to-head comparison with the similar move PAY.
These moves score the same, they occupy the same squares on the board, and they differ
in only one tile on the rack. Nevertheless, the panel could not agree on how to rank these
moves. Table 10-6 gives the issues.
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Supporters of PAY asserted:

Supporters of CAY asserted:

Keeping C is better than keeping P.

If wou draw an I, bad because it duplicates,
then you can play POLITICO (154, 39)

It s useful to keep new possibilities of play
on the L-column.

P is better because it makes more overlaps.
Opponent will probably block POLITICO
before you even get the chance to move,
Hinder opponent replies by placing the C
to reduce overlap chances.

What? You need more than that?

The opponent can make SPAY,

Table 10-6 Comparison of PAY and CAY

Can simulations reveal the truth about a position when a dozen experts disagree? An
issue of Rack Youwr Brain [68] examined these assertions in elaborate detail. We will
condense the analysis to address only the factors mentioned above,

The quality of the CIOPT rack leave after AY was a big source of disagreement. Many
players felt it was poor, but this is an “optic” illusion. As the board stands now, the tiles
CIOPT would make a bingo on 21% of the two-tile draws from the bag. This is actually
somewhat higher than normal, despite the low quality of the tiles. A key factor is the
possibility of several prefixes and suffixes: CO-, OPT-, and -1C.

In addition, a hidden factor of CIOPT really sets POLYCOTS
it apart. There are extensions to POLY (15A) that POLYURIC
play along the 15" row that are almost one-way POLYGLOT
openings, as shown in Table 10-7. These words POLYPORE
score well. For example, the lowest score is POLYPHONIC
POLYGLOT, which scores 42. POLYTYPIC, POLYPOID
which needs only a Y from the bag, scores 63. POLYTYPIC

The draws S, D, Y, GL, HN, ER, and RU work,
for a total chance of about 20%. Particularly
important is that a single tile (S, D, or Y) is all
that you need. [n addition, there is little overlap between the tiles needed for extensions:
and those needed for bingos.

Table 10-7 POLY- Plays after AY

Therefore, analysis shows that CIOPT is a great leave here. CIOPT is worth about 7
points, whereas its normal Basic evaluation is —6. This evaluation puts AY in the driver’s
seat for the top spot. Even the 6 extra points scored by TAPIOCA (148, 30, Y) are
eclipsed by the rack value of CIOPT, and TAPIOCA has other disadvantages—a poor
leave and a big triple-word opening.

Another issue discussed by the consensus panel was the 14B-14F opening. Some thought
it would be open for our use next turn, for example for a play of POLITICO if we draw
an 1 after PAY. Other players thought we must block it.

Simulation shows that if we do not block then plays in the 14" row make up about 50%
of the opponent’s moves next turn. In part, this is because good scores are possible there,
and in part because this board has few hotspots for non-bingo moves. Blocking is correct
by a large margin.

Because the opponent takes the 14" row whenever possible, we can evaluate the new
openings created by PAY. Are they favorable or unfavorable? Well, obviously favorable,
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if the opponent moves elsewhere more often then not. Without new moves off of PAY, it
is hard to see where we can make a play next turn. The disagreement over CAY and PAY
shows how humans overdo defensive considerations. Some players auiomatically
consider any newly created opening o be a negative. Experts preferred CAY to PAY by a
17 to 7 margin.

[ Move Spot | Score | Rack | Opp Next | Our Next | Net Equity
AY pi4 0 24 CIOPT 29.9 42.1 35.1
COPRA BY 23 Iy 255 32.8 289
PAY K5 26 10PT 36.9 39.5 25.2
CAY K3 26 CI1OT 336 34.3 23.3
PATIO B6 20 CY 377 41.4 21.9
TYPO 3 23 ACI 36.9 37.2 21.4
TAPIOCA | 14B 30 | Y 441 | 321 17.3

Table 10-8 Simulated Equity of Moves for Position 10-1

Table 10-8 shows simulation results for some of the moves proposed by the consensus
panel. The tremendous defensive advantages of COPRA and AY are apparent. AY cuts
the opponents’ next turn to 29.9. COPRA takes that a step farther by taking away the B-
column bingos; COPRA leaves the opponent only a 25.5-point turn. Amazing!

The offensive advantages of AY stand out. AY gets our next score up to 42 points! Those
bingos and POLY- extensions really pay off.

A few numbers from the table are expected. MAVEN"s PATIO (B6) creates an overlap on
the A-caolumn that increases the opponent’s score and ours. TYPO creates a hotspot on
B6, again raising the opponent’s score and our own. TAPIOCA’s defensive shortcomings
are severe, and they are not compensated by increased offensive chances.

Most of the moves suggested | Move Spot | Score | Experts | Points Lost |

by the panelists lost a ton of | AY D14 24 3 0.0

points. The move preferred by | COPRA B9 23 3 6.2

the Basic engine, PATIO (B6), | PAY K35 26 3 9.9

nets 13.2 points less than AY. | CAY K3 26 3 11.8

The author’s move was PAY, | PATIO B6 20 1 13.2

which loses 9.9 points. The | TYPO C3 23 2 13.7

error analysis is in Table 10-9, TAPIOCA | 14B 30 | 17.8
ATYPIC 11 18 l 28.9

Wow! The average panelist | Average 17 10.0

dropped [0 points. It makes
you wonder how we can claim  Table 10-9 Errors of the Panelists for Position 10-1
to be experts. We misevaluated

an ordinary position, even given all the moves and all the time for analysis!

Before the advent of simulation, arguments such as this would just go around in circles.
Now there is a way to test theories about the game. For example, in this situation we have
Cappelletto arguing for TAPIOCA. Without simulation, it would be hard to argue with
him. He has been one of the world’s best players since he was a teenager, and he won the
Nationals in 2000 and the Worlds in 2001, With simulation data to back up what you say,
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the positional issue is elevated above the question of which authority said what, and
focuses on the question of what was said. )
Simulation allows us to study questions about winning percentage. For many vears
people have made extraordinary claims about how maximizing winning percentage often
required moves that sacrificed point differential. With simulations, we can at last
compute how often a play wins by simulating to the end of the game.

For example, Mark Watkins, the author of BosBor, posted some analysis in response to
analysis that Jim Geary had posted to the Internet. The subject is the opening rack
BRONZER, where you can place your bingo at 8H to get the 7 on the double-letier
square at 8L. This scores 106 points, whereas a placement at 8D (putting the B on the
double-letter square at 8D) scores 92. A difference of 14 points would normally make the
play clear, hur the 8H placement runs BRONZER up against the triple-word square at 08,
so the first player to hold an S is guaranteed a huge score on the O column by pluralizing
BRONZER. Jim Geary had used MAVEN simulations to show that the SH placement
averages higher point differential despite the hotspot, with the implication that the 8H
placement is the better move. However, Watkins had this to say:

“On your web page http:/fwww.primenet.com/~jaygee/FALLACY . HTM,
you mention the BRONZER rack to start, and consider whether it should be
placed at 8D or 8H. You conclude that equity-wise, it should be about 3 pts
better to slap it at 8H. My first thought was that win%-wise an 8D
positioning might be better. As for any use you make of the spot will just
super-increase your lead, while the opponent’s use of it allows him/her to
mount a comeback. Data from 10000 SOWPODS sims with BosBor,
infinite depth, with average scores and rack values being noted for the first
four ply:*

[ Move Spot ( Score | Opp | You | Opp2 YOUKZJ Rack | Diff | Win%
| BRONZER | 8H 106 [ 61.9 | 558 | 48.8 { 46.0 974 752
BRONZER | 8D | 92 43.0 | 44.7 | 45.0 | 44.3 L 932 7.0

Tabte 10-10 BosBOT Simulation Data for Opening BRONZER

As suspected, 8H wins the equity battle, but 81> wins the win% war. After
5 plays, the 8H placement had a lead of 50 or more 72.7% of the time,
while the 8D placement had a lead of 50 or more 82.4% of the time. [
would be fairly certain that OSPD data would be similar. The only danger
in interpretation I see is that the BOT doesn’t necessarily shut the board
down when ahead, but that should affect each move about the same.”

This shows the level of discourse among experts who employ simulations for positional
analysis.

This section substantiates the assertion that simulation provides insights ﬂa?ly.we simply
could not obtain any other way. Consider the difference between BRONZER 8D and
BRONZER 8H: it is less than 2%! We would have no means of detecting such small

# [ modified the layout of Watking’s table to fit this page, but the data is his.
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differences without simulations. With simulations, we now know for certain that the 8D

placement is better.

10.8 Simulation in Real-time — Theory

Having seen the power of simulation, the first thought is that a ge.nuinelqy awesome player
would result from selecting moves in actual games wusing simulations. True.
Unfortunately, the CPU burden of simulations is so high that it is hard to pull it off.
Actually doizlng, it well had to wait for several years.

10.8.1 How Many Iterations?

First, we can determine when simulations are beneficial by considering the typical
difference between the best and second-best plays. A simulation is trying to distinguish
between these plays by a taking a statistical sample. Accordingly, a simulation needs
enough samples to differentiate the top two plays.

The data from Table 10-11 are from a 14-game maich between Adam Logan and MAVEN
sponsored by AAAIJ-98. MAVEN analyzed every move decision in detail using
simulations. The table shows the distribution of point differentials between the best and
second-best mowve for the 309 non-endgame moves of the match.

As you can see, many best moves are almost Diff Cum % Diff | Cum %
indistinguishable from the second best move. <05 12.0 <7 75 1
It would take an {mpractical number of ‘ ‘
iterations to ensure that you pick the best <1 23.0 <73 77.0
maove. Yet, the beauty of the situation is that if <L.5 31.1 <8 79.3
the moves are so close then it does not matter <2 38.5 <10 30.9
whether vou make an error. <25 46.0 <12.5 84.8
<3 50.8 <15 88.3
To make matters concrete, suppose that you A5 56.6 <20 01.6
simulate until you can estimate the standard ) o o N
deviation of the difference between the best <4 59.2 <25 93.5
and second best move down to 1 point. How | <4.5 61.8 <30 95.1
much error would that contribute? <5 68.6 <35 96.8
N <5.5 70.6 <40 98.4
Any moves 111951 t‘.mve difference > 3 are three <6 712 <45 997
standard  deviations aparl; so  we are <65 73.8 <55 100

guaranteed to select the best move. Moves —
that have difference > 2 have >95% chance Table 10-11 Distribution of Difference
that those moves will be distinguished, and a
loss of no more than 3 points if we make an
error, so the average loss is less than 0.15
points. 21.5% of moves having a difference between 2 and 3. For moves with a difference
between 1 and 2 the chance is less than 16% that an error will be committed, with a cost
ol up to 2 points, so only 1/3 of a point lost on such situations, which make up 15.5% of
all moves. If the difference is less than | then the chance of making an error is less than
50%. with no more than | point at stake, so only 1/2 point is lost on average. Such
situations make up 23% of the total. So add it up: the error rate is less than 21.5% * 0.15
+15.5% /3 +23% /2 <02 of a point! Since you average 10 non-endgame moves per
game, the error rate is less than 2 points per game. Obviously, this is sufficiently

Between Best and Second Moves
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accurate. This 15 so accurate that the engine will lose more points by omitting key moves
than by misevaluating.

To have an engine accurate to that level (i.e., 1 point standard error in a comparison of
two moves) would require simulating no more than 1800 iterations, since there is a 30-
point standard deviation per frial and 2 * 30 * 30 = 1800. However, because certain
safeguards are built into the implementation, in practice we can reduce this number
somewhat. For instance, MAVEN’s rack samples are repeated for all moves in the
simulation, which ensures that every move is measured against the same distribution of
racks. Furthermore, the sample is constructed such that each tile occurs at (nearly) the
correct  frequency, which further reduces the wvariance. In fact, in MAVEN’s
implementation the standard deviation of the difference between two plays is 30 points,
which is half of the variance predicted by a priori statistical theory. This accounts for a
previous assertion that only 900 iterations are required. MAVEN's implementation for the
1998 match limited the number of iterations to 1000.

10.8.2 How Many Moves?

Table 10-12 shows the position of the best move within the move ordering of the Basic
evaluator. This chart omits pre-endgame situations from consideration, leaving 284
moves taken from MAVEN’s 1998 match against Adam Logan. The data show that the top
move according to the Basic evaluator simulates best in 57% of all turns, and we estimate
that simulating the top 10 moves would result in 95.8% of best plays. This would make
one error every other game.

Data from John Babina show similar characteristics | Maove Rank | Best Play %
[69]. His sample shows that SOWPODS simulations 1 57.0
using PIOBOTIR selects the first move 63% of the .
time, and the second move 16%. The 7", 8%, 9" and 2 ]?‘7
10™ moves in the order each are selected about 1% 3 6.3
of the time. 4 4.6
5 2.8
One technical factor is how we made the projection 6 33
for the “11 or higher” category. Our data (and also 5 35
Babina’s) only included 10 moves. We estimated the 8 ﬂ“l
“11 or higher” category by counting how often -
Logan played a move that MAVEN failed to generate 9 1.4
and turned out to top the simulation. On the 10 11
assumption that Logan will find 50% of the moves >=11 (est) 4.2

that MAVEN misses, we can double that number, and
we can double that number because we only have
Logan’s opinion for half of the turns. Move within Basic Ordering

Table 10-12 Distribution of Best

Clearly, that technique is open to doubt. T he rate at

which the percentage drops through the 7% g 9™ and 10" positions does not suggest
that the residual will be as low as 4.2%. Therefore, we are open o the possibility that the
percentage is higher. We could be missing as often as once per game.

This, too, is not as bad as it seems, because the lower the moves go on the Basic
evaluator the greater the initial sacrifice of points and rack leave that musi be overcome.
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The author speculates that the loss in points is greatest when moves are missed near the
top of the ranking. Alas, the existing data is insufficient to test this theory.

It seems that simulating about 10 moves should result in good play, but simulating more
moves could be better. The author has collected a small amount of data from simm?tio‘r‘m
using 20 plausible moves, and these confirm the ‘esli)mate of 4%, but this analysis is still
preliminary, so I will refrain from giving further detail.

10.8.3 How Deep?
The depth of a simulation is the number of moves that you look ahead along each
variation. The goal is to allow tactical, short-term factors to come to light.

While it is possible for factors to take several moves to work out, it usually requires just
two plies in Scrabble. Scrabble racks turn over often. Average moves turn over 4.5 tiles,
so afier a couple of moves there is usually nothing left from the original rack. Hence, two
plies is generally ideal.

Still, sometimes 4 plies of lookahead show a different picture than two. Some players
routinely simulate to four plies for that reason.

One must be wary about using deeper simulations! They take more iterations to reach
statistical accuracy and they are slower as well. For example, a four-ply lookahead has
double the variance of a two-ply simulation, and each iteration takes twice as long.
Therefore, the CPU cost is tripled when using a four-ply lookahead. We maintain that if it
requires an extreme situation to see the value of four-ply simulations then they are not
worth doing.

We have seen that even in the extreme case of a move like the opening rack BRONZER
(8H) that leaves the largest conceivable opening on the board, a two-ply simulation is still
able to determine the point differential to within a point. If so, then there is no value in
using deeper simulations. Other analysts disagree (particularly Joel Sherman){70], but
that is my opinion and I am sticking to it

One key exception occurs when the game ends along one variation. If it is possible for
the game to end within the normal search horizon then every variation must be searched
to the end of the game. The reason for this rule is that one of the foundational
assumptions of simulation is violated: that future tums (which are not simulated) are
equal for all positions, at least on average.

The point is that the Basic model does not include any bonus for the right to move,
because the same player (the opponent) is always moving next. There are small positional
bonuses, but these are present only to account for the differences between the right to
move in some positions rather than others. The absolute value of the right to move is not
accounted for anywhere.

The absolute value of the right to move is large, because the side to move first has about
a 50-50 chance of moving last, which would give him an extra turn for the game as a
whole. The typical value may be in the range of 15 to 20 points, depending on the
position.
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Let us return to considering what happens when a simulation variation includes the end of
the game. The opponent, who would normally be on move in that situation, will have a
future value of zero points, because the game is over. In contrast, along other variations
the opponent actually has the right to move when the variation ends, and therefore stands
15 to 20 points better off than he does when the game ends. Since this difference is not
accounted for, a significant amount of inaccuracy is involved.

You can try to tepair this defect by including a right-to-move bonus, and that would
significantly improve the accuracy. However, since this situation only occurs towards the
end of the game, why not spend a little extra CPU time and benefit from obtaining a
winning percentage estimate? It costs relatively little and adds a lot to the program’s skill.

10.8.4 Time Control in Simulation

There are about 12 moves per side per game on average, but you need to consider that
even the longest game should be complete within tournament time control. The longest
games are about 16 moves per side.”

Tournament time controls are 25 minutes, but for a computer program you need to factor
in time for the operator to handle the physical transfer of tiles from bag to rack, and from
rack to board, plus typing the opponent’s moves and filling in the official scoresheet.
These functions take about 5 minutes per game. Therefore, you have only 20 minutes for
thinking.

Then there is the issue of leaving time for unexpected events. For example, what if the
operator messes up entering a move? What if a power spike crashes the computer? What
if the program holds the blank for 8 turns and needs extra time to think? Out of respect
for these possibilities, a practical application of simulation to Scrabble requires that
moves average about 1 minute of thinking time.

With each iteration looking ahead 2 plies after 10 candidate moves, and 1000 iterations
per turn, we would have 20,000 move generations. When the author began work on the
1998 match against Logan, MAVEN could play 20,000 moves in 250 seconds. This is over
4 minutes, so we needed to cut back somewhere.

Reducing the number of moves or iterations is possible, but these changes increase the
error rate. Of course, if the goal is simply to improve upon the play of the Basic evaluator
then we do not need much; for that lowly goal, we need only simulate rnwo hmoves.
However, if the goal is lofty (i.e., almost perfect play), then we should not reduce quality.

Fortunately, we have a resource that allows the move list to be pruned with limited risk.
We can prune any move that falls N standard deviations below the best play. That rapidly
cuts the number of trials. For example, taking a look at the distribution of differences
between first and second moves, we see that almost 40% of turns have a best play that
exceed the second best by 4 points or more. With a rejection level of 2 standard
deviations, such simulations would quickly terminate the search with a unique best play
after only 500 iterations. Back-of-the-envelope calculations showed that by using this

“ Human games can be longer, but I have no recorded MAVEN games longer than 16 wmns.



optimization we would be able to pick up almost the entire factor of 4 needed to play in
real time using simulations. The remainder we made up by running on a faster computer
during the competition.

10.9 Practical Implementation

This section describes the actual implementation used in the 1998 match. The
implementation was not ideal, but was is effective and illustrates important principles that
apply to stochastic search controllers.

10.9.1 Rack Sampling in General

It is important to reduce the variance of comparisons between moves by using parallet
racks. That is, each iteration uses identical racks across all trials in that iteration. Since
the racks are the primary determinant of the score of a trial, you greatly reduce variance
with this technique. The only exception is if there is an exchange of tiles in the move
sequence, but exchanges are rare. In practice, the tiles will come out in the same order on
every trial.

Another key technique is to aggressively enforce the desired tile distribution. For
instance, in the 1998 match MAVEN always used a uniform tile distribution. MAVEN
ensured that the distribution was as close as possible to uniform by seeding each iteration
with the one tile that had been most underrepresented in the racks thus far.*® This slight
pressure to move towards uniform is all that is needed to ensure that tiles are distributed
fairly. This trick ensures that the moves are not biased by an unusual frequency of draws
from the bag.

It has been misreported that MAVEN attempts to give opponents a well-balanced rack
[71]. This is probably a misinterpretation of what it means for a rack to be sampled from
a uniform probability distribution. The tiles occur randomly with equal probability, and
MAVEN takes pains to ensure that they actually do so in the samples it simulates.
However, the term “well-balanced” means something different to a Scrabble player, who
would normally take it to mean “having an equal number of vowels and consonants.”
Scrabble players are often surprised to find out that simulations use uniform racks rather
than balanced racks, because the racks that occur in games are decidedly not uniform, and
tend to be balanced.

10.9.2 Enumerated Endgames

When the number of tiles in the bag is small then MAVEN exhaustively enumerates all
racks, The standard is that if the number of distinct racks is less than the maximum
number of iterations and all moves empty the bag then exhaustively enumerate. If there
are 12 distinet tiles in the bag then there are 792 distinct racks, which is well within the
limit of 1000 iterations. Of course, the number of distinct racks may be lower because of
duplicate tiles, and some rack may occur with higher frequency. The simulator must
account for these effects.

4t vy

There is a simpler algorithm for ensuring a uniform distribution. The algorithm is simply 10 draw
tiles from the bag without replacement uniil the bag is depleted. This ensures that the tiles occur
with uniform Frequency. I decided on the trick of seeding the most underrepresented tile because it
generalizes to non-uniform distributions. In the year 2002, that 13-year old design decision is
finally paying off, as | begin experiments using inferences.
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As a special case, MAVEN used the endgame search engine to analyze the full endgame if
the position was a PEG-1 and the move emptied the bag. This endgame analyzer was
modified to stop searching once it proved that a variation was either definitely winning or
definitely losing. The endgame engine employed a time limit to prevent unlimited
thought. Since the evaluation function of the endgame search engine is an interval, and
simulation requires point estimates, MAVEN needed a conversion rule to adapt the result
of the endgame search to the need of the simulator. The algorithm was to return a bound
that proved the win or loss, if such a proof was achieved during the search, or to return
the average of optunistic and pessimistic bounds otherwise. When MAVEN returned the
midpoint estimate, it estimated winning percentaue by interpolating the point differential
required to win within the endgame engine’s evaluation interval.

10.9.3 Search Horizon

We have indicated the answer to the question of search depth: the normal search depth is
two plies. This means that we place the move and evaluate by using a sample of
variations of length 2. The exception is in the pre-endgame, when we search to the end of
the game. We have described how the possibility of a game ending during a variation
should be avoided.

10.9.4 Number of Moves

In midgame positions, MAVEN searched 10 moves. This policy includes the best play
between 90% and 95% of the time.

Pre-endgames are more complicated, and MAVEN searches more moves. MAVEN used
four move generators (Basic, pre-endgame, ultra-paranoid, and score maximizing). It is
possible for the engines to generate as many as 40 moves, but MAVEN seldom sees more
than 20 because there is great overlap between the lists of moves.

One of the great things about simulation is that it is able to compare moves that were
evaluated by different evaluation functions. For example, suppose that in a pre- -endgame
the Basic evaluator considers move A to be best, but the pre-endgame evaluator prefers
move B. Which move is better? The answer is probably B, but it may be A. Simulation
provides an answer. MAVEN can simulate games after moves A and B, and then compare
the moves based on point differential or winning percenlage.

10.9.5 Pruning Rules

The simulator always stopped after 1000 iterations. In a pre-endgame where MAVEN
enumerated all of the racks and all of the moves empty the bag then MAVEN stopped after
going through all racks. Note that if any move does not empty the bag then you must
continue sampling because the side-to-move could draw different tiles,

Simulation stopped if only one move remained.
MAVEN cut any move that differed from the best by at least two standard deviations, but

MAVEN never pruned a move before the 17th iteration, because we wanted the data that
measures the standard deviation to develop before risking any cuts.



Once a move was pruned, it was never scarched again, even if the‘sc‘ore of the best move
changed. MAVEN's pruning rules were SUf‘ﬁCiBﬂf!}’: reliable that there was no b?neﬁt to
reintroducing moves. For instance, the 14 games of the 1998 match had 'Orm,ly one instance
in which the best move wae pruned, costing MAVEN only a couple of points.

It often happens that two plays use exactly the same tiles, play in exactly the same spot,
and score the same. In such situations, there is usually not an iota of difference between
the plays, so a simulation would go to 1000 iterations only to determine that there was 1o
reason to prefer either play. Therefore, to avoid this inefficiency MAVEN arbitrarily
eliminated the lower rated alternative at iteration 31.

It often happens that there are multiple legal bingos. Two bingos always have the same
rack leave, and they often have the same score. It is usually unimportant which bingo is
selected, so MAVEN arbitrarily eliminated the lower rated play at iteration 100,

Once play reached the pre-endgame, MAVEN measured two dimensions: point differential
and winning percentage. The idea was to choose moves that had the highest winning
percentage, but you cannot ignore point differential. There are several reasons why not.

1)  Winning percentage is often equal, especially when one side is overwhelmingly
ahead. Then it is proper to maximize point differential.

2y Winning percentage is often approximately equal, even when point differentials
are significantly different. Then the move with the higher point differential has a
significant practical advantage: the opponent is likely to make an error that
boosts the winning chance of the higher-scoring move by a relatively larger
amount.

3) Ties between tournament participants are broken by point differential, so
racking up points is beneficial even if a small amount of winning percentage is
lost. In fact, most players are tied with someone at the end of the tournament, so
winning on point differential is as valuable as tying an exira game.

MAVYENs strategy was to prune moves using winning percentage and point differential on
equal terms, according to the following rules:

Iy If point differential was 2 standard deviations worse and winning percentage
was not betler then prune the move.

2) I winning percentage was 2 standard deviations worse and point differential
was not better then prune the move.

Thus, at the end of the simulation all of the remaining moves had no significant
disadvantage with respect to point differential or winning percentage, or they are worse in
one but better in the other. MAVEN chose the move that maximized a linear combination
of winning percentage and point differential. The ratio between winning percentage and
point differential was set so that 100 points of differential equaled ' game. The author
computed that tradeoff by looking at the standings in the 1990 North American
Championship.
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10.10 Limitations of the 1998 Implementation of Simulation

The simulator implementation used in the 1998 match had s;hm‘tmmings‘ Some are
simple bugs. Three specific bugs are

1) MAVEN never generated any exchanging moves. Oops!

2) When MAVEN actually got into an endgame position, the endgame player
stopped searching once it found a proven win, just as if it were searching the
endgame variations of a PEG-1. Oops!

3) A two-ply simulation can see through to the end of the game when there are 21
unseen tiles. Simulation to the end of the game should have commenced at 21
tiles unseen, but actually commenced at 16 tiles unseen. Oops!

Such bugs were easily fixed, but other shortcomings were fundamental design issues.

The biggest failing is that the implementation is not scalable. It would be nice if the
simulation coniroller took advantage of faster computers in multiple ways. For example,
on a faster computer the program should be able to search more moves for more
iterations and make its decisions in less elapsed time. In the 1998 implementation, the
behavior of the controller was fixed by limits that did not depend on the speed of the host
computer. Therefore, the only benefit gained from a faster computer was lower elapsed
ume.

To be clear: MAVEN would benefit from faster play. Humans are accustomed to playing
at a measured pace. Computer programs should disrupt that steady rhythm by slapping
down moves as fast as possible. Ideally, MAVEN's move would be on the board before
the opponent has finished drawing his tiles. That is possible when MAVEN is not using
simulation, and it would be good to get that capability back.

The other side of scalability is to benefit from simulation even if running on a slower
computer. MAVEN’s 1998 controller would not run satisfactorily on less than a 300 MHz
Pentium I1. The author believes it is possible to perform simulations with some benefit
even on a 486/66. The controller might only be able to look at two moves, and then only
for a few hundred iterations, but it would find a play or two per game.

Many people regard MAVEN's selection of random racks to be a weakness. For example,
consider Graham Toal’s proposal to select high-probability racks instead [71]. There is
real risk in trying to choose a set of racks. The goal is for the racks to accurately represent
the distribution of the oppaonent’s possible holding, and it is not clear how to do this with
a deterministic selection of racks. There are two objections to MAVEN’s procedure, one
on the grounds of efficiency and the other on the grounds of accuracy.

Rron Tiekert believed that simulation could be much faster if a scientific selection of, say,
50 racks could be drawn that essentially represent the full conceptual space of Scrabble
[61]. For example, the sample would have a number of bingoish racks, a proper number
of racks with only consonants, the right number of Q’s, and so on. The concept is like
trying to find an “orthonormal basis” of order 50 for the space of all Scrabble racks.



Other critics suggest that drawing random racks is clearly wrong because racks in real
games are better than random. Should MAVEN use a distribution that actually applies in
real games? The author is not sure this matters, because of cancellation of errors; the
same distribution applies to all moves being simulated, so MaAVEN will probably choose
the best move anyway.

Rather than pursue what may be a mirage, MAVEN draws racks randomly. In the author’s
opinion, improving on this policy is hard, because it is difficult to make a robust
inference engine. Chapter 11 covers the subject in detail.



Chapter 11 — Potential Improvements in Simulation

This chaptfer discusses opportunities in the area of simulation. Simulation has been
successful in MAVEN, but there remain technical and modeling deficiencies. In addition,
there simulation creates new opportunities, as well.

The first section describes how to infer the contents of the opponent’s rack by carefully
cgnmdermg the opponent’s recent moves. Simulation can then exploit those inferences by
biasing the distribution of racks held by the opponent.

The second section concerns how we can exploit the weaknesses of the opponent by

creating a model of his play. Given such a model we can bias simulation to select moves
that specifically defeat the opponent.

The third section describes how to use simulation to select moves that have the highest
winning percentage. It seems obvious, but there are complexities.

The fourth section concerns the speed of simulation, which is vitally important it you
want to put time pressure on the opponent.

Finally, simulation gives us a means of evaluating phonies. The last section concerns how
to generate moves that include phony words, and how to use simulations to evaluate
whether the gain is worth the risk.

11.1 Inferences

In the current model, the distribution of the opponent’s unseen tiles is assumed to be
uniform (i.e., every tile equally likely). However, we can determine from the opponent’s
previous moves that certain tiles are more likely than others are. Does knowing this type
of information change the play?

Let us take an extreme example. Your opponent plays JANTIES. You think to yourself,
“Humph. My opponent has been studying SOWPODS too much, which has obviously
addled his brain." You challenge. Then JANTIES (a word in the OSW but not the OSPD)
comes off the board. In this situation, you know exactly what the opponent held, and this
has the potential to radically affect your play. For example, you would not want to hang a
U in open space, since it would set up the OSPD-legal JAUNTIES for the opponent.

To continue the example, suppose that after your play the opponent plays TAJ. While you
do not know what the opponent drew, you do know that he held TAJ-EINS before his
move, so he must have EINS still on his rack. More precisely, his rack consists of EINS
plus 3 tiles drawn from a uniform distribution. It is hard to say how this would affect your
choice of move, but opening bingo lines is probably somewhat worse than normal.

To continue the example in a different way, suppose that after you challenge JANTIES,
the opponent’s next turn is fo exchange one tile. All you know for sure is that the
opponent retained six of the JANTIES ftiles. Nevertheless, you can realistically eliminate
all but exchanging the J. The tiles AEINST make a bingo with 90 tiles from a full bag, as
only I, Q, and Y are “nongos.” No one with any sense would keep the J in that situation.
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This requires a more complicated inference about the opponent’s rack, but you can till
make a strong statement about the true distribution of the opponent’s tiles.

Inferences have a role in some of the most amusing war stories. In human-human play,
savvy players often draw conclusions based upon the opponent’s demeanor. One story
involved Charlie Southwell noticing that the tiles on the opponent’s rack were split into a
group of 4 tiles and a group of 3 tiles. Whereupon Southwell found a spot where an 8-
letter bingo fit with four tiles before contact with the board and 3 tiles after. Southwell
blocked the spot, and it turned out that the opponent actually held the necessary tiles.
However, the author is not about to start work on a machine vision system.

More intriguing was Joe Edley’s observation that you can learn things from the
opponent’s sequence of scores. This is especially true of players in the 1800 to 1900
range, since they have the ability to find high-frequency bingos, but generally will miss
low-frequency bingos. Accordingly, such players tend to make a series of moves that
dump awkward tiles and retain ADEILNORST to build a bingo. Edley maintains (and [
believe, though it is hard to disprove) that he can fee/ when his opponent is about to
bingo. MAVEN"s moves do not seem to have such “tells” in its play, and true masters
(NS A rating >= 1950} do not telegraph their racks either,

Of course, there are other signs. For instance, most humans will not leave a hook in the
triple-word column unless they hold the hook tile. Accordingly, humans have a strong
tendency to block such hooks created by their opponents, on the inference that if the
opponent made the spot then he must hold the tile. However, MAVEN makes such spots
with abandon and on balance is not hurt by this habit. Humans may eventually "unlearn”
this particular inference.

A more solid conclusion is that if the opponent played a U then he did not keep a Q. This
is almost ironclad. However, it is hard to see how such an inference helps you to make
better plays.

Another example came from the author’s first tournament. The author is a good player
(NSA rating 1840} but had never played against humans before; only MAVEN. One
friendly player sat me down with the idea of showing me the lay of the land. We played a
game, and at one point, she made a strange play. It scored only 7 points, and 1 was sure
that it was a blunder. The opponent’s next move was to play a 50-point X play
overlapping that low-scoring move. My opponent explained that human often create such
setups, and since I had only played against the computer 1 would be unaware of such
tactics. Her point was that since 1 had been alert to the strangeness of the move, [ should
have looked one step beyond to find out why she played it. There had to be a reason!
Indeed, had I thought about it a second then 1 would have seen the potential X play, since
I could not miss such a thing it I think about it. She was correct; | probably left some
equity on the table. But clearly she hurt herself with the two-move setup. She scored 57
points over two moves, which works out to just 28.5 per turn. When you consider that she
burned ann X to accomplish this, you have to figure that she hurt herself on balance. How
logical is it to infer that she set out to hurt herself? If one concludes that the opponent is
more likely to have an X, how many points can one sacrifice to block the spot? Her
average move using an X is probably 38 points, so if 1 were certain that she held an X
then I could justify a sacrifice of up to 12 points.
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So t!“}e author concluded, in agreement with Nick Bailard [62], that humans overdo such
considerations, particularly at the intermediate level of skill where a little knowledge is a
dangerous thing. Players at that stage hurt themselves by playing for such smupsf"ﬂf hen
their opponents justify the action by imagining threats and playing to block them, often
sacrificing many more poinis than the opponent would have gained had the threat been
carried out.

The scientific study of inferences
began when Nick Ballard published
an exiraordinary monograph entitled
Anatomy of an Endgame [63] in which
he brilliantly analyzed the best play
possibilities after an opponent’s fish.
The subject of the monograph is
Position 11-1. Though there are 92
distinct racks using the unseen tiles,
inferences from the opponent’s last
play enabled Ballard to conclude that
the opponent’s last rack must have
been TAEILRR, 7AELRRT, or
FAERRTT. The logic was as follows:

1) The opponent could not have
kept J or W and still have a

proper fish. Moving: B X 340
2) The fishing the R is normally Cpponent's last: RE (2N ,8) 322
poor unless the opponent 10 Unseen tiles: TAENLRTTW
held RR. . ‘ .
3) Opponent would have played Position 11-1 Ballard's Brilliant Anafomy of
a bingo if he had one. an Endgame

Ballard could then break the analysis into cases according to the opponent’s draw from
the bag. There were nine cases. In each case, Ballard considered each of the four
candidate plays, and then fully solved the resulting endgames. Actually, the best move
(MIX {13G, 23)) does not empty the bag, which means that the analysis required an

additional ply of search in that variation.

Ballard carried out this analysis, which ran to 26 pages, without the benefit of a
computer, When MAVEN checked Ballard’s analysis, the author was astounded by the
degree of accuracy of the calculation. This rour de force established that inferences were
a potentially huge benefit.
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With the aid of MaVEN, the author was ABCDEFGHI JKLMHNQO
able to perform an inferential analysis -

of a complicated position, shown in
Position 11-2 The reader might recall
seeing it as an example of the power of
simulation, which discovers the well-
hidden strengths of the move AY
(D14, 24, CIOPT). Now the question is
whether we can draw any inferences
from the opponent’s last play, POL
(15A, 23), which played the tiles P, O,
and L.

The opponent’s rack contained the tiles
POL plus 4 of the unseen tiles. 6900
racks contained the letters POL, but the
author was able to prove that the move

POL as played was reasonable for only Moving: H LB T 143
50 of those possibilities. (The fact that Opponent's fast: ~ POL (15A, 23) 172
th@ o‘ppo'ﬂmt ) ac.l‘uai rack .l(:a"ffe wa% Position 11-2 What Can We Infer
among the 50 did wonders for the

credibility of this assertion.) from POL?

The standard used in determining the possible racks was that MAVEN had to consider
POL to be one of the three best plays in the position, and consider POL to be within §
points of the best play. We also eliminated any rack in which POL was manifestly
inferior to another move. Had we only allowed those racks for which POL was the top
play (i.e., as if the opponent were MAVEN itself) then the inference would have been
further restricted.

[ manually generated possible racks, then used MAVEN fo generate moves, and then
manually tracked the results. My first conclusion was that the opponent did not hold any
of EHLOUWY, because of the plays POLE, HOLP, POLL, POLO, PUL, OWL and
POLY, all played at 1SA and all vielding an indisputably superior combination of points
and rack leave. In addition, the opponent could not have retained G, because of GALOP
(14B, 28).
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Next, I eliminated many pairs of Word Tiles Word Tiles
tiles. For example, the words from BOLA AR BOLD BD
Table 11-1, play at 15A, and each BOLT BT MOL M’M
eliminates a pair of tiles that the DOL DD PAL AA
epponent could have kept. FILO FI FOLD DF
FOLK FK PILI 1
There are other ways to eliminate PILOT IT POLKA AK
possibilities. For example, from B11 KILO 1K MILO IM
we find FRAP for 34, so AF is MOLA AM MOLD DM
impossible. On the A-column, we MOLT MT SOLD DS
have a few plays that help: BLOOPS TOLD DT VOLT v
and POOFS eliminate BS and FS, SALP AS POLIS IS
PROMO (A8, 27) eliminates MR. POLAR AR
VAPOR (14B, 24) eliminates RV,
and VAV (14B,18) eliminates VV. Table 11-1 Moves at 15A that Eliminate Pairs

‘While there are exactly 6900 racks the opponent could theoretically have kept, only a few
hundred match our inferences. Simply removing BEGHLOUWY cut the number of
possible racks down to 948. When the pairs of tiles were removed, the remainder could
be completely enumerated by a human. In doing this work, it is helpful to note words that
help eliminate further possibilities. For example, VANPOOL (O7, 36) eliminates all
possibilities containing ANV,

Little was left. I fed each remaining combination into MAVEN to get an opinion on the
move. Though there were a few hundred combinations, POL was a reasonable play in just
42, The 42 combinations are in Table 11-2. In making this list I had to decide what to do
with the ?K combination. POLKA (15A) scores 533, where POL scores 23. POLKA is
usually best, so I am not listing the combinations in which K and blank occurred together.

?BBF TBFV TMNV BFMVWV BKNWV FMNV

7BBM BIV MSV BFNR BMNN KMNV
7BBR 7BMN BBFM BFNV BMNV KMSWV
BBV ?DNN BBFR BINN DINR MNNS
?BFM TDNV BBFV BEKMN DKNR MNNV
7BFN TFNV BBMV BKMV DKNVY MNSV
7BFR IMINN BFMMN BKNR DNNV NNSV

Table 11-2 All Normal Racks Opponent Could Hold
Let us take another tack, just to make sure we have covered all possible racks. Could the

opponent have had a bingoish rack, and dumped POL to keep great liles? For which racks
was that a reasonable strategy?



Clearly, the opponent must have held good tiles: ADEINRST, with no duplicates. Also,

#
the opponent would only fish if he got excellent bingo equity in retum for his risk,
because he is ahead and he could score 6 to 9 extra points at 15A. One deduction is that
the opponent could not hold 36 combinations, because they lead to bingos when
combined with POL. I then eliminated combinations having the DE pair, because POLED
adds 12 points, which seems like too many point to justify a fish. There remained 2%
possibilities. MAVEN generated each to determine if a reasonable case could be made for
a fish. Only ADRS, AIRS, DINS, DIRS, DNRS, EIRS, ERST, and INRS offered

reasonable fishing prospects:

The opponent held, if not exactly one of the given racks then at least one that is similar.
(Or the opponent made a big mistake!) It is reasonable to calculate our replies assuming
the opponent’s rack was one of these.

There are 42 normal racks plus 8 fishing racks for 50 cases, but the cases are not equally
likely. The distribution of tiles favors holdings like DINR, because there are 4 Ds, 5 Is, 5
Ns, and 2 Rs, and makes holdings like BBFV unlikely. To account for the distribution of
tiles, we must weight each case by multiplying together the number of tiles in the bag of
each type used in the leave. For example, DINR has a weight of 4 * § * 5 * 2 = 200,
which is the largest weight. The second largest weight is EIRS with weight 100, BINN
(the opponent’s actual holding) has weight 50. When each case is weighted according to
its likelihood, there are 1313 cases.

The chance the opponent holds the blank might surprise you. Blanks occur in 188
weighted cases, for about a 14% chance. Additionally, the opponent draws the blank with
probability 3/49 when he does not already hold it, so the total chance that he holds the
blank is about 20%. This is higher than we would expect based upon chance; normally
we would expect him to hold a blank only 7/53 = 13.2% of the time.

Curious: when the opponent retained a blank from last turn he has virtually no chance of
playing a bingo next turn. Thus, there is temporary tactical advantage to keeping an open
board. However, most of our own rack leaves are not bingoish, which diminishes this
advantage.

This result was eye opening. These calculations demonstrated a reasonable procedure for
inferring the distribution of unseen tiles, at least on the assumption that the opponent was
master-class. Moreover, the reduction in the size of the search space was enormous; from
9600 down to 50 makes concrete calculations realistic. What's more, the racks could be
further grouped on an abstract level info “consonant-heavy" racks, "blank plus drek®
racks, and fishing racks. In the mind of a hwman master, the branching factor was just
three!

In addition, for the first time it was shown how to use inferences in simulations. The
author used a spreadsheet to re-weigh MAVEN simulation data according to the frequency
in the inferred distribution. Though the calculation was manual, the path to
computerization was clear. Some MAVEN users have developed postprocessors that
munge MAVEN's simulation log files to compute evaluations under a non-uniform
scenario, John Chew’s POSLFIT has some ability to do this [64].
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W]wle manual calculations a,.nd postprocessors suggest that full automation of inferences
is close at hand, full automation will require solving some difficult problems.

The first question is whether the model given above is the best choice. There are
alternatives. For example, Alan Frank followed a suggestion of lohn Babina, and
published a model in which the score and turnover of the opponent’s last play indexes a
table of information about the opponent’s likely holding [65]. This approach does not
have the “X-ray vision” potential of the algorithm sketched above, but it is less likely to
be fooled badly. Frank’s suggestion has convinced me of the value of a decision tree that
branches based on easily discernable aspects of the situation before engaging in detailed
analysis. For example, if the opponent plays one tile it could mean he is trying to fish a
bingo, or it could mean that he is trying to avoid drawing the Q. Simply klmwing whether
the Q is in the bag could help to distinguish these cases.

Another open question is how to represent inferences. Very naive representations are
probably excluded for performance reasons, since there are over 3 million possible seven
tile racks. However, representations that are not capable of representing any possible
combination of tiles may lose precision. What level of detail is required?

There is an additional desirable feature. In the pre-endgame there are few distinct racks,
s0 it is sometimes possible to enumerate all of them. It would be nice if the solution could
supply this service.

Another desirable goal is to be able to subsume the uniform distribution without a special
case, preferably without an infinite number of buckets.

Given a probability distribution, another open problem is to generate racks for simulation
purposes. There are two extreme solutions. One extreme is to generate racks without
duplication, and then reweigh the results according to the distribution. However, the
convergence properties of this approach are poor, because the sample has relatively few
instances from the highest-frequency racks. The other extreme is to generate samples in
proportion to their likelihood, but then it is hard to match the expected frequencies. This
is a complex striated sampling problem.

A representation scheme will need a generalization of MAVEN’s trick that enforces a
distribution. In this sampling problem, the buckets are the possible racks that the
opponent could have held. For example, buckets ABC and ADE might be possible, with
relative weights 9 * 2 * 2 and 9 * 4 * 12, respectively. A sample is drawn from a bucket
by filling in the known letters (e.g., ABC) and then drawing uniformly from the rest of
the bag. Suppose that the draw is DEFG, making a trial of ABCDEFG. The irial also
contains the tiles ADE, and so it is a trial for both bucket ABC and for ADE. The weight
of the rack ABCDEFG within the bucket ABC equals the chance of drawing DEFG from
the bag, which differs from the weight of ABCDEFG within the bucket ADE (i.e., the
chance of drawing BCFG from the bag). Does this matter?

If the foregoing machinery all works, then you have the ability to exploit inferences.
MNow, how do you generate inferences?

The manual calculations described earlier suggest that a direct approach will wmk.
However, the scalability of the technique is a concern. For example, the case of POL,

165



above, featured only four tiles left on the rack. Would the calculation be feasible with
more tiles lefi? Would even a four-tile leave be feasible if we were unable to eliminate
many tiles in advance? How many move generations are needed before the computation
ig complete?

How will you handle uncertainty in the calculations? Should you assume that a human
would have found an | 1-letter bingo had one been available?

How would you handle contradictions? For example, suppose that the opponent’s tiles
obtain a higher score elsewhere. Would your engine reject all racks, leaving us with no
buckets, or with all buckets of weight zero?

How would you handle generic inferences? For example, MAVEN’s games show that if a
blank is unseen in a PEG-1 and the opponent played two tiles last turn, then the blank is
in the bag about 6%, rather than the 12.5% you would expect from the uniform
distribution. Note that there is no specific move that justifies this conclusion; it is just a
statistical result.

How would you validate the system? Can you check your inferences against Internet
games? Can you check your inferences against the play of your own engine? How
accurate are your conclusions when drawn against your own simulator? That question is
interesting because the simulator would play more strongly than the inference engine
would.

One open question about inferences is how to draw inferences when playing weak
opponents. You should not assume that weak opponents have excellent move generation
skills. Is it still valid to fall back on certain types of inferences? Is it valid simply to make
inferences as if the opponent were strong, because if he plays weakly then we will win
anyway? Should we "mix" the inferred distribution with a uniform distribution at a rate
that reflects the opponent’s skill level? Should we just disable the whole thing?

Here is a story from Robert Felt. Felt was playing a weak player, and having a tough
time. Every master experiences games like this, where every draw from the bag is bad
and the game reaches the end with a weak opponent poised for an upset. This situation
was particularly complicated by the fact that the Q was unseen, and the opponent’s last
turnt was to exchange six tiles. Obviously, after the opponent’s exchange the (Q must be in
the bag. Therefore, Felt went into the standard technical approach to this situation, which
is to play one tile al a time in the hope that the opponent draws the Q. The opponeat,
however, seemed oblivious to this tactic, and played several tiles per turn. Felt’s
happiness was short-lived, however, when he discovered that the opponent had kept the Q
when she exchanged. Her "idea" was that the Q was worth 10 points, so she considered Q
to be a good tile and wanted to draw the last U to go along with it. In this scenario, Felt’s
expert tactics were inappropriate, and backfired predictably. Ouch!

By far the biggest open question is whether inferences are worth doing at all. The author
has calculated a few of these situations by hand, and the move decision rarely changes.
Actually, the trend has been for the best move under the uniform distribution to have an
even bigger relative advantage under the non-uniform distribution. A case in point is our
example, where the move AY has an even larger advantage when inferences are
considered. Recent large-scale computer investigations suggest that inferences improve

1)



msu[‘ts bjy at rr}ust a couple of points per game, but these results are preliminary and 1 will
refrain from giving further details.

11.2 Opponent Model

Simulation is one of the best ways of including an opponent model into a program. If you
can create a program that has the same responses as an actual opponent, then you can use
simulation to devise tactics that specifically defeat him.

For example, Charlie Carroll likes to play words that take front hooks [73]. His
experience is that non-masters tend to miss the opportunity to use such hooks. Even
masters miss them! They are also likely to miss back hooks for non-S tiles. What is the
benefit from creating such hotspots? Simulations would tell us, to the extent that an
opponent model captures the weakness.

Another example is to exploit MAVEN's advantage in finding bingos. We can measure
this difference as a function of the bingo-openness measure defined in Chapter 6. The
difference is perhaps greatest on eight-letter bingos. For instance, the author (NSA 1840
rating) plays 8-letter bingos and 7-letter bingos in 1 to 1 ratio. A sample of master games

MaVEN plays 2 times as many 8-letter bingos as 7-letter bingos. It follows that
controlling the opportunities for 7-letter bingos has a greater impact on anti-human
tactics. Again, an opponent model that missed more eight-letter bingos would allow
simulation to discover this behavior.

Can we build a realistic model of weaker opponents? We probably can. MAVEN has taken
some steps along this path, and a great deal more can be done.

MAVEN has a system that scales play down to lower levels. MAVEN’s first effort simply
involved throwing out moves randomly. This technique provided good scaling down to
about the 1000 rating level, but suffered from a number of defects. First, the 1000 rating
level turns out to be excessively strong for casual human opponents, who are more like
700 rating. Second, the scheme had unfortunate side effects. Three specifically stand out.
First, when MAVEN’s tiles were bad it could randemly skip all of the moves, which lead
1o the program exchanging too eften. Second, after the program exchanged it usually got
a good rack, and then landed a big score. Thus, the pattern was weak overall, bul
consisted of a mixture of zeroes and big scores. Another defect was that the program’s
vocabulary at the weakest levels was the same as the highest levels, which is most
unnatural,

MAVEN's second effort involved creating a vocabulary of common words specifically for
the lower levels of skill. This task required input from many people, since the author’s
judgment of whether a word is common is thoroughly corrupted by long association with
MAVEN. Over time, this eliminated the vocabulary mismatch issue. | also discovered that
MAVEN could play at the 1800 rating level without ever using an uncommon word, so |
raised the level at which MAVEN employs the tournament vocabulary.

MAVEN's third effort involved selecting words according to their percentile rank, which

was more stable. With this system, MAVEN could play all the way down to 700 rating
without discontinuous behaviors.
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Nevertheless, there remain differences between how MAVEN behaves and how weak
humans behave. At its lower levels, MAVEN is simply matching the scoring
characteristics of human players, but not other aspects. If you want a simulation to exploit
human weakness then you probably need more than this.

We can formalize the model as follows: given a board and the best move on that board,
return the probability that a human of a given level of skill will select that move. If you
have such a function then you can emulate a human as follows:

1) Generate the list of moves in besi-first order.

2} Loop down the list computing the probability of selection, and

3) Select a move in proportion to its probability, choosing the highest-ranked move
that is selected.

A neural network would provide a good model, if it had inputs that reflected the difficulty
of selecting the move. Consider the following inputs:

13 Common versus uncommon word. {Vocabulary.)

2) Length of word. (Anagramming.)

3) Uses JQXZ? (Anagramming.)

4) 1s a hook? (Anagramming. Obviousness.)

5) How many words formed by the play? (Move complexity.)

6) How many legal moves in total? (Board complexity.)

7) Isthe player leading at the time? (Aftentiveness measure.)

8) Frequency of word in MAVEN versus MAVEN games. (Vocabulary measure. )
9)  Number of letters used from the board. {(Move complexity.)

10) Premium squares covered. (Obviousness.)

11) How many moves have been played? (To get at tiredness, board complexity.)
12} Prefix + Suffix length (Anagramming.)

13) Uses blank (Anagramming.)

The training data for the model would come from Internet games. There are several
Internet Scrabble game rooms, where you can spy on games to collect data. Over the
course of a year, you would collect tons of information about how intermediate-class
human experts play the game.

Validating an opponent’s model is tricky. It is a sort of Turing test—can you distinguish a
human of a specific rating from the computer simulation? Well, unless you have
programmed the simulation to play phony words on occasion you will be able to
distinguish human from computer. However, that exception is but a small obstacle.

There are many tests of validity. Simplest is to determine whether the model plays with
the proper level of skill, which is a simple matter of setting up a tournament between the
levels and rating the outcome.

1f the players perforim at an appropriate level, then you can test whether they are able to

mimic the playing characteristics of humans in online games. Simplest is to compute the
model’s probability of selecting the moves made by humans of an appropriate rating. The
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mﬂfc'iei that most closely matches the actual moves should be the model that was
calibrated from games of players of that rating.

It is harder to determine whether an opponent model helps MAVEN to win more often.
You can test MAVEN in online games by employing an opponent model in half of the
games. It might take many games fo see a difference. You can test MAVEN versus the
model directly, but that might be a self-fultilling prophecy.

11.3 Winning percentage

MAVEN"s 1998 implementation collected winning percentage data necar the end of the
game, but it is potentially valuable to gather such information throughout a game. Look at
Position 11-3 from MAVEN’s match against Adam Logan. In this position, MAVEN played
FOP (N1, 28, AEGT), leaving an overlap spot for a bingo on the O-column. Afier the
game, Adam commented that FOP was a dangerous play. He recommended OFT (15M,
26, AEGP), which blocks bingos to MONDO.

MAVEN was attracted to FOP because
FOP sets up the AGE that MAVEN
keeps on its rack. AGE (O1) scores 39,
and there are many draws from the bag
that can improve it. It is not a one-way
setup by any means, since if Logan
held an A he would usually be able to
exploit the spot, but Logan is less than
50% to hold an A, and even if he does
he may not be able to use the spot.

CDEFGH

2L

MMNO

I J KL

2
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Logan’s view of the situation differed.
Logan considers that MAVEN is 43
points up before the move, and will
take a 70-point lead. If Logan landed a
normal bingo (e.g., 75 points) then
MavEN would still be a favorite. For
example, if Logan played across the MaAVEN: = Sk
second row through BOY, with  Logan’s last: PULI (A12, 18) 244
MISCIBLE (8H) for instance. MAVEN
starts out leading by 43, and OFT puts
MaveN up by 69. MISCIBLE scores versus Point Differential

82 points, so MAVEN regains the move

down by only 13. Since 13 points is less than half a turn, MAvVEN would still be a
favorite. That is particularly so because MISCIBLE would open up two triple-word
squares at Ol and H1.

Position 11-3 Winning Percentage

What actually happened in the game is that THENARS (03, 97) followed FOP. When
compared with the example of MISCIBLE, THENARS scored |5 extra points, and dogs
not yield openings that MAVEN could exploit. In fact, the board was devoid of spots for
large comebacks, and MAVEN was unable to close the gap.
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- percentage evaluation of this position, so we can
5 assertion that OFT is better than FOP is. It seems

Maven has never done a winnis
neither confirm nor deny Logan
likely, though.

Integrating a winning percentage calculation into simulation is actually easy to do. There

are three C(’Hﬂp@ﬂi’jﬂ[ﬁ necessary.

First, you need a winning percentage evaluator. This is simpler than searching to the end
of the game. Fortunaiely, MAVEN already has a winning percentage evaluator, so it
simply needs to be called within the simulator.

Second, the simulator must be modified to return both a score and a point differential. [t
might seem that you only need winning percentage, but you actually need both. There are
situations where all of the moves win always, and then MAVEN should keep up
appearances by selecting the move that maximizes point differential.

Finally, you need a policy for pruning and selecting moves that are evaluated using a
two-dimensional evaluation function. On second thought, MAVEN’s existing policies are
good.

| actually implemented this capability while preparing this thesis, because the notes to the
game Wapnick-Cappelletto (see section B.4) benefited from winning percentage analysis.
i am still weighing evidence concerning whether using winning percentage results in
better play than using point differential, so I will refrain from providing further detail.

11.4 Speed

Speed is less important than it was a few years ago, when sufficient speed was the
difference between being able to do simulations and being unable to do them. Still, there
are advantages to being Tast.

First, you can consider more moves. You have already seen that there is a chance of
missing the best play even if you consider 10 moves. It is helpful to systematically reduce
the chance of missing the best move by increasing the number of moves.

Second, you can simulate candidates for additional iterations. If you quadruple the
number of iterations then you reduce the impact of statistical noise by a factor of two.
Reducing noise by a factor of two has two advantages. First, it is less likely that an
inferior move will be selected. Second, and less obvious but just as significant, is that
those bad moves that are selected are necessarily closer to the best move, so less is lost
per error.

Third, against human opponents you can decrease the time required for moving, which
places time pressure on opponents. Scrabble is a timed game, in which each minute of
overtime costs 10 points. To be objective, a 10-point penalty is not that big a deal, since
10 poinis decide only a few percent of games. Perhaps panicking over the possibility of a
10-point penalty is actually more damaging. Against MAVEN, humans are unlikely to be
far in the lead at the end of the game. MAVEN has an average spread of about +60 points
in its tournament and match games, so every 10 points that a human loses puis his
chances in grave jeopardy. What's more, even if the opponent does not go over, and even
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if he does not panic, there is still a benefit to rapid play: the opponent’s normal sense of
the pace of the game is disrupted. You really have to watch humans to understand the
impact of quick play. Humans are naturally jumpy because of the competitive situation,
and additionally tense because they know that MAVEN is a strong player, and on top of
that, it makes its moves so fast that their normal thinking process is disrupted.

Of course, the easiest way to make simulation faster is to wait for Intel to make faster
processors. By consistently applying this technique for the last § years, MAVEN's
simulation speed has improved by about a factor of 6.

If MAVEN is serious about speed, then it should try Gordon’s move generator. Gordon
measured [22] a factor of two improvement in speed from the GADDAG data structure,
which is consistent with data from Appel and Jacobson’s original paper [21].

The next easiest techmique is to build a parallel simulator. Simulation is easily
parallelizable, and interesting technical questions are involved. There is a simulator
named P1oBOTIR that employs multiple processors.

Parallelization has a few interesting questions. A serial simulation controller can assume
that it has complete information about all prior trials. That would be invalid in a parallel
controller. How does this affect the controller? How large a speedup can you get on a
parallel computer? I conjecture that parallelism will be close to perfect.

If speed is so important that you want to work hard, then you can tackle the question of
fine-grained parallelism. For instance, if you have 10 moves in the simulation then on the
opponent’s first turn he will generate moves for 10 boards that differ by at most two
moves. Can you exploit the similarity of the boards to generate moves more quickly? A
30% speedup may be possible from the reduction in move generation costs alone. If there
is a way to share other overhead (e.g., precalculation of rack leave values) then the
speedup could be larger.

Another idea is Graham Toal’s Global Analysis. The idea is similar to how MAVEN
handles endgames: throw all of the unseen tiles into one mega-rack, then generate all of
the moves. The resulting list of moves contains every move that could be played. Sort the
list into decreasing order, and index by the tiles used. With such a data structure, it is easy
to compute the ideal move from any set of tiles with a few lookup operations. Any
position that occurs often enough in a simulation should have a Global Analysis, so that
move generation costs for that position will be essentially zero.

My perspective on fine-grained parallelism is that a speedup of perhaps S0% is
unimportant given that Intel will handle it before the end of the year. And the same for
Global Analysis.

11.5 To Challenge or Not to Challenge, That is the Question

MAVEN's current behavior is to automatically challenge phony words. This is usually
correct, but can we improve upon that behavior?

The most frequent case of allowing a phony to stand is when you have a big play off it.
Another case is when allowing the phony to stand reduces the game to a guaranteed win,
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whereas challenging might allow the opponent to get back in. That requires
understanding winning percentage.

A story is in order. Robert Felt described a game he had just played. His opponent play?d
a phony bingo. Felt was about to challenge it off, but then he thought further. He
calcutated his best move assuming that he let the phony stand, and it turned out he had a
bingo. If he challenged, he calculated that he had a different bingo. So far, the
calculations indicated that a challenge was in order. However, upon closer inspection, it
turns out that if he challenged and then played his bingo, the opponent would have a legal
triple-triple. Felt decided that it was berter to let the phony stand, since the exchange of
bingos would ice the game. Felt was pleased to have found a game that MAVEN would
have lost by automatically challenging.

Position 1 {-4 is from Wapnick’s book
[8] where an expert (Steven Polatnick)
made the wrong decision. To quote Joel
Wapnick,

“After [ played WID, Steven called
“hold.” He knew that WID was not
good, and he was checking to see
il it was to his advantage to leave it
on the board. He allowed it to stay,
and he was wrong to do so0.”

D~ DU D W N -

Polatnick played JETE (01, 52, EEN),
for a net gain of 30 points. But he
should have challenged and then played
IET (L4, 46, EEEN) for a net gain of
46 point. On the rack leave side, ) —
Polatnick has to accept a tripled E, but Polatnick: BB RN 174
returning WID to Wapnick’s rack is Wapnick's last: "WID" (N2, 22) 202
full compensation. Failing to challenge
seems to be a 16-point error.

Pasition 11-4 A Challenging Position

Wapnick speculates {8] that Polatnick may have been concerned about giving Wapnick a
play down the N-column, with the W on N4. That may be a factor, but if so then it was
another error—if Wapnick had such a play he would have played it instead of WID, After
all, the W plays on N4 whether the J is on L4 or not, and would score more than WID. Is
it possible that Polatnick overlooked JET (L4)? There are a few decent J plays (JEE (F2,
29, EENT), JET (L2, 29, EEEN), and JEE (N2, 28, EENT)), but nothing that makes
chalienging obvious. JET (1.4) is an obvious play, and Polatnick should see JET, but the
best explanation is that he missed it.

In general, seeing these cases requires simulations, preferably conducted after inferring
what tiles the opponent could be holding that could motivate a play like WID.
Incidentally, inferences afier a phony move can be difficult, since the engine might infer
that am move would have been better than WID.



11.6 Specifically Defeating Weaker Opponents

H@W to plfiy to defeat humans by exploiting their weakness is an open question. Af
various points in this thesis, the author has considered the impact of MAVEN's style of
play on human opponents. The following list summarizes a few of these.

1y After discovering that there is a theoretical bias in favor of short plays on the
first turn, the author considered whether that was good strategy for MAVEN,
MavEN benefits from having a wide-open board, as even the best humans miss
10% of their bingos, whereas MAVEN never misses.

2} MaVEN’s simulator gives the opponent additional thinking time, which is a
significant practical drawback because it takes time pressure off the opponent.

3} MAVEN’s endgame player foresees defenses that the opponent is likely to miss,
in the process foregoing a chance to run up a big score at a small risk.

4) MAVEN’s pre-endgame evaluator decreases MAVEN’s chance of mounting a
comeback, but also decreases MAVENs chance of being overtaken, The author
decided that tradeoff was a wash against other computers, but an advantage
against humans.

5) In considering MAVEN’s provocative style of wide-open games that completely
disregard conventional defensive precepts, [ decided that it was best it MAVEN's
opponents held contempt for its positional skill. Many years passed before
humans realized that MAVEN was correct.

In each case, MAVEN went with the theoretical predictions rather than warp the program
to specifically defeat humans. However, at this point we can regard the problem of
choosing the theoretically best plays as essentially solved. Therefore, the question of
whether risks are justified in the pursuit of victory is one of the biggest open quesiions,

There is a practical motivation for pursuing such a line of research. Studies have shown
that weaker players defeat stronger players more often than would be predicted by the
difference in rating [50]. This is definitely true of MAVEN; there is an 1800 rated player
who can defeat MAVEN (non-simulator) about 25% of the time. The difference in rating
(300 points) suggests that she should win only 16% of the time. Her experience with
MAVEN confirms the author’s. In addition, a multiyear study of all tournament games
shows that the same is true of human-human encounters as well.

It is an open question why this is true. The rating system is essentially the same as used in
chess. We can rule out the possibility that the rating results are incorrect, since many
people have checked their values. The author speculates that the variance in a game is
larger when strong plays weak, but there is no data to test this hypothesis. Another
possibility is that there is a relatively constant chance that the opponent will draw both
blanks, and then he has a relatively constant chance of winning.

At any rate, if you want optimal results, it is important to beat the daylights out of weaker
players. Championships in Serabble are not decided by head-to-head matches between
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top-ranked players®’. Instead, the Champion is the plaver with the highest score m'a
tournament in which the average participant is much weaker than the eventual winner is.
For instance, the North American Championship is a 31-round event in which the average
participant has about a 1900 rating. The best players in the tournament have ratings
around 2050, so they should win 67% of their games. The tournament winner has
averaged 80% wins.

The goal of exploiting weakness is not to beat the strongest players more often, although
that may happen as a side effect. The goal is to defeat players rated about 200 points
lower. You should defeat them 77% of the time, but in practice, you fall short, winning
perhaps 67%.

We have already considered that modeling the opponent’s weakness would produce
moves that tend to win more often. We can consider such a solution as a righteous
approach to the problem. In this section, we will cover a more devious approach: playing
phonies and swindles.

11.6.1 Phonies

Humans below the top class do not know the words solidly, especially the lower
frequency words. Thus, it is possible to get away with phony words. But significant
challenges (pun there) lie ahead.

First, there is the question of what makes a plausible phony. The answer is a complicated
function. For example, from a morphological perspective the word EULOGIAE is highly
implausible. Few words contain letters in such combinations. Nevertheless, the word is
good, and known to all experts. By contrast, BIRTHDATE is phony and no human would
give it a second thought.

Here is how evaluating the plausibility of phonies might proceed. You can determine
whether a word would land on lists of high frequency words such as the S-vowelled-8's
or JOXZ words. If a phony ought to be on such a list then it is immediately an
implausible phony because a human would realize that he has not seen it before. Another
dimension is the frequency of the word. Word frequency can be measured for real words
by playing many games and recording the frequency of words as a function of their
fength and letter content. You can project phonies onto the same scale. Playing a phony
that should appear often differs from playing a phony that should rarely appear.

Another factor is the strenglth of the opponent. Stronger players know more words, so
plausibility should be a function of strength.

Certain phonies are automatically implausible. If the opponent is a computer then the
phony is impossible. If the word occwrred in one of the opponent’s games then it is
implausible. If the opponent challenged it then it is highly implausible. If the program’s
previous move was successfully challenged, then a phony on this turn is implausible, 1f
the phony is the last move of a game then it is implausible, since the opponent risks
nothing by challenging.

47 ) —~ . . s . .
Actually, the World Championship employs a best-of-5 match. But the point stands because to
quality for the final match you have to be one of the top two finishers of a Swiss tournament.
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Omnce you have a reasonable evaluation function for plausibility, the next task is to create
a list of phony words. You have several sources. For example, you can spy on Internet
games and await phony words from the players. You can spell-check Web pages from
sources with good editorial controls (e.g., Yahoo). Humans have collected lists from
tournament play. One fellow collects chailenge slips from tournament word judges. In
addition, you can make them up yourself by writing little programs that cog;mpose
plausible wvariations on accepiable words, such as adding prefixes and suffixes. Of
course, you should check every word because some will be outlandish. You should build
the list from many sources, because vou need many words (tens of thousands) before they
have an impact on winning chances. ‘

if you ever generate a phony play, then you must weigh phony plays against real plays.
That is a complicated problem. From the opponent’s perspective, a phony word is simply
a word he has never seen before. These come up from time to time, since the opponent
does not know all of the words. The question from your opponent’s perspective is to
judge the likelihood that an unfamiliar word with that morphology is phony. The
opponent has two frames of reference for answering that question.

First, he can judge from his overall experience with words of that type. The geal of rafing
a word for plausibility is to provide MAven with the opponent’s judgment from this
frame of reference. That is, the plausibility of a word is defined to be the likelihood that
an unfamiliar word with a given morphology is acceptable.

Second, he can judge based upon MAVEN’s perceived tendencies. That is, he can consider
MAVEN’s history of playing words with the given morphology and count how many
phonies he has seen. Where MAVEN has many phonies with a given morphology and few
real words then MAVEN has to throttle the phonies such that they occur at a rate that does
not arouse suspicion.

If you do all of these things then you have a model of how the human rates the
probability of the word being phony. If he is rational then he will challenge if doing so
increases his winning percentage, and he will not challenge otherwise. So you need o
model how a player of a given skill level perceives his winning chances against MAVEN
as a function of the score and the stage of the game. You could start by doing a
theoretical model, or you could capture real data by spying on Internet games between
humans.

These caleulations allow the program to decide whether to play a phony: just compute the
winning percentages to determine whether the opponent should challenge. 1f he should
challenge, then do not phony. Otherwise, wing it.

The model just described places itself in the opponent’s position and fries to weigh the
odds. A different point of view is to regard the opponent’s challenge as a random event
that the program must strategize using probability-weighted search. For example, if you
have enough Internet data then you can train a neural network to predict the frequency of
challenges as a function of the player’s rating, the word’s plausibility, and the true
winning percentage. The program will decide to play a phony if its winning percentage 15
greater when weighted by the chance that the opponent challenges.
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You may need a model of the “"advertising” benefit of playing phonies. One of the
advantages of playing phonies is that the opponent will sometimes challenge good
moves. This never happens to MAVEN, since opponents know that MAVEN never plays
phonies. How do you account for this?

Playing phonies is a large research project. You will need a large knowledge base of
phony words. You will have to grade the words for plausibility. You must tune the
psychological model of the opponent’s reaction to unfamiliar words. Constant
maintenance will be required. Tough job.

11.6.2 Swindles

Simulating games using a suitable opponent model would generate many moves that
qualify as “playing to the opponent’s weakness.” This section will focus on true swindles.
A swindle is a play that should fail against perfect opposition, but the player has
determined that against his actual opponent there is a lot to gain and litile to lose. Master
players take the greatest pride in playing swindles, because such plays demonstrate both
technical and psychological mastery.

The gain versus loss balance for some swindles is easy to measure. For example, in an
endgame proper you can determine the true score afier the perfect play, and the true score
after the swindle. The advantage is what you stand to lose by playing the swindle. It
would be grossly negligent to attempt a swindle if the potential loss puts winning in
jeopardy, so we can restrict attention to cases where only points are risked, including
cases where the opponent can lose if he goes astray.

The potential gain of an endgame swindle is harder to judge. You cannot know which
move the opponent will play. The opponent might find the ideal move, or he might find
several potential alternatives. To evaluate a swindle you must guess the odds of each
error.
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Robert Watson reached Position 11-5
against Peter Morris in a game
annotated in Scrabble Players News
[66]. Watson is moving.

This is an out-in-two position,
decidedly not a one-tile position,
because Morris ought to play out
quickly; Watson’s consonants would
badly beat Morris™s vowels in a one-tile
game. Therefore, Watson should size
up Morris’s out-in-two threats, The
highest is OUT (D3, 12) combined with
VEE (C9, 11). Note that

1} VEE blocks DRY (12B, 13).

2y I OUT is not out, Watson has
GLOUT (D1, 8) off it.

3) If VEE is blocked, then

Morris has no good plays for

EE.

OUT does not block any of

Watson’s good scores.

4)

12
2
3
4
5
5
7
8
9

Watson:
Morris’s tiles:

Position 11-5 Swindle Example

Thus, Watson should play DRY immediately. However, Watson played NOB (M7, 15),
thinking that it is a one-tile situation. Analysis shows that NOB is a four-point error. The

variations are given in Table 11-3.

MNote, however, that once a player | Word [Spot] Score Best |Spot| Score
starts off with the wrong idea, he is DRY | 12B| +13 NOB | M7 +15
unlikely to immediately realize that | ETUI | 11E -8 VEE 9 211
he should change plans. If Watson | NOB [ M7 | +15 TEHUS | £6 17
believes that he should play one OE |11Al 11 ouT | D3 .12
tile at a time, then he might not (GLQS)| 28 = 19| (DGLOR) 237 =723

follow up correctly after playing
NOB. Errors that originate in a
positional or strategic
misunderstanding tend to cascade.

Table 11-3 Best Play, and Best Play after NOB
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Morris Tollowed NOB with OUT (6l), |Player Word |Spot] Score |Best Play
which created the phony DETAR. [Watson] NOB | M7 | +15 |DRY (12B, 13)
Watson challenged, and the game was  |Morris | OUT | 6J 0 |VEE(C9,11)
routinely played out, as shown in Table ywatson|JEHUS| F10! +17 |DRY again
-4 Morris | OUT | D3¢ -12 VEE again

, ) Watsonny DRY |12B] +13 |Best

Morris’s  play of OUT requires e ool Ap [oH| -7 |Best
examination. Morris says that the Watson|GOUT| D2 | +5 |GLOUT (D1, 8}
following line of reasoning lead him to Mortis | EF | 13 6 LAWED ‘(BS, 9

play OUT: (QL) -22=3
1) Watson can only lose by Table 11-4 Game Continuation

challenging a phony word.
2)  Watson is probably not sure if DETAR is good.
3} So Watson will not challenge.
4)  Therefore, OUT steals a few points for free.

This section will examine this reasoning from the perspective of an endgame swindle.
What is the risk/reward ratio of the phony OUT?

Joe Edley, who annotated this Spot| Score Word jSpo‘t Score
game, restricted himself to a M7 +15 NOB | M7 +15
comment that Morris’s OUT (6]) 6J .19 OUT | 6J -19
was “a last effort to close the gap.” J4 1422 DRY |12B| +13
However, the gap is too large even c9 11 NEE | 4C -6

if Watson fails to (:hallenge and D8 =21 (GLQS) IR =25

plays inferior defense. Table 11-5
shows two ways to win for Table11-5 OUT (6J) Loses Even if No Challenge
Watson, who is ahead by 37 points. This establishes that winning and losing are not at
stake. It follows that we will not consider extreme sacrifices of points in order to win.

This idea is analogous to a bluff at poker. We can assess |Word Spot | Score
the risk/reward ratio for this endgame bluff by calculating [NOB M7 +15
the best-play sequences after Morris plays his best move, |QUT 6] 0
VEE (which nets -23 as shown in Table 11-3), and after |pRy 2B [ +13
OUT if Watson challenges and if Watson does not |oyT D3 12
challenge. The leftimost variation of Table 11-6 shows that |ypys Flo | +17
it Watson fails to challenge DETAR then Watson nets -21. |4 p ol -7
Thus, Morris stands to gain 2 points if his phony stands. GLOUT | DI 8
The following variation shows that if Watson challenges LAWED | BR 9
then Waltson nets -4: “(Q) ) 20 =4
LA™,

Since Watson would gain -23 afier Morris’s VEE, this  Table 11-6 Best Play after
variation shows that OUT is, in perfect play, a 19-point .

error. We can now assess Morris’s bluff: Morris risked 19 OUT is Challenged
points for a chance at 2,

If the game were on the line then the phony would have something extra going for it.
However, as the score stands, risking 19 points to gain 2 is obviously wrong. Morris

misjudged the situation.
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Pre-endgame swindles are murkier. Most pre-endgame swindles are fishes for monster
plays. Often these are justified without reference t swindling chances, since the
opponent need not make an error for the plan to succeed. However, it would qualify as a
swindle to fish for a blockable bingo because you need your opponent to err. Possibly, we
can generate and evaluate such plays.

11.6.3 Integration

The design above counts on simulation being a "grand unifying theory" to pull these
elements together. To pull it off, you would need a model of a player of a given rating.
The model must exhibit the exploitable behaviors that characterize players like the
opponent. 1f the model misses 8-letier bingos at the proper rate, then the simulation will
create opportunities for the opponent to miss them.

One complexity is that the endgame model must generalize fo integrate the opponent
model, since we no longer postulate deterministic play by the opponent.






Chapter 12 — Competitive Results

MAVEN has always lhc“usﬁd on defeating the best human players, so its competitive
results are worth evaluating.

The first section describes six metrics that we can use to evaluate programs. The metrics
differ in the qualities that they attempt to measure, so it is best to use ;H of them to get ;i
frue picture of the program. The second section gives the competitive results of all of
MAVEN’s tournaments and matches. The final section summarizes MAVEN's Man-
Machine encounters and asserts that MAVEN is of superhuman strength.

12.1 Standards of Evaluation

We can evaluate MAVEN s perfm'mame using many metrics. This section describes some
metrics that have been applied to MAvVEN.

12.1.1 Winning Percentage

The obvious measure of skill is winning percentage. Alas, this measure sulfers from a
key drawback: the quality of one’s opponent matters a great deal. If we consider a “level™
to consist of a difference of skill that corresponds to a 75% winning percentage, then the
ranks of human tournament players contain at least six levels. Therefore, we must qualify
any winning percentage measurerent with a “strength of schedule™ adjustment.

12.1.2 Rating

Tournament players use an Elo rating system [67] to grade players. Both competitive
results (wins, losses and draws) and the strength of the opponent determine how your
rating changes. On that scale, novices rate around 700 and the highest player is usually
around 2100. A 200-point differential in rating corresponds to a 77-percent winning
percentage. Any player rated over 2000 has a legitimate chance to win the North
American Championship.

Rating is a good measure of skill, but it has difficulties. First, rating is not a stationary
function; the skill of a player varies over time. To maintain a level of skill requires
intensive training, and it is inevitable that players will take extensive breaks from training
from time to time. Nearly all of the top players have taken time away from the game
because of burnout. Even if players do not take time away from the game, it is difficult to
maintain competitive drive vear after year. Therefore, players have rating fluctuations
that are too large to explain by relying on chance alone.

Ratings also reflect the inherent variability of winning percentage. Ewven when a player’s
skill is not fluctuating, his rating will fluctuate, usually by 30 to 50 points around his true
skill level, For example, the winner of the Nationals might score 25-6 over a field of 1950
strength. This performance would be characteristic of a player having a rating of around
2300, so the winner's rating rises by a lot, ofien to well over 2100. However, is he really
better than he was before the tournament, when his rating was 20507 After all, somebody
had to win the event.



One technical problem with rating is that the NSA rating system has drifted over time.
Because rating systems rely only on the difference between player ratings, there is no
rating that re::;;msmm a fixed level of skill. This has been a problem for MAVEN, since
MAVEN has competitive results over a 12-year period. During that period, the ratings of
the top players have drifted downwards by perhaps 50 to 75 points. In this thesis I have
attempted 1o correct for such drift by increasing the ratings of MAVEN’s opponents in
1997 and 1998 to the level they would have had in 1986. This adjustment allows us to
compare MAVEN against the historical records of Ron Tiekert (2170 peak) and Robert
Felt (2140 peak), for example. Still, this procedure is open to obvious objections, and will
not stand up over time,

The real problem is that MAVEN has not competed often enough to acquire a reliable
NSA rating in any single time period. It has been difficult to find opponents.

12.1.3 Scoring

One of the reasons that winning percentage is a difficult measure to work with is that it
discards information. If we know that a final score was 499-200 then we have a lot more
information than the 1-0 winning percentage suggests. For instance, although MAVEN and
Adam Logan split the first six games of their 1998 match, MAVEN’s point differential
was far higher. It was clear that MavEeN had simply been unlucky to lose a few close
games, and if that luck evened out then MAvVEN would win the match comfortably.

The obvious measure of skill that considers score is the average number of points scored
per game. Obviously, if Player A averages 450 points per game and Player B averages
350 then A is a better player than B. However, this mefric has a defect, and if you play
Scrabble for any length of time then you will find this out. The quality of the opponent
matters a great deal; one can score more points against weaker opponents than against top
masters. Players A and B could be roughly equal players, but A has played weaker
opponents than B.

The reason why this happens is that the number of turns in a game increases when the
plavers are weak. Strong players use 4.5 tiles per turn, so the games are finished in 11 to
12 turng per player. Weak players may only dispose of three tiles per turn, which extends
the game for 4 more tuns per player. In a matchup of strong versus weak plavers, the
strong player has the chance to play more moves than he normally would when playing
against his peers. e also wins challenges and gets away with phonies, which further
increases his score.

12.1.4 Points Per Move

A slight modification to this metric, measuring the average number of points scored per
win, is a much more reliable indicator of a player’s skill level. It works because both
players have the same number of turns per game. Indeed, this measuwre is remarkably
consistent.

Aun opponent’s style can influence the number of points-per-turn scored. Some players
create constricted positions in which it is difficult to score. Other plavers prefer wide-
open positions. There are limits to the impact of this factor, since carrying stylistic
preferences to an extreme will reduce your winning chances by more than it hurts the
opponent. Experience suggests that if defensive measures reduce your opponent’s score
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by more i iple of points per furn then v e hurts i
v more than a couple of points per turn then you are hurting yourself more than vour
opponent.

Rating uis; a good measure for assessing towrnament play, since it permits indirect
comparisons of players by “factoring out” the quality of the opponent. However, rating is
a more variable function than points-per-turn. MAVEN's self-play games c:m'uminb?ul
moves on average (almost 11 per player). So estimates based L;pwhl‘m points per turn
converge V21 times faster than estimates based upon rating.

12.1.5 Scoring Statistics

MAVEN averages 35.0 points per move. MAVEN-versus-MAVEN games are over in 10.5
moves per side on average. Each MAVEN plays 1.9 bingos per game. These statistics are
considerably higher than human expert statistics. The best humans average around 33
points per move, 1 1.5 moves per game and about 1.7 bingos per game.

12.1.6 Test Beds

During development one often needs to experiment with some aspect of the program
while ensuring that other aspects remain stable. For instance, one may wish to develop
new endgame evaluation functions, while ensuring that MAvVEN’s endgame skill level
remains constant. Test beds consisting of validated positional examples are useful here.
In fact, it would be very dangerous to make changes to MAVEN without this basic
safeguard. MAVEN is already a highly tuned system, so changes are likely to be for the
worse unless proven otherwise.

Sadly, there is no public test bed, such as the Bratko-Kopec test bed for computer chess
[58]. In my development work, I usually construct fest beds for specific features as
needed.

12.1.7 Choice of Metric

We do not really need one single measure of strength; the important thing is to have
measures that are appropriate for what we are trying to accomplish. In comparing
consecutive versions of MAVEN, points-per-turn is useful since it is easier to reach
conclusions quickly. In comparing MAVEN with humans, rating proves to be the maost
useful metric.

12.2 Tournaments and Matches

12.2.1 First Impressions

We have already described MAVEN's first tournament, in December of 1986. The caliber
of the mp‘positioin was very high. MAVEN made a big impression, scoring 8-2 with a +70
point per game differential.

12.2.2 Second Look

MAVEN's second tournament was in October 1987, The Cape Cod Fun Weekend was
probably not a good event for a computer to enter. Several of the contestants were upset,
despite our contribution of a prize to the best game against MAVEN, The opponents were
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experts, but below championship caliber. MAVEN won 5-0 with an average margin of
victory of over 70 points,

12.2.3 Close Encounters of the Third Kind

The December 1988 tournament was a “team tournament” in which a computer team was
entered. 1 we had entered a team consisting of the best available programs of the day
then we would have won the event handily, because TYLER went 6-4 on first board,
Maxiin went 7-3 on second board, and programs of the strength of MAVEN and TYLER
would have cleaned up on third and fourth boards. However, dreadful commercial
programs filled out the team. The program on fourth board lost every game by using too
much time.

Still, it was a good event for MaVEN., MAVEN's tiles were not good overall, as it drew
only 8 out of 20 blanks despite playing 55% of the tiles, but it still performed
impressively. MAVEN"s point differential exceeded 70 points for the third event in a row.
MavEN"s first successful endgame player made its debut in this event, improving on
Maven’s play in several games. MAVEN also contributed insights to the postmortem
analysis of other games. However, on this last subject we are of two minds; is the
automation of kibitzing really a good thing?

Interesting: MAVEN lost its game against the weakest opponent it has ever played. Mark
Berg (NSA 1600) defeated Mavin, Berg drew both blanks on his first turn, and played
TRODDEN, the only bingo of the game. MAVEN drew the () twice and had to exchange it
twice. Then MAVEN drew the () at the end of the game and could not play it. Despite all
of this good fortune, Berg managed to win by only a few points. This shows how much
has to go wrong for MAVEN to lose to a 1600-rated player.

Alas, MavEN has had no further tournament games. The consensus within the Scrabble
community is that tournaments are for people only.

12.2.4 Informal Data

A Tew years ago, a demo version of MAVEN circulated within the Scrabble community.
This engine contained only the Basic evaluator, the pre-endgame evaluator, and the
endgame search engine. In particular, the program could not choose its moves using
simutlation,

Numerous top players {including North American and World Charmpions such as Joel
Wapnick, Robert Felt and Peter Morris) used this program for training. No player
reported being able fo win more than 48 percent of his games. Given that MAVEN has
made significant advances in the interim, the gap between MaVEN and the top humay
players has grown substantially.

An important believer in MAVEN’s analysis is Joe Edley, the editor of the US National
Scrabble Association’s newspaper. Edley decreed that the NSA would only publish
annofations of games that MAVEN simulations had verified



12.2.5 Hall of Champions, 1997

Matt Ginsberg organized the first AAAI match for the Hall of Champions demonstration.
MAVEN was in dreadful condition for the event. The author did not leave sufficient time
to prepare, and discovered at the last minute that a compiler “upgrade™ was incompatible
with the code. It required consecutive overnight efforts just to make something that could
play at all. The user interface was dreadful and error-prone. MAVEN had avoided this
pitfall in other events, in accordance with the theory that it is more important to deploy
sound software than cutting-edge features. ‘

MaVvEN deployed a simulation capability for the first time in the AAAL-97 match. The
software was not ready. MAVEN’s development computer hardware was much slower
than the target hardware, so the author had to guess how many moves to simulate for how
long. Both guesses were inappropriate. There was no time to work out how fo apply
simulations to pre-endgames, so Maven played pre-endgames using its pre-endgame
analyzer. The result was an ugly 0-2 loss to Adam Logan. In truth, MAVEN did not play
that badly, but the result reflects badly on the author.

12.2.6 New York Times Match

A reporter for the New York Times named John Tierney compared the world’s best
human players with MAVEN. He arranged a best-of-11 match between MAvVEN and World
Champion Joe! Sherman®™ and World Runner-up Matt Graham. Sherman and Graham
competed as a team against MAVEN.

MavEN did not employ simulations for the match, so the players were competing against
the basic MAVEN Al which selected moves using the heuristic rack evaluator in the early
game, the probability weighted search engine in the pre-endgame, and the B¥ endgame
search engine.

MAVEN won by 6-3. One cute play: MAVEN held AIIRMSU and found an open T for
TIRAMISU. For a human this is a difficult find, because the word has neither prefixes
nor suffixes, and there are a number of prefixes and suffixes in the rack (AIR, ISM, MIS)
io distract attention. The word itself has an S in seventh position, and a U in eighth,
which are both rare.””

12.2.7 Hall of Champions, 1998

Jonathan Schaeffer and the author were disappointed in the outcome of the first Hall of
Champions match, so we arranged another. (One of the advantages of being the
challenger is that you can keep playing until you win.) Adam Logan graciously agreed to
a rematch. MAVEN spent four solid months "training” for the event, and MAVEN was
good condition in most respects.

* Interesting coincidence: because of the match [ discovered that Joel Sherman and the
author went 1o the same high school. Moreover, we are the same age. This sent me
scurrying to my high school yearbook. It turns out that we are dasmnmesﬁ- and hw;jwcaus‘c
Sheppard and Sherman are adjacent alphabetically, our pictures are adjacent in the
vearbook. What are the odds?

™ At dinner that night, Joel and Matt ordered tiramisu for dessert.
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Wot wanting to leave matters 1o chance, we made the march significantly longer. Jonathan
asked, “How many games do you need to prove superiority?” An good question, as most
people underestimate the necessary number of games. MAVEN should win about 60%
apainst Logan, and you would think that such an advantage must surely prove decisive in
a series of 14 games. Actually, the chance of winning at least eight games out of 14 s
only 69.25%. MAvEN would actually be better off with only a 13 game match (winning
chance 77.12%) because a 7-7 standoff is impossible. However, in Scrabble you must
alternate who moves first, so an even number of games is forced.

It is not until you play 20 games that a 60% edge results in a match victory 75% of the
time. However, asking Logan to play 20 games in two days is grossly unfair. Playing 14
games in two days is normal, however. For example, in the North American
Championship tournament, the plavers play seven games for four consecutive days,
followed by three games on the fifth day. Playing a 14 game match was a fair test by the
standards of human master practice.

MavEN won by 9-5, and analysis of the moves shows that MAVEN played better. The
luck of the draw was equal in most respects. A later section will summarize the moves of
the match.

12.3 Man-Machine Competition

Table 12-1 shows MAVEN"s public tournament and match results since its incepiion. We
estimate the strength of human champions at 2030, rather than the inflated post-
championship ratings of those players. Adam Logan, for example, had a 2125 rating
when MAvEN played him, but it is absurd to regard that as a realistic representation of
Logan’s strength, since the ratings of champions always decline after their luck runs out.
The choice of 2050 seems like a reasonable estimate for a human champion, particularly
because the table mixes rating data over a 12-vear period.

Date Event Opposition Rating | Result

December, Matchups Tournament Top experts 1950 8-2

1986

October, 1987 Cape Code Fun Weekend Pairs of experts 1850 5-0

December, Matchups Team | Wide  range  of | 1875 7-3

198K Tournament experts

July, 1997 Hall of Champions 1997 Logan 2050 0-2

March, 1998 Mew York Times Match Sherman and | 2050 6-3
Graham

July, 1998 Hall of Champions 1998 Logan 2050 9-5

1986-1998 Total 1975 | 35-15

Table 12-1 Man-MAvEN Competitive Summary

MAVEN's total match and tournament record is 35 wins and 13 losses against an average
rating of 1975. A 70 percent score against such opposition is a major success. MAVEN's
performance rating for these 50 games is 2125. I estimate that the simulation plaver
would earn a rating of about 2130,
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While the highest rating ever achieved by a human is 2170, no player has maintained a
rating over 2100 for two consecutive years. The patiern is for the rating of the NSC
winper to shoot above 2100, where it remains until he plays enough gamm? to deflate the
rating. Depending on how often that player competes, it may take a year to come down to
Tamh& but decline is inevitable. No human has ever maintained a’rmmg over 2100 for
ong.

12.4 Analysis of Errors

This subsection tabulates errors committed in the 1998 AAAI match against Adam
Logan, which MAVEN won by 9 to 5. Appendix B analyzes the moves of the ninth game
in that match. Logan was (and still is) one of the top six players in the world. He finished
fourth in the 2000 World Scrabble championship.

The maich contained 14 games encompassing 168 move decisions per side. Logan played
well, but it is abundantly clear that MAVEN played better. MAVEN'S errors came Irom
three sources:

1) A bug that prevented it from choosing exchanging moves. There were three
moves in 14 games where it should have exchanged but did not, costing 17 points,

2) A bug caused the endgame player to stop search early. An “optimization”
inserted to speed pre-endgame search was incorrectly used in the endgame proper.
Fortunately, it was impossible for this bug to affect the cutcome of a game.

4y Search control issues. MAVEN cut off a move that proved to be best in a few
instances, costing 7.2 points. Then there were cases in which Mavein did not
consider the best move. It is hard to estimate how many errors were atiributable
to missing the best play, since if MAVEN does not generate the move then it is
unlikely that I find it either. Of course, MaVEN can simulate any such move; the
only problem is to generate possibilities. Consequently, there is a novel way 1o
measure the quality of the search controller. MAVEN annotated Logan’s moves,
and recorded how often Logan’s move was better than any move that MavEN
generated. This analysis showed that Logan’s move was better 7 times in the 14
games, yielding a total of 68.5 points. Of course, Logan might not find the best
move every fime, so this is a lower bound on MavEN's error rate.”” A likely
upper bound is 14 errors in 14 games yielding a total of 137 points (9.8 points
per game), on the assumption that Logan will come up with the best move on at
least 50 percent of his plays.

' Yowever, more recent simulations of MAVEN's moves using simulations that included up 1o 25
maves failed to identify any further errors. It is the author’s opinion that there are none.
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Type of Ervor Instances | Points Lost
Failed to exchange 3 17.0
Endgame search truncated because of buggy optimization 4 22.0
WMove not included in simulation g 0.4
Move imadvertently pruned 3 7.2
Need to understand winning percentage 3 24
Total ‘ 22 [ 119.0

Table 12-2 Error Analysis for MAVEN {28 Games)

The post-mortem analysis (Table 12-2) used MAVEN to annotate all moves made by
either side, so considerably more than 14 games are involved. All told, there are 357
move decisions in the sample, so the error rate is exactly 1/3 point per move. In a typical
game MAVEN will have about 12 move decisions, so the error rate is about 4 points per
game. In truth, this is a lower bound on MAVEN's ertor rate. As described in point 3,
above, there could be 7 more errors totaling 68.5 points that we have not discovered.
Adding 68.5 poinis to the total produces 187.5 points of errors, which is about 6 painis
per gaine.

Analysis of tile distribution shows that luck divided equally, at least in gross terms.
Blanks, Q's, $’s, and so on were well within the norms for a short match. Each side had
one last-gasp victory.

Type of Error Instances Points Lost
Missed bingos 3 85.1
Minor inaccuracy 27 39.6
Substantial errors 21 94.7
Pre-endgame errors 17 141.6
Endgame errors 15 171.0
Total ‘ 83 532.0

Table 12-3 Error Analysis for Adam Logan (14 Games)

Table 12-3 sumimarizes Loganw’s errors. There are a few points to note about Logan’s
error distribution. First is that alimost 60% of the points were lost in the pre-endgame or
endgame stages. Though these make up less than half of the plays, it is easy to make a
large slip in those stages. The early game had more errors, yet fewer points were lost.

Logan’s errors total about 38 points per game, versus MaviEN"s 6. The match outcome of
a 9-5 wictory for MAVEN is a reasonable reflection of Logan’s disadvantage in point
differential. Incidentally, a non-simulator MAVEN was tested on these same 14 games,
and it averaged about 29 points of ervors per game. This confirms my assertion that non-
simulator MAVEN has an edge over the best human players, albeit a small one.

188



Chapter 13 — Frontiers

The biggest challenge in Scrabble Al is met, because no one seriously disputes that
M.M{EN is better than all humans. Strictly speaking, this has been cien:mnstrmed only
within Morth America. A different dictionary is used in the rest of the English-speaking
world, and there are other languages. However, adapting MAVEN to a new dictionary is
not a challenge. This has already been done for TWL98, SOWPODS, French, Dutch, and
German. There is no doubt in the author’s mind that MAVEN is superhuman in every
language. )

T he‘ refrc[ c'l}allenge is to improve MAVEN, preferably to achieve asymptotic practical
perfection. There are several avenues to explore, but the total improvement will be only a
few points per game. This chapter summarizes the opportunities, and points the reader to
other sections where additional detail is given.

13.1 Simulation Controller

It would be an improvement to make the simulation controller scalable, so that it operates
on slower machines, and exploits faster machines. The actual cutoffs (e.g., 10 moves, 17
iterations before any pruming, 1000 iterations, etc.) were tuned by experience on a
Pentium 11300, The author now believes that an ideal simulation controller would be able
to run with some benefit even on a 486/66. Chapter 10 gives further details.

While writing the notes to the games of Appendix B, I created a simulation controller that
appears to be scalable. I am not prepared to publish the results now, because | have not
qualified the range of hardware over which it scales. But I have concluded that a scalable
controller is feasible. Moreover, my implementation performs about the same as my
hand-tuned controller when operating on equivalent hardware.”’

13.2 Inferences

It may improve MAVEN to eliminate a modeling fallacy: MAVEN assumes the opponent’s
rack is drawn from a uniform tile distribution. However, we can infer a more accurate
distribution of tiles from the opponent’s last play. For instance, suppose the opponent’s
opening play is BARD (8G,14). Did he keep an 07 No, certainly not, because then he
would have played BOARD (8D,22). Did he keep an E? (No! BARED.) Did he keep an
17 (No! BRAID.) Did he keep a U? (Probably not, since DRUB would be better than
BARD. but he would play BARD if he held a duplicate A.) We can go on like this
through all the tiles, and combinations of tiles, to come up with a list of racks that the
opponent could have held. This process is called “inferring” the opponent’s rack.

Inferences change the distribution of tiles that the opponent could have kept. which biases
the future distribution. Refer to Chapter 10 for elaboration,

[ have implemented an inference engine, because 1 wanted to determine w‘lixell‘:fzr the
annotations of Appendix B were “stable” under inferred distributions. My finding is 1hat
the annotations are stable, but my implementation is not! 1 am reminded of the tweaking
that the pre-endgame analyzer required. My inference engine is in its third revision, and
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still does not demonstrate clear superiorify over using the uniform distribution. So for the
purpose of this thesis [ will simply state that it is a work in progress, and shows just as
much potential as ever.

13.3 Fishing

MaVEN'S Tack of a move generator for fishing may be its biggest weakness. A “fish” 1sa
try at drawing the one or two tiles needed to convert the rack leave into a bingo. For
example, racks like AEINST can produce a 7-letter bingo on 90 percent of the draws
from the bag, so it can be lucrative to fish.

All of the moves that MAVEN overlooked in its match against Adam Logan match were
fishes. In the days before simulation, it would have been pointless to generate fishing
plays because the evaluation function would always place them behind the “normal”
move. However, simulation rationalizes the comparison of moves that were generated by
incomparable generators, allowing the power of good fishing moves to show.

Recent work on the scalable simulation controller shows that fishing plays tend to occur
among moves [1 through 25 in the ordering of the Basic evaluator. It follows that
deploying a scalable simulation controller will capture most of the benefit of fishing,
without taking on the implementation hassle of developing a special-purpose evaluator. It
remains to be seen if extreme fishes (e.g., exchange O out of AEIORST) are generated by
a scalable controller.

Another possibility recently occurred to me. There are less than 4 million distinct racks of
7 or fewer tiles, so it is possible to learn a value for every single one. For example, we
could initially evaluate the racks according to the Basic model, and then update the
values based upon the results of simulations, This would give the rack evaluator better
values, so it would play more strongly, and it would place strong fishing moves higher in
the ranking. I particularly like this system because it is fully automated.

13.4 Winning Percentage

It will help to include a winning percentage estimator in MAVEN. MAVEN actually has
such an estimator, using neural networks. 1 have recently deployed it during simulations,
but it is not yet clear whether it makes a difference. Please see Chapter 6 for a more
complete discussion.

13.5 Biases

After the simulation is complete, it often happens that two or more moves are so close
that it really does not matter which is selected. 1s there some practical benefit to one of
the moves? For example, will the opponent make an error more ofien against one play
than against another? The concept of an “opponent’s model™ s discussed in Chapter 10

13.6 Challenge Tactics

The idea is to challenge when you gain more points by challenging, not simply because
the apponent plaved a phony. For details and examples, see Chapter 10.

M Unrealized potential, that s,
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13.7 Opening Move Evaluation

Steven Gordon has proposed creating a database of all possible opening racks together
with their recommended moves under simulation. There are 3,199,724 racks of 7 tiles
using the full bag [59].

This proposal may be impractical. Conventional evaluation functions often omit crucial
fishing plays, so the proposal does not address the real problem. Even if that problem
were solved, it would take many CPU vyears to complete the simulations of 3,199,724
racks. Plus, it would SUQ if the dictionary committee met on the QT over some slices of
ZA with anchovies and added new words to the dictionary, thereby rendering the whole
computation obsolete.™

Instead, a simple evaluator should be able to improve upon the evaluation of opening
turns. The author would focus efforts there, and trust simulation to work out the details
on the fly. After all, this policy will require less CPU time until you play 3.199.724
games.

Perhaps the benefit of precomputing the opening racks would be to enable accurate
inferences on replies to the opening. For instance, for which opening racks would the
opponent play PAY (8F)? Why did he not play YAP or PYA? Why was the play at 8F
rather than 8G or 8H? All of these questions could be answered by an exhaustive opening
library.

2 QU0 was added in the 1993 revision. QT almost made the 1993 revision, but was omitted on 1.hﬁ

2 o e . - ot S S T oy Ul g ol for “pizza” wi
erounds that it was an abbreviation for “quiet. The word ZA, collegiate sfang for “pizza,
probably go into the next revision.
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Chapter 14 — Research Resuits

In C?ﬁ?zpter 2, we asked certain questions that this research has answered, and it is worth
specifically going over the answers in conclusion.

14.1 Competitive Demonstration of Superiority over Humans

Is it poss_:ible to build a computer program that outplays all human Scrabble experts? The
answer 15, “Yes, without a doubt.” MAVEN outplays all human experts.

The first version of MAVEN overcame the three most obvious roadblocks that stymied
previous Scrabble programs. First, MAVEN was fast enough to complete a game in
tournament fime. Actually, it was fast enough to put human opponents into extreme time
pressure. Second, Maven had the complete list of legal words. Well, to be truthful there
were some errors, but the vocabulary was not an obstacle 1o superb play. Third, MavEN
developed a theory of positional evaluation that was well founded. So well founded that
human experts were at a strategic disadvantage until they adopted Mavin’s theories for
themselves.

Another question was whether anti-computer strategies could specifically defeat MAVIN.
The answer was “Yes and no.” At first there were, as perceptive players could trick
MAVEN in the endgame and pre-endgame. However, it must be noted that despite the
possibility of pinning a defeat on MAVEN via late-game tactics, usually MAVEN was
ahead by so much that there was no possibility of losing anyway. Few losses were ever
inflicted on MAVEN in competitive results by any means whatsoever. In any event, such
weaknesses only lasted for a few early years. Nowadays MAVEN is difficult to trick
because of a pre-endgame engine that is sensitive to defensive considerations, and an
omniscient endgame engine.

Can programs play correctly when holding a lead? It is a good question, but the answer is
in the eye of the beholder. In the olden days players considered that there was only one
valid approach to holding a lead: shut down the board. In part through MAVEN
simulations and published analyses, players now realize that many techniques are
available for holding a lead. For example, you can simply outscore your opponent
(MAVEN's favorite). Alternatively, you can turn over tiles to end the game faster. Or you
can shut down the board. Or you can try to “fill” the board-—opening the board more
quickly can lead to a faster shutdown in the end. Or you can create specific tactical
situations (00 numerous to even conceive of.

Does MAVEN play correctly when holding a lead? It seems to play well. Nevertheless, we
suspect that it would be better if its simulations retumed winning percentage in addition
to point spread.

How about coming from behind? Can MAVEN do this? 1t is hard to say. On the one hand,
MavVEN has always been adept at winning no matter how desperate the situation. ()n/llm
other hand. this may be because its opponents do not play well while leading. The
previous paragraphs describe humanity’s slavish devotion 1o mechanically blmking whcn
holdineg a lead. In some games, MAVEN exploited this single-minded pursuit by climbing
back into contention and winning even without a bingo.



To answer the question, Mavin really has no specific technique for handling deficits. It
seemns to play pretty well, but that is because by maximizing point differential it is highly
likelv to maximize winning percentage as well. Again, one suspects that adding a
winr;mgg percentage evaluation to the simulator would produce better play.

Going further, is it possible to build a computer program that plays perfectly as a
practical matter? MAVEN is getting close to this standard. The implementation needs
tweaking to obtain the property of “asymptotic practical perfection,” and we need o add
a4 winning percentage evaluator. Those changes alone might do it. It might happen faster
with a few other techniques described in Chapter 11.

14.2 Championship Caliber Midgame Evaluation Function

MAVEN’s Basic evaluation model combines a simple rack evaluator with a triple-word
square evaluator. Because of the expansive nature of the developmental stage of a
Scrabble game, this simple model is remarkably robust. It significantly improved the
methods that human experts employed through the late 1980°s. When combined with
exhaustive move generation, the Basic evaluator yields championship-caliber play in the
midgame,

14.3 Pre-endgame Analysis Using Probability-Weighted Search

MAVEN"s probability-weighted search engine addresses the pre-endgame, which is the
stage of the game when the possible opposing racks are completely enumerable in
practice.

MAVEN’s search engine allows the program to understand defensive considerations that it
would otherwise be unable to understand. This can result in prescient plays that block the
specific bingo that an opponent intends to play. On the downside, it can result in losing
games that would have been won with normal offensive play.

The literature on games describes similar engines used in other games. The closest
parallels involve bridge and backgammon. Bridge is like Scrabble in that it involves
hidden information. Ii is unlike Scrabble because in bridge there is no stochastic behavior
during the play. Probability-weighted search in bridge, therefore, has a different flavor
[56]. In bridge, the program must make inferences about the location of cards, as the
distribution of hands is vitally important. In Scrabble, it appears that inferences are not so
important,

Therefore, the closest parallel to MAVEN's use ol probability-weighted search is in
backgammon. Backgammon program employ shallow selective searches of continuations
for evaluating moves [38]. The difference between Scrabble and backgammon is that in
backgammon the probability distribution of the continuations is known, whereas in
Scrabble it must be assumed. This difference does not appear to be important in practice.

MAVEN"s implementation could stand refinement, but is stiil an important part of
MAVEN's complete system.
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14.4 Endgame Analysis Using the B* Algorithm

The endgamcf: in Scrthle begins when the bag is empty, at which point the state space
ll"}as pe;fcm information. MAVEN includes an endgame search engine and evaluation
function to handle such situations.

".Iihe endgame m‘\gine appears to be unique for its speed and quality of play. In the decade
since MAVEN’s debut, ﬂl(?‘ only contender the author is aware of is the exhaustive search
engine of ACBOT [25].7* MaVEN’s level of performance in endgame tactics is the
standard by which all players, human or computer, are judged.

The endgame engine uses the B* search algorithm. The endgame of Scrabble is one of
the few domains for which B* appears to outperform all other technigues.

14.5 Lookahead Using Monte Carlo Simulations

T‘ﬂAWEN contains a Monte Carlo search engine for exploring the non-deterministic
portions of the search space. MAVEN uses the term “simulation” to refer to this capability.

This engine leverages the static evaluation functions and improves upon them. Of
particular importance is the ability of the simulator to rationalize the evaluation of moves
that were generated by different static evaluation functions. This capability allows the
engine to explore moves that focus on different aspects of the position, while maintaining
an integrated view of the whole problem.

Evaluating moves using simulation produces the strongest level of Scrabble play known
to date. Careful measurement of game data suggests that the error rate of MAVENTs
current implementation is less than 6 points per game, with easily fixed bugs accounting
for half of the total.

Simulation is not unique to MAVEN, as at least five other engines (QUETZAL, BOBBOT,
ACBOT, PI0BOTIR, and Steven Gordon’s unnamed program) employ the technique. The
author believes that MAVEN was the first to deploy an effective system of move selection
using real-time simulations. However, the literature is sketchy, so it is difficult 10 be
certain. Nevertheless, this thesis does represent the most complete description of a
sophisticated simulation system published to date.

14.6 Revolutionized Scrabble Positional Theory

MAVEN's development contributed to the development of Scrabble positional theory.
Before the advent of MAVEN, it was impossible for human players to fully appreciate the
subtleties of positional evaluation. The differences between the mean values of individual
tiles, for example, can be less than half a point, whereas the standard deviation of the
score of a single move is about 20 points. This large signal-to-noise ratio obscured the
true values of evaluation parameters until the advent of computers.

 An exhaustive engine is inexorable when it can complete its analysis within time constraints, but
that is not guaranteed.
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| self-play to determine the optimal values of evaluation
s simulation capability extended humanity’s ability 10 test

{ employed
parameters. Later, Mave
hypotheses about the game.

By distributing Mavin itself in demo form, by publishing MAVEN's analyses of
positions, and by inspiring the development of other simulation systems, we have
significantly improved the understanding of Scrabble among tournament players. The
result has been the wholesale revision of Scrabble positional theory. Concepts that were
dogma among master players have been discarded in favor of technigues that MAVEN has
proven. The process continues to this day, as human masiers use simulations to explore

the space.
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Glossary

A‘Q,B‘O'lr_f)tr‘ong Scr‘ablyﬂe program developed by James Cherry. ACBOT has gradually
added analytic capabilities over the vears. Accessible in online game rooms.

.ﬁ&pammmc—A phrase that contains those letters (and only those letters) that make a bingo
with a given stem. -

Anchor—In move generation, an anchor square is the leftmost empty square covered by a
move that is adjacent to an occupied square. “

B*—Search algorithm developed by Hans Berliner. Applied in MAVEN's endgame
engine. -

Bag—Where the tiles are stored until they are drawn.

Basic Evaluation Model—A humanly-executable rack evaluator, devised by Nick
Ballard, Charlie Carroll, and the author. In this thesis, we have used the Basic model for
expository purposes, even though MAVEN’s actual rack evaluator differs in particulars.
Bingo—A play that uses 7 tiles from the rack, scoring a 50-point bonus.

Bingo line—A spot on the board where a bingo may be played. Bingo lines require seven
empty squares and some contact with the board. Normally requires a minimum ol contact
with the board.

Bingo out—A bingo played in the endgame (which necessarily finishes the game). This
massive blow normally amounts to 100 points after the opponent’s tile penalty is figured

in. It occurs in about 5% to 10% of all games.

Blank—A tile that has no letter on its face. A blank may stand for any letter. It scores
zero points, yet is the most valuable tile of all because of its flexibility.

Block (noun)—A move that mechanically prevents a threat.
Block {verb)—To move so as to prevent an opponent’s threat.

Bonus—Synonymous with “bingo.” “Bonus™ is the preferred term outside of North
America.

Cheat Sheet—A single page showing the most important words in the game, published by
the NSA. In most clubs, newcomers are handed the Cheat Sheet on their first visit, and

then allowed to play with the Cheat Sheet in view (hence the name) for a period of time.

CraB—Farly Appel and Jacobson program modified for Computer Olympiad play by
Steven and Graeme Thomas. Still available in source form through the Web.

CROSSWISE—Scrabble program by Jim Homan. Winner of two Computer Olympiads.
Apparently similar in philosophy to early versions of MAVEN.
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DAWG—Directed Acvelic Word Graph. This is the data structure at the heart of Appel
and Jacobson’s move generator.

DLS—Double Letter Square.

Double-double. AKA four-timer—A move that covers two double word squares, thereby
scoring four times the sum of the tile values.

[raw—The tiles taken out of the bag to replenish the rack.
Drek-—Terrible tiles.

Dump-—A move that rids the rack of poor tiles without regard to score. A low-scoring
replacement for an exchange.

Duplicate—Two identical tiles.
DWS—Double Word Square.

Early game—The phase of a game in which the possible openings increase with every
new word placed.

Endgame—The phase of the game after all tiles have been drawn from the bag. The
endgame is a deterministic phase.

Extension—A move that adds more than one letter to a word on the board.
Fish (noun}—A play that hopes to draw specific tiles from the bag.
Fish {verb)— To make a fishing play.

GADDAG—A data structure derived from DAWG that is used by Steven Gordon's
mMove generator.

Going Out—To use all of one’s tiles in the endgame, ending the game.

Handler Function—In the move generator, each move is passed to a called-supplied
handler function for processing. This architecture separates the responsibility for
generating moves from the processing of moves after they are generated.

Heavy tiles—Tiles with a face value of 3 or more. In English, BCFHIKMPQVWXYZ.

Hook—A letter that can be added either to the front or back of a word to make a longer
word. Alse a move that exploits a hook.

Hotspot—A place on the board where high scores are possible.

Inference—A conclusion reached by a player after considering the implications of the
opponent’s recent moves on the opponent’s rack.
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JQXZ—A word that contains either I, Q. X, or Z. Most such words are short

, and they
occur frequently.

Middle game—Synonymous with Early game, but it would not include first tum
situations.

NSA-—National Scrabble Association. In North America the NSA sanciions tournaments
and club play.

NSC——National Scrabble Championship. The largest tournament in North America. The
NSC is held every two years, alternating with the Worlds. Now a 3l-round event
spanning 5 days with a significant prize fund.

One-tile—To play out a game one tile at a time when the opponent is stuck with awkward
tiles that do not play.

Opening—A hotspot or bingo line.

OSPD—Official Scrabble Players Dictionary. This book is published by Merriam-
Webster in North America for use by home players as a reference dictionary.
Shortcomings of the OSPD with respect to tournament play prompted the creation of the

TWI98.

OSW-—0Official Scrabble Wordlist. This list of words was the reference list in the United
Kingdom until the year 2000, when they switched to SOWPODS.

Out—To use all of your tiles in an endgame.

Out Bornus—The premium collected when playing out, equal to twice the sum of the
opponent’s tiles,

Out-in-one, out-in-two, etc.~—To play out in an endgame in one move, two moves, etc.
Overlap—A move that forms more than one crossword.

PIOBOTIR—A recent program by John Babina that distributes simulation workload over a
network of computers.

Playing Out—To use all of one’s tiles in the endgame, ending the game.

Pre-endgame—The phase of the game just before the endgame.

Prefix—The start of a word. Normally refers to a common letter group (usually 3 letters)
that occurs at the start of a large number of words.

Premium—A scoring bonus.

Premium Square—A square on the board marked with a premium, e.g., double lerter
square, triple word square, etc.
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QUETZAL-—A program by Tony Guilfoyle and Richard Hooker. QUETZAL 1s said to have
employed simulation for selecting moves, but this does not seem to have improved its
toumament results.

Rack-—The tiles that a player holds.

Rack Evaluator—A heuristic function for evaluating the quality of the tiles left on the
rack afier a move.

Rating—A measure of a player’s skill, computed by the NSA based on tournament
garmes.

Rollout—Synonymous with simulation. The term “roliout” is used in backgammon.
Separation—-In an endgame search using B*, a move achieves separation when B*
proves that the lower bound on that move’s evaluation is higher than the upper bound of
all other move’s evaluation.

Setup—A move that arranges tiles to create a profitable follow-up play.

Simulation—A process that repeatedly plays out a situation for a number of turns, with
the goal of exposing the situation’s dynamic aspects.

SOWPODS—The dictionary consisting of the combination of the TWL98 and the OSW.
Called SOWPODS because it was originally a combination of the OSPD and OSW, and
Scrabble players cannot look at seven letters without trying to make a word out of them.
Stem—A set of 6 or 7 letters that make a bingo with a large number of tiles.

Stuck—Unable to play out in an endgame because a tile does not go down.

Suffix—The end of a word. Normally refers to a common letier group (usually 3 letters)
that occurs at the end of a large number of words.

TD-——Temporal differences, a learning algorithm developed by Richard Sutton,

Telegraph—A move or other behavior that allows the opponent to infer information
about your tiles.

Tile—It vou have gotten this far, then you must know what a tile is.

Tile Density—A rack evaluation factor that adjusts the values of tiles according to the
number of each type that remains in the bag.

Tile Patterr—A set of tiles that have an associated value in the rack evaluator.
Tile Tracking—The process of noting which tiles have been played, so that a player can

know which tiles remain.
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TLS—Triple Letter Square.

Triple-triple. AKA nine-timer—A move that covers two triple word squares, thereby
scoring nine times the sum of the tiles.

Triple W An opering to a TWS consisting of a single tile in line with the TWS
and having no interference from the board,

TSP—Precursor to CROSSWISE. By Jim Homan. Twice Computer Olympiad Champion.

TWL98-—The word list used by North American players. Published by Merriam-
Webster, and only available to NSA members because it contains offensive words.*

TWS—Triple Word Square.

TYLER—A strong program by Alan Frank. TyLER performed well at three Olympiads,
never finishing more than a iw» games behind the winner,

Unistem-—A set of 6 or 7 letters for which only one letter makes a bingo.

Unseen—Tiles that are either in the bag or on the opponent’s rack. So-called because
they cannot be seen.

Wolatility-—An intuitive measure of how easy it is to come from behind.

Vowel dump—A move that plays more vowels than consonants. Used to restore the
vowel / consonant balance of a rack.

Worlds—The largest international tournament, that crowns a World Champion. An
invitational event in which invitations are apportioned based upon a country’s Scrabble
population. Also an existence proof that competing financial interests can work together
when they share a common goal. The Worlds uses the SOWPODS lexicon. The Worlds
are held every other year, alternating with the NSC.

WSC—The Worlds.

551 am shocked, shocked, to find offensive words in here!
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index of People

:ﬁf!@mndm’, Steven—=5Scrabble master. Maintainer of the Scrabble FAQ. Has long used
T'YLER to annotafe every game he plays. -

Awrin, Paul-—New York area expert.
Babina, John—Scrabble programmer. Author of PioBoTIr.

Ballard, Ni»ckm#Scmbbbe master. Backgammon World Champion, 1982, Also 5 Dan in
Go, and USCF chess master, but you probably guessed that. Ballard published Medfeys.
Ballard used MaVEN extensively for simulation and practice. 4

Berg, Mark—New York City resident who has a knack for beating much stronger
opponents. Is the weakest player ever to beat MAVEN in a tournament game.

Braud, Conrad—Surprise high finisher in 1989 NSC. His game Braud-Tiekert was
published in SPN. See notes in Appendix B.

Cappelletio, Brian—National Champion 1999, runner-up in 2000. World Champion
2001. First Scrabble prodigy. Became a top player by age 15. (Prodigies are older in
Scrabble because you have to be able to read, | suppose.)

Carroll, Charlie—Minnesota master renowned for efficient study habits. Invented
anamonics. Carroll used MAVEN extensively for simulation and practice.

Cherry, James—Author of ACBOT. Expert player represented C anada at 2001 Worlds.

Chew. John—Scrabble expert. Member of the NSA Dictionary committee. John Chew
graciously provided MaveN with its officially sanctioned TWL98 word list. Chew
implemented a postprocessor (“posHit”) for MAVEN'S simulation log files.

Dixon, Jan—Scrabble expert is frequently the highest-rated woman. Has a knack [or pre-
endgames. Played in MAVEN's first tournament, and contributed a win to MAVEN in its
third tournament.

Edley, Joe—1980, 1992, and 1998 National Champion, along with more tournament wins
than any other player. SPN editor. Vice President of the NSA. Always among the highest
rated players. Big booster of MAVEN,

Felt, Robert—One of the first masters to embrace MAVERNs rack evaluation theories.
Longtime master. Felt dominated the 1990 NSC, winning by 3 games over nearest rival.
Regularly makes the American team for the Worlds.

Fisher, Stephen—Montreal master renowned for creative setups and artful phonies.
Frank. Alan—Scrabble master and author of TyLER, Was a prominent Boston-area

tournament director. Frank devised the original NSA rating system. Still active on the
crossword game programmer’s newsgroup.



Geary, Jim—Colorful master plaver. Renowned for fishing for and then playing the nine-
fetter WATERZOOL. Geary published a newsletter for a number of years.

Gibson, David—South Carolina master won NSC in 1994, Gibson also won the
Superstars tournament. the richest tournament ever held.”™

Gordon, Steven—Scrabble master and mathematics professor. Steven invented the
GADDAG data structure, Early work on selecting moves using simulations.

Graham, Mati—Scrabble master. World runmer-up in 1997, Wew York City area standup
comic. MAVEN user.

Halper, Ed—New York City area Scrabble master.
Hersom, Randy—Scrabble master. Saw Edley’s threatened ZIGGURAT, but then. ..
Homan, Jim—Author of CROSSWISE and TSP. Coniributed to the NSA’s rating system.

Kramer, Jim—Minnesota master. Kramer coniributed a stunning number of anamonics.
MAVEN user.

Kreiswirth, Rose—New York area expert. Dealt MAVEN a loss in its first tournament.

Logan, Adam—1996 NSC Champion. Second Scrabble prodigy. Mathematician, MAVEN
user.

Lund, Richie—Flamboyant master from Brooklyn, NY. Regular top-3 finisher in NSC.

Mead, Jeremiah—Top master, who lives in the Boston area. Was a longtime Latin
teacher in the school system of my hometown.

Morris, Peter-——Top Canadian/American player. Hard to say which. Morris won 1989
NSC and 1990 Worlds. Very early MAVEN user.

Neuberger, Jim-—New York area master. Frequently a top finisher in early NSC evenis,
but never won. Neuberger contributed two wins to MAVEN's first tournament, but beat

MAvVEN with a superb pre-endgame fish in its third tournament.

Norr, Rita—New York avea master. 1989 National Champion. Author of a book of
Scrabble puzzles.

Odon, Lisa—Minnesota master. Odom represented the US at several Worlds.

Pellinen, Steve—Minnesota master. MAVEN user.

56 o S " . e )

[t must be noted that “richest™ is a relative concept. Prizes in Scrabble tournaments are not large
enough to justify the effort spent to maintain skill at the level necessary. The playvers are not in this
for the mongy.

204



Polatnick, Stm@n-wAmeriaan Scrabble master from Florida. Steven represented the USA
at WSC 2001, finishing fourth.

Pran, Dan—Frequent top finisher in early NSC events.
Roaot, Steven—A Massachusetts expert who first evaluated MAVEN.

Sherman, Joel—Winner of 1997 Worlds. New York area master. Sherman graduated
from Bronx HS of Science in the same year as the author. Heavy MAVEN user.

Southwell, Charlie—A master from Washington, DC.
Tellis, Forrestt—Colorful, friendly expert. Has a penchant for fishing.

Tiekert, Ron—1985 NSC winner. New York area master, transplanted to Atlanta. One of
the game’s greatest players. Invented simulation.

Tierney, John—New York Times reporter. Tierney arranged a match pitting MAVEN
against Joel Sherman and Matt Graham.

Toal, Graham—~Computer Scrabble developer. Graham operates a web site
{(www gtoal.com) that has comprehensive listings of compuier Scrabble resources.

Wapnick, Joel—1983 NSC Champ, and 1992 runner-up. 1999 World Champ and 1993
and 2001 runner-up. Wapnick is a noted author. Music professor. Renowned for word
knowledge. Wapnick won NSC Brilliancy prizes in 1990 and 1992, so his positional
skills are sharp, too. Early MAVEN user.

Watkins, Mark-—BoBBOT author and Scrabble expert.

Watson, Robert—1988 NSC Champion.

Wolfberg, Mike—A Massachusetts expert who first evaluated MAVEN. Dealt MAVEN its
{irst loss in a tournament game.
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Appendix A — Rules of the Game

MAVEN plays the game under tournament rules, which differ slightly from the rules

printed in the game box but not in any way ¢ ers the fundar ¢
game. y way that alters the fundamental nature of the

'N.,‘Qurl:lament games have two players who alternate turns.
tiles into a bag. In the English language, the tiles have {
shown in Table A-0-1.

Pla;y begins by placing all 100
he distribution and point values

Tile | Points | Number | Tile | Points Tumlber ‘
Blank 0 2 N i 6 |

A 1 G O 1 8

B 3 2 p 3 2

C 3 2 Q 10 1

D 2 4 R i 6

E [ i2 S | 4

F 4 2 T 1 6

G 2 3 U 1 4

H 4 2 v 4 2

| 1 9 W 4 2

) 8 1 X 8 1

K 5 1 Y 4 2

L | 4 Z 10 |

M 3 2

Table A-0-1 Tile Values and Distribution

Each players draws a single tile from the bag to determine who will move first. The
player drawing closer to the start of the ajphabet moves first, with a blank superseding all
other tiles. The players return their single tiles to the bag, and shuffle. Then each player
draws seven tiles and places them on the rack.

Mowes consist of placing tiles on the board to form words. On the first turm, the word is
constrained to pass through the central square. On turns afler the first, the word is
constrained to cover a square adjacent to a tile already on the board.

To make a turn, a player transfers tiles from his rack to the board to create a word. The
tiles must lie within one row or column of the board, with no emply spaces intervening
between the tiles played. It is allowable for preexisting tiles to intervene.

All words formed by a move are intended to come from a previously agreed reference
dictionary (see Table A-0-2). A player may challenge his opponent’s previous move if he
believes that the opponent used a phony word. A neutral third party adjudicates the
challenge. If the challenge is upheld (i.e., the move used a phony word) then the
opponent’s move is removed from the board and the tiles played are returned to the
opponent’s rack. The opponent scores zero for his turn. If the challenge is denied (i.c., all
words were acceptable) then the challenger scores zero for his turn.

213



Ceﬂvgr‘a phic Region  Standard Reference Dictionary
North America Tournament Word List ("TWL98")
Rest of the World | Combined North American and UK dictionaries (“SOWPODS”)

Table A-0-2 Relation of Lexicon to Geographic Region

If at least seven tiles are in the bag, then a player may use his turn to exchange tiles. The
player does this by discarding from | to 7 tiles, face down. He then replenishes his rack
with new tiles from the bag. He then returns the discarded tiles to the bag. Exchanging
tiles scores zero points for a turn.

A player may pass his turn at any time. He simply announces “Pass™ and accepts a score
of ¢ points for his turn, He neither draws nor discards tiles.

A player’s turn js complete when he announces his score. He then draws one tile from the
bag for every tile he played, up to the number of tiles in the bag.

The score of a move is the sum of the scores of each word created by the play. The score
of a word is basically the sum of the face values of the tiles used to create it, but
premiums apply.

If a tile covers a double or triple letter premium square then the value of that tile is
doubled or tripled.

If a tile covers a double or triple word premium square then the value of the whole word
is doubled or tripled. The premiums from covering double or triple letter squares apply
before doubling or tripling the word"s score. Note that the central square is a double word
square. If a turn covers two word premium squares then the score is doubled or tripled
twice.

Note that premium squares apply only to the moves that first cover them. If that tile is
later used by a move then that tile counts at face value.

A blank tile may be used as amy letter, but it is scored as zero points. When a player
places a blank he must announce what letter the blank stands for. That blank stands for
that letter for the rest of the game.

It a move uses all seven tiles then it scores an additional bonus of 30 points.

The game ends when a player uses all of his tiles and there are none left in the bag, or
when each player scores zero points for three consecutive turns. I1f a plaver uses all of his
tiles then he scores a bonus of double the sum of the face values of the tiles remaining on
the opponent’s rack. Otherwise, the game ends with both players still having tiles left.
Then each player is penalized by subtracting the sum of the face values of the tiles left on
his own rack.

The player with the higher score is the winner. Ties are possible.




Appendix B — Annotated Games

The Scrabble Play@w‘:.«:_Neufs (SPN}) originally published the first two games. MAVEN
analyzed the_games using simulations, and the author wrote notes summarizing the data,
Joe Edley edited these and published the resuit. -

The notes presented here differ from the SPN notes in several respects. The author wishes
to illuminate how computer play differs from human play, without minding that the notes
occasionally make humans seem completely clueless. Such a point of view would not
have gone over well in the pages of SPN. Consequently, these notes emphasize

disagreements between MavEN and Edley, whereas the SPN notes smoothed over such
differences.

These notes also present occasional situations where MAVEN is clueless. As is often true
of computer programs, in these situations MAVEN extensively optimizes the wrong
quality. Usually, this means that MAVEN is maximizing point differential at the expense
of winning percentage.

The third game is from the AAAI-1998 match between Adam Logan and MAVEN.

The fourth game is from the recent World Championship final match. That game uses the
SOWPODS lexicon. Scoring is higher in SOWPODS games, especially because there are
many big plays using heavy tiles.

1 owe many thanks to Joe Edley for giving me the opportunity to annotate in Scrabble
Players News. Thanks also to Joel Wapnick, who proofed these notes.

B.1 Braud-Tiekert, NSC 1989

This game was the first that the author annotated for Scrabble Players News. Editor Joe
Edley let me write all of the notes myself, and even introduced me as “one of the
foremost strategists of the game.””’

The game was played in the 1989 National Championship. Ron Tickert was the 1985
National Champion, and the player who had achieved the highest rating of all time
(2167). His opponent was Conrad Braud, who at a rating of only 1600 had basically no
business competing at this level. However, every championship features a player who
performs vastly beyond his expectation, and in 1989, it was Braud’s turn. As a result,
Braud had the privilege of playing Tiekert, and having a game published in SPN.

Braud’s initial rack was EGLLNTU. His GULLET (8D, 18, N) was clearly better on
general principles than GLUTEN (8D, 18, L) because of the superiority gn“ N over l
However, Joel Wapnick reported that simulations using his version of MaVEN premiwer
GLUTEN. This is not surprising because simulations are not guaranteed 1o distinguish
very close plays. My simulations prefer GULLET.

37 { am really just a programmer, but if Joe says s0...



Tiekert’s “GYROID™ (DE, 22, EL) 18
phony. He may have thought
“GYROID” was acceptable, or else he
figured that Braud would not challenge.
That was a good call, since Braud did
not challenge. Unfortunately, Tiekert
missed ELYTROID (15, 67).

Braud’s rack was 7AEINVY. Braud
found the lovely NAIVETY (9H, 68).
The other bingos were VENIALLY (F3
or F2, 73y and NATIVELY (F2, 73).
Best seems to be VENIALLY (F3, 73)
because it reduces bingo comebacks by
overlapping more of “GYROID”. It is
characteristic that humans will find
seven-letter bingos but miss eights,

Braud suspected that GYROID was
phony, but was not sure so he decided
to play his bingo. Weaker humans
characteristically do not challenge

Tiekert:
Braud's last: GULLET (8D, 18) 18

After Braud’s GULLET (8D, 18)

when they hold good tiles, and will challenge when their tiles are poor. From a logical
perspective this is, well, illogical. Such insecurity is less apparent in stronger players.

216



Tiekert played FEEBLE (L8, 30,HX), : " DEFGH I
which is a strong move. One would not '
expect EX (E10, 38, BEFHL) to be as
good as FEEBLE, since leaves like
BEFHL are muscle-bound. However,
these tiles can land excellent scores in
this situation. For example, if Tiekert
drew an A then he would have FLAB
(D11, 39) and HEAL (8L, 48).
Simulation shows that EX is 1.5 points
better than FEEBLE.

JKLMNDO

This game was played under OSPDI1.
In TWLE8, the play would be HEBE
(8L, 53, FLX), as pointed out by Joel
Wapnick. But don’t rush off to the
latest edition of the OSPD to look up
HEBE, because you will not find it.

Tiekert: B E, EF, H,

HEBE is an ethnic shur, and the OSPD Braud's last: NAIWETY (9H. 68) 86
excludes such words. This is one \ o ‘
reason why the tournament players After Braud’s NAIVETY (9H. 68)

have adopted TWL98.

Braud missed the big play KAROO ABCDEFGHI K L M
(14J, 50, AS) because he did not know 1 2

the word. His play was KOLA (F6, 18, &
AORS). This suggests that Braud
missed the R hook, too, since KOR
{141, 29, AAOS) is also better than
KOLA. Humans often miss hooks,
except for back —-S hooks. Charlie
Carroll told us that he deliberately
creates front hooks, figuring that the
spot is positionally neutral, but his
opponent is likely to miss it [73].

=
s}

2.

12 = i

Tiekert, holding CEHIRUX, benefited 4

from Braud’s error with XERIC (14J, 156 N

72, HU). Please note the defensive

value of offensive play. Braud could Braud: A ALK, 0.0/ RS, 86

have prevented Tiekert’s big move by . ‘ )
taking that spot himself. This is a Tiekert's last: FEEBLE (L8, 30) 5

frequent occurrence. After Tickert's FEEBLE (L8, 30)
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Braud’'s HO (131 18 AJORS)
atfempted to set up a hook at 13H for
his O or R. (Either that, or Braud was
unaware of the risk he was taking.)
This type of setup is only successful in
restricted situations. Besides holding a
hook tile, there must be a low
probability (less than 50%) that the
opponent holds one, or the board
should have another hotspot to draw
the opponent’'s  attention.  These
conditions are not met here. HO takes
M, O, R, T, and W as front hooks, so
there are 17 unseen tiles that hook.

There is no need for a setup. Clearly
stronger is JO (131, 26). Also stronger
is HAJ (C12, 37), despite leaving a
hook for HAJI on row 15. Braud told
Edley that he prefers JO, which is
typical. Allowing the opponent to hook
HAJ would be too much for most

Tiekert's last: XERIC (14J, 72) 52

After Tiekert’s XERIC (144, 72)

humans to bear. Yet, Braud did essentially the same thing inadvertently!

Tiekert, holding BEEHSTU, pouriced on the opening with BETHS (H11, 39, EU). My
original notes to the game in SPN simply state that BETHS is best. My simulations back
this up, but the difference is small, BETH (C9, 31, ESU) is just 2 points inferior. I believe
that BETH would actually be better were it not for the fact that BETHS takes the TWS.
Wapnick’s simulations actually placed BETH above BETHS.



Braud played JAB (111, 24, AOPRS), ABCDEFGH
but he had better: JAR (10B, 26,
ADOPRS). JAR hangs a hook in the A-
colurmn, which is just what 1 castigated
Braud for last turn, but here it is correct
because the fundamental requirements
are met. Braud keeps an A for AJAR,
so he has the key tile. Moreover,
Tiekert has less than a 50% chance of
holding an A. We know that because he
did not keep an A last tum (otherwise
BATHE instead of BETHS), so Tiekert
had only 5 draws at 5 out of 55 tiles.
This is obviously less than a 50%
chance.

FdJKLMN

.

et

JAR is about 7 points better than JAB,

and works especially well for Braud, Braud: Ac AL O RUR, S 122
the player who trails and is rated 400 Tiekert's last: BETHS (H11, 39) 163
points  below his opponent. Braud . . e ‘

should seize the opportunity to land a After Tiekert’s BETHS (H11, 39)

score that could turn the game around.

Tiekert held EINOOQU. Tiekert’s QUEY (N6, 36, INOO) is one of the best moves. The
alternative was QUOD (13A, 28, EINO). Comparing offensive values, QUOD is better,
because it undoubles the O’s and keeps an E instead. This is obviously worth § points.
However, the defensive aspects favor QUEY. Tiekert should not open a new bingo line
(the B-column) and instead should close the N-column. This is correct tactically because
his rack leave is not likely to benefit from either B-column or N-column openings (which
have letters—U and Y—that go badly with vowel-heavy racks). Additionally, blocking is
strategically correct because Tiekert is leading. These plays are close, but on balance,
QUEY is the winner.

Braud held AOPPRST. Braud’s PROPS (15D, 12, AST) was a big error. Braud should try
to score some points. POT (C12, 20, APRS) is my choice. POT keeps tiles for RASP
(15A, 33) if nothing better offers. A setup for a 33-point move is not valuable, especially
since the setup burns the S. The real benefit is that the S hook means that Braud gets a
good score next turn if he draws heavy tiles, and if he does not draw heavy tiles then
Braud’s binge chance would be excellent.

Braud’s move displays his lack of confidence in GYROID, since POPS (144, 28, ART)
is obviously better than his play, except that it hooks GYROID. Good call, except that the
hest time for distrust in GYROID was on turn 2!

POP (C12) and PAP {C12) score more than POT (C12), but they _must be rejected
because they leave nasty hooks: POPE and PAPA. PORT (C12, 22, APS) could be best.

Joel Wapnick writes [52], “I’'m not crazy about plays that block the row 15 bil?gu line.
But POT is probably right. If I were further behind, perhaps PORT (10B).” PORT would
create a hook for SPORT in the A-column.
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Tiekert played TIROS (108, 20, ?NO),
missing the bingo STOOKING (6B,
63). According to Edley, Tiekert
probably saw STOOKING but was not
cerlain it was legal.

Braud held AEILNST, and did not miss
his chance: LANKIEST (6C, 64), the
only playable bingo.

Tiekert answered by also finding the
only playable bingo: NATATION (B8,
64). He had a choice of where to place
his blank. It can be either N. He chose
to place the blank on B, where it is
adjacent to the triple-word square that
Braud is most likely to take. Since
Braud took the spot immediately,
Tiekert’s decision saved 3 points.

Incidentally, MAVEN is not guaranteed
to place the blank optimally, since it

i
2
3
4
5
6
7
8

Tiekert: s .M. 0,0, 8 T 199
Braud’s last: PROPS (15D, 12) 158
After Braud’s PROPS (15D, 12)

will only generate one of the two placements of the blank. MAVEN"s algorithim guarantees
only that if there is a difference in score then MAVEN will place the blank so as to
maximize score. Here both placements of the blank score the same, so MAVEN will

arbitrarily choose one.



In theory, MAVEN should generate
movwes that play blanks even when the
corresponding tile is on the rack. In
practice, the principle of saving the
blank for the future is ironclad, so
WMAVEN is correct to only generate
moves that require the blank. This
situation is the only case the author is
aware of where this practice is
potentially incorrect.

Braud played FROM (A6, 34, ARV).
He either missed or did not know
FORAM (A5, 37, RV).

Tiekert’s rack was ADMNNTU, with
the score 283-256 in his favor. This is
one of my favorite positions. Tiekert’s
move was UNMADE (H1, 30, NT).
MAVEN's Basic evaluator considers
UNMADE to be much better than other
moves. Nevertheless, two other moves
are worth considering: MAUND (5H,
24, NT) and DAUNT (5H, 19, MN).

The great strength of DAUNT is that it
mechanically blocks the board, and it
would be extremely hard to open it
back up. DAUNT allows only 25
bingos to play using the unseen tiles
AACDDEEEGGIIINORRSUVWWZ.
By contrast, UNMADE allows 343
bingos to play through the M alone!

Tiekert: 5 A A LN O T 219
Braud's last: LANKIEST (6B, 64) 222
After Braud’s LANKIEST (6B, 64)

ABCDEFGHI!I JKLMNGO

Braud: ACF, MO R RV, 222
Tiekert's last: NATATION (B8, 64) 283

After Tiekert's NATATION (B8, 64)

DAUNT is also equal to UNMADE with respect to preventing a big 7 play from HI,
since there are no six-letter words ending in DE that use the 7 and the unseen tiles.

But the decision is not obvious because DAUNT scores 11 ppints less than UNMADE.
Tiekert may need those points because DAUNT only takes a 46-point lead.
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When | published the original notes, I favored DAUNT, but [ started having second
thoughts before the ink was dry on the paper. Publishing this opinion must have caused a
stir, since | heard about it from Tickert and from Richie Lund, both months after
publication. Tiekert restricted himself to the comment that the decision was not at all
clear. Richie’s comments started with, “Who are vou to criticize a move by Ron
Tiekert...” and [ had better not print the rest.

Besides, it really is not clear. Tiekert may need 11 points. Maven’s simulations show that
DAUNT is probably not best, as it finishes behind MAUND and UNMADE regardless of
the assumptions made by the simulation. But 1 have gotten either MAUND or UNMADE
as the simulation winner by changing parameters. For instance, MAUND finished on top
when simulating to the end of the game using inferences and winning percentage.

Braud would do well to play AZO ABCDEFGHI JKLMNO
(F13, 32, DERUV) instead of AZURE = = ® oy
(4H, 28, ADV). AZURE helps Tiekert

to block the top lines. AZO keeps them
open. ZANDER (2F, 38, UV) is highest
scoring, but that rack leave is dreadful,
and ZANDER also helps the opponent
close the board.

OO~k Wk =

The SOWPODS play ADZE (A12, 68,
RUV} reminds us that defensive
considerations must be made relative to
the concrete possibilities of the
position. In  OSPDI, Tiekert's
UNMADE may be an error because it
gives Braud a chance to play a bingo.
Yet in SOWPODS, UNMADE could e —
be best because Braud would have the Braud: (A L 256
chance of a big Z play. Tiekert's last: UNMADE (H1, 30) 313

After Tiekert’s UNMADE (H1, 30)

Tiekert held CEGGINT, and his move
GENIC (2F, 18, GNT) iced the game.
Besides being Tiekert’s biggest move, GENIC shut down the remaining bingo lines,
eliminating Braud’s comeback chances.



Braud’s OW (14E, 28, ADIRV) is one
of the best. My only suggestion is to
play AW instead. Normally one keeps
A instead of O, but this position is
exceptional because the bag containg
an A but does not contain an O, plus
the O can be used under the G in
GENIC.

Holding ADEGNNT, Tiekert played
FEED (8L, 25). My original notes in
SPN rated ETNA (A12, 28) as best,
but technical improvements to pre-
endgame simulations in  the
intervening  years owerturn  that
assessment. FEED is best.

The endgame went as in Table 0-3, L
leading to a final score of 386-360 in Tiekert's last: GENIC (2F, 18) 331
Tiekert’s favor. Note the characteristic 11 Unseen tiles: ADEEGINNSTW
inaccuracies of human endgame play. R N N

Braud’s first turn dropped 11 points. After Tiekert’s GENIC (2F, 18)
Tiekert returned the favor by dropping
5. Braud gave back 1 point. This is
typical; experts average 10 points of
errors per endgame.

ABCDEFGHIUIJKLMNDO

2L

Word | Spot | Score Comment |
Vis M2 | +27 | DIVA
(D3)
ETNA
(A12)
WARS
(MD)
=25
GENIAL | Cl -14 | ANGINA
(D1
VAW
M)
ET(5K)
= 14
WAG 1A +21 | WAIR
(4A) o
=19 After Tiekert’s FEED (8L, 25)
TEN 2B -10
(DR} -6
Total | =18 |

Table 0-3 Braud-Tiekert Endgame
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Both players dropped well over 100 points on errors in this game. This is more than
Tiekert usually drops, but was a good game for Braud. | usually figure 4 points of
differential for every 10 rating points, so Braud’s play would be typical of a player at
about the 2150 - 100 * 10/ 4 = 1900 level.

An interesting point, which surprises many observers, is that the winner often makes
more errors than the loser. This state of affairs is normal, in my experience. The plaver
who draws better tiles often falls far short of his maximum potential, vet wins. The player
with worse tiles has greatly constrained choices, and therefore makes plays that are closer
to optimal. Prior to the advent of computer training partners, this aspect of Scrabble
would cause humans to overestimate their skill, because when they examined their losses
they discovered that there was little they could have done to improve their play.
Nowadays, any player that genuinely wants to know where he stands can find out.

B.2 Adam Logan — Ed Halper, NSC 1990

Before Adam Logan was National Champion, he was a 15-year old wunderkind who took
the Scrabble world by storm, achieving a top-30 ranking before his 16" birthday.
Moreover, he was a MAVEN user. A coincidence, perhaps? You be the judge. Logan’s
opponent in this game is Ed Halper, an expert of long standing who finished third in the
1990 Championship.

Loogan started the game holding DEGNPRT. Logan played TREND {8H, 16, PG). The
conventional theory of the day was that you should play long words, other things being
equal, since such plays help to draw the blanks. Nowadays we look askance at such plays,
because they give the opponent many places to play 8-letter bingos. Long words are
categorically bad, but length is a drawback that can tip the scales if longer and shorter
plays are otherwise equal.

MAVEN includes a length penalty, but 1 find that it is ineffective. The penalty was
computed by determining the amount by which MavEN overestimated the value of the
first turn as a function of length. While the measurement is correct, the feature is
ineffective because it rarely changes a move decision, even though shorter words are
often better than long words. 1 believe the reason is that many factors favor short plays,
but MAVEN is projecting them onto a single dimension (i.e., length). For instance, it pays
to keep bingoish tiles. It pays to give few through-letiers to the opponent. It pays to deny
overlaps, and deny access to word multipliers. These factors are projected onto a single
dimension (length), whose correlation to the true evaluation result is low.

Another expert tendency is to overemphasize such possibilities as extending TREND
using an ING to hit the triple word square at 80. Such factors are minor. In many games,
neither side will ever have an ING on the rack. Moreover, ING is just as likely to be an
your rack as on the opponent’s rack. Finally, TRENDING would only score 30 points, so
it just is not worth preventing. One should actually be happy if an opponent used an ING
to play TRENDING. Racks containing ING score 7 points more than average racks,
whereas TRENDING scores 5 points less than average.

The real objection to TREND is that Logan has a better play. DREG (8F, 12, NPT) keeps

better tiles, avoids opening a double word square and scores reasonably well. It simulates
3 points better thar TREND.
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Halper’s JOIN (K35, 22, ISUX) is a
good move, but there are better plays.
The author likes JEUX (J7, 34, 110S).
HOS is not the best rack leave, but you
score 12 extra points and also dump the
U. That JEUX is better is clear, even to
a non-simulator.

DEF

B

P JIJKLMNO

An interesting play is JEU (J7, 10,
HOSX), and on this issue, Edley and T
disagreed. Simulation results show that
JEU is the best move in this position by
10 points, because of the chance of o ,
playing XI (10J, 59) or even bigger B3 (7 o *
plays hooking the X onto JEU. Edley ;
downgraded JEU and JEUX to
equality. Edley’s experience is that ,
such plays do not work out as well as Halper: ¢ :

they should. For instance, Edley notes Logan's last: TREND (8H, 16) 16
that JEU might tip off Logan that
something funny is going on, and he
might block. However, there are few
ways to block.

;"
B
i
kS

2w B

.

Ein

A ES X 0

After Logan’s TREND (8H, 16)

This disagreement shows that simulations do not always resolve differences of opinion.
At issue is the fact that low-scoring plays like JEU telegraph that something fonny is
going on. In the case of JEU, a reasonable inference is that Halper is dumping two
awkward tiles to fish for a bingo. You would not think X because playing JEUX now
scores 24 points more. Why would you figure Halper for holding an X? JEU + X-hook
makes 69 points, whereas JEUX + Normal move = 34 + 39 = 73. Why would Halper tie
himself down to this setup?

There are three reasons why JEU works for Halper. First is that it gives Halper a way o
split up his II pair without losing any points. Because of the 1l, JEUX + Normal Move is
likely to be 34 + 25 rather than 34 + 39. Second, it pays to delay placing the X on the
board for a turn because having the X on J10 would create profitable dumps for Logan on
the K-column. Finally, it pays to block the only open vowel on the board, since if Logan
is clogged with consonants then he will have no place to play.

Logan played HAET (J6, 30, EGNP). Logan missed PATHOGEN (6G, 74) and
HEPTAGON (6E, 70). PATHOGEN is best because of the higher score.

Halper held AIPSUXY. Halper’s biggest spot is the Y back hook of TREND. Halper has
a choice between PIXY (M5, 36, ASU) and PYX (M7, 38, AISU). PIXY scores two
points less, but plays an I. Normally, clearing an [ is insufficient compensation for losing
two points, but here it is because the rack already has a preponderance of vowels, and the
IU combination plays poorly.



We are duly impressed that Halper was not swayed by the hotspot that PIXY creates on
W6. Computerized positional studies show that such spots are insignificant, but the

humans of the day thought otherwise.

Logan exchanged all 7 tiles, but should
definitely not have. He has the two
dumps HOPING (61, 15, EGNR} and
PHONING (6H, 16, EGR), and these
scores and racks are better than
exchanging. Logan must have missed
the spot, which is not surprising
because it is hard to see moves through
three separated tiles,

By the way, HOPING is about 4 points
better than PHONING, which the
author never would have guessed. The
reason is that the EGNR rack leave has
good bingo prospects through the T in
TREND, and if you play PHONING
then you block that spot. For exampie,
if you draw an A or 1 from the bag then
the H column plus your tiles would be
AEGNRT or EGINRT, and you just
need two reasonable tiles to complete
the bingo.

Passing 7 tiles was a poor choice of

tiles. It is 5 points better to keep ER, as
suggested by the Basic rack evaluation
parameters. lMowever, in those days
players only kept blanks and S. 1
remember one game in which MAVEN
exchanged, keeping one tile, which sent
the opponent inte defensive spasms,
blocking all sorts of possibilities. Late
in the game the opponent drew a tile
from the bag, stared at it with
astonishment  and said, “1 thought
Mavin held the last S. What did
Mavin keep when it exchanged?” He
realized that his defensive posture had
been completely wrongheaded, and
perhaps cost him the game. When he
found out that MavEN kept an E, he
was disdainful. “Why keep an E?
Chances are you will draw one from
the bag!™ However, that player is

D~ DO E W

Halper's last: JOIN (K5, 22) 22

After Halper’s JOIN (K5, 22)

I JKLM

2L

Logan:

Halper's last: PIXY (M7, 36) 56

After Halper’s PIXY (M7, 36)

wrong on several counts. First, odds are that you will not draw an E from the bag, and
then your bingo chance is hurt badly because 61% of all bingos contain an E. Second, if
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vou draw a su‘eco.nd E you are still better off with EE than with no E’s at all. Finally, it was
folly to sacrifice many points to defend against an S-hook that would cost less to allow. |
understand why he was cross, though I have to laugh about it.

l{—y{aiper held AEESSTU. Halper correctly played one of his duplicate S's, but DUETS
(L8, 12, AES) is weaker than USE (101, 15, AEST) by 3 points in score and also in rack
leave. The move that simulates best is JUPE (5K, 13, AESST), which beats USE by 4
points. The point is that JUPE creates a hook on the O-column.

Here Edley and | disagree again. Edley doubts that JUPE has winning chances as good as
USE. Edley feels that if the opponent holds an S or blank (34.6% of the time) then the
opponent will get a big score on the O column. 1 figure that the opponent will nor have
the key tiles 65.4% of the time, and then Halper is sure to make a big play because he
does hold the key tile. When the opponent has the big tiles there might not be a big play;
the opponent could have a blank and a bingo elsewhere, or be unable to use the hook and
still hit a triple word square.

Also relevant is that if Logan has a blank and no bingo then he really does not hurt
Halper. For example, in the actual game Logan drew ?BDEHTV from the bag, so he
could play BETHS hooking JUPE for 52 points. I say it is no big deal. Sure, 52 points are
a lot, but he played a blank and got little for it.

This disagreement contrasts MAVEN’s icy willingness to put the game on the line with a
big play versus Edley’s instinct to stretch the game out. Edley’s strategy may be
appropriate for playing against weaker players. Against weaker playvers, it is poor strategy
1o allow a crusher. MAVEN is tuned for ideal theoretical play (i.e., for beating masters),
which often makes experts cringe.

Logan played BETH (11J, 18, ?DTV), ABCDEFGH ! JKLMNO
which has the benefit of blocking the
10J square where an S may be used as
a hook. Logan considered that
DUETS telegraphed that Halper
retained an S, since why else would he
play an S for only 12 points? So he
thought blocking was in order.

Edley insisted that BETH (11)), as
played by Logan, was the best play,
despite MAVEN  simulations that
backed BETH (10K, 17, 7DEV). It is
obvious why MAVEN likes BETH
(10K); keep an E, dump a T, and
better vowel / consonant balance.
Plus, BETH (10K) puts an S-hook in

2

gan: LB D E R TN 46
the O-column, where Logan may be %093"- ‘« - {2 .
able to use his blank. But Joe insisted Halper's last. DUETS (L8, )
that MaVEN was underestimating the After Halper’s DUETS (L8, 12)

inference that Halper retained an S.
Because of  this, | actually
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implemented an inference engine while preparing this thesis. Unfortunately, the inference
engine is not able to confidemtly predict that Halper kept an S when he played DUETS, so
| have nothing more to add. Joel Wapnick believes that Edley is wrong, and so do I, but
there is no way {o prove it with the information that [ have.

The natural inferences from Halper’s DUETS are that Halper retained an S and a T.
There are three moves mvolved in these calculations.

1} USE (101, 15) is obviously better than DUETS, with the only difference being
that DUETS plays a T. Therefore, the retention of another T is indicated.

2) DUET (L8, 5) is 7 points less than DUETS, whereas it keeps S. Since an S
would normatly not be played for only 7 points of compensation, this indicates
that an S was kept.

3y JUPE (6K, 13) is obviously better than DUETS but foran S and T.

The point is that drawing inferences is [
risky business, since Halper did keep
an S and did not keep a T. If MAVEN
concluded that Halper kept a T, then it
might retain that notion until Halper
played either a T or a bingo, or until
MavEN drew the last T out of the bag,
or Halper makes a move that allowed
MaveN to infer that Halper did not
have a T. In the case of inferring a T,
the downside is probably unimportant,
but what if MAVEN inferred that the
opponent kept a Q7

ABCDEFGH

JKLMNDO

Halper played ALEF (N3, 32, AES).
ALEF ig best, of course. A surprising
gimulation result: LEAF (N3, 32,
AES), which plays in the same position Halper: A A E/E. F. LS 68
for the same score, also has the same Logan’s last: BETH (11J, 18} 64
simulation result. Now you might not . R e

be surprised at this, but a Scrabble After Logan’s BETH (114, 18)

expert would be because LEAF leaves

the E adjacent to 04, so there is the likelihood of a 40-point reply fromi O1 to O4, puiting
a consonant on 04 where it will score eight-fold. Simulations show that ALEF’s vowel-
consonant-vowel-consonant pattern is easier to overlap than LEAF, so the O-column is
often used for longer plays after ALEF than after LEAF. The result is about equal.

Logan played DEVIATE (12D, 76). VISTAED (N9, 83) is clearly better, but Logan
missed it. VISTAED is a tough find, despite ending in ~ED. Logan considered VITAE
(01, 37, ?D), but only momentarily. The bingos are much better.

3%
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I would have spent all afterncon
looking for a bingo in Halper’s rack,
AEINRSW. But there is none. Halper
played REWAN (01, 40, IS). REWIN
is better, as keeping A instead of I is
usually better. And REWINS (01, 49,
A is better still, since an S is worth 7.5
points, and REWINS scores 9 points
more. Edley restrained me from saying
that REWINS is best, saying that
keeping the S is significant because
whoever bingos next will be in the
driver’s seat. To which I retort that as
played Halper keeps the S and Logan is
still in the driver’s seat. The OSPD,
Second Edition, added the word
RAWIN (a type of radar), which is the
best play nowadays.

The last three moves are a good
example of how opening triple word
squares is not as dangerous as it seems.

ABCDEFGHI!I JKLMNO

Halper: Au E M B0 W
Logan's last: DEVIATE (12D, 76) 140
After Logan’s DEVIATE (12D, 76)

Logan had first crack, but was unable to exploit the opening because he had a better play
elsewhere. It is a good thing for Halper that the opening was there, since it allowed him

to keep pace.

Logan found the lovely double-double
DENOUNCE (ES5, 86) out of the rack
P7CDENNO. A trifle  better is
CONDENSE (E3, 86) in the same
spot, probably because of restricting
overlaps on F6.

Halper played the plausible phony
“VIBRO” (8A, 33, FNS) against his
young opponent, and Logan let him
get away with it. Logan should not
challenge unless he is confident that
VIBRO is phony, since Logan’s lead
is large.

This play is a good example of an
artful phony. The word is not a bingo,
and it does not take the lead from
behind, so the incentive to challenge it
is smaller. However, it scores better
than any real word, it takes a spot
where Logan could score well, and it
cleans out the rack.

CDEFGHI JKLMNDO

Halper: B FoluN, 140
Logan's last: DENOUNCE (E5, 80} 226
After Logan’s DENOUNCE (ES, 80)



Logan’s non-challenge is interesting. [ daresay that if I had tried to wing VIBRO past him
then he would have challenged with confidence. The point is that there is a huge
difference between an unfamiliar word played by a master like Halper, and one played by
a patsy like me. This type of reasoning is very important to humans in judging the
plausibility of unfamiliar words.

The best legitimate play 1s BARFS (H11, 30, INV). Halper is probably about 15 points
better off having gotten away with VIBRO. Who says you cannot play better than
MavenT?

Logan’s ZAP (M1, 44, GMSY) is best. Or perhaps GYP (M1, 34, AMSZ) is barely
better. The justification for GYP is that the Z will score well on this board. For example,
you need just an A or E for ZAMIA or MAZES at H11. However, Logan and Edley feel
that leaving a G on row 1 is courting trouble in the form of a late —-ING bingo.

This time Edley is definitely correct. The bird in the hand is worth a lot here. When you
are leading, you should take points to sew up the game. GYP may get back the 10
sacrificed points on average, but when it does not then you place the game at risk.
Moreover, the ING bingo consideration is real.

Halper’s KEF (F4, 34, INOS) is good, and KIEF (F3, 35, NOS) is slightly better. But a
surprising 5 points better still is OF (F3, 29, EIKNS). Keeping EIKNS proves to have big
potential.

Logan held GLMOQSY. AGLY (H12,
24, MOQS) has better simulation
results than Logan’s move AMYL
(H12, 27, GOQS) by 1.5 points. The
difference is playing a G instead of an
M, but you also lose 3 point in the
trade. You would not expect an M to be
worth 4.5 point more than a G, and 1
really do not know why it is so here.
Possibly because there is a chance of a
48-point MOSQUE hooking BETH.

The play that simulates best is HOMY
(MI1, 26, GLQS). It looks funny to
keep all those consonants with the Q,
but the point is that if Logan drew a U
and an E or A then QUEYS or QUAYS
(14), 74) loomed. Here is a good
example of how maximizing point Logan’s last: ZAP (M1, 44) 270
spread does not always maximize

vi’iﬂnmg chances. L.ogan, ):Nit‘h the lead, After Logan’s ZAP (M1, 44)
should be concerned about playing off

his Q with the greatest possible speed, not the greatest possible score. | am confident that
AGLY wins most often.
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Halper had LICENSOR (15H, 86), but
his CORNIEST (HI, 86) is best
because it leaves open the most bingo
lines. CORNIEST opens bingos
through the C and O along the top two
rows, and leaves open bingos through
the L in AMYL, and the ~S hook on
BETH. LICENSOR would have negate
all of those chances, leaving only the T
in TREND plus the letters of VIBRO.
If Halper were leading after his bingo
then LICENSOR should be better, but
here CORNIEST is best.

Joel Wapnick points out [96] that one
advantage of CORNIEST is that it
interferes with potential ~IZER plays
along the top row. I am not sure that
such interference is in Halper’s favor,
but [ am duly impressed by Wapnick’s
ability to spot such tactical subtleties.

Halper: 00
Logan’s last: AMYL (H12, 27) 297

After Logan’s AMYL (H12,27)

Logan drew a U, and held GIOQQSU. Because of his U, he did not need to worry about
playing his Q. Therefore, Logan’s GOOS (13B, 23, 1QU}) was better than the biggest ()
move, which was QUOIN (10A, 16, GOS). QUOIN kept the 3, but at the cost of keeping

the O and G, and a loss of 7 points.

Joel Wapnick liked GOO (13B, 11,
IQSU) best. He commented [97], “Pick
one of the A’s for QUAGS (B10, 70)
next turn,” This is a nice insight, but
simulations show that GOOS is better
for both point differential (by 3 points)
and winning percentage (by 5%). The
move with the highest point differential
is HOG (M11, 16, IOQSU). You just
need an A for QUASI (14), 73), and
HOG scores more than GOQ. But HOG
is highly volatile, and the steady GOOS
wins 3% more often, despite a point
differential 1.4 points lower.

Many players would prefer QUOIN out
of paranoia. Two particular neuroses
afflict Scrabble players in this situation.
“Quetoxipsychosis”™ is the irrational
fear that it will be impossible to play a
Q. In extreme cases, this causes a
player to accept a 16-point move for a

N O

Halper: l ok kg Ni B, 8 290
Logan's last: GOOS (138, 23) 320
After Logan’s GOOS (13B, 23)

QU combination, simply to relieve the pressure. “Bingophobia” is the fear that the
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opponent will bingo unless a player physically blocks, Acting on this fear causes frequent
losses to opponents who never actually play a bingo. A genuine sufferer of
quetoxipsychosis considers it to be a victory simply to play the Q away. Likewise, a
bingophobic player “wins” if his opponent does not bingo. Perhaps the most horrifying
sight in Scrabble is to witness two bingophobes playing against each other. Cover the
children’s eyes!

After Logan’s GOOS, Halper needed to balance his rack, and MILL (13H, 15, INRS)
does the best job.

Logan, holding AAEEIQU, missed EQUINE (10A, 37, AA). He played QUAIL (15D,
24, AEE). | speculate that this error was caused by focusing on positional goals rather
than trying to find the biggest score. For example, Logan may desire to split up his AA
combination, and may wish to block the 15" row. If he wished to find a play using the
TLS at 10B, then he would have found EQUINE.

Since Halper’s SURGING did not play, BCDEFG I JKLMNO
he needed a strategy for manufacturing ~ -:
a comeback. Halper's LUG (K13, 4,
GINRS) is one of the best choices.

Halper’s highest score is RIGGINGS
(B7, 30, U), which leaves Halper only
9 points down. Now you might think
that Halper would win many games
since he is only 9 points down, but it is
not true. Simulations show that Halper
wins only 3% of all games after
RIGGINGS. There are three drawbacks
to RIGGINGS. First, it keeps a U,
which is a poor tile. Second, it leaves
four tiles in the bag, which means that
the opponent will almost always play
out first in the endgame (i.e., Logan Halper:
plays 3 tles, Halper empties the bag, Logan's last: QUAIL (15D, 24) 344
and then Logan plays out in two unless ‘

Halper  has g highly  unlikely, After Logan’s QUAIL (15D, 2d)
unblockable out-in-one). Third,
drawing six tiles to a U is unlikely to make a bingo.

© @ ~ND O E WM

LUG is more like it. LUG, VUG (A8, 7), BUG (C8, 7), GNU (10C, 6), and GUDE (5C,
6) all win by drawing bingo tiles to GINRS. Of these LUG is clearly best, since all of
these moves bingo just as frequently, and LUG scores the most points.

My notes in the SPN gave RUNG (10C, 9, GINS) as best, though it wins just 1% more
often than GNU. After GNU, the opponent must block the most probable bingo lines,
which are through the V and | in VIBRO. Then Halper has a 22% chance to bingo along
row | with ORGANICS or GENERICS; aleng row 2 with ERINGOES, MISGROWN,
NEGROIDS, or GENITORS: or hooking BETH with RUSTING, RESTING, or

o]
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GASTRIN. However, it turns out that Halper would not win after every bingo, and that
cuts his winning chance.

After RUNG there is a new threat to Logan: Halper might hold the W for a big play from
B10 to B14. For example, if Halper draws a W then he holds that tiles for WINGS (B0,
51). Logan must block the B-column, but he scores few points while doing so. Halper’s
bingo chances are the same, but he also wins 1% of the time when he draws the W and
Logan’s tiles are so bad that he cannot block.

But there is a problem with the whole
analysis, which Yoel Wapnick pointed
out to me, and simulations quickly
confirmed: Edley, MAVEN, and I had
missed the best play entirely! Best is
RUG (18, 7, GINRS). RUG falls
among the top 20 plays in MAVEN'S
list, but not the top 10. This accounts
for MAVEN's failure to propose RUG.
Edley and I have no excuse for
missing it. Wapnick wrote, “RUG is
interior, and blocks nothing, even
partially.” Quite right.

ABCDEFGH

Simulations also dispute my analysis
of RUNG. MAVEN's  current
simulators are more effective at pre- b

endgame decisions than the one it used Logan: i# i

when annotating this game originally, Halper's last: LUG (K13, 4) 309
so I am not surprised that there is 2 15 Unseen liles: AEGIMNOOORSTUW
difference. MAVEN says that RUNG

drops 3% compared to RUG (18), and After Halper’s LUG (K13, 4)
LUG drops 1% compared to RUG
(18).
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Unfortunately, thic game was not ;A BCDETFG |l JKLMNO
destined to be a sirategic masterpiece I ‘

for Halper. Logan sewed up the game
with the bingo ERADIATE (B4, 63).
Most games are like this. The winner is
often not player having the deepest
strategic insight. The winner /s often
the player with the best move
generation. The player that draws better
tiles wins even more often!

Halper fished bingo tiles {SWINGER},
but they are a “nongo” because the
word does not fit the board. He played
GREW (Al, 45, INS), which is best.
l.ogan played MOOT (Cl, 18, [0U)
out of IMOOOTU. Halper played out ‘
with GAINS (15K, 21+6). Logan won Halper: 308
by 425 to 381. Logan’s last: ERADIATE (B4, 63) 407
8 Unseen tiles: AIMOOOTU
This is a typical game in many
respects. The players missed one bingo
out of 5 opportunities, which is
probably a little worse than top humans usually perform. The game also contained a
phony and a missed opportunity to challenge.

After Logan’s ERADIATE (B4, 63)

In addition to the phony, both players made several errors of evaluation or move
generation. These errors were small, but the accumulation was large. You can see how a
computer would have an advantage over any human that is below the highest caliber.
Perfect word knowledge and perfect move generation are invaluable in Scrabble. Players
outside the highest level simply make too many errors.

This game shows how simulation makes a difference. Even a human expert who is
thoroughly familiar with MAVEN’s tile estimates would estimate that KIEF and OF from
Halper's move 14 were about equally good. He would not think that OF had a 3-point
edge. Simulations make that apparent.

At the same time, you can be amazed at the cognitive capacity of human beings. The
players would have used about 20 minutes each in this game, and they made tremendous
discoveries of plays involving words that normal humans have never even heard of.

B.3 Logan-MAvEN, AAAI-98, Game 9

In a departure from tradition, I will present one of MAVEN’s losses. In part, this is
because | have published a win elsewhere [53] and I do not want to repeat myself.

Logan drew AGLNSTW, and started with TWANG (8H, 22, LS), which was his best
play. Alternatives either do not play 5 tiles (E.g., GNAW) or burn the S for insufficient
compensation {e.g., TWANGS (8C, 26, L)).

)
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MavEN"s MORNING (L2, 20, TY is a
normal move, and best.

Logan just needed an E last wum to
have TWANGLES, which he
undoubtedly saw. He drew an E, and
held ELNNSSU. Now that he has
drawn the E, he took the opportunity to
slap down TWANGLES by extending
TWANG.

TWANGLES is the highest-scoring
move by far, but the low-scoring NUN
(M1, 14, ELSS) is nearly as good. The
ELSS rack leave has excellent bingo
potential, whereas TWANGLES’s
NSSU rack is unlikely to make a bingo.
NUN simulates within 0.1 points of
TWANGLES.

MaveEN held ?AEFRTU. There were
many bingos to consider from this great

DEFGH! JKLMNGO

o o

Maven: 1

Logan's last. TWANG (8H, 22) 22

After Logan’s TWANG (8H, 22)

rack. Seven bingos score 83 points, all from either Ol (e.g., FEATURES) or H8 (e.g.,
TARTUFES). Any of these plays is acceptable, and MAVEN selected TARTUFES (8H).
The best play is FRACTURES (O1, 83). FRACTURES simulates about | point higher
than the other plays. It has a higher winning percentage because it allows fewer through
letters, as pointed out by Joel Wapnick [52]. The 1998 MAVEN used a pruning trick to cut

off simulations of bingos, and this feature pruned FRACTURES.

The 2002 edition of

MAVEN chooses correctly, thanks to its scalable simulation controller.



Here, Logan made a slight error. The
best move according lo the Basic
evaluation model s ONYX (3L, 28,
DNSU}L Logan played NIXY (6K, 22,
DNSU), which simulation calls a 2.4-
point error.

Logan is concerned about opening the
O-column with an X, as most humans
would be. Simulation suggests that
exposing the X is costly, but not as
costly as giving up 6 points.

MaVEN held ABEGHOO, a rack
offering many profitable overlap plays.
It is often hard to find the biggest
move from such a rack, especially
when the best play is not an overlap at Logan: 58
all. The normal move of the Basic Maven's last: TARTUFES (H8, 83) 103
model is GOOMBAH (21, 34, E}. It is " e ek,

a strong move, but it has an After MAVEN’s TARTUFES (HS, 83)
unfortunate aspect: opening the Ol
wriple-word square (TWS). The O1 TWS can be used two ways: either parallel with short
words like FA, HA, HE, etc., or through with words having H as second letter. The fact
that there is a choice gives the opponent flexibility in using it. The spot is productive,
since a simple two-letter dump like YE (IN) scores 35 points. GOOMBAH also opens
the [H TWS, but that is different because using the spot requires an A.

The fascinating move that MAVEN selects, which appears to be 2.5 points better than
GOOMBAH is HOMAGE (2J, 40, BO). An obvious advantage of HOMAGE is that it
scores 6 points more. Six points compensates for a weaker rack: BO instead of E is a
disadvantage worth somewhat more than 6 points!

HOMAGE works better than GOOMBAH because it opens fwo triple-word squares. This
sets up a tit-for-tat trade: the opponent takes one TWS, and MAVEN takes the other. This
works out better than GOOMBAH, inn which the opponent is likely to get one TWS, and
the tiles are unlikely to cooperate so that MAVEN can take the other. Also, the two
openings are about equal in value. Each is basically a direct (as opposed to overlap)
opening that almost any rack will be able to exploit.

This shows how complicated Scrabble can be. Leaving one big opening is worse than
leaving two big openings! At least in this case...

Recent simulations using winning percentage suggest that GOOMBAH is slightly better
than HOMAGE, despite having a lower point differential. But this result is tentative,
considering that the winning percentage evaluator is experimental technology at present.

b3
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Best is clearly SUNDERS (1D, 79,
taking a TWS  while scoring
maximally. Many people have the
misconception that it is better to leave
both TWS openings, since it is set up as
a trade. However, that is completely
wrongheaded! Opening two spots may
be betier than opening one spot, but
taking one is better than leaving two.
Obviously, you want to take both spots
if possible, and the only way to do that
is to take one of them first!

Logan’s move, SUNDRESS (08, 7,
lost a couple of points of equity
compared with SUNDERS. 1 doubt that
Logan would evaluate SUNDRESS as
better than SUNDERS. Yet, I also
doubt that Logan missed SUNDERS. It
is hard to guess what wert wrong here.
Maybe he misscored SUNDERS. 1t is
hard to add scores correctly over the

DEFGH I

2

4 KLMN

‘A e

Logan: s
Maven's last: HOMAGE (24, 40)

After MAVEN's HOMAGE (24, 40)

O

143

board. Many games contain an off-by-twao error, from adding scores incorrectly. Another
frequent error is an off-by-ten, attributable to an error in carrying while adding the scores
of the moves. Some players routinely recheck the scores of any game decided by 10
points or less. However, Logan has a Ph.D. in Mathematics from Harvard, so arithmetic
errors are unlikely. s it possible that Logan forgot that SH is a valid hook for H? We will

never know...

The reader can see how access to triple word squares works out in high-level games.
MavEN opened the spots, but Logan had to play his bingo. Then MAVEN got a shot,
holding BELOPRZ. A big score was possible with the Z in hand, and Maven found
BEZEL (O1, 57, OPR). Now Logan had to use the other TWS or else MAVEN could score

using both of them.

Logan drew the QU, so he could match MAVEN score for score. Logan held BDDIL.OQU,

and he played QUOD (1H, 50, BDL).

b



Mavier's PORTION (11E, 36, J) was a ABC
nice double-double, and far superior to
any other choice. 1 s the biggest score,
and the J was set up nicely at 10F and
10J.

Logan plaved BODIES (14J, 30, AL},
and frankly, I am surprised. During the
game, Logan looked carefully at the
triple-letter squares on the 10" row.
[id he not see BORAL? BORAL (10F,
33, DEID) is better than BODIES from
the perspective of both score and rack
leave. The simulation margin is about 4
points.

O~ DD bW R -

MaveEN held AEEIMUY, and cashed
its setup with JEU (10J, 53, AEMY). MAVEN: i R
This balanced the rack leave better than Logan's last: QUOD (1H, 50) 207
alternative  plays. For  example, ,

compare JAY (10J, 56, EEMU), which After Logan’s QUOD (1H, 50)

keeps the U among three vowels. JEU
is about 5 points better,

Logan nodded as if he thought a I play
might be coming. No doubt, he was
thinking back to BODIES. But he had
no regrets as he slapped down a
double-double bingo, out of
AEGILOT: GELATION (5E, 90).
LEGATION is also good. Logan
preferred  GELATION  because the
initial G is harder to overlap.

O

HI1I JKLMNGO
; 2 B

Mavin has been out-bingoed, but has
kept the game close with HOMAGE,
PORTION, and JEU. MAVEN now took
advantage of the TLS at 6F with FAY
(6F, 37, AELM), which was best for
both score and rack leave.

MY, 283
Logan's last: GELATION (5E, 90) 327
After Logan’s GELATION (5E, 90)

[38]
(od
o0



Logan chose HIP (4H, 31, ALOS). This
is barely an error; he can play HIP at
13K for one point more. Logan might
be attracted to the possibility of using a
hook he has just created—HIP creates
the word HAY vertically, and SHAY is
legal. This creates an S hook for the S
retained on his rack on a board that is
atherwise bereft of hooks.

3 NI

'y
o

MAVEN maintains that PIA (4H, 23,
HIOS) is best by a tiny amount over
HIP (13K). My original notes to this 122 .
game opined, “While this may be true -

from the perspective of point
differential, I doubt that PIA will be as
good at winning the game. HIP books 8 -~
extra points that might not be regained Logan: AHo kP 327
with PIA.” Mawven's last: FAY (6F, 37) 320

-
-

2

Joel Wapnick reviewed my notes, After MAVEN’s FAY (6F, 37)
detected the key positional issue

favoring PIA, and objected, writing [51], *It sounds like you are using ‘expert’ logic here
rather than MAVEN logic. PLA looks fine to me, because with the C/V distribution in the
unseen tiles, it’s better to have a 2-2 split than a 1-3 split. By far. Can you play these
moves out to the end of the game and se which wins more often?” Well, [ can, but it is
easier to use MAVEN’s winning percentage simulator, which uses a neural network to
estimate winning percentage. It says that PIA wins more often, by 70.0% to 68.9%.
Wapnick is right about the consonant / vowel split. The unseen tiles have 11 vowels and
14 consonants, so HIP's 3-vowel leave does hurt. | really ought to know better than to
substitute my judgment for MAVEN’s. But it is hard to improve MAVEN otherwise.

Maven held AELMRTW. MOW (3K, 32, AELRT) was the perfect dump for this

situation. Only LOW played in the same spot comes close, but it would score 6 points
less.
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Logan's play was KIVA (12B, 26,
FEOS), but upon examination, there is
no doubt that OAK (4D, 27, EIVS) is
far superior. The attraction of KIVA is
that it clears both K and V, leaving a
clean rack to go with a good score.
However, there 1s more 1o the situation.

Consider the rack leaves at a dynamic
level. KIVA keeps OES, which is sub-
optimal because the O is not great and
the  vowel/consonant  balance is
adverse, OAK trades the O for an IV,
which helps two ways. First, the
vowel/consonant balance is ideal, and,
second, the IVE group is useful.

The situation on the board is better
after OAK, too. The big change is that
the S-hook that Logan created over
HAY moves to the C-column for
SOAK, or along the 6" row for KEFS.

ABCDEFG |

1: 2
2w
3 )
4 = o
5
6
8 s
9 4,
10 N
11 D,
12 = 0 R,
13 aw
14 s,
15 3 B
Logan: A E, 1, KO S V, 358
MaVEN's last: MOW (3K, 32) 352

After MAVEN’s MOW (3K, 32)

This is better because the SHAY hook can only be used productively if the S is the last
letter of a word of at least 6 letters. Such a word can be hard to assemble. The hook of
SOAK can be used with the S in the middle of the word, and if Logan draws a word with

the S at the end then he still has KEFS.

The simulated point differential of OAK is 14.6

points higher than KIVA. The difference is surprisingly large.

MAVEN has cleared heavy tiles, and
had a choice of two bingos:
TREACLES (134, 80) or
RETACKLE (B7, 82). In terms of
point differential, these moves are
indistinguishable, with TREACLES
hiaving an edge of less than a point.

Since this is a PEG-9, MaveN looked
to the end of the game to find the
move with the higher winning
percentage. In that dimension, the
difference  is  more  pronounced.
TREACLES  wins  86.7%  versus
78.8% for RETACKLE. The reason is
that TREACLES left fewer bingo
lines. Actually, the only one of any
significance is the SHAY hook.
RETACKLE feaves those plus bingos
overlapping RETACKLE on the A-
column and C-column,
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Maven: A.C B E L B T, 352
Logan’s last: KIVA (128, 26) 384
16 Unseen tiles: AACDEEENIORSTTV

After Logan’s KIVA (12B, 26)



Logan’s next move is one of the most
instructive 1 have ever seen. I feel
personally honored to have witnessed
his selection process.

Logan began by checking that he had
tracked the tiles correctly. He went
over the board twice, because his first
check did not agree with what he had
tracked during the game. On the
second check he found his error, and
wrote down the wunseen tiles
AACIHIRTTV on his scoresheet.

1]
2
3
4
5
6
7
8
9

Mext Logan calculated that This
prospects from fishing a single tile
were poor. Because he held EEE and S— e
two other vowels, he did not have a Logan: D E. B8 384
viable single-tile fish. There may be Maven's last: TREACLES (15A, 80} 432
an odd bingo in there, but with 9 Unseen tiles: AACHRTTVY

MAVEN using its PEG-1 engine (and

this was the ninth game of the match, After MAVEN’s TREACLES (15A, 80)

so Logan had already experienced the

PEG-1 engine's devastating accuracy), there was zero chance that any such bingo would
land.

Having reached that conclusion, Logan realized that he had to fish two tiles in order to
have any chance of bingoing. Unfortunately, a fish of two tiles would empty the bag,
leaving MAVEN moving in an endgame. If Logan’s tiles bingoed in only one spot then he
was a goner, because MAVEN would block. Therefore, Logan needed to find a play that
fished two tiles and maximized the probability that he would have bingos in two
separated locations.

His next decision was to calculate which tiles to play. He had three real options. He could
fish EE, EI, or EQ. Which of these has the highest chance?

Logan’s next action will never cease 0 amaze me. He enumerated all two-tile draws from
the unseen tiles. There are 18 distinct draws, which he wrote on his scoresheet. Alongside
each possible draw, he wrote the relative probability. For example, the draw Al occurs
four times as often as AA, since there are two A's and two I's unseen. He then colculated
which of the draws made bingos in Iwo sepurate Spors, for each of the two-lile fishes he
was considering.

Then he played OKE (B11.7, DEEIS). Total elapsed time was about rwo minutes.
Simulation reveals that OKE is the best play by far. What's more, MaveN does not

generate this move within the top 10 plays, despite using four different move generators
- ' 1 1 s 2 gn iy IF 2
in the pre-endgame. Missing OKE is one of the biggest errors | have seen MaveRN make.



Joel  Wapnick  commented  [51],
“pdam’s OKE was great. | would have
played EKE without calculating, which
apparently does almost as well.” But
Wapnick’s next communication
showed that he did the calculation, as
he summarized the strength of OKE
beautifully, “1t has to be OKE so that
there are two —8 hooks.” Precisely.

Truly, when 1 witness skill like that
demonstrated by Logan in  this
situation, I wonder why I even bother
writing programs to solve these
problems. MavEN is  obviously
superfluous.

MAWVEN knows its goose is cooked, and e
plays ACTA (I0A, 18, UT) to Logan's tiles: ‘B B
minimize the loss. MAVEN’s move

scores well and blocks REVISED (AS, After Logan’s OKE (B11,7)
86). Then Logan bingoed out with

DERIVES (3B, 84+6). Logan emerged with the victory by 481 to 450.

B.4 Wapnick-Cappelletto, WSC 2001

This game is a special treat. In the finals of the 2001 World Scrabble Championship
{(WSC), Joel Wapnick (1999 World Champion) faced Brian Cappelletto (2000 NSC
Champion). This was the first game of the finals, a best-of-five match using the
SOWPODS lexicon.

Wapnick’s opening rack was AAIIOSU. Wapnick exchanged AIIOU, keeping AS, and
the author could not be more proud of himself. In the old days this was an automatic
exchange of 6, keeping only S. Thanks to MAVEN's persistent simulation results, experts
now realize that they should keep additional one-point tiles, except for U, while keeping
at least as many consonants as vowels,

Exchanging tiles is best by a mile. The only competition comes from the SOWPODS-
only word AlA, but the best placement of AIA is about 9 points worse than exchanging.
Wapnick kept the perfect pair, AS, which is slightly better than IS.

Cappelletto held EFLLOQT. Cappelletto exchanged FLOQ, keeping ELT. Again, these
are the perfect tiles to keep. Cappelletto should consider keeping ELOT, but on balance,
it is probably betier to exchange the O. The O's Basic-1 value is 2.5, but improving
from a 1-2 vowel-consonant distribution to 2-2 would only gain 0.5 points. Now if
Cappelletto had an A instead then he should definitely keep it, and maybe he would even
keep an L.

The real question is whether FLOTEL (8D, 26, Q) is better than exchanging. If it were
not for an inference that Wapnick had kept good tiles then FLOTEL would clearly be
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ETE}"F%: ’abom 4 points over exchanging. After Wapnick's exchange the balance between
FLOTEL and exchanging is unclear. The difference between the plays is probably small.

Wapnick q.rew well, and held AAELNSY. Wapnick found ANALYSE, the only bingo
The question is where to place it. The highest scoring placement is at 181% but that is %m
WOrst pl\acemem. We have previously mentioned the case of BRONZE}R x\r"mzrh wi‘né
momkofte}“n at 8D than at 8H despite the extra 14 points scored by the 811 'plm’:enwmt
ANALYSE is much worse at 8H because the 8H placement scores only 6 extra pmnm‘
and ANALYSE takes back hooks of D, R, and 5, making the chance that Ca[")p;@llm{u;
holds a hook roughly 85%. Wapnick chose the 8B pla@emeht, which is normal b‘n::cause it
leaves no vowels adjacent to premium squares. MAVEN detects an advantage to the 8F
placement, but it is not large. It is time for a diagram. : |

2h

Cappelletto played IRATELY (17, 77). ABCDEFGHI JK
Cappelletto had 12 bingos, and he | 2 3 a
correctly chose the highest scoring. The 2
second-best play was INTERLAY (C7, 3 w =
76), and he had IRATELY, REALITY, 4 = "
and TEARILY in several spots. 5
6
At this point Wapnick challenged. The [
WSC adopts special rules  for g?f A AR ’Y"GE"E’
10

adjudicating  challenges.  This s
necessary because the North American
game uses penalty challenges, in which
a challenge of a valid word costs the
challenger a turn, whereas the United
Kingdom uses free challenges, where
challenging a valid word does not cost
a turn. Since the WSC uses a dictionary

2L

(SOWPODS) that many participants do Cappelletto: Ay By Lo b By T 0
not regularly use, the WSO uses the Wapnick's last: ANALYSE (8B, 72) 72

free challenge rule. Alas, the history of
the event shows that with nothing to
lose from a challenge, players routinely
challenge every unfamiliar word. This is fine for the players, but the tournament staff has
to run a marathon to keep up with the workload. Accordingly, in 2001 a failed challenge
incurred a S-point penalty.

After Wapnick’s AN ALYSE (8B, 72)

Five points is a small risk, especially when challenging a 77-point play. 50 Wapnick
chanced it. wondering if ANALYSER was really in the OSW. Wapnick would have been
certain that ANALYSER was not in TWL9&. Cappelletto pocketed 5 points because the
play is acceptable.

Wapnick held AEEGINT after a great draw from the bag, and had a choice f;)l’rbingos. Ilr,
had ANTIGENE from C2 and C7, and GALENITE / GELATINE / LEGATINE in
several places, and SAGENITE. ANTIGENE from 2 and C7 simulate best. MAVEN"S
simulations show that ANTIGEN E from C2. as played by Wapnick, is the best move by a
hair over ANTIGENE (C7).
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Note that Wapnick followed his challenge with a bingo. For this reason alone, if Wapnick
risked losing his turn for challenging then he probably would not have challenged.

Cappelletio’s  rack  screamed  for ABCDEFGH! JKLMNO

LUVS, and, in fact, the two best moves a
are LUVS in two places. Cappelletto
chose LUVS (J4, 17, DSU), which is .
o =

best. Second best s LUVS at EB,
scoring only 14.

Wapnick followed with POLTROON
(E6, 68), his third consecutive bingo.
However, Wapnick dropped 10 points
by missing PATROONS (B7, 78). The
cost of this error in terms of point
differential is about 7 points, and the

2

O~ DU s W =

L

cost in winning percentage is about i
1%. The cost in winning percentage
would have been greater had Wapnick
not been leading to begin with.

Cappelletto: (B Ly 8.8, U WiV, 82
Wapnick might have missed Cappelletto: ANTIGENE (C2, 72) 144

PATROONS, but he is unbkely to
have missed POLTROON (4H, 76),
since he found POLTROON at E6. We
conclude from this that Wapnick believed, over the board, that the triple-triple opening
was a big enough threat to his lead to outweigh 8 extra points. I would not have passed up
the 8 points, but simulations show that the two POLTROONS have equal winning
chances. Who am [ to argue?

After Cappelletto’s ANTIGENE (C2, 72)



Cappelletto  replied with INDUSIA
(14A, 78) his highest scoring and best
play. He had many other bingos. It is
likely that Cappelletto homed in on
INDUSIA by reasoning that if there
were a bingo hooking POLTROON
then it would be the biggest because the
position does not offer triple word or
double-double opportunities.

Note that Cappelletto could have used
the blank as either [, but chose to make
the blank stand for the first I. There is a
good reason for this: the other 1 stands
on a triple-letter square, so Cappelletto
gains more points by calling his blank
as he did.

Wapnick’s BAJU (15G, 43, DGV} is
best, but not by as much as you might
think. In SOWPODS, the tile V is a
genuine millstone, so GUV (135G, 24,

EFGH.I

J KL

B

ey

Cappelleto: A D, [, N, 8, U, ,
Wapnick’'s last: POLTROON (EB, 68)

T

des

Eis
99
212

After Wapnick's POLTROON (E6, 68)

ABDI) is only a 4-point sacrifice, and only costs 1% in winning percentage.

With the rack ACDEELR, Cappelletto
evened the game with CELLARED
{4H, 82), again his highest scoring
bingo and the best play. He has
alternatives (RECALLED (4H, 77))
that do not open triple word lines.
However, CELLARED is best despite
such openings. Actually, in this
position the triple word openings cost
nothing. Triple word lines are less
significant, in general, on a wide-open
board. Additionally, CELLARED
opens two lines that balance each
other. The triple-triple consideration is
not important to Cappelletto, of
course.

ABCDEFGHI!I JKL
d # i "
2
3
4 = 2w
5
6
7
g
10
11
12 = L
13 o
14[1) N, B
153@1 B

WapﬂiCkl Ax BJ D}THZIJQ_U‘ N,
Cappelletto's last: INDUSIA {14A, T7)

M

N O
ol

B

Fald

212
177

After Cappelletto’s INDUSIA (14A, 77}



Wapnick’s reply was FOH (3L, 32,
DEGVY), on top of CELLARED, but
HOUF (D12, 38, DEGV) is stronger,
I wonder why Wapnick missed
HOUF. I can only speculate, What
follows is an example of how humans
can go wrong. It is not meant to
suggest how Wapnick went wrong,
because great players do  not
necessarily have the same blind spots
ag other humans. Wapnick wrote
[$1], “It's no great mystery why I
didn’t play this move. I didn’t see it. |
know the word.” While this comment
obviates some of the interest in
speculating, it is an interesting
psychological question nonetheless, S
even though we know what happened Wapnick: [B. . F. G, H, 0.V, 255
1o Wapnick in the actual game. Many Cappelletto’s last: CELLARED (4H, 82) 259
eIToOrs in move generation originate
from the goal-oriented nature of
human  move  generation.  For
instance, in this game, a human that had played 3 consecutive bingos might play a move
under the “retained image” of his previous lead. He might make a move as if he still had
a lead, even though his opponent has just erased it. This would cause a preference for
plays parallel to CELLARED, since such plays block many bingo lines. FOH also
interferes with the triple word line. A human would have tried to find a playing using the
O-column, but found nothing better then DEFOG (04, 30, DHV). The focus on moves in
the upper left would reduce attention on moves elsewhere.

After Cappelletto’s CELLARED (4H, 82)

From [IMOORT, Cappelletto played TOOM (1354, 42, IIR), which is best despite the
dreadful 1. Other plays (E.g., MOIT (B2, 16)) score too little.

Wapnick held DEGIVX. Wapnick’s XI (141, 50, DEGIV} was an automatic play.
GIVED (141, 35, IX) is next best.
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Cappelletto plaved MILKIER {12G,
28, R), but missed DIKIER (04, 33,
MR}, DIKIER s simulation results are
3.5 points higher than MILKIER's.
MILKIER  reduced  Cappelletto’s
winning chances by about 4%. Also
better than MILKIER is ERICK (H1,
33, IMR).

Wapnick held DEEGIOV. Wapnick’s
VOICED (H1, 36, EG) is best. Second
best is DEVQOID (04, 33, EG).

Then Cappelletio held AHNRTUZ.
Cappelletto played RUTH (F3, 30,
ANZ). RUTH uses the right spot, but
Cappelletto  missed the best play,

THUYA (F5, 38, NRZ). The error cost Cappelietto: 1B Lol KEM RCR; 301
3.5 points, and about 3% of his Wapnick's last: XI (144, 50) 337
winning chances. Joel Wapnick’s N . =
simulations [31] put TARZAN (B7, 39, After Wapnick’s XI (14J, 50)

HU) on top of THUY A, but I think that

result is probably wrong. Wot by much, though, since my simulations show TARZAN as
3 best, only a point behind THUYA. The difference is probably due to either the
number of iterations (i.e., statistical noise) or to rack tuning. T would bet on the latter.
Wapnick’s version of MAVEN would have the SOWPODS lexicon but rack parameters
tuned to OSPD2. The second best play is HAND (O1, 35), which uses a hotspot that both
players appear to have overlooked: FOH takes a back N hook to make FOHMN. The
hidden strength of THUYA is that it keeps an N for Ol plays such as ZANDER and
ZONDA.

As the late game commences, positional considerations become subtler and more
important. Some of the differences between plays are hard to detect. Additionally, as the
average scores drop, hotspots that were previously insignificant gain value. Another
impact of resource depletion is that the players may increase fighting over hotspots. In
this environment, the impact of overlooking a hotspot may cause a series of errors. When
both players overtook a spot, as in this game both players overlooked the significance of
the ~N hook to FOH, then the players may make the best decisions from the perspective
of the information they have available to them, but the annotator labels every move as an
error.



Wapnick plaved GEE (11K, 18, ABCDEFGHI JKL
BCEG), which 18 a good move. , f e
Howewver, EGG (1310, 19, BCEE) is
better by a stupendous amount.
MAVEN rates EGG as 10 points better,
with a winning percentage advantage
of 58% against 48% Why the big
difference? The whole truth is that |
am not sure. Table 0-4 shows move-
by-move average scores. MAVEN is
simulating to the end of the game, so
the variations encompass more than
two plies. The table shows four plies
explicitly, and then gives the rest of
the moves (some of which might not
even occur in every game) as
“Future,”

Wapnick: L
Cappelletto’s last: RUTH (F3, 30) 359

After Cappelletto’s RUTH (F3, 30)

Move | Score | Oppl | Ourl | Opp2  Our2 | Future | Total
EGG 19 389 | 355 404 279 10.1 -7.0
GEE 18 342 | 328 383 | 229 17.8 | -16.6

Table 0-4 Simulation of EGG and GEE

The table shows that the two-ply values of the plays are nearly equal, but EGG has a
farge edge in the Our2 and Future categories. | am not sure why there is a difference. |
cannot trace the difference to any specific issue. EGG does seem like a better play on
general principles, since it scores one point more and keeps a better vowel / consonant
balance than GEE, and the tradeofT between keeping a G and keeping a duplicate E is
basically neutral. I [ had to summarize the difference, it would be that EGG shows betier
timing heading into the endgame. What gives me pause is that the players will manipulate
endganie iming on every remaining turn, so it is not clear that manipulations at this
distance from the horizon are meaningtul. Some of EG(’s advantage could be an artifact
of selecting moves in the simulation using the static analyzer, which is insufficiently
sensitive to the endgame timing issues of this position.

These misgivings notwithstanding, [ am certain that EGG is a better play because it has
better general characteristics, and the simulation results are at least as good as GEE’s.
The real question is whether an altogether different move is best. For example, ABCEE

always work for another day...

Cappelletto played the natural move QANAT (2B, 42, AOZ), which is best. Another
move was ZONDA (01, 55, QAT), which plays a significant role in the tactics of this
game. QANAT is better because the Z has many productive places to play. The
ditference in value between Q and Z is apparent in the Ourl column of Table 0-5 of
move-by-move averages.

248



l Move Score T Oppl | CGurl | Opp2 | Future | Total
QANAT | 42 | 337 | 487 | 243 1.0 33.9
| ZoNDA | 55 | 349 | 318 | 200 | 57 | 285

- ) Table (-5 Simulation of QANAT and ZONDA
, 0115 table vshews tbﬁt the transition to the endgame 1s again a significant event, boosting
MDA by 4.7 points, as shown by the Future column of the table. )

After QANAT, Wapnick played ABCD ‘

WHEEP (N2, 38, BCEG), wﬁixcl—? is o EregliNLMNg
the second best move. Stronger is
CHEEP in the same spot (see Table 0-
6). The difference is that big plays
from O1 are solidly blocked. WHEEP
allows many such plays to overlap
cleanly. CHEEP scores 2 points less
than WHEEP, but has a point
differential 1.5 point higher, mainly
because of the opponent’s next play.
This smail difference is magnified by

M B
o
~N

the fact that plays from Ol can be - . ML
game-changing. WHEEP cost

Wapnick about 5% in winning . P, e I
B A ES

percentage.
Wapnick: ‘B G E E'G BW, 391
Cappelletto’s last: QANAT (2B,42) 401

12 Unseen tiles: ADFIINOORSWZ

After Cappelletto’s QANAT (2B, 42)

Move Score | Opp Future | Total
CHEEP 36 40.2 14.6 10.5
LWHEEP 38 439 14.7 8.8

Table 0-6 Results of CHEEP vs WHEEP

Cappelletto played FRIZERS (M7, 48, AO). This is the biggest scorc, but it goes too
deep into the endgame. There are only 2 tiles in the bag, so Cappelletto will have 4 tiles
after his draw. If he had a good chance of going out in one turn, then FRIZERS would be
a good move, but going out in one is actually unlikely. Because Wapnick moves first in
the endgame, Cappelletto needs rwo plays that go out in order 1o have a Torced out in one.
Cappelletto is better off keeping six tiles, which ZATL (4A, 46, FORS) accomplishes.
7ATI also keeps an F and an S for scoring muscle. ZATI has a point differential only 2
points higher than FRIZERS, but the edge in winning percentage is 12%.

FIZ (13M, 42, AORS) is almost as good as ZATIL FIZ leaves an endgame with 7 tiles

versus 6. It also creates a triple-word line through the open Z. This opening costs points
on average, of course. But when things break right for Cappelletto then the opening can
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sstimates that FIZ has a point differential 7.5 poimis lower than
ercentage 15 only 2% lower.

win the game. MAVEN
ZATI, but the winning |
The endgame starts with Wapnick trailing by 20 points. Wapnick’s next was CREW (8L,
36, BGING, an error that should have cost Wapnick the game. Best was CRIB (8L, 33,
EGNW), because the tiles EGNW retained a big threat: WEND (O1, 34, G). This threat
would force Cappelletio to block with DO (O1, 14, AO). After Wapnick's WANG (B7,
19, F) and Cappelletto’s ZOA (10M, 14+2), Wapnick would emerge with a 22-point gain
and a 2-point win. Commentary during the game stated [51], “Wapnick played a terrific
endgame play of CREW for 36, setting up an out play: BINGO.” The commentary is
wrong; CREW does not set up an out play. CREW rhreatens an out play, which is not the
same at all because Cappelletto will block. As a move, WEND is smaller than an out
play, but it is just as big a rhrear because it, too, will be blocked. Wapnick benefits
because Cappelletto’s block of WEND is smaller then his block of BINGO.

In the game, Cappelletto followed ABCDEFGHI JKLMNO
CREW with ADO (D10, 15, O}, an ; v

error that threw the game back to 7
Wapnick. Cappelletto must block the
plays BINGO (12A, 20} and BINGO
(11A, 8), which would otherwise go
out. However, Cappelletto should
have blocked with DOUM (D12, 20,
AQ), which leaves a larger out-in-two.
After DOUM, Wapnick’s BANG (B7,
17, 1) and Cappelletto’s ZOA (10M,
14-+2) leaves Cappelletto with a 19-
point gain and a 3-point win. After
Cappelletto’s ADO, Wapnick played
BANG (B7, 17, ), and Cappelletto
played ZO (10M, 13+2), which netted
only 13, for a 3-point loss for
Cappelletto.

429
449

Wapnick: B |
Cappelletto’s tiles: A B O,
Thus, the game ended in a 481-478
victory for Wapnick, but Cappelletto After Cappelletto’s FRIZERS (M7, 48)
swept the next three games to win the
World Championship.

Wapnick's Error | Points | Equity Cappelletto’s Error | Points | Equity
Bad challenge 5 2% MILKIER 5 4%
POLTROON 10 1% RUTH 6 6%
FOH 7.5 3% FRIZERS 2 12%
GEE 10 10% ADO 6 100%
WHEEP 3.5 5%

CREW 5 100%

Table 0-7 Error Analysis of Wapnick-Cappelletio
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In my opinion, the play of this game was exceptionally accurate. Table 0-7 shows the
error analysis. The players never missed a bingo, and generally played either the best or
second best move. It is remarkable that the players accomplished this feat while playing
in SOWPODS, which is a more difficult vocabulary than TWL98, and is not the habitual
vocabulary of either player.






Appendix C - Historical Timeline

1983: First program, in PL/1 on an OS/3 70.

é@q&ﬁ: First MAVEN, in C on a DEC VAX 11/780. Competed in first tournament, scoring
1987: Major dictionary overhaul.

1987: MAVEN development moved to Apple Macintosh. Still
tournament, scoring 5-0.

in C. Competed in second
1988: Switched to Appel-Jacobson move generator,

1988: First successful endgame player.

1988: Competed in third tournament, scoring 7-3.

1989: First endgame player that incorporated B¥.

1989: First applied simulation for research purposes.

1990: First pre-endgame player.

1993: Ported to Windows platform, using Borland C-++.

1995: MAVEN incorporated into the Scrabble CD-ROM from Hasbro Interactive.

1997: First used simulation for choosing moves in real time. MAVEN lost to Adam Logan
by 0-2.

1998: MAVEN defeated Joel Sherman and Matt Graham by 6-3.

1998: Rewrote in Visual C++. Major debugging of pre-endgame player. Validated
endgame player resulting in a few minor bug fixes. Defeated Adam Logan by 9-5. Fixed
some bugs uncovered by analyzing the match.

1998: Contributed to the Second Edition of the Scrabble CD-ROM,

1999: Added support for non-English languages.

1999: Implemented an endgame evaluation function for use within the simulator.

2000: Implemented a neural network that evaluates winning percentage within the
simulator.

2001: Began this thesis.
2002: Implemented a scalable simulation controller, removing many limitations.
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2002: Create a prototype inference engine,

2002: Presented this thesis,
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Summary

In ﬂqis thesis. we describe the history, techniques, and results of the MaVEN Scrabble
engine. MAVEN started out as a research project to explore the limits of computer
Scrabble playing ability. It developed into an exceptionally robust engine that don'min‘med
the human champions of the game and contributed to our uxmderstamdiﬁg of the game,

Chaptgr 2 describes the game of Scrabble, concentrating on the nature of the game and
the skills needed to perform at a high level.

Qhapter 3 sketches the history of computer Scrabble from the author's point of view. The
hteramre‘contams few papers about computer Scrabble; this thesis presents much of this
material for the first time.

Chapter 4 covers the purely algorithmic task of move generation. If you wani to play
Scrabble at a high level, then move generation must be exhaustive and fast. Ingenious
algorithms and data structures solve these problems.

Chapters 5 and 6 describe how to evaluate moves. MAVEN was programmed to develop a
positional theory through self-play. Chapter 5 shows how to evaluate changes to the rack.
Chapter 6 discusses how to evaluate changes to the board.

Chapters 7, 8, and 9 show how the game evolves in stages. Chapter 7 characterizes the
first stage, the Early Game. The final stage of the game the Endgame, which Chapter 8
covers in detail. Chapter 9 deals with the Pre-Endgame, which is the phase between the
two. We will tackle the Pre-Endgame last because it has aspects of boih the Early Game
and Endgame.

Chapter 10 describes Simulation, a technique that revolutionized computer Scrabble. The
technique is an implementation of Monte Carlo search of the state space. The application
of Monte Carlo search to Scrabble is successful, so it is worth careful study.

Chapter 11 describes opportunities for improvements in simulation. Opportunities arise
because simulation involves many pelicy choices for how to draw racks, play out
variations, evaluate endpoints, and control the search. The implementation in MAVEN is
but one example. Though that implementation has demonstrated practical success, there
are still open questions.

Chapter 12 presents MAVEN’s competitive results. MAVEN has played in three
tournaments and three arranged matches. These results validate the quality of MAVEN'S
implementation.

Chapter 13 describes opportunities for further investigation. While research on MAVIN
has been a resounding success, there remain areas where further investigations may be
fruitful.

Chapter 14 summarizes research results.

Appendix A gives the rules of the game.



Appendix B presents three annotated games. MAVEN software validated the annotations.

Appendix C gives the historical timeline of MAVEN's development.
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Samenvatting

In dit proefschrift worden de geschiedenis, de technieken en de resultaten van het
Scrabble-programma MAVEN beschreven. MAVEN is begonnen als een oildéraiauekspu"niécn'
naar de mogelijkheden en beperkingen van computers om Scrabble te spelen. Het heeft
zich ontwikkeld tot een zeer sterk en robuust programma dat de menselijke Scrabble-

km"r{psoenen heeft verslagen. Tevens heeft het bijgedragen aan een beter begrip van het
spel. '

In h.oofdswk 2 wordt de aard van het Scrabble-spel beschreven en de vaardigheden die
nodig zijn om op een hoog niveau te presteren.

HO(_)fdiStvl;ik J“ge:e{'l een beeld van de geschiedenis van computer Scrabble vanuit de auteur
gezien. Er zijn in de literatuur weinig artikelen over computer Scrabble te vinden en in dit
proefschrift wordt veel van het materiaal voor de eerste keer gepubliceerd.

Hoofdstuk 4 behandelt het zuiver algoritmische probleem van het genereren van zetien.
Wanneer men Scrabble op een hoog niveau wil spelen dan moet het geneveren van zetter
niet alleen uitputtend maar ook snel zijn. Er bestaan ingenieuze algoritmen en data-
structuren om deze problemen op te lossen.

De hoofdstukken 5 en 6 geven een methode aan om zetten te evalueren. Er is een
programma ontwikkeld waarmee MAVEN tegen zichzell kan spelen; dit heeft geleid 1ot
een positionele theorie. In hoofdstuk 5 wordt aangegeven hoe men veranderingen op het
rek evalueert. Hoofdstuk 6 gaat in op de evaluatie van de veranderingen op het bord.

De hoofdstukken 7, 8, en 9 beschrijven hoe het spel zich in fasen ontwikkelt, Hoofdstuk 7
gaat in op de eerste fase, de opening en het beginnende middenspel. De laatste fase van
het spel, het eindspel, wordt gedetailleerd behandeld in hoofdstuk 8. Hoofdstuk 9 gaat in
op het “pre-cindspel”, dat is de fase is tussen opening en eindspel. We behandelen het
pre-eindspel als laatste omdat het aspecten van heide fasen behelst.

Hoofdstuk 10 geeft een beschrijving van de simulaties. Deze technick heelt voor een
doorbraak in het computer Scrabble gezorgd. De techniek is cen toepassing van het
Monte Carlo zoeken in de toestandsruimte. Deze toepassing is voor Scrabble zeer
succesvol, hetgeen een zorgvuldig onderzoek rechtvaardigt.

Hoofdstuk 11 bespreekt diverse mogelijkheden voor verbetering van de simulatie, Deze
mogelijke verbeteringen betreffen veelal strategische keuzen over het trelkken van lerters,
het uitspelen van varianten, het evalueren van eindtoestanden, en het besturen van het
zoekproces. De verwezenlijking hiervan in MAVEN is slechts een w’ﬂ()l‘l}@g{(ﬁ. Haoewel de
daadwerkelijke implementatie kan bogen op een groot aantal successen, zijn er toch ook
nog open vragen.

Hoofdstuk 12 toont de wedstrijdresultatens  van Maven, Het programma  heelt
deelgenomen aan diverse toernooien €n officiec) georganiseerde matches. De resultaten
bevestigen de kwaliteit van het programma MAVEN.
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In hoofdstuk 13 worden de mogelifkheden voor verder onderzoek besproken. Hoewel het
Maven-onderzoek klinkende successen heeft opgeleverd, blijven er gebieden over
waarin verder onderzoek tot vruchtbare resultaten kan leiden.

Hoofdstuk 14 geefi een samenvatting van de onderzoeksresultaten.
Appendix A beschrijft de regels van het spel.

Appendix B vermeldt drie geannoteerde wedstrijden. MavEN-software heeft deze
annotaties gevalideerd.

Appendix C geeft de historische tijdlijn van de ontwikkeling van MAVEN,
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