
Solving Difficult Game Positions

Solving Difficult Game Positions

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit Maastricht,

op gezag van de Rector Magnificus,
Prof. mr. G.P.M.F. Mols,

volgens het besluit van het College van Decanen,
in het openbaar te verdedigen

op woensdag 15 december 2010 om 14.00 uur

door

Jahn-Takeshi Saito

Promotor: Prof. dr. G. Weiss
Copromotor: Dr. M.H.M. Winands

Dr. ir. J.W.H.M. Uiterwijk

Leden van de beoordelingscommissie:
Prof. dr. ir. R.L.M. Peeters (voorzitter)
Prof. dr. T. Cazenave (Université Paris-Dauphine)
Prof. dr. M. Gyssens (Universiteit Hasselt / Universiteit Maastricht)
Prof. dr. ir. J.C. Scholtes
Prof. dr. C. Witteveen (Technische Universiteit Delft)

The research has been funded by the Netherlands Organisation for Scientific Research

(NWO), in the framework of the project Go for Go, grant number 612.066.409.

Dissertation Series No. 2010-49

The research reported in this thesis has been carried out under the auspices of SIKS,

the Dutch Research School for Information and Knowledge Systems.

ISBN: 978-90-8559-164-1

c© 2010 J.-T. Saito

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means, electronically, mechanically, photo-

copying, recording or otherwise, without prior permission of the author.

Preface

After receiving my Master’s degree in Computational Linguistics and Artificial Intel-
ligence in Osnabrück, I faced the pleasant choice between becoming a Ph.D. student
in Osnabrück or Maastricht. The first option would have led me further into the
field of Computational Linguistics. However, I decided for the second option, crossed
the border to the Netherlands, and continued my work on Computer Go that had
been the topic of my Master’s thesis. It was a choice that I have never regretted.
While I had sensed the gravity of my choice, I could not possibly have foreseen all
actual consequences. One consequence was that I entered the research of solving
difficult game positions. Another consequence was the production of this volume.
Yet another consequence was my encounter with many persons whom I would like
to acknowledge here.

Of course, this thesis would not have been possible without the help of a large
group of people. I would first and foremost like to thank my daily advisors, Mark
Winands and Jos Uiterwijk, and my supervisor Gerhard Weiss. I am grateful to
Mark for his firm guidance on scientific questions and for motivating me whenever
necessary. To Jos I owe gratitude for his patient devotion to detail that so often
reminded me to work with greater care and less haste. I am indebted to Gerhard for
taking over the responsibility of supervising me and for giving me valuable advice
from a point of view wider than that of games and search.

Furthermore, I would like to thank all people with whom I collaborated over the
years. I am grateful to Jaap van den Herik of whose inspiring drive for perfection,
professional attitude, and superb editing skills I was allowed to profit in particular
during my first three years in Maastricht and still continue to profit today. I owe
particular gratitude to two people who might be caught by surprise: Bruno Bouzy
and Helmar Gust. Their support during my Master’s studies led my way to the
Netherlands. Similarly, I am grateful to Erik van der Werf who initiated the project
that I later worked on and who additionally gave me valuable support on many
occasions. I am indebted to Dr. Yngvi Björnsson for his collaboration and Prof.
Hiroyuki Iida for comments on proof-number search.

I will never forget my roommates in my years in the “women’s prison” of Min-
derbroedersberg 6a: Laurens van der Maaten, Maarten Schadd, Guillaume Chaslot,
Andra Waagmeester, Pim Nijssen, and David Lupien St-Pierre. Thank you for eas-
ing the burden of labor with occasional moments of recreation, and for your advice
on matters scientific and beyond. I would like to thank Sander Spek and Laurens
van der Maaten who shared with me not only an appreciation for decent coffee but

vi

also valuable experience that influenced this thesis. I am indebted for inspiring dis-
cussions to my colleagues past and present: Sander Bakkes, Niek Bergboer, Guido
de Croon, Jeroen Donkers, Steven de Jong, Michael Kaisers, Joyca Lacroix, Nyree
Lemmens, Georgi Nalbantov, Marc Ponsen, Evgueni Smirnov, Pieter Spronck, Ben
Torben-Nielsen, Philippe Uyttendaele, Stijn Vanderlooy and Jean Derks.

The one special person I cannot possibly thank enough for enduring my stress
during producing this thesis also happens to be the person I love, Silja. Danke für
Deine unverzichtbare Hilfe.

This work has been supported by FHS’s system administrators Peter Geurtz and
Ton Derix and secretaries Joke Hellemons, Tons van den Bosch, Karin Braeken and
Marijke Verheij.

Countless more people should be thanked here, like the people from BiGCaT
Bioinformatics Department of Maastricht University. I would just like to thank all
of my friends, family, and colleagues for the support they have given me during the
work on this thesis.

Jahn-Takeshi Saito
Maastricht, August 2010

Acknowledgments

The research has been carried out under the auspices of the Dutch Research School
for Information and Knowledge Systems (SIKS). I gratefully acknowledge the finan-
cial support by the Netherlands Organisation for Scientific Research (NWO).

Table of Contents

Preface v

Table of Contents vii

List of Abbreviations xi

List of Figures xii

List of Tables xiii

1 Introduction 1
1.1 Games and AI . 1
1.2 Solving Games and Game Positions 2
1.3 Problem Statement and Research Questions 4
1.4 Outline of the Thesis . 5

2 Basics of Game-Tree Search for Solvers 7
2.1 Game-Tree Search . 8

2.1.1 Game Tree . 8
2.1.2 Search Tree . 8
2.1.3 Transposition Tables and the GHI Problem 9

2.2 Proof-Number Algorithms . 10
2.2.1 Proof-Number Search . 10
2.2.2 Variants of PNS . 13
2.2.3 Performance of Proof-Number Algorithms 16
2.2.4 Enhancements for Proof-Number Algorithms 17

2.3 Monte-Carlo Techniques for Search 19
2.3.1 Monte-Carlo Evaluation . 20
2.3.2 Monte-Carlo Tree Search . 22

2.4 Chapter Summary . 25

3 Monte-Carlo Proof-Number Search 27
3.1 Monte-Carlo Proof-Number Search 28

3.1.1 Algorithm . 28
3.1.2 Controlling Parameters . 29

viii Table of Contents

3.2 Experiment 1: Tuning the Parameters of MC-PNS 30
3.2.1 Life-and-Death Problems . 30
3.2.2 Test Set . 31
3.2.3 Algorithm and Implementation 32
3.2.4 Test Procedure . 32

3.3 Results of Experiment 1 . 33
3.4 Discussion of Experiment 1 . 35
3.5 Patterns for PNS . 37

3.5.1 Patterns in Computer Go . 37
3.5.2 Two Pattern-Based Heuristics 37

3.6 Experiment 2: Initialization by Patterns or by Monte-Carlo Evaluation 38
3.7 Results of Experiment 2 . 38
3.8 Discussion of Experiment 2 . 39
3.9 Chapter Conclusion and Future Research 40

3.9.1 Chapter Conclusion . 40
3.9.2 Future Research . 40

4 Monte-Carlo Tree Search Solver 43
4.1 Monte-Carlo Tree Search Solver . 44

4.1.1 Backpropagation . 45
4.1.2 Selection . 45
4.1.3 Pseudocode for MCTS-Solver 46

4.2 Monte-Carlo LOA . 47
4.2.1 Selection Strategies . 47
4.2.2 Simulation Strategy . 50
4.2.3 Parallelization . 50

4.3 Experiments . 51
4.3.1 Experimental Setup . 51
4.3.2 Selection Strategies . 52
4.3.3 Comparing Different Solvers 54
4.3.4 Testing Parallelized Monte-Carlo Tree Search Solver 55

4.4 Chapter Conclusion and Future Research 56
4.4.1 Chapter Conclusion . 56
4.4.2 Future Research . 57

5 Parallel Proof-Number Search 59
5.1 Parallelization of PNS . 60

5.1.1 Terminology . 60
5.1.2 ParaPDS and the Master-Servant Design 60
5.1.3 Randomized Parallelization 61

5.2 RP–PNS . 62
5.2.1 Detailed Description of Randomized Parallelization for PNS . 62
5.2.2 Implementation . 64

5.3 Experiments . 64
5.3.1 Setup . 65
5.3.2 Results . 65

Table of Contents ix

5.3.3 Discussion . 66
5.4 Chapter Conclusion and Future Research 67

5.4.1 Chapter Conclusion . 67
5.4.2 Future Research . 68

6 Paranoid Proof-Number Search 69
6.1 Search Algorithms for Multi-Player Games 70

6.1.1 The Maxn Algorithm . 70
6.1.2 Equilibrium Points . 71
6.1.3 Paranoid Search . 72

6.2 Paranoid Proof-Number Search . 73
6.3 Finding the Optimal Score . 74
6.4 The Game of Rolit . 75

6.4.1 Predecessors and Related Games 75
6.4.2 Rules of Rolit . 76
6.4.3 Search Space of Rolit . 77
6.4.4 A Monte-Carlo Player for Rolit 78

6.5 Experimental Setup . 79
6.5.1 Initialization . 79
6.5.2 Knowledge Representation and Hardware 79

6.6 Results . 80
6.6.1 Game Results . 80
6.6.2 Search Trees . 81
6.6.3 PPNS vs. Paranoid Search 82

6.7 Chapter Conclusion and Future Research 83
6.7.1 Chapter Conclusion . 83
6.7.2 Future Research . 83

7 Conclusions and Future Research 85
7.1 Conclusions on the Research Questions 85

7.1.1 Monte-Carlo Evaluation . 85
7.1.2 Monte-Carlo Tree Search Solver 86
7.1.3 Parallel Proof-Number Search 86
7.1.4 Paranoid Proof-Number Search 87

7.2 Conclusions on the Problem Statement 87
7.3 Recommendations for Future Research 88

References 91

Appendix 105

A Rules of Go and LOA 105
A.1 Go Rules . 105
A.2 LOA Rules . 106

Index 109

x Table of Contents

Summary 113

Samenvatting 117

Curriculum Vitae 121

SIKS Dissertation Series 123

List of Abbreviations

dn Disproof number
df-pn Depth-first Proof-Number Search
LOA Lines of Action
MCE Monte-Carlo Evaluation
MC-PNS Monte-Carlo Proof-Number Search
MCTS Monte-Carlo Tree Search
pn Proof number
ParaPDS Parallel Proof-and-Disproof-Number Search
PDS Proof-and-Disproof-Number Search
PDS–PN Two-level Proof-and-Disproof-Number Search
PNS Proof-Number Search
PN∗ Iterative-deepening depth-first Proof-Number Search
PN2 Two-level Proof-Number Search
PN1 First-level search of PN2

PN2 Second-level search of PN2

RP–PNS Randomized-Parallel Proof-Number Search
RP–PN2 Two-level Randomized-Parallel Proof-Number Search

List of Figures

2.1 Example of a PNS tree. 12
2.2 The four stages of MCTS. 23

3.1 Schematic representation of a search tree generated by MC-PNS. . . 30
3.2 Example of a life-and-death problem. 31
3.3 Time consumption of various configurations of MC-PNS. 34
3.4 Space consumption of various configurations of MC-PNS. 36

4.1 LOA position with White to move. 45
4.2 Search trees showing a weakness of Monte-Carlo evaluation. 46

5.1 Example of a PNS tree. 63

6.1 Example of a three-player three-ply maxn tree. 71
6.2 Example of a three-player three-ply paranoid tree. 72
6.3 Example of a three-player three-ply PPNS tree. 74
6.4 Game boards of 8× 8 Reversi and 8× 8 Rolit. 75

A.1 Two illustrations for the rules of Go (adopted from Chaslot, 2010). . 106
A.2 Three illustrations for the rules of LOA (adopted from Winands,

2004). 107

List of Tables

3.1 Time and node consumption of various configurations of MC-PNS rel-
ative to PNS. 33

3.2 Time and space ranking of the four compared PNS variations averaged
over 30 test problems. 39

4.1 Comparing different selection strategies on 488 test positions with a
limit of 5,000,000 nodes. 53

4.2 Comparing the different Progressive-Bias variants on 224 test posi-
tions with a limit of 5,000,000 nodes. 53

4.3 Comparing PB-L1 and PB-L2 on 286 test positions with a limit of
5,000,000 nodes. 54

4.4 Comparing MCTS-Solver, αβ, and PN2 on 488 test positions with a
limit of 5,000,000 nodes. 54

4.5 Comparing MCTS-Solver and PN2 on 304 test positions. 55
4.6 Experimental results for MCTS-Solver with root parallelization on

319 test positions. 55
4.7 Experimental results for MCTS-Solver with tree parallelization. . . 56

5.1 Experimental results for RP–PNS and RP–PN2 on S143. 66

6.1 Search spaces of 6× 6 and 8× 8 Reversi variants. 77
6.2 Percentages of games won of one million Monte-Carlo games in 4× 4,

6× 6, and 8× 8 Rolit with 2, 3, and 4 players. 78
6.3 Average branching factors of Rolit. 79
6.4 Proven optimal scores for all players on 4× 4, 6× 6, and 8× 8 Rolit

for 2, 3, and 4 players under the paranoid condition. 80
6.5 Nodes evaluated in 4× 4, 6× 6, and 8× 8 Rolit for 2, 3, and 4 players

under the paranoid condition. 81
6.6 Comparison of search-tree sizes on 4 × 4, 6 × 6, and 8 × 8 Rolit for

paranoid search and PPNS. 82

Chapter 1

Introduction

This thesis is in the field of games and Artificial Intelligence (AI). It has long been
claimed, that games are an indicator of or even a precondition to culture (Huizinga,
1955). Humans participate in games not only to satisfy their desire for entertain-
ment but also because they seek an intellectual challenge. One obvious challenge
in games is defeating the opponent(s). The AI equivalent to this challenge is the
designing of strong game-playing programs. Another challenge in games is finding
the result of a game position, for instance whether a Chess position is a win or a
loss. The AI equivalent to this challenge is the designing of algorithms that solve
positions. While game-playing programs have become much stronger over the years,
solving games still remains a difficult task today and has therefore been receiving
attention continuously. Throughout the thesis, we are interested in this difficult task
of solving game positions. The following chapters present algorithms that are based
on recent research in the field of search algorithms. In particular, the thesis extends
recent developments in Monte-Carlo search for the task of solving. Moreover, open
questions of Proof-Number Search for solving are addressed. To that end, the here
described research contributes and tests new search algorithms.

This chapter introduces the basic notion of solving and gives the problem state-
ment and four research questions guiding our research. Section 1.1 summarizes the
relevance of games for AI. Section 1.2 discusses the concept of solving games and
game positions. Section 1.3 formulates the problem statement and gives four re-
search questions. Section 1.4 completes the introduction by presenting the structure
of this thesis and the relationship between chapters and research questions.

1.1 Games and AI

Since the early days of AI, games have served as a testing ground for measuring
the progress of the field. Two founding fathers of the discipline, Shannon (1950)
and Turing (1953), were among the first to describe Chess-playing programs. Ever
since, progress has been steady. Programs have improved and nowadays play a broad
range of games stronger than humans. An event illustrating the progress of playing
strength is the defeat of the human World Champion Gary Kasparov by the Chess

2 Introduction

program Deep Blue. On May 11, 1997 Deep Blue won a six-game match by two
wins to one with three draws. This outcome was recognized as a historic victory for
AI (DeCoste, 1998).

The number of games in which humans can easily defeat the best game-playing
program is declining. An example of this trend is computer Go. The game of Go
had been one of the remaining challenges in which the human player had still been
clearly superior to the programs. However, the recent past has witnessed the rise
of the Monte-Carlo Tree Search framework (Coulom, 2007a; Kocsis and Szepesvári,
2006). It has helped closing the competitive gap between man and machine (Chaslot,
2008).

Allis, Van den Herik, and Herschberg (1991) suggest categorizing games based on
the strength of available programs. The five suggested categories are: (1) amateur-
level games, (2) grand-master-level games, (3) champion-level games, (4) over- cham-
pion games, and (5) solved games. The categories (1) to (4) relate the strength of
the programs to the strength of human players. For instance, an amateur-level game
is a game in which the strongest available program plays at human amateur level.
Category (5), solved games, is not defined in relation to human strength. A game is
solved if its game-theoretic value has been calculated (e.g., win for the first player)
assuming both players play optimally.

The advance of AI research has resulted in a growing number of over-champion
games including the above-mentioned Chess. Although many games have been
solved, solving games has remained challenging (Van den Herik, Uiterwijk, and Van
Rijswijck, 2002). For some games researchers therefore solved smaller versions, e.g.,
5× 5 Go (Van der Werf, Van den Herik, and Uiterwijk, 2003), 6× 6 Lines of Action
(LOA) (Winands, 2008), and 8× 8 Hex (Henderson, Arneson, and Hayward, 2009).
Even solving mate positions in games such as Chess or Shogi still poses a hard
problem today. This thesis deals with search techniques for addressing this problem.

1.2 Solving Games and Game Positions

Solving is finding the game-theoretic value of a given game position. Some games,
such as Hex (Nash, 1952) and Nim (Bouton, 1902), can be solved by a theoretic
proof. Many other games cannot be solved in this way. Solving the latter games
requires search. Search for solving is described in detail in Chapter 2. We call an
algorithm describing how to find a game-theoretic value of a game position a solving
algorithm. A solver is an implementation of a solving algorithm.

Different degrees of solving have been distinguished by Paul Colley and Donald
Michie (Allis, 1994). The degrees form a hierarchy in which the minimal solution is
called ultra weak and the maximal solution is called strong. The hierarchy of solving
games is as follows (Allis, 1994).

Ultra-weakly solved. For the initial position(s), the game-theoretic value has
been determined. Crucially, the proof is not necessarily constructive, i.e., it
does not have to provide a strategy of optimal play. A famous example of an
ultra-weakly solved game is Hex (Nash, 1952).

1.2 — Solving Games and Game Positions 3

Weakly solved. For the initial position(s), a strategy has been determined to ob-
tain at least the game-theoretic value of the game for both players under rea-
sonable resources. Examples of weakly solved games include Qubic (Patashnik,
1980), Go-Moku (Allis, Huntjes, and Van den Herik, 1996), Nine-Men’s Morris
(Gasser, 1996), various k -in-a-row games (Uiterwijk and Van den Herik, 2000),
Domineering (Breuker, Uiterwijk, and Van den Herik, 2000), Renju (Wágner
and Virág, 2001), 5 × 5 Go (Van der Werf et al., 2003), Checkers (Schaef-
fer et al., 2007), and Fanorona (Schadd et al., 2008).

Strongly solved. For all legal positions, a strategy has been determined to obtain
the game-theoretic value of the position, for both players, under reasonable
resources. Examples of recently strongly solved games include Kalah (Irving,
Donkers, and Uiterwijk, 2000), Awari (Romein and Bal, 2003), and Connect
Four (Tromp, 2008).

When solving an arbitrary game position (as opposed to only regarding initial
positions), the three degrees of solving can be adopted trivially as follows. A non-
initial position can be thought of as the initial position of a derived game. All rules
of the derived game except those determining the start position are the same as in
the original game. We call a position weakly solved if the derived game is solved
weakly. Under this notion, a solving algorithm is a method for solving games or
game positions weakly.

Solvers for positions of two-player games with perfect information such as Go
(Wolf, 1994; Kishimoto and Müller, 2005a; Wolf and Shen, 2007), and Shogi (Tak-
izawa and Grimbergen, 2000; Nagai, 2002) have been available for a long time. The
earliest solvers were mate solvers for Chess. Two of the earliest solvers deserve men-
tioning here. In 1912, the Spanish engineer Torres y Quevedo presented an electro-
mechanic automaton called El Ajedrecista (“the Chess player”) which was able
to solve one kind of King-Rook-King endgames (Bell, 1978) with the constraint of
occasional mechanical failure. About 40 years later, in 1951, Prinz programmed the
Manchester-Mark I in order to solve mate-in-two endgame problems.

Already in 1985, Grottling (1985) compared the performance of several mate
solvers on Chess problems. As pointed out by Lindner (1985), the Chess problem
is characterized by the following three attributes: (1) it has a solution (normally a
checkmate), (2) the solution is reachable in a fixed number of moves, and (3) the
first move is required to be unique. A mate-in-n problem is furthermore constraint
by the fact that no refutation is possible which prolongs the game beyond n moves.

Besides two-player games with perfect information, several researchers provided
solving algorithms for two-player games with imperfect information. Sakuta and Iida
(2000) solved positions for the imperfect-information game of Screen Shogi. Simi-
larly, Ferguson (1992) was able to solve the KBNK ending in the game of Kriegspiel.
Bolognesi and Ciancarini (2003) successfully solved more demanding endgames of
Kriegspiel by considering extensive search spaces given by meta-positions, i.e., col-
lections of possible positions deducible from observations with limited information.

The solving algorithms we are studying in this thesis are search algorithms. They
can be distinguished into forward search and backward search (Schaeffer et al., 2007).
Forward search expands a search tree or search graph from a given position and

4 Introduction

gradually searches deeper until all subtrees are solved. Backward search starts by
considering the game-theoretic values for all terminal positions. Then, the values for
all positions directly preceding terminal positions are calculated. Next, the values
for the preceding positions are calculated and so on. This information is stored as
an endgame database. In this way, the search tree is built bottom up until the
game-theoretic value of the initial position has been found. The most common
backward-search technique for creating an endgame database is retrograde analysis
(Ströhlein, 1970). While some games like Go are not suitable for endgame databases
due to the overwhelming number of terminal positions, other games such as Chess
(Thompson, 1986; Nalimov, Haworth, and Heinz, 2000) are more suitable because
their state space is converging (Allis, 1994). For such games, including Checkers
(Schaeffer et al., 2007) and Fanorona (Schadd et al., 2008), it is possible to combine
forward and backward search by expanding a search tree up to a certain depth at
which an endgame database provides the game-theoretic value.

Forward search commonly applies heuristic knowledge to solve a game, but it is
also possible to combine search and analytical proofs. An analytical proof provides
perfect knowledge which the search algorithm can exploit for solving. In this way,
Bullock (2002) solved Domineering on large board sizes up to 10× 10 by supplying
perfect knowledge in an evaluation function. Similarly, Allis (1988) provided a rule-
based approach to solving Connect Four. Hayward, Björnsson, and Johanson (2005)
solved 7× 7 Hex with perfect knowledge of virtual connections. More recently, Wu
and Huang (2006) and Chiang, Wu, and Lin (2010) solved k -in-a-row games by
combining analytical proofs with search algorithms.

1.3 Problem Statement and Research Questions

The previous section reflected on solving games and game positions by computer
programs. This is exactly the topic of the thesis. The game positions studied in
this thesis generalize from the narrow definition of mate-in-n for Chess problems.
Throughout this thesis and if not stated otherwise explicitly, the games considered
are deterministic turn-taking adversarial games with perfect information. We con-
sider any position of a game for solving. In most cases, we do not know a game
position’s outcome (win or loss) or the exact depth of the solution. Moreover, the
solution is not required to have a unique best move.

While much effort has been put into αβ search (Knuth and Moore, 1975), this
thesis investigates solving games with Monte-Carlo search techniques (Abramson,
1990; Brügmann, 1993; Bouzy and Helmstetter, 2003; Coulom, 2007a; Kocsis and
Szepesvári, 2006) and Proof-Number Search (Allis, Van der Meulen, and Van den
Herik, 1994). In particular, we test new forward-search algorithms on the games of
Go, LOA, and Rolit. The following problem statement (PS) guides our research.

PS How can we improve forward search for solving game positions?

We give four research questions to address the problem statement. The context of
the four research questions is the current research in game-tree search in general and
two current aspects in particular, namely: (i) the recent progress in Monte-Carlo

1.4 — Outline of the Thesis 5

search techniques for game-playing programs, and (ii) open questions in applying
Proof-Number Search variants to solving difficult game positions. The four research
questions deal with (1) Monte-Carlo evaluation, (2) Monte-Carlo Tree Search, (3)
parallelized search, and (4) search for multi-player games.

RQ 1 How can we use Monte-Carlo evaluation to improve Proof-Number Search for
solving game positions?

The recent past in the game-tree search domain has witnessed graspable advances
by applying Monte-Carlo evaluation (Abramson, 1990; Brügmann, 1993; Bouzy and
Helmstetter, 2003). RQ 1 inquires in how far Proof-Number Search can exploit this
development.

RQ 2 How can the Monte-Carlo Tree Search framework contribute to solving game
positions?

Based on Monte-Carlo evaluation, Monte-Carlo Tree Search (MCTS) (Kocsis and
Szepesvári, 2006; Coulom, 2007a) has seen many successes in the past few years. RQ
2 asks how these successes can be exploited for solving. In particular, the question
calls for investigating how game-theoretic values can be propagated in the search
tree of MCTS.

RQ 3 How can Proof-Number Search be parallelized?

So far, only a small amount of research treated the issue of parallelizing Proof-
Number Search (Kishimoto and Kotani, 1999; Kaneko, 2010). To answer RQ 3, we
propose a way to parallelize Proof-Number Search by randomization.

RQ 4 How can Proof-Number Search be applied to multi-player games?

Most solving algorithms are designed to solve two-player games. RQ 4 addresses
a generalization of solving beyond the two-player limit (Luckhardt and Irani, 1986;
Korf, 1991; Sturtevant and Korf, 2000). The thesis proposes to extend Proof-Number
Search for multiple players. In doing so, we address the problem of defining what
solving means in the context of games with more than two players.

1.4 Outline of the Thesis

This thesis is organized in seven chapters. Chapter 1 gives a general introduction
to the topic of this thesis, solving games, and presents the problem statement and
four research questions that guide the research. Chapter 2 establishes the termi-
nology used throughout the remainder of the thesis and surveys existing search
algorithms. In particular, it explains Monte-Carlo search techniques and variants of
Proof-Number Search in detail.

Each of Chapters 3, 4, 5, and 6 answers one of the four research questions and
thereby addresses the problem statement of this thesis. Chapter 3 describes how
Monte-Carlo evaluation can be combined with Proof-Number Search to form an

6 Introduction

algorithm called MC-PNS. We test MC-PNS on Go problems. The chapter provides
an answer to RQ 1. Chapter 4 answers RQ 2 by showing how Monte-Carlo Tree
Search can be transformed into a solving algorithm called MCTS Solver. The solver
is tested on LOA positions. Chapter 5 addresses RQ 3 and describes a parallelization
of PNS which is based on randomization. The resulting parallel algorithm is called
RP–PNS. RP–PNS and its two-level variant RP–PN2 are tested on LOA positions.
Chapter 6 focuses on solving multi-player games and therefore supplies an answer
to RQ 4. We propose an adaptation of PNS for multi-player games. The resulting
algorithm, Paranoid Proof-Number Search, is tested on the game of Rolit, a multi-
player version of Othello (Reversi).

Chapter 7 concludes the thesis by reviewing the results of the preceding chapters
and relating them to the problem statement and the four research questions, and
gives recommendations for future research. The appendix contains the rules for the
games of Go and LOA.

Chapter 2

Basics of Game-Tree Search
for Solvers

This chapter is partially based on the following two publications.1

1. J-T. Saito, G.M.J.B. Chaslot, J.W.H.M. Uiterwijk, and H.J. van den Herik. Monte-
Carlo Proof-Number Search. In H.J. van den Herik, P. Ciancarini, and H.H.L.M.
Donkers, editors, Computers and Games - 5th International Conference (CG ‘06),
volume 4630 of Lecture Notes in Computer Science, pp. 50–61. Springer, Berlin,
Germany, 2007.

2. J-T. Saito, M.H.M. Winands, J.W.H.M. Uiterwijk, and H.J. van den Herik. Group-
ing Nodes for Monte-Carlo Tree Search. In M.M. Dastani and E. de Jong, ed-
itors, Proceedings of the 19th Belgian-Dutch Conference on Artificial Intelligence
(BNAIC ‘07), pp. 276–283. Utrecht University Press, Utrecht University, Utrecht,
The Netherlands, 2007.

The solving algorithms presented in the later chapters require a basic under-
standing of standard search techniques. The aim of this chapter is to provide an
overview of search techniques related and relevant to solving. To this end, we intro-
duce basic concepts and give notational conventions applied throughout the thesis.
We then devote particular detail to two topics: (1) proof-number algorithms (Allis,
1994; Van den Herik and Winands, 2008), and (2) Monte-Carlo techniques (Abram-
son, 1990; Kocsis and Szepesvári, 2006; Coulom, 2007a). Proof-number algorithms
are stressed because they are well-studied standard techniques for solving. The rea-
son for paying particular attention to Monte-Carlo techniques is that they can also
be used for solving positions (cf. Zhang and Chen, 2008; Winands, Björnsson, and
Saito, 2008).

This chapter is organized as follows. Section 2.1 introduces the basic concepts
of game-tree search as well as the notational conventions required for describing

1 The author is grateful to Springer-Verlag and Utrecht University Press for the permission to
reuse relevant parts of the articles.

8 Basics of Game-Tree Search for Solvers

solving techniques. Section 2.2 introduces the family of proof-number algorithms.
Section 2.3 gives an overview of Monte-Carlo techniques relevant for Monte-Carlo-
based solvers which are described in detail in Chapter 4. Section 2.4 concludes the
chapter by relating the search techniques introduced in this chapter to the techniques
presented in the following chapters.

2.1 Game-Tree Search

This section describes game-tree search. Subsection 2.1.1 introduces basic con-
cepts of game-tree search. Subsection 2.1.2 describes the search tree and three
common search methods. Subsection 2.1.3 explains transposition tables and the
Graph-History-Interaction problem; the latter is relevant to Section 2.2.

2.1.1 Game Tree

A game tree is an explicit representation of the state space for turn-based games.
The nodes of the tree represent positions, the edges represent moves. The node
representing the initial position is the root. A node is terminal if its corresponding
position is an end position according to the rules of the game. Terminal nodes have a
game-theoretic value according to the rules of the games, e.g., win or loss. A node’s
immediate successor is called a child. Analogously, a node’s immediate predecessor is
called its parent. Any node may have zero or more children. The root has no parent.
All other nodes have exactly one parent. An internal node is a node that has a child.
A node is fully expanded by generating all of its children. A node without children
is called a leaf. A successor of a node P is recursively defined as either (1) a child of
P, or (2) a child of a successor of P. Analogously, a node P is called predecessor of
another node S if S is a successor of P. A path to L is the set of all predecessors of
L.

A game tree is generated by first fully expanding the root and then repeatedly
expanding all non-terminal nodes until all leaves are terminal. The game-theoretic
value of the game is the value of the initial position under optimal play by both
players. The game-theoretic value can be found by observing the game tree.

The depth of the root is zero. For non-root nodes the depth is the one-increment
of the depth of the parent.

2.1.2 Search Tree

Often a game tree is too large to be fully expanded in practice. Instead, a search
tree can be considered. The search tree is part of the game tree. It can be used for
finding a solution for two purposes. The first purpose is finding the game-theoretic
value of the initial position. The second purpose is finding the best move given
constraints on time or space.

A search tree is developed starting from the root according to a search method.
Search methods are often guided by an evaluation function. Evaluation functions
estimate the game-theoretic value of a game position (Pearl, 1984) by assigning a
heuristic value to a game position.

2.1 — Game-Tree Search 9

We distinguish three kinds of search methods: (1) breadth-first search, (2) depth-
first search, and (3) best-first search. We shall briefly describe each of them.

Breadth-first search first expands the root node. Next, it expands all non-
terminal leaves at depth 1. Then all non-terminal leaves at the next depth are
expanded. This process is repeated incrementally until a solution is found. Thus,
siblings are expanded before children. Breadth-first search always finds a solution
with the shortest path, if there is any, but typically requires too much memory in
practice.

Depth-first search first expands the root. Next, one of its children is selected
for expansion. If the selected node is not terminal, the node is expanded. Then
again one of the newborn children is selected for expansion and so forth. If a child
is a terminal, one of its siblings is chosen for further investigation. If all children
have been investigated, one of the parent’s siblings is chosen and so forth. In this
manner, children are expanded before siblings. Depth-first search requires relatively
little memory. In practice it is able to find solutions quickly when an evaluation
function is used. A disadvantage is that the search method often spends much time
in subtrees not contributing to finding a solution. αβ search (Knuth and Moore,
1975) is an instance of depth-first search that uses an evaluation function in the
leaves.

Best-first search aims at combining the advantages of breadth-first and depth-first
search. Best-first search iterates a loop that consists of two steps: (1) a heuristic
is employed to find the most-promising node which is a leaf in the tree; (2) the
most-promising leaf is expanded. The loop is repeated until a solution is found. A
disadvantage of best-first search is that it stores the whole search tree in memory.
Examples of best-first search are Proof-Number Search (Allis et al., 1994) and MCTS
(Kocsis and Szepesvári, 2006; Coulom, 2007a).

2.1.3 Transposition Tables and the GHI Problem

Search trees may grow large in practical applications. To reduce the size of a search
tree, transposition tables are used to store the results of a searched position (Green-
blatt, Eastlake, and Croker, 1967; Breuker, 1998). Transposition tables exploit the
fact that nodes representing the same game positions may occur multiple times in
the same search tree. More precisely, a transposition table is a table that maps a
game position to some data relevant for that position. Transposition tables may
encounter difficulties in games that allow reaching the same position by different
paths.

As pointed out by Breuker (1998) two difficulties can arise because of the different
paths. (1) A position may actually be illegal. For instance, in Go a move may violate
a repetition rule when reached via a certain path but not when reached via another
path. This is called the move-generation problem. (2) A position may be assigned
a wrong game-theoretic value. For instance, in Chess a position may be a draw by
the three-fold repetition rule. This is called the evaluation problem. Both problems
are collectively referred to as the Graph-History-Interaction problem (GHI problem,
Palay, 1983; Campbell, 1985).

10 Basics of Game-Tree Search for Solvers

2.2 Proof-Number Algorithms

As noted above, depth-first search and best-first search are more relevant to practical
applications than breadth-first search. Arguably the strongest contribution that
depth-first search made to solving is by αβ. Many games were (partially) solved
by iterative-deepening αβ. Among them are Checkers (Schaeffer et al., 2007) and
small Go boards (Van der Werf et al., 2003; Van der Werf and Winands, 2009). Two
instances of best-first search that are particularly relevant for solving are Proof-
Number Algorithms and Monte-Carlo Tree Search. Proof-Number Algorithms are
presented in this section and Monte-Carlo Tree Search in Section 2.3.

Since the invention of Proof-Number Search (PNS) (Allis et al., 1994) in the 1990s
a family of PNS variants evolved. These variants have been successfully applied to a
variety of domains including Othello (Nagai, 2002), Shogi (Seo, Iida, and Uiterwijk,
2001; Nagai, 2002), Tsume-Go (Kishimoto and Müller, 2003), and LOA (Winands,
Uiterwijk, and Van den Herik, 2004). We call the family of algorithms that are
variants of PNS, proof-number algorithms. All of them have two things in common:
(1) they are solving algorithms for binary goals (proving, e.g., win or no win), and
(2) they rely on the concept of proof number.

This section gives a detailed account of proof-number algorithms. Subsection
2.2.1 describes the basic PNS algorithm. Subsection 2.2.2 discusses five proof-number
algorithms. Subsection 2.2.3 explains how the performance of different proof-number
algorithms compares and Subsection 2.2.4 introduces three enhancements.

2.2.1 Proof-Number Search

Proof-Number Search (PNS) by Allis et al. (1994) is the most basic proof-number al-
gorithm. All other variants of proof-number algorithms are descendants of PNS. This
subsection describes the PNS algorithm. We do so in four parts: (A) Conspiracy-
Numbers Search, (B) basic idea of PNS, (C) proof and disproof numbers, and (D)
the PNS algorithm.

A. Forerunner: Conspiracy-Number Search

McAllester (1985; 1988) presented Conspiracy-Number Search which is a conceptual
forerunner of PNS. Conspiracy numbers were introduced for minimax search (Von
Neumann and Morgenstern, 1944) and indicate how likely it is that the root takes on
a certain value v. This likelihood is expressed by the conspiracy number which is the
minimum number of leaves (conspirators) that must change their value to cause the
root to change its value to v. The idea was later improved by Schaeffer (1989; 1990).

Two types of numbers, ↑CN and ↓CN , are used in order to calculate the conspir-
acy numbers for each non-terminal node N. The minimum number of conspirators to
increase N’s value to v is ↑CN . If N’s value is greater than or equal to v, then ↑CN is
0. ↓CN is the minimum number of conspirators required to decrease the value of
N to v. If N’s value is smaller than or equal to v, then ↓CN is 0. For calculating
↑CN and ↓CN at the root, ↑CN and ↓CN values are calculated recursively for all
nodes in the tree starting at the leaves. Different updating rules apply for ↑CN and

2.2 — Proof-Number Algorithms 11

↓CN depending on whether N is the maximizing player’s node or the minimizing
player’s node.

Conspiracy numbers are similar to proof numbers with respect to two aspects:
(1) two numbers at each node represent information on the expected game-theoretic
value of the position, and (2) the numbers are calculated bottom up by backpropa-
gation from the leaves to the root.

B. Basic Idea of PNS

PNS is a best-first search algorithm. Its heuristic determines the most-promising leaf
by selecting the most-proving node (cf. Subsection 2.1.2). The most-proving node is
found by exploiting two characteristics of the search tree: (1) its shape (determined
by the branching factors of internal nodes), and (2) the game-theoretic values of the
leaves (which are known if a leaf is terminal). Since no other information is used by
it, PNS is uninformed search, i.e., the search does not require to use any knowledge
beyond the rules of the game.

C. Proof and Disproof Numbers

As already mentioned, PNS employs ideas similar to Conspiracy Number Search.
In order to find the most-proving node, PNS maintains two numbers for each node
N. (1) The proof number, pn or pn(N), represents the number of leaf nodes that at
least have to be proven in order to prove the goal. Analogously, (2) the disproof
number, dn or dn(N), represents the number of leaf nodes that at least have to be
disproven to disprove the goal. The values of pn and dn can be calculated for each
node in the tree as follows.

We start by describing how the values are initialized for leaf nodes. When a goal
is proven, no further expansion is required for proving it and no further expansion
can disprove it anymore. The corresponding holds for a disproven node. Adhering
to this observation, for any terminal node T, pn and dn are set as follows. If the
goal is proven at T, then pn(T) = 0 and dn(T) =∞. If the goal is disproven at T,
then pn(T) =∞ and dn(T) = 0.

For any non-terminal leaf L, it is not yet possible to say what its game-theoretic
value is. Thus the values for L are set according to an initialization rule. The
most simple initialization rule directly follows the definition of pn and dn. It sets
pn(L) = dn(L) = 1.

The values for each internal node I are calculated from the set of its children,
children(I). The backpropagation rules take into account whether I is an OR node
or an AND node.

Backpropagation rule for OR nodes:

pn(I) = min
S∈children(I)

pn(S) , (2.1)

dn(I) =
∑

S∈children(I)

dn(S) . (2.2)

12 Basics of Game-Tree Search for Solvers

Figure 2.1: Example of a PNS tree. Square nodes are OR nodes and circular nodes are
AND nodes. Each node’s pn is given by the upper number, its dn by the lower number.

Backpropagation rule for AND nodes:

pn(I) =
∑

S∈children(I)

pn(S) , (2.3)

dn(I) = min
S∈children(I)

dn(S) . (2.4)

Figure 2.1 gives an example of a PNS tree. OR nodes are represented by square
boxes and are played by MAX, AND nodes are represented by circles and are played
by MIN. We assume that player MAX tries to prove and player MIN tries to disprove
the goal. Each node contains two numbers. The upper number indicates the node’s
proof number and the lower number its disproof number.

The values for pn and dn are calculated by applying the initialization rule and
the backpropagation rules. There are two terminal leaf nodes. Their game-theoretic
value is a win for MAX. Therefore, their pn has value 0 and their dn has value
∞. The non-terminal leaves have been initialized by the simple initialization rule.
Their pn and dn have value 1. The values of the leaves’ parents are obtained by
backpropagating the leaf values according to the backpropagation rule for AND
nodes. The root’s pn and dn are set by applying the backpropagation rule for OR
nodes on the values of the AND nodes.

The most-proving node in the example is the leftmost leaf. It is found by suc-
cessively building a path starting from the root and ending at the frontier of the
tree. At the root, the left AND node is chosen because it has the smallest proof

2.2 — Proof-Number Algorithms 13

number. At the selected AND node, the child with minimal dn is selected. This is
the leftmost leaf.

D. The PNS Algorithm

At the start of PNS, pn and dn of the root are both set to 1. As long as neither
pn nor dn of the root has value 0, there are still expansions required and thus the
search is continued by performing a best-first search iteration.

At each iteration, the pn and dn are kept up to date and consistent for all nodes
in the tree. Each iteration consists of four phases as follows.

(1) Selection. The values of pn and dn guide the search towards the most-proving
leaf node. This is achieved by the following rule: in OR nodes, the child with
minimal pn is selected; in AND nodes the child with minimal dn is selected.

(2) Expansion. The most-promising leaf is expanded.

(3) Evaluation. The new leaves are evaluated. Their pn and dn are set using the
game-theoretic values and the initialization rule as described above.

(4) Backpropagation. The values of pn and dn are updated such that the parents’
pn and dn are consistent with their children’s values. The updating is repeated
successively for all predecessors of the expanded leaf.

2.2.2 Variants of PNS

In many practical applications, PNS runs out of space quickly because it stores the
whole search tree in memory. We refer to this phenomenon as the memory problem
of PNS. Several variants of PNS have been designed to address the issue. This
subsection gives an overview of five of such proof-number algorithms: PN2, PN∗,
PDS, df-pn, and PDS–PN.

A. PN2

Allis (1994) introduced PN2, a proof-number algorithm that addresses the memory
problem of PNS by discarding subtrees that have been searched. Whenever nec-
essary, the previously discarded subtrees are re-searched. To achieve this strategy,
PNS is performed at two levels, called PN1 and PN2.

At the first level, PN1, a normal PNS search is conducted. However, PN2 proce-
durally deviates from normal PNS when a leaf L is expanded. There, PNS is used
as initialization procedure. Instead of a simple initialization for non-terminal leaves,
a second-level PNS, called PN2, is launched. The root of the PN2 tree is the leaf
L and the size of the tree is limited to a certain maximum number of nodes. The
second-level search terminates if either the maximum number of nodes is exceeded
or a (dis)proof has been found. When PN2 terminates, the children of L with their
pn and dn are kept as new leaves of the PN1. All successors below the children of L
are removed from memory.

14 Basics of Game-Tree Search for Solvers

As a consequence of using PN2, leaves of the PN1 tree contain more information
than leaves of regular PNS. Memory is saved because useless PN2 trees are removed.
The memory advantage of PN2 comes at a cost in terms of speed because the best
PN2 trees have to be re-searched.

Different approaches for setting the maximum number of nodes in the PN2 tree
exist. We note that this maximum is crucial because it determines the trade-off
between the memory consumption and speed of PN2. The main idea is to express
the maximum as a function f(x) of the size of the PN1 tree given by the number x
of its nodes. In his experiments on Chess positions, Breuker (1998) suggests to set
f(x) to be a logistic-growth function

f(x) =
1

1 + e
a−x

b

. (2.5)

The parameters a and b are strictly positive and require tuning for optimal
performance (cf. Breuker, 1998). Furthermore, the size of PN2 is also limited by
the amount of memory physically available. If N is the physical limit of nodes that
memory can hold, the maximum size of PN2 is

min(x× f(x), N − x) . (2.6)

B. PN*

As we have seen, PN2 addresses the memory problem of PNS by introducing two
levels of search and discarding most of the second-level results. This approach may
be described as wasteful because important information has to be re-generated every
time a previously discarded subtree is re-searched.

A different approach to addressing the memory problem consists of applying
iterative deepening. The first algorithm to follow this approach was PN∗ by Seo et al.
(2001). PN∗ uses a threshold on the proof numbers to perform iterative deepening.
The search is initialized with a threshold of 2 on the root’s pn. If no proof can be
found the threshold is gradually increased until a proof can be found for the given
threshold.

Essentially, PN∗ performs multiple-iterative deepening by iteratively deepening
at all AND nodes. Every node has a threshold on the proof number. The values
for these thresholds are increased at the AND nodes recursively if no proof can be
found within a certain threshold. We note that the disproof numbers are not used
for this iterative deepening.

A transposition table is used to reduce the overhead of re-searching nodes.
Seo et al. (2001) report that their game engine based on PN∗ solved more Shogi
problems from a collection of 295 problems than any other compared solver. By its
iterative-deepening PN∗ essentially is a depth-first search, enabling PN∗ to find very
deep solutions, e.g., for the notoriously hard Microcosmos problem with a solution
sequence of 1,525 steps.

PN∗ is able to cope with harsh memory constraints better than PN2. But as a
consequence of disregarding the disproof numbers for move selection, PN∗ is weak
at disproving subtrees.

2.2 — Proof-Number Algorithms 15

C. PDS

To counter the deficiency PN∗ shows for disproving goals, Nagai (1998) presented
a straightforward further-developed algorithm called Proof-and-Disproof -Number
Search (PDS). PDS performs multiple-iterative deepening at OR nodes and AND
nodes. It introduces two thresholds to limit the iterations in a node. The threshold
for pn is called pt and the threshold for dn is called dt. To make explicit that the
thresholds refer to a node N, we write pt(N) and dt(N), respectively.

The search in the subtree of a node continues until (1) a proof or disproof has
been reached, or (2) simultaneously pt < pn and dt < dn.

At the start of every iteration pt is initialized with the value of pn, and dt with
the value of dn. If the tree is more proof-like than disproof-like the pt is increased.
Otherwise dt is increased.

Nagai (1998) introduced a heuristic for estimating whether a subtree of a node
is likely to be a proof (proof-like) or a disproof (disproof-like). An OR node N with
parent P is proof-like exactly if

(pt(P) > pn(P)) ∧ (pn(N) ≤ dn(N) ∨ dt(P) ≤ dn(P)) . (2.7)

Similarly, an AND node N with parent P is proof-like exactly if

(dt(P) > dn(P)) ∧ (dn(N) ≤ pn(N) ∨ pt(P) ≤ pn(P)) . (2.8)

At the outset of each iteration at the root, one of the two thresholds of the root
is increased. If pn > dn, then pt is increased by 1 and otherwise dt is increased by
1.

The expanded nodes of PDS may be stored in a TwoBig transposition table
(cf. Breuker, Uiterwijk, and Van den Herik, 1996) to guarantee more efficient re-
searching.

D. df-pn

Nagai (1999; 2002) introduced an improved variant of the PDS algorithm, called
depth-first proof-number search, df-pn. In comparison to PDS, df-pn further reduces
the memory requirements by applying depth-first search. However, df-pn has been
shown to suffer strongly from the GHI problem (cf. Subsection 2.1.3). An advantage
of df-pn over PDS is that it has been shown by Nagai (2002) that df-pn always selects
the most-proving node (this is not the case for PDS).

We recall that PDS gradually increased the thresholds pt and dt for a node
if a proof was not found within the given boundaries. df-pn follows a different
approach. Assume some node P has children C1 and C2. df-pn sets the threshold of
C1 depending on the next best sibling C2. More precisely, if P is an OR node

pt(C1) = min(pt(P), pn(C2) + 1) , (2.9)

dt(C1) = dt(P)− dn(P) + dn(C1) . (2.10)

If P is an AND node,

16 Basics of Game-Tree Search for Solvers

pt(C1) = pt(P)− pn(P) + pn(C1) , (2.11)

dt(C1) = min(dt(P), dn(C2) + 1) . (2.12)

E. PDS–PN

A fifth proof-number algorithm, PDS–PN by Winands et al. (2004), tries to combine
the strength of PN2 and PDS. PDS–PN can be described as a PN2 which relies on
PDS as PN1 search and normal PNS as PN2. At the first level, the search is a depth-
first search. This assures that PDS–PN is practically not restricted by memory. At
the second level, it profits from the speed of best-first search given by PNS.

2.2.3 Performance of Proof-Number Algorithms

Two main points require attention when comparing proof-number algorithms: (1)
the trade-off between speed and memory, and (2) robustness with respect to the
GHI problem (cf. Subsection 2.1.3). This subsection elaborates on these two points
and shows how the six proof-number algorithms compare with each other.

A. Speed vs. Memory

In order to address the memory problem as experienced by PNS, the variants PN2,
PN∗, PDS, df-pn, and PDS–PN trade speed for memory. The trade-off is an impor-
tant feature for comparing proof-number algorithms. In general, an algorithm that
emphasizes speed more than memory may achieve good results on small problems
but also may run out of memory on large problems. Conversely, an algorithm that
manages memory economically may be able to solve harder problems but re-searches
more often and therefore lose speed.

No uniform comparison exists juxtaposing all proof-number algorithms on the
same data set, but comparisons involving several algorithms have been conducted.

Experiments by Nagai (1999; 2002) in Othello and Tsume-Shogi have produced
better results for PDS than for PNS and PN∗. df-pn in turn has been shown to solve
hard problems faster than PDS (Nagai, 2002).

Winands, Uiterwijk, and Van den Herik (2003b) carried out a comparison be-
tween PNS, PDS, and PN2 on 488 LOA endgame positions. In this comparison,
PDS was able to solve only three problems more than PN2 which solved 470. At
the same time PDS was more than six times slower. In this experiment, PN2 was
allowed to use transposition tables and the same rule for initializing non-terminal
leaves as PDS. PNS was about 20% faster than PN2 but solved only 356 positions.

PDS–PN was found by Winands et al. (2003b) to be the intended compromise
between PN2 and PNS requiring less memory than PN2 while simultaneously solving
faster than PN2. The exact trade-off is a function of the number of nodes that PDS is
allowed to store in memory with more nodes allowing for more speed.

2.2 — Proof-Number Algorithms 17

B. Robustness to the GHI Problem

All proof-number algorithms that perform iterative deepening depend heavily on the
use of transposition tables. This makes them susceptible to the GHI problem (cf.
Subsection 2.1.3). Both PDS and particularly df-pn were found to be vulnerable in
practice (Kishimoto and Müller, 2003).

2.2.4 Enhancements for Proof-Number Algorithms

So far, we have seen which proof-number algorithms exist and what points are impor-
tant when comparing the performance of such algorithms. This subsection presents
three kinds of enhancement that have been proposed for proof-number algorithms:
(A) improved initialization of proof and disproof numbers, (B) the 1 + ε trick, and
(C) solutions to the GHI problem.

A. Initialization of Proof and Disproof Numbers

Subsection 2.2.1 presented a simple initialization rule that sets pn and dn to 1 for
newly generated non-terminal leaves. Better results can be achieved by using more
advanced initialization rules. Two different kinds of advanced initialization rules
can be distinguished: (1) using the branching factor, and (2) exploiting domain-
dependent knowledge.

Ad (1). The branching factor bf(L) of a leaf L can be used as follows (cf. Allis,
1994). If L is an OR node, pn is set to 1 and dn is set to bf(L). If L is an AND
node, dn is set to 1 and pn is set to bf(L). Effectively, this initialization rule
adds an additional ply of information. We note that combining this initialization
rule with an uninformed proof-number algorithm leaves the algorithm uninformed.
The branching factor is used implicitly in the original description of PDS (Nagai,
1998). Winands (2004) calls this initialization rule mobility when applied to LOA
and reports a reduction in nodes of roughly a factor of five for both PNS and PN2.

Ad (2). The second approach to initialize non-terminal leaves consists of using
heuristic knowledge. In this case, heuristics estimate the number of further expan-
sions required to prove or disprove the goal. These estimates are then used as pn or
dn, respectively. The heuristics contain domain knowledge. Domain knowledge was
used for initialization successfully by Allis (1994) who used the number of captured
stones in Awari to improve PNS. A second example following this approach is Nagai
(1999) for df-pn on Othello. Nagai’s solver uses a pattern-based evaluation function
for estimating the cost of reaching a proof or disproof at a given node. The latter
achieved a reduction of up to 50% in nodes. A third example is given by Kishimoto
and Müller (2005a) who compute an approximation of the number of successive
moves required to reach a tactical goal in the game of Go. These approximations
are then used to initialize the proof and disproof numbers.

B. The 1 + ε Trick

A second powerful enhancement for proof-number algorithms is the so-called 1 + ε
trick by Pawlewicz and Lew (2007). This ‘trick’ is based on a simple observation

18 Basics of Game-Tree Search for Solvers

in df-pn. We have seen that df-pn imposes thresholds on its nodes’ pn and dn to
determine how deeply subtrees are searched. If the thresholds are too big, the search
in a subtree may occupy a large share of the transposition table.

Assume an OR node N with threshold pt(N) is searched and has the two chil-
dren C1 and C2 with thresholds pt(C1) and pt(C2), respectively, and both are much
smaller than N’s threshold pt(N). The search switches from C1 to C2 if the threshold
pt(C1) = pt(C2) + 1 is exceeded. Next, the search continues in the tree under C2
until the threshold pt(C2) = pt(C1) + 1 is exceeded. The search switches back to the
tree under C1. Every time the search switches between the two subtrees, informa-
tion in the transposition table is overwritten. As a consequence, the trees have to
be re-constructed by an expensive effort. Pawlewicz and Lew (2007) concluded that
not enough time is spent in the same subtree continuously.

The 1 + ε trick increases the time continuously spent in the same subtree. The
constraint used in df-pn for setting the thresholds to be just 1 larger than the next
best child’s threshold, is relaxed. The new threshold depends on a small factor 1+ ε.
The next best child’s threshold is multiplied with this factor to produce the new
threshold. Thus, the new rule for setting the threshold of an OR node is:

pt(C1) = min(pt(N), dpt(C2)× (1 + ε)e) . (2.13)

The rules for setting the thresholds for AND nodes are set analogously.

Experiments in LOA show a speed increase of up to a factor of three for df-pn.
An adaptation of the threshold rules for PDS shows a speed increase of still up to
10%. Moreover, the 1 + ε trick was shown to give an improvement on the number
of problems solved for Atari Go problems Pawlewicz and Lew (2007).

C. Solutions to the GHI Problem

At least three approaches for addressing the GHI problem for proof-number algo-
rithms have been suggested: (1) the base-twin algorithm (BTA) by Breuker et al.
(2001), (2) modified bounds on the root node of df-pn by Nagai (2002), and (3)
verification of search results by Kishimoto and Müller (2003). We briefly outline
strengths and weaknesses reported for the three approaches.

Ad (1). BTA (Breuker et al., 2001) distinguishes two kinds of nodes: base nodes
and twin nodes. This distinction allows to separate nodes that are reached by differ-
ent paths. Kishimoto and Müller (2003) point out three problems of BTA. (i) There
is no proof whether BTA works on depth-first algorithms with limited memory, (ii)
it does not work in positions in which the current player loses, (iii) the algorithm
can deliver incorrect results when real draws are not stored and thus requires much
more memory.

Ad (2). Nagai (2002) proposes an ad-hoc solution to the GHI problem in df-pn.
This solution is used for problems known to have a solution for the starting player
under so the called first-player loss scenario. In this scenario, any repetition is a
loss for the first player, i.e., the root player. Any Shogi problem in which the first
player tries to checkmate is a first-player loss scenario: if a repetition is encountered,
it disproves the possibility of the checkmate.

2.3 — Monte-Carlo Techniques for Search 19

Instead of assigning∞ to both thresholds at the root, ∞−1 is assigned initially.
Nagai (2002) uses integers to express ∞ and ∞ − 1 with ∞ − 1 < ∞. Next, the
search is launched. When the termination criterion is met (e.g., pn = 0 and dn =∞
at the root) during the search process, the proof was made without loops. If the
criterion has not been met, this means that a loop was encountered. In this case,
the normal initialization of the root thresholds with ∞ instead of ∞ − 1 is used.
This allows a proof that may contain loops. Thus, Nagai’s solution can distinguish
between proofs that are guaranteed to be loop free and such that may contain loops.

The two disadvantages of the modified df-pn are: (1) it may take a long time to
find a solution, (2) for a solution found by initializing the thresholds with ∞, the
proof may still suffer from the GHI in games with a current-player-loss scenario. In
such games, the player who repeats a position, loses. An example is Go with the
situational super-ko rule (Kishimoto and Müller, 2003).

Ad (3). Kishimoto and Müller (2005b) and Kishimoto (2005) propose a solution
to the GHI that can be applied to search algorithms other than proof-number algo-
rithms but was particularly tested for df-pn. The main idea is to verify the value for
a position retrieved from the table by a re-search. The verification requires storing
the path by which a position was reached in the transposition table. For this idea
to work in practice an efficient algorithm is used for storing and comparing paths.
Compared to the modified-bounds approach the verification algorithm solved three
additional problems. It used 2.5% more nodes and about 12.4% more time on a set
of 200 Checkers problems.

We may conclude by saying that currently three solutions to the GHI problem
exist. In particular, the proposal of Kishimoto and Müller (2005b) is promising for
practical applications.

2.3 Monte-Carlo Techniques for Search

Monte-Carlo methods have been applied for a long time in computer science for
approximating function values in complex domains (Metropolis and Ulam, 1949).
In computer games, however, Monte-Carlo has gained increased popularity only
recently. To understand this development, we introduce a distinction between two
kinds of Monte-Carlo techniques used in search and games.

The first technique is Monte-Carlo Evaluation (MCE). It has been studied since
the mid 1990s and has been employed as an evaluation function (Abramson, 1990).
The second technique is Monte-Carlo Tree Search (MCTS) (Kocsis and Szepesvári,
2006; Coulom, 2007a; Chaslot et al., 2006). It is a framework for game-tree search
based on MCE. Monte-Carlo Tree Search may be seen as a recent development in the
history of game-tree search. In particular, it improved the strength of game engines
in domains lacking satisfactory evaluation functions. The most prominent of these
domains, Go, saw an increase in the playing strength of programs from amateur to
professional level, at least on 9× 9 boards, owing to MCTS (cf. Chaslot, 2008).

In this section we introduce both, MCE in Subsection 2.3.1 and MCTS in Sub-
section 2.3.2. MCTS can be transformed into a solving algorithm (Winands et al,
2008). We remark that this is described in detail in Chapter 4.

20 Basics of Game-Tree Search for Solvers

2.3.1 Monte-Carlo Evaluation

Evaluation functions estimate the game-theoretic value of a game position (Pearl,
1984). Features such as material or mobility of the position are commonly exploited
to compute the heuristic value. A different approach to evaluation is Monte-Carlo
Evaluation (MCE, Abramson, 1990): a number of playouts (also called samples or
simulations) is started at a position. A playout is a sequence of (pseudo-)random
moves. At the end of every playout, the final position is scored according to the
rules of the game.

The evaluation of a position is calculated by applying a statistical aggregate
function of all scores. Two simple examples of such an aggregate function are: (1)
the average game score (e.g., Black wins with 5.5 points on average) and (2) the
ratio of wins to losses (e.g., Black wins 49% of the games).

The remainder of this subsection shows an overview of games to which MCE has
been applied, (A), and explains two common ways of improving MCE, (B) and (C).

A. Monte-Carlo Evaluation in Games

During the 1990s Monte-Carlo Evaluation (MCE) was applied to stochastic games
and games with imperfect information such as Backgammon (Tesauro and Galberin,
1997), Bridge (Smith, Nau, and Throop, 1998; Ginsberg, 1999), Poker (Billings et
al. 1999), and Scrabble (Sheppard, 2002). For instance, MCE was tested in Bridge
(Smith, Nau, and Throop, 1998) because it offers a way of coping with imperfect
information. Concealed cards are treated by MCE as follows. First, a pseudo-
random deal is generated for the concealed cards. Given this known deal, the game
is then played as a perfect-information game and scored accordingly. The perfect-
information game constitutes a playout. The statistical evaluation of several playouts
is a heuristic score for the initial position (Frank, Basin, and Matsubara, 1998). In
a similar way, uncertainty in the game of Skat can be treated (Kupferschmid and
Helmert, 2007).

The first systematic investigation of MCE in two-player perfect-information games
was conducted by Abramson (1990). He tested MCE on Tic-Tac-Toe, on Chess po-
sitions, and on 6 × 6 Othello, concluding that MCE can outperform alternative
evaluation functions. Furthermore, he suggested to include domain knowledge to
improve MCE in ways described below in (B) and (C).

In the domain of perfect-information games, MCE has in particular affected
Computer Go. In Go, alternative evaluation functions had been unsuccessful because
of two reasons as stated by Müller (2002): (1) a large branching factor, and (2) global
effects of local moves. The first to apply MCE to Go was Brügmann (1993), who
evaluated the initial position of the 9× 9 board.

B. Biasing Playouts and Alternative Statistical Evaluation

Standard MCE as described above can be improved in two ways: (1) by biasing
playouts with domain knowledge, and (2) by alternative statistical evaluation.

Ad (1). The pseudo-randomness of moves during playouts can be altered with
domain knowledge to produce better estimates in many games. For Go, Bouzy

2.3 — Monte-Carlo Techniques for Search 21

and Helmstetter (2003) suggest setting the likelihood of a playout move proportion-
ate to the known frequency distribution of local patterns completed by that move
in a database of game records. The Monte-Carlo version of the world champion
LOA engine MIA (Winands and Björnsson, 2010) can stop playouts before reach-
ing a terminal position. It scores the last position of the playout with a classic
evaluation function. Thereby, MIA can run more MCEs while simultaneously en-
suring a sufficient quality of the scores for each playout. A similar approach is used
in the Amazons program InvaderMC by Lorentz (2008). The difference is that
InvaderMC stops the MCE at a fixed depth whereas MIA allows the playouts to
terminate at any depth.

Ad (2). The simple aggregate functions described above (average game score,
win-loss ratio) are used to score only one position. This may be wasteful particularly
if playouts cannot be computed in sufficient quantity. Brügmann (1993) suggested
an alternative statistical evaluation, the all-moves-as-first heuristic for evaluating
the initial position of 9 × 9 Go. In normal MCE, the score of a single playout
contributes only to the evaluation of the initial position of that playout. The all-
moves-as-first heuristic proposes instead to use one score for the evaluations of all
moves that occur in the playout. In this way, few playouts affect the evaluations of
many moves. The all-moves-as-first heuristic is inaccurate but converges faster with
respect to the number of playouts.

C. Exploration and Exploitation in the Move-Selection Problem

So far, we have described how MCE can give an evaluation of a position. In practice,
the evaluation function is only a means in a game-playing engine. The actual end is
solving a move-selection problem, i.e., given all possible moves to find the best.

When applying MCE in the evaluation function for multiple moves the time
and therefore the playouts have to be distributed efficiently among all available
moves. Because of MCE’s inherent randomness the estimated game value has a high
variance. The variance decreases inversely proportionate to the number of playouts.
The demand for distributing the playouts over the available positions efficiently
leads to the problem of optimizing the ratio between exploration and exploitation in
MCE. Exploration performs playouts for a move that has so far been assessed as bad.
Exploring this move may lead to discovering that the move is actually promising.
Conversely, exploitation invests more time in comparing such moves more precisely
that have already been assessed as relevant and avoids wasting time on irrelevant
moves.

A naive solution to balancing exploration and exploitation for move selection
consists of uniformly distributing the playouts over all available moves. All eval-
uations are compared and the best-scoring move is selected. However, this naive
solution generally produces suboptimal results (cf. Bouzy and Helmstetter, 2003).

Bouzy and Helmstetter (2003) introduced the idea of progressive pruning for the
game of Go. For all available moves i the mean values µi and standard deviations
σi are recorded for the number of playouts made so far. A move 2 is said to be
inferior to a move 1 if µ2 +σ2 ≤ µ1−σ1. To select the best move, first, the playouts
are distributed uniformly over all moves. Next, the playouts are made and every

22 Basics of Game-Tree Search for Solvers

move is evaluated. Then, all moves inferior to some other move are eliminated. The
procedure is iterated with the remaining moves. In this manner, promising moves
are sampled more frequently than initially less promising candidates.

2.3.2 Monte-Carlo Tree Search

In the past, MCE has been used as an evaluation function for game-tree search
(Bouzy and Helmstetter, 2003). Yet, this approach remained too slow to achieve a
satisfying search depth. To overcome this problem Bouzy (2006) extended the idea
of progressive pruning from one ply to the whole search tree. He suggested to grow
a search tree by iterative deepening and pruning unpromising nodes while keeping
only promising nodes. All leaf nodes are evaluated by MCE. A problem with this
approach is that actually good branches are pruned entirely because of the variance
underlying MCE.

Monte-Carlo Tree Search (MCTS) follows Bouzy’s generalization of extending
MCE to a search tree and constitutes an entire best-first search framework for MCE.
MCTS avoids the problem of pruning too early by maintaining all nodes and con-
trolling exploration and exploitation better than Bouzy’s method.

The idea of MCTS was independently introduced by Coulom (2007a) and Kocsis
and Szepesvári (2006). The MCTS algorithm by Coulom (2007a) was specifically de-
signed and tested for the domain of computer Go. The program Crazy Stone had
incorporated the algorithm, participated in the 12th Computer Games Olympiad,
and won the 9×9 Go competition (Coulom and Chen, 2006). The MCTS algorithm
by Kocsis and Szepesvári (2006) is called Upper Confidence bounds applied to Trees
(UCT). It was motivated by research on the Multi-Armed Bandit Problem (Robbins,
1952).

Since its introduction MCTS has been applied over a variety of domains including
optimization (Chaslot et al., 2006), one-player games (Schadd et al., 2008; Cazenave,
2009), two-player perfect-information games such as Go (Coulom, 2007a; Gelly
and Silver, 2008; Enzenberger and Müller, 2009), LOA (Winands et al., 2008),
Amazons (Lorentz, 2008), Hex (Cazenave and Saffidine, 2009), two-player imperfect-
information games such as Phantom Go (Cazenave and Borsboom, 2007), multi-
player games including Chinese Checkers (Sturtevant, 2008), and general game play-
ing (Finnsson and Björnsson, 2008).

This subsection is organized as follows. Subsection A details an algorithmic de-
scription of the MCTS framework. Subsection B introduces UCT, one of the most
common representatives of MCTS. Subsection C outlines three common enhance-
ments for MCTS.

A. The MCTS Algorithm

Monte-Carlo Tree Search applies a best-first search on a global level and MCE as
an evaluation function at the leaf nodes. The results of previous playouts are used
for developing a best-first search tree. MCTS repeatedly iterates the following four
stages (Chaslot et al., 2008b), also depicted in Figure 2.2:

(1) move selection,

2.3 — Monte-Carlo Techniques for Search 23

(2) expansion,

(3) playout,

(4) backpropagation.

Each node in the tree contains at least three different tokens of information: (i)
a state representing the game position associated with this node, (ii) the number of
times n the node has been visited during all previous iterations, and (iii) a value v
representing the estimate of the position’s game-theoretic value. The search tree is
stored in memory. Before the first iteration, the tree consists only of the root node.
By applying the four stages successively in each iteration, the tree grows gradually.
The four stages of the iteration work as follows (cf. Figure 2.2).

Figure 1: (a) The initial position. (b) An example of possible moves. (c) A
terminal position.

Selection
 Expension
 Playout
 Backpropagation

The selection strategy is applied

recursively until a

position not part of the tree

is reached
 One node is added

to the tree

The result of this game is

backpropagated in the tree

One simulated

game is played

Selection
 Expansion
 Playout
 Backpropagation

The selection strategy is

applied recursively until an

unknown position is reached

One node is added

to the tree

The result of this game is

backpropagated in the tree

One simulated

game is played

 Repeated X times

Figure 2: White to move.

1

Figure 2.2: The four stages of MCTS (slightly adapted from Chaslot et al., 2008b).

(1) The move selection determines a path from the root to a leaf node. This path
is gradually developed. At each node, starting with the root node, the best
successor node is selected by applying a function to all child nodes. Then,
the same procedure is applied to the selected child node. This procedure is
repeated until a leaf node L is reached.

(2) In case a leaf node has been sampled sufficiently frequently (a threshold is set
manually) the node is expanded.

(3) In the playout stage, Monte-Carlo evaluation is applied to L. It consists of a
randomly played sequence of moves that ends in a terminal position. A statistic
aggregate of all random games sampled from L constitutes the Monte-Carlo
evaluation for L.

(4) During the backpropagation stage, the result of the leaf node is propagated
back along the path followed in the move selection. For each node on the path
back to the root, the node’s value (cf. above) is adjusted according to the

24 Basics of Game-Tree Search for Solvers

update function.2 After the root node has been updated, this stage and the
iteration are completed. As a consequence of altering the values of the nodes
on the path, the move selection of the next iteration is influenced.

The various MCTS algorithms proposed in the literature differ with regard to
their move selection and schemes used for expansions. Next, a specific move selection
called UCT is briefly described.

B. UCT

The most influential representative of MCTS has so far been Upper Confidence
bounds applied to Trees (UCT). In UCT, Kocsis and Szepesvári (2006) apply solu-
tions for the Multi-Armed Bandit Problem (MAB) (Robbins, 1952) to tree search.
This problem is structurally similar to move selection and the task of efficiently dis-
tributing actions over several slot machines to maximize the expected return. The
distributions underlying the returns are unknown and have to be approximated.
Auer, Cesa-Bianchi, and Fischer (2002) suggested to use a formula called Upper
Confidence Bounds (UCB) to cope with the MAB. This UCB formula is the basis
for UCT. The move selection of UCT is as follows. Given a node with children,
the move-selection function of UCT chooses the child which maximizes the following
formula:

Let I be the set of nodes immediately reachable from the current node p. The
selection strategy selects the k-th child of the node p that satisfies Formula 2.14:

k ∈ argmaxi∈I
(
vi +

√
C × lnnp

ni

)
, (2.14)

where vi is the value of the node i, ni is the visit count of i, and np is the visit
count of node p. The coefficient C determines the balance between exploitation and
requires tuning experimentally. The update function used in UCT sets the value ni
of a node to the average of all the children’s values.

C. MCTS Enhancements

In this subsection we describe three common enhancements to MCTS: (1) RAVE,
(2) integrating domain knowledge in MCTS, and (3) parallelization.

Ad (1). Gelly and Silver (2008) suggested Rapid Action Value Estimation (RAVE)
which is closely related to the all-moves-as-first heuristic by Brügmann (1993) (cf.
Subsection 2.3.1.B). RAVE achieves an advantage by using all-moves-as-first val-
ues to bias the UCT value of a move. Compared to UCT values (Formula 2.14),
all-moves-as-first values have smaller variance and converge faster. Therefore the
all-moves-as-first values are used to bias the move selection only in the beginning.
When sufficiently many playouts have been sampled and the UCT values are ex-
pected to be sufficiently precise, the effect of the RAVE value diminishes. The speed
of fading out is subject to parameter tuning. Gelly and Silver (2008) have shown
that RAVE can improve the playing strength of a Go engine substantially.

2Coulom (2007a) refers to the update function as backpropagation operator.

2.4 — Chapter Summary 25

Ad (2). We have seen that domain knowledge may improve the quality of play-
outs in MCE (cf. Subsection 2.3.1.B). Domain knowledge can also be applied out-
side of the playout stage in MCTS. There are at least three approaches of achieving
this. The first approach modifies the move selection. Gelly and Silver (2008) and
Chaslot et al. (2008b) suggest adding a summand to the right-hand side of the origi-
nal UCT formula (Formula 2.14). The additional summand represents a value based
on small patterns and thus representing domain knowledge. A second approach is
progressive unpruning (Chaslot et al., 2008b) which first reduces and then increases
the branching factor of an MCTS node based on domain knowledge. A similar ap-
proach is referred to as progressive widening by Coulom (2007b). A third approach
consists of using move categories based on domain knowledge in order to group moves
(Saito et al., 2007b).

Ad (3). MCE and MCTS are suitable for parallelization because the playouts
can be computed as independent parallel tasks. A difficulty lies in parallelizing the
operations on the MCTS tree. Several methods have been suggested for paralleliza-
tion. Building up on Cazenave and Jouandeau (2007) who had suggested three
simple ways of parallelizing UCT, (Chaslot et al., 2008a) compared the following
four methods for parallelization: (i) leaf parallelization executes multiple MCEs at
the same leaf in parallel; (ii) root parallelization runs multiple independent instances
of MCTS and merges the results of the root into one value when the search termi-
nates; (iii) tree parallelization with global mutex maintains one lock on the whole
search tree such that each of several threads locks the whole tree when updating
data; (iv) tree parallelization with local mutexes allows each thread accessing dif-
ferent parts of the subtree. Based on experiments for 9 × 9 Go, it was found that
the simple root parallelization produced the best results (Cazenave and Jouandeau,
2007; Chaslot, Winands, and Van den Herik, 2008a). More recently, Enzenberger
and Müller (2010) documented the parallelization of Fuego, the 2009 Computer
Olympiad’s gold medalist program in the 9 × 9 Go competition. It uses a lock-less
implementation of the local mutex parallelization. This implementation produces
inaccurate updates at minor rates. Although playouts are discarded because of the
imprecision, the locking scales well for up to seven processors.

2.4 Chapter Summary

In this chapter we introduced basic definitions for describing game-tree search and
fundamental concepts including three search methods. The elementary concepts then
served to outline six proof-number algorithms and two Monte-Carlo techniques. The
following chapters will introduce novel algorithms based on the algorithms that have
been presented here.

In Chapter 3 we show how MCE can be combined with Proof-Number Search
for solving Go problems. Chapter 4 describes an approach that utilizes MCTS for
solving and also introduces a parallel version of this approach.

26 Basics of Game-Tree Search for Solvers

Chapter 3

Monte-Carlo Proof-Number
Search

This chapter is based on the following publications.1

1. J-T. Saito, G.M.J.B. Chaslot, J.W.H.M. Uiterwijk, and H.J. van den Herik. Monte-
Carlo Proof-Number Search. In H.J. van den Herik, P. Ciancarini, and H.H.L.M.
Donkers, editors, Computers and Games - 5th International Conference (CG ‘06),
volume 4630 of Lecture Notes in Computer Science, pp. 50–61. Springer, Berlin,
Germany, 2007.

2. J-T. Saito, G.M.J.B. Chaslot, J.W.H.M. Uiterwijk, and H.J. van den Herik. Pattern
Knowledge for Proof-Number Search in Computer Go. In P.Y. Schobbens, W. Van-
hoof, and G. Schwanen, editors, Proceedings of the 18th BeNeLux Conference on
Artificial Intelligence (BNAIC‘06), pp. 275–281, 2006.

3. J-T. Saito, G.M.J.B. Chaslot, J.W.H.M. Uiterwijk, H.J. van den Herik, and M.H.M.
Winands. Developments in Monte-Carlo Proof-Number Search. In H. Matsubara,
T. Ito, and T. Nakamura, editors, Proceedings of the 11th Game Programming Work-
shop, pp. 27–31. Information Processing Society of Japan, Tokyo, Japan, 2006.

The overview on solving algorithms given in Chapter 2 divides Monte-Carlo
methods for game-tree search in two kinds: (1) Monte-Carlo evaluation, and (2)
Monte-Carlo Tree Search. So far, little attention has been paid to the potentially
beneficial effect of applying Monte-Carlo methods to solvers such as Proof-Number
Search (PNS) (Allis et al., 1994). In this chapter, we answer the first research ques-
tion, RQ 1, by investigating how Monte-Carlo evaluation can be used for solving
game positions. We propose integrating Monte-Carlo evaluation with Proof-Number
Search to form a new solving algorithm. We call the new algorithm Monte-Carlo
Proof-Number Search (MC-PNS).

1 The author is grateful to Springer-Verlag and the Information Processing Society of Japan for
the permission to reuse relevant parts of the articles.

28 Monte-Carlo Proof-Number Search

This chapter presents two experiments evaluating the new algorithm on a sub-
problem of the game of Go, the life-and-death problem. Experiment 1 tunes pa-
rameters of MC-PNS. The results of Experiment 1 also enable a first comparison
between PNS and MC-PNS. Experiment 2 compares PNS, MC-PNS, and pattern-
based improvements of PNS and MC-PNS.

The chapter is organized as follows. Section 3.1 explains MC-PNS in detail.
Section 3.2 outlines the setup of Experiment 1, Section 3.3 gives the results, and
Section 3.4 discusses the findings. Section 3.5 explains patterns in Go and describes
how they can be combined with PNS. Section 3.6 presents the setup of Experiment
2 and Section 3.7 the results. These are in turn discussed in Section 3.8. Section 3.9
concludes the chapter and points out three directions for future research.

3.1 Monte-Carlo Proof-Number Search

For integrating Monte-Carlo evaluation (MCE) and PNS two ways appear natural.
First, a global Monte-Carlo move-selection framework might take advantage of local
PNS. In this case a top-level co-ordination mechanism needs to determine when to
shift from MCE to local PNS. Second, PNS forms the search framework, and MCE
is used to influence the move selection. In this chapter, we address only the second
approach.

This section proposes the new algorithm, Monte-Carlo Proof-Number Search
(MC-PNS). It is based on PNS and MCE. MC-PNS extends PNS’ best-first heuristic
by adding MCE at the initialization of the leaves’ values. This may lead to a more
efficient selection of moves.

The section is organized in two parts as follows: Subsection 3.1.1 presents the
algorithm. Subsection 3.1.2 gives three parameters that control the behavior of
MC-PNS.

3.1.1 Algorithm

Like PNS, MC-PNS performs a best-first search in an AND/OR game tree. The
search aims at proving or disproving a binary goal, i.e., a goal that can be reached
by player OR or be refuted by player AND under optimal play by both sides. Each
node N in the tree contains two real-valued numbers called the proof number (pn(N))
and the disproof number (dn(N)), respectively.

MC-PNS performs a four-step cycle fully identical to that of PNS. For reasons
of readability we summarize the four-step cycle here. In the first step (selection)
the best-first strategy requires the algorithm to traverse down the tree starting at
the root guided by the smallest proof or disproof number until the most-proving
leaf L is reached. The second step (expansion) consists of expanding L. The third
step (evaluation) assigns initial values to the newborn children of L. In the fourth
step (backpropagation), the values of the proof and disproof numbers are updated
and backpropagated for all nodes on a path from L through the previously traversed
nodes, all the way back to the root.

The cycle is complete as soon as the root has been reached and its values are
updated. The cycle is repeated until the termination criterion is met. The criterion

3.1 — Monte-Carlo Proof-Number Search 29

is satisfied exactly if either the root’s proof number is 0 and the disproof number is
infinity, or vice versa. In the first case, the goal is proven. In the latter case it is
refuted. Still, there is a difference between PNS and MC-PNS. The next paragraph
outlines the details of the algorithm more formally and shows the small differences
which mainly lie in the third step, the evaluation of the leaf nodes.2

Let L be a leaf node. If L is a node proving the goal then pn(L) = 0 and
dn(L) =∞ holds. If L is a node disproving the goal then pn(L) =∞ and dn(L) = 0
holds. If L does not immediately prove or disprove a goal pn(L) = pmc(L) and
dn(L) = dmc(L), where pmc and dmc are the Monte-Carlo-based evaluation func-
tions mapping a node to a target range. This range is (0, 1], with pmc reflecting a
node’s estimated probability to reach the goal, and dmc reflecting a node’s expected
probability not to reach a goal. The value 0 is excluded to avoid setting pn = 0 or
dn = 0 inaccurately. Thereby, we prevent a false classification of a node as proven
or disproven, respectively.

The pmc and dmc numbers for a position with n simulated games are gained by
calculating the evaluation function evaln : {0, ..., n} → (0, 1]. The function evaln
depends on the number n+ of simulated games in which the goal was reached and
the number n− of simulated games in which the goal was not reached. We let
evaln(0) = ε for some small positive real number ε < 1 and evaln(n+) = n+/(n+ 1)
for n+ > 0. We set dmc = evaln(n+) and pmc = 1− dmc.

Starting at the most-proving leaf, pn and dn values are backpropagated by PNS’
backpropagation rule (cf. Section 2.2). Note that MC-PNS causes a different move
selection, because the values of the proof number and disproof numbers also change
for internal nodes. Figure 3.1 shows a game tree expanded by MC-PNS. The leaves
of the right subtree have already been evaluated: the pn and dn values are real
numbers based on the MCE. The right leaf of the left subtree has just been sampled.
The MCE, represented by a set of random move sequences, has initialized the pn
and dn resulting in updated values of the root.

3.1.2 Controlling Parameters

MC-PNS imposes an overhead in evaluation for each expansion of a node. The
algorithm aims at achieving a better move selection as a trade-off. Two extreme
approaches can be distinguished: (1) MC-PNS spends hardly any time on evaluation,
and (2) MC-PNS takes plenty time on evaluation. Below, three control parameters
are introduced which will enable a trade-off between these extremes.

1. Number of MCEs per node. The precision of the MCE can be determined
by the number of simulated games at each evaluated node. Henceforth, this
number will be denoted by n.

2. Look-ahead for MCE. The look-ahead (la) is the maximum length of a simu-
lated game.

2The four-step cycle can be optimized by not fully backpropagating the values when this is not
required (cf. Allis, 1994). Thereby, the cost of traversal can be reduced. The implementation used
in the experiments described here does not include this optimization.

30 Monte-Carlo Proof-Number Search

0.95
0.39

0.95
0.26

2.15
0.13

0.74
0.26

0.21
0.79

0.97
0.13

0.73
0.27

0.45
0.55

Figure 3.1: Schematic representation of a search tree generated by MC-PNS.

3. Launching level of the MCE. Given a limited look-ahead, it is not useful to
waste time on evaluating close to the root of the search tree. The nodes close
to the root must be expected to be expanded anyway. The launching level
(depth) is the minimum required level of the tree at which nodes are evaluated.

3.2 Experiment 1: Tuning the Parameters of
MC-PNS

This section describes Experiment 1. It tests different settings of the three param-
eters of MC-PNS introduced in Subsection 3.1.2 and compares the results obtained
for the various settings with those of PNS. The experiment is conducted by applying
the algorithms to a test set of life-and-death problems of the game of Go. Subsec-
tion 3.2.1 explains life-and-death problems. Subsection 3.2.2 describes the test set,
Subsection 3.2.3 the implementation of the algorithm and Subsection 3.2.4 the test
procedure.

3.2.1 Life-and-Death Problems

We applied MC-PNS for solving instances of the life-and-death problem which is a
frequently occurring sub-problem in Go games. Life-and-death problems are also
studied separately as puzzles. Applying search for solving life-and-death problems
has been addressed before, e.g., by Wolf (2000), Cazenave (2003), and Kishimoto and

3.2 — Experiment 1: Tuning the Parameters of MC-PNS 31

Figure 3.2: Example of a life-and-death problem.

Müller (2005a). The general life-and-death problem consists of a locally bounded
game position with a target group of stones. Black moves first and has to determine
the group’s status as either alive, dead, ko, or seki. For the current investigation,
however, the problem is reduced to a binary classification of the target group to
either alive or dead.

In order to fit the algorithm to the Go domain, the goal to prove, i.e., the status
of a group of stones as either alive or dead, is checked by a simple status-detection
function. This function is called by each simulated move to determine whether to
play further or to stop. Each simulated game halts after either the goal has been
met or a certain pre-set depth has been reached.

Figure 3.2 depicts a life-and-death problem from the test set used in Experi-
ments 1 and 2. Player Black is to move and tries to capture the white group. The
intersections marked by circles are taken into consideration as starting moves.

3.2.2 Test Set

The test set consists of 30 life-and-death problems. The problems are of beginner
and intermediate level (10 Kyu to 1 Dan) and taken from a set publicly available
at GoBase.3 All test problems are a win for Black. The test cases were annotated
with marks for playable intersections and marks for the groups subject to the life-
and-death classification. The number of intersections I becoming playable during
search is determined by the initial empty intersections and by intersections which are
initially occupied but become playable because the occupying stones are captured.
For the test cases this indicator I of search space varied from 8 to 20. The factorial
of I gives a rough lower bound for the number of nodes in the fully expanded search
tree. Thereby, it provides an estimate for the size of the search space.

3Gobase, www.gobase.org.

32 Monte-Carlo Proof-Number Search

3.2.3 Algorithm and Implementation

PNS and various parameter settings for MC-PNS were implemented in a C++ frame-
work. All experiments were conducted on a Linux workstation with AMD Opteron
architecture and 2.8 GHz clock rate. 16 GB of working memory were available.
Mobility was used to initialize PNS. No special pattern matcher or other feature
detector was implemented to enhance the MCE or detect the life-and-death status
of a position. Instead, tree search and MCE are carried out in a brute-force man-
ner in the implementation. In the experiment, Zobrist hashing (Zobrist, 1990) was
implemented to store proof and disproof numbers estimated by MCE. In order to
save memory, the game positions are not stored in memory for any leaf. A complete
game is played for each cycle. The proof tree is stored completely in memory.

The MCE used was based on the Go program Mango (Chaslot et al., 2008b).
The program’s Monte-Carlo engine provides a speed of up to 5,000 games per second
for 19×19 Go with an average length of 120 moves on the hardware specified above.
The Monte-Carlo engine was not specially designed for the local life-and-death task.
Its speed and memory consumption must therefore be expected to perform sub-
optimally. The MCE was introduced in Subsection 3.1.1 as evaln.

3.2.4 Test Procedure

Three independent parameters and three dependent variables describe the experi-
ment. The independent parameters control the amount and behavior of MCE during
search. The dependent variables measure the time and memory resources required
to solve a problem by a specified configuration of the algorithm. The configuration
is synonymously called parameter setting.

The independent parameters available for testing are: (1) the number of simu-
lated games per evaluated node (n ∈ N), (2) the look ahead (la ∈ N), and (3) the
launching depth level for MCEs (depth ∈ N).

There are three dependent test variables measured: (1) the time spent for solving
a problem measured in seconds (time ∈ Time ⊆ R), (2) the number of nodes
expanded during search (nodes ∈ Nodes ⊆ N), and (3) a move (move ∈ Moves =
{0, 1, ..., 361}) proven to reach the goal.4 The set Moves represents the range of
possible intersections of the 19× 19 Go board together with an additional null move
(0). The null move is returned if no answer can be found in the time provided
(cf. below). Because no other dynamic-memory cost is imposed, nodes suffices for
calculating the amount of memory occupied. The memory consumption of a single
node in the search tree is 288 bytes.

For the experiment, each configuration consisted of a triple of preset parameters
(n, la, depth). The following parameter ranges were applied: n ∈ {3, 5, 10, 20}, la ∈
{3, 5, 10}, depth ∈ {I, 12I, 34I}. The depth parameter requires additional explanation.
In the experiment’s implementation, the number of initially empty intersections I is
employed to calculate a heuristic depth value. Thus I, 12I, and 3

4I represent functions
dependent on the specific instance of I given by each test case. We call these choices

4For three test problems, some parameter settings found a different forcing move first, i.e., there
were two best first moves.

3.3 — Results of Experiment 1 33

Rank n la depth gt gs
1 3 10 3 2.05 4.26
2 5 10 3 1.93 4.54
3 3 10 2 1.87 3.90
4 5 10 1 1.80 4.59
5 3 10 1 1.75 4.30
6 5 10 2 1.74 4.11
7 3 5 3 1.56 2.70
8 3 5 1 1.51 2.70
9 10 10 3 1.42 4.99
10 10 10 1 1.36 4.95

Rank n la depth gs gt
1 20 10 3 5.31 0.95
2 20 10 1 5.23 0.96
3 10 10 3 4.99 1.42
4 10 10 1 4.95 1.36
5 5 10 1 4.59 1.80
6 20 10 2 4.56 0.87
7 5 10 3 4.54 1.93
8 3 10 1 4.30 1.75
9 10 10 2 4.28 1.26
10 3 10 3 4.26 2.05

Table 3.1: Time and node consumption of various configurations of MC-PNS relative to
PNS. Each table presents the ten best ranked of the 36 parameter settings. Left: Ordered
by a factor representing the gain of speed (gt). Right: Ordered by a factor representing
the reduction of nodes.

of I the starting strategies and refer to them as 1, 2, and 3 for I, 1
2I, and 3

4I,
respectively.

The outcome of an experiment is a triple of measured variables (t, s,m) ∈ Time×
Nodes×Moves. Each experimental record consists of a configuration, a problem it
is applied to, and an outcome. An experiment delivers a set of such records. In order
to account for the randomness of the MCE and potential inaccuracy for measuring
the small time spans well below a 10th of a second, PNS and each configuration of
MC-PNS was applied to each test case 20 times resulting in 20 records.

3.3 Results of Experiment 1

This section outlines the results of Experiment 1. First, a statistical measure for
comparing the algorithms is introduced, then the experimental results for differ-
ent configurations are presented and described in detail. The section concludes by
summarizing the results in six propositions.

The experiment consumed about 21 hours and produced 22,200 records. All
solutions by PNS as well as by MC-PNS configurations were correct. Aggregates for
each combination of test cases and configurations are considered in order to enable a
comparison of different parameter settings. For a parameter setting p = (n, la, depth)
and a test case ϑ the average outcome is the triple (t, s,m) ∈ Time×Nodes×Moves.
For this triple t, s, and m are averaged over all 20 records with the parameter setting
p applied to the test case ϑ. t(p,ϑ) is the average time and s(p,ϑ) the average number
of nodes expanded for solving ϑ. In order to make a parameter setting p comparable,
its average result is compared to the average result of PNS. We define the gain of
time as gt(p) = 1

30

∑30
ϑ=1 t(pns,ϑ)/t(p,ϑ). (Here, t(pns,ϑ) is the average time consumed

by PNS to solve test case ϑ.) The gain of space, gs, is defined analogously. The
positive real numbers gt and gs express the average gain of a parameter setting for
all thirty test cases. Each gain value is a factor relevant to the performance of the
PNS benchmark.

34 Monte-Carlo Proof-Number Search

0.0001

0.001

0.01

0.1

1

10

100

5 10 15 20 25 30

log time (s)

Test cases (ordered by time consumption for PNS)

PNS benchmark

33

3
33

333
33

3
3

33
33

33333
33

333

3
3

3
3

3
MC-PNS 20 samples/node, look-ahead 10, starting strategy 3

+
+

+
+

+
+ +

+
+

+ + +
+

+
+

+

+
+ +

+ + +
+ + + +

+
+ +

+

+
MC-PNS 3 samples/node, look-ahead 10, starting strategy 3

2 2

2 2 2
2 2

2

2
2 2 2

2 2 2 2

2

2 2
2 2 2

2 2 2 2

2
2 2

2

2

Figure 3.3: Time consumption of various configurations of MC-PNS.

In the experiment the configuration using 3 MCEs per node, a look-ahead of
10 moves, and starting strategy 3, is found to be the fastest configuration (pfast =
(3, 10, 3)). The gt(pfast) = 2.05 indicating that it is about twice as fast as the PNS
benchmark (cf. Table 3.1, left and the definition of the gain of speed and gain of
space). The gain gs(pfast) = 4.26. Thus pfast expands fewer than a quarter of nodes
which PNS expands. The parameter setting pnarrow = (20, 10, 3) is expanding the
smallest number of nodes. It requires less than a fifth of the expansions compared
to the benchmark on average on the test set. It is slightly slower than PNS in spite
of that (cf. Table 3.1).

Parameter settings with large n and large look-ahead require the least number
of nodes to prove or disprove the goal. Parameter settings with small n but large
look-ahead perform the fastest.

So far, this section focused on outlining the results relevant for characterizing
the set consisting of PNS and MC-PNS variations. The remainder of this section
describes the results required for comparing pfast, pnarrow, and PNS in greater detail.
For this purpose, the data hidden in the aggregates of the test cases are unfolded.
This is achieved by comparing the average time and space performance for each test
case. Figures 3.3 and 3.4 illustrate these comparisons, respectively.

A comparison of the time behavior (Figure 3.3) shows a pattern containing vari-
ety. Overall, pnarrow is characterized by the least time-efficient results: in 22 of the
30 test cases it is the slowest of the three compared solvers. PNS performs slowest
on the remaining 8 test problems. But PNS also performs as the fastest solver in 6
cases and as fast as pfast in 6 cases. pfast shows the most efficient time consumption
in 24 cases including the 6 cases in which it is as fast as PNS. We remark that the

3.4 — Discussion of Experiment 1 35

two leftmost points which are plotted to require 0.0001 seconds actually have value 0
because they were measured beyond the precision of the time measurement function.
It is reasonable to assume that the values should be ca. 0.001 seconds.

A comparison of the space behavior (Figure 3.4) shows that PNS requires the
highest number of node expansions to prove or disprove a goal, irrespective of the
test case. Its memory requirements are roughly the same as those of pfast and
pnarrow except for two test cases. PNS requires much more space than the two
MC-PNS variations on virtually all other test cases. pfast and pnarrow show a similar
behavior in memory consumption with pnarrow performing slightly more efficient.

The results show that the performance depends on the complexity inherent to the
tested problem. PNS finds its proofs faster than the other solvers on simple problems,
i.e., problems requiring fewer than 5,000 nodes to be solved. It outperforms its
competitors only once in the 20 more complex tasks while achieving this five times
in the 10 least complex problems. The two MC-PNS variations perform comparably
faster on the 20 most complex tasks. The experimental outcome shows that the speed
advantage of pfast relative to PNS grows with the complexity of the tested problem.

The main results of this section can be summarized in six propositions.

1. (3,10,3) is the fastest parameter configuration. On average it performs two
times faster than PNS on the test set and expands fewer than a quarter of
the nodes.

2. The configuration (20,10,3) is the MC-PNS configuration with the least node
expansions on average. It expands only a fifth of the number of nodes expanded
by PNS.

3. pfast and pnarrow consistently expand considerably fewer nodes than PNS.

4. pfast performs consistently faster than PNS.

5. The advantage of time performance of pfast relative to PNS even grows with
the complexity of the problem.

6. PNS performs better than pfast on problems with small complexity.

3.4 Discussion of Experiment 1

On average pfast solves problems twice as fast as PNS. This is coherent with a general
tendency observed. As outlined above, settings with small n (i.e., few simulated
games) and large la (i.e., far look-ahead) are generally the fastest. The speed of
a MC-PNS depends mainly on two items: (1) the number of nodes it expands,
and (2) the CPU time needed to evaluate a node. These two items are mutually
dependent. The number of expansions decreases with the intensity of the evaluation
because the heuristic is more reliable and the search investigates fewer nodes. This
is reflected by the experimental finding that nodes with thorough evaluation (large
n and large la) reach their goals with few expansions (cf. Table 3.1). But more
intensive evaluations require more time. Therefore, an optimization problem has to

36 Monte-Carlo Proof-Number Search

100

1000

10000

100000

1e+006

1e+007

1e+008

5 10 15 20 25 30

log space (nodes)

Test cases (ordered by space consumption of PNS)

PNS benchmark33

333

3
3333

333333333333
3333

3
3

3

3

3
MC-PNS 20 samples/node, look-ahead 10, starting strategy 3+

+

+ +
+

+
+

+

+
+ +

+
+ +

+

+

+

+ +
+

+
+

+ + + +

+
+ +

+

+
MC-PNS 3 samples/node, look-ahead, starting strategy 3

2
2

2 2
2

2
2

2

2
2
2 2 2

2
2

2

2

2 2
2
2

2

2 2 2 2

2
2 2

2

2

Figure 3.4: Space consumption of various configurations of MC-PNS.

be solved to compensate for the intensity of the evaluation. The optimum trades off
between the number of nodes visited and the evaluation time for each single node.
This optimum is found to be pfast = (3, 10, 3). Extensively evaluating each node, as
pursued by pnarrow, devotes too much time on each single evaluation. The strategy
of omitting a heuristic evaluation entirely, as embodied by PNS, is cheap for each
node but generates larger search trees.

Thus the n and la parameters can be said to control the intensity of each evalu-
ation successfully. The depth parameter has a minor influence on controlling this
intensity. More importantly, only few MCEs per node can produce a reasonable
heuristic for the MC-PNS framework.

One might object that the composition of the set is arbitrary. Still, we may argue
it is reasonable to assume that the inferences made about the quality of pfast are
valid in general. The test cases chosen are rather easy. One may therefore expect
that real-time problems are harder than the cases presented. Thus in practice pfast
should be even more relevant. The absolute time saved by pfast is much larger
for complex problems. For instance, PNS requires 47.7 seconds to solve the most
complex problem whereas pfast solves the problem in fewer than 6 seconds (eight
times faster). All problems which require fewer than 10,000 nodes were solved in
less than 0.1 second by PNS and pfast. The absolute time saved is crucial for real-
time applications, e.g., in a Go program. Thus we may conclude that it is valid to
generalize our finding that pfast is performing faster than PNS beyond our test set.

3.5 — Patterns for PNS 37

3.5 Patterns for PNS

As an alternative to MCE, we could use Go patterns to initialize proof and disproof
numbers in the evaluation step of PNS (cf. Subsection 3.1.1). Moreover, we could
use patterns to improve the MCE of MC-PNS. This section describes patterns in
computer Go and in particular 3× 3 patterns (Subsection 3.5.1). They are used in
Experiment 2 as a heuristic for initializing the values of leaves in PNS and also for
altering the probability distribution of MCE in MC-PNS (Subsection 3.5.2).

3.5.1 Patterns in Computer Go

Patterns are a standard means for representing knowledge in computer Go (e.g.,
Bouzy and Cazenave, 2001; Bouzy and Chaslot, 2006). A pattern in computer Go is a
configuration of intersections. High-level representations contain features additional
to the coloring of the intersections. Two examples are: (1) tactical information on
connectivity and (2) life-and-death status. The size of a pattern varies considerably
depending on the application’s purpose. Large-scaled patterns are employed for
openings, while tactical analysis is often guided by small patterns. Patterns can
be created manually or auto-generated (Graepel et al., 2001; Van der Werf, 2004;
Bouzy and Chaslot, 2006).

The patterns applied in Experiment 2 are auto-generated 3×3 patterns. They are
small, but offer the advantage of low pattern-matching cost. This characteristic is a
precondition to any application in the Monte-Carlo framework as given by MC-PNS.
The patterns should match each move in each simulated game. The patterns are
generated by statistical ranking in self-play as described by Bouzy and Chaslot
(2006). Each of the 6,561 patterns describes the desirability of the move in the
center expressed by an integer value. The patterns do not account for information
on the edge of the Go board. They were generated for a MCE Go engine for the
whole game and are not specifically tailored to life-and-death problems.

3.5.2 Two Pattern-Based Heuristics

The patterns are the ingredients for two heuristic variations of PNS. We refer to
them as (1) PNSp and (2) MC-PNSp. As a consequence, we compare four solving
algorithms in total: (i) PNS, (ii) PNSp, (iii) MC-PNS, and (iv) MC-PNSp.

Ad (1). PNSp applies the patterns to a node X by assigning the suggested pattern
value of the last played intersection to pn(X) and dn(X). The desirability depends
on the neighbors surrounding the intersection last played. The intersection’s pattern
value v ranges between 0 and 340. The values of pn and dn are set as pn(X) = 1

v+1
and dn(X) = v

340 . Local knowledge on the desirability of the move last played is
thus taken into account.

Ad (2). MC-PNSp is a variation of MC-PNS. The patterns are employed to alter
the probability distribution of the moves selected for the random sequence. Pure
MC-PNS plays randomly distributed legal moves in each random sequence implying
a uniform distribution of the probability for selecting a move. In MC-PNSp this
uniform distribution is altered by the pattern values. Whenever a move is played

38 Monte-Carlo Proof-Number Search

in a random sequence, the pattern values of the intersections next to that move
are updated. These neighbors’ new pattern values are set according to a matching
pattern. The probability to play at a neighbor is proportional to its pattern value.
Thus, moves evaluated well by the patterns are more likely to be played than moves
less promisingly assessed.

The intuition underlying both heuristics is that main lines of play should be con-
sidered first. These lines are given preference by the pattern evaluation. Comparing
the two heuristics, we may predict that MC-PNSp requires considerably more time
for pattern matching because patterns are matched for each move in each random
sequence. PNSp matches the patterns only once at each new node evaluation.

3.6 Experiment 2: Initialization by Patterns or by
Monte-Carlo Evaluation

The four variations of the PNS algorithm outlined in the previous section (Section
3.5) are tested in Experiment 2: (1) PNS (without heuristics), (2) PNSp (PNS with
pattern heuristic), (3) MC-PNS, and (4) MC-PNSp (MC-PNS with pattern heuris-
tic). Each variation was tested on the test set of 30 life-and-death problems described
in Subsection 3.2.2. The time spent and the number of nodes expanded for solving
each test position were measured for each variation. The number of nodes is an
indication of efficiency. Simultaneously, the memory consumption is measured by
the same number of nodes. In order to account for the randomness of the MCEs
and potential inaccuracy for measuring the small time spans well below a 10th of
a second, each configuration was applied to each test case 20 times. The same test
problems and machinery described for Experiment 1 are used.

3.7 Results of Experiment 2

The experiment required about six hours to complete. All variations solved all
problems correctly. The variations that solved the test cases in decreasing order of
average speed were as follows: first MC-PNS, second MC-PNSp, third PNS, and
fourth PNSp which required most time to solve the problems. PNSp was 3% slower
than PNS, while MC-PNS was ca. two times faster than PNS. With respect to nodes
expanded on average, MC-PNS and MC-PNSp performed equal and better than the
other variants; PNSp performed third best and PNS performed least. The effect of
the patterns was small: PNSp expanded about only 6% fewer nodes than PNS in
total, while MC-PNS expanded about 75% fewer nodes than PNS. MC-PNSp was
about as slow as PNS but used as little space as MC-PNS.

In order to avoid a strong influence of a few large test positions, we suggest
an additional metric for comparing the results. For each test case, a ranking can
be established for each variation. Each variation then ranks either first, second,
third, or fourth in terms of speed performance. Similarly there is a rank for space
consumption. The average ranking is introduced to compare the performance of the
variations on all tests. The average rankings for finding a solution are shown in
Table 3.2.

3.8 — Discussion of Experiment 2 39

Algorithm Time rank Space rank
MC-PNS 1.6 1.6
MC-PNSp 2.6 1.6
PNS 2.7 3.6
PNSp 3.0 3.1

Table 3.2: Time and space ranking of the four compared PNS variations averaged over 30
test problems.

The average ranking by time consumption leads to roughly the same order as
the ranking by space consumption, with one significant exception: PNS solves the
problems faster than PNSp on average (in 17 out of 30 cases), but PNS consumes
more space than PNSp (in two thirds of the cases). However, it should be remarked
that there are two large outliers in the experimental data.

The results can be structured by noting the explicit occurrence of two features:
(1) the Monte-Carlo feature and (2) the pattern feature. The Monte-Carlo feature
is present in MC-PNS and MC-PNSp; the pattern feature is present in PNSp and
MC-PNSp.

The speed of MC-PNS variations was about twice as high as for PNS on average.
Patterns slowed down the speed for finding a solution in both PNS and MC-PNS,
whenever they were applied. This tendency was particularly noticeable in MC-PNSp.
The variations relying on patterns expanded on average about 6% fewer nodes for
each solution but the variation between the feature groups was larger than within
each feature group. Analogously, the variation of time consumption is smaller be-
tween the feature groups than within. The internal variation of time consumption is
larger within the Monte-Carlo-feature group than within the pattern-feature group.
The reverse holds for space consumption.

3.8 Discussion of Experiment 2

The findings of the previous section can be summarized in three observations. (1)
The Monte-Carlo evaluation leads to a better speed improvement than evaluation
by patterns. (2) The patterns slow down the speed of the solver and particularly
hinder it in case of MC-PNSp. (3) There is a positive effect of the pattern heuristic,
evident in the better space ranking of PNSp compared to that of PNS.

These three observations can be explained as follows. (1) The patterns’ positive
effect is outweighed by the cost of matching they impose. (2) While the advantage
can be seen in reduced space consumption, this effect is too weak to result in time
savings. (3) The outliers can be explained by the nature of pattern knowledge. Pat-
terns are static and generalize from common cases. They are therefore potentially
weak at handling exceptions. The effect is particularly strong because the patterns
are not specialized on life-and-death problems (cf. Subsection 3.5.1). So, the com-
bination of patterns and MCE in the manner proposed does not seem promising.
However, overall the results, though not practically applicable in the current state,

40 Monte-Carlo Proof-Number Search

can still be seen as encouraging for future work since opportunities for improvement
exist (cf. Subsection 3.9.2).

3.9 Chapter Conclusion and Future Research

We conclude this chapter by summarizing the results of Experiment 1 and Experi-
ment 2 (Subsection 3.9.1) and give an outlook on future research (Subsection 3.9.2)
based on the findings presented.

3.9.1 Chapter Conclusion

This chapter introduced a new algorithm, MC-PNS, based on MCE within the
PNS framework. An experimental application of the new algorithm and several
variations to the life-and-death sub-problem of Go were described; moreover, its in-
terpretation was presented. It was demonstrated experimentally that given the right
setting of parameters MC-PNS outperforms PNS. For such a setting, MC-PNS is on
average two times faster than PNS and expands four times fewer nodes. Experiment
1 resulted in evidence for assuming that this result will be generalized beyond the
test cases observed. Experiment 2 compared MC-PNS with another pattern-based
heuristic for initialization called PNSp. We observed that MCE initializes proof and
disproof numbers of leaves in PNS better than small patterns do. We speculate that
the reason for the superior performance of MC-PNS is the flexibility of the MCE;
the patterns are a generalization over many game positions and therefore too static
to perform on the same level as MCE.

We may conclude that MC-PNS constitutes a genuine improvement of PNS that
uses MCE to enhance the initialization of proof and disproof numbers. Moreover,
we found that the patterns did not improve MC-PNS. Finally, MC-PNS, although it
is a general search algorithm, requires a domain in which MCE can be implemented
efficiently. We note that, still, MCE is less domain specific than patterns are.

3.9.2 Future Research

We propose three directions of future research related to our findings presented in
this chapter.

(1) The proposed algorithm, MC-PNS, performed well in the domain of Go in
which MCE proved to be useful. Future research should investigate the feasibility of
the approach in other solving scenarios which have binary goals and can be searched
by AND/OR trees. In particular, it would be of great interest to investigate whether
MC-PNS could be successfully applied to one-player games or multi-player games
with more than two players.

(2) The here proposed pattern enhancement of MC-PNS did not contribute to
further improving MC-PNS. This observation does not rule out the possibility that
MC-PNS can be combined with other initialization or move-selection heuristics. As
a more general question, we can ask how different heuristics for PNS and even other
best-first search algorithms can be combined with MCE.

3.9 — Chapter Conclusion and Future Research 41

(3) One reason pointed out for the relatively weak performance of the patterns lies
in the kind of patterns used in Experiment 2. As remarked earlier, the patterns were
originally designed for improving the playing strength of a Monte-Carlo program for
the whole game of Go. More specific patterns for life-and-death problems could
potentially provide better results. For instance, the patterns could be larger and
thus take into account more context.

42 Monte-Carlo Proof-Number Search

Chapter 4

Monte-Carlo Tree Search
Solver

Sections 4.1 and 4.2 of this chapter are based on the following publication.1

• M.H.M. Winands, Y. Björnsson, and J-T. Saito. Monte-Carlo Tree Search Solver.
In H.J. van den Herik, X. Xu, Z. Ma, and M.H.M. Winands, editors, Proceedings of
Computers and Games 2008 Conference (CG‘08), volume 5131 of Lecture Notes in
Computer Science, pp. 25-36. Springer, Berlin, Germany, 2008.

In Chapter 2 we distinguished between two Monte-Carlo methods: (1) Monte-Carlo
Evaluation (MCE) (Abramson, 1990), and (2) Monte-Carlo Tree Search (MCTS)
(Kocsis and Szepesvári, 2006; Coulom, 2007a). Chapter 3 proposed an approach for
using MCE for solving game positions. In this chapter we investigate, in how far
MCTS can be used for solving.

In the course of the last few years, MCTS has advanced the field of computer Go
substantially. Moreover, it is used for other games such as Phantom Go (Cazenave
and Borsboom, 2007) and Clobber (Kocsis, Szepesvári, and Willemson, 2006), and
even for games for which reasonable evaluation functions have been known, e.g.,
Amazons (Lorentz, 2008; Kloetzer, Müller, and Bouzy, 2008), LOA (Winands and
Björnsson, 2010), and Hex (Cazenave and Saffidine, 2009). Although MCTS is able
to find the best move, it is not able to prove the game-theoretic value of (parts of)
the search tree. A search method that is not able to prove or estimate quickly the
game-theoretic value of a node may run into problems. This is especially true for
sudden-death games, such as Chess, that may abruptly end by the creation of one of
a prespecified set of patterns (Allis, 1994) (e.g., checkmate in Chess). In this case αβ
search or Proof-Number Search (PNS) (Allis et al., 1994) is traditionally preferred
to MCTS.

This chapter answers the second research question, RQ 2: How can the Monte-
Carlo Tree Search framework contribute to solving game positions? To that end, we

1The author is grateful to Springer-Verlag for the permission of reusing relevant parts of the
article in the thesis.

44 Monte-Carlo Tree Search Solver

introduce a new MCTS variant called MCTS-Solver that has been designed to prove
the game-theoretic value of a node in a search tree. This is an important step towards
applying MCTS-based approaches effectively in sudden-death-like games (including
Chess). We use the game Lines of Action (LOA) as a testbed. It is an ideal candidate
because its intricacies are less complicated than those of Chess. Therefore, we can
focus on the sudden-death property. In this chapter we assess MCTS-Solver on a
test set of LOA positions. First, we test the influence of the selection strategy on
MCTS-Solver. Second, we compare MCTS-Solver with αβ and PN2. Third, root
parallelization and tree parallelization are evaluated for MCTS-Solver. We note
that we investigate the solving strength of MCTS-Solver; its improvement in playing
strength was already investigated by Winands et al. (2008). Experimental results
indicated that MCTS-Solver defeated the original MCTS program by a winning score
of 65%.

The chapter is organized as follows. In Section 4.1 we introduce MCTS-Solver. In
Section 4.2 we discuss its application to LOA. We empirically evaluate the method in
Section 4.3. Finally, Section 4.4 gives conclusions and an outlook on future research.

4.1 Monte-Carlo Tree Search Solver

Although MCTS is unable to prove the game-theoretic value, in the long run MCTS
equipped with the UCT formula is able to converge to the game-theoretic value. For
example, in endgame positions of fixed-termination games like Go and Amazons,
MCTS is able to find the optimal move relatively fast (Zhang and Chen, 2007;
Kloetzer et al., 2008). However, in a sudden-death game like LOA, where the main
line towards the winning position is narrow, MCTS may often lead to an erroneous
outcome because the nodes’ values in the tree do not converge fast enough to their
game-theoretic value. For example, if we let MCTS analyze the LOA position in
Figure 4.1 for 5 seconds, it selects c7xc4 as the best move, winning 67.2% of the
simulations. However, this move is a forced 8-ply loss, while f8-f7 (scoring 48.2%) is
a 7-ply win.2 Only when we let MCTS search for 60 seconds, it selects the optimal
move. For a reference, we remark that it takes αβ in this position less than a second
to select the best move and prove the win.

We designed a new variant called MCTS-Solver which is able to prove the game-
theoretic value of a position. Of the four stages of MCTS (described in Chapter 2)
two are changed for MCTS-Solver. The simulation and expansion stages remain the
same. The backpropagation and the selection are modified for MCTS-Solver. The
changes are discussed in Subsections 4.1.1 and 4.1.2, respectively. The pseudocode
of MCTS-Solver is given in Subsection 4.1.3.

2The rules of LOA can be found in Appendix A.

4.1 — Monte-Carlo Tree Search Solver 45

1

Figure 4.1: LOA position with White to move.

4.1.1 Backpropagation

In addition to backpropagating the values {1,0,−1}, the search also propagates the
game-theoretic values ∞ or −∞.3 The search assigns ∞ or −∞ to a won or lost
terminal position for the player to move in the tree, respectively. Propagating the
values back in the tree is performed similar to negamax (Knuth and Moore, 1975)
in the context of minimax search in such a way that we do not have to distinguish
between MIN and MAX nodes. If the selected move (child) of a node returns∞, the
node is a win. To prove that a node is a win, it suffices to prove that one child of
that node is a win. In the case that the selected child of a node returns −∞, all its
siblings have to be checked. If their values are also −∞, the node is a loss. To prove
that a node is a loss, we must prove that all its children lead to a loss. In the case
that one or more siblings of the node have a different value, we cannot prove the loss.
Therefore, we will propagate −1, the result for a lost game, instead of −∞, the game-
theoretic value of a position. We note that the backpropagation of game-theoretic
values is similar to the backpropagation of another solving algorithm, namely PNS.
The value of the node will be updated according to the backpropagation strategy as
described in Subsection 2.3.2.

4.1.2 Selection

As seen in the previous subsection, a node can have the game-theoretic value ∞
or −∞. The question arises how these game-theoretic values affect the selection
strategy. Of course, when a child is a proven win, the node itself is a proven win,
and no selection has to take place. But when one or more children are proven
to be a loss, it is tempting to discard them in the selection phase. However, this
can lead to overestimating the value of a node, especially when moves are pseudo-
randomly selected by the simulation strategy. For example, in Figure 4.2 we have

3Draws are in general more problematic to prove than wins and losses. Because draws only
happen in exceptional cases in our test domain LOA, we took the decision not to handle proven
draws separately; in this way we maintain efficiency.

46 Monte-Carlo Tree Search Solver

A

B C D

E

F G H

I

J K L

-∞ -∞ 0.4 0.3 0.4 0.4 -0.1 -0.1 -0.1

Figure 4.2: Search trees showing a weakness of Monte-Carlo evaluation.

three one-ply subtrees. Leaf nodes B and C are proven to be a loss, indicated by −∞;
the numbers below the other leaves are the expected pay-off values. Assume that
we select the moves with the same likelihood (as could happen when a simulation
strategy is applied). If we would prune the loss nodes, we would prefer node A to
E. The average of A would be 0.4 and that of E 0.37. It is easy to see that A is
overestimated because E has more good moves.

If we do not prune proven loss nodes, we run the risk of underestimation. Espe-
cially, when we have a strong preference for certain moves (because of a bias) or we
would like to explore our options (because of the UCT formula), we could under-
estimate positions. Assume that we have a strong preference for the first move in
the subtrees of Figure 4.2. We would prefer node I to A. It is easy to see that A is
underestimated because I has no good moves at all.

Based on preliminary experiments (cf. Winands et al., 2008), selection is per-
formed in the following way. In case a selection strategy such as UCT is applied,
child nodes with the value −∞ will never be selected. For nodes of which the visit
count is below a certain threshold, moves are selected according to the simulation
strategy instead of selection strategy. In that case, children with the value −∞ can
be selected. However, when a child with a value −∞ is selected, the search is not
continued at that point. The results are propagated backwards according to the
strategy described in the previous subsection.

For a node N that has not been visited yet, we test whether one of its moves
leads directly to a win or all moves are losses at N. If there is such a move, we
stop searching at this node and set the node’s value. This check at node N must be
performed because otherwise it could take many simulations before the child leading
to a mate-in-one is selected and the N is proven.

4.1.3 Pseudocode for MCTS-Solver

The pseudocode for MCTS-Solver is listed in Algorithm 4.1. The algorithm is con-
structed similar to negamax in the context of minimax search. select(Node N) is
the selection function as discussed in Subsection 4.1.2, which returns the best child

4.2 — Monte-Carlo LOA 47

of the node N . The procedure add_to_tree(Node N) adds one more node to the
tree; play_out(Node N) is the function which plays a simulated game from the node
N , and returns the result R ∈ {1, 0,−1} of this game; compute_average(Integer
R) is the procedure that updates the value of the node depending on the result R of
the last simulated game; get_children(Node N) generates the children of node N .

4.2 Monte-Carlo LOA

In this section we discuss how we applied MCTS-Solver to LOA. First, we propose
possible selection strategies for MCTS-Solver in Subsection 4.2.1. We explain the
simulation strategy in Subsection 4.2.1. Finally, we discuss how we parallelized the
search in Subsection 4.2.3.

4.2.1 Selection Strategies

We use the UCT (Upper Confidence bounds applied to Trees) strategy (Kocsis and
Szepesvári, 2006). UCT is easy to implement and used in many Monte-Carlo Go
programs. UCT can be enhanced with Progressive Bias (PB) (Chaslot et al., 2008b).
PB is a technique to embed domain-knowledge bias into the UCT formula. It was
successfully applied in the Go program Mango (Chaslot et al., 2008b). UCT with
PB works as follows. Let I be the set of nodes immediately reachable from the
current node p. The selection strategy selects the child k of the node p that satisfies
Formula 4.1:

k ∈ argmaxi∈I
(
vi +

√
C × lnnp

ni
+
W × Pmc
ni + 1

)
, (4.1)

where vi is the value of the node i, ni is the visit count of i, and np is the visit
count of p. C is a coefficient which must be tuned experimentally. W×Pmc

ni+1 is the PB
part of the formula. W is a constant which must be set manually (here W = 50).
Pmc is the transition probability of a move category mc (Tsuruoka, Yokoyama, and
Chikayama, 2002).

For each move category (e.g., capture, blocking) the probability that a move
belonging to that category will be played is determined. The probability is called
the transition probability. This statistic is obtained off-line from game records of
matches played by expert players. The transition probability for a move category
mc is calculated as follows:

Pmc =
nplayed(mc)

navailable(mc)
, (4.2)

48 Monte-Carlo Tree Search Solver

Algorithm 4.1: Pseudocode for MCTS-Solver.

50 CHAPTER 4. MONTE-CARLO TREE SEARCH SOLVER

Algorithm 4.1 Pseudo code for MCTS-Solver.

1: procedure MCTSSolver(Node N) . search one iteration in N
2: . return its value
3: if N.player to move wins() then return ∞
4: else
5: if N.player to move loses() then return −∞
6: end if
7: end if
8:

9: B = select(N) . B is best child of N
10:

11: if B.value != ∞ AND B.value != −∞ then
12: if B.visit count == 0 then
13: R = -play out(B) . R is result of this call
14: add to tree(B)
15: goto DONE
16: else
17: R = -MCTSSolver(B)
18: end if
19: else
20: R = B.value
21: end if
22:

23: if R == ∞ then
24: N.value = −∞
25: return R
26: else
27: if R == −∞ then
28: for C in N.children do
29: if C.value != R then
30: R = -1
31: goto DONE
32: end if
33: end for
34: end if
35: N.value = ∞
36: return R
37: end if
38:

39: DONE:
40: N.compute average(R) . also increases N.visit count
41: return R
42:

43: end procedure

4.2 — Monte-Carlo LOA 49

where nplayed(mc) is the number of game positions in which a move belonging to
category mc was played, and navailable(mc) is the number of positions in which moves
belonging to category mc were available.

The move categories of the MC-LOA program are similar to the ones used in the
Realization-Probability Search of the program MIA (Winands and Björnsson, 2008).
They are applied in the following way. First, we classify moves as captures or non-
captures. Next, moves are further sub-classified based on the origin and destination
squares. The board is divided into five different regions: the corners, the 8× 8 outer
rim (except corners), the 6× 6 inner rim, the 4× 4 inner rim, and the central 2× 2
board. Finally, moves are further classified based on the number of squares traveled
away from or towards the center-of-mass.

The influence of PB has to be important when a few games have been played but
has to decrease fast (when more games have been played) to ensure that the strategy
converges to the UCT selection strategy. Standard, this is done through dividing
the PB component by the number of games played through that node (i.e., ni). A
disadvantage is that by dividing by ni the decrease rate of PB is independent of the
actual value of a child (i.e., vi). Nodes that do not perform well should not be biased
that long, whereas nodes that continue to have a high score should continue to be
biased. Instead of dividing the PB component by the number of games played, it
may be divided by the number of losses li (Nijssen and Winands, 2010) in Formula
4.3.

k ∈ argmaxi∈I
(
vi +

√
C × lnnp

ni
+
W × Pmc
li + 1

)
, (4.3)

Moreover, favoring nodes with a high value could be taken a step further by
replacing every ni with li which would produce Formula 4.4.

k ∈ argmaxi∈I
(
vi +

√
C × lnnp

li
+
W × Pmc
li + 1

)
, (4.4)

All three PB variants are available in the MCTS program. In Section 4.3, we will
determine which PB variant works the best for solving positions. Regarding playing
strength, applying the standard PB enables that the MC-LOA program wins almost
75% of the games against the standard UCT. The two enhanced variants only gave
a slight additional improvement.

Finally, we remark that the selection strategy is applied only at nodes with a
visit count higher than a certain threshold T (here 5) (Coulom, 2007a). If the node
has been visited fewer times than this threshold, the next move is selected according
to the simulation strategy discussed in the next subsection.

50 Monte-Carlo Tree Search Solver

4.2.2 Simulation Strategy

In the Monte-Carlo LOA program, the move categories together with their transition
probabilities, as discussed in Subsection 4.2.1, are used to select the moves pseudo-
randomly during the MCE. The simulation strategy draws the moves randomly based
on their transition probabilities in the first part of a simulation, but selects them
based on their evaluation score in the second part of a simulation (cf. Winands and
Björnsson, 2010).

A simulation requires that the number of moves per game is limited. When
considering the game of LOA, the simulated game is stopped after 200 moves and
scored as a draw. The game is also stopped when heuristic knowledge indicates that
the game is probably over. In general, once a LOA position gets very lopsided, an
evaluation function can return a quite trustworthy score, more so than even elaborate
simulation strategies. The game can thus be safely terminated both earlier and with
a more accurate score than if continuing the simulation (which might fail to deliver
the win). We use the MIA 4.5 evaluation function (Winands and Van den Herik,
2006) for this purpose. When the evaluation function gives a value that exceeds a
certain threshold (i.e., 700 points), the game is scored as a win. If the evaluation
function gives a value that is below a certain threshold (i.e., −700 points), the game
is scored as a loss. For efficiency reasons the evaluation function is called only every
3 plies, starting at the second ply (thus at 2, 5, 8, 11 etc.).

4.2.3 Parallelization

The MC-LOA program employs two parallelization methods, (1) root parallelization
and (2) tree parallelization. They are explained below.

Root Parallelization

“Single-run” parallelization (Cazenave and Jouandeau, 2007), also called root paral-
lelization (Chaslot et al., 2008a) consists of building multiple MCTS trees in parallel,
with one thread per tree. These threads do not share information with each other.
When the available time is up, all the root children of the separate MCTS trees
are merged with their corresponding clones. For each group of clones, the scores of
all games played are added. Based on this grand total, the best move is selected.
This parallelization method only requires a minimal amount of communication be-
tween threads, so the parallelization is easy to implement even on a cluster. For a
small number of threads, root parallelization performs remarkably well in compari-
son to other parallelization methods (Cazenave and Jouandeau, 2007; Chaslot et al.,
2008a). Root parallelization improved the playing strength of the MC-LOA program
considerably (Winands and Björnsson, 2010).

Tree Parallelization

Tree parallelization (Cazenave and Jouandeau, 2007; Chaslot et al., 2008a) uses one
shared tree from which several simultaneous games are played. Each thread can
modify the information contained in the tree; therefore, care needs to be taken to

4.3 — Experiments 51

prevent that threads corrupt the values of the nodes by simultaneously operating
on the same data. A lock is used when a leaf is expanded to prevent corruption
of data. Inspired by the suggestion of Enzenberger and Müller (2010), no locks are
used when two threads access the same internal node. At the moment that two
threads try to update a node at the same time, one of the updates may be lost. In
our implementation, a special check takes care that the game-theoretic value of a
proven node is never overwritten.

If several threads start from the root at the same time, it is possible that they
traverse the tree for a large part along the same path. Simulated games might start
from leaves close to each other. It may even occur that simulated games begin from
the same leaf node. Because a search tree typically has millions of nodes, it may
be redundant to explore a rather small part of the tree several times. Instead of
selecting the child solely on its UCT score, we added a small random factor to the
UCT formulas. Shoham and Toledo (2002) call this the randomization of the move
selection. Randomization of the move selection has been shown to be beneficial
for parallelizing best-first search in the past (cf. Shoham and Toledo, 2002; Saito,
Winands, and Van den Herik, 2010, and Chapter 5 of this thesis). Adding a random
factor to Formula 4.4 produces Formula 4.5.

k ∈ argmaxi∈I
(
vi +

√
C × lnnp

li
+
W × Pmc
li + 1

+ k × ε
)

, (4.5)

where ε is a random variable, ε ∈ [0, 1] and k a constant. This constant is here set
to 0.02, to ensure that playing strength is at least the same as when applying root
parallelization.

4.3 Experiments

In this section we evaluate the tactical performance of MCTS-Solver by testing it
on LOA endgame positions. First, we explain briefly the experimental setup in
Subsection 4.3.1. Next, we test the influence of the selection strategy on MCTS-
Solver in Subsection 4.3.2. Subsequently, we compare MCTS-Solver with αβ and
PN2 search in Subsection 4.3.3. Finally, root parallelization and tree parallelization
are evaluated for MCTS-Solver in 4.3.4.

4.3.1 Experimental Setup

We tested MCTS-Solver on 488 endgame positions of Lines of Action (LOA).4 This
test set and subsets thereof have been used frequently in the past (Pawlewicz and
Lew, 2007; Sakuta et al., 2003; Winands et al., 2003b). We note that the rules
of LOA can be found in the Appendix A. All experiments are carried out on a
Linux server with eight 2.66 GHz Xeon cores and 8 GB of RAM. In this section

4The test set is available at www.personeel.unimaas.nl/m-winands/loa/tscg2002a.zip.

52 Monte-Carlo Tree Search Solver

MCTS-Solver is compared with αβ and PN2 search. The details of αβ and PN2 are
discussed below. All search algorithms have been implemented in Java.

αβ Search

The αβ search performs a depth-first iterative-deepening in the PVS / NegaScout
framework (Marsland, 1983; Reinefeld, 1983). The evaluation function of MIA 4.5
is used (Winands and Van den Herik, 2006) to assess the values of leaf nodes. A
TwoDeep transposition table (Breuker et al., 1996) is applied to prune a subtree or
to narrow the αβ window. At all interior nodes that are more than 2 plies away
from the leaves, it generates all moves to perform Enhanced Transposition Cutoffs
(ETC) (Schaeffer and Plaat, 1996). For move ordering, the move stored in the
transposition table (if applicable) is always tried first, followed by two killer moves
(Akl and Newborn, 1977). These are the last two moves that were best or at least
caused a cutoff at the given depth. Thereafter follow: (1) capture moves going to
the inner area (the central 4× 4 board) and (2) capture moves going to the middle
area (the 6 × 6 rim). All the remaining moves are ordered decreasingly according
to the relative history heuristic (Winands et al., 2006). At the leaf nodes of the
regular search, a quiescence search is performed to get more accurate evaluations
(cf. Schrüfer, 1989).

PN2 Search

The PN2 search used, was previously employed to solve 6×6 LOA (cf. Winands,
2008). In this implementation, the proof number and disproof number are initialized
to values 1 and n, respectively, for an OR node (and the reverse for an AND node),
where n is the number of legal moves. In LOA, n is equivalent to the mobility of the
moving player. It is also an important feature in the evaluation function (Winands,
Van den Herik, and Uiterwijk, 2003a). It is known that mobility speeds up PN with
a factor of 5 to 6 (Winands, 2004).

As a reminder, we note that PN2 consists of two levels of PN search. The first
level consists of a PN search (PN1) which calls a PN search at the second level (PN2)
for an evaluation of the most-proving node of the PN1 tree. This PN2 search is bound
by a maximum number of nodes N to be stored in memory. In this implementation,
N is equal to the size of the PN1 tree (Allis, 1994). The PN2 search is stopped when
the number of nodes stored in memory exceeds N or the subtree is (dis)proven. After
completion of the PN2 search, the children of the root of the PN2 tree are preserved,
but subtrees are removed from memory.

4.3.2 Selection Strategies

In the first experiment we test the effect of enhancing MCTS-Solver with Progressive
Bias (PB) on a set of 488 forced-win LOA positions. We compare the standard UCT
selection strategy with the three PB variants, here called Classic PB, PB-L1, and
PB-L2 (i.e., Formulas 4.1, 4.3 and 4.4, respectively). We will look how much effort
(in nodes and CPU time) it takes to solve endgame positions. For MCTS-Solver, all
children at a leaf node, evaluated for the termination condition during the search

4.3 — Experiments 53

(cf. Subsection 4.1.2), are counted. The maximum number of nodes searched is
5,000,000. The limit ensures that MCTS-Solver does not use more than 30 seconds
for trying to solve a position.

The results are given in Table 4.1. The first column gives the names of the
algorithms, the second the number of positions solved, and the third and fourth the
number of nodes searched and the time it took, respectively. In the second column
we see that 174 positions are solved by UCT, 245 by Classic PB, 306 by PB-L1, and
319 by PB-L2. In the third and fourth column the number of nodes and the time
consumed are given for the subset of 154 positions which all algorithms are able to
solve. We see that the PB variants not only solve more problems, but also that they
explore considerably smaller trees than the UCT variant. For the best PB variant,
PB-L2, positions were solved tree times faster in nodes and time than UCT. We may
conclude that PB not only improves the playing performance but also the solving
performance.

positions solved 154 positions
Algorithm (out of 488) Total nodes Total time (ms.)

UCT 174 148,278,311 514,933
Classic PB 245 103,369,811 381,944

PB-L1 306 57,010,037 212,437
PB-L2 319 45,444,437 171,246

Table 4.1: Comparing different selection strategies on 488 test positions with a limit of
5,000,000 nodes.

For better insight into how much faster the enhanced PB variants, PB-L1 and
PB-L2, are than the Classic PB in CPU time, a second comparison was performed.
In Table 4.2 we compare Classic PB, PB-L1, and PB-L2 on the subset of 224 test
positions which the three algorithms were able to solve. The table reveals that the
PB-L1 and PB-L2 are 1.5 to 2 times faster than Classic-PB in CPU time. Taking
into account the number of losses instead of the number of visits in the PB formula
improves the solving strength of MCTS-Solver.

Algorithm Total nodes Total time (ms.)
Classic PB 217,975,808 799,893
PB-L1 138,742,124 497,161
PB-L2 124,635,541 448,170

Table 4.2: Comparing the different Progressive-Bias variants on 224 test positions with a
limit of 5,000,000 nodes.

Finally, to assess which of the enhanced PB variants, PB-L1 and PB-L2, is the
best, we performed a third comparison. In Table 4.3 we compare PB-L1 and PB-L2
on a subset of 286 test positions which both algorithms were able to solve. We can
see that PB-L2 is 10 to 15% faster in nodes and CPU time than PB-L1. For the
remaining experiments of this chapter we will use the PB-L2 enhancement.

54 Monte-Carlo Tree Search Solver

Algorithm Total nodes Total time (ms.)
PB-L1 254,285,077 914,709
PB-L2 222,521,350 795,575

Table 4.3: Comparing PB-L1 and PB-L2 on 286 test positions with a limit of 5,000,000
nodes.

4.3.3 Comparing Different Solvers

In this section we test the tactical performance of MCTS-Solver by comparing it
to αβ search and PN2. The goal is to investigate the effectiveness of the MCTS-
Solver experimentally. We will measure how much effort (in nodes and CPU time) it
takes to solve endgame positions. For the αβ depth-first iterative-deepening search,
nodes at depth i are counted only during the first iteration that the level is reached.
This is in agreement with the way analogous comparisons have been carried out by
Allis et al. (1994). For PN2 all nodes evaluated for the termination condition during
the search are counted. MCTS-Solver, PN2, and αβ are tested on the same set of
488 forced-win LOA positions. Two comparisons are made below.

Table 4.4 gives the results of MCTS-Solver, PN2, and αβ on the set of 488 LOA
positions. The maximum number of nodes searched is again 5,000,000. In the second
column of Table 4.4 we see that 319 positions were solved by the MCTS-Solver, 252
positions by αβ, and 405 positions by PN2. In the third and fourth column the
number of nodes and the time consumed are given for the subset of 218 positions
which all three algorithms were able to solve. If we have a look at the fourth column,
we see that PN2 search is the fasted and that MCTS-Solver is the slowest, although
its speed is not much slower that of αβ search: PN2 is (slightly more than) 5 times
faster than MCTS-Solver whereas αβ is only 1.3 times faster than MCTS-Solver.

Algorithm # positions solved 218 positions
(out of 488) Total nodes Total time (ms.)

MCTS-Solver 319 153,863,729 497,859
αβ 252 217,800,566 355,061

PN2 405 120,489,289 92,636

Table 4.4: Comparing MCTS-Solver, αβ, and PN2 on 488 test positions with a limit of
5,000,000 nodes.

For a better insight into how much faster PN2 is than MCTS-Solver in CPU time,
we conducted a second comparison. In Table 4.5 we compare PN2 and MCTS-Solver
on the subset of 304 test positions which both algorithms were able to solve. Again,
PN2 solves positions approximately 5 times faster than MCTS-Solver.

4.3 — Experiments 55

Algorithm Total nodes Total time (ms.)
MCTS-Solver 274,602,402 948,124
PN2 245,786,282 189,893

Table 4.5: Comparing MCTS-Solver and PN2 on 304 test positions.

4.3.4 Testing Parallelized Monte-Carlo Tree Search Solver

In the next series of experiments we tested the performance of root parallelization
for solving 319 positions which the regular MCTS-Solver (cf. Table 4.4) was able
to solve. The results regarding time and nodes evaluated are given for 1, 2, 4,
and 8 threads in Table 4.6. We remark that the root parallelization for 1 thread
behaves exactly the same as the MCTS-Solver tested in the previous subsection. We
observe that the scaling factors for 2, 4, and 8 threads, are only 1.1, 1.3, and 1.4,
respectively. The results for root parallelization is therefore rather weak. The reason
for the mediocre scaling is that this parallelization method builds substantially larger
trees. For instance, in the case of 8 threads, the search explores 5.4 times more nodes
than the standard MCTS-Solver.

Processors 1 2 4 8
Total time (ms.) 1,097,167 979,239 842,531 811,426
Total scaling factor 1 1.1 1.3 1.4
Total nodes evaluated 308,722,292 541,309,966 937,087,892 1,666,367,476

Table 4.6: Experimental results for MCTS-Solver with root parallelization on 319 test
positions.

In the second series of experiments we tested the performance of tree paralleliza-
tion by comparing it to the regular MCTS-Solver. We note that tree parallelization
with one thread does not behave the same as MCTS-Solver caused by the random
factor in the selection strategy. The results regarding time and nodes evaluated, on
the subsets that both algorithms could solve for 1, 2, 4, and 8 threads are given in
Table 4.6. For 1, 2, 4, and 8 threads these subsets consisted of 298, 314, 317, and
315 positions.

We observe that the scaling factor for 1, 2, 4, and 8 threads is 0.84, 1.4, 2.2
and 4.1, respectively. Compared to root parallelization the scaling factor of tree
parallelization is better for configurations consisting of more than 1 thread. The
tree parallelization with one thread spends approximately 20% more time than the
standard MCTS-Solver. This slowing down is due to the randomization of the selec-
tion strategy. Moreover, we notice that the tree parallelization builds smaller trees
than root parallelization. For instance, in the case of 8 threads, tree parallelization
searches 1.3 times more nodes whereas root parallelization searches 5.4 times more
nodes.

56 Monte-Carlo Tree Search Solver

Processors 1 2 4 8

Solved positions 298 314 317 315

MCTS-Solver
Total time (ms.) 860,599 1,040,594 1,074,670 1,049,238
Total nodes evaluated 242,905,355 295,828,149 303,362,399 298,530,220

Parallel MCTS-Solver
Total time (ms.) 1,027,303 751,816 484,176 257,543
Total nodes evaluated 264,398,977 355,828,413 412,037,677 400,838,588

Total scaling factor 0.84 1.4 2.2 4.1

Table 4.7: Experimental results for MCTS-Solver with tree parallelization.

4.4 Chapter Conclusion and Future Research

We end this chapter by summarizing the results of the experiments (Subsection 4.4.1)
and giving an outlook on future research (Subsection 4.4.2) based on the findings
presented.

4.4.1 Chapter Conclusion

In this chapter we introduced a new MCTS variant, called MCTS-Solver. This
variant differs from the traditional Monte-Carlo approaches in that it can solve
positions by proving game-theoretic values. As a side effect it converges much faster
to the best move in narrow tactical lines. This is especially important in tactical
sudden-death-like games such as LOA. We discussed four selection strategies: UCT,
“classic” Progressive Bias (PB), and two enhanced PB variants: PB-L1 and PB-L2.
Experiments in LOA revealed that PB-L2 which takes the number of losses into
account, solved the most positions and was the fastest (i.e., it solved positions in
3 times less time than UCT). In our comparison of MCTS-Solver and αβ, MCTS-
Solver required about the same effort as αβ to solve positions. However, PN2 was
in general 5 times faster than MCTS-Solver. Finally, we found empirically that tree
parallelization for MCTS-Solver has a scaling factor of ca. 4 with 8 threads, easily
outperforming root parallelization.

Two conclusions may be drawn from the work presented in this chapter. The
first conclusion is that at least during game-play (online) MCTS-Solver is comparable
with a standard αβ search in solving positions. However, for offline solving positions,
PNS is still a better choice. We remark that an αβ search with variable-depth meth-
ods such as singular-extensions (Anantharaman, Campbell, and Hsu, 1988), null-
move (Donninger, 1993), multi-cut (Björnsson and Marsland, 1999; Winands et al.,
2005) and Realization Probability Search (Tsuruoka et al., 2002; Winands and
Björnsson, 2008) could have given similar results. Although, there is no guaran-
tee that they improve the αβ search for a given domain.

4.4 — Chapter Conclusion and Future Research 57

The second conclusion we may draw is that the strength of MCTS-Solver is
dependent on enhancements such as PB. Just as for αβ, search enhancements (cf.
Marsland, 1986) are crucial for the performance.

4.4.2 Future Research

For search methods based on MCE, to be able to handle proven outcomes is an
essential step. With continuing improvements it is not unlikely that in the not so
distant future enhanced MCE-based approaches may even become an alternative
to PNS. As future research, experiments are envisaged in other games to test the
performance of MCTS-Solver. One possible next step would be to test the method in
Go, a domain in which MCTS is already widely used. What makes this a somewhat
more difficult task is that additional work is required in enabling perfect endgame
knowledge – such as Benson’s Algorithm (Benson, 1988; Van der Werf et al., 2003)
– in MCTS.

58 Monte-Carlo Tree Search Solver

Chapter 5

Parallel Proof-Number
Search

This chapter is based on the following publications.1

1. J-T. Saito, M.H.M. Winands and H.J. van den Herik. Randomized Parallel Proof-
Number Search. In T. Calders, K. Tuyls, and M. Pechenizkiy, editors, Proceedings
of the 21st BeNeLux Conference on Artificial Intelligence (BNAIC‘09), pp. 365–366,
TU/e Eindhoven, Eindhoven, The Netherlands, 2009.

2. J-T. Saito, M.H.M. Winands and H.J. van den Herik. Randomized Parallel Proof-
Number Search. In H.J. van den Herik and P. Spronck, editors, Proceedings of the
13th Advances in Computer Games Conference (ACG‘09), volume 6048 of Lecture
Notes in Computer Science, pp. 75-87. Springer, Berlin, Germany, 2010.

A variety of parallel αβ algorithms have been proposed in the past (cf. Brock-
ington, 1996), but so far little research has been conducted on parallelizing PNS.
With multi-core processors becoming established as standard equipment, paralleliz-
ing PNS has become an important topic. Pioneering research has been conducted
by Kishimoto and Kotani (1999), who parallelized the depth-first PNS variant PDS.
His algorithm, called ParaPDS, is designed for distributed memory systems.

This chapter addresses RQ 3: How can Proof-Number Search be parallelized? We
parallelize PNS and PN2 for shared-memory systems. The parallelization is based
on randomizing the move selection of multiple threads, which operate on the same
search tree. The new method is called Randomized Parallel Proof-Number Search
(RP–PNS). Its PN2 version is called RP–PN2. We evaluate the new parallelization
on a set of LOA problems.

The chapter is organized in four sections. Section 5.1 describes the parallelization
of search algorithms in general in as far as it is relevant for this work. Moreover,
the only other existing parallelization of PNS, ParaPDS, is explained. Section 5.2
introduces our new parallelization of PNS and PN2, i.e., RP–PNS and RP–PN2. In

1The author is grateful to Springer-Verlag for the permission to reuse relevant parts of the article
in the thesis.

60 Parallel Proof-Number Search

Section 5.3 RP–PNS and RP–PN2 are tested on a set of LOA endgame positions.
Section 5.4 concludes this chapter and gives directions for future work.

5.1 Parallelization of PNS

This section introduces some basic concepts for describing the behavior of par-
allel search algorithms (Subsection 5.1.1), outlines ParaPDS, a parallelization of
PDS (Subsection 5.1.2), and explains parallel randomized search (Subsection 5.1.3).

5.1.1 Terminology

Parallelization aims at reducing the time that a sequential algorithm requires for
terminating successfully. The speedup is achieved by distributing computations to
multiple threads executed in parallel.

Parallelization gains from dividing computation by multiple resources but si-
multaneously it may impose a computational cost. According to Brockington and
Schaeffer (1997) three kinds of overhead may occur when parallelizing a search al-
gorithm: (1) search overhead, resulting from extra search not performed by the se-
quential algorithm; (2) synchronization overhead, created at synchronization points
when one thread is idle waiting for another thread; (3) communication overhead,
created by exchanging information between threads.

Search overhead is straightforward and can be measured by the number of addi-
tional nodes searched. Synchronization and communication overhead depend on the
kind of information sharing used. There are two kinds of information sharing: (i)
message passing and (ii) shared memory. Message passing simply consists of pass-
ing information between memory units exclusively accessed by a particular thread.
Under shared memory all threads can access a common part of memory. With the
advent of multi-core CPUs memory sharing has become common place.

An important property governing the behavior of parallel algorithms is scaling.
It describes the efficiency of parallelization with respect to the number of threads as
a fractional relation t1/tT between the time t1 for terminating successfully with one
thread and the time tT for terminating successfully with T threads.

5.1.2 ParaPDS and the Master-Servant Design

The only existing parallelization of PNS described in the literature has so far been
ParaPDS by Kishimoto and Kotani (1999).2 This pioneering work of parallel PNS
achieved a speedup of 3.6 on 16 processors on a distributed memory machine. We
note that Kishimoto and Kotani referred to processes instead and whereas we refer
to threads in our shared memory setting. ParaPDS relies on a master-servant design.

2Conceptually related to PNS is Conspiracy-Number Search (CNS) by McAllester (1988).
Lorenz (2001) proposes to parallelize a variant of CNS (PCCNS). PCCNS uses a master-servant
model (“Employer-Worker Relationship”).
We note that just before the printing of this thesis, a parallel version of df-pn on shared mem-
ory systems has been proposed by Kaneko (2010). It was tested on Shogi problems on which it
produced a scaling factor of 3.6 with 8 threads.

5.1 — Parallelization of PNS 61

One master process is coordinating the work of several servant processes. The master
manages a search tree up to a fixed depth d. The master traverses through the tree
in a depth-first manner typical for PDS. On reaching depth d it assigns the work of
searching further to an idle servant. The search results of the servant process are
backed up by the master.

The overhead created by ParaPDS is mainly a search overhead. There are two
reasons for this overhead: (1) lack of a shared-memory transposition table, and
(2) the particular master-servant design. Regarding reason (1), ParaPDS is asyn-
chronous, i.e., no data is passed between the processes except at the initialization
and the return of a servant process. ParaPDS thereby avoids message passing. The
algorithm is designed for distributed-memory machines common at the time Para-
PDS was invented (i.e., 1999). Transposition tables are important to PDS, as this
variation of PNS performs iterative deepening. An implication of using distributed-
memory machines is that ParaPDS cannot profit from a shared transposition table
and loses time on re-searching nodes. Regarding reason (2), the master-servant de-
sign can lead to situations in which multiple servant processes are idle because the
master process is too busy updating the results of another process or finding the
next candidate to pass to a servant process.

One may speculate that the lack of a shared-memory transposition table in Para-
PDS could nowadays be amended to a certain degree, at the expense of a synchro-
nization overhead, by the availability of shared-memory machines. However, the
second reason for ParaPDS’ overhead due to the master-servant design still remains.

5.1.3 Randomized Parallelization

An alternative to the master-servant design of ParaPDS for parallelizing tree search
is randomized parallelization. Shoham and Toledo (2002) proposed a method for
parallelizing any kind of best-first search on AND/OR trees. The method relies
on a heuristic which may seem counterintuitive at first. Instead of selecting the
child with the best heuristic evaluation, a probability distribution of the children
determines which node is selected. Shoham and Toledo call this a randomization
of the move selection. Randomized Parallel Proof-Number Search (RP–PNS) as
proposed in this chapter adheres to the principle of randomized parallelization. The
specific probability distribution is obviously based on the selection heuristic. We
note that we successfully applied this randomization technique to MCTS-Solver (cf.
Chapter 4).

The master-servant design of ParaPDS and randomized parallelization may be
compared as follows. ParaPDS maintains a privileged master thread: only the mas-
ter thread operates on the top-level tree. The master thread selects the subtree
in which the servant threads search. It also coordinates the results of the servant
processes. Each servant thread maintains a separate transposition table in memory.
In randomized parallelization there is no master thread. Each thread is guided by
its own probabilities for selecting the branch to explore. There is no communication
overhead but instead there is synchronization overhead. All threads can operate on
the same tree which is held in shared memory.

62 Parallel Proof-Number Search

5.2 RP–PNS

This section introduces RP–PNS. Subsection 5.2.1 explains the basic functioning
of RP–PNS and describes how it differs from ParaPDS. Subsection 5.2.2 explains
details of the implementation of RP–PNS.

5.2.1 Detailed Description of Randomized Parallelization for
PNS

There are two kinds of threads in RP–PNS: (1) principal-variation (PV) threads,
and (2) alternative threads. RP–PNS maintains one PV thread; all other threads
operating on the search tree are alternative threads. Both kinds of threads apply a
best-first selection heuristic in which the most-proving node is calculated. In the PV
thread, the most-proving node is always selected. In alternative threads a probability
determines if the most-proving node or one of its siblings is selected.

The PV thread always applies the same selection strategy as sequential PNS.
At a node N in the PV thread the most-proving child is selected. Its value is the
most-proving number which corresponds exactly to the proof or disproof number
of most-proving child. More precisely, if N is an OR node, the successor with the
smallest proof number is always selected; if N is an AND node, the successor with
the smallest disproof number is always selected. The PV thread therefore operates
on the PV, i.e., the path from root to leaf following the heuristic for finding the
most-proving node. We call this selection strategy PV selection strategy and a child
on the PV, a PV node.

The alternative threads select a node according to a modified selection strategy.
Instead of always selecting the most-proving node, there is a chance of selecting a
suboptimal sibling. A probability distribution in the heuristic creates the desired
effect: the expanded nodes are always close to the PV since nodes expanded in
alternative threads would likely be on the PV at a later cycle. The alternative
threads anticipate a possible future PV. The probability of a suboptimal node to be
selected for an alternative thread depends on the degree by which it deviates from
the PV. In the selection step, alternative threads consider a subset of best children
instead of always picking the single best child. All children in this subset have the
same probability to be selected.

More precisely, the probability of an alternative thread to select a child of a node
N can be calculated as follows. If N is an OR node, we define φD(N) to be the number
of N’s children C for which pn(C) ≤ pn(N) +D. Analogously, if N is an AND node,
we define δD(N) to be the number of N’s children C for which dn(C) ≤ dn(N) + D.
The probability p(N,C) to select a certain child C of N is then given by Formula 5.1:

p(N,C) =

 (φD(N))−1 : N is an OR node and pn(C) ≤ pn(N) +D
(δD(N))−1 : N is an AND node and dn(C) ≤ dn(N) +D

0 : otherwise
(5.1)

The parameter D in Formula 5.1 is a natural number and regulates the degree
to which the alternative threads differ from the PV. Setting D = 0 will result in the

5.2 — RP–PNS 63

1
1

1
2

1
3

1
1

2
1

1
2

2
4

3
2

2
9

B E F

C D

A 10
6

Figure 5.1: Example of a PNS tree. Squares represent OR nodes; circles represent AND
nodes. Depicted next to each node are its proof number at the top and its disproof number
at the bottom.

PV selection strategy.3 Setting D too high results in threads straying too far from
the PV.

Figure 5.1 illustrates the consequences of varying the parameter D. In this
example, the PV is represented by the bold line and reaches leaf B. An alternative
selection with D = 1 is represented by the bold, dotted lines. It will select one of
the leaves B, C, D, or E with equal probability. Setting D = 2 will result in also
selecting F. We note that the subtree at A is selected only for D ≥ 8.

In addition to these probabilities, for all alternative threads we assign a second
probability of deviating from the PV. This is done by choosing with a probability of
2/d randomly from the second and third best child (determined by trial-and-error)
instead of choosing the best child if so far the thread has not deviated from the PV.
This choice is determined by the depth d of the last PV. This mechanism is only
applied if depth d > 2. The additional randomization is necessary because it enables
sufficient deviation from the PV in case that D is not large enough to produce any
effect; it has a strong effect on the behavior of the parallelization.

We remark that RP–PNS differs from the original randomized parallelization
with respect to three points. (1) Shoham and Toledo (2002) do not distinguish
between PV and alternative threads. (2) The original randomized parallelization
selects children with a probability proportionate to their best-first value while RP–
PNS uses an equi-distribution for the best candidates. (3) The original randomized

3More precisely, this is true if the most-proving child is unique. If multiple children have the
same most-proving number, the alternative threads can deviate from the PV which we assume to
be selected deterministically in PNS.

64 Parallel Proof-Number Search

parallelization does not rely on a second probability. The differences in points 2
and 3 are based on the desire to produce more deviations from the PV in order to
avoid that too many threads congest the same subtree. The selection in RP–PNS is
similar to Buro’s selection of a move from an opening book (Buro, 1999).

In RP–PNS multiple threads operate on the same tree. To facilitate the parallel
access some complications in the implementation require our attention. The next
subsection gives details of the actual implementation of RP–PNS.

5.2.2 Implementation

As pointed out in the previous subsection, all threads in RP–PNS operate on the
same search tree held in shared memory. In order to prevent errors in the search tree,
RP–PNS has to synchronize the threads. This is achieved in the implementation by
a locking policy. Each tree node has a lock. It guarantees that only one thread
at a time operates on the same node while avoiding deadlocks. The locking policy
consists of two parts: (1) when a thread selects a node, it has to lock it; (2) when
a thread updates a node N it has to lock N and its parent. The new values for N
are computed. After N has been updated, it is released and the updating continues
with the parent.

Each node N maintains a set of flags, one for each thread, to facilitate the deletion
of subtrees. Each flag indicates whether the corresponding thread is in the subtree
below N. A thread can delete the subtree of N only if no other thread has set its
flag in N.

If a transposition table is used to store proof and disproof numbers, each table
entry needs an additional lock. The number of locks for the transposition table
could be reduced by sharing locks for multiple entries. Similar policies have been
used in parallel Monte-Carlo Tree Search by (Chaslot et al., 2008a) (to which the
master-servant design has also been applied, cf. Cazenave and Jouandeau, 2007 and
2008). Synchronization imposes a cost on RP–PNS in terms of memory and time
consumption. The memory consumption increases due to the additional locks (per
node, 16 bytes for a spin lock and flags, cf. Chaslot et al., 2008a) in each node.

The overhead is partially a synchronization overhead and partially a search over-
head. The synchronization overhead occurs whenever a thread has to wait for an-
other thread due to the locking policy or due to the transposition-table locking. The
search overhead is created by any path that would not have been selected by the
sequential PNS and that at the same time does not contribute to find the proof. The
following section describes experiments that also test the overhead of RP–PNS.

5.3 Experiments

This section presents experiments and results for RP–PNS and RP–PN2. Subsection
5.3.1 outlines the experimental setup, Subsection 5.3.2 shows the results obtained,
and Subsection 5.3.3 discusses the findings.

5.3 — Experiments 65

5.3.1 Setup

We implemented RP–PNS as described in the previous section and tested it on
complex endgame positions of Lines of Action (LOA).4 We chose LOA because it
is an established domain for applying PNS. The test set consisting of 286 problems
has been applied before frequently (Winands et al., 2003b; Pawlewicz and Lew,
2007; Van den Herik and Winands, 2008).

The experiment tests two parallelization methods: RP–PNS and RP–PN2 for 1,
2, 4, and 8 threads. The combination of an algorithm with a specific number of
threads is called a configuration and denoted by indexing the number of threads,
e.g., RP–PNS8 is RP–PNS using eight threads. We remark that PNS = RP–PNS1

and PN2 = RP–PN2
1.

The implementation of RP–PN2 uses RP–PNS for PN1 and PNS for PN2. The
size of PN2 was limited to Sε/T , where S is the size of the PN1 tree, T is the number
of threads used, and ε is a parameter. We set ε such that it is a compromise between
memory consumption and speed suitable for the test set. The compromise is faster
than using the full S as suggested by Allis (1994). Using S for the limit slows down
RP–PN2 disproportionally when many threads are used because the PN1 tree grows
faster in RP–PN2 than in the sequential PN2. Moreover, the size of PN2 grows
rapidly resulting in slowing down RP–PN2. An advantage of using the above limit
compared to the method of Breuker (1998) is that the former is robust to varying
problem sizes. The values for the parameters of RP–PNS were set to D = 5 and
ε = 0.75 based on trial-and-error.

The experiments were carried out on a Linux server with eight 2.66 GHz Xeon
cores and 8 GB of RAM. The program was implemented in C++.

5.3.2 Results

Two series of experiments were conducted. The first series tests the efficiency of
RP–PNS; the second tests the efficiency of RP–PN2.

For comparing the efficiency of different configurations, we selected a subset
consisting of the 143 problems for which PNS was able to find a solution in less than
30 seconds. This selection enabled us to acquire the experimental results for the series
of experiments for RP–PN2 in a reasonable time. We call the set of 143 problems
the comparison set, S143. PNS required an average of 4.28 million evaluated nodes
for solving a problem of S143 with a standard deviation of 2.9 million nodes.

In the first series of experiments we tested the performance of RP–PNS for solving
the positions of S143. The results regarding time, nodes evaluated, and nodes in
memory for 1, 2, 4, and 8 threads are given in the upper part of Table 5.1. We observe
that the scaling factors for 2, 4, and 8 threads are 1.6, 2.5, and 3.5, respectively.
Based on the results we compute that the search overhead expressed by the number of
nodes evaluated is only ca. 33% for 8 threads. This means that the synchronization
overhead is responsible for the largest part of the total overhead. Finally, we see
that RP–PNS8 uses 50% more memory than PNS.

4The test set is available at http://www.personeel.unimaas.nl/m-winands/loa/endpos.html, “Set
of 286 hard positions”.

66 Parallel Proof-Number Search

PNS RP–PNS2 RP–PNS4 RP–PNS8

Total Time (sec.) 1,679 1,072 682 478
Total scaling factor 1 1.6 2.5 3.5
Total nodes evaluated (million) 612 673 745 815
Total nodes in memory (million) 367 423 494 550

PN2 RP–PN2
2 RP–PN2

4 RP–PN2
8

Total Time (sec.) 6,735 3,275 1,966 1,419
Total scaling factor vs. PN2 1 1.9 3.4 4.7
Total scaling factor vs. PNS 0.25 0.52 0.85 1.18
Total nodes evaluated (million) 2,271 2,426 2,534 2,883
Total nodes in memory (million) 68 68 70 73

Table 5.1: Experimental results for RP–PNS and RP–PN2 on S143. The total time is the
time required for solving all problems. “Nodes in memory” is the sum of all Mi, where Mi

is the maximum number of nodes in memory used for test problem i. Nodes evaluated is
the sum of all nodes evaluated for all problems. For RP–PN2, this includes evaluations in
the PN2 tree and possible double evaluations when trees are re-searched.

In the second series of experiments we tested the performance of RP–PN2. The
results regarding time, nodes evaluated, and nodes in memory for 1, 2, 4, and 8
threads are given in the lower part of Table 5.1. We observe that the scaling fac-
tors for 2, 4, and 8 threads are 1.9, 3.4, and 4.7, respectively. Compared to RP–
PNS the relative scaling factors of RP–PN2 are better for all configurations. The
search overhead of RP–PN2

8 is 27% which is comparable to the search overhead of
RP–PNS8 (33%, cf. above). At the same time the total overhead of RP–PN2

8 is
smaller. This means that the synchronization overhead is smaller for RP–PN2

8 than
for RP–PNS8. The reason is that more time is spent in the PN2 trees. Therefore,
the probability that two threads simultaneously try to lock the same node of the
PN1 tree is reduced. Finally, we remark that in absolute terms, RP–PN2

8 is slightly
faster than PNS.

Despite the fact that RP–PN2 has a better scaling factor than RP–PNS, RP–
PNS is still faster than RP–PN2 when the same number of threads is used. However,
RP–PN2 consumes less memory than RP–PNS.

5.3.3 Discussion

It would be interesting to compare the results of the experiments presented in Subsec-
tion 5.3.2 to the performance of ParaPDS. However, the direct comparison between
the results obtained for ParaPDS and RP–PNS is not feasible because of at least
three difficulties.

First, the games tested are different (ParaPDS was tested on Othello, whereas
RP–PNS is tested on LOA). Second, the type of hardware is different. As described
in Section 5.1, ParaPDS is designed for distributed memory whereas and RP–PNS is

5.4 — Chapter Conclusion and Future Research 67

designed for shared memory. Third, ParaPDS is a depth-first search variant of
PNS whereas RP–PNS is not. ParaPDS is slowed down because of the transposition
tables in distributed memory.

ParaPDS and RP–PN2 both re-search in order to save memory. When compar-
ing the experimental results for these two algorithms they appear to scale up in the
same order of magnitude at a superficial glance. On closer inspection, a direct com-
parison of the numbers would be unfair. ParaPDS and RP–PN2 parallelize different
sequential algorithms. Furthermore, RP–PN2 parallelizes transposition tables while
our implementation of RP–PNS does not. Moreover, it can be expected that sequen-
tial PN2 profits more from transposition tables than RP–PN2 because the parallel
version would suffer from additional communication and synchronization overhead.

In RP–PN2 the size of the PN2 tree determines how much the algorithm trades
speed for memory. If the PN2 tree is too large, the penalty for searching an unim-
portant subtree will be too large as well. In our implementation, we chose rather
small PN2 trees because the randomization is imprecise. Moreover, the PN2 trees
are bigger when fewer threads are used. This explains why RP–PN2 (with a scaling
factor of 4.7) scales better than RP–PNS (with a scaling factor of 3.5). A second
factor contributing to the better scaling is the reduced synchronization overhead
compared to RP–PNS. This effect is produced by the smaller relative number of
waiting threads.

We may speculate that RP–PNS and RP–PN2 could greatly profit from a more
precise criterion for deviating from the PV. To that end, it is desirable to find
a quick algorithm for finding the k -most-proving nodes in a proof-number search
tree. Thereby, the search could process the true best variations instead of pseudo-
randomly chosen variants close to the PV.

5.4 Chapter Conclusion and Future Research

We end this chapter by summarizing the results of the experiments (Subsection 5.4.1)
and giving an outlook on future research (Subsection 5.4.2) based on the findings
presented.

5.4.1 Chapter Conclusion

In this chapter, we introduced a new parallel Proof-Number Search algorithm for
shared memory, called RP–PNS. The parallelization is achieved by threads that se-
lect moves close to the principal variation based on a probability distribution. Fur-
thermore, we adapted RP–PNS for PN2, resulting in an algorithm called RP–PN2.

The scaling factor for RP–PN2 (4.7) is even better than that of RP–PNS (3.5)
but this is mainly because the size of the PN2 tree depends on the number of threads
used. Based on these results we may conclude that RP–PNS and RP–PN2 are viable
for parallelizing PNS and PN2, respectively. Strong comparative conclusions cannot
be made for ParaPDS and RP–PNS.

68 Parallel Proof-Number Search

5.4.2 Future Research

Future research will address the following four directions. (1) A combined paral-
lelization at PN1 and PN2 trees of RP–PN2 will be tested on a shared-memory
system with more cores. (2) A better distribution for guiding the move selection,
possibly by including more information in the nodes, will be tested to reduce the
search overhead. For instance, the probability of selecting a child could variably
depend on characteristics of the previous PV. (3) The concept of the k -most-proving
nodes of a proof-number search tree and an algorithm for finding these nodes effi-
ciently on a parallelized tree will be investigated. (4) The speedup of reducing the
number of node locks by pooling will be investigated. In pooling multiple nodes
share the same lock and thereby reduce the number of locks used.

Chapter 6

Paranoid Proof-Number
Search

This chapter is based on the following publication.1

• J-T. Saito and M.H.M. Winands Paranoid Proof-Number Search. In G.N. Yan-
nakakis and J. Togelius, editors, Proceedings of the IEEE Conference on Computa-
tional Intelligence and Games (CIG‘10), pp. 203–210, IEEE Press, 2010.

Solving algorithms have been specifically designed to tackle two-player games (cf.
Van den Herik et al., 2002; Heule and Rothkrantz, 2007). The previous chapters
elaborated on algorithms for solving these games. This chapter extends the scope to
multi-player games (i.e., games with more than two players). So far, the notion of
solving in multi-player games has attracted little if any attention by the game-and-
search community. By addressing this topic, we supply an answer to RQ 4: How
can solvers be applied to multi-player games?

The standard search algorithms for multi-player games are maxn (Luckhardt
and Irani, 1986) and paranoid search (Sturtevant and Korf, 2000). These search
algorithms were designed to provide playing strength for programs but not to solve
games. Proof-Number Search (PNS) (Allis et al., 1994), however, was designed
for solving as we have seen in Chapter 2. The notion of solving in multi-player
games differs from that in two-player games. Therefore, we suggest a definition for
solving a game under the paranoid condition (Sturtevant and Korf, 2000). Under
this condition, a player assumes that all opponents form a coalition against him.
Furthermore, we propose to modify PNS for solving under the paranoid condition,
and call the resulting algorithm Paranoid Proof-Number Search (PPNS). We apply
PPNS to small-board variants of the multi-player game of Rolit to find the optimal
scores that a player can achieve.

This chapter is organized as follows. Section 6.1 explains two search algorithms
for multi-player games, maxn and paranoid search, and introduces concepts for
describing search in multi-player game trees. Based on these concepts, Section 6.2

1The author is grateful to IEEE for the permission to reuse relevant parts of the article in the
thesis.

70 Paranoid Proof-Number Search

gives a definition for solving a position in a multi-player game and proposes the
PPNS algorithm. Section 6.3 discusses how PPNS can be used to find an optimal
score. The game of Rolit, its rules and properties are outlined in Section 6.4. Section
6.5 describes the experimental setup for applying PPNS to solve variants of Rolit.
The results of the experiments are presented and discussed in Section 6.6. Section
6.7 concludes the chapter and gives an outlook on future research.

6.1 Search Algorithms for Multi-Player Games

This section discusses two well understood search algorithms for multi-player turn-
taking games, maxn (Luckhardt and Irani, 1986) and paranoid search (Sturtevant
and Korf, 2000), and provides concepts for characterizing them. The section is
organized in three subsections as follows.

Subsection 6.1.1 describes maxn, a straightforward generalization of minimax
search suitable for multi-player games. The limitations of maxn relate to its way of
coping with so-called equilibrium points. These are the subject of Subsection 6.1.2.
Subsection 6.1.3 outlines Paranoid search which forms the basis for PPNS described
in Section 6.2.

6.1.1 The Maxn Algorithm

The maxn algorithm (Luckhardt and Irani, 1986) is a generalization of minimax
search to games with more than two players. It assumes that players 1, ..., n par-
ticipate in a turn-taking game. Each node N in the maxn tree has an n-tuple
~N = (v1, v2, ..., vn) called the maxn value of N. ~N[i] = vi represents the value of
the game at node N for Player i. Furthermore, if Player i is to move at node N we
occasionally say that ~N[i] is the value of N (omitting that we mean “for Player i”).

If N is a leaf, the value ~N[i] is the value of Player i computed by the evaluation
function. If N is an internal node with m children C1,...,Cm and player i to move,
then N’s tuple is calculated from the children’s tuples recursively as ~N = ~Cj where
~Cj is the child with the largest value for Player i among all children.

Figure 6.1 depicts a three-ply maxn tree. Player 1 moves at the root and the
leaves, Player 2 at the first ply, and Player 3 at the second ply. The tuple at node
D is based on D’s children. In this case, F offers the largest value, for Player 3, i.e.,
3. (It is just the same as its sibling G’s value). All values (the whole tuple) of F are
taken over to D. Similarly, at node B, Player 2 chooses its children. Node D offers
the largest value for Player 2, namely 6. The root A takes over the tuple from node
B because Player 1 prefers value 3 above 1.

The αβ algorithm (Knuth and Moore, 1975) is successful in two-player games
because it allows pruning. In combination with move ordering αβ has proven to be
a powerful tool that leads the way to success in many games, most notably in Chess
(Hsu, 2002). Unfortunately, when generalizing from minimax to maxn, in spite of
the existence of certain pruning techniques such as shallow pruning (Luckhardt and
Irani, 1986), the potential of pruning is reduced considerably (Sturtevant and Korf,
2000). Korf (1991) showed that shallow pruning guarantees the correct solution

6.1 — Search Algorithms for Multi-Player Games 71

B

A

E(3,6,3)

HG

(3,6,3)

I

C

(5,4,3) (8,2,3) (2,7,1)

D

F

(3,6,3)

(3,6,3)

(1,2,2)

(8,2,3)

Figure 6.1: Example of a three-player three-ply maxn tree.

but in comparison to αβ pruning, it is often inefficient and also imposes some mild
restrictions on the game scores (cf. Sturtevant, 2003a). Other pruning techniques
such as speculative pruning have been shown to be more efficient in game playing
but cannot always guarantee the correct solution (Sturtevant, 2003a).

6.1.2 Equilibrium Points

As stated in Chapter 2, a fully expanded two-player minimax tree has exactly one
game-theoretic value. This game-theoretic value can be described as an equilibrium
point (cf. Luce and Raiffa, 1957), a state in which“no player finds it to his advantage
to change to a different strategy so long as he believes that the other players will not
change.” Multi-player games may have multiple equilibrium points with different
values. This means, that without loss of generality no unique game-theoretic value
or strategy exists (Sturtevant, 2003a). In particular, it is possible that a multi-player
game has multiple equilibrium points with different equilibrium values.

Figure 6.1 illustrates this observation. As described above, the root has the
maxn value (3,6,3). We observe that Player 3 at D chose to take over the value
from F. This choice is arbitrary. Player 3 has the same value at D regardless of
choosing F or G. Each of the two alternatives results in a different outcome, both
of which create equilibrium points. Moreover, if Player 3 decided in favor of G, this
would cause Player 2 to select the maxn value of the now different D, namely (5,4,3)

72 Paranoid Proof-Number Search

for node B. As a consequence Player 1 at the root A would follow suit. Thus the
maxn values at the root would become (5,4,3) instead of (3,6,3).

The rule for choosing between equivalent children is called the tie-breaking rule.
The tie-breaking rule determines what equilibrium point maxn will find. If all players
apply the same tie-breaking rule, the game play may be“reasonable”(Sturtevant and
Korf, 2000). A trivial example of a tie-breaking rule is minimizing the value of the
starting player.

6.1.3 Paranoid Search

The lack of pruning in maxn has encouraged research on alternative multi-player
search algorithms. Paranoid search by Sturtevant and Korf (2000) is such an al-
ternative that offers deeper search. It reduces an n-player game to a two-player
game by assuming that one player (the paranoid player) faces a coalition of all other
players (the coalition players). While the paranoid player tries to maximize his or
her own value as in maxn, all coalition players try to minimize the paranoid player’s
value instead of maximizing their own.

B

A

E(3)

HG

(3)

I

C

(5) (8) (2)

D

F

(1)

(2)

(2)

(2)

Figure 6.2: Example of a three-player three-ply paranoid tree.

This is illustrated in Figure 6.2. The values at the leaves are the same as in
the previous maxn example (cf. Figure 6.1) but the values are propagated to the
root differently. All players take into account only the values of the paranoid player,
Player 1 (Sturtevant, 2003a). The coalition consists of Players 2 and 3.

6.2 — Paranoid Proof-Number Search 73

At node D, Player 3 chooses F instead of G minimizing the value of Player 1. At
node E, Player 3 chooses I with value 2 for Player 1 over H which has value 8 for
Player 1. Similarly, Player 2 chooses to minimize Player 1’s value at node B. Finally,
Player 1 is left with maximizing his value at the root A resulting in the value 2.

Given branching factor b and depth d the best-case for the paranoid search tree
is O(bd(n−1)/n) nodes (Sturtevant and Korf, 2000). This size is easily derived from
the best case of minimax, O(bd/2), by collapsing consecutive plies of the coalition
players into one ply.

Paranoid search operates under a strict opponent model assuming that one player
faces a coalition of collaborating opponents. This strong constraint may influence the
playing strength of the algorithm negatively. However, Sturtevant (2003b) showed
that paranoid search can play on the same level as or even outperform maxn in
Hearts (3 and 4 players), Spades (3 players), and Chinese Checkers (3 to 6 players) in
practice. However, maxn with advanced pruning methods can outperform paranoid
search in game play (Sturtevant, 2003c).

6.2 Paranoid Proof-Number Search

Besides the improvements in playing strength, paranoid search has a property that
makes it attractive for solving. As stated in Subsection 6.1.2, maxn (in general)
has multiple equilibrium points with different outcomes. Paranoid search avoids this
problem. Since a minimax tree is produced, only one game-theoretic outcome can
be produced. Moreover, this outcome is identical to the optimal score the paranoid
player can achieve without help by his opponents. Thus the paranoid condition can
be used to find a characteristic optimal score. The following definition applies to
multi-player games in which each individual player has a score.

Definition. A solution to an n-player game under the paranoid condi-
tion for Player i (with i ∈ {1, ..., n}) is the optimal score that Player i
is guaranteed to achieve independent of the opponents’ strategies.

Paranoid Proof-Number Search (PPNS) extends PNS for multi-player games under
the paranoid condition. In this way PPNS can exploit all benefits of PNS for multi-
player games. PPNS performs an efficient variable-depth search designed for solving.
It develops the tree into the direction where the opposition is the weakest. PPNS
exploits just as PNS the non-uniformity of the game tree (i.e., a variable branching
factor and depth, Plaat, 1996), which paranoid search is not able to do. An exam-
ple of effective exploitation of non-uniformity by PNS is the solving of 6 × 6 LOA
(Winands, 2008).

Since the PNS framework is used in PPNS, a binary goal is set. If the goal of
PPNS is to prove a win for the paranoid player, then all OR nodes represent positions
in which the paranoid player moves and all AND nodes represent positions in which
a coalition player moves. While in regular PNS OR and AND nodes alternate every
ply, in PPNS (n-1) ply sequences of the coalition nodes alternate with single nodes
of the paranoid player. We note that the same four-step cycle (cf. Chapter 2) is
applied in PPNS as known for PNS.

74 Paranoid Proof-Number Search

B

A

E

HG I

C

D

F

pn = 37
dn = 3

�

�
�

�

��

�

�

��

��

�

�

�

�

�
��

�

Figure 6.3: Example of a three-player three-ply PPNS tree. The paranoid player’s nodes,
squares, are OR nodes. The coalition players’ nodes, circles and triangles, are AND nodes.

The above Figure 6.3 depicts a three-player three-ply PPNS tree (not related to
the previous examples) in which the paranoid player is represented by OR nodes and
two coalition players are represented by AND nodes. Thus, the pn and dn values of
nodes B, D and E are calculated according to the update rule for AND nodes. The
values of the root A are calculated from B and C by the update rule for OR nodes.

6.3 Finding the Optimal Score

All variants of PNS (Van den Herik and Winands, 2008) including PPNS attempt to
proof a binary goal. However, we are interested in finding an optimal value among
many possible values, namely the optimal score for the paranoid player. Thus,
PPNS must be applied several times.

A näıve approach to finding the optimal score consists of simply running one
PNS for each possible score. For instance, in 6×6 Rolit a Player p can end the game
with a score between 0 and 36. PNS could be run 37 times to proof or disproof a
win for p for each score. The highest score for which a win is found is the optimal
score. In order to increase efficiency compared to the näıve approach, Allis et al.
(1994) suggested using binary search to find the optimal score. Furthermore, one
could resort to re-using information when attempting to find the optimal score.
Moldenhauer (2009) therefore introduced iterative proof number search (IPN) which
reduces search time by caching information stored in earlier runs.

6.4 — The Game of Rolit 75

x
x

x
x

(a) Initial position of Reversi.

x x

x

(b) Initial position of four-
player 8 × 8 Rolit.

xxx

x

(c) Four-player 8×8 Rolit after
one move.

Figure 6.4: Game boards of 8 × 8 Reversi and 8 × 8 Rolit. The crosses indicate playable
positions for the player to move.

6.4 The Game of Rolit

In this section we describe the game of Rolit. Subsection 6.4.1 presents a predecessor
of Rolit and two other related games. Subsection 6.4.2 outlines the rules of Rolit.
Subsection 6.4.3 considers the search space of the game. Subsection 6.4.4 completes
the characterization by evaluating Rolit with a Monte-Carlo player.

6.4.1 Predecessors and Related Games

RolitTM (Hasbro International Inc., 1999) is a multi-player variant of the well-known
game Reversi. It is therefore instructive to start with a description of this game
before turning to Rolit. Reversi is a deterministic turn-taking two-player perfect-
information game played on an 8 × 8 board. The players, Black and White, take
turns in which they either pass or place one piece in a field. Black moves first. The
pieces of the game are disks with two faces. One face is black, the other white.
Player Black must place pieces showing the black face and player White must place
pieces showing the white face. Both players start with 30 pieces each. Black moves
first from the defined starting position (cf. Figure 6.4). A player can only place a
piece, if he can play a flipping move. If no flipping move is possible, the player has
to pass.

A flipping move is a move that places a piece at the end of a flipping line.
A flipping line is a line of directly connected fields on the board such that four
conditions are met: (1) The fields on the line have to be all vertically, all horizontally,
or all diagonally connected. (2) All fields on the line are occupied. (3) Both ends
of the line must show the turn-taking player’s face. (4) All pieces between the ends
show the opponent’s face. If a flipping move is played, the pieces between the ends
are flipped to show the turn-taking player’s face. If a move enables more than one

76 Paranoid Proof-Number Search

flipping line, all affected opponent’s pieces have to be flipped.

The game ends if either (a) one player runs out of his or her 30 pieces, or (b) both
players pass consecutively. When the game has ended, Black’s score is the number
of pieces showing the black face, and White’s score is the number of pieces showing
the white face. The player with the higher score wins. If both players have the same
score the game is a draw. We note that pieces which have been played remain on
the board until the end of the game.

In the Reversi variant called Othello, there is no limit to the players’ number of
pieces. Thus the game ends in either of two cases: (a) the board is filled, or (b) both
players pass consecutively (i.e., no player can make a flipping move).

Fujii et al. (2006) proposed 4-player Reversi Yonin (Yonin). With the exception
of Rolit, it is the only multi-player variant of Reversi. This variant is played by
exactly four players. Two of them, Players A and C, place pieces showing the
black face and the other two, Players B and D, place pieces with the white face
up. The players take turns in the order A, B, C, D and the board is separated
into quarters. Each player owns exactly one quarter. Players of the same color own
quarters diagonally opposing each other. The game is played and scored like Reversi,
but there are two deviations. First, a player may not place a piece in the diagonally
opposing quarter. Thus the branching factor for the 8 × 8 board is reduced from
ca. 8.5 to ca. 6.3 (Fujii et al., 2006). Second, in the end, a Player p’s score is
determined by counting the usual way but only in the quarter owned by P. (We
note that 4-player Reversi Yonin can also be played in teams of two players each. In
that case, the teams are A and C versus B and D). Fujii et al. (2006) studied the
properties of 6× 6 and 8× 8 Yonin empirically by applying Monte-Carlo evaluation.

6.4.2 Rules of Rolit

Rolit is a straightforward multi-player generalization of Reversi. Instead of disks
with two faces, balls with four different-colored quarter spheres are placed. Corre-
spondingly, up to four players can play Rolit, each placing his characteristic color
facing up. The four players are Red, Green, Yellow, and Blue.

Red always moves first. Depending on how many players participate (two, three,
or four), the following orders are applied for turn-taking;

2 players: (1) Red, (2) Green;

3 players: (1) Red, (2) Yellow, (3) Green;

4 players: (1) Red, (2) Yellow, (3) Green, (4) Blue.

Irrespective of the number of players participating, Rolit is always played with
the same starting position shown in the center diagram of Figure 6.4.

In Rolit, one player’s color can be completely eliminated from the board by the
opponent’s flipping moves. In order to allow a player who has no piece left on
the board to come back into the game, the rules are changed compared to Reversi.
Reversi’s passing rule is replaced by Rolit’s free-choice rule: a player who cannot

6.4 — The Game of Rolit 77

Board Number Branching Estimated Upper bound to
size players factor game-tree size state space

Reversi 8× 8 2 8.47 4.7× 1055 6.8× 1029

6× 6 2 5.26 1.3× 1023 3.0× 1016

Rolit 8× 8 2 8.50 5.8× 1055 6.8× 1029

8× 8 3 8.65 1.7× 1056 1.3× 1037

8× 8 4 8.25 9.7× 1054 2.2× 1044

6× 6 2 5.27 1.3× 1023 3.0× 1016

6× 6 3 5.25 1.1× 1023 1.8× 1019

6× 6 4 5.17 6.8× 1022 6.0× 1024

Yonin 8× 8 4 6.26 1.2× 1049 6.8× 1029

6× 6 4 4.34 2.5× 1020 3.0× 1016

Table 6.1: Search spaces of 6 × 6 and 8 × 8 Reversi variants. The figures for Reversi and
Yonin are according to Fujii et al. (2006).

make a flipping move does not pass but is allowed to place a piece (showing the
player’s color) on an empty field. The empty field must be horizontally, vertically,
or diagonally adjacent to a piece on the board.

Due to this change in the rules, a game of Rolit ends exactly when all fields of
the board are filled. The game is scored analogously to Reversi. The player with
the most points wins.

6.4.3 Search Space of Rolit

Rolit is retailed in two board sizes, 6 × 6 (known as Traveler’s Rolit and Rolit Jr.)
and 8 × 8. In addition to these two board sizes, we also regard 4 × 4 Rolit for
completeness. Throughout the remainder of this chapter a particular combination
of board size and number of players is called a configuration (of Rolit). We consider
nine configurations that result from combining the three board sizes with the three
possible numbers of players.

The state space for solving a game can be estimated by the number of possible
board configurations. For N × N Rolit with M players an upper bound for the
state space is M4 × (M + 1)N

2−4. We arrive at this bound as follows. The first
factor (M4) is the number of states that the four center fields can take on. None of
these fields can be empty at any point during the game, and they can show at most
one of four colors. The second factor represents the state space of the remaining
fields. Each of them can be either empty or occupied by a piece. Each piece can
have one of the M colors. The actual state space is smaller than the upper bound
because not all possible board positions can be reached by a sequence of legal moves
from the starting position. For instance, a game position with empty fields entirely
surrounding one field containing a piece is not reachable.

The fully expanded game tree has at most b(N×N−4) positions, where b is the

78 Paranoid Proof-Number Search

Red Green Yellow Blue

4×4
2 players 44.3 (7.5) 55.7 (8.5) - -
3 players 26.1 (5.0) 35.1 (5.5) 38.8 (5.6) -
4 players 18.9 (3.8) 26.4 (4.0) 27.0 (4.1) 27.8 (4.1)

6×6
2 players 42.2 (16.9) 57.8 (19.1) - -
3 players 32.9 (12.0) 21.7 (10.5) 45.4 (13.5) -
4 players 12.3 (7.4) 29.7 (9.6) 19.8 (8.5)

8×8
2 players 41.1 (30.2) 58.9 (33.8) - -
3 players 22.8 (19.1) 44.2 (23.5) 33.0 (21.4) -
4 players 14.4 (13.8) 28.4 (16.8) 20.6 (15.3) 36.6 (18.2)

Table 6.2: Percentages of games won for one million Monte-Carlo games in 4 × 4, 6 × 6,
and 8 × 8 Rolit with 2, 3, and 4 players. Average scores in parenthesis, frequently winning
players italicized.

branching factor. The branching factor is small for the beginning of the game. Table
6.3 lists the empirically measured branching factors for all configurations of Rolit.
The measurements were obtained by playing 1,000,000 Monte-Carlo games for each
configuration. We can see that for each board size the number of players affects the
branching factor only slightly.

Replacing the passing rule of Reversi by the free-choice rule of Rolit has two
consequences: (1) the average game length is marginally smaller in Reversi than
in Rolit because a game of Reversi can end if no player can make a flipping move.
Similarly, (2) Reversi has a slightly smaller branching factor than Rolit for the same
reason. Table 6.1 gives an overview of the search-space size for 6×6 and 8×8 Reversi,
Rolit, and Yonin. The figures for Reversi and Yonin are based on the branching
factors that Fujii et al. (2006) computed by performing Monte-Carlo simulations.2

6.4.4 A Monte-Carlo Player for Rolit

Although we cannot give a general Nash strategy for Rolit, we can characterize
a configuration of Rolit by using players of the same strength. To that end, we
implemented a Monte-Carlo player and recorded the results of 1,000,000 random
games for each of the nine configurations of Rolit. We remark that the Monte-Carlo
playouts neglect coalitions and the random player does not adapt his opponent model

2We note that the branching factor of 8.47 empirically found for 8 × 8 Reversi by Fujii et al.
(2006) is slightly lower than an earlier estimate for the similar variant of 8 × 8 Othello given by
Allis (1994) who assumed a branching factor of 10.

6.5 — Experimental Setup 79

4×4 6×6 8×8
2 players 2.79 5.27 8.50
3 players 2.92 5.25 8.65
4 players 3.15 5.17 8.25

Table 6.3: Average branching factors of 4× 4, 6× 6, and 8× 8 Rolit for 2, 3, and 4 players
in 1,000,000 Monte-Carlo games per configuration.

during the game. The results for the playouts are listed in Table 6.2. The random
games show that Rolit is not a fair game: a player’s starting position influences
his or her likelihood of winning. Moreover, all games are won most often by the
player who has the advantage of taking the final turn. The only exception occurs
on three-player 4× 4 Rolit. Here, Green moves last because the turn-taking order is
Red-Yellow-Green and there are 12 turns. However, Yellow has the highest number
of wins. We may speculate that this observation can be explained by the fact that
smaller boards allow more exceptions. The reason for this is that the ratio the
number of strategically important moves on the rim of the board to the number of
center moves is highest on the 4× 4 Rolit board.

6.5 Experimental Setup

We implemented PPNS in the PN2 framework. Subsection 6.5.1 explains how the
initialization of the leaves of the second-level search, i.e., PN2, is performed. Sub-
section 6.5.2 describes the knowledge representation in the PPNS solver.

6.5.1 Initialization

The initialization of the pn and dn at the leaf nodes of the second-level search (PN2)
can be done by using the following domain knowledge.

Occupying corners is a large advantage in Rolit. We take this observation into
account when setting pn and dn for a non-terminal leaf L on 6 × 6 Rolit and 8 × 8
Rolit and use the difference δ(L) = cornersOR(L) − cornersAND(L) between the
number of corners occupied by the OR player and the number of corners occupied
by the AND player(s). Based on this, we set pn = (1 + c × 4) − (c × δ(L)) and
dn = (1 + c × 4) + (c × δ(L)). The constant c is a weight that determines how
important the corner advantage is.

In pre-experiments we found that for 6× 6 Rolit the initialization worked better
than evaluation functions which take into account more move categories such as
next-to-corner moves, or rim moves. We set c = 4 for 6× 6 Rolit and c = 6 for 8× 8
Rolit after trial-and-error.

6.5.2 Knowledge Representation and Hardware

The search algorithm, move generator and all other parts of the software were im-
plemented in C. Game positions were implemented as 4× 64 bitboards. Nodes store

80 Paranoid Proof-Number Search

4×4 6×6 8×8

2 3 4 2 3 4 2 3 4

Red 7 3 2 16 0 0 ? ? 0
Green 9 4 1 20 0 0 ? ? 0
Yellow - 3 2 - 1 0 - ? 0
Blue - - 1 - - 1 - - 1

Table 6.4: Proven optimal scores for all players on 4 × 4, 6 × 6, and 8 × 8 Rolit for 2, 3,
and 4 players under the paranoid condition.

the complete bitboards in order to speed up the traversal by PN2 search.
All experiments were carried out on a Linux mixed cluster with two kinds of

nodes: 10 nodes with four 2.33 Opteron processors with 4 GB, and 2 nodes with
eight 2.66 GHz Xeon processors and 8 GB of RAM.

6.6 Results

In the experiments, we applied PPNS to solve 4 × 4, 6 × 6, and 8 × 8 Rolit, each
for two, three, and four players, resulting in a total of 9 variants. We attempted to
produce the optimal score under the paranoid condition for all 4× 4 Rolit and 6× 6
Rolit variants. For 8 × 8 Rolit we attempted to find bounds on the optimal score.
The results of the experiments are given in three subsections. Subsection 6.6.1 gives
the game results, and Subsection 6.6.2 describes the amount of search performed
by PPNS. Finally, Subsection 6.6.3 compares search trees of PPNS with the ones of
paranoid search for different configurations.

6.6.1 Game Results

Because up to 60 processors were at the disposal and each configuration can be
tested for one score on one processor at the time, we did not apply binary search on
the score (cf. Section 6.3) but used Monte-Carlo evaluations (cf. Subsection 6.4.4)
to assign the scores to be tested. Subsequently, we ran multiple proofs for a range
of scores in parallel.

Because of the large search space of 6× 6 Rolit and 8× 8 Rolit we tried to solve
as few scores as possible to find the optimal score. Two cases were distinguished for
4× 4 Rolit and 6× 6 Rolit after some pre-experimental runs. First, the two-player
configurations, and second, the multi-player configurations (i.e., 3 or 4 players). For
two-player 6× 6 Rolit with Red as paranoid player, the score was estimated to be in
the range of 15 to 18 based on the Monte-Carlo estimate. Moreover, the two-player
results were verified by running the proofs twice: first with solving for player Red,
and then for player Green.

For 3 and 4 players, an empirical maximum score of 5 was set for the multi-
player configurations. Then, attempts were made to prove all scores smaller than or

6.6 — Results 81

4×4 6×6 8×8

2 3 4 2 3 4 4

R 4.1 × 104 5.6 × 104 9.1 × 104 9.5 × 1013 4.2 × 1010 1.5 × 106 1.8 × 108

G 4.1 × 104 9.5 × 104 5.2 × 104 5.0 × 1012 5.7 × 109 6.1 × 106 8.1 × 108

Y - 6.5 × 104 1.2 × 105 - 2.5 × 109 2.4 × 106 5.2 × 1010

B - - 5.1 × 104 - - 1.0 × 105 1.7 × 109

Table 6.5: Nodes evaluated in 4× 4, 6× 6, and 8× 8 Rolit for 2, 3, and 4 players under the
paranoid condition.

equal to the empirical maximum score. Thus, we attempted to prove a win for the
paranoid player with scores of 5, 4, 3, 2, and 1. In addition, the 5 scores are reduced
to 4 scores for multi-player 6 × 6 Rolit and 8 × 8 Rolit for the last-moving player.
At the moment PPNS has disproven score 2, PPNS can omit the proof attempt for
score 1 (which is always the case). This is particularly convenient because disproofs
can be achieved easier than proofs.

All configurations of 4×4 Rolit and 6×6 Rolit were solved. For 8×8 Rolit only the
four-player configuration was solved, which was approached in a similar way as the
multi-player configurations of 6× 6 Rolit. We did not attempt to solve the two and
three-player configurations because of the too large search space. The evaluation
function was found to reduce the total number of nodes searched by up to 10%.
This is little compared to a reduction of up to 50% with the much more elaborate
evaluation function by Nagai (1999) designed specifically for Othello endgames.

The optimal scores found by PPNS are given in Table 6.4. The results are, that
4 × 4 Rolit has solutions that are non-trivial, i.e., scores larger than the minimum
theoretic scores of 0 or 1 point exist for three- and four-player configurations. This
is different in the case of 6× 6 Rolit. Here, the finding is that 6× 6 Rolit is a rather
uninteresting game under the paranoid condition: the paranoid player can always
be forced to the minimum analytical score of either 0 or 1 point.

We note that, interestingly, the Monte-Carlo estimate of 19.1 points for Green
used for seeding the score in two-player 6× 6 Rolit differs 0.9 points from the actual
score of 20 points.

6.6.2 Search Trees

Table 6.5 shows the node consumption for solving the configurations as described in
the previous subsection. Solving 4× 4 Rolit required only a few hundred thousand
nodes for all possible configurations and scores.

6× 6 Rolit was solved by searching in the order of millions of nodes in the case
of four-player configurations, billions for three-player configurations, and trillions of
nodes for two-player configurations. The latter are the largest proofs completed in
our experiments. The CPU time required for proving the most difficult configuration
solved, two-player 6× 6 Rolit, is ca. 225 hours (9 days).

82 Paranoid Proof-Number Search

6.6.3 PPNS vs. Paranoid Search

To assess the performance of PPNS we compared the empirically found search trees
of PPNS with the analytical best-cases of the search trees that standard paranoid
search would create for proving the scores of Red (cf. Subsection 6.1.3). We assume
that standard paranoid search would not take advantage of the possible non-uniform
nature of the game tree as PPNS does and therefore we can apply O(bd(n−1)/n). For
d we use the maximum game length of Rolit and for b the branching factor estimated
by the Monte-Carlo playouts (cf. Table 6.3). For instance, to obtain estimates of
the tree size of four-player 6 × 6 Rolit for paranoid search we calculate 5.1732×3/4

and for PPNS we use the number of nodes evaluated for proving the scores of Red.
We remark that paranoid search could perform better than O(bd(n−1)/n) if domain-
dependent move ordering would be available that prefers slim subtrees above large
subtrees, taking advantage of the non-uniform nature of the game tree as PPNS
does.

4× 4 6× 6 8× 8
Players Paranoid PPNS Paranoid PPNS Paranoid PPNS

2 4.7× 102 4.1× 104 3.5× 1011 9.5× 1013 3.1× 1027 -
3 5.3× 103 5.6× 104 2.3× 1015 4.2× 1010 5.5× 1035 -
4 3.0× 104 9.1× 104 1.3× 1017 1.5× 106 1.7× 1041 1.8× 108

Table 6.6: Comparison of search-tree sizes on 4 × 4, 6 × 6, and 8 × 8 Rolit for paranoid
search and PPNS. Estimated best cases for paranoid search vs. experimental outcome of
PPNS.

In Table 6.6 we see that for 4 × 4 Rolit PPNS creates larger search trees than
paranoid search would do in the best-case. For 6 × 6 Rolit, PPNS generates larger
search trees than the best-case for the two-player configuration. For the multi-player
cases the outcome is different. The PPNS trees we found here are smaller than the
best-case trees of paranoid search. In the three-player case, PPNS is smaller in the
order of 105, and in the four-player case the factor is ca. 1011. The outcomes differ
with the board sizes, because for 4× 4 Rolit all 16 possible scores are solved instead
of only 5 or 4, and the 6×6 Rolit performs disproofs only. Thus, we may say that in
4× 4 Rolit, PPNS performs worse than the estimated best-case of paranoid search.
However, PPNS outperforms paranoid search clearly in the 6× 6 Rolit multi-player
and 8× 8 Rolit four-player cases.

In the three-player case, the opponents get two moves, in the four-player case
even three moves for every move of the paranoid player. Therefore disproving is
simpler for the three-player case than for the two-player case and the four player
case is even simpler than the three-player case. Coalition players have an additional
advantage by a property of Rolit: they can limit the paranoid player to forced moves
or free-choice moves.

The game of 6 × 6 Rolit is particularly suitable for PPNS because the trees
are non-uniform, and the proportion of disproofs in terminal positions is quite high
compared to the proportion of proofs, especially for the multi-player configurations in

6.7 — Chapter Conclusion and Future Research 83

which only disproofs can be made. Here, PPNS profits from disproving the paranoid
player at every OR node by a single disproof for each of its three-level subtrees of
AND nodes. Moreover, the prior Monte-Carlo estimates reduce the considered 37
scores for solving to only 5. In addition to that, the most difficult proof, i.e., the proof
of the analytical minimum for the player moving last in multi-player configurations
could be omitted (because it could be inferred) reducing the scores to be proved to
4. We may therefore state that Rolit can be regarded as a benign game for solving
under the paranoid condition.

6.7 Chapter Conclusion and Future Research

We end this chapter by summarizing the results of experiments (Subsection 6.7.1)
and giving an outlook on future research (Subsection 6.7.2) based on the findings
presented.

6.7.1 Chapter Conclusion

In this chapter, we introduced the notion of solving multi-player games under the
paranoid condition and the PPNS algorithm for solving multi-player games under
the paranoid condition. We described the multi-player variant of Reversi, Rolit,
and applied PPNS to solve 4 × 4 and 6 × 6 Rolit for three and for four players as
well as 8 × 8 Rolit for four players. The outcome is that in 4 × 4 Rolit under the
paranoid condition some players can achieve more than the minimum score while
in 6 × 6 and 8 × 8 Rolit (for four players) no player can achieve more than the
minimum score. Moreover, we observed that for 6 × 6 Rolit and four-player 8 × 8
Rolit PPNS performed better than we would expect from standard paranoid search.
We may conclude that PPNS was able to exploit the non-uniformity of the game
tree in multi-player games.

6.7.2 Future Research

Based on our results for 6 × 6 Rolit we may speculate that the result for solving
three-player 8×8 Rolit will be analogous to the results for 6×6 Rolit, i.e., no player
can achieve a score higher than 0 (or 1 for the player moving last). Moreover, the
task of finding games that are more interesting than Rolit, i.e., more like in 4 × 4
Rolit than in 6 × 6 Rolit, remains. Such games may also be more interesting for
human players. We might speculate that non-square versions of Rolit might exhibit
such properties.

The challenge of solving three-player 8 × 8 Rolit remains for the future. Paral-
lelization of PPNS and a better evaluation function may at best give bounds on the
optimal scores for 8× 8 Rolit under the paranoid condition.

84 Paranoid Proof-Number Search

Chapter 7

Conclusions and Future
Research

In this thesis we investigated solving algorithms for games and game positions. In
spite of AI programs becoming stronger at playing games, the task of solving games
still remains difficult. Our research utilizes the current developments in the rapidly
developing field of Monte-Carlo methods for game-tree search and the continuously
evolving field of Proof-Number Search to develop new solving algorithms. The re-
search was guided by the problem statement formulated in Section 1.3 which also
provided four research questions addressing the problem statement. In this chap-
ter we formulate conclusions and recommendations for future research based on our
work.

Section 7.1 revisits the four research questions one by one and consequentially
formulates an answer to the problem statement in Section 7.2. Finally, Section 7.3
suggest directions for future research.

7.1 Conclusions on the Research Questions

The four research questions stated in Chapter 1 concern four topics central to solving
game positions with forward search. More precisely, the four questions deal with
the following topics that are part of the recent progress in game-tree search: (1)
search with Monte-Carlo evaluation, (2) Monte-Carlo Tree Search, (3) parallelized
search, and (4) search for multi-player games. The four questions are revisited in
the following subsections.

7.1.1 Monte-Carlo Evaluation

Our research question RQ 1 addressed in Chapter 3 was as follows.

RQ 1 How can we use Monte-Carlo evaluation to improve Proof-Number Search for
solving game positions?

86 Conclusions and Future Research

Chapter 3 introduced a new algorithm, MC-PNS, based on Monte-Carlo evalu-
ation (MCE) within the Proof-Number Search (PNS) framework. An application of
the new algorithm and several of its variants to the life-and-death sub-problem of
Go were described. It was demonstrated experimentally that given the right setting
of parameters MC-PNS outperforms simple PNS. For such a setting, MC-PNS is on
average two times faster than PNS and expands four times fewer nodes. We fur-
thermore compared MC-PNS with a pattern-based heuristic for initialization, called
PNSp, and observed that MCE initializes proof and disproof numbers of leaves in
PNS better than small patterns. We concluded that the reason for the superior per-
formance of MC-PNS is the flexibility of the MCE. In conclusion, we answer RQ 1
by stating that MC-PNS constitutes a genuine improvement of PNS that uses MCE
to enhance the initialization of proof and disproof numbers.

7.1.2 Monte-Carlo Tree Search Solver

The research question addressed by Chapter 4 was as follows.

RQ 2 How can the Monte-Carlo Tree Search framework contribute to solving game
positions?

In Chapter 4 we introduced a new Monte-Carlo Tree Search (MCTS) variant,
called MCTS-Solver. It adapts the recently developed MCTS framework for solving
game positions. MCTS-Solver differs from the traditional MCTS approach in that
it can solve positions by proving game-theoretic values. As a result it converges
much faster to the best move in narrow tactical lines. We discussed four selection
strategies: UCT, “classic” Progressive Bias (PB), and two enhanced PB variants:
PB-L1 and PB-L2. Experiments in LOA revealed that PB-L2, which takes the
number of losses into account, solved the most positions and was the fastest: it
solved positions in three times less time than UCT. When comparing MCTS-Solver
to αβ search, MCTS-Solver required about the same effort as αβ to solve positions.
However, PN2 was in general 5 times faster than MCTS-Solver. Finally, we found
empirically that tree parallelization for MCTS-Solver has a scaling factor of 4 with
8 threads, easily outperforming root parallelization. Thus we may say, that at least
during game-play (online) MCTS-Solver is comparable with a standard αβ search
in solving positions. However, for off-line solving positions, PNS is still a better
choice. Finally, we concluded that the strength of MCTS-Solver is dependent on
enhancements such as PB. Just as for αβ, search enhancements are crucial for the
performance. Chapter 4 answers RQ 2 question by introducing MCTS-Solver and
applying it to solving game positions.

7.1.3 Parallel Proof-Number Search

The research question addressed by Chapter 5 was as follows.

RQ 3 How can Proof-Number Search be parallelized?

Chapter 5 introduced a parallel Proof-Number Search algorithm for shared mem-
ory, called RP–PNS. The parallelization is achieved by threads that select moves

7.2 — Conclusions on the Problem Statement 87

close to the principal variation based on a probability distribution. Furthermore,
we adapted RP–PNS for PN2, resulting in an algorithm called RP–PN2. The algo-
rithms were tested on LOA positions. For eight threads, the scaling factor found
for RP–PN2 (4.7) was even better than that of RP–PNS (3.5) but this was mainly
because the size of the second-level (i.e., PN2) tree depends on the number of threads
used. Based on these results we may conclude that RP–PNS and RP–PN2 are viable
for parallelizing PNS and PN2, respectively. The chapter answers RQ 5 by propos-
ing RP–PNS and RP–PN2 which parallelize Proof-Number Search, and describes
the performance of the parallel algorithms.

7.1.4 Paranoid Proof-Number Search

The research question addressed in Chapter 6 was as follows.

RQ 4 How can Proof-Number Search be applied to multi-player games?

The starting point of Chapter 4 was the observation that many two-player games
have been solved but so far little if any research has been devoted to solving multi-
player games. We identified as a reason for this observation that multi-player games
generally do not have a unique game-theoretic value or best strategy because their
search trees have multiple equilibrium points. Therefore, the straightforward way
of solving a game by finding the outcome under optimal play (that is applied in
two-player games) cannot be applied to multi-player games directly. We therefore
proposed solving multi-player games under the paranoid condition. This is equivalent
to finding the optimal score that a player can achieve independently of the other
players’ strategies. We then proposed Paranoid Proof-Number Search (PPNS) for
solving multi-player games under the paranoid condition. In doing so, we made a
constructive contribution to the originally still open question formulated in RQ 4.

Furthermore, we described the multi-player variant of Reversi, Rolit, and applied
PPNS to solve various multi-player versions of 4× 4 and 6× 6 Rolit, and four-player
8× 8 Rolit. The outcome was that in 4× 4 Rolit under the paranoid condition some
players can achieve more than the minimum score while in 6× 6 Rolit and in four-
player 8×8 Rolit no player can achieve more than the minimum score. Moreover, we
observed that for 6×6 Rolit and four-player 8×8 Rolit PPNS performed better than
we would expect from standard paranoid search. We may conclude that PPNS is
able to exploit the non-uniformity of the game tree in multi-player games.

Our answer to RQ 4 is that multi-player games can be solved by finding the best
score under the paranoid condition and provided PPNS for finding this score.

7.2 Conclusions on the Problem Statement

Our problem statement was as follows.

PS How can we improve forward search for solving game positions?

Taking the answers to the research questions above into account we see that there
are several new ways of utilizing the recently so successful Monte-Carlo methods for

88 Conclusions and Future Research

solving game positions, and of tackling open questions related to Proof-Number
Search for solving game positions. We introduced algorithms that demonstrated
(1) how Monte-Carlo evaluation can be used for solving (MC-PNS), (2) how Monte-
Carlo Tree Search can be adapted for solving (MCTS-Solver), (3) how Proof-Number
Search and its two-level variant PN2 can be parallelized (RP–PNS, RP–PN2), and
(4) how Proof-Number Search can be used for solving multi-player games (PPNS).

7.3 Recommendations for Future Research

We complete this chapter by listing recommendations for future research grouped
by the four algorithms suggested in this thesis.

1. MC-PNS. The proposed algorithm, MC-PNS, performed well in the domain
of Go in which MCE proved to be useful. Future research should investigate
the feasibility of the approach in other solving scenarios which have binary
goals and can be searched by AND/OR trees. In particular, it would be of
great interest to investigate whether MC-PNS could be successfully applied to
one-player games or multi-player games.

2. MCTS-Solver. With continuing improvements it is not unlikely that en-
hanced Monte-Carlo-based approaches may even become an alternative to
PNS. As future research, experiments are envisaged in other games to test the
performance of MCTS-Solver. One possible next step is testing the method in
Go, a domain in which MCTS is already widely used. What makes this a some-
what more difficult task is that additional work is required in enabling perfect
endgame knowledge – such as Benson’s Algorithm (Benson, 1988; Van der
Werf et al., 2003) – in MCTS.

3. Parallel Proof-Number Search. Randomized Parallel PNS could still be
improved in several ways. First, a combined parallelization at PN1 and PN2

trees of RP–PN2 will be tested on a shared-memory system with more cores.
Second, a better distribution for guiding the move selection, possibly by in-
cluding more information in the nodes, will be tested to reduce the search
overhead. Third, the speedup of reducing the number of node locks by pooling
will be investigated. Fourth, the concept of the k -most-proving nodes of a
proof-number search tree and an algorithm for finding these nodes efficiently
for a parallelized tree could be investigated and then applied to parallelizing
with a master-servant framework for PNS.

4. Paranoid Proof-Number Search. The challenge of solving three-player
8 × 8 Rolit remains for the future. Parallelization and integration of a bet-
ter evaluation function will give bounds on the scores for three-player 8 × 8
Rolit under the paranoid condition. Moreover, Paranoid PNS could be applied
for solving other more interesting games under the paranoid condition. Para-
noid PNS gives an answer to how game positions can be solved in multi-player
games.

7.3 — Recommendations for Future Research 89

This thesis has contributed to the challenge of solving game positions by im-
proving Monte-Carlo methods for search and proof-number algorithms. While we
provided PPNS in order to address the class of deterministic multi-player games with
perfect information, solving deterministic multi-player games with imperfect infor-
mation is still a challenge. We speculate that devising a combination of methods
proposed and investigated in this thesis such as parallelization with PPNS, or Para-
noid PNS for solving multi-player games under the paranoid condition, with methods
used for solving two-player games with imperfect information, such as metapositions
(cf. Sakuta, 2001; Favini and Ciancarini, 2007), may help to further advance algo-
rithms for solving difficult game positions.

90 Conclusions and Future Research

References

Abramson, B. (1990). Expected-outcome: A general model of static evaluation.
IEEE transactions on PAMI, Vol. 12, No. 2, pp. 182–193. [4, 5, 7, 19, 20, 43]

Akl, S.G. and Newborn, M.M. (1977). The Principal Continuation and the Killer
Heuristic. 1977 ACM Annual Conference Proceedings, pp. 466–473, ACM Press,
New York, NY, USA.[52]

Allis, L.V. (1988). A Knowledge-Based Approach of Connect Four: The Game
is Over, White to Move Wins. M.Sc. thesis, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands. Report No. IR-163. [4]

Allis, L.V. (1994). Searching for Solutions in Games and Artificial Intelligence. Ph.D.
thesis, University of Limburg, The Netherlands. [2, 4, 7, 13, 17, 29, 43, 52, 65,
78]

Allis, L.V., Herik, H.J. van den, and Herschberg, I.S. (1991). Which Games Will
Survive? Heuristic Programming in Artificial Intelligence 2: the Second Com-
puter Olympiad (eds. D.N.L. Levy and D.F. Beal), pp. 232–243. Ellis Horwood,
Chichester, England. [2]

Allis, L.V., Meulen, M. van der, and Herik, H.J. van den (1994). Proof-Number
Search. Artificial Intelligence, Vol. 66, No. 1, pp. 91–124. [4, 9, 10, 27, 43, 54,
69, 74]

Allis, L.V., Huntjes, M.P.H., and Herik, H.J. van den (1996). Go-Moku Solved by
New Search Techniques. Computational Intelligence, Vol. 12, No. 1, pp. 7–24.
[3]

Anantharaman, T.S., Campbell, M., and Hsu, F.-h. (1988). Singular Extensions:
Adding Selectivity to Brute-Force Searching. ICCA Journal, Vol. 11, No. 4, pp.
135–143. Also published (1990) in Artificial Intelligence, Vol. 43, No. 1, pp.
99–109. [56]

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time Analysis of the
Multiarmed Bandit Problem. Machine Learning, Vol. 47, Nos. 2–3, pp. 235–
256. [24]

Bell, A.G. (1978). The Machine Plays Chess? Pergamon Press, Oxford, UK.[3]

92 References

Benson, D.B. (1988). Life in the Game of Go. Computer Games (ed. D.N.L. Levy),
Vol. 2, pp. 203–213. Springer-Verlag, New York, NY, USA.[57, 88]

Billings, D., Castillo, L.P., Schaeffer, J., and Szafron, D. (1999). Using Probabilistic
Knowledge and Simulation to Play Poker. AAAI/IAAI, pp. 697–703, AAAI
Press / MIT Press, Pasadena, CA, USA.[20]

Björnsson, Y. and Marsland, T.A. (1999). Multi-Cut Pruning in Alpha-Beta Search.
Computers and Games (CG‘98) (eds. H.J. van den Herik and H. Iida), Vol.
1558 of Lecture Notes in Computer Science, pp. 15–24, Springer-Verlag, Berlin,
Germany. [56]

Bolognesi, A. and Ciancarini, P. (2003). Searching over Metapositions in Kriegspiel.
Advances in Computer Games 10 (ACG‘03): Many Games, Many Chal-
lenges (eds. H.J. van den Herik, H. Iida, and E.A. Heinz), pp. 325–341, Kluwer
Academic Publishers, Boston, MA, USA.[3]

Bouton, C.L. (1902). Nim, a game with a complete mathematical theory. Annals of
Mathematics, Vol. 3, pp. 35–39. [2]

Bouzy, B. (2006). Associating Shallow and Selective Global Tree Search with Monte
Carlo for 9 × 9 Go. Proceedings of the 4th Computers and Games Conference
(CG‘04) (eds. H.J. van den Herik, Y. Björnsson, and N.S. Netanyahu), Vol.
3846 of Lecture Notes in Computer Science, pp. 67–80, Springer, Heidelberg,
Germany. [22]

Bouzy, B. and Cazenave, T. (2001). Computer Go: An AI oriented Survey. Artificial
Intelligence, Vol. 132, No. 1, pp. 39–103. [37]

Bouzy, B. and Chaslot, G.M.J.B. (2006). Monte-Carlo Go Reinforcement Learning
Experiments. IEEE Symposium on Computational Intelligence and Games (eds.
S.J. Louis and G. Kendall), pp. 187–194, Willey - IEEE Press, Malden, MA,
USA.[37]

Bouzy, B. and Helmstetter, B. (2003). Monte Carlo Developments. Advances in Com-
puter Games 10 (ACG‘03): Many Games, Many Challenges (eds. H.J. van den
Herik, H. Iida, and E.A. Heinz), pp. 159–174, Kluwer Academic Publishers,
Boston, MA, USA.[4, 5, 20, 21, 22]

Breuker, D.M. (1998). Memory versus search. Ph.D. thesis, Maastricht University,
The Netherlands. [9, 14, 65]

Breuker, D.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (1996). Replacement
schemes and two-level tables. ICCA Journal, Vol. 19, No. 3, pp. 175–180. [15,
52]

Breuker, D.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2000). Solving 8× 8
Domineering. Theoretical Computer Science, Vol. 230, Nos. 1–2, pp. 195–206.
[3]

References 93

Breuker, D.M., Herik, H.J. van den, Uiterwijk, J.W.H.M., and Allis, L.V. (2001).
A Solution to the GHI Problem for Best-First Search. Theoretical Computer
Science, Vol. 252, Nos. 1–2, pp. 121–149. [18]

Brockington, M.G. (1996). A taxonomy of parallel game-tree search algorithms.
ICCA Journal, Vol. 19, No. 3, pp. 162–174. [59]

Brockington, M.G. and Schaeffer, J. (1997). APHID Game-Tree Search. Advances
in Computer Chess 8 (eds. H.J. van den Herik and J.W.H.M. Uiterwijk), pp.
69–92, Universiteit Maastricht. [60]

Brügmann, B. (1993). Monte Carlo Go. Technical report, Physics Department,
Syracuse University, Syracuse, NY, USA.[4, 5, 20, 21, 24]

Bullock, N. (2002). Domineering: Solving Large Combinatorial Search Spaces. ICGA
Journal, Vol. 25, No. 2, pp. 67–84. [4]

Buro, M. (1999). Toward Opening Book Learning. ICCA Journal, Vol. 22, No. 2,
pp. 98–102. [64]

Campbell, M.S. (1985). The graph-history interaction: On ignoring position history.
Proceedings of the 1985 ACM annual conference on the range of computing:
mid-80’s perspective, pp. 278–280, ACM, New York, NY, USA.[9]

Cazenave, T. (2003). Metarules to Improve Tactical Go Knowledge. Information
Sciences, Vol. 154, Nos. 3–4, pp. 173–188. [30]

Cazenave, T. (2009). Nested Monte-Carlo Search. Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence (IJCAI‘09) (ed. C. Boutilier),
pp. 456–461, AAAI Press, Pasadena, CA, USA.[22]

Cazenave, T. and Borsboom, J. (2007). Golois Wins Phantom Go Tournament.
ICGA Journal, Vol. 30, No. 3, pp. 165–166. [22, 43]

Cazenave, T. and Jouandeau, N. (2007). On the Parallelization of UCT. Computer
Games Workshop (CGW‘07) (eds. H.J. van den Herik, J.W.H.M. Uiterwijk,
M.H.M. Winands, and M.P.D. Schadd), Vol. 07-06 of MICC Technical Report
Series, pp. 93–101, Maastricht University, Maastricht, The Netherlands.[25, 50,
64]

Cazenave, T. and Jouandeau, N. (2008). A Parallel Monte-Carlo Tree Search Algo-
rithm. Proceedings of the 6th Computers and Games Conference (CG‘08) (eds.
H.J. van den Herik, X. Xu, Z. Ma, and M.H.M. Winands), Vol. 5131 of Lecture
Notes in Computer Science, pp. 72–80, Springer, Heidelberg, Germany. [64]

Cazenave, T. and Saffidine, A. (2009). Utilisation de la recherche arborescente
Monte-Carlo au Hex. Revue d’Intelligence Artificielle, Vol. 23, Nos. 2–3, pp.
183–202. (in French). [22, 43]

Chaslot, G.M.J.B. (2008). IA-Go Challenge: MoGo vs. Catalin Taranu. ICGA
Journal, Vol. 31, No. 2, p. 126. [2, 19]

94 References

Chaslot, G.M.J.B. (2010). Monte-Carlo Tree Search. Ph.D. thesis, Maastricht Uni-
versity, The Netherlands. [105]

Chaslot, G.M.J.B., Jong, S. de, Saito, J-T., and Uiterwijk, J.W.H.M. (2006).
Monte-Carlo Tree Search in Production Management Problems. Proceedings
of the 18th BeNeLux Artificial Intelligence Conference (BNAIC‘06) (eds. P.Y.
Schobbens, W. Vanhoof, and G. Schwanen), pp. 91–98, Twente University Press,
Enschede, The Netherlands. [19, 22]

Chaslot, G.M.J.B., Winands, M.H.M., and Herik, H.J. van den (2008a). Parallel
Monte-Carlo Tree Search. Proceedings of the 6th Conference on Computers and
Games (CG‘08) (eds. H.J. van den Herik, X. Xu, Z. Ma, and M.H.M. Winands),
Vol. 5131 of Lecture Notes in Computer Science, pp. 60–71, Springer, Berlin,
Germany. [25, 50, 64]

Chaslot, G.M.J.B., Winands, M.H.M., Uiterwijk, J.W.H.M., Herik, H.J. van den,
and Bouzy, B. (2008b). Progressive Strategies for Monte-Carlo Tree Search.
New Mathematics and Natural Computation, Vol. 4, No. 3, pp. 343–357. [22,
25, 32, 47]

Chiang, S.-H., Wu, I-C., and Lin, P.-H. (2010). On Drawn K-In-A-Row Games. Pro-
ceedings of the 13th Advances in Computers Games Conference (ACG‘09) (eds.
H.J. van den Herik and P. Spronck), Vol. 6048 of Lecture in Computer Science,
pp. 158–169, Springer-Verlag, Heidelberg, Germany. [4]

Coulom, R. (2007a). Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. Proceedings of the 5th Computers and Games Conference (CG‘06) (eds.
H.J. van den Herik, P. Ciancarini, and H.H.L.M. Donkers), Vol. 4630 of Lecture
in Computer Science, pp. 72–83, Springer, Heidelberg, Germany. [2, 4, 5, 7, 9,
19, 22, 24, 43, 49]

Coulom, R. (2007b). Computing “Elo Ratings” of Move Patterns in the Game of
Go. ICGA Journal, Vol. 30, No. 4, pp. 199–208. [25]

Coulom, R. and Chen, K.-H. (2006). Crazy Stone Wins 9×9 Go Tournament. ICGA
Journal, Vol. 29, No. 3, p. 96. [22]

Davies, J. (1977). The Rules and Elements of Go. Ishi Press, Tokyo, Japan. [105]

DeCoste, D. (1998). The Significance of Kasparov versus Deep Blue and the Future
of Computer Chess. ICCA Journal, Vol. 21, No. 1, pp. 33–43. [2]

Donninger, C. (1993). Null Move and Deep Search: Selective-Search Heuristics for
Obtuse Chess Programs. ICCA Journal, Vol. 16, No. 3, pp. 137–143. [56]

Enzenberger, M. and Müller, M. (2009). Fuego - an open-source framework for board
games and Go engine based on Monte-Carlo tree search. Technical Report 08,
Dept. of Computing Science, University of Alberta, Edmonton, Canada. [22]

References 95

Enzenberger, M. and Müller, M. (2010). A lock-free multithreaded Monte-Carlo
tree search algorithm. Proceedings of the 13th Advances in Computers Games
Conference (ACG‘09) (eds. H.J. van den Herik and P. Spronck), Vol. 6048 of
Lecture in Computer Science, pp. 14–20, Springer, Berlin, Germany. [25, 51]

Favini, G.P. and Ciancarini, P. (2007). Representing Kriegspiel states with metaposi-
tions. Proceedings of the 20th International Joint Conference on AI (IJCAI‘07),
pp. 2450–2455, Morgan Kaufmann, San Francisco, CA, USA.[89]

Ferguson, T.S. (1992). Mate with bishop and knight in Kriegspiel. Theoretical
Computer Science, Vol. 96, No. 2, pp. 389–403. [3]

Finnsson, H. and Björnsson, Y. (2008). Simulation-based approach to general game
playing. Proceedings of the 23rd AAAI Conference on Artificial Intelligence
(AAAI‘08) (eds. D. Fox and C.P. Gomes), pp. 259–264, AAAI Press, Menlo
Park, CA, USA.[22]

Frank, I., Basin, D.A., and Matsubara, H. (1998). Finding Optimal Strategies for
Imperfect Information Games. Proceedings of the 15th National Conference on
Artificial Intelligence (AAAI‘98) (eds. D. Allison and T. Balch), pp. 500–507,
AAAI Press, Menlo Park, CA, USA.[20]

Fujii, M., Kita, H., Murata, T., Hashimoto, J., and Iida, H. (2006). Four-person
Reversi Yonin. Game Informatics GI-15, Vol. 2006, No. 23, pp. 73–80. (in
Japanese). [76, 78]

Gasser, R. (1996). Solving Nine Men’s Morris. Computational Intelligence, Vol. 12,
pp. 24–41. [3]

Gelly, S. and Silver, D. (2008). Achieving master level play in 9×9 computer Go. Pro-
ceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI‘08) (eds.
D. Fox and C.P. Gomes), pp. 1537–1540, AAAI Press, Menlo Park, CA, USA.
[22, 24, 25]

Ginsberg, M.L. (1999). GIB: Steps Toward an Expert-Level Bridge-Playing Program.
Proceedings of the 16th Joint Conference on Artificial Intelligence (IJCAI‘99),
pp. 584–593. [20]

Graepel, T., Goutrie, M., Krüger, M., and Herbrich, R. (2001). Learning on graphs
in the game of Go. Proceedings of the 11th International Conference on Artificial
Neural Networks (ICANN‘01) (eds. G. Dorffner, H. Bischof, and K. Hornik), Vol.
2130 of Lecture Notes in Computer Science, pp. 347–352, Springer, Heidelberg,
Germany. [37]

Greenblatt, R., Eastlake, D., and Croker, S. (1967). The Greenblatt Chess program.
Proceedings of the Fall Joint Computer Conference, pp. 801–810. Reprinted
(1988) in Computer Chess Compendium (ed. D.N.L. Levy), pp. 56-66. Batsford,
London, UK.[9]

Grottling, G. (1985). Problem-solving ability tested. ICCA Journal, Vol. 8, No. 2,
pp. 107–110. [3]

96 References

Hasbro International Inc. (1999). Rolit. Hasbro International Inc., Pawtucket, R.I.,
USA.[75]

Hayward, R., Björnsson, Y., and Johanson, M. (2005). Solving 7×7 Hex with domi-
nation, fill-in, and virtual connections. Theoretical Computer Science, Vol. 349,
No. 2, pp. 123–139. [4]

Henderson, P., Arneson, B., and Hayward, R.B. (2009). Solving 8 × 8 Hex. Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI‘09) (ed. C. Boutilier), pp. 505–510, AAAI Press, Pasadena, CA, USA.
[2]

Herik, H.J. van den and Winands, M.H.M. (2008). Proof-Number search and its vari-
ants. Oppositional Concepts in Computational Intelligence (eds. H.R. Tizhoosh
and M. Ventresca), Vol. 155 of Studies in Computational Intelligence, pp. 91–
118. Springer, Heidelberg, Germany. [7, 65, 74]

Herik, H.J. van den, Uiterwijk, J.W.H.M., and Rijswijck, J. van (2002). Games
solved: Now and in the future. Artificial Intelligence, Vol. 134, Nos. 1–2, pp.
277–311. [2, 69]

Heule, M.J.H. and Rothkrantz, L.J.M. (2007). Solving Games - Dependence of
Applicable Solving Procedures. Science of Computer Programming, Vol. 67,
No. 1, pp. 105–124. [69]

Hsu, F.-h. (2002). Behind Deep Blue: Building the Computer that Defeated the
World Chess Champion. Princeton University Press, Princeton, NJ, USA.[70]

Huizinga, J. (1955). Homo ludens; A study of the play-element in culture. Beacon
Press, Boston, MA, USA.[1]

Irving, G., Donkers, H.H.L.M., and Uiterwijk, J.W.H.M. (2000). Solving Kalah.
ICGA Journal, Vol. 23, No. 3, pp. 139–148. [3]

Kaneko, T. (2010). Parallel Depth First Proof Number Search. Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, (AAAI‘10) (eds. M.
Fox and D. Poole), pp. 95–100, AAAI Press, Menlo Park, CA, USA.[5, 60]

Kishimoto, A. (2005). Correct and efficient search algorithms in the presence of
repetitions. Ph.D. thesis, University of Alberta, Canada. [19]

Kishimoto, A. and Kotani, Y. (1999). Parallel AND/OR tree search based on proof
and disproof numbers. Proceedings of the 5th Game Programming Workshop,
Vol. 99(14) of IPSJ Symposium Series, pp. 24–30, Hakone, Japan. [5, 59, 60]

Kishimoto, A. and Müller, M. (2003). DF-PN in Go: Application to the one-eye
problem. Advances in Computer Games 10 (ACG‘03): Many Games, Many
Challenges (eds. H.J. van den Herik, H. Iida, and E.A. Heinz), pp. 125–141,
Kluwer Academic Publishers, Boston, MA, USA.[10, 17, 18, 19]

References 97

Kishimoto, A. and Müller, M. (2005a). Search versus knowledge for solving life
and death problems in Go. Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI‘05) (eds. M.M. Veloso and S. Kambhampati), pp.
1374–1379, AAAI Press / MIT Press, Menlo Park, CA, USA.[3, 17, 30]

Kishimoto, A. and Müller, M. (2005b). A Solution to the GHI problem for depth-first
proof-number search. Information Sciences, Vol. 175, pp. 296–314. [19]

Kloetzer, J., Müller, M., and Bouzy, B. (2008). A Comparative Study of Solvers
in Amazons Endgames. 2008 IEEE Symposium on Computational Intelligence
and Games (CIG‘08) (eds. P. Hingston and L. Barone), pp. 378–384. [43, 44]

Knuth, D.E. and Moore, R.W. (1975). An analysis of alpha-beta pruning. Artificial
Intelligence, Vol. 6, No. 4, pp. 293–326. [4, 9, 45, 70]

Kocsis, L. and Szepesvári, C. (2006). Bandit Based Monte-Carlo Planning. Proceed-
ings of the 17th European Conference on Machine Learning (ECML‘06) (eds.
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou), Vol. 4212 of Lecture Notes in
Computer Science, pp. 282–293, Springer, Heidelberg, Germany. [2, 4, 5, 7, 9,
19, 22, 24, 43, 47]

Kocsis, L., Szepesvári, C., and Willemson, J. (2006). Improved Monte-Carlo Search.
http://zaphod.aml.sztaki.hu/papers/cg06-ext.pdf. [43]

Korf, R.E. (1991). Multi-Player Alpha-Beta Pruning. Artificial Intelligence, Vol. 48,
No. 1, pp. 99–111. [5, 70]

Kupferschmid, S. and Helmert, M. (2007). A Skat player based on Monte-Carlo Sim-
ulation. Proceedings of the 5th Computers and Games Conference (CG‘06) (eds.
H.J. van den Herik, P. Ciancarini, and H.H.L.M. Donkers), Vol. 4630 of Lecture
Notes in Computer Science, pp. 135–147, Springer, Berlin, Germany. [20]

Lindner, L. (1985). A critique of Problem-Solving Ability. ICCA Journal, Vol. 8,
No. 3, pp. 182–185. [3]

Lorentz, R.J. (2008). Amazons Discover Monte-Carlo. Proceedings of the 6th Com-
puters and Games Conference (CG‘08) (eds. H.J. van den Herik, X. Xu, Z. Ma,
and M.H.M. Winands), Vol. 5131 of Lecture Notes in Computer Science, pp.
13–24, Springer, Berlin, Germany. [21, 22, 43]

Lorenz, U. (2001). Parallel Controlled Conspiracy Number Search. Euro-Par (eds.
M. Monien and R. Feldmann), Vol. 2400 of Lecture Notes in Computer Science,
pp. 420–430, Springer, Heidelberg, Germany. [60]

Luce, R. and Raiffa, H. (1957). Games and decisions. John Wiley & Sons, New
York, NY, USA.[71]

Luckhardt, C. and Irani, K.B. (1986). An Algorithmic Solution of N-Person Games.
Proceedings of the 5th National Conference on Artificial Intelligence (AAAI‘86),
pp. 158–162, Morgan Kaufmann, San Francisco, CA, USA.[5, 69, 70]

98 References

Marsland, T.A. (1983). Relative Efficiency of Alpha-Beta Implementations. Proceed-
ings of the 8th International Joint Conference on Artificial Intelligence (IJCAI-
83), pp. 763–766, Karlsruhe, Germany. [52]

Marsland, T.A. (1986). A Review of Game-Tree Pruning. ICCA Journal, Vol. 9,
No. 1, pp. 3–19. [57]

McAllester, D.A. (1985). A New Procedure for Growing Min-Max Trees. Technical
report, Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.[10]

McAllester, D.A. (1988). Conspiracy numbers for min-max search. Artificial Intel-
ligence, Vol. 35, No. 3, pp. 287–310. [10, 60]

Metropolis, N. and Ulam, S. (1949). The Monte Carlo Method. Journal of the
American Statistical Association, Vol. 44, No. 247, pp. 335–341. [19]

Moldenhauer, C. (2009). Game tree search algorithms for the game of Cops and
Robber. M.Sc. thesis, School of Computing Science, University of Alberta,
Alberta, Canada. [74]

Müller, M. (2002). Computer Go. Artificial Intelligence, Vol. 134, Nos. 1–2, pp.
145–179. [20]

Nagai, A. (1998). A new depth-first search algorithm for AND/OR trees. Proceed-
ings of the Complex Games Lab Workshop (eds. H. Matsubara, Y. Kotani, T.
Takizawa, and A. Yoshikawa), pp. 40–45, ETL, Tsuruoka, Japan. [15, 17]

Nagai, A. (1999). Application of df-pn+ to Othello endgames. Proceedings of the
5th Game Programming Workshop, Vol. 99(14) of IPSJ Symposium Series, pp.
16–23. [15, 16, 17, 81]

Nagai, A. (2002). Df-pn algorithm for searching AND/OR trees and its applications.
Ph.D. thesis, University of Tokyo, Japan. [3, 10, 15, 16, 18, 19]

Nalimov, E.V., Haworth, G.McC., and Heinz, E.A. (2000). Space-Efficient Indexing
of Chess Endgame Tables. ICGA Journal, Vol. 23, No. 3, pp. 148–162. [4]

Nash, J. (1952). Some games and machines for playing them. Technical Report
D-1164, Rand Corp. [2]

Neumann, J. von and Morgenstern, O. (1944). Theory of Games and Economic
Behavior. Princeton University Press, Princeton, NJ, USA.[10]

Nijssen, J.A.M. and Winands, M.H.M. (2010). Enhancements for Multi-Player
Monte-Carlo Tree Search. Computers and Games (CG‘10) (eds. H.J. van den
Herik, H. Iida, and A. Plaat), (in print). [49]

Palay, A.J. (1983). Searching with probabilities. Ph.D. thesis, Carnagie Mellon
University, PA, USA.[9]

Patashnik, O. (1980). Qubic: 4×4×4 Tic-Tac-Toe. Mathematics Magazine, Vol. 53,
No. 4, pp. 202–216. [3]

References 99

Pawlewicz, J. and Lew, L. (2007). Improving depth-first pn-search: 1+ε trick.
Proceedings of the 5th Computers and Games Conference (CG‘06) (eds. H.J.
van den Herik, P. Ciancarini, and H.H.L.M. Donkers), Vol. 4630 of Lecture
Notes in Computer Science, pp. 160–170, Computers and Games, Springer,
Heidelberg, Germany. [17, 18, 51, 65]

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley Longman, Boston, MA, USA.[8, 20]

Plaat, A. (1996). Research Re: Search & Re-search. Ph.D. thesis, Erasmus Univer-
siteit Rotterdam, Rotterdam, The Netherlands. [73]

Reinefeld, A. (1983). An Improvement to the Scout Search Tree Algorithm. ICCA
Journal, Vol. 6, No. 4, pp. 4–14. [52]

Robbins, H. (1952). Some Aspects of the Sequential Design of Experiments. Bulletin
of the American Mathematical Society, Vol. 58, No. 5, pp. 527–535. [22, 24]

Romein, J.W. and Bal, H.E. (2003). Solving Awari with parallel retrograde analysis.
IEEE Computer, Vol. 36, No. 10, pp. 26–33. [3]

Saito, J.-T. and Winands, M.H.M. (2010). Paranoid Proof-Number Search.
In Proceedings of the Computational Intelligence and Games Conference
(CIG‘10) (eds. G.N. Yannakakis and J. Togelius), pp. 203–210, IEEE Press.
[69]

Saito, J-T., Chaslot, G.M.J.B., Uiterwijk, J.W.H.M., and Herik, H.J. van den
(2006a). Pattern Knowledge for Proof-Number Search in Computer Go.
Proceedings of the 18th BeNeLux Conference on Artificial Intelligence
(BNAIC‘06) (eds. P.Y. Schobbens, W. Vanhoof, and G. Schwanen), pp. 275–
281, University of Twente Press, Enschede, The Netherlands. [27]

Saito, J-T., Chaslot, G.M.J.B., Uiterwijk, J.W.H.M., Herik, H.J. van den, and
Winands, M.H.M. (2006b). Developments in Monte-Carlo Proof-Number
Search. Proceedings of the 11th Game Programming Workshop (eds. H. Mat-
subara, T. Ito, and T. Nakamura), pp. 27–31, Information Processing Society
of Japan, Tokyo, Japan. [27]

Saito, J-T., Chaslot, G.M.J.B., Uiterwijk, J.W.H.M., and Herik, H.J. van den
(2007a). Monte-Carlo Proof-Number Search. Proceedings of the 5th Com-
puters and Games Conference (CG‘06) (eds. H.J. van den Herik, P. Ciancarini,
and H.H.L.M. Donkers), Vol. 4630 of Lecture Notes in Computer Science, pp.
50–61, Springer, Berlin, Germany. [7, 27]

Saito, J-T., Winands, M.H.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den
(2007b). Grouping nodes for Monte-Carlo Tree Search (BNAIC‘07). Proceed-
ings of the 19th Belgian-Dutch Conference on Artificial Intelligence (eds. M.M.
Dastani and E. de Jong), pp. 276–283, Utrecht University, Utrecht, The Nether-
lands. [25, 7]

100 References

Saito, J-T., Winands, M.H.M., and Herik, H.J. van den (2009). Randomized Parallel
Proof-Number Search. Proceedings of the 21st BeNeLux Conference on Artificial
Intelligence (BNAIC‘09) (eds. T. Calders, K. Tuyls, and M. Pechenizkiy), pp.
365–366, TU/e Eindhoven, Eindhoven, The Netherlands. [59]

Saito, J-T., Winands, M.H.M., and Herik, H.J. van den (2010). Randomized Parallel
Proof-Number Search. Proceedings of the 13th Advances in Computers Games
Conference (ACG‘09) (eds. H.J. van den Herik and P. Spronck), Vol. 6048 of
Lecture Notes in Computer Science, pp. 75–87, Springer-Verlag, Heidelberg,
Germany. [51, 59]

Sakuta, M. (2001). Deterministic Solving of Problems with Uncertainty. Ph.D.
thesis, Shizuoka University, Hamamatsu, Japan. [89]

Sakuta, M. and Iida, H. (2000). Solving Kriegspiel-like Problems: Exploiting a
Transposition Table. ICGA Journal, Vol. 23, No. 4, pp. 218–229. [3]

Sakuta, M., Hashimoto, T., Nagashima, J., Uiterwijk, J.W.H.M., and Iida, H.
(2003). Application of the Killer-tree Heuristic and the Lamba-Search Method
to Lines of Action. Information Sciences, Vol. 154, Nos. 3–4, pp. 141–155. [51]

Schadd, M.P.D., Winands, M.H.M., Uiterwijk, J.W.H.M., Herik, H.J. van den, and
Bergsma, M.H.J. (2008). Best Play in Fanorona leads to draw. New Mathe-
matics and Natural Computation, Vol. 4, No. 3, pp. 369–387. [3, 4, 22]

Schaeffer, J. (1989). Conspiracy Numbers. Advances in Computer Chess 5 (ed. D.F.
Beal), pp. 199–217, Elsevier, Maryland Heights, MO, USA.[10]

Schaeffer, J. (1990). Conspiracy Numbers. Artificial Intelligence, Vol. 43, No. 1, pp.
67–84. [10]

Schaeffer, J. and Plaat, A. (1996). New Advances in Alpha-Beta Searching. Pro-
ceedings of the 1996 ACM 24th Annual Conference on Computer Science, pp.
124–130. ACM Press, New York, NY, USA.[52]

Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P.,
and Sutphen, S. (2007). Checkers is solved. Science, Vol. 317, No. 5844, pp.
1518–1522. [3, 4, 10]

Schrüfer, G. (1989). A Strategic Quiescence Search. ICCA Journal, Vol. 12, No. 1,
pp. 3–9. [52]

Seo, M., Iida, H., and Uiterwijk, J.W.H.M. (2001). The PN∗-Search algorithm:
application to Tsume Shogi. Artificial Intelligence, Vol. 129, Nos. 1–2, pp. 253–
277. [10, 14]

Shannon, C.E. (1950). Programming a Computer for Playing Chess. Philosophical
Magazine, Vol. 41, No. 7, pp. 256–275. [1]

Sheppard, B. (2002). Towards Perfect Play of Scrabble. Ph.D. thesis, Maastricht
University, Maastricht, The Netherlands. [20]

References 101

Shoham, Y. and Toledo, S. (2002). Parallel randomized best-first minimax search.
Artificial Intelligence, Vol. 137, Nos. 1–2, pp. 165–196. [51, 61, 63]

Smith, S.J.J., Nau, D., and Throop, T.A. (1998). Computer Bridge: A Big Win for
AI Planning. AI Magazine, Vol. 19, No. 2, pp. 93–106. [20]

Ströhlein, T. (1970). Untersuchungen über kombinatorische Spiele. Ph.D. thesis,
Technische Hochschule München, München, Germany. (in German). [4]

Sturtevant, N.R. (2003a). Multiplayer games: Algorithms and approaches. Ph.D.
thesis, University of California, Los Angeles, CA, USA.[71, 72]

Sturtevant, N.R. (2003b). A Comparison of Algorithms for Multi-player Games.
Proceedings of the 3rd Computers and Games Conference 2002 (CG‘02) (eds. J.
Schaeffer, M. Müller, and Y. Björnsson), Vol. 2883 of Lecture Notes in Computer
Science, pp. 108–122, Springer, Heidelberg, Germany. [73]

Sturtevant, N.R. (2003c). Last-Branch and Speculative Pruning Algorithms for
Maxn. Proceedings of the Eighteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI‘03) (eds. G. Gottlob and T. Walsh), pp. 669–678,
Morgan Kaufmann, San Francisco, CA, USA.[73]

Sturtevant, N.R. (2008). An Analysis of UCT in Multi-player Games. Proceedings
of the 6th Computers and Games Conference (CG‘08) (eds. H.J. van den Herik,
X. Xu, Z. Ma, and M.H.M. Winands), Vol. 5131 of Lecture Notes in Computer
Science, pp. 37–49, Springer, Heidelberg, Germany. [22]

Sturtevant, N.R. and Korf, R.E. (2000). On Pruning Techniques for Multi-Player
Games. Proceedings of the 20th National Conference on Artificial Intelligence
(AAAI‘00) (eds. H.A. Kautz and B. Porter), pp. 201–207, MIT Press, Cam-
bridge, MA, USA.[5, 69, 70, 72, 73]

Takizawa, T. and Grimbergen, R. (2000). Review: Computer Shogi through 2000.
Proceedings of the 2nd Computers and Games Conference (CG‘00) (eds. H.J.
van den Herik and H. Iida), Vol. 2063 of Lecture Notes in Computer Science,
pp. 431–442, Springer, Heidelberg, Germany. [3]

Tesauro, G. and Galperin, G.R. (1997). On-line policy improvement using Monte-
Carlo search. Advances in Neural Information Processing Systems, Vol. 9, pp.
1068–1074. [20]

Thompson, K. (1986). Retrograde Analysis of Certain Endgames. ICCA Journal,
Vol. 9, No. 3, pp. 131–139. [4]

Tromp, J. (2008). Solving Connect-4 on Medium Board Sizes. ICGA Journal, Vol. 31,
No. 2, pp. 110–112. [3]

Tsuruoka, Y., Yokoyama, D., and Chikayama, T. (2002). Game-tree Search Al-
gorithm based on Realization Probability. ICGA Journal, Vol. 25, No. 3, pp.
132–144. [47, 56]

102 References

Turing, A.M. (1953). Chess. Faster than thought: A symposium of digital computing
machines (ed. B.W. Bowden). Pitman Publishing, London, England. [1]

Uiterwijk, J.W.H.M. and Herik, H.J. van den (2000). The Advantage of the Initia-
tive. Information Sciences, Vol. 122, No. 1, pp. 43–58. [3]

Wágner, J. and Virág, I. (2001). Solving Renju. ICGA Journal, Vol. 24, No. 1, pp.
30–34. [3]

Werf, E.C.D. van der (2004). AI techniques for the game of Go. Ph.D. thesis,
Maastricht University, The Netherlands. [37, 105]

Werf, E.C.D. van der and Winands, M.H.M. (2009). Solving Go for Rectangular
Boards. ICGA Journal, Vol. 32, No. 2, pp. 77–88. [10]

Werf, E.C.D. van der, Herik, H.J. van den, and Uiterwijk, J.W.H.M. (2003). Solving
Go on Small Boards. ICGA Journal, Vol. 26, No. 2, pp. 92–107. [2, 3, 10, 57,
88]

Winands, M.H.M. (2004). Informed search in complex games. Ph.D. thesis, Maas-
tricht University, The Netherlands. [17, 52, 106]

Winands, M.H.M. (2008). 6× 6 LOA is Solved. ICGA Journal, Vol. 31, No. 3, pp.
234–238. [2, 52, 73]

Winands, M.H.M. and Björnsson, Y. (2008). Enhanced Realization Probability
Search. New Mathematics and Natural Computation, Vol. 4, No. 3, pp. 329–
342. [49, 56]

Winands, M.H.M. and Björnsson, Y. (2010). Evaluation Function Based Monte-
Carlo LOA. Proceedings of the 13th Advances in Computers Games Conference
(ACG‘09) (eds. H.J. van den Herik and P. Spronck), Vol. 6048 of Lecture Notes
in Computer Science, pp. 33–44, Springer, Heidelberg, Germany. [21, 43, 50]

Winands, M.H.M. and Herik, H.J. van den (2006). MIA: A World Champion LOA
Program. The 11th Game Programming Workshop in Japan (GPW 2006), pp.
84–91. [50, 52]

Winands, M.H.M., Herik, H.J. van den, and Uiterwijk, J.W.H.M. (2003a). An
Evaluation Function for Lines of Action. Advances in Computer Games 10
(ACG‘03): Many Games, Many Challenges (eds. H.J. van den Herik, H. Iida,
and E.A. Heinz), pp. 249–260, Kluwer Academic Publishers, Boston, MA, USA.
[52]

Winands, M.H.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2003b). PDS-
PN: A new proof-number search algorithm: Application to Lines of Action.
Proceedings of the 3rd Computers and Games Conference 2002 (CG‘02) (eds. J.
Schaeffer, M. Müller, and Y. Björnsson), Vol. 2883 of Lecture Notes in Computer
Science, pp. 170–185, Springer, Heidelberg, Germany. [16, 51, 65]

References 103

Winands, M.H.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2004). An effec-
tive two-level Proof-Number Search algorithm. Theoretical Computer Science,
Vol. 313, No. 3, pp. 511–525. [10, 16]

Winands, M.H.M., Herik, H.J. van den, Uiterwijk, J.W.H.M., and Werf, E.C.D.
van der (2005). Enhanced Forward Pruning. Information Sciences, Vol. 175,
No. 4, pp. 315–329. [56]

Winands, M.H.M., Werf, E.C.D. van der, Herik, H.J. van den, and Uiterwijk,
J.W.H.M. (2006). The Relative History Heuristic. Computers and Games (eds.
H.J. van den Herik, Y. Björnsson, and N.S. Netanyahu), Vol. 3846 of Lecture
Notes in Computer Science (LNCS), pp. 262–272, Springer-Verlag, Berlin, Ger-
many. [52]

Winands, M.H.M., Björnsson, Y., and Saito, J-T. (2008). Monte-Carlo Tree Search
Solver. Proceedings of the 6th Computers and Games Conference (CG‘08) (eds.
H.J. van den Herik, X. Xu, Z. Ma, and M.H.M. Winands), Vol. 5131 of Lecture
Notes in Computer Science, pp. 25–36, Springer, Berlin, Germany. [7, 22, 43,
44, 46]

Wolf, T. (1994). The program GoTools and its computer-generated Tsume Go
database. Proceedings of the 1st Game Programming Workshop (ed. H. Mat-
subara), pp. 84–96, Information Processing Society of Japan, Tokyo, Japan.
[3]

Wolf, T. (2000). Forward pruning and other heuristic search techniques in Tsume
Go. Information Sciences, Vol. 122, No. 1, pp. 59–76. [30]

Wolf, T. and Shen, L. (2007). Checking Life-and-Death problems in Go I: the
program ScanLD. ICGA Journal, Vol. 30, No. 2, pp. 67–74. [3]

Wu, I-C. and Huang, D.-Y. (2006). A New Family of k-in-a-Row Games. Proceedings
of the 11th Advances in Computer Games Conference (eds. H.J. van den Herik,
S. Hsu, T. Hsu, and H.H.L.M. Donkers), Vol. 4250 of Lecture Notes in Computer
Science, pp. 180–194, Springer. [4]

Zhang, P. and Chen, K.-H. (2007). Monte-Carlo Go Tactic Search. Proceedings of
the 10th Joint Conference on Information Sciences (JCIS 2007) (eds. P. Wang
and others), pp. 662–670, World Scientific Publishing Co. Pte. Ltd. [44]

Zhang, P. and Chen, K.-H. (2008). Monte Carlo Go capturing tactic search. New
Mathematics and Natural Computation, Vol. 4, No. 3, pp. 359–367. [7]

Zobrist, A.L. (1990). A new hashing method with application for game playing.
ICCA Journal, Vol. 13, No. 2, pp. 69–73. [32]

104 References

Appendix A

Rules of Go and LOA

This Appendix gives the rules for the games of Go and LOA on which some of the
algorithms presented in this thesis have been tested.

A.1 Go Rules

It is beyond the scope of the thesis to explain all rules in detail. For a more elaborate
introduction we refer to Van der Werf (2004). A basic set of rules, adapted from
Davies (1977), is given below. Figure A.1 is adopted from Chaslot (2010).

1. The square grid board is empty at the outset of the game. Usually the grid
contains 19× 19 intersections, though 9× 9 is used as well.

2. There are two players, called Black and White.

3. Black makes the first move, alternating with White (cf. Figure A.1(a)).

4. A move consists of placing one stone of one’s own color on an empty intersection
on the board.

5. A player may pass his turn at any time.

6. A stone or a set of stones of one color that are orthogonally connected by
grid lines is captured and removed from the board when all the intersections
directly adjacent to it are occupied by the opponent (cf. Figure A.1(b)).

7. No stone may be played to repeat a former board position.

8. Two consecutive passes end the game.

9. A player’s territory consists of all the board points he has either occupied or
surrounded.

10. The player with more territory wins.

106 Appendix A: Rules of Go and LOA

1

2 3

4

5

1

(a) From the empty board, Black and
White play alternately on the inter-
sections.

1

(b) Stones that are surrounded are cap-
tured. Black can capture white stones
by playing on the marked intersections.

Figure A.1: Two illustrations for the rules of Go (adopted from Chaslot, 2010).

A.2 LOA Rules

The LOA rules set is based on Winands (2004). LOA is played on an 8×8 board by
two sides, Black and White. Each side has twelve (checker) pieces at its disposal.
Game play is specified by the following rules:1

1. The black pieces are placed in two rows along the top and bottom of the board,
while the white pieces are placed in two files at the left and right edge of the
board (cf. Figure A.2(a)).

2. The players alternately move a piece, starting with Black.

3. A move takes place in a straight line, exactly as many squares as there are
pieces of either color anywhere along the line of movement (cf. Figure A.2(b)).

4. A player may jump over its own pieces.

5. A player may not jump over the opponent’s pieces, but can capture them by
landing on them.

6. The goal of a player is to be the first to create a configuration on the board
in which all own pieces are connected in one unit. Connected pieces are on
squares that are adjacent, either orthogonally or diagonally (e.g., see Figure
A.2(c)). A single piece is a connected unit.

7. In the case of simultaneous connection, the game is drawn.

1These are the rules used at the Computer Olympiads and at the MSO World Championships.
In some books, magazines or tournaments, there may be a slight variation on rules 2, 7, 8, and 9.

A.2 — LOA Rules 107

8. A player that cannot move must pass.

9. If a position with the same player to move occurs for the third time, the game
is drawn.

A.2 — LOA Rules 105

Figure A.2: (a) The initial position. (b) Example of possible moves. (c) A terminal position.
Adapted from Chaslot (2010).

8. A player that cannot move must pass.

9. If a position with the same player to move occurs for the third time, the game
is drawn.

In Figure A.2(b) the possible moves of the black piece on d3 (using the same
coordinate system as in chess) are shown by arrows. The piece cannot move to f1
because its path is blocked by an opposing piece. The move to h7 is not allowed
because the square is occupied by a black piece.

(a) The initial position.

A.2 — LOA Rules 105

Figure A.2: (a) The initial position. (b) Example of possible moves. (c) A terminal position.
Adapted from Chaslot (2010).

8. A player that cannot move must pass.

9. If a position with the same player to move occurs for the third time, the game
is drawn.

In Figure A.2(b) the possible moves of the black piece on d3 (using the same
coordinate system as in chess) are shown by arrows. The piece cannot move to f1
because its path is blocked by an opposing piece. The move to h7 is not allowed
because the square is occupied by a black piece.

(b) Example of possible moves.

A.2 — LOA Rules 105

Figure A.2: (a) The initial position. (b) Example of possible moves. (c) A terminal position.
Adapted from Chaslot (2010).

8. A player that cannot move must pass.

9. If a position with the same player to move occurs for the third time, the game
is drawn.

In Figure A.2(b) the possible moves of the black piece on d3 (using the same
coordinate system as in chess) are shown by arrows. The piece cannot move to f1
because its path is blocked by an opposing piece. The move to h7 is not allowed
because the square is occupied by a black piece.

(c) A terminal position.

Figure A.2: Three illustrations for the rules of LOA (adopted from Winands, 2004).

In Figure A.2(b) the possible moves of the black piece on d3 (using the same
coordinate system as in chess) are shown by arrows. The piece cannot move to f1
because its path is blocked by an opposing piece. The move to h7 is not allowed
because the square is occupied by a black piece.

108 Appendix A: Rules of Go and LOA

Index

1 + ε trick, 17
αβ search, 4, 9, 10, 43, 51, 54, 70, 86

all-moves-as-first heuristic, 21, 24
Amazons, 21, 22, 43, 44
AND node, 12, 73
Artificial Intelligence, 1, 2, 85
asynchronous, 61
Awari, 3

Backgammon, 20
backpropagation, 23

in MCTS-Solver, 45
rules, 11, 29

base-twin algorithm, 18
Benson’s algorithm, 88
best-first search, 9–11, 28, 61
bias, 20
binary goal, 10
branching factor

of Reversi variants, 78
breadth-first search, 9
Bridge, 20
BTA, see base-twin algorithm

Checkers, 3, 4, 10, 19
Chess, 1–4, 14, 20
child

definition, 8
Chinese Checkers, 73
Clobber, 43
coalition player, 72, 74
Connect Four, 3, 4
Conspiracy-Number Search, 10, 60
Crazy Stone, 22

deadlocks, 64

Deep Blue, 2
depth of a game tree, 8
depth-first proof-number search, 15–

17, 19
parallel, 60

depth-first search, 9
df-pn, see depth-first proof-number search
disproof number, 79

definition, 11
disproof-like, 15
dn, see disproof number
Domineering, 3

endgame, 3
position, 51

endgame positions, 51
Enhanced Transposition Cutoffs, 52
equilibrium point, 70–73
evaluation function, 4, 8, 20, 22, 79,

81, 83
evaluation problem, 9
expansion, 23

definition, 8
exploration and exploitation, 21

Fanorona, 3
flipping move, 75
forward search, 4, 87

game
game tree, 8
sudden-death, 43

game-theoretic value, 2, 5, 8, 11, 20,
44, 71

general game playing, 22
GHI, see Graph-History-Interaction prob-

lem

110 INDEX

Go, 3, 4, 10, 19, 20, 22, 30, 37, 44, 57,
86, 88

rules, 105
Go-Moku, 3
GoBase, 31
Graph-History-Interaction problem, 8,

9, 15–18

Hearts, 73
Hex, 2, 4, 22

imperfect-information game, 3, 22
initialization

for Rolit, 79
initialization rule, 11, 17
InvaderMC, 21
iterative deepening, 10

k -in-a-row, 3, 4
Kalah, 3
knowledge representation, 79
Kriegspiel, 3

life-and-death problem, 30
Lines of Action, 4, 10, 21, 22, 44, 51,

54, 59, 65, 86, 87
rules, 106

LOA, see Lines of Action
locking policy, 64

Manchester-Mark I, 3
Mango, 32
master-servant design, 60, 88
mate position, 2
maxn, 70
MC-PNS, see Monte-Carlo Proof-Number

Search
MCE, see Monte-Carlo evaluation
MCTS, see Monte-Carlo Tree Search
MCTS-Solver, 44, 46, 51, 54, 56, 61,

86, 88
memory

distributed, 61
shared, 61, 86

metapositions, 89
MIA, 21, 49
Monte-Carlo

evaluation, 5, 19–22, 25, 28, 32,
39, 43, 50, 80, 86

method, 85
player in Rolit, 75
simulation for Reversi variants, 78
technique, 7, 19

Monte-Carlo Proof-Number Search, 27,
38, 86, 88

Monte-Carlo Tree Search, 5, 9, 10, 19,
22, 25, 43, 86

algorithm, 22
four stages of, 23
parallel, 64

most-proving node, 11, 62
move category, 47
move selection, 21–23, 68

for MCTS-Solver, 45
Multi-Armed Bandit problem, 22
multi-player game, 5, 22, 69, 83, 85,

88

Nash strategy, 78
NegaScout, 52
Nim, 2
Nine-Men’s Morris, 3
node

internal, definition , 8
k -most-proving, 67, 88
most-proving, 29
OR node, 12

non-uniformity, 87

one-player game, 22
optimal play, 8
optimal score, 73, 74
OR node, 73
Othello, 6, 10, 16, 20, 76
overhead

communication overhead, 60
search overhead, 60, 61, 65, 66,

68
synchronization overhead, 60, 65,

66

parallel search, 88
randomized, 63

parallelization, 24, 25, 60, 85

INDEX 111

of MCTS-Solver, 55
root parallelization, 50
tree parallelization, 50, 55

paranoid condition, 69, 83, 87
paranoid player, 72–74
Paranoid Proof-Number Search, 73, 79,

82, 83, 87
paranoid search, 70, 72, 73, 82
ParaPDS, 59–62, 66, 67
parent

definition, 8
patterns, 39

auto-generated, 37
in Go, 37

PDS, 16, 61
PDS–PN, 16
perfect knowledge, 4
perfect-information game, 3, 20, 22
Phantom Go, 22, 43
playout, 23
pn, see proof number
PN2, 44, 51
PN1, 13
PN2, 13
PN2, 13, 14, 16, 52, 54, 59, 87, 88
PN∗, 14–16
Poker, 20
pooling, 68
PPNS, see Paranoid Proof-Number Search
principal variation, 62, 63, 68, 87
problem statement, 4, 87
Progressive Bias, 47, 52
proof

analytical, 4
proof like, 15
proof number, 79

definition, 10, 11
Proof-and-Disproof-Number Search, see

PDS
proof-number algorithm, 7, 10, 89

definition, 10
enhancement, 17

Proof-Number Search, 5, 9, 10, 16, 28,
43, 59, 69, 73, 85–87

definition, 13
second-level, 13

pruning
αβ, 71
maxn, 73
shallow, 70

pseudo randomness, 20, 45, 50, 67
PV thread, 62

Qubic, 3

randomization, 5, 51, 55
Randomized Parallel Proof-Number Search,

59, 61, 62, 64, 66, 67, 86–88
RAVE, 24
Realization-Probability Search, 49
Renju, 3
Reversi, 6, 75, 76, 78, 83, 87
Rolit, 4, 69, 75, 76, 83, 87

Traveler’s Rolit, 77
root

definition, 8
root parallelization, 55

RP–PNS, see Rndomized Parallel Proof-
Number Search59

RP–PN2, 59, 67, 87, 88

scaling factor, 60, 66
Scrabble, 20
Screen Shogi, 3
search

game-tree search, 8
parallel search, 60
quiescence search, 52
search technique, 7
search tree, 8
second-level search, 79

selection strategy, 47, 52
Shogi, 2, 3, 10, 60
simulation strategy, 50
Skat, 20
solution under paranoid condition, def-

inition, 73
solver, 2, 79

mate solver, 3
solving, 7, 69

definition of, 2
degrees of solving, 2
game positions, 85, 86

112 INDEX

multi-player games, 88, 89
solving algorithm, 2, 10
solving game positions, 1, 3
solving games, 2
strongly, 3
ultra-weakly, 2
under paranoid condition, 69, 87
weakly, 3

Spades, 73

terminal
definition, 8

thread
alternative, 62
PV, 62

Tic-Tac-Toe, 20
tie-breaking rule, 72
transition probability, 47
transposition table, 9, 61, 64
tree

AND/OR, 61
Tsume-Go, 10
Tsume-Shogi, 16
two-player game, 3, 5, 22, 69, 87

UCB, see Upper Confidence Bounds
UCT, see Upper Confidence bounds

applied to Trees
Upper Confidence Bounds, 24
Upper Confidence bounds applied to

Trees, 22, 24, 25, 44, 47, 86

Yonin, 76

Zobrist hashing, 32

Summary

Humans enjoy playing games not only to satisfy their desire for entertainment but
also because they seek an intellectual challenge. One obvious challenge in games is
defeating an opponent. The AI equivalent to this challenge is the design of strong
game-playing programs. Another challenge in games is finding the result of a game
position, for instance whether a Chess position is a win or a loss. The AI equivalent
to this challenge is the design of algorithms that solve positions. While game-playing
programs have become much stronger over the years, solving games still remains a
difficult task today and has therefore been receiving attention continuously.

The topic of the thesis is the difficult task of solving game positions. Our re-
search utilizes current developments in the rapidly developing field of Monte-Carlo
methods for game-tree search and the continuously evolving field of Proof-Number
Search to develop new solving algorithms. To that end, the here described research
contributes and tests new forward-search algorithms, i.e., algorithms that explore a
search space by starting from a game position and developing a search tree from top
to bottom. The new algorithms are empirically evaluated on three games, (1) Go,
(2) Lines of Action (LOA), and (3) Rolit.

Chapter 1 provides an introduction. It describes the place of games in the domain
of AI and provides the notion of solving games and solving game positions. The
chapter introduces the problem statement:

PS How can we improve forward search for solving game positions?

Moreover, Chapter 1 provides four research questions that address four aspects
of the problem statement that are central to solving game positions with forward
search. The four questions deal with the following topics, which are part of the
recent progress in the research on game-tree search: (1) search with Monte-Carlo
evaluation, (2) Monte-Carlo Tree Search, (3) parallelized search, and (4) search for
multi-player games.

The aim of Chapter 2 is to provide an overview of search techniques related and
relevant to the solving algorithms presented in later chapters. It introduces basic
concepts and gives notational conventions. It devotes particular detail to two topics:
proof-number algorithms and Monte-Carlo techniques. Proof-number algorithms are
stressed because they are well-studied standard techniques for solving. The reason
for paying particular attention to Monte-Carlo techniques is that they have recently

114 Summary

contributed substantially to the field of games and AI.

Chapter 3 introduces a new algorithm, MC-PNS, that combines Monte-Carlo
evaluation (MCE) with Proof-Number Search (PNS). Thereby the first research
question is addressed.

RQ 1 How can we use Monte-Carlo evaluation to improve Proof-Number Search for
solving game positions?

An application of the new algorithm and several of its variants to the life-
and-death sub-problem of Go is described. It is demonstrated experimentally that
given the right setting of parameters MC-PNS outperforms simple PNS. Moreover,
MC-PNS is compared with a pattern-based heuristic for initialization leaf nodes in
the search tree of PNS. The result is that MC-PNS outperforms the purely pattern-
based initialization. We conclude that the reason for the superior performance of
MC-PNS is the flexibility of the MCE.

Chapter 4 introduces a novel Monte-Carlo Tree Search (MCTS) variant, called
MCTS-Solver, addressing the second research question.

RQ 2 How can the Monte-Carlo Tree Search framework contribute to solving game
positions?

The chapter adapts the recently developed MCTS framework for solving game
positions. MCTS-Solver differs from traditional MCTS in that it can solve positions
by propagating game-theoretic values. As a result it converges faster to the best
move in narrow tactical lines. Experiments in the game of Lines of Action (LOA)
show that MCTS-Solver with a particular selection strategy solves LOA positions
three times faster than MCTS-Solver using the standard selection strategy UCT.
When comparing MCTS-Solver to αβ search, MCTS-Solver requires about the same
effort as αβ to solve positions. Moreover, we observe that PN2 (a two-level Proof-
Number Search algorithm) is still five times faster than MCTS-Solver. Additionally,
we show that tree parallelization for MCTS-Solver has a scaling factor of 4 with 8
threads, easily outperforming root parallelization. We conclude that at least during
game-play (online) MCTS-Solver is comparable with a standard αβ search in solving
positions. However, for off-line solving positions, PNS is still a better choice.

Chapter 5 introduces a parallel Proof-Number Search algorithm for shared mem-
ory, called RP–PNS. Thereby, we answer the third research question.

RQ 3 How can Proof-Number Search be parallelized?

The parallelization is achieved by threads that select moves close to the principal
variation based on a probability distribution. Furthermore, we adapted RP–PNS for
PN2, resulting in an algorithm called RP–PN2. The algorithms are evaluated on
LOA positions. For eight threads, the scaling factor found for RP–PN2 (4.7) is
even better than that of RP–PNS (3.5) but mainly achieved because the size of the
second-level (i.e., PN2) tree depends on the number of threads used. Based on these

Summary 115

results the chapter concludes that RP–PNS and RP–PN2 are viable for parallelizing
PNS and PN2, respectively.

Chapter 6 focuses on solving multi-player games. The chapter gives an answer
to the fourth research question.

RQ 4 How can Proof-Number Search be applied to multi-player games?

The starting point of Chapter 6 is the observation that many two-player games
have been solved but virtually no research has been devoted to solving multi-player
games. We identify as a reason for this observation that multi-player games generally
do not have a unique game-theoretic value or strategy because their search trees have
multiple equilibrium points. Therefore, the straightforward way of solving a game
by finding the outcome under optimal play (that is applied in two-player games)
cannot be applied to multi-player games directly. We therefore propose solving
multi-player games under the paranoid condition. This is equivalent to finding the
optimal score that a player can achieve independently of the other players’ strategies.
We then propose Paranoid Proof-Number Search (PPNS) for solving multi-player
games under the paranoid condition.

The chapter describes the multi-player variant of the game of Reversi, Rolit, and
discusses how to apply PPNS to solve various multi-player variants of 4 × 4 and
6×6 Rolit, and four-player 8×8 Rolit. The outcome is that in 4×4 Rolit under the
paranoid condition some players can achieve more than the minimum score while
in 6 × 6 Rolit and in four-player 8 × 8 Rolit no player can achieve more than the
minimum score. However, we observe that for 6×6 Rolit and four-player 8×8 Rolit
PPNS performs better than we would expect from standard paranoid search. The
chapter concludes by stating that PPNS is able to exploit the non-uniformity of the
game tree in multi-player games.

Chapter 7 concludes the thesis and gives an outlook to open questions and di-
rections for future research. While the thesis provides PPNS addressing the class
of deterministic multi-player games with perfect information, we end by pointing
out that solving deterministic multi-player games with imperfect information still
remains a challenge and we briefly speculate how this problem can be tackled.

Samenvatting

Mensen genieten van abstracte spelen niet alleen om hun verlangen naar amuse-
ment te bevredigen maar ook omdat ze een intellectuele uitdaging zoeken. Een
voor de hand liggende uitdaging in spelen is het verslaan van de tegenstander. De
corresponderende AI uitdaging is het ontwerpen van sterke spelprogramma’s. Een
andere uitdaging in spelen is het vinden van het resultaat van een spelpositie, bijvoor-
beeld of een schaakstelling een winst of verlies is. De corresponderende AI uitdaging
is het ontwerpen van algoritmen die posities oplossen. Terwijl spelprogramma’s door
de jaren heen veel sterker geworden zijn, blijft het oplossen van spelen nog steeds
een moeilijke taak en heeft daarom voortdurend aandacht gekregen.

Het onderwerp van dit proefschrift is de moeilijke taak van het oplossen van
spelposities. Ons onderzoek maakt gebruik van actuele ontwikkelingen in het zich
snel ontwikkelende veld van Monte-Carlo methoden voor spelboom zoekprocessen en
het continu ontwikkelende veld van Proof-Number Search om nieuwe algoritmen te
ontwikkelen die oplossen. Het hier beschreven onderzoek draagt bij en test nieuwe
voorwaarts zoekalgoritmen, dat wil zeggen, algoritmen die een zoekruimte verkennen
door vanuit een positie een zoekboom te ontwikkelen. De nieuwe algoritmen worden
empirisch geëvalueerd in drie spelen, (1) Go, (2) Lines of Action (LOA), en (3) Rolit.

Hoofdstuk 1 geeft een inleiding. Het beschrijft de plaats van spelen in het AI
domein en geeft de begrippen van het oplossen van spelen en het oplossen van spel-
posities. Het hoofdstuk introduceert de volgende probleemstelling:

PS Hoe kunnen we beter voorwaarts zoeken bij het oplossen van spelposities?

Om de probleemstelling te beantwoorden hebben we vier onderzoeksvragen ge-
formuleerd over onderwerpen op het gebied van het oplossen van spelposities door
middel van voorwaarts zoeken. Ze gaan over (1) het zoeken met Monte-Carlo eva-
luaties, (2) Monte-Carlo Tree Search, (3) geparallelliseerde zoekprocessen, en (4)
zoekprocessen voor meerdere spelers.

Hoofdstuk 2 geeft een overzicht van zoektechnieken die gerelateerd en relevant
zijn voor de zoekalgoritmen die in de latere hoofdstukken worden gegeven. Het
hoofdstuk introduceert basisbegrippen en geeft conventies voor notatie. Er wordt
dieper in gegaan op twee onderwerpen: Proof-Number algoritmen en Monte-Carlo
technieken. Proof-Number algoritmen worden benadrukt omdat ze goed bestudeerde
standaard technieken zijn voor oplossen van spelposities. De reden voor de aandacht

118 Samenvatting

voor Monte-Carlo technieken is dat ze een aanzienlijk bijdrage hebben geleverd in
het gebied van spelen en AI.

Hoofdstuk 3 introduceert een nieuw algoritme, MC-PNS, dat Monte-Carlo eva-
luaties (MCE) combineert met Proof-Number Search (PNS). Dit leidt tot de eerste
onderzoeksvraag.

RQ 1 Hoe kunnen we Monte-Carlo evaluaties gebruiken om Proof-Number Search
te verbeteren voor het oplossen van spelposities?

Een toepassing van het nieuwe algoritme op het leven-en-dood subprobleem in
het spel Go wordt beschreven. Er wordt experimenteel aangetoond dat met de
juiste parameterinstellingen MC-PNS de standaard PNS overtreft. Tevens wordt
MC-PNS vergeleken met een op patronen gebaseerde heuristiek om de bladeren
van de PNS zoekboom te initialiseren. Het resultaat is dat MC-PNS de patroon-
gebaseerde initialisatie overtreft. We concluderen dat de reden voor de betere pres-
taties van MC-PNS is gelegen in de flexibiliteit van de toegepaste MCE.

Hoofdstuk 4 introduceert een nieuw Monte-Carlo Tree Search (MCTS) variant,
genaamd MCTS-Solver. Dit heeft ons gebracht tot de tweede onderzoeksvraag.

RQ 2 Hoe kan het Monte-Carlo Tree Search raamwerk bijdragen aan het oplossen
van spelposities?

Het hoofdstuk past het MCTS raamwerk aan voor het oplossen van spelposities.
De variant MCTS-Solver verschilt van de standaard MCTS aanpak door het feit
dat het posities kan oplossen door middel van het propageren van speltheoretische
waarden. Als gevolg daarvan convergeert het sneller naar de beste zet in tactische
posities. Experimenten in het spel Lines of Action (LOA) laten zien dat MCTS-
solver met een specifieke selectie strategie LOA posities drie keer sneller oplost dan
MCTS-Solver met behulp van de standaard selectie strategie UCT. Vergelijken we
MCTS-Solver met een standaard αβ zoekproces, dan lost MCTS-Solver LOA posi-
ties op met ongeveer dezelfde inspanning als αβ. Bovendien stellen we vast dat PN2

(een Proof-Nunber Search algoritme bestaande uit twee niveaus) nog steeds vijf keer
sneller is dan MCTS-Solver. Daarnaast tonen we aan dat boomparallellisatie voor
MCTS-Solver schaalt met een factor 4 voor 8 processorkernen. Wortelparallellisatie
wordt hier eenvoudig overtroffen. We concluderen dat gedurende het spel (online)
MCTS-Solver vergelijkbaar is met een standaard αβ zoekproces voor het oplossen
van posities. Echter, voor het oplossen van posities offline is PNS nog steeds een
betere keuze.

Hoofdstuk 5 introduceert een parallel Proof-Number Search algoritme voor ge-
deeld geheugen, genaamd RP–PNS. Daarmee beantwoorden we de derde onderzoeks-
vraag.

RQ 3 Hoe kunnen we Proof-Number Search parallelliseren?

Samenvatting 119

De parallellisatie wordt bereikt door middels een kansverdeling zetten te selec-
teren in de buurt van de hoofdvariant. Verder hebben we RP–PNS aangepast voor
PN2, resulterend in RP–PN2. De algoritmen worden getest op LOA posities. Voor 8
processorkernen is de gevonden schaalfactor voor RP–PN2 (4.7) zelfs beter dan die
van RP–PNS (3.5). De reden hiervoor is dat de grootte van de zoekboom op het
tweede niveau (dat wil zeggen, PN2) afhangt van het aantal gebruikte processorker-
nen. Op basis van deze resultaten concluderen we dat RP–PNS en RP–PN2 geschikte
technieken zijn om respectievelijk PNS en PN2 te paralleliseren.

Hoofdstuk 6 richt zich op het oplossen van speldomeinen met meerdere spelers.
Het hoofdstuk geeft een antwoord op de vierde onderzoeksvraag.

RQ 4 Hoe kunnen we Proof-Number Search toepassen voor speldomeinen met
meerdere spelers?

Het uitgangspunt van dit hoofdstuk is de constatering dat veel tweespeler spelen
zijn opgelost, maar vrijwel geen onderzoek is besteed aan het oplossen van spelen
met meerdere spelers. De laatstgenoemde spelen hebben in het algemeen geen unieke
speltheoretische waarde of strategie omdat hun zoekbomen meerdere evenwichtspun-
ten kunnen hebben. Daarom kan de aanpak voor het oplossen van een tweespeler
spel niet worden toegepast op een meerspeler spel. Wij stellen voor dit soort spelen
op te lossen onder de paranöıde conditie. Dit is gelijk aan het vinden van de opti-
male score die een speler zelfstandig kan bereiken onafhankelijk van de strategieën
van zijn opponenten. We introduceren Paranoid Proof-Number Search (PPNS) voor
het oplossen van meerspeler spelen onder de paranöıde conditie.

Dit hoofdstuk beschrijft de meerspeler variant van het spel Reversi, Rolit, en be-
spreekt hoe PPNS toe te passen om diverse meerspeler varianten van 4× 4 en 6× 6
Rolit, en vierspeler 8×8 Rolit op te lossen. Het resultaat is dat voor 4×4 Rolit onder
de paranöıde conditie sommige spelers meer dan de minimale score kunnen behalen,
terwijl voor 6×6 Rolit en vierspeler 8×8 Rolit geen enkele speler meer kan bereiken
dan de minimale score. Wij constateren dat voor 6×6 Rolit en vierspeler 8×8 Rolit
PPNS beter presteert dan het beste geval voor Paranoid Search. Het hoofdstuk
sluit af door te stellen dat PPNS in staat is om het non-uniforme karakter van de
spelboom in meerspeler spelen uit te buiten.

Hoofdstuk 7 sluit het proefschrift af en geeft een vooruitblik op open vragen en
richtingen van toekomstig onderzoek. Hoewel in het proefschrift het PPNS algoritme
is voorgesteld om deterministische meerspeler spelen met perfecte informatie op te
lossen, eindigen we door erop te wijzen dat het oplossen van deterministische meer-
speler spelen met imperfecte informatie nog steeds een uitdaging is. We speculeren
in het kort hoe dit probleem aangepakt kan worden.

Curriculum Vitae

Jahn-Takeshi Saito was born in Düsseldorf, Germany, on November 6, 1976. He
attended school in Germany and Japan and graduated from Max-Plank-Gymnasium
in Bielefeld, Germany in 1996. After 13 months of compulsory community service at
Mara Epilepsy Center Bethel in Bielefeld, he went on to study Artificial Intelligence
and Computational Linguistics at Osnabrück University with minors in mathematics
and computer science. During his studies he joined the students’ Go club. In 2001, he
studied mathematics at Trinity College Dublin, Ireland, and did an internship at the
Knowledge Engineering group at IBM’s Tokyo Research Laboratory (which turned
out to be located outside of Tokyo prefecture). In 2002, he joined the students’
parliament and students’ self-governing body (AStA), started working as a part-time
programmer for KIWI GmbH in parallel to pursuing his studies, and decided that the
game of Go would be a suitable subject for a Master thesis. In 2004, he graduated
on Computer Go. In 2005, he started his Ph.D. project at the Games and AI Group,
Department of Knowledge Engineering, Maastricht University. There, he acquired
an inside perspective of academia. He worked on search algorithms for board games
on the Go for Go project funded by the Netherlands Organisation for Scientific
Research. Gradually, his research interest evolved towards solving game positions,
Proof-Number Search and Monte-Carlo methods. Besides performing research, Jahn
was involved in lecturing and helped organizing the 2006 Computers and Games
conference in Turin, Italy. In early 2010, Jahn joined the team of the Bioinformatics
Department, BiGCaT, Maastricht University where he has been working on systems
biology databases.

SIKS Dissertation Series

1998

1 Johan van den Akker (CWI) DEGAS - An
Active, Temporal Database of Autonomous
Objects

2 Floris Wiesman (UM) Information Retrieval
by Graphically Browsing Meta-Information

3 Ans Steuten (TUD) A Contribution to the
Linguistic Analysis of Business Conversa-
tions within the Language/Action Perspec-
tive

4 Dennis Breuker (UM) Memory versus Search
in Games

5 Eduard W. Oskamp (RUL) Computeronders-
teuning bij Straftoemeting

1999

1 Mark Sloof (VU) Physiology of Quality
Change Modelling; Automated Modelling of
Quality Change of Agricultural Products

2 Rob Potharst (EUR) Classification using De-
cision Trees and Neural Nets

3 Don Beal (UM) The Nature of Minimax
Search

4 Jacques Penders (UM) The Practical Art of
Moving Physical Objects

5 Aldo de Moor (KUB) Empowering Commu-
nities: A Method for the Legitimate User-
Driven Specification of Network Information
Systems

6 Niek J.E. Wijngaards (VU) Re-Design of
Compositional Systems

7 David Spelt (UT) Verification Support for
Object Database Design

8 Jacques H.J. Lenting (UM) Informed Gam-
bling: Conception and Analysis of a Multi-
Agent Mechanism for Discrete Reallocation

2000

1 Frank Niessink (VU) Perspectives on Improv-
ing Software Maintenance

2 Koen Holtman (TU/e) Prototyping of CMS
Storage Management

3 Carolien M.T. Metselaar (UvA) Sociaal-
organisatorische Gevolgen van Kennistech-
nologie; een Procesbenadering en Actorper-
spectief

4 Geert de Haan (VU) ETAG, A Formal Model
of Competence Knowledge for User Interface
Design

5 Ruud van der Pol (UM) Knowledge-Based
Query Formulation in Information Retrieval

6 Rogier van Eijk (UU) Programming Lan-
guages for Agent Communication

7 Niels Peek (UU) Decision-Theoretic Planning
of Clinical Patient Management

8 Veerle Coupé (EUR) Sensitivity Analyis of
Decision-Theoretic Networks

9 Florian Waas (CWI) Principles of Probabilis-
tic Query Optimization

10 Niels Nes (CWI) Image Database Manage-
ment System Design Considerations, Algo-
rithms and Architecture

Abbreviations. SIKS – Dutch Research School for Information and Knowledge Systems; CWI
– Centrum voor Wiskunde en Informatica, Amsterdam; EUR – Erasmus Universiteit, Rotterdam;
KUB – Katholieke Universiteit Brabant, Tilburg; KUN – Katholieke Universiteit Nijmegen; OU –
Open Universiteit Nederland; RUG – Rijksuniversiteit Groningen; RUL – Rijksuniversiteit Leiden;
RUN – Radboud Universiteit Nijmegen; TUD – Technische Universiteit Delft; TU/e – Technische
Universiteit Eindhoven; UL – Universiteit Leiden; UM – Universiteit Maastricht; UT – Universiteit
Twente; UU – Universiteit Utrecht; UvA – Universiteit van Amsterdam; UvT – Universiteit van
Tilburg; VU – Vrije Universiteit, Amsterdam.

124 SIKS Dissertation Series

11 Jonas Karlsson (CWI) Scalable Distributed
Data Structures for Database Management

2001

1 Silja Renooij (UU) Qualitative Approaches to
Quantifying Probabilistic Networks

2 Koen Hindriks (UU) Agent Programming
Languages: Programming with Mental Mod-
els

3 Maarten van Someren (UvA) Learning as
Problem Solving

4 Evgueni Smirnov (UM) Conjunctive and Dis-
junctive Version Spaces with Instance-Based
Boundary Sets

5 Jacco van Ossenbruggen (VU) Processing
Structured Hypermedia: A Matter of Style

6 Martijn van Welie (VU) Task-Based User In-
terface Design

7 Bastiaan Schonhage (VU) Diva: Architec-
tural Perspectives on Information Visualiza-
tion

8 Pascal van Eck (VU) A Compositional Se-
mantic Structure for Multi-Agent Systems
Dynamics

9 Pieter Jan ’t Hoen (RUL) Towards Dis-
tributed Development of Large Object-
Oriented Models, Views of Packages as
Classes

10 Maarten Sierhuis (UvA) Modeling and Simu-
lating Work Practice BRAHMS: a Multiagent
Modeling and Simulation Language for Work
Practice Analysis and Design

11 Tom M. van Engers (VU) Knowledge Man-
agement: The Role of Mental Models in Busi-
ness Systems Design

2002

1 Nico Lassing (VU) Architecture-Level Modifi-
ability Analysis

2 Roelof van Zwol (UT) Modelling and Search-
ing Web-based Document Collections

3 Henk Ernst Blok (UT) Database Optimiza-
tion Aspects for Information Retrieval

4 Juan Roberto Castelo Valdueza (UU) The
Discrete Acyclic Digraph Markov Model in
Data Mining

5 Radu Serban (VU) The Private Cyberspace
Modeling Electronic Environments Inhabited
by Privacy-Concerned Agents

6 Laurens Mommers (UL) Applied Legal Epis-
temology; Building a Knowledge-based Ontol-
ogy of the Legal Domain

7 Peter Boncz (CWI) Monet: A Next-
Generation DBMS Kernel For Query-
Intensive Applications

8 Jaap Gordijn (VU) Value Based Require-
ments Engineering: Exploring Innovative E-
Commerce Ideas

9 Willem-Jan van den Heuvel (KUB) Integrat-
ing Modern Business Applications with Ob-
jectified Legacy Systems

10 Brian Sheppard (UM) Towards Perfect Play
of Scrabble

11 Wouter C.A. Wijngaards (VU) Agent Based
Modelling of Dynamics: Biological and Or-
ganisational Applications

12 Albrecht Schmidt (UvA) Processing XML in
Database Systems

13 Hongjing Wu (TU/e) A Reference Architec-
ture for Adaptive Hypermedia Applications

14 Wieke de Vries (UU) Agent Interaction: Ab-
stract Approaches to Modelling, Program-
ming and Verifying Multi-Agent Systems

15 Rik Eshuis (UT) Semantics and Verifica-
tion of UML Activity Diagrams for Workflow
Modelling

16 Pieter van Langen (VU) The Anatomy of De-
sign: Foundations, Models and Applications

17 Stefan Manegold (UvA) Understanding,
Modeling, and Improving Main-Memory
Database Performance

2003

1 Heiner Stuckenschmidt (VU) Ontology-Based
Information Sharing in Weakly Structured
Environments

2 Jan Broersen (VU) Modal Action Logics for
Reasoning About Reactive Systems

3 Martijn Schuemie (TUD) Human-Computer
Interaction and Presence in Virtual Reality
Exposure Therapy

4 Milan Petkovic (UT) Content-Based Video
Retrieval Supported by Database Technology

5 Jos Lehmann (UvA) Causation in Artificial
Intelligence and Law – A Modelling Approach

6 Boris van Schooten (UT) Development and
Specification of Virtual Environments

7 Machiel Jansen (UvA) Formal Explorations
of Knowledge Intensive Tasks

8 Yong-Ping Ran (UM) Repair-Based Schedul-
ing

9 Rens Kortmann (UM) The Resolution of Vi-
sually Guided Behaviour

SIKS Dissertation Series 125

10 Andreas Lincke (UT) Electronic Business Ne-
gotiation: Some Experimental Studies on
the Interaction between Medium, Innovation
Context and Cult

11 Simon Keizer (UT) Reasoning under Uncer-
tainty in Natural Language Dialogue using
Bayesian Networks

12 Roeland Ordelman (UT) Dutch Speech Recog-
nition in Multimedia Information Retrieval

13 Jeroen Donkers (UM) Nosce Hostem –
Searching with Opponent Models

14 Stijn Hoppenbrouwers (KUN) Freezing Lan-
guage: Conceptualisation Processes across
ICT-Supported Organisations

15 Mathijs de Weerdt (TUD) Plan Merging in
Multi-Agent Systems

16 Menzo Windhouwer (CWI) Feature Gram-
mar Systems - Incremental Maintenance of
Indexes to Digital Media Warehouse

17 David Jansen (UT) Extensions of Statecharts
with Probability, Time, and Stochastic Tim-
ing

18 Levente Kocsis (UM) Learning Search Deci-
sions

2004

1 Virginia Dignum (UU) A Model for Or-
ganizational Interaction: Based on Agents,
Founded in Logic

2 Lai Xu (UvT) Monitoring Multi-party Con-
tracts for E-business

3 Perry Groot (VU) A Theoretical and Empir-
ical Analysis of Approximation in Symbolic
Problem Solving

4 Chris van Aart (UvA) Organizational Princi-
ples for Multi-Agent Architectures

5 Viara Popova (EUR) Knowledge Discovery
and Monotonicity

6 Bart-Jan Hommes (TUD) The Evaluation of
Business Process Modeling Techniques

7 Elise Boltjes (UM) VoorbeeldIG Onderwijs;
Voorbeeldgestuurd Onderwijs, een Opstap
naar Abstract Denken, vooral voor Meisjes

8 Joop Verbeek (UM) Politie en de Nieuwe
Internationale Informatiemarkt, Grensre-
gionale Politiële Gegevensuitwisseling en
Digitale Expertise

9 Martin Caminada (VU) For the Sake of the
Argument; Explorations into Argument-based
Reasoning

10 Suzanne Kabel (UvA) Knowledge-rich Index-
ing of Learning-objects

11 Michel Klein (VU) Change Management for
Distributed Ontologies

12 The Duy Bui (UT) Creating Emotions and
Facial Expressions for Embodied Agents

13 Wojciech Jamroga (UT) Using Multiple Mod-
els of Reality: On Agents who Know how to
Play

14 Paul Harrenstein (UU) Logic in Conflict.
Logical Explorations in Strategic Equilibrium

15 Arno Knobbe (UU) Multi-Relational Data
Mining

16 Federico Divina (VU) Hybrid Genetic Rela-
tional Search for Inductive Learning

17 Mark Winands (UM) Informed Search in
Complex Games

18 Vania Bessa Machado (UvA) Supporting the
Construction of Qualitative Knowledge Mod-
els

19 Thijs Westerveld (UT) Using generative prob-
abilistic models for multimedia retrieval

20 Madelon Evers (Nyenrode) Learning from
Design: facilitating multidisciplinary design
teams

2005

1 Floor Verdenius (UvA) Methodological As-
pects of Designing Induction-Based Applica-
tions

2 Erik van der Werf (UM) AI techniques for the
game of Go

3 Franc Grootjen (RUN) A Pragmatic Ap-
proach to the Conceptualisation of Language

4 Nirvana Meratnia (UT) Towards Database
Support for Moving Object data

5 Gabriel Infante-Lopez (UvA) Two-Level
Probabilistic Grammars for Natural Lan-
guage Parsing

6 Pieter Spronck (UM) Adaptive Game AI

7 Flavius Frasincar (TU/e) Hypermedia Pre-
sentation Generation for Semantic Web In-
formation Systems

8 Richard Vdovjak (TU/e) A Model-driven Ap-
proach for Building Distributed Ontology-
based Web Applications

9 Jeen Broekstra (VU) Storage, Querying and
Inferencing for Semantic Web Languages

10 Anders Bouwer (UvA) Explaining Behaviour:
Using Qualitative Simulation in Interactive
Learning Environments

126 SIKS Dissertation Series

11 Elth Ogston (VU) Agent Based Matchmaking
and Clustering - A Decentralized Approach to
Search

12 Csaba Boer (EUR) Distributed Simulation in
Industry

13 Fred Hamburg (UL) Een Computer-
model voor het Ondersteunen van Eu-
thanasiebeslissingen

14 Borys Omelayenko (VU) Web-Service config-
uration on the Semantic Web; Exploring how
semantics meets pragmatics

15 Tibor Bosse (VU) Analysis of the Dynamics
of Cognitive Processes

16 Joris Graaumans (UU) Usability of XML
Query Languages

17 Boris Shishkov (TUD) Software Specification
Based on Re-usable Business Components

18 Danielle Sent (UU) Test-selection strategies
for probabilistic networks

19 Michel van Dartel (UM) Situated Represen-
tation

20 Cristina Coteanu (UL) Cyber Consumer Law,
State of the Art and Perspectives

21 Wijnand Derks (UT) Improving Concurrency
and Recovery in Database Systems by Ex-
ploiting Application Semantics

2006

1 Samuil Angelov (TU/e) Foundations of B2B
Electronic Contracting

2 Cristina Chisalita (VU) Contextual issues in
the design and use of information technology
in organizations

3 Noor Christoph (UvA) The role of metacog-
nitive skills in learning to solve problems

4 Marta Sabou (VU) Building Web Service On-
tologies

5 Cees Pierik (UU) Validation Techniques for
Object-Oriented Proof Outlines

6 Ziv Baida (VU) Software-aided Service
Bundling - Intelligent Methods & Tools for
Graphical Service Modeling

7 Marko Smiljanic (UT) XML schema match-
ing – balancing efficiency and effectiveness by
means of clustering

8 Eelco Herder (UT) Forward, Back and Home
Again - Analyzing User Behavior on the Web

9 Mohamed Wahdan (UM) Automatic Formu-
lation of the Auditor’s Opinion

10 Ronny Siebes (VU) Semantic Routing in
Peer-to-Peer Systems

11 Joeri van Ruth (UT) Flattening Queries over
Nested Data Types

12 Bert Bongers (VU) Interactivation - Towards
an e-cology of people, our technological envi-
ronment, and the arts

13 Henk-Jan Lebbink (UU) Dialogue and De-
cision Games for Information Exchanging
Agents

14 Johan Hoorn (VU) Software Requirements:
Update, Upgrade, Redesign - towards a The-
ory of Requirements Change

15 Rainer Malik (UU) CONAN: Text Mining in
the Biomedical Domain

16 Carsten Riggelsen (UU) Approximation
Methods for Efficient Learning of Bayesian
Networks

17 Stacey Nagata (UU) User Assistance for
Multitasking with Interruptions on a Mobile
Device

18 Valentin Zhizhkun (UvA) Graph transforma-
tion for Natural Language Processing

19 Birna van Riemsdijk (UU) Cognitive Agent
Programming: A Semantic Approach

20 Marina Velikova (UvT) Monotone models for
prediction in data mining

21 Bas van Gils (RUN) Aptness on the Web

22 Paul de Vrieze (RUN) Fundaments of Adap-
tive Personalisation

23 Ion Juvina (UU) Development of Cognitive
Model for Navigating on the Web

24 Laura Hollink (VU) Semantic Annotation for
Retrieval of Visual Resources

25 Madalina Drugan (UU) Conditional log-
likelihood MDL and Evolutionary MCMC

26 Vojkan Mihajlovic (UT) Score Region Alge-
bra: A Flexible Framework for Structured In-
formation Retrieval

27 Stefano Bocconi (CWI) Vox Populi: gener-
ating video documentaries from semantically
annotated media repositories

28 Borkur Sigurbjornsson (UvA) Focused Infor-
mation Access using XML Element Retrieval

2007

1 Kees Leune (UvT) Access Control and
Service-Oriented Architectures

2 Wouter Teepe (RUG) Reconciling Informa-
tion Exchange and Confidentiality: A Formal
Approach

3 Peter Mika (VU) Social Networks and the Se-
mantic Web

SIKS Dissertation Series 127

4 Jurriaan van Diggelen (UU) Achieving Se-
mantic Interoperability in Multi-agent Sys-
tems: a dialogue-based approach

5 Bart Schermer (UL) Software Agents,
Surveillance, and the Right to Privacy: a
Legislative Framework for Agent-enabled
Surveillance

6 Gilad Mishne (UvA) Applied Text Analytics
for Blogs

7 Natasa Jovanovic’ (UT) To Whom It May
Concern - Addressee Identification in Face-
to-Face Meetings

8 Mark Hoogendoorn (VU) Modeling of Change
in Multi-Agent Organizations

9 David Mobach (VU) Agent-Based Mediated
Service Negotiation

10 Huib Aldewereld (UU) Autonomy vs. Con-
formity: an Institutional Perspective on
Norms and Protocols

11 Natalia Stash (TU/e) Incorporating Cogni-
tive/Learning Styles in a General-Purpose
Adaptive Hypermedia System

12 Marcel van Gerven (RUN) Bayesian Net-
works for Clinical Decision Support: A
Rational Approach to Dynamic Decision-
Making under Uncertainty

13 Rutger Rienks (UT) Meetings in Smart Envi-
ronments; Implications of Progressing Tech-
nology

14 Niek Bergboer (UM) Context-Based Image
Analysis

15 Joyca Lacroix (UM) NIM: a Situated Com-
putational Memory Model

16 Davide Grossi (UU) Designing Invisible
Handcuffs. Formal investigations in Institu-
tions and Organizations for Multi-agent Sys-
tems

17 Theodore Charitos (UU) Reasoning with Dy-
namic Networks in Practice

18 Bart Orriens (UvT) On the development and
management of adaptive business collabora-
tions

19 David Levy (UM) Intimate relationships with
artificial partners

20 Slinger Jansen (UU) Customer Configuration
Updating in a Software Supply Network

21 Karianne Vermaas (UU) Fast diffusion and
broadening use: A research on residential
adoption and usage of broadband internet in
the Netherlands between 2001 and 2005

22 Zlatko Zlatev (UT) Goal-oriented design of
value and process models from patterns

23 Peter Barna (TU/e) Specification of Applica-
tion Logic in Web Information Systems

24 Georgina Ramı́rez Camps (CWI) Structural
Features in XML Retrieval

25 Joost Schalken (VU) Empirical Investigations
in Software Process Improvement

2008

1 Katalin Boer-Sorbán (EUR) Agent-Based
Simulation of Financial Markets: A modu-
lar, continuous-time approach

2 Alexei Sharpanskykh (VU) On Computer-
Aided Methods for Modeling and Analysis of
Organizations

3 Vera Hollink (UvA) Optimizing hierarchical
menus: a usage-based approach

4 Ander de Keijzer (UT) Management of Un-
certain Data - towards unattended integra-
tion

5 Bela Mutschler (UT) Modeling and simulat-
ing causal dependencies on process-aware in-
formation systems from a cost perspective

6 Arjen Hommersom (RUN) On the Applica-
tion of Formal Methods to Clinical Guide-
lines, an Artificial Intelligence Perspective

7 Peter van Rosmalen (OU) Supporting the tu-
tor in the design and support of adaptive e-
learning

8 Janneke Bolt (UU) Bayesian Networks: As-
pects of Approximate Inference

9 Christof van Nimwegen (UU) The paradox of
the guided user: assistance can be counter-
effective

10 Wauter Bosma (UT) Discourse oriented
Summarization

11 Vera Kartseva (VU) Designing Controls for
Network Organizations: a Value-Based Ap-
proach

12 Jozsef Farkas (RUN) A Semiotically Oriented
Cognitive Model of Knowledge Representa-
tion

13 Caterina Carraciolo (UvA) Topic Driven Ac-
cess to Scientific Handbooks

14 Arthur van Bunningen (UT) Context-Aware
Querying; Better Answers with Less Effort

15 Martijn van Otterlo (UT) The Logic of Adap-
tive Behavior: Knowledge Representation
and Algorithms for the Markov Decision Pro-
cess Framework in First-Order Domains

16 Henriette van Vugt (VU) Embodied Agents
from a User’s Perspective

128 SIKS Dissertation Series

17 Martin Op’t Land (TUD) Applying Architec-
ture and Ontology to the Splitting and Allying
of Enterprises

18 Guido de Croon (UM) Adaptive Active Vi-
sion

19 Henning Rode (UT) From document to en-
tity retrieval: improving precision and per-
formance of focused text search

20 Rex Arendsen (UvA) Geen bericht, goed
bericht. Een onderzoek naar de effecten van
de introductie van elektronisch berichtenver-
keer met de overheid op de administratieve
lasten van bedrijven

21 Krisztian Balog (UvA) People search in the
enterprise

22 Henk Koning (UU) Communication of IT-
architecture

23 Stefan Visscher (UU) Bayesian network
models for the management of ventilator-
associated pneumonia

24 Zharko Aleksovski (VU) Using background
knowledge in ontology matching

25 Geert Jonker (UU) Efficient and Equitable
exchange in air traffic management plan re-
pair using spender-signed currency

26 Marijn Huijbregts (UT) Segmentation, di-
arization and speech transcription: surprise
data unraveled

27 Hubert Vogten (OU) Design and implemen-
tation strategies for IMS learning design

28 Ildiko Flesh (RUN) On the use of indepen-
dence relations in Bayesian networks

29 Dennis Reidsma (UT) Annotations and sub-
jective machines- Of annotators, embodied
agents, users, and other humans

30 Wouter van Atteveldt (VU) Semantic net-
work analysis: techniques for extracting, rep-
resenting and querying media content

31 Loes Braun (UM) Pro-active medical infor-
mation retrieval

32 Trung B. Hui (UT) Toward affective dia-
logue management using partially observable
markov decision processes

33 Frank Terpstra (UvA) Scientific workflow de-
sign; theoretical and practical issues

34 Jeroen de Knijf (UU) Studies in Frequent
Tree Mining

35 Benjamin Torben-Nielsen (UvT) Dendritic
morphology: function shapes structure

2009

1 Rasa Jurgelenaite (RUN) Symmetric Causal
Independence Models

2 Willem Robert van Hage (VU) Evaluating
Ontology-Alignment Techniques

3 Hans Stol (UvT) A Framework for Evidence-
based Policy Making Using IT

4 Josephine Nabukenya (RUN) Improving the
Quality of Organisational Policy Making us-
ing Collaboration Engineering

5 Sietse Overbeek (RUN) Bridging Supply and
Demand for Knowledge Intensive Tasks -
Based on Knowledge, Cognition, and Qual-
ity

6 Muhammad Subianto (UU) Understanding
Classification

7 Ronald Poppe (UT) Discriminative Vision-
Based Recovery and Recognition of Human
Motion

8 Volker Nannen (VU) Evolutionary Agent-
Based Policy Analysis in Dynamic Environ-
ments

9 Benjamin Kanagwa (RUN) Design, Discov-
ery and Construction of Service-oriented Sys-
tems

10 Jan Wielemaker (UvA) Logic programming
for knowledge-intensive interactive applica-
tions

11 Alexander Boer (UvA) Legal Theory, Sources
of Law & the Semantic Web

12 Peter Massuthe (TU/e, Humboldt-Universtät
zu Berlin) Operating Guidelines for Services

13 Steven de Jong (UM) Fairness in Multi-Agent
Systems

14 Maksym Korotkiy (VU) From ontology-
enabled services to service-enabled ontologies
(making ontologies work in e-science with
ONTO-SOA)

15 Rinke Hoekstra (UvA) Ontology Representa-
tion - Design Patterns and Ontologies that
Make Sense

16 Fritz Reul (UvT) New Architectures in Com-
puter Chess

17 Laurens van der Maaten (UvT) Feature Ex-
traction from Visual Data

18 Fabian Groffen (CWI) Armada, An Evolving
Database System

19 Valentin Robu (CWI) Modeling Preferences,
Strategic Reasoning and Collaboration in
Agent-Mediated Electronic Markets

SIKS Dissertation Series 129

20 Bob van der Vecht (UU) Adjustable Au-
tonomy: Controling Influences on Decision
Making

21 Stijn Vanderlooy (UM) Ranking and Reliable
Classification

22 Pavel Serdyukov (UT) Search For Expertise:
Going beyond direct evidence

23 Peter Hofgesang (VU) Modelling Web Usage
in a Changing Environment

24 Annerieke Heuvelink (VU) Cognitive Models
for Training Simulations

25 Alex van Ballegooij (CWI) RAM: Array
Database Management through Relational
Mapping

26 Fernando Koch (UU) An Agent-Based Model
for the Development of Intelligent Mobile
Services

27 Christian Glahn (OU) Contextual Support
of social Engagement and Reflection on the
Web

28 Sander Evers (UT) Sensor Data Management
with Probabilistic Models

29 Stanislav Pokraev (UT) Model-Driven Se-
mantic Integration of Service-Oriented Appli-
cations

30 Marcin Zukowski (CWI) Balancing vectorized
query execution with bandwidth-optimized
storage

31 Sofiya Katrenko (UvA) A Closer Look at
Learning Relations from Text

32 Rik Farenhorst and Remco de Boer (VU)
Architectural Knowledge Management: Sup-
porting Architects and Auditors

33 Khiet Truong (UT) How Does Real Affect Af-
fect Affect Recognition In Speech?

34 Inge van de Weerd (UU) Advancing in Soft-
ware Product Management: An Incremental
Method Engineering Approach

35 Wouter Koelewijn (UL) Privacy en Poli-
tiegegevens; Over geautomatiseerde nor-
matieve informatie-uitwisseling

36 Marco Kalz (OU) Placement Support for
Learners in Learning Networks

37 Hendrik Drachsler (OU) Navigation Support
for Learners in Informal Learning Networks

38 Riina Vuorikari (OU) Tags and Self-
Organisation: A Metadata Ecology for
Learning Resources in a Multilingual Con-
text

39 Christian Stahl (TU/e, Humboldt-Universtät
zu Berlin) Service Substitution – A Behav-
ioral Approach Based on Petri Nets

40 Stephan Raaijmakers (UvT) Multinomial
Language Learning: Investigations into the
Geometry of Language

41 Igor Berezhnyy (UvT) Digital Analysis of
Paintings

42 Toine Bogers (UvT) Recommender Systems
for Social Bookmarking

43 Virginia Nunes Leal Franqueira (UT) Finding
Multi-step Attacks in Computer Networks us-
ing Heuristic Search and Mobile Ambients

44 Roberto Santana Tapia (UT) Assessing
Business-IT Alignment in Networked Orga-
nizations

45 Jilles Vreeken (UU) Making Pattern Mining
Useful

46 Loredana Afanasiev (UvA) Querying XML:
Benchmarks and Recursion

2010

1 Matthijs van Leeuwen (UU) Patterns that
Matter

2 Ingo Wassink (UT) Work flows in Life Sci-
ence

3 Joost Geurts (CWI) A Document Engineer-
ing Model and Processing Framework for
Multimedia documents

4 Olga Kulyk (UT) Do You Know What I
Know? Situational Awareness of Co-located
Teams in Multidisplay Environments

5 Claudia Hauff (UT) Predicting the Effective-
ness of Queries and Retrieval Systems

6 Sander Bakkes (UvT) Rapid Adaptation of
Video Game AI

7 Wim Fikkert (UT) Gesture interaction at a
Distance

8 Krzysztof Siewicz (UL) Towards an Improved
Regulatory Framework of Free Software. Pro-
tecting user freedoms in a world of software
communities and eGovernments

9 Hugo Kielman (UL) Politiële gegevensverw-
erking en Privacy, Naar een effectieve waar-
borging

10 Rebecca Ong (UL) Mobile Communication
and Protection of Children

11 Adriaan Ter Mors (TUD) The world accord-
ing to MARP: Multi-Agent Route Planning

12 Susan van den Braak (UU) Sensemaking soft-
ware for crime analysis

13 Gianluigi Folino (RUN) High Performance
Data Mining using Bio-inspired techniques

130 SIKS Dissertation Series

14 Sander van Splunter (VU) Automated Web
Service Reconfiguration

15 Lianne Bodenstaff (UT) Managing De-
pendency Relations in Inter-Organizational
Models

16 Sicco Verwer (TUD) Efficient Identification
of Timed Automata, theory and practice

17 Spyros Kotoulas (VU) Scalable Discovery of
Networked Resources: Algorithms, Infras-
tructure, Applications

18 Charlotte Gerritsen (VU) Caught in the Act:
Investigating Crime by Agent-Based Simula-
tion

19 Henriette Cramer (UvA) People’s Responses
to Autonomous and Adaptive Systems

20 Ivo Swartjes (UT) Whose Story Is It Any-
way? How Improv Informs Agency and Au-
thorship of Emergent Narrative

21 Harold van Heerde (UT) Privacy-aware data
management by means of data degradation

22 Michiel Hildebrand (CWI) End-user Support
for Access to Heterogeneous Linked Data

23 Bas Steunebrink (UU) The Logical Structure
of Emotions

24 Dmytro Tykhonov (TUD) Designing Generic
and Efficient Negotiation Strategies

25 Zulfiqar Ali Memon (VU) Modelling Human-
Awareness for Ambient Agents: A Human
Mindreading Perspective

26 Ying Zhang (CWI) XRPC: Efficient Dis-
tributed Query Processing on Heterogeneous
XQuery Engines

27 Marten Voulon (UL) Automatisch con-
tracteren

28 Arne Koopman (UU) Characteristic Rela-
tional Patterns

29 Stratos Idreos (CWI) Database Cracking: To-
wards Auto-tuning Database Kernels

30 Marieke van Erp (UvT) Accessing Natural
History - Discoveries in data cleaning, struc-
turing, and retrieval

31 Victor de Boer (UvA) Ontology Enrichment
from Heterogeneous Sources on the Web

32 Marcel Hiel (UvT) An Adaptive Service Ori-
ented Architecture: Automatically solving In-
teroperability Problems

33 Robin Aly (UT) Modeling Representation
Uncertainty in Concept-Based Multimedia
Retrieval

34 Teduh Dirgahayu (UT) Interaction Design in
Service Compositions

35 Dolf Trieschnigg (UT) Proof of Concept:
Concept-based Biomedical Information Re-
trieval

36 Jose Janssen (OU) Paving the Way for Life-
long Learning; Facilitating competence devel-
opment through a learning path specification

37 Niels Lohmann (TU/e) Correctness of ser-
vices and their composition

38 Dirk Fahland (TU/e) From Scenarios to com-
ponents

39 Ghazanfar Farooq Siddiqui (VU) Integrative
modeling of emotions in virtual agents

40 Mark van Assem (VU) Converting and Inte-
grating Vocabularies for the Semantic Web

41 Guillaume Chaslot (UM) Monte-Carlo Tree
Search

42 Sybren de Kinderen (VU) Needs-driven ser-
vice bundling in a multi-supplier setting - the
computational e3-service approach

43 Peter van Kranenburg (UU) A Computa-
tional Approach to Content-Based Retrieval
of Folk Song Melodies

44 Pieter Bellekens (TU/e) An Approach to-
wards Context-sensitive and User-adapted
Access to Heterogeneous Data Sources, Illus-
trated in the Television Domain

45 Vasilios Andrikopoulo (UvT) A theory and
model for the evolution of software services

46 Vincent Pijpers (VU) e3alignment: Ex-
ploring Inter-Organizational Business-ICT
Alignment

47 Chen Li (UT) Mining Process Model Vari-
ants: Challenges, Techniques, Examples

48 Milan Lovric (EUR) Behavioral Finance and
Agent-Based Artificial Markets

49 Jahn-Takeshi Saito (UM) Solving difficult
game positions

