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CHAPTER 1

Introduction

The topic of this thesis lies in the area of adversarial search in multi-player zero-
sum domains, i.e., search in domains having players with conflicting goals. In order
to focus on the issues of searching in this type of domains, we shift our attention to
abstract games. These games provide a good test domain for Artificial Intelligence
(AI). They offer a pure abstract competition (i.e., comparison), with an exact closed
domain (i.e., well-defined rules). The games under investigation have the following
two properties. (1) They are too complex to be solved with current means, and (2)
the games have characteristics that can be formalized in computer programs. AI re-
search has been quite successful in the field of two-player zero-sum games, such as
chess, checkers, and Go. This has been achieved by developing two-player search
techniques. However, many games do not belong to the area where these search tech-
niques are unconditionally applicable. Multi-player games are an example of such
domains. This thesis focuses on two different categories of multi-player games: (1)
deterministic multi-player games with perfect information and (2) multi-player hide-
and-seek games. In particular, it investigates how Monte-Carlo Tree Search can be
improved for games in these two categories. This technique has achieved impres-
sive results in computer Go, but has also shown to be beneficial in a range of other
domains.

This chapter is structured as follows. First, an introduction to games and the
role they play in the field of AI is provided in Section 1.1. An overview of different
game properties is given in Section 1.2. Next, Section 1.3 defines the notion of multi-
player games and discusses the two different categories of multi-player games that
are investigated in this thesis. A brief introduction to search techniques for two-
player and multi-player games is provided in Section 1.4. Subsequently, Section 1.5
defines the problem statement and four research questions. Finally, an overview of
this thesis is provided in Section 1.6.

1.1 Games and AI

Games have been played by humans since the dawn of civilization. The first board
games date back more than 5000 years. One of the oldest discovered board games
is Senet, which was played by the ancient Egyptians around 3500 BC. It was played
on a board consisting of 30 squares arranged into three rows of ten. Two contesting



2 Introduction

players strategically moved their team of draughtsmen through these squares. The
exact rules of this game have long been forgotten, but it is known that this game was
played for approximately 3000 years (Piccione, 1980).

Some of these ancient games are still played today. The well-known board game
Go originated in China, which is played there for around 4000 years. The game used
to be only popular in East Asia, but in the recent years, it has also become more
popular in the rest of the world. Over the centuries, the number of abstract games
has grown tremendously. Nowadays, thousands of different games are played every
day, varying from classic board games such as chess or checkers to modern board
games such as Settlers of Catan and Carcassonne.

Since the invention of computers, abstract games have become an important re-
search area in AI. The reason for this is that games are well-defined and structured,
but often still considerably complex. There exist three different directions in AI re-
search in games. The first direction is solving games. In general, a game is solved if
the game-theoretic value (e.g., win, loss, or draw for the first player) is known, assum-
ing that all players play optimally. Some games, such as checkers (Schaeffer et al.,
2007), Connect Four (Allis, 1988; Tromp, 2008), and Go-Moku (Allis, Huntjes, and
Van den Herik, 1996) have been solved. For a substantial number of games, such as
chess or Go, this is currently infeasible. For instance, a game of chess can be played
in around 10123 ways and there are approximately 1047 different positions a game
of chess can be in (Shannon, 1950). Intelligent search techniques have to be devel-
oped for playing a game as strong as possible. This is the second, and quite popular,
research direction in games. While humans rely much on experience and intuition,
computers generally use brute-force computing power to find the best move. The re-
search described in this thesis belongs to this direction. The third research direction
concerns developing programs for providing entertainment for human players, rather
than trying to defeat them. This direction mostly investigates the domain of video
games. Two major challenges are simulating human-like behavior and difficulty scal-
ing. Simulating human-like behavior concerns the development of an agent that is
as indistinguishable as possible from a human player (Togelius et al., 2011). Diffi-
culty scaling is the automatic adaptation of an agent or the game itself to the level
of a human player (Spronck, Sprinkhuizen-Kuyper, and Postma, 2004; Shaker et al.,
2011).

Regarding the second research direction, abstract two-player games have been
studied in AI since the 1950s. Shannon (1950) and Turing (1953) described how com-
puters can be used for playing chess. Over the decades that followed, game-playing
programs became progressively stronger. This was not only due to better hardware,
but also because of the development of new search techniques. A major milestone in
the field of AI research in games was in 1997, when chess grandmaster Garry Kas-
parov was beaten by IBM’s DEEP BLUE (Hsu, 2002). This machine managed to defeat
Kasparov by 31/2−21/2. This was the first time a human world champion was beaten by
a computer in a game of chess. Since then, research shifted to other games, most no-
tably Go. Until recently, the best Go programs could only play at a weak amateur level
(Müller, 2002). Due to the introduction of a new search technique, Monte-Carlo Tree
Search, much progress has been made in this game over the past decade (Lee et al.,
2009).
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Besides research in two-player domains, multi-player games have gained some
popularity as well since the introduction of the first search technique for multi-
player games by Luckhardt and Irani (1986). By modifying existing search tech-
niques to accommodate for domains with more than two players, computer programs
were developed to play multi-player games such as Sergeant Major (Sturtevant and
Korf, 2000), Chinese Checkers (Sturtevant, 2003a; Sturtevant, 2008a; Schadd and
Winands, 2011), four-player chess (Lorenz and Tscheuschner, 2006), and multi-player
Go (Cazenave, 2008).

1.2 Game Properties
Games can be classified using several properties. This classification of games is im-
portant, because games with different properties may require different AI techniques.
Below, seven important properties are given.

(1) Number of players. The first distinguishing property is the number of players.
Games can be played by one, two, or more players. Examples of one-player games,
also called optimization problems or puzzles, are Solitaire and the 15-puzzle. Well-
known examples of two-player games are chess and Go. Games that can be played
by more than two players are called multi-player games. In multi-player games, we
can distinguish two subcategories: cooperative and non-cooperative. In a cooperative
game, two or more players cooperate in order to achieve a common goal. If this goal is
fulfilled, all cooperating players win the game. An example is the hide-and-seek game
Scotland Yard. In a non-cooperative game, all players play for themselves and they all
have conflicting goals. Examples of this category of games are Chinese Checkers and
Hearts. This thesis investigates both cooperative and non-cooperative multi-player
games.

(2) Information. In many games, all information about a position is available
throughout the whole game for all players. These games are called perfect-information
games. If at least one of the players does not have all information about a position at
any point in the game, it is a game with imperfect information. This is, for instance,
the case in most card games, such as poker. This thesis investigates four games with
perfect information and one game with imperfect information.

(3) Chance. If in a game events occur on which no player has any direct influence
on the outcome, such as the roll of a die, the game is called a non-deterministic game.
If chance events do not occur and each action leads to a predictable new position, the
game is called deterministic. The games in this thesis generally are deterministic,
though one game (see Chapter 7) has a minor element of chance.

(4) Decision space. In most abstract games, players have a discrete (i.e., countable)
set of moves they can make. This is also the case with all games investigated in this
thesis. Video games, however, usually simulate a continuous decision space. The
number of possible moves is arbitrarily large. Often, the decision space is discretized
to allow an agent to easier make decisions.
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(5) Game flow. Most abstract games are turn-based. In these games, players can
only move at a certain point in time. There exist two different types of turn-based
games. In sequential move games1 the players take turns, one at a time. This is the
most common game flow in abstract games. In simultaneous move games, more than
one player takes a turn at a time. Examples of games with simultaneous moves are
modern board games such as 7 Wonders, El Grande, and Diplomacy. In AI research, a
discretized version of the game Tron is sometimes used as a test domain for abstract
games with simultaneous moves. A different game flow system is often used in video
games, namely real-time. All players can move at any time and there is no such notion
as turns. This thesis only considers turn-based games with sequential moves.

(6) Theme. Abstract games have different types of goals for the players. Depending
on the goal, games can be classified into different themes. Examples of themes include
connection games such as Hex and Havannah, territory games such as Go and Othello,
race games such as Chinese Checkers, capture games such as chess and Checkers, and
tile-based games such as dominoes. This theses investigates games that belong to a
disparate range of themes.

(7) Symmetry. In the majority of the abstract games, the players have a similar
goal. For instance, in chess, the goal for both players is to checkmate the opponent’s
king. These games are called symmetric. If the players have different goals, the game
is called asymmetric. Examples are the ancient family of Tafl games and the similarly
themed Breakthru. In the latter game, one player has to escape from the middle of the
board to the edge with a flag ship, while the other player should try to prevent this by
capturing it. In this thesis, both symmetric and asymmetric games are investigated.

1.3 Multi-Player Games
Much research in the field of games has been performed in the domain of deterministic
two-player games with perfect information. For a long time, chess has been the prime
domain for researchers. After the defeat of Kasparov in 1997, the focus shifted to
Go, which was at that time a domain in which computer programs could only play on
a weak amateur level. Still today, Go remains one of the most popular domains for
computer games research.

In this thesis, we shift focus from the well-trodden domain of two-player games
to the relatively unknown domain of multi-player games (Sturtevant, 2003b). In this
thesis we focus on two different types of multi-player games. First, Subsection 1.3.1
discusses deterministic multi-player games with perfect information. Hide-and-seek
games are described in Subsection 1.3.2.

1.3.1 Perfect-Information Multi-Player Games
The first type of multi-player games investigated in this thesis are deterministic, non-
cooperative multi-player games with perfect information. These games do not involve

1Alternatively called sequential games or turn-taking games.
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an element of chance, and each player knows the exact game state at all times.
In AI, most research has been performed in the area of deterministic perfect in-

formation games. Two of the most investigated games in AI, chess and Go, both have
these properties. In multi-player games, initial research was performed in games
without chance or hidden information as well (cf. Luckhardt and Irani, 1986; Korf,
1991; Sturtevant and Korf, 2000).

One of the difficulties of this type of multi-player games, compared to two-player
games, is that there are more complex dynamics between players. In two-player zero-
sum games, it is usually the case that if a player improves his own position, he di-
minishes the opponent’s position. Therefore, the players always play against each
other. In multi-player games, this is not necessarily the case. In non-cooperative
games, temporary coalitions may occur (Schadd, 2011). For instance, if one player is
far ahead of the other players, they may form a coalition to catch up with the leading
player or even diminish the leading player’s position. This coalition often only lasts
as long as this player is ahead. Coalitions may be formed and broken as the game
progresses. Because of these complex dynamics, opponents are less predictable and
assumptions have to be made about the opponents, for instance whether they will try
to increase their own position or decrease one of the opponents’ positions.

Another difficulty in non-cooperative multi-player games is the kingmaker phe-
nomenon. In some games it is possible that a player, who cannot win anymore, can
determine the outcome of the game. Kingmakers are highly unpredictable, because it
is usually unknown which player they will let win.

In this thesis, we analyze the performance of various search techniques and en-
hancements in four different deterministic multi-player games with perfect informa-
tion: Chinese Checkers, Focus, Rolit, and Blokus. More information about these
games is provided in Chapter 3.

1.3.2 Multi-Player Hide-and-Seek Games

The second type of multi-player games investigated in this thesis are hide-and-seek
games. They are played on a graph consisting of vertices, also called locations, that
are connected to each other via edges, also called paths. The players can travel be-
tween locations using these paths. The goal for the seekers is to locate and capture
one or more hiders. These hiders can be mobile or immobile. Players can act as the
hider and the seeker at the same time, such as in two-player games like Battleship or
Stratego, or players take on either of these roles. The seekers do not know the loca-
tion of the hider(s). This means that hide-and-seek games are games with imperfect
information. In general, hide-and-seek games are deterministic games, though the
starting locations of the players may be random.

Most research in the area of hide-and-seek games concerns finding optimal strate-
gies for the seekers, such that they are guaranteed to find the hider(s) in a limited
amount of time. A research domain is for instance pursuit-evasion games (Parsons,
1978; Megiddo et al., 1988; Adler et al., 2003), in which the hiders are mobile, and
may be visible, partially visible, or invisible to the seekers. In this thesis, we focus on
search techniques that make the hider(s) and the seekers play as strongly as possible
in a game that is too large to solve.
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We are interested in hide-and-seek games with the following three aspects. (1)
They have partially imperfect information. The hider knows the exact game state
at all times, but the seekers do not. Based on a limited amount of information, the
seekers have to deduce where the hider can be located at any point in the game. (2)
Contrary to many games, the hide-and-seek games are asymmetric. The hider has a
different goal than the seekers. (3) The hide-and-seek games feature a fixed coalition
between the seekers. If one of the seekers captures the hider, then all seekers have
won the game. This encourages collaboration between the seekers. The challenge is
to make the seekers cooperate in an effective way.

As a test domain, we consider the multi-player pursuit-evasion hide-and-seek
game Scotland Yard. More information about this game is given in Chapter 7.

1.4 Search Techniques

The most successful AI method in abstract games is search. Over the past decades,
many search techniques have been developed for playing various kinds of abstract
games using a computer. For two-player deterministic sequential games, minimax
(Von Neumann and Morgenstern, 1944) is the foundation for most search techniques.
The most popular two-player search technique is αβ search (Knuth and Moore, 1975).
For two-player games with chance, a generalization of minimax, called expectimax
(Michie, 1966), may be used.

The first minimax-based technique developed for multi-player games is maxn

(Luckhardt and Irani, 1986). Over the years, different minimax-based search tech-
niques have been developed for multi-player games, such as paranoid search (Sturte-
vant and Korf, 2000) and Best-Reply Search (BRS) (Schadd and Winands, 2011).
These search techniques all have a different assumption about the opponents. Maxn

assumes that each player only tries to increase his own position, without looking at
the opponents. With paranoid, an assumption is made that all opponents have formed
a coalition. BRS assumes that only one of the opponents plays a counter move, while
all other opponents pass, even if this is not allowed in the game.

All aforementioned search techniques require a heuristic evaluation function.
These evaluation functions require game-specific knowledge to assign heuristic val-
ues to the leaf nodes in the search tree. However, in some games, such as (multi-
player) Go, developing such an evaluation function is quite difficult. This is one of
the reasons why minimax-based search techniques do not perform well in this game.
An alternative way to evaluate leaf nodes is by applying Monte-Carlo evaluations
(Abramson, 1990; Bouzy and Helmstetter, 2004). This provided the basis of Monte-
Carlo Tree Search (MCTS) (Kocsis and Szepesvári, 2006; Coulom, 2007a). It is a
best-first search technique that is guided by Monte-Carlo simulations. The MCTS al-
gorithm consists of four phases: selection, expansion, playout, and backpropagation.
These four phases are performed iteratively.

MCTS gained much popularity after it significantly increased the playing strength
of the state-of-the-art programs in computer Go. It has become a successful tech-
nique in disparate domains, such as General Game Playing (Björnsson and Finnsson,
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2009), Hex (Arneson, Hayward, and Henderson, 2010; Cazenave and Saffidine, 2010),
and Ms. PacMan (Pepels and Winands, 2012). Also in the multi-player game Chinese
Checkers, MCTS has outperformed minimax-based approaches (Sturtevant, 2008b).
Furthermore, MCTS has been successfully applied in optimization problems, such
as Production Management Problems (Chaslot et al., 2006a), Library Performance
Tuning (De Mesmay et al., 2009), navigation problems (Müller et al., 2012), and the
Physical Traveling Salesman Problem (Perez, Rohlfshagen, and Lucas, 2012; Powley,
Whitehouse, and Cowling, 2012). An in-depth discussion of existing minimax-based
and Monte-Carlo based search techniques and enhancements is provided in Chapter
2.

1.5 Problem Statement and Research Questions
In the previous sections, we discussed the relevance of games in the field of AI and
the properties and difficulties of multi-player games. This thesis focuses on the ap-
plication and improvement of MCTS in multi-player games. The following problem
statement will guide the research.

Problem statement: How can Monte-Carlo Tree Search be improved to
increase the performance in multi-player games?

In order to answer the problem statement, four research questions have been for-
mulated. They deal with (1) incorporating different search policies in MCTS, (2) im-
proving the selection phase of MCTS, (3) improving the playout phase of MCTS, and
(4) adapting MCTS to a hide-and-seek game.

Research question 1: How can multi-player search policies be incorpo-
rated in MCTS?

The advantage of MCTS is that it can be extended to multi-player games. In the
standard multi-player variant of MCTS, each player is concerned with maximizing his
own win rate. In this sense, this variant is comparable to the minimax-based multi-
player search technique maxn (Luckhardt and Irani, 1986), where each player tries to
maximize his own score, regardless of the scores of the other players. Besides maxn,
there also exist other minimax-based multi-player search techniques, such as para-
noid (Sturtevant and Korf, 2000) and Best-Reply Search (BRS) (Schadd and Winands,
2011).

To answer the first research question, we investigate how three minimax-based
multi-player search techniques, namely maxn, paranoid, and BRS, can be embedded
in the MCTS framework. These search techniques are integrated as search policies.
A search policy determines how nodes are chosen during the selection phase of MCTS
and how the results of the playouts are backpropagated in the tree. The performance
of these search policies is tested in four different deterministic multi-player games
with perfect information.

The aforementioned search policies are not able to prove game-theoretic values in
the search tree. Therefore, a multi-player variant of the MCTS-Solver is introduced.
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This technique is combined with the maxn search policy. Three different update rules
are proposed for solving nodes in a multi-player MCTS tree. The performance of
multi-player MCTS-Solver with these update rules is investigated in the multi-player
game Focus.

Research question 2: How can the selection phase of MCTS be enhanced
in perfect-information multi-player games?

An important phase in the MCTS algorithm is the selection phase. During the
selection phase, the search tree is traversed until a leaf node is reached. A selection
strategy determines how the tree is traversed. Over the past years, several selection
strategies and enhancements have been developed for different types of games. The
most popular selection strategy is Upper Confidence bounds applied to Trees (UCT)
(Kocsis and Szepesvári, 2006). This is an extension of the Upper Confidence Bounds
(UCB1) (Auer, Cesa-Bianchi, and Fischer, 2002) algorithm that is used in bandit prob-
lems. There exist various enhancements for the UCT selection strategy (Browne et al.,
2012). Most of them are domain dependent, which means that they cannot uncondi-
tionally be applied in every domain. Examples of domain-dependent enhancements
include prior knowledge (Gelly and Silver, 2007), Progressive Widening, and Progres-
sive Bias (Chaslot et al., 2008b). A domain-independent enhancement is Rapid Action
Value Estimation (RAVE) (Gelly and Silver, 2007), which is in particular successful in
the field of computer Go, but less successful in others, such as the multi-player game
Chinese Checkers (Sturtevant, 2008a; Finnsson, 2012).

To answer the second research question, a new domain-independent selection
strategy based on UCT is proposed, namely Progressive History. This is a combi-
nation of the relative history heuristic (Winands et al., 2006) and Progressive Bias
(Chaslot et al., 2008b). Several variations of this technique are tested in four differ-
ent deterministic perfect-information games.

Research question 3: How can the playouts of MCTS be enhanced in
perfect-information multi-player games?

Similar to the selection phase, the playout phase is an important phase in the
MCTS algorithm. During the playout phase, the game is finished by playing moves
that are selected using a playout strategy. More realistic playouts usually pro-
vide more reliable results, thus increasing the playing strength of an MCTS-based
player. Playouts can be made more realistic by adding domain knowledge (Bouzy,
2005; Gelly et al., 2006; Chen and Zhang, 2008). The disadvantage is that this may
reduce the number of playouts per second, decreasing the playing strength (Chas-
lot, 2010). The challenge is to find a good balance between speed and quality of the
playouts.

Winands and Björnsson (2011) proposed to apply relatively time-expensive two-
ply αβ searches in the playout phase of MCTS. While this significantly reduced the
number of playouts per second, it increased the overall playing strength by improving
the quality of the playouts.

To answer the third research question, two-ply maxn, two-ply paranoid, and two-
ply BRS searches in the playouts are investigated and their performance is analyzed
in two deterministic, perfect-information multi-player games.
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Research question 4: How can MCTS be adapted for hide-and-seek
games?

As described in Subsection 1.3.2, the hide-and-seek games of interest have three
properties that make them a challenging domain for MCTS. These properties are
(1) imperfect information for the seekers, (2) asymmetry in the goals of the players,
and (3) cooperation between the seekers. To answer the fourth research question, we
investigate techniques for tackling these intricacies.

As the test domain we choose the game Scotland Yard. This hide-and-seek game
features the three aforementioned properties and is currently too complex for com-
puters to solve. To handle the imperfect information in Scotland Yard, two different
determinization techniques are investigated, namely single-tree determinization and
separate-tree determinization. Also, a new technique to bias the determinization to-
wards more likely positions, called Location Categorization, is introduced. The asym-
metric nature of Scotland Yard requires implementing different domain knowledge
for the hider and the seekers. This domain knowledge is required for ε-greedy play-
outs. Furthermore, a technique called Coalition Reduction is introduced to handle the
cooperation between the seekers. This technique balances each seeker’s participation
in the coalition.

1.6 Thesis Overview
This thesis is organized into eight chapters. Chapter 1 provides a general introduction
to games in AI and the different types of multi-player games investigated in this
thesis. Furthermore, the problem statement and four research questions that guide
our research are formulated.

Chapter 2 introduces the search techniques and standard enhancements. It
discusses minimax-based techniques such as αβ search and the multi-player tech-
niques maxn, paranoid, and Best-Reply Search (BRS). Furthermore, an introduction
to Monte-Carlo techniques, in particular Monte-Carlo Tree Search (MCTS) is given.

Chapter 3 explains the four test domains used in Chapters 4, 5, and 6: Chinese
Checkers, Focus, Rolit, and Blokus. We provide for each of these games the rules,
a complexity analysis, and an overview of the heuristic domain knowledge that is
applied in the different search techniques. Furthermore, this chapter introduces the
program MAGE, which is used as the test engine for the experiments in Chapters 4,
5, and 6. MAGE was developed during this Ph.D. research.

Chapter 4 answers the first research question. We investigate how the maxn, para-
noid, and BRS search policies perform in the MCTS framework in Chinese Checkers,
Focus, Rolit, and Blokus with different numbers of players and different time set-
tings. This is done by matching the search policies against each other and against
minimax-based search techniques. Furthermore, we introduce a multi-player vari-
ant of MCTS-Solver for proving game-theoretic values. This policy is tested in the
sudden-death game Focus.

The second research question is answered in Chapter 5. In this chapter, we pro-
pose a domain-independent enhancement to improve the selection strategy of MCTS,
namely Progressive History. This enhancement is compared against the standard
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UCT selection strategy to investigate the performance increase in MCTS. Further-
more, three variations on Progressive History are tested. The experiments are per-
formed in the two-player and multi-player versions of Chinese Checkers, Focus, Rolit,
and Blokus.

Chapter 6 answers the third research question. In this chapter we compare dif-
ferent playout strategies to determine the tradeoff between search and speed in the
playout phase of MCTS. We introduce two-ply maxn, paranoid, and BRS playouts, and
compare them to random, greedy, and one-ply playouts in the three-player and four-
player variants of Chinese Checkers and Focus. These experiments are performed
with different time settings to investigate the influence of the amount of thinking
time on the performance of the different playout strategies.

The fourth and final research question is answered in Chapter 7. In this chapter
we investigate the application and enhancement of MCTS in the hide-and-seek game
Scotland Yard. The chapter starts with an introduction to the game of Scotland Yard.
Next, we explain how MCTS can be applied to play Scotland Yard. Two different de-
terminization techniques are defined: single tree and separate tree. Determinization
is improved by using Location Categorization. Furthermore, we introduce Coalition
Reduction, which is a technique to balance the fixed coalition of the seekers. Subse-
quently, we explain how paranoid search and expectimax can be used for the hider
and the seekers, respectively. Also, Location Categorization is introduced as an en-
hancement of expectimax. All enhancements are systematically tested to investigate
their influence on the performance of MCTS-based and minimax-based players.

Finally, Chapter 8 answers the four research questions and addresses the problem
statement. Also, we provide an outlook on possible future research topics.

Additionally, Appendix A summarizes different variants of the RAVE formula.
Appendix B provides detailed results of the experiments performed in Chapter 4.



CHAPTER 2

Search Techniques

This chapter contains excerpts from the following publications:

1. Nijssen, J.A.M. and Winands, M.H.M. (2012a). An Overview of Search Tech-
niques in Multi-Player Games. Computer Games Workshop at ECAI 2012,
pp. 50–61, Montpellier, France.

2. Nijssen, J.A.M. and Winands, M.H.M. (2012b). Monte-Carlo Tree Search for
the Hide-and-Seek Game Scotland Yard. IEEE Transactions on Computa-
tional Intelligence and AI in Games, Vol. 4, No. 4, pp. 282–294.

This chapter describes search techniques and commonly used enhancements for
two-player and multi-player sequential games. In this thesis we focus on two different
families of search methods: minimax-based search techniques and Monte-Carlo based
search techniques. These techniques form the basis for the chapters that follow.

This chapter is organized as follows. First, Section 2.1 explains the basics of
search in games and defines terms and concepts that are used throughout this the-
sis. Section 2.2 describes the minimax techniques for searching in trees for two-
player games. Next, Section 2.3 discusses three different minimax-based techniques
for searching in trees for multi-player games. Subsequently, Section 2.4 gives an
overview of common enhancements for minimax-based search techniques, namely dy-
namic move ordering, transposition tables and iterative deepening. Section 2.5 pro-
vides an introduction to Monte-Carlo search. Section 2.6 describes Monte-Carlo Tree
Search, which is a search technique that can be applied to both two-player games and
multi-player games. Section 2.7 discusses related work in Monte-Carlo Tree Search.

2.1 Tree Search

In order to play any kind of abstract game, computer programs need a representation
of the current game position and the outcomes for all possible sequences of moves of
the players the game can have. The standard representation is a tree. In Subsection
2.1.1 we define the principle of game trees and the terms belonging to this concept.
In Subsection 2.1.2 we describe the concept of search trees.
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2.1.1 The Game Tree

A game tree is a representation of the state space of a sequential game. The nodes
in the tree represent the positions in the game and the edges represent the possible
moves from a position. The root is the node representing the initial position. The
immediate successors of a node are called the node’s children. They represent the
positions that can be reached after performing one legal move. A node’s predecessor
is called its parent. This represents the position before the last move. Nodes sharing
the same parent are called siblings. A node can have zero, one, or multiple children.
Each node has only one parent, except for the root node, which does not have a parent.
If a node m is on the path between the root and a node n, then m is an ancestor of
n. Analogously, if m is an ancestor of n, then n is a descendant of m. A node with all
its descendants and corresponding edges is called a subtree. Nodes that have at least
one child are called internal nodes. Nodes without any children are called leaf nodes.
Terminal nodes are leaf nodes that represent terminal positions, where the game is
finished and the game-theoretic value, e.g., win, loss, or draw for the root player, can
be determined.

2.1.2 The Search Tree

For non-trivial games, exploring the complete game tree is an impossible task. For
example, the size of the game tree of chess from the initial position is estimated to be
around 10123 nodes (Shannon, 1950). Instead of searching the complete game tree,
a smaller portion of the tree is analyzed. This portion is called the search tree. The
search tree has the same root node as the corresponding game tree, but it usually
contains fewer nodes. Often, a search tree is constructed up to a certain depth. The
depth of a tree is counted in plies. For example, a 4-ply search tree is a tree that looks
four turns ahead. Search trees are gradually created during a search process, starting
at the root node. A search tree introduces a new type of node, namely the non-terminal
leaf node. A non-terminal leaf node does not have any children (yet), but it does not
correspond to a terminal position. An internal node of which all children are added to
the search tree is expanded.

The size of a search tree depends on the branching factor b, which is determined
by the average number of children for each internal node, and the search depth d.
Assuming b and d are uniform, the search tree consists of O(bd) nodes, which means
that the number of nodes increases exponentially with the depth of the tree.

2.2 Searching in Two-Player Games

There exist various search techniques for analyzing two-player games. The basic
technique for this purpose is minimax, which is explained in Subsection 2.2.1. αβ

search is an improvement of minimax search, which is described in Subsection 2.2.2.
The basic αβ search technique can be applied in deterministic games with perfect
information. For handling chance events or hidden information, expectimax can be
applied, which is discussed in Subsection 2.2.3.
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2.2.1 Minimax Search
Minimax (Von Neumann and Morgenstern, 1944) is the classic depth-first search
technique for sequential two-player games. These two players are called MAX and
MIN . The minimax algorithm is designed for finding the optimal move for MAX, who
is the player to move at the root node. The search tree is created by recursively ex-
panding all nodes from the root in a depth-first manner until either the end of the
game or the maximum search depth is reached. An evaluation function is used to
assign a value to terminal nodes. For example, a win for the MAX player could be
rewarded 1, a draw 0, and a loss −1. Assigning a value to non-terminal leaf nodes is
more difficult, because the game-theoretic value is unknown. A static heuristic evalu-
ation function is applied to evaluate these nodes. Donkers (2003) defined three ways
to interpret the heuristic values: (1) as a prediction of the true game-theoretic value,
(2) as an estimate of the probability to win the game, and (3) as a measure of the prof-
itability of the position for the MAX player. Usually the third interpretation is used.
Such a heuristic value is often a linear combination of domain-dependent features.
Examples of such features include material balance in games like chess or checkers,
or territorial balance in games like Amazons and Go. The values at the leaf nodes are
backed up to the root, where MAX always chooses the child with the highest value and
MIN chooses the child with the lowest value. When all moves have been investigated,
the move corresponding to the child of the root with the highest value, is chosen as
the best move. In short, the value Vn of a node n with children C in a minimax search
tree can be calculated as follows.

Vn =



evaluaten if n is a terminal node

heuristicn if n is a non-terminal leaf node

max
c∈C

Vc if n is an internal MAX node

min
c∈C

Vc if n is an internal MIN node

(2.1)

where MIN and MAX nodes indicate the player to move. An example of a minimax
search tree is given in Figure 2.1. Here, a Tic-tac-toe position is investigated. Six
moves have been played already and it is currently ×’s turn, which means that ×
is the MAX player and ◦ is the MIN player. Each terminal node is assigned a value
based on the outcome of the game. Because the search tree spans the complete game
tree, all leaf nodes are terminal. Wins, draws, and losses of × are awarded 1, 0,
and –1, respectively. The numbers next to the edges indicate the order in which the
nodes are visited. The numbers under the Tic-tac-toe boards indicate the value of the
corresponding node in the tree. After investigating the search tree, it turns out that
× should play at the middle row of the right column.

When implementing minimax in a computer program, often the negamax (Knuth
and Moore, 1975) algorithm is applied. Instead of having two separate methods for
MAX and MIN nodes, there is only one method, which saves a significant number of
lines of code and makes the code easier to maintain. The principle behind negamax is
that max(a,b) =−min(−b,−a). A negamax tree consists of only MAX nodes. Between
two layers of the tree, the backpropagated values are inversed.
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Figure 2.1: An example of a minimax tree in Tic-tac-toe.

Algorithm 2.1 Pseudo code of the negamax algorithm.

1: function NEGAMAX(node, depth, currentPlayer)
2: if node.isTerminal() or depth ≤ 0 then
3: return currentPlayer × evaluation(node);
4: else
5: return maxc ∈ node.children –NEGAMAX(c, depth–1, –currentPlayer);
6: end if
7: end function

The pseudo code for negamax can be found in Algorithm 2.1. In this algorithm,
node refers to the current node, depth indicates the depth of the subtree of the current
node, and currentPlayer is used for distinguishing between MAX and MIN nodes. In
a MAX node, currentPlayer has value 1, and in MIN nodes it has value –1. The
function evaluation assigns a value in perspective of the root player to the provided
node. The initial call for the negamax algorithm is NEGAMAX(root, maximumDepth,
1).

2.2.2 αβ Search

When analyzing minimax search trees, it is not necessary to investigate every node
to determine the value of the root node and to find the best move. The technique of
eliminating branches of the search tree from being explored is called pruning. The
most-used pruning technique in minimax trees is αβ pruning (Knuth and Moore,
1975).
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When applying αβ pruning, an αβ window is maintained, which keeps track of the
lower bound, α, and the upper bound, β, on the expected minimax value. αβ search
produces a cutoff if the returned value lies outside the αβ window, i.e., the value is
smaller than α or greater than β. This indicates that currently a suboptimal subtree
is being investigated and that the remaining children of the currently investigated
node cannot change the value of the root node.

In the best case, O(bd/2) nodes are investigated (Knuth and Moore, 1975). With
minimax, O(bd) nodes are investigated. It means that, in the best case, it is possible
with αβ pruning to search twice as deep in the same amount of time, compared to
minimax search.
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-1   0   1

0 ≤-1 ≤-1

   0
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MAX

MIN

MIN

A

B C D

E F

Figure 2.2: An example of αβ pruning in Tic-tac-toe.

Figure 2.2 shows an example of αβ pruning using the same initial position as in
Figure 2.1. After investigating the subtree of node B, we can conclude that the value
of node B is 0. This means that × is guaranteed a value of at least 0 in node A. The
αβ window in node A is (0, ∞), i.e., α = 0 and β = ∞. Because the value of node E
is −1, we can conclude that the value of node C is ≤ −1. This value lies outside
the αβ window, because the value of node C is lower than α. × will always prefer
node B over node C, because 0 is larger than ≤−1. This means that × will not choose
node C, regardless of the values of the siblings of node E, so all remaining siblings of
node E, including their descendants, can be pruned. A similar situation occurs after
investigating node F. Because node F has a value of −1, the value of node D is ≤−1.
× will prefer node B over node D, so the remaining siblings of node F can be pruned.

In Algorithm 2.2, the pseudo code for αβ search in the negamax framework is
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Algorithm 2.2 Pseudo code of the αβ algorithm.

1: function ALPHABETA(node, depth, currentPlayer, α, β);
2: if node.isTerminal() or depth ≤ 0 then
3: return currentPlayer × evaluation(node);
4: end if
5: for all c ∈ node.children do
6: α = max(α, –ALPHABETA(c, depth–1, –currentPlayer, −β, −α));
7: if α≥β then
8: return β;
9: end if

10: end for
11: return α;
12: end function

given1. The major difference with Algorithm 2.1 is the introduction of the α and β

parameters. At the root node, α is initialized to −∞ and β to ∞. Because the negamax
framework is applied, the αβ window is flipped between two layers of the search tree.
The initial call for the αβ algorithm is ALPHABETA(root, maximumDepth, 1, −∞, ∞).

2.2.3 Expectimax Search
αβ search can be applied in two-player deterministic games with perfect informa-
tion. If a game is non-deterministic, i.e., has chance events, then the basic minimax
algorithm cannot be applied. Expectimax search (Michie, 1966) is a generalization
of minimax search, introducing a new type of node, namely the CHANCE node. A
CHANCE node represents a chance event, for instance a die roll. Expectimax can also
be applied in games with imperfect information. CHANCE nodes are then used to
model the revealing of hidden information. More information about this is provided
in Chapter 7.

The value of a chance node is the weighted average over all child nodes, i.e.,

expectimaxn = ∑
c∈C

Pc ×Vc (2.2)

Here, n is the current chance node and C represents the children of the chance
node, i.e., the set of possible outcomes of the chance event. Pc is the probability that
child c will be chosen, i.e., the probability that the chance event corresponding to node
c occurs, and Vc is the value of child c.

An example of an expectimax search tree is provided in Figure 2.3. MAX nodes are
denoted with 4, MIN nodes with 5, and CHANCE nodes with 3. The numbers next to
the edges indicate the probability for each chance event to occur. The value of node A
can be computed as expectimaxA = 0.5×6+0.2×4+0.3×5= 5.3. The value of node B
equals expectimaxB = 0.5×0+0.5×9= 4.5. This means that MAX will choose node A.

1In all algorithms, we assume that the parameters are passed by value.
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Figure 2.3: An example expectimax search tree.

Algorithm 2.3 Pseudo code of the expectimax algorithm.

1: function EXPECTIMAX(node, depth, currentPlayer, α, β);
2: if node.isTerminal() or depth ≤ 0 then
3: return currentPlayer × evaluation(node);
4: end if
5: if node is CHANCE node then
6: v = 0;
7: for all e ∈ node.children do
8: v = v+Pe× EXPECTIMAX(e, depth–1, currentPlayer, −∞, ∞);
9: end for

10: else
11: for all c ∈ node.children do
12: α = max(α, –EXPECTIMAX(c, depth–1, –currentPlayer, −β, −α));
13: if α≥β then
14: return β;
15: end if
16: end for
17: end if
18: return α;
19: end function

The pseudo code for expectimax in the negamax framework is displayed in Algo-
rithm 2.3. Note that in a chance node, the αβ window cannot be passed.

Pruning at chance nodes can be applied by using Star1 or Star2 pruning (Ballard,
1983; Hauk, Buro, and Schaeffer, 2006a). With Star1, pruning occurs if it can be
proven that the weighted sum of the values of the children falls outside the search
window. Star1 pruning is only possible if the lower bound L and the upper bound U



18 Search Techniques

of the possible values for the players are known. Pruning occurs if, after investigating
the ith child,

P1V1 +P2V2 + ...+PiVi +L(Pi+1 + ...+Pn)≥β (2.3)

or

P1V1 +P2V2 + ...+PiVi +U(Pi+1 + ...+Pn)≤α (2.4)

where n indicates the number of children. In Figure 2.3, node D can be pruned using
Star1 after investigating nodes A and C. Assuming L = 0 and U = 10, the value of
node B can be at most 0.5×0+10×0.5= 5. This value is smaller than the value MAX

can obtain by playing node A.
The drawback of Star1 is that generally the amount of pruning is rather small

(Hauk, Buro, and Schaeffer, 2006b). This is because the worst case is assumed for
each of the remaining children of the chance node. To obtain tighter bounds for a
node p, Star2 may be employed. Star2 investigates one of the opponent’s nodes for
each child i of the chance node to gain a bound for node p. This is called probing. If
the chance node is followed by MAX nodes, the obtained values act as a lower bound.
Pruning occurs after investigating node i if

P1V1 +P2V2 + ...+PiVi +Pi+1Wi+1 + ...+PnWn ≥β (2.5)

In this formula, Wi is the probed value for child i. If the chance node is followed
by MIN nodes, the values obtained by probing act as an upper bound. Pruning then
occurs if

P1V1 +P2V2 + ...+PiVi +Pi+1Wi+1 + ...+PnWn ≤α (2.6)

A disadvantage of Star2 pruning is that additional search effort is caused if no
pruning is possible. This effect can be reduced if a transposition table (see Subsection
2.4.2) is applied. If no pruning occurs, the obtained bounds can be stored in the
transposition table, which can later be used for tightening the search window during
the regular search.

2.3 Searching in Multi-Player Games
The aforementioned techniques can be applied to two-player sequential games. How-
ever, many popular (board) games nowadays can be played by more than two players.
These games are called multi-player games. When analyzing a search tree of a multi-
player game, the basic αβ-pruning techniques cannot be applied. In this section, we
describe three different search techniques that can be used for playing multi-player
games. The oldest technique, called maxn, is described in Subsection 2.3.1. Next,
Subsection 2.3.2 explains paranoid search, a search technique that allows αβ prun-
ing. Finally, Best-Reply Search is described in Subsection 2.3.3. This new technique
is a variation on paranoid search.
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2.3.1 Maxn Search
The traditional search technique for multi-player games is maxn (Luckhardt and
Irani, 1986). This technique is a modification of minimax search to multi-player
games. In the leaf nodes of the search tree, each player is awarded a value, based
on a heuristic evaluation function. These values are stored in a tuple of size N, where
N is the number of players. The sum of the values for all players can be constant.
When backing up the values in the tree, each player always chooses the move that
maximizes his score. An example of a maxn tree is displayed in Figure 2.4. In this
example, N = 3 and the sum of the values for all players is 10. The numbers in the
nodes denote which player is to move.

1

22 2

3333 3

(1,2,7) (5,3,2)

(5,3,2)

(3,4,3) (6,4,0)

(3,4,3)

(1,6,3)

(≤4,≥6,≤4)

(5,3,2)

A B C

D E

Figure 2.4: A maxn search tree with shallow pruning.

In multi-player games, multiple equilibrium points may exist (Nash, 1951; Jones,
1980). This may occur at any point if a player is indifferent between two or more
children. Luckhardt and Irani (1986) showed that maxn is capable of finding one
equilibrium point in any N-player zero-sum game with perfect information. Sturte-
vant (2003a) showed that, by changing the tie-breaking rule for choosing between
children with the same value, the maxn value of a tree may change arbitrarily. An
example of this phenomenon is provided in Figure 2.4. At node B, Player 2 is indiffer-
ent between nodes D and E. As shown in this figure, if Player 2 chooses node D, the
value of the root node is (5,3,2). However, if Player 2 would choose node E, the value
of the root would be (6,4,0). This shows that this tree has two equilibrium points
where, depending on the tie-breaker rule, one is found. In Figure 2.4, the paranoid
tie-breaker rule is applied. In case of ties, this rule chooses the node with the lowest
value for the root player. This is a common tie-breaker rule. Another way to handle
ties is soft-maxn, which was proposed by Sturtevant and Bowling (2006). Instead of
choosing a single tuple to return in case of a tie, a set of tuples is returned. This set
represents the possible outcomes if the corresponding node would be chosen. They
proved that soft-maxn calculates a superset of all pure-strategy equilibria values at
every node in a game tree. Another variant, called prob-maxn (Sturtevant, Zinkevich,
and Bowling, 2006), uses opponent models to evaluate leaf nodes and backpropagate
values in the tree. In the three-player perfect-information variant of Spades, these
two variants outperform regular maxn significantly.
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A disadvantage of maxn is that αβ pruning is not possible. Luckhardt and Irani
(1986) proposed shallow pruning, which is an easy and safe way to achieve some
cutoffs. It is only possible if the sum of the values for all players has a fixed upper
bound. Korf (1991) proved that shallow pruning finds the same results as basic maxn

search, provided that they share the same tie-breaker rule. With shallow pruning, the
asymptotic branching factor is 1+p4b−3

2 . However, in the average case the asymptotic
branching factor is b, which means that O(bd) nodes are investigated (Korf, 1991).
In the example in Figure 2.4, Player 2 is guaranteed a value of at least 6 at node C.
Because the sum of the rewards for all players is 10, Player 1 cannot receive a value of
more than 4 at this node. Because this is less than his reward when playing node A,
which is 5, Player 1 will always prefer node A over node C, which means that the
remaining children of node C can be pruned.

The maxn algorithm with shallow pruning is provided in Algorithm 2.4. In this
algorithm, U indicates the upper bound on the sum of rewards for all players. The
maxn algorithm is initialized using MAXN(root, maximumDepth, rootPlayer, −∞).

Algorithm 2.4 Pseudo code of the maxn algorithm with shallow pruning.

1: function MAXN(node, depth, currentPlayer, α);
2: if node.isTerminal() or depth ≤ 0 then
3: return evaluation(node);
4: end if
5: best = (−∞1,−∞2, ...,−∞N );
6: for all c ∈ node.children do
7: result = MAXN(c, depth–1, nextPlayer, best[currentPlayer]);
8: if result[currentPlayer] > best[currentPlayer] then
9: best = result;

10: end if
11: if result[currentPlayer] ≥ U −α then
12: return result;
13: end if
14: end for
15: return best;
16: end function

Sturtevant (2003c) introduced last-branch pruning and speculative pruning for
maxn. These pruning techniques use the assumption that if the sum of lower bounds
for a consecutive sequence of different players meets or exceeds U , the maxn value
of any child of the last player in the sequence cannot be the maxn value of the game
tree. Using this assumption, last-branch pruning guarantees that the cutoff will be
correct by only pruning when the intermediate players between the first (root) player
and the last player are searching their last branch. Speculative pruning is identical
to last-branch pruning, except that it does not wait until intermediate players are on
their last branch. Instead, it prunes speculatively, re-searching if necessary. Though
the paranoid algorithm (Sturtevant and Korf, 2000) can search deeper in the same
amount of time, speculative maxn is able to perform slightly better than paranoid in
the perfect-information variants of the card games Hearts and Spades.
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Another disadvantage of maxn lies in the fact that the assumption is made that
opponents do not form coalitions to reduce the player’s score. This can lead to too
optimistic play. The optimism can be diminished by making the heuristic evalua-
tion function more paranoid or by using the aforementioned paranoid tie-breaker rule
(Sturtevant, 2003a).

2.3.2 Paranoid Search
Paranoid search was first mentioned by Von Neumann and Morgenstern (1944) and
was later investigated by Sturtevant and Korf (2000). It assumes that all opponents
have formed a coalition against the root player. Using this assumption, the game can
be reduced to a two-player game where the root player is represented in the tree by
MAX nodes and the opponents by MIN nodes. The advantage of this assumption is
that αβ-like deep pruning is possible in the search tree, allowing deeper searches in
the same amount of time. An example of a paranoid search tree is provided in Figure
2.5.
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Figure 2.5: A paranoid search tree with αβ pruning.

In the best case, O(b
N−1

N d) nodes are investigated in a paranoid search tree. This
is a generalization of the best case for two-player games. Because more pruning is
possible than in maxn, paranoid has a larger lookahead (Sturtevant, 2003a). Be-
cause of this larger lookahead, paranoid is able to outperform maxn in various multi-
player games, such as Sergeant Major (Sturtevant and Korf, 2000), Chinese Checkers,
Hearts (Sturtevant, 2003a), Focus, and Rolit (Schadd and Winands, 2011).

The disadvantage of paranoid search is that, because of the often incorrect para-
noid assumption, the player may become too defensive. Furthermore, if the complete
game tree is evaluated, a paranoid player may find that all moves are losing, because
winning is often not possible if all opponents have formed a coalition. For instance,
using Paranoid Proof-Number Search in the game of three-player 6×6 Rolit, Saito
and Winands (2010) found that the first and the second player cannot get any points
under the paranoid assumption. The third player can get 1 point, because he is the
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last one to play a piece on the board, which cannot be captured anymore by one of the
opponents. In general, the deeper a paranoid player searches, the more pessimistic
he becomes.

According to Sturtevant (2003a), the equilibrium points that are calculated by the
paranoid algorithm are theoretically equivalent to those calculated by minimax. This
means that a paranoid search tree has a single paranoid value that is the lower bound
on the root player’s score. We remark that the value found by paranoid search is
only an equilibrium under the assumption that the opponents are in a fixed coalition.
Because this is not the case in the actual game, paranoid search usually does not find
an equilibrium point for the actual game.

The pseudo code of the paranoid algorithm in the negamax framework is provided
in Algorithm 2.5.

Algorithm 2.5 Pseudo code of the paranoid algorithm.

1: function ALPHABETA(node, depth, currentPlayer, α, β);
2: if node.isTerminal() or depth ≤ 0 then
3: if currentPlayer == rootPlayer then
4: return evaluation(node);
5: else
6: return –evaluation(node);
7: end if
8: end if
9: for all c ∈ node.children do

10: if currentPlayer == rootPlayer or nextPlayer == rootPlayer then
11: α = max(α, –ALPHABETA(c, depth–1, nextPlayer, −β, −α));
12: else
13: α = max(α, ALPHABETA(c, depth–1, nextPlayer, α, β));
14: end if
15: if α≥β then
16: return β;
17: end if
18: end for
19: return α;
20: end function

2.3.3 Best-Reply Search

Recently, Schadd and Winands (2011) proposed a new search technique for playing
multi-player games, namely Best-Reply Search (BRS). This technique is similar to
paranoid search, but instead of allowing all opponents to make a move, only one op-
ponent is allowed to do so. This is the player with the best counter move against the
root player. Similar to paranoid, αβ pruning is possible in BRS. In the best case, BRS

investigates O
(
(b(N −1))

⌈
2d
N

⌉
/2

)
nodes.
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Schadd and Winands (2011) showed that BRS performs better than maxn and
paranoid in the multi-player games Chinese Checkers and Focus. Furthermore, Esser
(2012) and Gras (2012) found that BRS performs better than paranoid and maxn in
four-player chess and the multi-player game Billabong, respectively.

The advantage of BRS is that more layers of MAX nodes are investigated, which
leads to more long-term planning. Furthermore, this technique is less pessimistic
than paranoid search, and less optimistic than maxn search. Compared to paranoid,
only one opponent performs a counter move against the root player, instead of all
opponents, and compared to maxn, BRS does not use the optimistic assumption that
the opponents are only concerned with their own value.

The disadvantage is that, if passing is not allowed, invalid positions, i.e., illegal
positions or positions that are unreachable in the actual game, are taken into account.
This is the reason why in some games, such as trick-based card games like Bridge or
Hearts, BRS cannot be applied. To overcome this disadvantage, Esser et al. (2013)
proposed a modification of BRS, namely BRS+, where the other opponents, rather
than skip their turn, play a move based on domain knowledge. They showed that,
using this enhancement, the modified version of BRS was able to outperform standard
BRS in four-player chess. However, the performance of this variant strongly depends
on the type of move ordering that is used. Furthermore, Gras (2012) found that in
the race game Billabong, standard BRS performs better than BRS+. In this thesis,
we only investigate the performance of the standard BRS technique.

An example of a BRS tree is provided in Figure 2.6. Note that the moves of all
opponents are compressed into one layer. The numbers next to the edges indicate to
which players the corresponding moves belong. The pseudo code for BRS is similar to
the pseudo code for αβ search in Algorithm 2.2.
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Figure 2.6: A BRS search tree with αβ pruning.

We remark that BRS does not aim to find an equilibrium point or a theoretical
bound on one’s score. Its purpose is improving the playing strength of a minimax-
based player in a multi-player game. Saffidine (2013) proved that if, in a game with-
out zugzwang, a search for a best-reply win fails, then a search for a paranoid win
fails as well and there is no need to perform such a search . The advantage of a BRS
search over a paranoid search is that it is more shallow.
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2.4 Enhancements for Minimax-Based Techniques
In this section we discuss three common enhancements used in minimax-based search
techniques. In Subsection 2.4.1 we explain two commonly used dynamic move order-
ing techniques: killer moves and the history heuristic. Transposition tables are de-
scribed in Subsection 2.4.2. Finally, iterative deepening is discussed in Subsection
2.4.3.

2.4.1 Dynamic Move Ordering
Move ordering is an important aspect in search techniques applying αβ-like pruning.
The principle of move ordering is that the best moves are investigated first, so that the
other moves can be pruned. There exist several move-ordering techniques that can be
divided into two categories (Kocsis, 2003). (1) Static move ordering is independent of
the search. It achieves a move ordering by using domain knowledge (see Chapters 3
and 7) or offline machine-learning techniques, such as the neural movemap heuristic
(Kocsis, Uiterwijk, and Van den Herik, 2001). (2) Dynamic move ordering relies on
information that was gained during the search. In the remainder of this section, we
describe two dynamic domain-independent move-ordering techniques, namely killer
moves and the history heuristic.

Killer Moves

One way to order moves is by applying killer moves (Akl and Newborn, 1977). The
killer-move heuristic assumes that when a move produces a cutoff in a certain posi-
tion, it will also do so in similar positions. In the implementation used in this thesis,
for each ply in the search tree two killer moves are stored that produced a cutoff in
the corresponding ply. At each newly searched node, the killer moves of the corre-
sponding ply are checked first, provided that they are legal. If one of the killer moves
produces a cutoff, all remaining legal moves do not have to be generated and investi-
gated, saving a significant amount of time. When a new killer move is found, i.e., a
move produces a cutoff that is not in the list of killer moves, it replaces the move that
did not cause a recent cutoff.

History Heuristic

The history heuristic (Schaeffer, 1983; Schaeffer, 1989) is a generalization of the killer-
move heuristic. This technique allows move ordering based on the number of prun-
ings caused by the moves, irrespective of the position where these moves have been
made.

For every move performed in the search tree, a history is maintained in a separate
table. Because the total number of moves in a game is often relatively small, it is
feasible to keep track of the history of all moves performed by all players. Moves
are typically indexed based on the coordinates on the board, for instance the ‘from’
location and the ‘to’ location. When a move causes an αβ pruning, its value in the
table is increased by an amount, e.g. d2 (Hyatt, Gower, and Nelson, 1990), where d is
the depth of the subtree of the corresponding node.
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Winands et al. (2006) described a new method for move ordering, called the rel-
ative history heuristic. It is a combination of the history heuristic and the butterfly
heuristic (Hartmann, 1988). Instead of only recording moves that are the best move
at a node, also the moves that are applied in the search tree are recorded. Both scores
are taken into account in the relative history heuristic. In this way, moves that are
strong on average, but occur less frequently, are favored over moves that occur more
often, but are only sometimes the best.

2.4.2 Transposition Tables

During an αβ search, it often happens that identical positions occur on different loca-
tions in the search tree. These are called transpositions. When the search algorithm
finds a transposition, it may not be necessary to explore the node again. Instead, the
results of the evaluation of the previous node are used. To store and retrieve this
information, a transposition table (Greenblatt, Eastlake, and Crocker, 1967) is used.

Ideally, every position that has been evaluated in the past should be stored, but
due to memory constraints this is not possible. Therefore, a hash table is used. A
transposition table consists of 2n entries, where each entry can hold information
about a certain position. In order to determine where a position is stored, Zobrist
hashing (Zobrist, 1970) is used to assign a 64-bit hash value to each game position.
From this hash value, the first n bits are used to determine the location of the current
board position in the transposition table. This is called the hash index. The remain-
ing 64−n bits are used as the hash key. The hash key is used to distinguish between
positions with the same hash index.

An entry in the transposition table usually contains the following elements (Mars-
land, 1986; Hyatt et al., 1990): (1) the hash key, (2) the value of the node, (3) a flag
indicating whether the stored value is a bound (in case of a cutoff) or the exact value,
(4) the best move, and (5) the search depth.

If a transposition is found during the search, the information stored in the trans-
position table can be used. Let dt be the search depth stored in the table and dc the
current remaining search depth, If dt ≥ dc and the stored value is an exact value, then
this value can immediately be returned as the value of the current node. If the stored
value is a bound, then this value can be used to update the αβ window. If dt < dc
the search still has to be executed. The stored move is investigated first, because it is
probable that this move will produce a cutoff (again).

When using transposition tables, there are two types of errors that can occur: type-
1 errors and type-2 errors. Type-1 errors occur when two different positions have the
exact same hash value. It is difficult to recognize this type of error, as the hash key for
both positions is the same. One possible way to detect this type of error is checking
whether the stored best move is legal. If it is not, we can be assured that a type-
1 error is found. If the move is legal, the error will go unnoticed and may lead to a
wrong evaluation of the tree. Fortunately, this is quite rare (Breuker, 1998; Hyatt and
Cozzie, 2005). A type-2 error, also called a collision (Knuth, 1973), occurs when two
different positions with two different hash values are assigned the same table entry,
i.e., the hash indices are the same. This type of error is easily recognized, because the
hash keys of the two positions are different.
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If a collision is detected, a replacement scheme is used to determine which node is
stored. One of the most commonly used replacement schemes is called DEEP (Mars-
land, 1986; Hyatt et al., 1990). When using this replacement scheme, the node with
the largest search depth is stored in the table. If the depth of the new node is equal
to the depth of the stored node, the new node overwrites the old one.

2.4.3 Iterative Deepening
As explained in Subsection 2.1.2, search trees usually have a predefined depth. How-
ever, it is difficult to predict how long an αβ search up to a certain depth will take. To
overcome this problem, iterative deepening (Korf, 1985) can be employed. Instead of
performing one search up to a fixed depth, a sequence of tree searches is performed,
where for each following iteration the maximum search depth is increased. By apply-
ing this technique, one has more control over how much time is spent for selecting a
move. This is useful if only a limited amount of time is available.

Intuitively, it may seem that iterative deepening is an inefficient technique, as
nodes will be visited and expanded multiple times. However, it turns out that the
overhead is relatively small. This can be illustrated by the following example. If we
traverse a search tree of depth d = 4 and branching factor b = 20, then the number
of investigated nodes is (without pruning)

∑d
i=0 bi = 168,421. With iterative deepen-

ing, the number of investigated nodes is
∑d

i=0(d− i+1)bi = 177,285. This calculation
shows that the total number of investigated nodes is only 5.26% higher than without
iterative deepening. This percentage is inversely proportional to the branching factor
of the tree. The higher the branching factor, the lower the overhead. In practice, iter-
ative deepening may even reduce the number of nodes searched. The reason for this
is that the killer-move heuristic, the history heuristic and the transposition table are
able to reuse information from previous searches to improve the move ordering at the
next iteration, which may increase the amount of pruning in subsequent iterations.

2.5 Monte-Carlo Methods
Monte-Carlo methods (Metropolis and Ulam, 1949) are applied in a wide array of
domains varying from field theory to cosmology (Metropolis, 1985). One application
domain is computer game playing. Monte-Carlo simulations can be applied for evalu-
ating leaf nodes. This is described in Subsection 2.5.1. In Subsection 2.5.2, we discuss
the multi-armed bandit problem, which turned out to be an inspiration for the most
popular Monte-Carlo based technique nowadays, namely Monte-Carlo Tree Search.

2.5.1 Monte-Carlo Evaluation
If constructing a strong static evaluation function for a game is too difficult, a different
approach may be used. One such technique is called Monte-Carlo Evaluation (MCE)
(Abramson, 1990). Instead of using domain-dependent features such as mobility or
material advantage, a number of playouts (also sometimes called samples, rollouts
or simulations) is started from the position to be evaluated. A playout is a sequence
of (semi-)random moves. A playout ends when the game is finished and a winner
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can be determined according to the rules of the game. The evaluation of a position
is determined by combining the results of all playouts using a statistical aggregate
function. This can be for example the average game score, e.g., Black scored 35.5
points on average. Another example is the win rate, e.g., Black wins 53% of the
games. The latter statistic is used often, including in this thesis.

In the domain of perfect-information games, MCE was particularly popular in Go
(Bouzy and Helmstetter, 2004). This is mainly because constructing a strong static
heuristic evaluation function for Go is difficult. The first application of MCE to Go was
done by Brügmann (1993), who evaluated the initial position of the 9×9 Go board.

MCE is not only applicable to deterministic games with perfect information.
During the 1990s, this technique was applied to non-deterministic games such as
Backgammon (Tesauro and Galperin, 1997), and games with imperfect information
such as Bridge (Ginsberg, 1999), poker (Billings et al., 1999), and Scrabble (Sheppard,
2002).

The major disadvantage of Monte-Carlo Evaluation is that it is time-expensive.
Because of the relatively long time to evaluate a leaf node, only a limited search depth
can be reached. A solution was provided by the multi-armed bandit problem, which
was an inspiration for the development of the Upper Confidence Bounds algorithm
(Auer et al., 2002).

2.5.2 Multi-Armed Bandit Problem
Monte-Carlo methods are suitable for tackling the multi-armed bandit problem (Auer
et al., 2002; Kocsis and Szepesvári, 2006). Suppose we have a set of k slot machines.
When played, each machine i will gave a random reward according to an unknown
distribution Ri with average reward µi. The player may iteratively select one of the
machines and observe the reward. The goal is to maximize the total reward by finding
the slot machine with the highest average reward as quickly as possible. To achieve
this, the player should play (exploit) more promising machines more often, while still
exploring other machines enough to ensure that he was not just unlucky with one of
the machines. This is called the exploration-exploitation dilemma.

One way of solving this problem, is by computing an upper confidence bound for
each machine. The easiest way to compute such an upper bound is by applying the
UCB1 algorithm (Auer et al., 2002). Each iteration, the machine i with the highest
value vi in Formula 2.7 is played.

vi = x̄i +
√

2lnn
ni

(2.7)

Here, x̄i is the sampled average reward obtained from playing machine i, ni is the
number of times machine i has been played, and n is the total number of times any
machine has been played so far. The term x̄i encourages exploitation of machines with
higher average rewards, while the term

√
2lnn

ni
encourages exploration of machines

that have not been played often yet.
A game can basically also be modeled as a multi-armed bandit problem. The

player has a number of possible moves and should find the move that provides the
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highest chance to win. The reward is computed by randomly finishing the game. The
player should find the move with the highest average reward, i.e., the move with the
highest win rate.

The UCB1 algorithm can also be applied for selecting moves for the opponents. A
tree is built to store the statistical data obtained from the previous iterations. This
forms the basis of UCT (Kocsis and Szepesvári, 2006), which is the most widely-used
selection mechanism in Monte-Carlo Tree Search.

2.6 Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS) (Kocsis and Szepesvári, 2006; Coulom, 2007a) is a
best-first search technique that gradually builds up a search tree, guided by Monte-
Carlo simulations. It extends the principle of Monte-Carlo evaluations to trees. In
contrast to classic search techniques such as αβ-search, it does not require a static
heuristic evaluation function. This makes MCTS an interesting technique for do-
mains where constructing such an evaluation function is a difficult task.

In Subsection 2.6.1, we provide an overview of the basic MCTS algorithm. The
application of MCTS to multi-player games in discussed in Subsection 2.6.2.

2.6.1 Basic MCTS Algorithm
The MCTS algorithm consists of four phases (Chaslot et al., 2008b): selection, expan-
sion, playout, and backpropagation (see Figure 2.7). By repeating these four phases
iteratively, the search tree is constructed gradually. We explain these four phases in
more detail below.

Selection Expansion Playout Backpropagation

A selection 
strategy is used 
to traverse the 
tree

One new node is 
created

A playout 
strategy is used 
to finish the 
game

The result is 
propagated back 
in the tree

Iterated N times

Figure 2.7: MCTS scheme.

Selection. In the selection phase, the search tree is traversed, starting from the
root, using a selection strategy. The most popular selection strategy is UCT (Koc-
sis and Szepesvári, 2006), which has been applied in several MCTS engines (cf.
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Browne et al., 2012). This selection strategy is based on UCB1. From a node p,
the child i with the highest score vi in Formula 2.8 is selected.

vi = x̄i +C×
√

ln(np)
ni

(2.8)

In this formula, x̄i denotes the average score, i.e., the win rate, of node i. ni and
np denote the total number of times child i and its parent p have been visited, respec-
tively. C is a constant, which balances exploration and exploitation. This selection
strategy is applied until a node is reached that is not fully expanded, i.e., not all of its
children have been added to the tree yet.

Expansion. In the expansion phase, one or more nodes are added to the tree. A
popular expansion strategy is adding one node to the tree (Coulom, 2007a). This node
corresponds to the first encountered position that was not added to the tree yet. If
a large amount of memory is available, it is also possible to fully expand at once. In
contrast, if only a limited amount of memory is available, nodes are only expanded if
they have been visited at least a certain number of times.

Playout. During the playout phase, moves are played, starting from the position
represented by the newly added node, until the game is finished. These may be
random moves. However, game knowledge can be incorporated to make the play-
outs more realistic. This knowledge is incorporated in a playout strategy (Bouzy,
2005; Gelly et al., 2006). One approach to improve the quality of the playouts is
by applying ε-greedy playouts (Sutton and Barto, 1998; Sturtevant, 2008a). For each
move played in the playouts, there is a probability of ε that a random move is played.
Otherwise, domain knowledge can be used to assign a value to each valid move for
the current player. The move with the highest heuristic value is played.

On the one hand, assigning a heuristic value to each possible move costs time,
which may reduce the number of playouts per second. On the other hand, informed
playouts improve the quality of the playouts to provide more reliable results (Bouzy,
2005; Gelly et al., 2006; Chen and Zhang, 2008). Chapter 6 will go into further detail
about applying domain knowledge in playouts.

Backpropagation. In the backpropagation phase, the result of the playout is prop-
agated back along the previously traversed path up to the root node. Wins, draws,
and losses are rewarded with 1, 1

2 , and 0 points, respectively. There exist various
backpropagation strategies. The most popular and also the most effective strategy
is Average, which keeps track of the average of the results of all playouts through
each node (Coulom, 2007a). Other backpropagation strategies include Max (Coulom,
2007a), Informed Average (Chaslot et al., 2006b), and Mix (Coulom, 2007a).

These four phases are repeated either a fixed number of times or until the time
runs out. After the search is finished, one of the children of the root is selected as the
best move. Final move selection techniques include choosing the max child (the child
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with the highest win rate), the robust child (the child with the highest visit count),
the robust-max child (the child with both the highest win rate and visit count, where
the search is continued until such a child exists), or the secure child (the child that
maximizes a lower confidence bound) (Chaslot et al., 2008b).

2.6.2 MCTS for Multi-Player Games

MCTS was first applied to deterministic perfect-information multi-player games by
Sturtevant (2008a) and Cazenave (2008). Sturtevant applied MCTS for playing Chi-
nese Checkers, and perfect-information variants of Spades and Hearts. He proved
that UCT is able to compute a mixed equilibrium in a multi-player game tree and
showed that, given sufficient thinking time, MCTS is able to outperform maxn and
paranoid in Chinese Checkers. Cazenave applied MCTS to multi-player Go. He pro-
posed several modifications, such as Paranoid UCT, UCT with alliances, and Con-
fident UCT. Paranoid UCT modifies the playouts by introducing paranoid moves
against the root player for the opponents. UCT with alliances models an explicit coali-
tion of players in the playout phase. Confident UCT dynamically forms coalitions in
the tree, based on the current board position.

Applying MCTS to multi-player games is quite straightforward. The difference
with the application to two-player games is that, after each playout is finished, in-
stead of a single value, a tuple of N values, is backpropagated in the tree. Each value
in the tuple corresponds to the score achieved by one player. Each value is in [0,1],
where 1 corresponds to a win and 0 to a loss. In the case of a draw between several
players, 1 point is divided evenly among these players. The selection strategy as de-
scribed in Subsection 2.6.1 remains the same. Each player tries to maximize his own
win rate using the standard UCT formula.

The search policy in this case is similar to maxn, where each player tries to max-
imize this own score. In Chapter 4 we show that it is also possible to apply different
search policies, such as paranoid or BRS, in the multi-player MCTS framework.

An example of a three-player MCTS tree is given in Figure 2.8. Note that at each
node only the scores of the player who has to move at the parent’s node are stored.
For instance, at nodes B, C, and D only the score of Player 1 is stored. The win rate x̄i
is calculated as sq

n , where sq is the score of the current player q. Note that the sum of
the visits of the children

∑
i ni is 1 smaller than the number of visits of the parent np.

This is because the parent is visited once when it is created, and that only from the
second visit of the parent, the children are visited. This is true for all nodes, except
for the root. This is because, in the program MAGE (see Chapter 3), the root is created
before the search starts.

The pseudo code of MCTS is provided in Algorithm 2.6. We remark that this
pseudo code is generalized so that it can be applied to both the two-player and the
multi-player variants of MCTS. The chooseFinalMove(root) function checks the
children of the root node and determines which move to play in the actual game.
The uct(c) function calculates the UCT value of child c. Instead of UCT, a different
selection strategy may be used. The expand(bestChild) function adds a child, if it
has not been visited yet, to the tree. Finally, getPlayoutMove(currentPosition)
uses a playout strategy to select a move for the current player in the playout.
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Figure 2.8: Example of a three-player MCTS tree.

Algorithm 2.6 Pseudo code of the MCTS algorithm.

1: while time left do
2: result = MCTS(root, rootPlayer);
3: root.update(result);
4: end while
5: return chooseFinalMove(root);

6: function MCTS(node, currentPlayer)
7: bestChild = arg max c ∈ node.children uct(c);
8: if bestChild.visits == 0 then
9: expand(bestChild);

10: result = PLAYOUT(currentPosition);
11: else
12: result = MCTS(bestChild, nextPlayer);
13: end if
14: bestChild.update(result);
15: return result;
16: end function

17: function PLAYOUT(currentPosition)
18: while not currentPosition.isFinished() do
19: playoutMove = getPlayoutMove(currentPosition);
20: currentPosition.play(playoutMove);
21: end while
22: return currentPosition.evaluate();
23: end function
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2.7 Related Work in MCTS
Over the past years, several enhancements have been developed to improve the per-
formance of MCTS (cf. Browne et al., 2012). In this section, we briefly discuss some
of these enhancements.

There exist many ways to improve the selection phase of MCTS. The major chal-
lenge in the selection phase is selecting moves when the number of playouts in a move
is still low. Two techniques to tackle this problem are discussed in Section 5.1, namely
Rapid Action Value Estimation (Gelly and Silver, 2007) and Progressive Bias (Chas-
lot et al., 2008b). Other selection strategies include First Play Urgency (Gelly and
Wang, 2006), transposition tables (Childs, Brodeur, and Kocsis, 2008), move groups
(Saito et al., 2007; Childs et al., 2008), Progressive Widening (Chaslot et al., 2008b),
and prior knowledge (Gelly and Silver, 2007). A new selection strategy is introduced
in Chapter 5, namely Progressive History (Nijssen and Winands, 2011a).

Yajima et al. (2011) introduced four new expansion strategies, namely (1) sib-
lings2, which expands a node when its visit count is more than double of its siblings,
(2) transition probability, which expands a node if it has a high heuristic evaluation
value compared to its siblings, (3) salient winning rate, which expands a node once it
has a win rate that exceeds the win rate of its siblings by a certain margin, and (4)
visit count estimate, which delays expansion of a node until the estimated visit count
of a node can be shown to exceed the number of siblings of that node before the end of
the search.

The ε-greedy playouts, as described in Subsection 2.6.1, require (light) domain
knowledge in order to be functional. There exist various domain-independent tech-
niques to enhance the quality of the playouts, including Last Good Reply (Drake,
2009), Last Good Reply with Forgetting (Baier and Drake, 2010), N-grams (Tak,
Winands, and Björnsson, 2012), Move-Average Sampling Technique (Finnsson and
Björnsson, 2008), Predicate-Average Sampling Technique (Finnsson and Björnsson,
2010), and Feature-Average Sampling Technique (Finnsson and Björnsson, 2010).

Nowadays, many computers have more than one processor core. To utilize the
full potential of a multi-core machine, parallelization can be applied to an MCTS pro-
gram. There exist three different parallelization techniques for MCTS: (1) root paral-
lelization, (2) leaf parallelization, and (3) tree parallelization (Chaslot, Winands, and
Van den Herik, 2008a). With root parallelization, each thread builds its own tree on
which a regular MCTS search is performed. At the end of the simulations, the results
of the different trees are combined. With leaf parallelization, one tree is traversed us-
ing a single thread. For the playouts, each thread performs one playout from this leaf
node. Once all threads have finished, the results are backpropagated. When using
tree parallelization, one tree is built, in which all threads operate independently. Mu-
texes may be used to lock (parts of) the tree, so that multiple threads cannot edit the
same information in the tree at the same time. Enzenberger and Müller (2010) found,
however, that tree parallelization without mutexes is more efficient. In a survey of
different parallelization techniques, Bourki et al. (2011) showed that tree paralleliza-
tion is the most effective.



CHAPTER 3

Test Environment

This chapter contains excerpts from the following publication:

1. Nijssen, J.A.M. and Winands, M.H.M. (2012a). An Overview of Search Tech-
niques in Multi-Player Games. Computer Games Workshop at ECAI 2012,
pp. 50–61, Montpellier, France.

This chapter describes the test environment used to answer the first three re-
search questions. A test environment consists of games and a game program. First,
we describe the rules and the employed domain knowledge for the four deterministic
perfect-information games used in this thesis: Chinese Checkers, Focus, Rolit, and
Blokus. Domain knowledge is incorporated in two different ways. (1) The heuris-
tic board evaluator, i.e., the static heuristic evaluation function, assigns a value to
each of the players, based on the current board position. This is used for evaluating
leaf nodes in the minimax-based search techniques. (2) Static move ordering assigns
a value to a move by a given player. This evaluation function is applied for move
ordering in the minimax-based search techniques and in the playouts of MCTS. Fur-
thermore, for each of the games we give the state-space complexity and the game-tree
complexity (Allis, 1994). They provide an indication on how difficult the games are for
computers to play them optimally. The former indicates how many different positions
a game can be in. Because it is often difficult to give an exact number of legal posi-
tions, an upper bound is provided. The latter indicates the size of the full game tree,
i.e., in how many ways the game can be played. The game-tree complexity is calcu-
lated using bd , where b is the average branching factor of the tree and d represents
the average depth. Finally, this chapter introduces the program MAGE, which is used
to run the experiments in Chapters 4, 5, and 6 of this thesis.

In the next sections, we provide the rules, a complexity analysis, and the applied
domain knowledge for Chinese Checkers (Section 3.1), Focus (Section 3.2), Rolit (Sec-
tion 3.3) and Blokus (Section 3.4). Section 3.5 compares the complexity of these four
games to the complexity of various other games that are popular in games research.
An introduction to the computer program MAGE is given in Section 3.6.
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3.1 Chinese Checkers
Chinese Checkers is a race game that can be played by two to six players. The game
was invented in 1893 and since then has been released by various publishers under
different names. Chinese Checkers is a popular test domain for multi-player search
techniques. For instance, Sturtevant (2008b) used the game for investigating MCTS
in multi-player games. Schadd and Winands (2011) tested the performance of BRS
against paranoid and maxn in this game. Chinese Checkers is also frequently used
as one of the test domains in General Game Playing (Clune, 2007; Finnsson, 2012;
Tak et al., 2012).

3.1.1 Rules
Chinese Checkers is played on a star-shaped board. The most commonly used board
contains 121 fields, where each player starts with ten pieces. In this thesis a slightly
smaller board is used (Sturtevant, 2008a) (see Figure 3.1). In this version, the board
consists of 73 fields and each player has six pieces. The advantage of a smaller board
is that games take a shorter amount of time to complete, which means that more
Monte-Carlo simulations can be performed and more experiments can be run. Also,
it allows the application of a stronger static evaluation function.

Figure 3.1: A Chinese Checkers board.

The goal for each player is to move all his pieces to his home base at the other
side of the board. Pieces may move to one of the adjacent fields or they may jump over
another piece to an empty field. Players are also allowed to make multiple jumps with
one piece in one turn, making it possible to create a setup that allows pieces to jump
over a large distance. The goal for each player is to move all his pieces to his home
base at the other side of the board. Pieces may move to one of the adjacent fields or
they may jump over another piece to an empty field. Players are also allowed to make
multiple jumps with one piece in one turn, making it possible to create a setup that
allows pieces to jump over a large distance. The first player who manages to fill his
home base wins the game. The rules dictate that a player should move all his pieces
to his home base. This rule can be exploited by keeping one piece in an opponent’s
home base to prevent this player from winning. To avoid this behavior, in this thesis
a player has won if his home base is filled, regardless of the owner of the pieces, as
long as the player has at least one of his own pieces in his home base. Draws do not
occur in this game.
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3.1.2 Complexity

A small Chinese Checkers board consists of 73 fields and each player has six checker

pieces. For one player, there are

(
73
6

)
= 170,230,452 possible ways to assign the six

pieces on the board. If there are two players, then there are

(
67
6

)
= 99,795,696 pos-

sible ways to assign the pieces for the second player for each of the assignments of
the first player, leading to a total of 1.70×1016 possible positions in the two-player
variant of Chinese Checkers.

For any number of players N, the number of possible ways to assign the pieces on
the board can be computed using Formula 3.1.

N−1∏
p=0

(
73−6p

6

)
= 73!

(73−6N)!(6!)N (3.1)

Using this formula, we can compute that in the three-player variant of Chinese
Checkers the state-space complexity is 9.43× 1023. In the four-player variant the
complexity is 2.73×1031. Finally, in the six-player variant there are 2.33×1045 ways
to assign the pieces of the players.

The game-tree complexity strongly depends on the number of players as well. The
branching factor (b), average game length (d), and game-tree complexity (bd) for the
different variants are summarized in Table 3.1. These values were obtained by run-
ning 1500 selfplay games using the best MCTS-based players in the program MAGE

(see Section 3.6).

Table 3.1 Average number of moves and game length for each variant of Chinese
Checkers.

Variant Average Average Game-tree complexity
number of moves (b) game length (d) (bd)

2 players 29.3 57.1 5.73×1083

3 players 30.3 81.6 7.69×10120

4 players 27.7 134.1 2.73×10193

6 players 23.5 228.5 1.95×10313

The numbers show that the average game length increases drastically if there are
more players. This has two reasons. First, the players progress slower if there are
more players, because it is each player’s turn less often. Second, with more players the
board becomes more cluttered in the midgame, causing the progress of the players to
slow down even further. The average number of moves decreases with more players.
Because the board is quite full, especially in the midgame, there are fewer moves
available because the players block each other.
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3.1.3 Domain Knowledge
For Chinese Checkers, the heuristic board evaluator uses a lookup table (Sturtevant,
2003a) that stores, for each possible configuration of pieces, the minimum number
of moves a player should perform to get all pieces in the home base, assuming that
there are no opponents’ pieces on the board. For any player, the value of the board
equals 28−m, where m is the value stored in the table that corresponds to the piece
configuration of the player. We remark that 28 is the highest value stored in the table.

The static move ordering of Chinese Checkers is based on how much closer the
moved piece gets to the home base (Sturtevant, 2008a). It uses the function ds −dt,
where ds is the distance to the home base of the piece that is moved, and dt represents
the distance of the target location to the home base. Note that the value of a move is
negative if the piece moves away from the home base.

3.2 Focus
Focus is a capture game, which was described by Sid Sackson in 1969. This game has
also been released under the name Domination. Focus has been used as a test bed
for comparing the performance of BRS to paranoid and maxn by Schadd and Winands
(2011).

3.2.1 Rules
Focus is played on an 8×8 board where in each corner three fields are removed. It
can be played by two, three or four players. In Figure 3.2, the initial board positions
for the two-, three- and four-player variants are given. In the two-player variant,
each player has eighteen pieces. With three players, each player has thirteen pieces.
Twelve of them are already on the board and one is played on one of the empty fields
during the first round. In the four-player version, each player has thirteen pieces as
well.

(a) 2 players (b) 3 players (c) 4 players

Figure 3.2: Set-ups for Focus.

In Focus, pieces can be stacked on top of each other. A stack may contain up to
five pieces. Each turn a player moves a stack orthogonally as many fields as the stack
is tall. A player may only move a stack of pieces if a piece of his color is on top. It is
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also allowed to split stacks into two smaller stacks. If a player decides to do so, then
he only moves the upper stack as many fields as the number of pieces that is being
moved. If a stack lands on top of another stack, the stacks are merged. If the merged
stack has a size of n > 5, then the bottom n−5 pieces are captured by the player, such
that there are five pieces left. If a player captures one of his own pieces, he may later
place one piece back on the board, instead of moving a stack. This piece may be placed
either on an empty field or on top of an existing stack.

An example is provided in Figure 3.3. Player 4 controls the leftmost stack and can
perform four different moves. The bottom two moves in this figure are examples of
capture moves.

4
3
1
4

2 1
1
4

2
3
2

3
4
2
2
1

Figure 3.3: Example moves in Focus.

There exist two variations of the game, each with a different winning condition.
In the standard version of the game, a player wins if all other players cannot make
a legal move. However, such games can take a considerable amount of time to finish.
Therefore, we chose to use the shortened version of the game. In this version, a
player wins if he has either captured a certain number of pieces in total, or a number
of pieces from each player. In the two-player variant, a player wins if he has captured
at least six pieces from the opponent. In the three-player variant, a player has won
if he has captured at least three pieces from both opponents or at least ten pieces in
total. In the four-player variant, the goal is to capture at least two pieces from each
opponent or to capture at least ten pieces in total. In both variants of the game, draws
do not occur.

3.2.2 Complexity
To calculate the state-space complexity of Focus, we first compute in how many ways
the pieces can be stacked on the board and distributed as captured pieces among
the players, regardless of their color. Then, the number of ways to color the pieces is
computed. To compute the number of ways the pieces can be distributed, a brute-force
algorithm was used. This algorithm first divides the pieces in two groups, namely (1)
pieces that have been captured by the players and (2) pieces that are still on the board.
Next it computes, for each possible division of pieces, in how many ways the captured
pieces can be distributed among the players and in how many ways the remaining
pieces can be placed on the 52 squares on the board. Using this algorithm we found
that, in the two-player variant, there are 8.64×1024 ways to assign the 36 pieces and
9.08×109 ways to color them. This leads to a state-space complexity of 7.84×1034.
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In the three-player variant there are 1.94×1026 ways to distribute the 39 pieces and
8.45× 1016 ways to color them. This means that the state-space complexity of the
three-player variant is 1.64×1043. Finally, in the four-player variant there are 52
pieces and there are 6.18×1030 ways to stack them and distribute them as captured
pieces among the players. There are 5.36×1028 ways to color the pieces. This leads
to a total of 3.31×1059 ways to assign the pieces.

The game-tree complexity of Focus is determined by running 1500 selfplay games
using MCTS-based players in MAGE. The average number of moves, average game
length, and game-tree complexity are summarized in Table 3.2. A four-player game
of Focus takes on average about 25% longer than a three-player game, while a three-
player game takes about 50% longer that a two-player game. The average branching
factor of the three-player and four-player variants are quite similar. The branching
factor in the two-player variant is significantly larger. This is because in the two-
player variant both players start with eighteen pieces, instead of thirteen in the three-
player and four-player variants. If a player has more pieces, he generally has more
possible moves.

Table 3.2 Average number of moves and game length for each variant of Focus.
Variant Average Average Game-tree complexity

number of moves (b) game length (d) (bd)
2 players 66.4 38.5 1.88×10101

3 players 43.0 57.6 1.22×1094

4 players 39.8 72.1 2.25×10115

3.2.3 Domain Knowledge

For Focus, the heuristic board evaluator is based on the minimum number of pieces
each player still needs to capture to win the game, r, and the number of stacks each
player controls, c. Capturing the necessary pieces to win the game is the first goal
for each player, so this feature is the most important in the evaluation function. Con-
trolling many stacks is a secondary goal, because this increases the player’s mobility.
For each player, the score is calculated using the formula 600−100r+ c. Because the
maximum value for r is 6, we ensure that the heuristic value will never be below 0.

The static move ordering gives a preference to moves that involve many pieces.
The reasoning behind this is that creating large stacks gives the player more mobility,
as larger stacks provide more possible moves. Furthermore, if a stack larger than five
pieces is created, pieces are captured and the larger the stack, the more pieces are
captured. The static move ordering applies the function 10(n+ t)+ s, where n is the
number of pieces moved, t is the number of pieces on the target location, and s is the
number of stacks the player gained, i.e., the number of stacks the player controls after
the move minus the number of stacks the player controls before the move. The value
of s can be 1, 0, or –1. This feature adds a small preference for moves that increase
the number of stacks that the player controls.
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3.3 Rolit
Rolit, published in 1997 by Goliath, is a multi-player variant of the two-player
territory-based game Othello. This game was introduced in 1975. It is similar to
a game invented around 1880, called Reversi. This game was invented by either
Lewis Waterman or John W. Mollett. At the end of the 19th century it gained much
popularity in England, and in 1893 games publisher Ravensburger started producing
the game as one of its first titles.

Othello is a popular two-player test domain. Currently, the best Othello programs
outperform the best human players (Allis, 1994). Buro used Othello as a test domain
for experiments in ProbCut (Buro, 1995) and Multi-ProbCut (Buro, 2000).

Saito and Winands (2010) applied Paranoid Proof-Number Search to solve the
two-, three-, and four-player variants of Rolit on 4×4 and 6×6 boards, and the four-
player variant on the 8×8 board. They used this technique to calculate the minimum
score each player is guaranteed, assuming optimal play and that all opponents have
formed a coalition. It was also one of the domains for testing the performance of BRS,
paranoid, and maxn by Schadd and Winands (2011).

3.3.1 Rules
Before describing the rules of Rolit, we first explain the rules of Othello. Othello is
played by two players, Black and White, on an 8×8 board. On this board, so-called
discs are placed. Discs have two different sides: a black one and a white one. A disc
belongs to the player whose color is faced up. The game starts with four discs on the
board, as shown in Figure 3.4(a). Black always starts the game, and the players take
turns alternately. When it is a player’s turn he places a disc on the board in such a
way that he captures at least one of the opponent’s discs. A disc is captured when it
lies on a straight line between the placed disc and another disc of the player making
the move. Such a straight line may not be interrupted by an empty square or a disc
of the player making the move. All captured discs are flipped and the turn goes to the
other player. If a player cannot make a legal move, he has to pass. If both players
have to pass, the game is over. The player who owns the most discs, wins the game.

For Rolit, the rules are slightly different. Rolit can be played by up to four players,
called Red, Yellow, Green, and Blue. The pieces in Rolit are four-sided; each side

(a)

R

Y

G

B Y

(b)

Figure 3.4: Set-ups for Othello (a) and Rolit (b).



40 Test Environment

represents one color. The initial board position is shown in Figure 3.4(b). This setup
is used for the two-, three-, and four-player variants. With three and two players,
there are one and two neutral pieces, respectively. The largest difference is that if
a player cannot capture any pieces, which will occur regularly during the first few
rounds of a four-player game, he may put a piece orthogonally or diagonally adjacent
to any of the pieces already on the board. Using this rule, passing does not occur
and the game is finished when the entire board is filled. The scoring is similar to
Othello. The player owning the most pieces wins. We remark that, contrary to Focus
and Chinese Checkers, Rolit can end in a draw between two or more players.

3.3.2 Complexity
An upper bound of the state-space complexity of Rolit with N players can be computed
using the formula N4 × (N +1)60. The center four squares can each have N different
states. They cannot be empty because they are already filled at the start of the game.
The remaining 60 squares can each have N+1 different states. They can be occupied
by any of the N players or they can be empty. For the two-player variant of Rolit, the
state-space complexity is 6.78×1029. For the three-player variant the complexity is
1.08×1038. For the four-player variant the complexity is 2.22×1044. These numbers
are upper bounds for the state-space complexity. The actual number of legal positions
in Rolit is smaller than these numbers. For example, any position where not all
pieces are connected to each other are illegal, because a piece may, by definition, only
be placed adjacent to a piece already on the board.

A game of Rolit always takes 60 turns. Saito and Winands (2010) found that the
average branching factor of Rolit for any number of players is approximately 8.5.
This means that the game-tree complexity is approximately 8.560 = 5.82×1055. For
Othello, the average game length is 59.85 and the average branching factor is 8.25.
These numbers are gained by analyzing the games from the WTHOR database, which
stores nearly 110,000 games by professional players, played between 1977 and 2012.1

This leads to a game-tree complexity of 8.2559.85 = 7.08×1054. Compared to Othello,
the game-tree complexity of Rolit is slightly larger. There are two reasons for this
difference. (1) A game of Rolit always takes 60 turns, while a game of Othello can
be finished earlier if none of the players can move anymore. (2) If a player cannot
perform a capture move, he may place a piece anywhere adjacent to a piece on the
board. Usually, the branching factor at these positions is relatively high.

3.3.3 Domain Knowledge
The heuristic board evaluation of Rolit depends on two features: the mobility of the
player and the number of stable pieces (Rosenbloom, 1982; Nijssen, 2007). The mo-
bility is measured by the number of moves a player has. The higher the number of
possible moves, the better the position generally is for the player. Stable pieces are
pieces that cannot change color anymore during the rest of the game. The score of
a player is calculated using m+10s, where m is the number of moves and s is the
number of stable pieces.

1http://www.ffothello.org/info/base.php
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The static move ordering depends on the location of the square where the piece is
placed. The values of the squares are displayed in Figure 3.5. Corners are most valu-
able, as pieces on these squares are always stable and provide an anchor for adjacent
pieces to be stable as well. The squares adjacent to the corners are tricky, especially
if the corner has not been captured yet. Pieces on these squares may provide the
opponents an opportunity to capture the corner.
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2 1

4 3
3 3

4 3
3 3

4 4
4 4

3 4
3 3

2 5
1 2

4 4
4 4

3 4
3 3

3 3 4 4 4 4 3 3
4 3 4 4 4 4 3 4
2 1 3 3 3 3 1 2
5 2 4 3 3 4 2 5

Figure 3.5: The values of the squares in Rolit.

3.4 Blokus

Blokus is a four-player tile-based game developed by Bernard Tavitian in 2000. Be-
cause Blokus is a relatively new game, not much research has been performed in this
domain. Shibahara and Kotani (2008) used the two-player variant of Blokus, Blokus
Duo, as a test domain for combining final score and win rate in Monte-Carlo evalua-
tions. Blokus Duo is played on smaller board than Blokus and the players start on a
different position.

3.4.1 Rules

A Blokus board consists of 20×20 squares. Each player receives 21 pieces varying in
size from one to five squares in all possible shapes (see Table 3.3). Alternately, the
players place one of their pieces on the board. The pieces may be rotated in any way.
The difficulty in this game is that any square may only be occupied by one piece and
two pieces of the same player may not be orthogonally adjacent. However, if a new
piece is placed, it has to be diagonally adjacent to one or more of the player’s pieces
on the board. The first pieces of the players should all be placed in one of the corners.

The game finishes when none of the players can place a piece on the board any-
more. The player who has the largest number of squares on the board occupied is the
winner. Note that, similar to Rolit, draws can occur. However, there is one tie breaker
in this game. If more than one player manages to place all pieces on the board, the
winner is the player who placed the monomino, the piece of size 1, on the board during
the last round.
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Figure 3.6: A terminal position in Blokus.

Table 3.3 Overview of the 21 different pieces in Blokus.
Piece Rotations Places Total Piece Rotations Places Total

1 20×20 401 4 18×18 1297

2 19×20 761 8 18×19 2337

4 19×19 1445 1 18×18 325

2 18×20 721 8 18×18 2593

1 19×19 362 2 16×20 641

4 18×19 1369 8 17×19 2585

4 18×19 1369 8 17×19 2585

2 17×20 681 8 17×19 2585

8 18×19 2737 4 18×18 1297

4 18×19 1369 4 18×18 1297

4 18×18 1297

3.4.2 Complexity

In Blokus, there are 400 squares and each can be in one of five different states: it
can be empty or occupied by one of the four players. Therefore, the theoretical upper
bound of the state-space complexity for Blokus is 5400 = 3.87×10279. A smaller upper
bound can be calculated using the values from Table 3.3. This table shows in how
many ways each piece can be placed on the board, including still being in the player’s
hand. Using these values we can compute that the 21 pieces of each player can be
placed in 3.40×1064 on the board. This does not consider the rules that pieces may not
overlap or be orthogonally adjacent or that all pieces have to be diagonally adjacent.
With four players, the 84 pieces can be arranged in at most 1.33×10258 ways. The
actual state space of Blokus is much smaller than this number, because many illegal
positions where pieces overlap, pieces are not connected or pieces of the same player
are orthogonally adjacent are counted.
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A game of Blokus can take at most 84 turns. In practice, most games are finished
earlier because often the players cannot place all pieces on the board. A game of
Blokus takes on average 73.1 turns. The average number of moves of the players
during the game is 139.1. These numbers were obtained by running 1500 selfplay
games with four MCTS-based players in MAGE. This leads to a game-tree complexity
of 139.173.1 = 4.76×10156.

3.4.3 Domain Knowledge

The goal in Blokus is to have as many squares on the board occupied as possible. For
Blokus, the heuristic board evaluator counts the number of squares that each player
has occupied. Because Blokus has a relatively large board, using a more complex eval-
uation function is quite time-consuming, so only this feature is used in the evaluation
function.

The static move ordering takes the size of the piece that is played on the board
into account. Large pieces are preferred over small ones. Playing large pieces earlier
in the game is generally advantageous, because there is still plenty of space to place
them. As the board becomes more filled, placing large pieces will quickly become
impossible, while placing smaller pieces in the remaining gaps may still be possible.
Furthermore, keeping the monomino until the end of the game may be useful to gain
the bonus if this piece is played last.

3.5 Comparison of Complexities to Other Games

A graphical representation of the state-space and game-tree complexity of Chinese
Checkers, Focus, Rolit, and Blokus, along with various other games, can be found in
Figure 3.7 (Shannon, 1950; Allis, 1994; Tesauro and Galperin, 1997; Van Rijswijck,
2000; Winands, Uiterwijk, and Van den Herik, 2001; Van den Herik, Uiterwijk, and
Van Rijswijck, 2002; Iida, Sakuta, and Rollason, 2002; Joosten, 2009). The numbers
in bold indicate the games that are investigated in this thesis. The numbers in italic
represent games that have been solved.

The state-space complexity of the Chinese Checkers variants increases with more
players. While the state-space complexity of the two-player variant is close to the
solved game Awari, the state-space complexity of the six-player variant is comparable
to chess. The game-tree complexity increases faster than the state-space complexity.
The game-tree complexity of two-player Chinese Checkers is between 15×15 Go-Moku
and 11×11 Hex, while the game-tree complexity of the six-player variant is higher
than most games, approaching 19×19 Go.

The complexity of the different variants of Focus is relatively close to chess and
11×11 Hex. With more players, the state-space complexity slightly increases, while
the game-tree complexity fluctuates slightly.

The complexity of two-player Rolit is close to Lines of Action and, as explained in
Subsection 3.3.2, Othello. While the game-tree complexity remains the same for the
three-player and four-player variants, the state-space complexity slightly increases
with more players. The state-space complexity of four-player Rolit is similar to chess.
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The game-tree complexity of Blokus is similar to 19×19 Connect6 and Havannah,
though its state-space complexity is considerably larger. However, with a more so-
phisticated algorithm to approximate the state-space complexity of Blokus, the upper
bound may be lowered.
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Figure 3.7: Graphical representation of the state-space and game-tree complexity of 24 differ-
ent game variants.

3.6 Game Engine: MAGE

The experiments in Chapters 4, 5 and 6 are performed in the program called MAGE,
which is an acronym for Modular Advanced Game Engine. It was designed during
this Ph.D. research. As the name suggests, MAGE is a modular engine. It contains
interfaces for the games and the players. Using this system, adding new search tech-
niques or new games is quite easy. Furthermore, comparisons of search techniques
between games are more fair, because in each different game the same engine is used.
A disadvantage is that optimization is more difficult, because game-specific optimiza-
tions cannot be implemented in the engine of the MCTS-based and minimax-based
players. MAGE is used for playing deterministic games with perfect information.

MAGE is written in Java. For the MCTS-based players, the UCT exploration con-
stant C is set to 0.2. They also use ε-greedy playouts with ε = 0.05 and Tree-Only
Progressive History (see Chapter 5) with W = 5. These values were achieved by sys-
tematic testing. Because sufficient memory is available, in the expansion phase, all
children are added to a node at once. The advantage of this is that possible moves
only have to be generated once. After the last MCTS iteration, the robust child, i.e.,



3.6 — Game Engine: MAGE 45

the child of the root node with the highest visit count, is chosen as the best move.
All minimax-based players use a transposition table with the DEEP replacement

scheme (Breuker, Uiterwijk, and Van den Herik, 1996), and static move ordering. Fur-
thermore, the paranoid and BRS players use killer moves (Akl and Newborn, 1977)
and the history heuristic (Schaeffer, 1983). The killer moves are always tried first.
The values in the history table are used to break ties between moves with the same
value according to the static move ordering. Finally, for the maxn player, shallow
pruning is applied (Sturtevant and Korf, 2000). To allow shallow pruning, the scores
retrieved from the heuristic evaluation function are normalized, such that the sum of
the scores for all players is 1. To make the minimax-based players less deterministic,
a small random factor is added to the board evaluators. This random factor differ-
entiates board positions with the same heuristic value. This idea was investigated
by Beal and Smith (1994), who found that a chess program performed considerably
better if a random factor was added to a positional evaluation function.
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CHAPTER 4

Search Policies for
Multi-Player MCTS

This chapter is an updated and abridged version of the following publications:

1. Nijssen, J.A.M. and Winands, M.H.M. (2011a). Enhancements for Multi-
Player Monte-Carlo Tree Search. Computers and Games (CG 2010) (eds.
H.J. van den Herik, H. Iida, and A. Plaat), Vol. 6515 of LNCS, pp. 238–249,
Springer-Verlag, Berlin, Germany.

2. Nijssen, J.A.M. and Winands, M.H.M. (2012a). An Overview of Search Tech-
niques in Multi-Player Games. Computer Games Workshop at the ECAI
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Monte-Carlo Tree Search (MCTS) is a best-first search technique that can easily
be extended from two-player to multi-player games (Sturtevant, 2008b). Different
search policies can be applied that indicate how the children are selected and how
the results are backpropagated in the tree. The basic multi-player MCTS algorithm
applies a search policy that is analogous to the maxn search tree. In a maxn tree
(see Subsection 2.3.1), each player maximizes his own score. In standard MCTS, a
similar principle is applied. Each player tries to maximize his own win rate, while not
considering the win rates of the opponents. Similar to the classic minimax framework,
it is possible to apply the paranoid and BRS search policies to MCTS as well.

This chapter answers the first research question by investigating the maxn, para-
noid, and BRS search policies in the MCTS framework. They are called MCTS-maxn,
MCTS-paranoid, and MCTS-BRS, respectively. Their performance is tested in four
different multi-player games, namely Chinese Checkers, Focus, Rolit, and Blokus.
Furthermore, these MCTS variants are compared to the minimax-based search tech-
niques.

Next, MCTS-maxn is modified so that it is able to prove positions and there-
fore play tactical lines better. The Monte-Carlo Tree Search Solver (MCTS-Solver)
(Winands, Björnsson, and Saito, 2008) concept is applied in MCTS-maxn. Experi-
ments are performed in the sudden-death game Focus.
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The chapter is structured as follows. First, in Section 4.1 related work on search
techniques in multi-player games is discussed. Section 4.2 explains how the paranoid
and BRS search policies can be applied in the MCTS framework. Next, Section 4.3
provides the experimental results of the different search policies. A background of
the MCTS-Solver is given in Section 4.4. MCTS-Solver for multi-player games is
introduced in Section 4.5. Subsequently, in Section 4.6 we provide the experimental
results for the multi-player MCTS-Solver. Finally, the chapter conclusions and an
overview of possible future research directions are given in Section 4.7.

4.1 Search Policies: Related Work

Sturtevant (2008b) provided an analysis of MCTS in Chinese Checkers and perfect-
information variants of Spades and Hearts. He showed that, in Chinese Checkers,
MCTS wins over 90% of the games against maxn and paranoid, and that paranoid sig-
nificantly outperforms maxn. In these experiments, all players were allowed 250,000
node expansions per move. He found that with fewer expansions there is not enough
data for UCT to form accurate estimates. For instance, MCTS only wins 16.7% of
games against paranoid when both search techniques are only allowed 1600 node ex-
pansions per move. In other domains, MCTS plays on a par with existing programs
in the game of Spades, and better than existing programs in Hearts. Furthermore,
Sturtevant (2008b) proved that UCT is able to compute a mixed equilibrium in a
multi-player game tree.

Cazenave (2008) applied MCTS to multi-player Go. He introduced a technique
called Paranoid UCT. In his design of Paranoid UCT, the paranoia is modeled in the
playouts, while the MCTS tree is traversed in the usual way. He tested the per-
formance of Paranoid UCT against a RAVE player in three-player Go, and found that
Paranoid UCT performed better. A disadvantage of this technique is that it requires a
definition of paranoid moves for each game in which it is applied. Cazenave also intro-
duced Confident UCT. This variant uses the current board position to model coalitions
in the tree. Three different variants were proposed. The first, called the Confident
algorithm, develops multiple MCTS trees, where in each tree the root player has a
coalition with a different opponent. For the final move selection, it assumes a coali-
tion which is most beneficial for the root player. The second, called the Symmetric
Confident algorithm, is similar to the confident algorithm, but assumes a coalition
only if it is beneficial for the opponent as well. The third, called the Same algorithm,
assumes a coalition with other Same players. Experimental results showed, however,
that Confident UCT is outperformed by RAVE and paranoid search.

Schadd and Winands (2011) introduced Best-Reply Search (BRS), for determin-
istic multi-player games with perfect information. They tested BRS against maxn

and paranoid in the games of Chinese Checkers, Focus, and Rolit. In all games, BRS
was superior to maxn. They showed that BRS also outperforms paranoid in Chinese
Checkers and Focus. In Rolit, BRS was on equal footing with paranoid. The appli-
cation of BRS to the MCTS framework was proposed, but it was neither tested nor
implemented.
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4.2 Alternative Search Policies
In this section, we propose the application of the paranoid and BRS search policies in
MCTS. First, MCTS-paranoid is explained in more detail in Subsection 4.2.1. MCTS-
BRS is discussed in Subsection 4.2.2. For a description of the maxn policy in MCTS,
called MCTS-maxn in this chapter, we refer to Subsection 2.6.2.

4.2.1 MCTS-Paranoid
The idea of using a paranoid search policy in MCTS was suggested by Cazenave
(2008), however he did not implement or test it. When applying the paranoid search
policy in MCTS, the structure of the tree remains intact, however all nodes in the
opponents’ layers are changed into MIN nodes. All nodes in the root player’s layers
remain MAX nodes and the standard UCT formula is applied. When incorporating
the paranoid search policy in MCTS, the opponents use a different UCT formula. In-
stead of maximizing their own win rate, they try to minimize the win rate of the root
player. In the MIN nodes of the tree, the following modified version of the UCT for-
mula is used. The child i with the highest value vi is selected as follows (Formula
4.1).

vi = (1− x̄i)+C

√
ln(np)

ni
(4.1)

Similar to the UCT formula (Formula 2.8), x̄i denotes the win rate of node i. ni
and np denote the total number of times child i and its parent p have been visited,
respectively. C is a constant, which balances exploration and exploitation.

The major difference with the standard UCT formula is that, at the MIN nodes, x̄i
does not represent the win rate at child i of the current player, but of the root player.
Essentially, (1− x̄i) indicates the win rate of the coalition of the opponents. Analogous
to paranoid in the minimax framework, the opponents do not consider their own win
rate.

An example of a paranoid tree in the MCTS framework for a three-player game is
provided in Figure 4.1. In this example, 100 playouts have been simulated so far. For
each node, n indicates how often the node has been visited so far and s indicates the
cumulative score of the root player. The value x̄i of node i is computed using x̄i = si

ni
.

The root player applies the standard UCT formula (Formula 2.8) to select a child.
Assuming C = 0.2, the UCT values for nodes B, C and D are:

vB = 14
61

+0.2

√
ln100

61
≈ 0.284

vC = 5
27

+0.2

√
ln100

27
≈ 0.268

vD = 1.5
12

+0.2

√
ln100

12
≈ 0.249
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Figure 4.1: Example of an MCTS-paranoid tree.

In this iteration, the root player chooses node B. From this node, the first opponent
can choose between nodes E, F and G. Because the paranoid search policy is applied,
the modified UCT formula is applied to select the next child. The UCT values of the
children of node B are calculated as follows.

vE = (1− 5
18

)+0.2

√
ln61
18

≈ 0.818

vF = (1− 2
6

)+0.2

√
ln61

6
≈ 0.832

vG = (1− 6
36

)+0.2

√
ln61
36

≈ 0.901

Even though the first opponent may have a higher win rate at node E or F, he chooses
node G to try to minimize the win rate of the root player. After selecting node G, the
UCT values for the second opponent are calculated in a similar way.

vH = (1− 3
17

)+0.2

√
ln36
17

≈ 0.915

vI = (1− 2
11

)+0.2

√
ln36
11

≈ 0.932

vJ = (1− 2
7

)+0.2

√
ln36

7
≈ 0.857

For the second opponent, node I is chosen. If node I is fully expanded, then the next
child is chosen using the standard UCT formula. Once a leaf node is reached, the
playout is performed in the standard way. When the playout is finished, the value s
of nodes A, B, G, and I is increased with the score of the root player and n is, similar
to standard MCTS, increased by 1.
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Equilibrium points

The essence of the paranoid policy is that a multi-player game is reduced to a two-
player game (Sturtevant and Korf, 2000; Sturtevant, 2003a). All opponents are con-
sidered as one player, playing against the root player. Similarly, we may say that
MCTS-paranoid is a reduction of multi-player MCTS to two players.

Kocsis, Szepesvári, and Willemson (2006) proved that, in a two-player game,
MCTS with UCT is able to converge to the minimax tree, given sufficient time and
memory. As such, the MCTS and the minimax tree have the same equilibrium. Be-
cause MCTS-paranoid is essentially a two-player search policy, it will converge to the
corresponding minimax tree, namely the paranoid tree, as well.

In general, a paranoid tree is not able to find an equilibrium point of the game. It
is, however, able to find a guaranteed lower bound on the root player’s value. Simi-
larly, MCTS-paranoid converges asymptotically to the guaranteed lower bound of the
root player’s value as well.

4.2.2 MCTS-BRS

With the BRS policy in MCTS, all opponents’ layers are compressed into one layer,
similar to BRS in the minimax framework. The standard UCT formula is applied
in the root player’s layers and the paranoid UCT formula is used in the opponents’
layers.

1
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1 1 1
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s = 8

H I J
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Figure 4.2: Example of an MCTS-BRS tree.

An example of an MCTS-BRS tree is given in Figure 4.2. Again, assume that
C = 0.2. Similar to MCTS-paranoid and MCTS-maxn, the root player selects a move
using the standard UCT formula as follows.
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vB = 20
61

+0.2

√
ln100

61
≈ 0.383

vC = 12
39

+0.2

√
ln100

39
≈ 0.376

The root player selects node B. Next, the moves of the two opponents are compressed
into one layer. Nodes D and E represent positions that are reached after moves by
Player 2, i.e., the first opponent, and nodes E and F represent positions that are
reached after moves by Player 3, i.e., the second opponent. The paranoid UCT for-
mula is applied to select a move for one of the opponents as follows.

vD = (1− 4
11

)+0.2

√
ln61
11

≈ 0.759

vE = (1− 6
17

)+0.2

√
ln61
17

≈ 0.745

vF = (1− 3
7

)+0.2

√
ln61

7
≈ 0.725

vG = (1− 8
25

)+0.2

√
ln61
25

≈ 0.761

Node G is selected, so the first opponent skips a move and only the second opponent
plays a move at this point. Next, the root player selects a move again using the
standard UCT formula.

vH = 0
1
+0.2

√
ln25

1
≈ 0.358

vI = 1
5
+0.2

√
ln25

5
≈ 0.360

vJ = 6
18

+0.2

√
ln25
18

≈ 0.418

After selecting node J, this procedure continues until a leaf node is reached. Once
a leaf node is reached, the tree is expanded and the playout is performed in the stan-
dard way. The result of the playout is backpropagated in a similar way as in MCTS-
paranoid.

Equilibrium points

Similar to MCTS-paranoid, MCTS-BRS will, given sufficient time and memory, con-
verge to the same value as the corresponding BRS tree. This means that, similar to
BRS, MCTS-BRS does not find an equilibrium point or a guaranteed bound on one’s
score.
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4.3 Experimental Results for Search Policies
In this section, we describe the experiments for the search policies and their results.
First, Subsection 4.3.1 gives an overview of the experimental setup. Subsection 4.3.2
provides a comparison between the three minimax-based search techniques for multi-
player games: maxn, paranoid, and BRS. Next, Subsection 4.3.3 investigates how the
paranoid and BRS search policies in MCTS compare against the maxn policy in the
MCTS framework. A comparison between the strongest minimax-based technique
and the different MCTS-based techniques is given in Subsection 4.3.4. In the final
set of experiments, the strongest MCTS-based technique is compared to the three
minimax-based techniques in Subsection 4.3.5.

4.3.1 Experimental Setup
The experiments were run on a server consisting of AMD OpteronT 2.2 GHz proces-
sors. There are various ways to assign two or three types of players to the different
seats in multi-player games (Sturtevant, 2003a). Table 4.1 shows in how many ways
the player types can be assigned. Only the configurations where at least one instance
of each player type is present are considered. There may be an advantage regarding
the order of play and the number of instances of each player type. Therefore, each
assignment is played multiple times until at least 1000 games are played and each
assignment was played equally often. All experiments are performed with 250 ms,
1000 ms, and 5000 ms thinking time per move, unless stated otherwise. The results
are given with a 95% confidence interval (Heinz, 2001).

Table 4.1 The number of ways two or three different player types can be assigned.
The number between brackets is the number of games that are played per match.

Number of players 2 player types 3 player types
3 6 (1050) 6 (1050)
4 14 (1050) 36 (1044)
6 62 (1054) 540 (1080)

4.3.2 Comparison of Minimax-Based Techniques
Before testing the maxn, paranoid, and BRS search policies in MCTS, we first inves-
tigate how they perform when applied in the minimax framework. In the first set
of experiments, we therefore match the three basic minimax-based players against
each other. The win rates and the average search depths of the players in the dif-
ferent games are displayed in Table 4.2. In this series of experiments, we validate
the results found by Schadd and Winands (2011), and extend the experiments with
one more game (Blokus) and more variation in the number of players. An in-depth
overview of the results is provided in Appendix B.1.

In Chinese Checkers, BRS is the best search technique by a considerable margin.
In the variants with three, four, and six players, BRS wins between 67.7% and 86.6%
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Table 4.2 Results of maxn versus paranoid versus BRS.
Maxn Paranoid BRS
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Chinese
Checkers

250 1.1±0.6 3.04 24.8±2.6 4.44 74.1±2.6 4.75
3 1000 1.0±0.6 3.41 20.5±2.4 5.11 78.6±2.5 5.44

5000 1.4±0.7 4.15 21.6±2.5 5.75 76.9±2.5 6.72

Chinese
Checkers

250 5.3±1.4 2.95 11.7±1.9 3.52 83.0±2.3 4.09
4 1000 4.0±1.2 3.57 23.0±2.5 4.83 72.9±2.7 5.04

5000 5.7±1.4 4.07 19.4±2.4 5.43 74.8±2.6 5.86

Chinese
Checkers

250 15.0±2.1 2.88 13.9±2.1 3.34 71.1±2.7 3.53
6 1000 12.2±2.0 3.85 13.1±2.0 4.10 74.1±2.6 4.74

5000 16.9±2.2 4.13 12.8±2.0 4.59 69.5±2.7 5.12
250 4.4±1.2 3.58 35.7±2.9 4.27 59.9±3.0 4.34

Focus 3 1000 3.8±1.2 4.06 28.6±2.7 4.88 67.6±2.8 5.03
5000 3.8±1.2 4.63 27.3±2.7 5.26 69.0±2.8 5.93
250 9.4±1.8 3.34 17.5±2.3 3.55 73.1±2.7 4.15

Focus 4 1000 7.0±1.5 3.81 24.0±2.6 4.66 69.0±2.8 4.86
5000 6.7±1.5 4.39 27.9±2.7 5.23 65.4±2.9 5.36
250 8.1±1.7 5.29 38.6±2.9 5.72 53.3±3.0 5.56

Rolit 3 1000 8.9±1.7 6.12 39.7±3.0 6.74 51.3±3.0 6.65
5000 6.3±1.5 6.86 45.4±3.0 7.88 48.4±3.0 7.73
250 15.9±2.2 4.81 41.5±3.0 5.48 42.5±3.0 5.01

Rolit 4 1000 14.7±2.1 5.48 42.7±3.0 6.38 42.6±3.0 5.90
5000 14.9±1.2 6.39 42.2±3.0 7.28 42.9±3.0 7.08
250 17.8±2.3 2.21 30.4±2.8 3.11 51.8±3.0 2.80

Blokus 4 1000 15.4±2.2 2.66 29.6±2.8 3.70 55.1±3.0 3.65
5000 8.6±1.7 3.28 23.5±2.6 4.32 68.0±2.8 4.43

of the games with any time setting. In three-player and four-player Chinese Check-
ers, paranoid is significantly stronger than maxn. This is because paranoid can, on
average, search more than 1 ply deeper and can therefore search a second layer of
MAX nodes more often. In six-player Chinese Checkers, maxn is at least as strong
as paranoid. In this variant, both maxn and paranoid usually do not reach a second
layer of MAX nodes, as this requires a 7-ply search. BRS has a considerable advan-
tage here, because this technique only requires a 3-ply search to reach a second layer
of MAX nodes, which happens quite often. We note that for Chinese Checkers, maxn

does not normalize the heuristic evaluation function and, as such, does not use shal-
low pruning. Empirical testing showed that this variant performs better in this game
than the default approach, where the evaluation scores are normalized and shallow
pruning is applied.

In Focus, again BRS is the best search technique and, similar to Chinese Checkers,
reaches on average the highest search depth. Maxn performs quite poorly in Focus,
where it never reaches a win rate of more than 10%.

In Rolit, the difference between BRS and paranoid is much smaller. In three-
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player Rolit, BRS is still significantly better than paranoid for short time settings,
but with 5000 ms thinking time BRS and paranoid are equally strong. In the four-
player variant, BRS and paranoid are on equal footing with any time setting. One of
the possible reasons is that, contrary to Chinese Checkers and Focus, BRS does not
reach a higher search depth than paranoid. This is true for all time settings.

Finally, in Blokus BRS achieves the highest win rate again. In this game the
average search depth is lower than in the other games. This is because Blokus has,
especially in the midgame, a high branching factor that can go up to more than 500
legal moves. Furthermore, because the board is large, computing the legal moves
for a player is quite time-consuming, which reduces the number of nodes that are
investigated per second.

General remarks

The results show that among the three tested search techniques, maxn performs the
least. In every game with any number of players and time setting, maxn has a sig-
nificantly lower win rate that both paranoid and BRS. The exception is six-player
Chinese Checkers. Because there is not much pruning possible when using paranoid
search, maxn plays at least as strong as paranoid. We remark that if better pruning
techniques are applied for maxn, this search technique may perform better in other
game variants as well. Maxn also plays relatively well in Blokus, where all players
have difficulty reaching a decent search depth. Only the BRS player can regularly
reach a second level of MAX nodes. In most games, BRS is the best search technique.
Overall, the BRS players can search slightly deeper than the paranoid players. The
exception is Rolit. In this game, the paranoid players can generally search slightly
deeper and perform on a similar level as BRS. Overall, the experimental results are
comparable with the results found by Sturtevant (2008b) and Schadd and Winands
(2011).

4.3.3 Comparison of MCTS-Based Techniques

In the second set of experiments, the performance of the three different search policies
in MCTS is tested. Each player uses a different policy: maxn (MCTS-maxn), paranoid
(MCTS-paranoid), or BRS (MCTS-BRS). They are enhanced with ε-greedy playouts
and Tree-Only Progressive History (see Section 5.2). The win rates and the median
number of playouts per move are summarized in Table 4.3. An extensive overview of
the results is given in Appendix B.2.

In Chinese Checkers, MCTS-maxn is, with any number of players and with any
time setting, the strongest search technique. Overall, MCTS-BRS performs better
than MCTS-paranoid. If more time is provided, MCTS-maxn performs relatively bet-
ter than with lower time settings. With 250 ms thinking time, MCTS-maxn wins
between 40.3% and 47.8% of the games, depending on the number of players. With
5000 ms of thinking time, the win rate increases to between 61.2% and 64.4%. MCTS-
paranoid performs relatively worse with higher time settings, while MCTS-BRS re-
mains stable. Furthermore, we note that there is overall no large difference between
the median number of playouts per move between the different search policies. This
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Table 4.3 Results of MCTS-maxn versus MCTS-paranoid versus MCTS-BRS.
MCTS-maxn MCTS-paranoid MCTS-BRS
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Chinese
Checkers

250 40.2±3.0 1,007 28.5±2.7 1,003 31.3±2.8 994
3 1000 51.7±3.0 4,318 19.9±2.4 4,368 28.4±2.7 4,257

5000 62.1±2.9 22,693 10.8±1.9 22,765 27.0±2.7 22,163

Chinese
Checkers

250 47.8±3.0 791 28.9±2.7 786 23.3±2.6 767
4 1000 52.8±3.0 3,520 19.0±2.4 3,546 28.3±2.7 3,396

5000 64.4±2.9 18,513 12.2±2.0 18,921 23.5±2.6 17,698

Chinese
Checkers

250 46.9±3.0 623 28.2±2.7 635 24.8±2.6 595
6 1000 54.4±3.0 2,792 20.7±2.4 3,033 24.9±2.6 2,725

5000 61.2±2.9 14,948 14.1±2.1 18,787 24.7±2.6 14,151
250 40.8±3.0 1,629 29.1±2.7 1,642 30.2±2.8 1,609

Focus 3 1000 42.9±3.0 6,474 26.1±2.7 6,668 31.0±2.8 6,382
5000 48.7±3.0 32,987 19.6±2.4 34,446 31.7±2.8 31,990
250 37.3±2.9 1,416 33.3±2.9 1,405 29.4±2.8 1,350

Focus 4 1000 41.2±3.0 6,310 26.1±2.7 6,619 32.8±2.8 5,945
5000 52.3±3.0 33,618 18.8±2.4 37,693 28.9±2.7 31,299
250 50.6±3.0 1,460 28.9±2.7 1,465 20.5±2.4 1,428

Rolit 3 1000 57.3±3.0 5,933 24.6±2.6 5,905 18.1±2.3 5,787
5000 63.2±2.9 30,832 20.4±2.4 30,019 16.4±2.2 29,673
250 43.6±3.0 1,496 31.4±2.8 1,497 25.0±2.6 1,409

Rolit 4 1000 50.0±3.0 6,064 27.5±2.7 6,034 22.5±2.5 5,651
5000 56.5±3.0 31,689 20.8±2.5 30,977 22.7±2.5 28,818
250 36.7±2.9 325 34.5±2.9 320 28.8±2.7 295

Blokus 4 1000 36.0±2.9 1,406 35.3±2.9 1,344 28.8±2.7 1,231
5000 33.6±2.9 6,932 34.3±2.9 6,824 32.0±2.8 6,210

is not only true in Chinese Checkers, but also in the three other games. Although, in
Chinese Checkers, if the number of players increases, the median number of playouts
drops.

In Focus, MCTS-maxn is the best technique as well, though its win rate is gen-
erally lower than in Chinese Checkers. With 250 ms thinking time, it performs only
slightly better than MCTS-BRS and MCTS-paranoid in the three- and four-player
variants. Similar to Chinese Checkers, however, MCTS-maxn performs relatively
better with higher time settings. Its win rate increases to around 50% with 5000
ms thinking time, while especially MCTS-paranoid performs worse with this time
setting.

In Rolit, MCTS-maxn is again the strongest of the three variants. In the three-
player variant of Rolit, MCTS-maxn appears to play relatively better than in the four-
player variant, while MCTS-BRS appears to play relatively better in four-player Rolit.
Similar to Chinese Checkers and Focus, the performance of MCTS-maxn increases
with more thinking time, while the performance of MCTS-paranoid decreases.

Finally, in Blokus there is no clear winner. With 250 ms and 1000 ms of thinking
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time, MCTS-maxn and MCTS-paranoid are equally strong, with MCTS-BRS slightly
behind. With 5000 ms thinking time, the three players are all on the same footing and
there is no significant difference between the players. Similar to the results in the
previous set of experiments, in Blokus the smallest number of positions is explored.
Again, this is caused by the time-consuming generation of moves.

Experiments with Vanilla MCTS

Because ε-greedy playouts and Progressive History alter the selection and the playout
phase of MCTS, we validate the previous experiments by rerunning them with Vanilla
MCTS, i.e., with ε-greedy playouts and Progressive History disabled for all players.
Only the experiments with 1000 ms of thinking time are repeated. The results are
given in Table 4.4.

Table 4.4 Results of MCTS-maxn versus MCTS-paranoid versus MCTS-BRS without
ε-greedy playouts and Progressive History.
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Chinese
Checkers

3 36.7±2.9 1,709 30.7±2.8 1,714 32.7±2.8 1,702
4 48.7±3.0 2,412 23.7±2.6 2,396 27.7±2.7 2,369
6 71.0±2.7 6,470 8.1±1.6 6,918 20.9±2.5 6,182

Focus
3 24.5±2.6 242 38.5±2.9 242 37.0±2.9 242
4 29.0±2.7 427 35.5±2.9 426 35.4±2.9 422

Rolit
3 48.5±3.0 5,983 27.1±2.7 6,022 24.4±2.6 5,827
4 49.1±3.0 6,443 26.5±2.7 6,473 24.3±2.6 5,970

Blokus 4 36.0±2.9 1,217 34.5±2.9 1,114 29.5±2.8 1,048

There are two striking results. First, the median number of playouts per move
increases with the number of players in Chinese Checkers. This is in contrast with
the results found in Table 4.3. This phenomenon is caused by the fact that the pieces
move randomly on the board and that the game is finished when one of the home
bases is filled. With more players, there are more home bases and more pieces on the
board. As a result it takes, on average, fewer moves before one of the home bases is
filled. Second, MCTS-maxn is outperformed by both MCTS-paranoid and MCTS-BRS
in Focus. This may be caused by the low number of playouts per move. Because the
moves in the playouts are chosen randomly, games can take a long time to finish.
This result is in accordance with the results in Subsection 4.3.3, where we found
that MCTS-paranoid performs relatively better and MCTS-maxn performs relatively
worse if the number of playouts is lower. Also in Chinese Checkers, playouts take
much longer than with ε-greedy playouts, except in the six-player variant.

In Rolit and Blokus, the average length of the playouts is similar to the previous
set of experiments. This is because the length of these games is not dependent on
the strategy of the players. A game of Rolit always takes 60 turns, and a game of
Blokus never takes more than 84 turns. This may explain why the results in this set
of experiments are comparable to those in Table 4.3.
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General remarks

Overall, the results reveal that MCTS clearly performs best using the standard maxn

search policy. Only in Blokus, MCTS-maxn is not significantly stronger than MCTS-
paranoid and MCTS-BRS. Without ε-greedy playouts and Progressive History, MCTS-
maxn is outperformed by MCTS-paranoid and MCTS-BRS in Focus.

This is different to the minimax framework, where paranoid and BRS significantly
outperform maxn. There are two main reasons for this difference. First, paranoid
and BRS perform well in the minimax framework because they increase the amount
of pruning. Because αβ pruning does not occur in MCTS, this advantage is non-
existent in the MCTS framework. Second, in the minimax framework, BRS reduces
the horizon effect. It allows more planning ahead because more layers of MAX nodes
are investigated. In MCTS, the advantage of having more layers of MAX nodes in the
search tree is considerably smaller. The horizon effect in MCTS is already diminished
due to the playouts. An additional problem with MCTS-BRS is that, in the tree,
invalid positions are investigated, which may reduce the reliability of the playouts.

The results also show that MCTS-maxn performs relatively better than the other
two techniques if more time is provided. Especially MCTS-paranoid performs rela-
tively worse with more thinking time. The reason for this may be that the paranoid
assumption causes the player to become too paranoid with larger search depths, sim-
ilar to paranoid in the minimax framework. In Blokus, the performance of the three
different players is stable with different time settings. Finally, the results reveal that
there is overall no large difference in the median number of playouts between the
different players. This indicates that the different search policies do not produce a
significantly different amount of overhead.

4.3.4 MCTS-Based Techniques versus BRS
The experiments in Subsection 4.3.3 revealed that MCTS-maxn is the best among the
different MCTS variants. In the next series of experiments, this result is validated
by comparing the three different search policies in MCTS against the best minimax-
based search technique, BRS (cf. Subsection 4.3.2). The results are displayed in
Table 4.5. The percentages indicate the win rate of each of the players against BRS.
An in-depth overview of the results of the matches between MCTS-maxn and BRS is
provided in Appendix B.3.

In Chinese Checkers, the win rate of the MCTS players strongly depends on the
thinking time. If 250 ms per move are provided, MCTS-maxn wins between 18.4%
and 33.3% of the games against BRS, dependent on the number of players. With 5000
ms thinking time, the win rate lies between 68.2% and 88.1% against BRS. MCTS-
paranoid and MCTS-BRS win significantly fewer games against BRS, which indicates
that MCTS-maxn is a stronger player than MCTS-paranoid and MCTS-BRS. This is
in accordance with the results found in Subsection 4.3.3.

In Focus, similar results are observed. With a lower time setting, all MCTS-based
opponents are significantly outperformed by BRS, while with 5000 ms of thinking
time per move, the win rate increases to between 55% and 70% for MCTS-maxn and
MCTS-BRS. MCTS-paranoid wins around or less than 40% of the games against BRS
with most time settings.
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Table 4.5 Win rates of the different MCTS-based techniques against BRS.

Game Players Time MCTS-maxn MCTS-paranoid MCTS-BRS
(ms) win rate (%) win rate (%) win rate (%)
250 18.4±2.3 15.0±2.2 14.6±2.1

Chinese Checkers 3 1000 42.4±3.0 29.4±2.6 35.5±2.9
5000 68.2±2.8 29.2±2.8 50.0±3.0
250 24.5±2.6 16.7±2.3 18.1±2.3

Chinese Checkers 4 1000 57.7±3.0 45.5±3.0 48.0±3.0
5000 77.6±2.5 47.1±3.0 65.8±2.9
250 33.3±2.8 25.5±2.6 24.1±2.6

Chinese Checkers 6 1000 72.1±2.7 56.4±3.0 64.5±2.9
5000 88.1±2.0 73.3±2.7 83.8±2.2
250 37.1±2.9 32.2±2.8 34.2±2.9

Focus 3 1000 53.8±3.0 37.7±2.9 48.1±3.0
5000 62.9±2.9 34.5±2.9 54.7±3.0
250 42.3±3.0 37.0±2.9 39.6±3.0

Focus 4 1000 54.3±3.0 39.7±3.0 50.5±3.0
5000 68.6±2.8 42.8±3.0 61.3±2.9
250 74.1±2.6 65.3±2.9 58.6±3.0

Rolit 3 1000 84.6±2.2 69.8±2.8 68.0±2.8
5000 87.0±2.0 68.7±2.8 69.0±2.8
250 71.2±2.7 66.6±2.9 60.9±3.0

Rolit 4 1000 80.2±2.4 66.0±2.9 64.5±2.9
5000 82.0±2.3 64.0±2.9 67.2±2.8
250 57.8±3.0 56.2±3.0 57.5±3.0

Blokus 4 1000 77.4±2.5 80.9±2.4 79.9±2.4
5000 90.5±1.8 89.1±1.9 88.0±2.0

In Rolit, the MCTS-based players perform well compared to BRS. In both the
three- and four-player variant, MCTS-maxn wins more than 70% of the games with
any time setting against BRS. Also MCTS-paranoid and MCTS-BRS win significantly
more than 60% of the games against BRS. This again shows that Rolit is a difficult
domain for BRS.

Finally, in Blokus, BRS is outperformed by the MCTS-based players as well. This
is likely because BRS can only reach a limited search depth because of the high
branching factor. The win rate of the three different MCTS players is similar, which
again shows that the three different MCTS-based players are on equal footing in
Blokus.

General remarks

The results in Table 4.5 show that MCTS-maxn is the strongest player against BRS.
This result is in accordance with the results in Subsection 4.3.3. MCTS-paranoid
and MCTS-BRS achieve a significantly lower win rate against BRS, except in Blokus.
When comparing BRS to MCTS-maxn, for the low time settings BRS significantly out-
performs MCTS-maxn in Focus and Chinese Checkers, while MCTS-maxn is stronger
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in Blokus and Rolit. With a higher time setting, MCTS-maxn becomes stronger than
BRS in all games. This is not true for MCTS-paranoid, which performs worse than
BRS in the three-player and four-player variants of Chinese Checkers and Focus,
even with high time settings. Similar to the results found in Subsection 4.3.3, MCTS-
paranoid does not benefit much from reaching larger search depths. MCTS-BRS does,
however, benefit from higher time settings. With 5000 ms of thinking time per move,
it outperforms BRS in all game variants, except in three-player Chinese Checkers,
where the two players are equally strong.

4.3.5 Minimax-Based Techniques versus MCTS-maxn

In the next set of experiments we test the performance of the three minimax-based
techniques against the strongest MCTS-based technique, MCTS-maxn. The win rates
of maxn, paranoid, and BRS against MCTS-maxn are given in Table 4.6. We note
that the win rates in the column ‘BRS’ are the inverse of the win rates under ‘MCTS-
maxn’ in Table 4.5, as these two columns both show the results of the matches between
MCTS-maxn and BRS.

Table 4.6 Win rates of the minimax-based techniques against MCTS-maxn.

Game Players Time Maxn Paranoid BRS
(ms) win rate (%) win rate (%) win rate (%)

3 250 20.8±2.5 57.7±3.0 81.6±2.3
Chinese Checkers 3 1000 4.0±1.2 22.6±2.5 57.6±3.0

3 5000 1.5±0.7 9.8±1.8 31.8±2.8
4 250 33.2±2.8 21.3±2.5 75.5±2.6

Chinese Checkers 4 1000 6.7±1.5 12.6±2.0 42.3±3.0
4 5000 3.0±1.0 3.9±1.2 22.4±2.5
6 250 36.2±2.9 24.6±2.6 66.7±2.8

Chinese Checkers 6 1000 9.3±1.8 4.5±1.3 29.9±2.7
6 5000 4.6±1.3 4.4±1.2 11.9±2.0
3 250 16.7±2.3 50.3±3.0 62.9±2.9

Focus 3 1000 8.9±1.7 31.0±2.8 46.2±3.0
3 5000 5.7±1.4 24.5±2.6 35.0±2.9
4 250 23.9±2.6 30.8±2.8 57.7±3.0

Focus 4 1000 15.6±2.2 27.4±2.7 45.7±3.0
4 5000 9.0±1.7 18.4±2.3 31.4±2.8
3 250 9.2±1.7 31.4±2.8 25.9±2.6

Rolit 3 1000 5.4±1.4 20.7±2.5 15.4±2.2
3 5000 4.4±1.2 16.7±2.3 13.0±2.0
4 250 20.1±2.4 29.3±2.8 28.8±2.7

Rolit 4 1000 13.0±2.0 26.1±2.7 19.8±2.4
4 5000 11.1±1.9 21.0±2.5 18.0±2.3
4 250 23.5±2.6 32.4±2.8 42.2±3.0

Blokus 4 1000 5.9±1.4 10.6±1.9 22.6±2.5
4 5000 1.2±0.7 2.1±0.9 9.5±1.8
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In Chinese Checkers, maxn and paranoid are much weaker than MCTS-maxn.
This result was also found by Sturtevant (2008b). BRS wins more games against
MCTS-maxn than maxn and paranoid. This validates the results presented in Table
4.2. Similar to the results found in Subsection 4.3.4, MCTS-maxn performs relatively
better with higher time settings. The win rate of the minimax-based players drops
as the players receive more thinking time. This is not only true for BRS, but also
for maxn and paranoid. Similar to the experiments in Subsection 4.3.2, maxn does
not apply normalization of the heuristic evaluation function and shallow pruning in
Chinese Checkers in this set of experiments.

In Focus, the performance of the minimax-based techniques against MCTS-maxn

decreases if more time is provided, as well. BRS wins approximately 60% of the games
with a low time setting, but its win rate drops to between 30% and 35% with 5000 ms
of thinking time. Paranoid is on equal footing with MCTS-maxn in three-player Focus
with a low time setting, but if more time is provided, the MCTS-based player performs
significantly better. Maxn wins less than 25% of the games against MCTS-maxn with
any time setting and any number of players.

In Rolit, the three different minimax-based players win around or less than 30% of
the games against MCTS-maxn. Paranoid wins slightly more games than BRS against
MCTS-maxn, which validates that paranoid is at least as strong as BRS in Rolit. In
Subsections 4.3.2 and 4.3.4 we found that both paranoid and MCTS-maxn perform at
least as well as, or better than, BRS in Rolit. When comparing paranoid to MCTS-
maxn, we find that the MCTS-based player performs best. Paranoid wins around or
less than 30% of the games against MCTS-maxn with any number of players or time
setting.

Finally, in Blokus, all minimax-based players are outperformed by MCTS-maxn

for each time setting. In Subsection 4.3.2 we found that BRS is the strongest and
maxn is the weakest minimax technique in Blokus. The results in Table 4.6 reveal a
similar result.

General remarks

These experiments confirm the results found in Subsection 4.3.2. Maxn achieves the
lowest win rate against MCTS-maxn, showing that maxn is the weakest minimax-
based search technique. The highest win rate is achieved by BRS, except in Rolit. In
Rolit, paranoid has a slightly higher win percentage than BRS against the MCTS-
maxn player, which is comparable to the results in Subsection 4.3.2, where we ob-
served that paranoid and BRS perform on a similar level. Furthermore, the results
reveal that all three players perform worse against MCTS-maxn if more time is pro-
vided. A similar result was found in Subsection 4.3.4, where the performance of the
MCTS-based search techniques increases against BRS if the amount of thinking time
is increased.



62 Search Policies for Multi-Player MCTS

4.4 Background of MCTS-Solver
The MCTS variants described in the previous sections are not able to solve positions.
Winands et al. (2008) proposed a new MCTS variant for two-player games, called
MCTS-Solver, which has been designed to play narrow tactical lines better in sudden-
death games. A sudden-death game is a game that may end abruptly by the creation
of one of a prespecified set of patterns (Allis, 1994). The variant differs from the
traditional MCTS in respect to backpropagation and selection strategy. It is able to
prove the game-theoretic value of a position given sufficient time.

In addition to backpropagating the values {0, 1
2 ,1}, representing a loss, a draw, and

a win respectively, the search also backpropagates the values ∞ and −∞, which are
assigned to a proven won or lost position, respectively. To prove that a node is a win,
it is sufficient to prove that at least one of the children is a win. In order to prove that
a node is a loss, it is necessary to prove that all children lead to a loss. If at least one
of the children is not a proven loss, then the current node cannot be proven.

Experiments showed that for the sudden-death game Lines of Action (LOA), an
MCTS program using MCTS-Solver defeats a program using MCTS by a winning
percentage of 65% (Winands et al., 2008). Moreover, MCTS-Solver performs much
better than a program using MCTS against the world-class αβ-based program MIA.
They concluded that MCTS-Solver constitutes genuine progress in solving and play-
ing strength in sudden-death games, significantly improving upon MCTS-based pro-
grams. The MCTS-Solver has also been successfully applied in games such as Hex
(Arneson et al., 2010; Cazenave and Saffidine, 2010), Shogi (Sato, Takahashi, and
Grimbergen, 2010), Twixt (Steinhauer, 2010), Tron (Den Teuling and Winands, 2012),
and Breakthrough (Lorentz and Horey, 2013).

Cazenave and Saffidine (2011) proposed to improve the MCTS-Solver using Score
Bounded Monte-Carlo Tree Search when a game has more than two outcomes, for
example in games that can end in draw positions. It significantly improved the MCTS-
Solver by taking into account bounds on the possible scores of a node in order to select
the nodes to explore. They applied this variant for solving Seki in the game of Go and
for solving small boards in Connect Four. Score Bounded Monte-Carlo Tree Search
has also been applied in simultaneous move games (Finnsson, 2012).

4.5 Multi-Player MCTS-Solver
The previous experiments revealed that MCTS-maxn is the strongest multi-player
MCTS variant. Therefore, for MCTS-maxn, we propose a multi-player variant of
MCTS-Solver, called Multi-Player MCTS-Solver (MP-MCTS-Solver). For the multi-
player variant, MCTS-Solver has to be modified, in order to accommodate for games
with more than two players. This is discussed below.

Proving a win works similarly as in the two-player version of MCTS-Solver: if
at one of the children a win is found for the player who has to move in the current
node, then this node is a win for this player. If all children lead to a win for the same
opponent, then the current node is also labeled as a win for this opponent. However,
if the children lead to wins for different opponents, then updating the game-theoretic
values becomes a non-trivial task.
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Figure 4.3: Example of backpropagating game-theoretic values in a multi-player search tree.

An example is given in Figure 4.3. Here, node E is a terminal node where Player
1 has won. This means that node B is a mate-in-one for Player 1, regardless of the
value of node F. Node E is marked as solved and receives a game-theoretic value of
(1,0,0). Nodes G, H, and I all result in wins for Player 2. Parent node D receives a
game-theoretic value of (0,1,0), because this node always leads to a win for the same
opponent of Player 1. The game-theoretic value of node A cannot be determined in
this case, because both Player 1 and Player 2 are able to win and there is no win for
Player 3. In this case, Player 3 is a kingmaker, i.e., a player who determines who will
win, without being able to win himself. This makes him unpredictable.

Update rules have to be developed to take care of such situations. We propose
three different update rules that are briefly explained below.

(1) The standard update rule only updates proven wins for the same opponent.
This means that only if all children lead to a win for the same opponent, then the
current node is also set to a win for this opponent. Otherwise, the node is not marked
as solved and the UCT value is used. A disadvantage of the standard update rule is
that it is quite conservative. We define two update rules that allow solving nodes that
lead to different winners.

(2) The paranoid update rule uses the assumption that the opponents of the root
player will never let him win. This rule is inspired by the paranoid tie-breaker rule for
maxn (Sturtevant, 2003a). Again consider Figure 4.3. Assuming that the root player
is Player 1, using the paranoid update rule, we can determine the game-theoretic
value of node A. Because we assume that Player 3 will not let Player 1 win, the game-
theoretic value of node A becomes (0,1,0). If there are still multiple winners after
removing the root player from the list of possible winners, then no game-theoretic
value is assigned to the node.

The paranoid update rule may not always give the desired result. With the para-
noid assumption, the game-theoretic value of node A is (0,1,0) (i.e., a win for Player
2). This is actually not certain, because it is also possible that Player 3 will let Player
1 win. However, because the game-theoretic value of node A denotes a win for Player
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2, and at the parent of node A Player 2 is to move, the parent of node A will also
receive a game-theoretic value of (0,1,0). This is actually incorrect, since choosing
node A does not give Player 2 a guaranteed win.

Problems may thus arise when a player in a given node gives the win to the player
directly preceding him. In such a case, the parent node will receive a game-theoretic
value, which is technically not correct. This problem can be diminished by using (3)
the first-winner update rule. When using this update rule, the player will give the win
to the player who is the first winner after him. In this way the player before him does
not get the win and, as a result, does not overestimate the position. When using the
first-winner update rule, in Figure 4.3, node A will receive the game-theoretic value
(1,0,0).

Overestimation

Overestimation of a node is a phenomenon that occurs if one or more children of a node
are proven to be a loss, but the node itself is not solved (yet). Winands, Björnsson, and
Saito (2010) provided a case where overestimation may lead to wrong evaluations and
showed how to tackle this problem by applying a threshold. If the number of visits
at a node is less than the threshold, the playout strategy is used to select a node. In
this way, children that are proven to be a loss can be selected, as long as the number
of visits is below the threshold. In MAGE, the UCT formula is applied to value solved
children if a node is not proven. For the win rate x̄i, the game-theoretic value of the
child is used, which is usually 0.1 Overestimation is abated by occasionally selecting
nodes that are a proven loss, but because the win rate is 0, non-proven nodes are
favored.

4.6 Experimental Results for Multi-Player MCTS-
Solver

In this section, we give the results of MP-MCTS-Solver with the three different update
rules playing against an MCTS player without MP-MCTS-Solver. These experiments
are only performed in Focus, because MCTS-Solver is only successful in sudden-death
games (Winands et al., 2008). Chinese Checkers, Rolit, and Blokus do not belong to
this category of games, and therefore MP-MCTS-Solver will not work well in these
games. Focus, however, is a sudden-death game and is therefore an appropriate test
domain for MP-MCTS-Solver.

The results in this section are performed with different hardware and time set-
tings than in the previous sections. The experiments are run on a cluster consisting
of AMD64 Opteron 2.4 GHz processors. Each player receives 2500 ms of thinking
time to determine the move to play. The win rates are based on 3360 games, where
each configuration of player types is played equally often.

In Table 4.7, we see that the standard update rule works well in Focus. The
win rates for the different number of players vary between 53% and 55%. The other

1If draws are allowed, the game-theoretic value may be non-zero. We remind the reader that, in Focus,
draws do not occur.
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Table 4.7 Win rates of MP-MCTS-Solver with different update rules against default
MCTS in Focus.

2 players 3 players 4 players
Type win rate (%) win rate (%) win rate (%)
Standard 53.0±1.7 54.9±1.7 53.3±1.7
Paranoid 51.9±1.7 50.4±1.7 44.9±1.7
First-winner 52.8±1.7 51.5±1.7 43.4±1.7

update rules do not perform as well. For the two-player variant, they behave and
perform similar to the standard update rule. The win rates are slightly lower, which
may be caused by statistical noise and a small amount of overhead. In the three-
player variant, MP-MCTS-Solver neither increases nor decreases the performance
significantly. In the four-player variant, the win rate of the player using MP-MCTS-
Solver is well below 50% for the paranoid and the first-winner update rules. Based on
these results we may conclude that only the standard update rule works well.

4.7 Chapter Conclusions and Future Research

Among the three minimax-based search techniques we tested, BRS turns out to be
the strongest one. Overall, it reaches the highest search depth and, because of its
tree structure, more MAX nodes are investigated than in paranoid and maxn. BRS
significantly outperforms maxn and paranoid in Chinese Checkers, Focus, and Blokus.
Only in Rolit, paranoid performs at least as strong as BRS.

In the MCTS framework, the maxn search policy appears to perform the best. The
advantages of paranoid and BRS in the minimax framework do not apply in MCTS,
because αβ pruning is not applicable in MCTS. An additional problem with MCTS-
BRS may be that, in the tree, invalid positions are investigated, which may reduce
the reliability of the playouts as well. Still, MCTS-paranoid and MCTS-BRS overall
achieve decent win rates against MCTS-maxn, especially with lower time settings.
Furthermore, MCTS-paranoid is on equal footing with MCTS-maxn in Blokus and,
in the vanilla version of MCTS, MCTS-paranoid and MCTS-BRS significantly outper-
form MCTS-maxn in Focus. Based on the results, we may conclude that the maxn

search policy in MCTS is the most robust, although the BRS and paranoid search
policies can still be competitive.

In a comparison between MCTS-maxn and BRS, MCTS-maxn overall wins more
games than BRS. In Chinese Checkers and Focus, BRS is considerably stronger with
lower time settings, while in Rolit and Blokus MCTS-maxn significantly outperforms
BRS. With higher time settings, MCTS-maxn outperforms BRS in all games with any
number of players. From this we may conclude that with higher time settings, the
MCTS-based player performs relatively better.

Finally, we proposed MP-MCTS-Solver in MCTS-maxn with three different update
rules, namely (1) standard, (2) paranoid, and (3) first-winner. This variant is able to
prove the game-theoretic value of a position. We tested this variant only in Focus,
because MP-MCTS-Solver can only work well in sudden-death games. A win rate
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between 53% and 55% was achieved in Focus with the standard update rule. The
other two update rules achieved a win rate up to 53% in the two-player variant, but
were around or below 50% for the three- and four-player variants. We may conclude
that MP-MCTS-Solver performs well with the standard update rule. The other two
update rules, paranoid and first-winner, were not successful in Focus.

In this chapter we investigated three search policies for multi-player games, i.e.,
maxn, paranoid, and BRS, in the MCTS framework. We did not consider policies de-
rived from these techniques, such as the Coalition-Mixer (Lorenz and Tscheuschner,
2006) or MP-Mix (Zuckerman, Felner, and Kraus, 2009). They use a combination of
maxn and (variations of) paranoid search. They also have numerous parameters that
have to be optimized. Tuning and testing such policies for multi-player MCTS is a
first direction of future research.

A second possible future research direction is the application of BRS variants as
proposed by Esser et al. (2013) in MCTS. The basic idea is that, besides the opponent
with the best counter move, the other opponents are allowed to perform a move as
well. These moves are selected using static move ordering. The advantage of these
variants is that no invalid positions are searched, while maintaining the advantages
of the original BRS technique.

A third future research topic is the application of paranoid and BRS policies in
the playouts of MCTS. Cazenave (2008) applied paranoid playouts to multi-player Go
and found promising results. BRS may be able to shorten the playouts, because all
but one opponents skip their turn. This may increase the number of playouts per
second, and thus increase the playing strength. Applying paranoid and BRS playouts
requires developing and implementing paranoid moves for the opponents.

MP-MCTS-Solver has proven to be a genuine improvement for the sudden-death
game Focus, though more research is necessary to improve its performance. As a
fourth direction of future research, it may be interesting to investigate the perfor-
mance of MP-MCTS-Solver in different sudden-death multi-player games, such as a
multi-player variant of Tron. Furthermore, MP-MCTS-Solver is currently only ap-
plied in MCTS-maxn. It may be interesting to apply it to MCTS-paranoid and MCTS-
BRS as well.



CHAPTER 5

Progressive History for MCTS

This chapter is an updated and abridged version of the following publications:

1. Nijssen, J.A.M. and Winands, M.H.M. (2011a). Enhancements for Multi-
Player Monte-Carlo Tree Search. Computers and Games (CG 2010) (eds.
H.J. van den Herik, H. Iida, and A. Plaat), Vol. 6515 of LNCS, pp. 238–249,
Springer, Berlin, Germany.

2. Nijssen, J.A.M. and Winands, M.H.M. (2010). Enhancements for Multi-
Player Monte-Carlo Tree Search. Proceedings of the 22nd Benelux Confer-
ence on Artificial Intelligence, Luxembourg City, Luxembourg. Extended
abstract.

In the selection phase of MCTS, nodes are chosen using a selection strategy until a
leaf node is reached. A commonly used selection strategy is Upper Confidence bounds
applied to Trees (UCT) (Kocsis and Szepesvári, 2006). This technique is based on
UCB1 (Auer et al., 2002). When nodes are visited for the first time or if the number
of visits is still small, UCT gives unreliable results. Several techniques have been
developed to solve this problem. One of such techniques is applying a threshold T
(Coulom, 2007a). If the number of visits at a node is fewer than T, instead of UCT,
the playout strategy is used to select a child. Another direction is the application of
Rapid Action-Value Estimation (RAVE). The first RAVE techniques were introduced
by Gelly and Silver (2007). The goal of RAVE is to increase the amount of usable
information for the selection strategy if the number of visits at a node is small. RAVE
uses AMAF (all-moves-as-first) values to increase the amount of usable data.

This chapter answers the second research question by introducing a new domain-
independent selection strategy for MCTS, namely Progressive History. It is a combi-
nation of Progressive Bias (Chaslot et al., 2008b) and the relative history heuristic
(Schaeffer, 1983; Winands et al., 2006). This enhancement is tested in two-player and
multi-player variants of Chinese Checkers, Focus, Rolit, and Blokus.

The remainder of this chapter is structured as follows. First, Subsection 5.1
presents previous research related to this chapter. Section 5.2 introduces the new
selection strategy called Progressive History. The experiments and the results are
given in Section 5.3. Section 5.4 provides a brief overview of the research performed
by Fossel (2010), who compared Progressive History to RAVE in the two-player game
Havannah. Finally, Section 5.5 gives the conclusions that can be drawn from the
research presented in this chapter and provides an outlook on future research.
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5.1 Related Work

This section gives a brief overview of the work related to this chapter. First, Subsec-
tion 5.1.1 explains the domain-independent selection strategy called Rapid Action-
Value Estimation (RAVE). Next, Subsection 5.1.2 discusses Progressive Bias.

5.1.1 Rapid Action-Value Estimation

Rapid Action-Value Estimation (RAVE) (Gelly and Silver, 2007) is a domain-indepen-
dent technique used to improve the selection strategy when the number of playouts is
small. RAVE uses the idea known as the all-moves-as-first (AMAF) heuristic (Brüg-
mann, 1993). Suppose that, from a node p, we use the selection strategy to select
a child i by playing a move m. With UCT, when backpropagating the result of the
playout, only the value of node i is updated. With AMAF, for each move m′ performed
after move m by the same player, the sibling of i corresponding to move m′ is updated
with the result of the playout as well (Helmbold and Parker-Wood, 2009). Each node
keeps track of both the UCT and the AMAF values.

An example is provided in Figure 5.1. In this example, the selection strategy
chooses nodes A, C, and D, corresponding to moves q, r, and s. In the backpropagation
phase, the UCT and AMAF values of these nodes are updated. Assuming that moves
q and s are performed by the same player, the AMAF value of node B is updated as
well.

A B

C

D

q

s

s

r

Figure 5.1: Example of an MCTS tree with UCT and AMAF updates.

Gelly and Silver (2007; 2011) introduced RAVE in the computer Go program
MOGO. They incorporated the AMAF heuristic in MCTS by replacing the UCT for-
mula (Formula 2.8) with Formula 5.1. Similar to standard UCT, the child i with the
highest value vi of parent p is chosen.
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vi =β×vRAV E + (1−β)×vUCT

vRAV E = AMAFa +C×
√

ln(mchildren)
ma

vUCT = x̄i +C×
√

ln(np)
ni

(5.1)

In this formula, ma indicates the number of playouts in which move a was played
at any point after node p. AMAFa is the AMAF value of move a, i.e., the average
score of all playouts in which move a was played after node p. mchildren is the sum of
ma of all children of p. β is a factor which decays over time. Gelly and Silver applied
β=

√
k

3np+k , where k is a constant which indicates the number of playouts where the
influence of the AMAF and UCT factors becomes equal.

There exist various implementations of RAVE in different games. Teytaud and
Teytaud (2010a) and Rimmel, Teytaud, and Teytaud (2011a) applied RAVE in the
game Havannah. Teytaud and Teytaud (2010a) showed that the efficiency of this tech-
nique increases with a larger board size, but decreases when the number of playouts
per move is increased. Overall, they found that RAVE is a significant improvement in
Havannah. Tom and Müller (2010) applied RAVE in the artificial game called Sum of
Switches. This game acts as a best case for this selection strategy, because the relative
value between moves is consistent at all stages of the game. They showed that, with
RAVE, the optimal move was found much faster than with UCT. Cazenave and Saf-
fidine (2010) applied RAVE in the Hex program YOPT, for which it was a significant
improvement over regular UCT.

With some games or game problems, however, RAVE does not seem to perform
well. For instance, Zhao and Müller (2008) observed that RAVE does not work for
solving local problems in Go. Sturtevant (2008b) applied it in Chinese Checkers, but
reported that it did not perform well in this game. Finnsson (2012) tested RAVE in
General Game Playing and found that, overall, it performs better than regular UCT
in two-player domains. However, in the three-player variants of Chinese Checkers
and TTCC4, RAVE did not perform better than UCT.

There also exist various variations on RAVE. Lorentz (2011) proposed a variation
called killer RAVE, in which only the most important moves are used for updating
the RAVE values. In the game of Havannah, killer RAVE turned out to be a sig-
nificant improvement. While trying to develop a more robust version of RAVE, Tom
and Müller (2011) developed RAVE-max and a stochastic variant δ-RAVE-max. These
variants allowed for correcting underestimation of RAVE in the artificial game Sum
of Switches, but were not successful in Go. Hoock et al. (2010) introduced a RAVE
variant called poolRave. This variant first builds a pool of k best moves according to
the RAVE values. Subsequently it chooses one move from the pool, which is played
by a certain probability. Otherwise, the default selection strategy is used. PoolRave
was tested in Havannah and the Go program MOGO. This enhancement provided a
significant improvement over the standard selection strategy without the poolRave
modification in both games, especially if domain knowledge was small or absent.
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5.1.2 Progressive Bias

The goal of Progressive Bias (Chaslot et al., 2008b) is to direct the search using, pos-
sibly time-expensive, heuristic domain knowledge. The disadvantage of Progressive
Bias is that it requires domain knowledge, while RAVE is domain independent. The
advantage of Progressive Bias is that, even without any playouts at a particular node,
the search can already be guided in a promising direction.

The influence of Progressive Bias is high when the number of simulations is small,
but decreases when more simulations are played to ensure that the strategy con-
verges to a pure selection strategy like UCT. To achieve this, Formula 2.8 is modified
to incorporate the domain knowledge as shown in Formula 5.2.

vi = x̄i +C×
√

ln(np)
ni

+ Hi

ni +1
(5.2)

Similar to the UCT formula, x̄i denotes the win rate of node i. ni and np indicate
the total number of times child i and its parent p have been visited, respectively. C is
a constant, which balances exploration and exploitation. Hi is a heuristic value based
on domain knowledge. The board position corresponding to node i is evaluated and a
value is assigned to the current player.

Progressive Bias was originally used in the Go program MANGO, where this tech-
nique increased the playing strength of this program significantly (Chaslot et al.,
2008b). It was also, in an adaptive form, applied in MOGO (Chaslot et al., 2010),
which was the first program to defeat a professional 9-dan Go player with a 7-stone
handicap on the 19× 19 board. Progressive Bias has been used in ERICA as well
(Huang, Coulom, and Lin, 2011), which won the Go tournament of the 15th Computer
Olympiad in 2010. Besides being used in Go, Progressive Bias was also applied in the
Lines of Action program MC-LOA by Winands et al. (2010) and in the Hex program
MoHex 2.0 by Huang et al. (2013), which both won their respective tournament at the
17th Computer Olympiad.

5.2 Progressive History

A disadvantage of Progressive Bias is that heuristic knowledge is required. A solution
is offered by using the (relative) history heuristic (Schaeffer, 1983; Winands et al.,
2006), which is used in MCTS enhancements such as the playout strategy MAST
(Finnsson and Björnsson, 2008). The history heuristic does not require any domain
knowledge. The idea behind the history heuristic is to exploit the fact that moves that
are good in a certain position are also good in other (similar) positions. For each move
the number of simulations in which it was played and the total score are stored. This
information is used to compute the relative history score. This score can subsequently
combined with the UCT selection strategy.1

1We remark that, around the same time our research was performed, Kozelek (2009) proposed a similar
idea in the game of Arimaa.
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The combination of Progressive Bias and the relative history heuristic is called
Progressive History. The heuristic knowledge Hi of Progressive Bias is replaced with
the relative history score. The child i with the highest score vi is now selected as
follows (Formula 5.3).

vi = x̄i +C×
√

ln(np)
ni

+ x̄a × W
(1− x̄i)ni +1

(5.3)

The parameters x̄i, ni, and np and the constant C are the same as in Formula
2.8. x̄a represents the average score of all games in which move a was played. W is a
constant that determines the influence of Progressive History. The higher the value
of W , the stronger the history value affects the selection of a node.

In Formula 5.3, W
(1−x̄i)ni+1 represents the Progressive Bias part and x̄a the history

heuristic part. We remark that, in the Progressive Bias part, we do not divide by the
number of visits as is done in the standard definition of Progressive Bias, but by the
number of visits multiplied by the inverse win rate, i.e., the number of losses2. In this
way, nodes that do not perform well are not biased for too long, whereas nodes that
do have a high score continue to be biased. To ensure that we do not divide by 0 if the
win rate x̄i is 1, a 1 is added in the denominator.

The move data for Progressive History is stored, for each player separately, in a
global table, while RAVE keeps track of the AMAF values in every node (or edge). An
advantage of Progressive History is that keeping track of the values globally instead
of locally at every node saves memory space. Because the size of the table does not
grow as the MCTS tree becomes larger, its memory complexity is O(1). The memory
complexity of RAVE is O(n), because the amount of memory necessary to store the
AMAF values increases linearly as the tree grows larger. Another advantage of using
a global table is that, contrary to RAVE, information may be immediately available if
a node is visited for the first time. A possible disadvantage of using a single history
table is that the available information may be less accurate for that particular part of
the tree. In order to prevent outdated information from influencing the performance
of Progressive History, the history table is emptied after a move is played in the actual
game.

We note that this implementation of Progressive History has similarities with the
Move-Average Sampling Technique (MAST) by Finnsson and Björnsson (2008). The
difference is that, instead of modifying the selection strategy, MAST is used to bias
the playouts. There exist two variations of MAST. Regular MAST updates all moves
that have been played in the tree and in the playouts. Tree-Only MAST (TO-MAST)
only updates the moves that have been played in the tree (Finnsson, 2012). When
using TO-MAST, less information is added to the table, but the information that is
added is generally more reliable. Similar to MAST, in Progressive History it is also
possible to distinguish between these two strategies. With Full-Sample Progressive
History, the history table is updated with all moves played during the selection phase
and the playout phase. With Tree-Only Progressive History, the table is only updated
with the moves that were played during the selection phase. Similar to MAST, the

2In case of a draw, if a player is awarded a score s, it is counted as 1− s loss.
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advantage of the former is that more information is available, while the advantage
of the latter is that the information is more reliable and is computationally slightly
simpler.

Instead of using the history values in Progressive History, it is also possible to use
AMAF values instead. AMAF values are typically used in RAVE. If Progressive His-
tory is used with AMAF values, it is called Progressive AMAF. This selection strategy
applies Formula 5.4 for selecting the next node in the tree.

vi = x̄i +C×
√

ln(np)
ni

+ AMAFi × W
(1− x̄i)ni +1

(5.4)

In this formula, the history value x̄a is replaced by AMAFi. This is the AMAF
value of the move corresponding to node i.

5.3 Experiments and Results
This section provides the experiments and their results. First, Subsection 5.3.1 de-
scribes the experimental setup. In Subsection 5.3.2 the parameter W is tuned against
MCTS with the standard UCT selection strategy. Next, Subsection 5.3.3 validates
that dividing by the number of losses results in a stronger performance than dividing
by the number of visits. In Subsection 5.3.4 a comparison between Full-Sample Pro-
gressive History and Tree-Only Progressive History is performed. Finally, Subsection
5.3.5 compares Progressive History to Progressive AMAF.

5.3.1 Experimental Setup
The experiments in this section are performed using MAGE (see Section 3.6). In all
experiments, each player receives 2500 ms thinking time to determine the move to
play. All experiments were performed on a server consisting of AMD OpteronT 2.2
GHz processors. For the four games, i.e., Chinese Checkers, Focus, Rolit, and Blokus,
there may be an advantage regarding the order of play and the number of instances
of each player type. To give reliable results, each possible player setup, with the
exception of setups where each player is of the same type, is played equally often,
until approximately 1500 games have been played (cf. Subsection 4.3.1). All results
are given with a 95% confidence interval.

5.3.2 Parameter Tuning and General Strength
In the first series of experiments Progressive History is tested with different values
of W against UCT in Chinese Checkers, Focus, Rolit, and Blokus. In this set of exper-
iments, the Tree-Only variant of Progressive History is used.

Table 5.1 reveals that Progressive History is a significant improvement to MCTS
in all games with any number of players. The highest win rates are achieved in two-
player Chinese Checkers. Progressive History wins over 80% of the games, with the
best result achieved with W = 5, winning 83.5% of the games. In the variants with
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Table 5.1 Win rates of Progressive History with different values of W against UCT.
2 players 3 players 4 players 6 players

Game W win rate (%) win rate (%) win rate (%) win rate (%)

Chinese
Checkers

0.1 55.0±2.5 52.7±2.5 57.5±2.5 52.3±2.5
0.25 63.3±2.4 54.7±2.5 54.3±2.5 53.1±2.5
0.5 67.2±2.4 57.2±2.5 54.8±2.5 53.2±2.5
1 74.2±2.2 58.7±2.5 56.9±2.5 53.0±2.5
3 82.6±1.9 61.1±2.5 60.1±2.4 55.1±2.5
5 83.5±1.9 61.9±2.5 61.1±2.4 56.1±2.5
7.5 80.6±2.0 60.9±2.5 59.7±2.4 55.9±2.5
10 77.3±2.1 59.3±2.5 62.3±2.4 55.8±2.5
20 70.0±2.3 56.9±2.5 60.0±2.4 54.1±2.5
50 57.1±2.5 53.9±2.5 57.7±2.5 55.2±2.5

Focus

0.1 72.0±2.3 64.9±2.4 58.2±2.5 -
0.25 72.2±2.3 67.3±2.4 56.8±2.5 -
0.5 74.9±2.2 66.6±2.4 58.4±2.5 -
1 78.3±2.1 67.9±2.4 59.9±2.4 -
3 73.0±2.2 70.0±2.3 60.5±2.4 -
5 72.1±2.3 69.0±2.3 62.0±2.4 -
7.5 69.6±2.3 69.8±2.3 59.9±2.4 -
10 67.1±2.4 68.3±2.4 60.3±2.4 -
20 60.3±2.5 65.1±2.4 58.7±2.5 -
50 49.5±2.5 61.4±2.5 58.7±2.5 -

Rolit

0.1 55.9±2.5 51.0±2.5 52.6±2.5 -
0.25 61.1±2.5 52.7±2.5 51.7±2.5 -
0.5 65.8±2.4 52.4±2.5 54.2±2.5 -
1 72.7±2.3 59.4±2.5 54.0±2.5 -
3 77.7±2.1 62.0±2.5 54.9±2.5 -
5 79.7±2.0 62.2±2.5 56.8±2.5 -
7.5 79.1±2.1 62.0±2.5 57.5±2.5 -
10 77.8±2.1 59.6±2.5 57.1±2.5 -
20 74.5±2.2 59.7±2.5 53.4±2.5 -
50 61.3±2.5 56.7±2.5 51.0±2.5 -

Blokus

0.1 - - 55.4±2.5 -
1 - - 57.5±2.5 -
5 - - 57.2±2.5 -
10 - - 58.0±2.5 -
20 - - 58.0±2.5 -
50 - - 57.9±2.5 -
100 - - 56.8±2.5 -
250 - - 54.6±2.5 -
500 - - 53.5±2.5 -
1000 - - 52.3±2.5 -
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three, four, and six players, the win rate drops significantly. The reason why Pro-
gressive History works well in Chinese Checkers is that for this game strong moves
are not dependent on the current board position. Strong moves are often moves that
move a checker far forward. These are good moves in different positions as well.

Progressive History is a considerable improvement for MCTS in Focus as well. The
best result for the two-player variant is achieved with W = 1, reaching a win rate of
78.3%. For the three-player variant, the best results are achieved with W = 3, winning
70% versus UCT. In the four-player variant, Progressive History still performs well.
With W = 5 the win rate is slightly above 60%.

For Rolit, the results are comparable to Chinese Checkers. Progressive History
wins almost 80% of the games with W = 5 in the two-player game. With three play-
ers, the highest win rate is achieved around W = 5 as well, winning about 62% of the
games. In the four-player variant, Progressive History is still a significant improve-
ment, but its highest win rate is 57.5% with W = 7.5, which is slightly lower than in
most other games.

Finally, in Blokus, Progressive History is a significant improvement as well. Com-
pared to the other games, the performance of Progressive History seems to be less
sensitive to the value of W , as similar win rates are achieved with values of W as
low as 1 or as high as 50. If the value of W increases to more than 100, the win rate
against UCT slowly starts to decrease.

Overall, Progressive History is a significant improvement in all games with any
number of players. In most games, the highest win rates are achieved with a value
of W around 5. If the value of W is smaller, the influence of Progressive History is
smaller and the win rate against UCT is closer to 50%. If the value of W is too large,
the influence of the relatively imprecise history values is too strong.

In Chinese Checkers, Focus, and Rolit, the maximum win rate of Progressive His-
tory decreases as the number of players increases. This is not caused by the uneven
distribution of player types in some configurations (e.g., 5 versus 1). Table 5.2 reveals
that the performance drops in a similar way when only the configurations are consid-
ered where the player types are evenly distributed. There are, however, two reasons
that do explain this phenomenon. The first is that, if there are fewer players, each
move is played more often in the same amount of time, because each player has more
turns per second. This results in the history table filling faster if there are fewer
players, leading to more reliable history values. The second explanation is that, with
more players, the number of losses increases faster than with fewer players. This
causes the influence of Progressive History to diminish faster.

5.3.3 Dividing by the Number of Losses

In the next series of experiments we validate whether dividing by the number of
losses, as is done in Formula 5.3, is an improvement over dividing by the number of
visits. In Table 5.3 the results are given for the former when matched against the
latter in Chinese Checkers, Focus, Rolit, and Blokus. Both players used W = 5, which
is in all games one of the best values.

The results show that, in all games with any number of players, dividing by the
number of losses performs at least as well as dividing by the number of visits. In
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Table 5.2 Win rates of Progressive History against UCT with evenly distributed
player types.

2 players 4 players 6 players
(1 vs. 1) (2 vs. 2) (3 vs. 3)

Game win rate (%) win rate (%) win rate (%)
Chinese Checkers 83.5±1.9 63.0±3.7 59.6±4.3
Focus 72.1±2.3 61.1±3.7 -
Rolit 79.7±2.0 56.7±3.8 -
Blokus - 57.4±3.8 -

the two-player variants of Chinese Checkers, Focus, and Rolit, this modification is
a significant improvement. In the three-player variants of Chinese Checkers and
Focus, dividing by the number of losses is an enhancement as well. In three-player
Rolit, however, there is no significant difference. In the four-player variants of all
games, both players are equally strong. Only in Chinese Checkers, the difference
is statistically significant. In six-player Chinese Checkers, the players are on equal
footing as well. A possible explanation for this phenomenon may be that with more
players, the number of losses is relatively higher and thus closer to the number of
visits ni. This may diminish the effect of using a different denominator.

Table 5.3 Win rates of Progressive History with W
(1−x̄i)ni+1 against Progressive History

with W
ni+1 .

2 players 3 players 4 players 6 players
Game win rate (%) win rate (%) win rate (%) win rate (%)

Chinese Checkers 56.1±2.5 54.2±2.5 52.6±2.5 49.9±2.5
Focus 74.5±2.2 61.3±2.5 51.7±2.5 -
Rolit 61.0±2.5 50.4±2.5 50.3±2.5 -

Blokus - - 52.0±2.5 -

5.3.4 Tree-Only Progressive History
The next set of experiments tests whether the computationally less intensive Tree-
Only Progressive History performs on at least the same level as Full-Sample Progres-
sive History. For both variants, W = 5 is used.

The results are given in Table 5.4. These results show that Tree-Only Progres-
sive History performs worse than Full-Sample Progressive History in two-player and
six-player Chinese Checkers. However, in two-player Focus, Tree-Only Progressive
History performs significantly better. In all other experiments, there is no significant
difference in playing strength between Full-Sample Progressive History and Tree-
Only Progressive History. On average, Tree-Only Progressive History wins slightly
more games than Full-Sample Progressive History, though this difference is not sig-
nificant. This is comparable to the results found by Finnsson (2012). He compared the
playout strategies MAST and Tree-Only MAST in General Game Playing in twelve
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different games and observed that there is, on average, no large difference in the per-
formance of the two different techniques. Because Tree-Only Progressive History is
computationally lighter, this variant is used throughout the remainder of the experi-
ments.

Table 5.4 Win rates of Tree-Only Progressive History against Full-Sample Progres-
sive History.

2 players 3 players 4 players 6 players
Game win rate (%) win rate (%) win rate (%) win rate (%)

Chinese Checkers 44.5±2.5 52.6±2.5 48.5±2.5 45.8±2.5
Focus 55.7±2.5 50.7±2.5 49.2±2.5 -
Rolit 51.6±2.5 49.8±2.5 51.0±2.5 -

Blokus - - 52.0±2.5 -

5.3.5 Application of AMAF Values
In the final set of experiments we test whether using a global history table in Pro-
gressive History performs better than using AMAF values, which are typically used
in RAVE. During preliminary experiments with the various RAVE formulas (Gelly
and Silver, 2007; Teytaud and Teytaud, 2010a; Tom and Müller, 2010) (see Appendix
A), these variants did not appear to work in multi-player games. Progressive AMAF,
which can be regarded as a RAVE variant as well, appeared to work best. Therefore,
this selection strategy is used to test the performance of Progressive History against.
The win rates of Progressive History against Progressive AMAF in Chinese Checkers,
Focus, Rolit, and Blokus are given in Table 5.5. Again, both player types use W = 5.

In Chinese Checkers with two, three, and four players, Progressive History with
history values performs significantly better than Progressive AMAF values. As the
number of players increases, the relative performance of Progressive History against
Progressive AMAF decreases. In the six-player variant, Progressive AMAF performs
on a similar level as Progressive History. In Rolit, Progressive History outperforms
Progressive AMAF in the two-player variant, but in the three-player and four-player
variants, they perform on an equal level.

In Focus and Blokus, the win rates of Progressive History against Progressive
AMAF are similar to the win rates of Progressive History against standard UCT.
This shows that the application of AMAF values does not improve the performance
over standard UCT in these games.

Overall, we may conclude that applying global data (i.e., a history table) provides
a better performance than applying local data (i.e., AMAF values).

5.4 Progressive History in Havannah
Fossel (2010) applied Progressive History to the two-player connection game Havan-
nah. This is a popular domain for the application of RAVE (Teytaud and Teytaud,
2010a; Hoock et al., 2010; Lorentz, 2011; Rimmel et al., 2011a). First, he compared
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Table 5.5 Win rates of Progressive History against Progressive AMAF.
2 players 3 players 4 players 6 players

Game win rate (%) win rate (%) win rate (%) win rate (%)
Chinese Checkers 74.2±2.2 59.0±2.5 55.6±2.5 49.2±2.5

Focus 83.2±1.9 70.3±2.3 59.1±2.5 -
Rolit 66.2±2.4 50.2±2.5 52.0±2.5 -

Blokus - - 57.8±2.5 -

RAVE to standard UCT. The following RAVE formula was applied to select the child
i with the highest value vi.

vi = (1−β)x̄i +βx̄a +C×
√

ln(np)
ni

, with β= k
ni +k

(5.5)

Depending on the parameter settings, RAVE won up to 67% out of 500 games
against UCT with C = 1.8. This result is comparable to the results achieved by Tey-
taud and Teytaud (2010a).

In the next set of experiments, Progressive History, with different values of C
and W , was matched against RAVE. Both players received 5 seconds of thinking time
per move. 500 games were played to determine the win rates. The results revealed
that Progressive History won up to approximately 60% of the games against RAVE.
The highest win rates were achieved with W = 10, winning approximately 60% of the
games against RAVE. Against UCT with C = 1.8, Progressive History won 73% of
the games. From these results it may be concluded that Progressive History is an
important enhancement for the MCTS selection strategy in the game of Havannah.

Furthermore, Fossel (2010) introduced a combination of Progressive History and
RAVE, namely Extended RAVE. This selection strategy applied the following formula.

vi = x̄i +C×
√

ln(np)
ni

+ (βir′i + (1−βi)r i)× W
(1− x̄i)ni +1

(5.6)

In this formula, the history heuristic part x̄a is replaced by (βir′i + (1−βi)r i). In
this formula, r i is the RAVE value for the parent p of node i and r′i is the RAVE
value for the parent of p for the same move as i. To test the performance of Extended
RAVE, it was matched against RAVE. The same settings were used as in the previous
experiments. The results revealed that, with C = 0.4, and W = 10 or W = 15, Ex-
tended RAVE won 60% of the games against RAVE. This indicates that Progressive
History and Extended RAVE perform on the same level. However, the results showed
that Extended RAVE is more affected by suboptimal parameter settings and therefore
Progressive History is a more robust enhancement.
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5.5 Chapter Conclusions and Future Research
This chapter introduced a domain-independent enhancement for the selection phase
of MCTS in two-player and multi-player games, namely Progressive History. This is
a combination of Progressive Bias and the relative history heuristic. We determined
the performance of this enhancement against the standard UCT selection strategy in
four different games: Chinese Checkers, Focus, Rolit, and Blokus.

The strength of Progressive History was determined by letting an MCTS player
with this enhancement play with different values of the constant W against an MCTS
player without Progressive History. Depending on the game and the number of play-
ers, Progressive History wins approximately 60% to 80% of the games against MCTS
without Progressive History with optimal values of W . With an increasing number
of players, the performance of Progressive History drops, though it still remains a
significant improvement over the standard UCT selection strategy.

Furthermore, dividing by the number of losses in the Progressive Bias part per-
forms at least as well as dividing by the number of visits. In a comparison between
Tree-Only Progressive History and Full-Sample Progressive History, there is over-
all no clear difference in playing strength between the two variants. While Tree-Only
Progressive History has less information available than Full-Sample Progressive His-
tory, its information is more reliable. In general, these two factors cancel each other
out. Finally, we observed that Progressive History overall achieves stronger play with
global data (i.e., a history table) than with local data (i.e., AMAF values). Only in six-
player Chinese Checkers and three-player and four-player Rolit, Progressive History
does not play significantly stronger. In these variants, both selection strategies per-
form equally strong.

Moreover, for the two-player game Havannah, Fossel (2010) found that Progres-
sive History outperforms UCT and RAVE by significant margins. Based on these
results we may conclude that Progressive History significantly improves MCTS in
both two-player and multi-player domains.

In multi-player games, there is still much room for improvement. Progressive
History works well in five different games and may also work well in other games.
This is a possible subject for future research. Moreover, comparisons with other vari-
ants to bias the selection strategy besides RAVE, such as prior knowledge (Gelly and
Silver, 2007), Progressive Widening (Coulom, 2007b; Chaslot et al., 2008b), and Pro-
gressive Bias (Chaslot et al., 2008b) could be performed. It may also be interesting to
combine Progressive History with any of the aforementioned techniques. Progressive
History may also be combined with N-grams (cf. Stankiewicz, Winands, and Uiter-
wijk, 2012; Tak et al., 2012; Powley, Whitehouse, and Cowling, 2013), which keeps
track of move sequences instead of single moves. By using N-grams, more context in
which the moves are played is offered.



CHAPTER 6

Search-based Playouts for
Multi-Player MCTS

This chapter is an updated and abridged version of the following publications:

1. Nijssen, J.A.M. and Winands, M.H.M. (2012b). Playout Search for Monte-
Carlo Tree Search in Multi-Player Games. Advances in Computer Games
(ACG 13) (eds. H.J. van den Herik and A. Plaat), Vol. 7168 of LNCS, pp.
72–83, Springer, Berlin, Germany.

2. Nijssen, J.A.M. and Winands, M.H.M. (2012c). Playout Search for Monte-
Carlo Tree Search in Multi-Player Games. Proceedings of the 24th Benelux
Conference on Artificial Intelligence (eds. J.W.H.M. Uiterwijk, N. Roos, and
M.H.M. Winands), pp. 309–310, Maastricht, The Netherlands. Extended
abstract.

For the playouts in MCTS, a tradeoff between search and knowledge has to be
made. The more knowledge is added, the slower each playout gets, decreasing the
number of playouts per second. The trend seems to favor fast simulations with com-
putationally light knowledge, although recently, adding more heuristic knowledge
at the cost of slowing down the playouts has proven to be beneficial in some games
(cf. Winands and Björnsson, 2011). Game-independent enhancements in the playout
phase of MCTS such as Move-Average Sampling Technique (Finnsson and Björns-
son, 2008), Predicate-Average Sampling Technique (Finnsson and Björnsson, 2010),
Feature-Average Sampling Technique (Finnsson and Björnsson, 2010), Last Good Re-
ply (Drake, 2009), Last Good Reply with Forgetting (Baier and Drake, 2010), RAVE
(Rimmel, Teytaud, and Teytaud, 2011b), and N-grams (Tak et al., 2012) have shown
to increase the playing strength of MCTS programs significantly.

The quality of the playouts can also be enhanced by applying search techniques.
Winands and Björnsson (2011) proposed αβ-based playouts for the two-player game
Lines of Action. Although computationally intensive, it significantly improved the
playing strength of the MCTS-based program MC-LOA.

This chapter answers the third research question by introducing two-ply search-
based playouts for MCTS in multi-player games. Instead of using computationally
light knowledge in the playout phase, two-ply minimax-based searches, equipped with
a heuristic evaluation function, are used to determine the moves to play. We test three
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different search techniques that may be used for search-based playouts. These search
techniques are maxn, paranoid, and Best-Reply Search (BRS). Search-based playouts
are tested in the three-player and four-player variants of Chinese Checkers and Focus.
The search-based playouts are compared to random, greedy, and one-ply playouts.

The remainder of this chapter is structured as follows. First, Section 6.1 provides
a background on applying knowledge and search techniques in the playout phase of
MCTS. Next, Section 6.2 gives an overview of three different two-ply search-based
playout strategies in multi-player MCTS. The experimental results are discussed in
Section 6.3. Finally, Section 6.4 provides the chapter conclusions and an outlook on
future research.

6.1 Related Work

There exist various playout strategies that incorporate small searches in the playouts
to increase their quality.

Teytaud and Teytaud (2010b) introduced decisive and anti-decisive moves for the
selection and the playout phase of MCTS. Decisive moves are moves that immediately
lead to a win for the current player. Anti-decisive moves are moves that prevent the
opponent from making a decisive move on their next turn. At each position during the
playouts, a small search is performed to determine whether the player has decisive or
anti-decisive moves. If he does, then one such move is played. Otherwise, the default
strategy is used. They showed that, despite the computational overhead caused by
the searches, the performance of MCTS in the two-player game Havannah can be
significantly improved by searching for decisive and anti-decisive moves. A similar
playout strategy was used by Lorentz (2011) in the MCTS-based Havannah program
WANDERER. Checking for forced wins in the playouts increases the playing strength
of this program significantly.

Winands and Björnsson (2011) described the application of αβ search in the
MCTS-based Lines of Action (LOA) program MC-LOA. The new version of this pro-
gram, MC-LOAαβ, applied two-ply αβ searches to choose moves during the playouts.
A heuristic board evaluation function was used to assign values to the leaf nodes
of the search trees. The αβ search was enhanced with killer moves and aspiration
search to reduce the overhead. Round-robin tournaments against a different LOA
program, the αβ-based program MIA, and the standard version of MC-LOA revealed
that MC-LOAαβ performed better with increasing thinking time for the players. With
30 seconds of thinking time per move, MC-LOAαβ was able to defeat both opponents
in approximately 60% of the games, while with only 1 second of computing time, MC-
LOAαβ was outperformed by both MIA and the standard version of MC-LOA. The
main conclusion that could be drawn was that the small αβ searches in the playout
can improve the performance of an MCTS program significantly, provided that the
players receive sufficient thinking time per move.

Baier and Winands (2013) applied one-ply to four-ply searches in the playout
phase. Because no game-specific knowledge was applied, these searches were only
used to find forced wins or losses in the playouts. They tested this enhancement in
the two-player games Connect-Four and Breakthrough. The results showed that in
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Connect-Four the application of two-ply and three-ply searches increased the perfor-
mance of an MCTS-based player significantly. With two-ply searches, the win rate
was 72.1%± 1.9 against MCTS with random playouts. In Breakthrough, however,
these searches caused MCTS to perform considerably worse. This was caused by the
large amount of overhead.

6.2 Search-Based Playouts in Multi-Player MCTS

For multi-player games, the basic αβ search technique cannot be applied to determine
which moves to choose during the playout phase of the MCTS algorithm. Instead, one
of the minimax-based multi-player techniques, i.e., maxn, paranoid, or BRS, is used
for selecting moves in the playouts. These searches are performed up to two plies.
A static board evaluator is used to assign a value to the leaf nodes of these small
minimax-based search trees. The three different playout strategies are discussed in
Subsections 6.2.1, 6.2.2, and 6.2.3, respectively.

6.2.1 Two-Ply Maxn

For each move in the playouts, a two-ply maxn search tree is built where the current
player is the root player and the first opponent plays at the second ply. Both the root
player and the first opponent try to maximize their own score. All other opponents
are not taken into consideration. In maxn, shallow pruning may be applied. However,
because in practice there is barely any pruning, especially in small two-ply searches,
shallow pruning is not applied. An example of a playout with two-ply maxn searches
in a three-player game is provided in Figure 6.1.
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Figure 6.1: Two-ply maxn searches in a three-player game.
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6.2.2 Two-Ply Paranoid

Similar to maxn, a two-ply search tree is built for each move in the playout where the
current player is the root player and the first opponent plays at the second ply. Again,
all other opponents are not taken into account. The root player tries to maximize
its own score, while the first opponent tries to minimize the root player’s score. In a
two-ply paranoid search tree, αβ-pruning is possible. In Figure 6.2, an example of a
playout with two-ply paranoid searches is provided.

This playout strategy is different to Paranoid UCT proposed by Cazenave (2008).
With two-ply paranoid playouts, each player plays in a paranoid way against one of
his opponents during the playouts. With Paranoid UCT the root player (of the MCTS
tree) greedily selects moves to improve his own position, while the opponents play
moves to decrease the root player’s position.
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Figure 6.2: Two-ply paranoid searches in a three-player game.

6.2.3 Two-Ply BRS

The two-ply BRS search trees are similar to the aforementioned paranoid trees. The
difference is that at the second ply, not only the moves of the first opponent are con-
sidered, but the moves of all opponents are investigated. Similar to paranoid search,
αβ-pruning is possible. An advantage of this technique is that all opponents are taken
into consideration. A disadvantage is that BRS searches in the playouts are more ex-
pensive. The branching factor at the second ply is higher than in maxn or paranoid,
because it contains moves by all opponents, instead of only one. This may reduce the
number of playouts per second significantly. An example of two-ply BRS searches in
a playout of a three-player game is given in Figure 6.3.
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Figure 6.3: Two-ply BRS searches in a three-player game.

6.2.4 Search Enhancements

The major disadvantage of incorporating two-ply search in the playout phase of MCTS
is the reduction of the number of playouts per second (Winands and Björnsson, 2011).
In order to prevent this reduction from outweighing the benefit of the increase in
quality of the playouts, enhancements may be implemented to speed up the search
and keep the reduction of the number of playouts to a minimum. The following en-
hancements are employed to speed up the search-based playouts.

The number of expensive two-ply searches can be reduced by using ε-greedy play-
outs (Sutton and Barto, 1998; Sturtevant, 2008a). With a probability of ε, a move is
chosen uniform randomly. Otherwise, the two-ply search-based playout strategy is
used to compute the next move. An additional advantage of ε-greedy playouts is that
the presence of this random factor gives more varied playouts and may prevent the
playouts from being stuck in ‘local optima’, where all players keep moving back and
forth. Furthermore, ε-greedy playouts provide more balance between exploration and
exploitation.

The amount of αβ-pruning in a tree can be increased by applying move ordering.
The ordering of the moves is based on a static move evaluator. In the best case, the
number of evaluated positions in a two-ply search is reduced from O(b2) to O(2b−
1) (Knuth and Moore, 1975). The size of the tree can be further reduced by using
k-best pruning. Only the k best moves, according to the static move ordering, are
investigated (Winands and Björnsson, 2011). This reduces the branching factor of
the tree from b to k. The parameter k should be chosen such that it is significantly
smaller than b, while avoiding the best move being pruned. Move ordering and k-best
pruning are used to limit the branching factor and enhance the amount of pruning in
maxn, paranoid, and BRS. We remark that for BRS, at the second ply, k moves are
investigated in total, instead of k moves per opponent.
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Another move ordering technique is applying killer moves (Akl and Newborn,
1977). In each search, two killer moves are always tried first. These are the two
last moves that were best or caused a cutoff, at the current depth. If the search is
completed, the killer moves for that specific level in the playout are stored, such that
they can be used during the next MCTS iterations. Killer moves are only used with
search techniques where αβ-pruning is possible, i.e., paranoid and BRS search.

The amount of overhead may also be reduced by reusing trees between searches.
For instance, in Figure 6.1, the subtree of node A, including the generated moves c
and d, may be reused as this node becomes the root node in the next search. Because
these nodes and the corresponding moves do not need to be created or generated
again, the amount of overhead may be reduced. For maxn and paranoid, the subtrees
may directly be reused. For BRS, this is slightly less trivial, because the moves of the
other opponents need to be removed first. For instance, in Figure 6.3 the moves of
Player 3, e and f , have to be removed from node A before it can be reused.

Other enhancements were tested, but they did not improve the performance of the
MCTS program. The application of transposition tables (Greenblatt et al., 1967) was
tested, but the information gain did not compensate for the overhead. Also, aspira-
tion search (Marsland, 1986) did not speed up the search significantly. This can be
attributed to the limited amount of pruning possible in a two-ply search tree.

6.3 Experiments and Results

This section describes the experiments and results to determine the playing strength
of the different search-based playout strategies. First, the experimental setup is dis-
cussed in Subsection 6.3.1. Next, Subsection 6.3.2 investigates how the different
playout strategies affect the quality of the playouts. Subsection 6.3.3 provides an
overview on how the different playout strategies affect the number of playouts per
second. Finally, in Subsection 6.3.4, the speed factor is taken into account by limit-
ing the experiments by computation time per move. These experiments are run with
5000 ms and 30,000 ms per move.

6.3.1 Experimental Setup

The experiments in this section are performed with the computer program MAGE.
It uses the enhancements, parameter settings and evaluation functions described in
Section 3.6, including Tree-Only Progressive History with W = 5 and the maxn search
policy. All players, except the one with random playouts, use ε-greedy playouts with
ε = 0.05 and k-best pruning with k = 5. These values were achieved by systematic
testing with values ε ∈ [0,1] and k ∈ [2,10]. The experiments are run on a cluster
consisting of AMD64 Opteron 2.4 GHz processors. In order to test the performance of
the two-ply search-based playouts, several round-robin tournaments are performed
where each participating player uses a different playout strategy. Due to the time-
consuming nature of these experiments, they are only performed in the three-player
and four-player variants of Chinese Checkers and Focus. The following playout strate-
gies are used as a comparison for the search-based playouts.
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Random move selection. Moves are selected in a uniform random way. Each move
has an equal probability of being selected.

Static move ordering. The static move ordering (SMO) is applied to evaluate all
possible moves. The move with the highest heuristic value is played. Because the
move evaluator generally uses light heuristic knowledge (see Chapter 3), this play-
out strategy is relatively fast. This is the default playout strategy that is applied in
Chapters 4, 5, and 7.

One-ply search. The k best moves according to the static move ordering are inves-
tigated and the resulting board positions are evaluated using the static board eval-
uator (see Chapter 3). This evaluation is more time-expensive than greedy move se-
lection, because the moves have to be played (and undone afterwards). Furthermore,
the board evaluator, which is more complex, is used to evaluate (at most) k different
board positions.

In each match of the round-robin tournament, two different player types partic-
ipate. In order to fill all seats in the three-player and four-player games, multiple
instances of each player type may participate. For both games, there may be an ad-
vantage regarding the order of play and the number of different players. In a three-
player game there are 23 = 8 different player-type assignments. Games where only
one player type is playing are not interesting, leaving 6 ways to assign player types.
For four players, there are 24−2= 14 assignments. Each assignment is played multi-
ple times until approximately 1500 games are played and each assignment is played
equally often. In Table 6.1, 95% confidence intervals of some win rates for 1500 games
are given.

Table 6.1 95% confidence intervals of some win rates for 1500 games.
Win percentage Confidence interval

50% ± 2.5%
40% / 60% ± 2.5%
30% / 70% ± 2.3%
20% / 80% ± 2.0%

6.3.2 Fixed Number of Playouts per Move

In the first set of experiments, all players are allowed to perform 5000 playouts per
move. The results are given in Table 6.2. The numbers are the win percentages of the
players denoted on the left against the players denoted at the top.

The results show that for three-player Chinese Checkers, BRS and paranoid are
the best playout strategies, closely followed by maxn. BRS wins 53.4% of the games
against maxn, which is a statistically significant difference, and 50.9% against para-
noid. These three techniques perform significantly better than one-ply and SMO. The
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Table 6.2 Round-robin tournament of the different playout strategies in Chinese
Checkers and Focus with 5000 playouts per move (win%).

Random SMO One-ply Maxn Paranoid BRS Average
Random - 0.0 0.1 0.1 0.0 0.0 0.0
SMO 100.0 - 25.2 20.9 21.2 18.3 37.1
One-ply 99.9 74.8 - 44.5 40.5 38.9 59.7
Maxn 99.9 79.1 55.5 - 48.1 46.6 65.8
Paranoid 100.0 78.8 59.5 51.9 - 49.1 67.9
BRS 100.0 81.7 61.1 53.4 50.9 - 69.4

Three-player Chinese Checkers

Random SMO One-ply Maxn Paranoid BRS Average
Random - 1.1 0.5 0.7 1.0 0.9 0.8
SMO 98.9 - 30.3 27.6 26.9 22.9 41.3
One-ply 99.5 69.7 - 47.4 45.1 39.7 60.3
Maxn 99.3 72.4 52.6 - 49.1 48.1 64.3
Paranoid 99.0 73.1 54.9 50.9 - 46.2 64.8
BRS 99.1 77.1 60.3 51.9 53.8 - 68.4

Four-player Chinese Checkers

Random SMO One-ply Maxn Paranoid BRS Average
Random - 6.1 3.8 2.7 3.4 2.1 3.6
SMO 93.9 - 44.5 38.4 38.5 33.3 49.7
One-ply 96.2 55.5 - 44.3 44.1 40.5 56.1
Maxn 97.3 61.6 55.7 - 52.0 45.2 62.4
Paranoid 96.6 61.5 55.9 48.0 - 44.5 61.3
BRS 97.9 66.7 59.5 54.8 55.5 - 66.9

Three-player Focus

Random SMO One-ply Maxn Paranoid BRS Average
Random - 11.3 10.3 6.7 5.1 4.5 7.6
SMO 88.7 - 42.0 35.0 35.2 33.4 46.9
One-ply 89.7 58.0 - 43.3 42.6 40.1 54.7
Maxn 93.3 65.0 56.7 - 50.5 48.5 62.8
Paranoid 94.9 64.8 57.4 49.5 - 48.2 63.0
BRS 95.5 66.6 59.9 51.5 51.8 - 65.1

Four-player Focus
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win rates against one-ply are approximately 55% to 60% and against SMO around
80%. The MCTS player with random playouts barely wins any games.

In the four-player variant, maxn, paranoid, and BRS remain the best techniques,
where BRS performs slightly better than the other two. Maxn and paranoid are on
equal footing. BRS wins 53.8% of the games against paranoid and 51.9% against
maxn. The win rates of maxn, paranoid, and BRS are around 75% against SMO and
from 52.6% to 60.3% against one-ply. Random wins slightly more games than in the
three-player variant, but its performance is still poor.

For three-player Focus, the best technique is BRS, winning 54.8% against maxn

and 55.5% against paranoid. Maxn and paranoid are equally strong. The win rates of
maxn, paranoid, and BRS are more than 60% against SMO and between 55% and 60%
against one-ply. Compared to Chinese Checkers, random wins relatively more games
in Focus. This is because of the progression property (Winands et al., 2010; Finnsson,
2012) in these two games. Some games progress towards a natural termination with
every move made while other allow moves that only maintain a status quo. In Focus
there is some, though little, natural progression, because captured pieces of the oppo-
nents cannot be lost. In Chinese Checkers, however, there is no natural progression at
all, because pieces may move away from the home base. The less natural progression
there is in games, the less effective random playouts become.

BRS is also the best technique in four-player Focus, though it is closely followed
by maxn and paranoid. The latter two search strategies are equally strong. BRS wins
51.5% of the games against maxn and 51.8% against paranoid. Random performs
relatively better in the four-player variant than in the three-player variant, though it
is still significantly weaker than the search strategies that are enhanced with domain
knowledge.

Overall, the highest win rates are achieved by applying two-ply BRS searches
in the playouts. In all games, BRS performs significantly better than all opponents,
though the difference with paranoid in three-player Chinese Checkers, and with maxn

and paranoid in four-player Focus, is relatively small. Maxn and paranoid perform,
in all variants, on an equal level. Because these playout strategies do not investigate
the moves of all opponents during the two-ply searches, they do not increase the reli-
ability of the playouts as much as BRS. All two-ply search-based playouts outperform
one-ply and SMO in all game variants. This shows that applying two-ply searches in
the playouts does significantly improve the reliability of the playouts. One-ply per-
forms better than SMO in all games. The reason for this is that the board evaluator
computes the effect of a move on the global board position, while the computation-
ally lighter move evaluator only values local effects. Random playouts are by far the
weakest playout strategy in all games.

6.3.3 Overhead

For reference, Table 6.3 shows the median number of playouts per second for each type
of player in each game variant. These numbers were obtained from the experiments
in the previous section. Note that at the start of the game, the number of playouts
is smaller. As the game progresses, the playouts become shorter and the number of
playouts per second increases.
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Maxn and BRS are the slowest playout strategies. This is caused by the lack of
pruning and a higher branching factor at the opponent’s ply, respectively. Among the
two-ply search-based playout strategies, the speed reduction for paranoid is the small-
est. The results in this table furthermore underline that one-ply is overall slower
than SMO. This is because the board evaluator is more time-expensive than the move
evaluator.

Table 6.3 Median number of playouts per second for each type of player in each game
variant.

Game Random SMO One-ply Maxn Paranoid BRS
Chinese Checkers (3p) 2419 3489 2421 517 1008 649
Chinese Checkers (4p) 1786 2841 1862 379 744 360
Focus (3p) 800 5476 4686 982 1678 756
Focus (4p) 724 5118 4413 1063 1847 561

6.3.4 Fixed Amount of Time per Move

To test the influence of the reduced number of playouts per second in the two-ply
search-based playouts, in the next series of experiments the players receive a fixed
amount of time to compute the best move. These experiments are performed with
short (5000 ms per move) and long (30,000 ms per move) time settings.

5000 ms per move

In the second set of experiments, each player receives 5000 ms thinking time per
move. The results of the round-robin tournament are given in Table 6.4.

In three-player Chinese Checkers, one-ply and paranoid are the best playout
strategies. Paranoid wins 49.2% of the games against one-ply and 68.5% against
SMO. BRS ranks third, followed by maxn and SMO. Similar to the previous set of
experiments, random barely wins any games.

In four-player Chinese Checkers, one-ply is the best strategy, closely followed
by paranoid. One-ply wins 53.7% of the games against paranoid. Paranoid is still
stronger than SMO, winning 64.6% of the games. BRS comes in third place, outper-
forming maxn and SMO. Again, random is by far the weakest playout strategy.

One-ply also performs best in three-player Focus. Paranoid plays as strong as
SMO, with paranoid winning 51.9% of the games against SMO. One-ply wins 56.8%
of the games against SMO and 53.9% against paranoid. SMO and paranoid perform
better than BRS and maxn. These two techniques perform equally strong.

In four-player Focus, paranoid overall performs slightly better than in the three-
player variant and plays as strong as one-ply. Paranoid wins 51.7% of the games
against one-ply and 59.9% against SMO. Maxn also performs significantly better than
in the three-player version. It is as strong as one-ply and better than SMO, winning
58.9% of the games against the latter. The performance of BRS in the four-player
variant is significantly lower than paranoid, maxn, and one-ply.
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Table 6.4 Round-robin tournament of the different playout strategies in Chinese
Checkers and Focus for time settings of 5000 ms per move (win%).

Random SMO One-ply Maxn Paranoid BRS Average
Random - 0.1 0.0 0.0 0.0 0.3 0.1
SMO 99.9 - 28.7 42.7 31.5 36.1 47.8
One-ply 100.0 71.3 - 62.5 50.8 58.2 68.6
Maxn 100.0 57.3 37.5 - 36.1 43.5 54.9
Paranoid 100.0 68.5 49.2 63.9 - 55.7 67.5
BRS 99.7 63.9 41.8 56.5 44.3 - 61.2

Three-player Chinese Checkers

Random SMO One-ply Maxn Paranoid BRS Average
Random - 0.6 1.1 1.1 0.7 1.7 1.0
SMO 99.4 - 33.7 45.9 35.4 42.9 51.5
One-ply 98.9 66.3 - 60.5 53.7 56.2 67.1
Maxn 98.9 54.1 39.5 - 40.3 46.6 55.9
Paranoid 99.3 64.6 46.3 59.7 - 56.2 65.2
BRS 98.3 57.1 43.8 53.4 43.8 - 59.3

Four-player Chinese Checkers

Random SMO One-ply Maxn Paranoid BRS Average
Random - 1.5 1.6 2.9 2.7 2.9 2.3
SMO 98.5 - 43.2 54.2 48.1 51.8 59.2
One-ply 98.4 56.8 - 58.9 53.9 57.9 65.2
Maxn 97.1 45.8 41.1 - 43.5 50.7 55.6
Paranoid 97.3 51.9 46.1 56.5 - 52.7 60.9
BRS 97.1 48.2 42.1 49.3 47.3 - 56.8

Three-player Focus

Random SMO One-ply Maxn Paranoid BRS Average
Random - 7.1 5.7 7.0 6.5 7.1 6.7
SMO 92.9 - 42.3 41.1 40.1 43.9 52.1
One-ply 94.3 57.7 - 51.3 48.3 54.5 61.2
Maxn 93.0 58.9 48.7 - 47.9 55.9 60.9
Paranoid 93.5 59.9 51.7 52.1 - 54.3 62.3
BRS 92.9 56.1 45.5 44.1 45.7 - 56.9

Four-player Focus
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Overall, BRS and maxn perform relatively worse, compared to the previous set
of experiments, while the performance of one-ply and SMO is relatively better. The
win rates of paranoid with 5000 ms per move are similar to the win rates with 5000
samples per move. Paranoid and one-ply are the best playout strategies if the players
receive 5000 ms of thinking time per move. BRS, which was the best playout strategy
in the first series of experiments, performs worse than one-ply and paranoid in all
game variants. Maxn suffers from the lower number of playouts as well. It is out-
performed by one-ply and paranoid in all games, and by BRS in Chinese Checkers.
SMO performs relatively better with 5000 ms per move than with 5000 samples per
move, but it still performs worse than all playout strategies, except random, in Chi-
nese Checkers and four-player Focus. Random is again the weakest playout strategy
in all game variants.

30,000 ms per move

In the final set of experiments, all players receive 30,000 ms of computation time per
move. Because these games take much time to finish, only around 500 games are
played per match. In Table 6.5, 95% confidence intervals of some win rates for 500
games are given. The results are given in Table 6.6.

Table 6.5 95% confidence intervals of some win rates for 500 games.
Win percentage Confidence interval

50% ± 4.4%
40% / 60% ± 4.3%
30% / 70% ± 4.0%
20% / 80% ± 3.5%

In the three-player variant of Chinese Checkers, paranoid is the best playout
strategy. While its win rate against one-ply is not significantly above 50%, its overall
win rate against all opponents, which is 69.6%, is significantly higher than the overall
win rate of one-ply, which is 65.6%. BRS ranks third, outperforming maxn and SMO.
While it wins 49.8% of the games against one-ply, its overall win rate is significantly
lower. MCTS with random playouts did not win a single game against any of the
opponents.

In Chinese Checkers with four players, one-ply and paranoid are the strongest
playout strategies, closely followed by BRS. Paranoid wins 50.4% of the games against
one-ply and 52.8%, against BRS. The two-ply search-based techniques all significantly
outperform SMO, winning between 55% and 65%.

In three-player Focus, BRS performs especially well with 30,000 ms of thinking
time per move. In the previous set of experiments, BRS was outperformed by both
one-ply and paranoid, but in this set of experiments it performs slightly better than
paranoid, winning significantly more games overall, and is on equal footing with one-
ply. Maxn ranks fourth. It wins less than 50% of the games against one-ply, paranoid,
and BRS, but it outperforms SMO with a significant margin. While random wins
more games in Focus than in Chinese Checkers, it still performs the worst.
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Table 6.6 Round-robin tournament of the different playout strategies in Chinese
Checkers and Focus for time settings of 30,000 ms per move (win%).

Random SMO One-ply Maxn Paranoid BRS Average
Random - 0.0 0.0 0.0 0.0 0.0 0.0
SMO 100.0 - 31.9 32.1 27.0 35.7 45.3
One-ply 100.0 68.1 - 61.9 47.8 50.2 65.6
Maxn 100.0 67.9 38.1 - 34.1 43.7 56.8
Paranoid 100.0 73.0 52.2 65.9 - 57.1 69.6
BRS 100.0 64.3 49.8 56.3 42.9 - 62.3

Three-player Chinese Checkers

Random SMO One-ply Maxn Paranoid BRS Average
Random - 1.2 2.8 1.0 1.0 0.8 1.4
SMO 98.8 - 34.3 42.1 35.3 38.5 49.8
One-ply 97.2 65.7 - 58.1 49.6 53.2 64.8
Maxn 99.0 57.9 41.9 - 41.9 43.8 56.9
Paranoid 99.0 64.7 50.4 58.1 - 52.8 65.0
BRS 99.2 61.5 46.8 56.2 47.2 - 62.2

Four-player Chinese Checkers

Random SMO One-ply Maxn Paranoid BRS Average
Random - 4.0 2.8 4.8 3.4 5.6 4.1
SMO 96.0 - 38.7 42.7 40.9 37.9 51.2
One-ply 97.2 61.3 - 56.7 52.2 49.4 63.4
Maxn 95.2 57.3 43.3 - 46.0 44.2 57.2
Paranoid 96.6 59.1 47.8 54.0 - 48.0 61.1
BRS 94.4 62.1 50.6 55.8 52.0 - 63.0

Three-player Focus

Random SMO One-ply Maxn Paranoid BRS Average
Random - 12.5 9.3 6.3 7.9 8.7 8.9
SMO 87.5 - 40.7 36.5 37.5 42.1 48.9
One-ply 90.7 59.3 - 46.8 45.4 49.6 58.4
Maxn 93.7 63.5 53.2 - 50.2 48.2 61.8
Paranoid 92.1 62.5 54.6 49.8 - 50.8 62.0
BRS 91.3 57.9 50.4 51.8 49.2 - 60.1

Four-player Focus
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Finally, in four-player Focus, the two-ply search-based playouts overall perform
best. Maxn and paranoid are equally strong, closely followed by BRS. Maxn, paranoid,
and BRS all win approximately 50% of the game against each other. Against SMO,
Maxn and paranoid win around 63% of the games, while they win around 54% of
the games against one-ply. BRS wins approximately 58% and 50% against SMO and
one-ply, respectively.

Overall, the two-ply search-based playout strategies perform relatively better
with 30,000 ms of thinking time per move, compared to 5000 ms of thinking time.
On average, the two-ply paranoid playout strategy achieves the highest win rates in
the four different game variants. In three-player Chinese Checkers, it outperforms
all other playout strategies. In four-player Chinese Checkers and four-player Focus,
it performs on a similar level as one-ply and maxn, respectively. Only in three-player
Focus, one-ply performs slightly better than paranoid. Compared to the previous set
of experiments, BRS seems to benefit most from the additional thinking time. Espe-
cially in Focus, its performance increases by a significant margin. SMO and one-ply
perform relatively worse with more computation time. For these playout strategies,
the advantage of having more playouts per second is diminished.

The results of the three sets of experiments in the four different domains are
summarized in Figure 6.4.
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Figure 6.4: Summary of the average win rates of the different playout strategies in the four
game variants.
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6.4 Chapter Conclusions and Future Research
In this chapter we proposed search-based playouts for improving the playout phase
of MCTS in multi-player games. Two-ply maxn, paranoid, and BRS searches were
applied to compute the moves to play in the playout phase. Enhancements such as
ε-greedy playouts, move ordering, killer moves, k-best pruning and tree reusing were
implemented to speed up the search.

The results show that search-based playouts significantly improve the quality of
the playouts in MCTS. Among the different playout strategies, BRS performs best, fol-
lowed by paranoid and maxn. This benefit is countered by a reduction of the number
of playouts per second. Especially BRS and maxn suffer from this effect. Among the
tested two-ply search-based playouts, paranoid overall performs best with both short
and long time settings. With more thinking time, the two-ply search-based playout
strategies performed relatively better than the one-ply and SMO strategies. This in-
dicates that with longer time settings, more computationally expensive playouts may
be used to increase the playing strength of MCTS-based players. Under these con-
ditions, search-based playouts outperforms playouts using light heuristic knowledge
in the four-player variant of Focus and the three-player variant of Chinese Checkers.
Based on the experimental results we may conclude that search-based playouts for
multi-player games may be beneficial if the players receive sufficient thinking time.
Though the results in Chapter 4 have shown that MCTS-based techniques perform
better in multi-player games than minimax-based techniques, the latter search tech-
niques still play a significant role as they can be applied in the playouts.

There are four directions for future research. First, it may be interesting to test
search-based playouts in other games as well. Because of the time-consuming nature
of the experiments, they were only performed in three-player and four-player Chinese
Checkers and Focus. Second, the two-ply searches may be further optimized. Though
a two-ply search will always be slower than a one-ply search, the current speed dif-
ference could be reduced further. This can be achieved for instance by improved move
ordering or lazy evaluation functions. The third research direction is the application
of three-ply searches in the playout. While these playouts are more time consuming
than two-ply search-based playouts, they may increase the reliability of the playouts
even more. While Winands and Björnsson (2011) noted that three-ply αβ searches
in the MCTS playouts for the two-player game Lines of Action are too expensive,
we anticipate that three-ply search-based playouts may be beneficial with increased
computing power and enhancements such as parallelizing MCTS (Enzenberger and
Müller, 2010). Fourth, it may be interesting to investigate how two-ply search-based
playouts perform against game-independent playouts strategies such as Last-Good
Reply (Drake, 2009) or Move-Average Sampling Technique (Finnsson and Björnsson,
2008).
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CHAPTER 7

MCTS for a Hide-and-Seek
Game

This chapter is an updated and abridged version of the following publications:

1. Nijssen, J.A.M. and Winands, M.H.M. (2011b). Monte-Carlo Tree Search for
the Game of Scotland Yard. Proceedings of the 2011 IEEE Conference on
Computational Intelligence and Games (eds. S.-B. Cho, S.M. Lucas, and P.
Hingston), pp. 158–165, IEEE.

2. Nijssen, J.A.M. and Winands, M.H.M. (2011c). Monte-Carlo Tree Search for
the Game of Scotland Yard. Proceedings of the 23rd Benelux Conference
on Artificial Intelligence (eds. P. De Causmaecker, J. Maervoet, T. Messelis,
K. Verbeeck, and T. Vermeulen), pp. 417–418, Ghent, Belgium. Extended
abstract.

3. Nijssen, J.A.M. and Winands M.H.M. (2012d). Monte Carlo Tree Search for
the Hide-and-Seek Game Scotland Yard. IEEE Transactions on Computa-
tional Intelligence and AI in Games, Vol. 4, No. 4, pp. 282–294.

The previous chapters discussed the application and enhancement of MCTS to de-
terministic multi-player games with perfect information. In this chapter, we shift our
focus to hide-and-seek games. In this thesis we are interested in hide-and-seek games
that have the following three properties. First, they feature imperfect information for
some players. Second, some of the players have to cooperate in a fixed coalition.
Though these players have a common goal, each player behaves autonomously and
explicit communication between the players is not applied. Third, they are asymmet-
ric. The different players have different types of goals. A game that features these
properties is Scotland Yard. In this multi-player game, five seekers cooperate to try
to capture a hider, which only shows its location on regular intervals.

This chapter answers the fourth research question by describing how MCTS can
be adapted to tackle these challenges. We first show how to handle imperfect infor-
mation using different determinization techniques. Also, a new technique, called Lo-
cation Categorization, is proposed. This technique allows the seekers to make a more
reliable prediction for the current location of the hider. Next, to handle the cooper-
ation of the seekers, Coalition Reduction is introduced, which can be used to let the
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seekers participate in the coalition more effectively. Furthermore, domain knowledge
is incorporated in MCTS, by using ε-greedy playouts for the seekers and the hider.

This chapter is organized as follows. First, Section 7.1 introduces the game Scot-
land Yard. Section 7.2 explains how MCTS is adapted for Scotland Yard and which
enhancements are proposed. Next, Section 7.3 describes how paranoid search and
expectimax are applied in Scotland Yard and how these techniques can be enhanced
to improve the playing strength. The experiments and results are given in Section
7.4. Finally, Section 7.5 presents the conclusions based on the results, and possible
future research topics.

7.1 Scotland Yard
This section provides an introduction to the game of Scotland Yard. Subsection 7.1.1
gives a brief background on Scotland Yard and in Subsection 7.1.2 the rules are de-
scribed.

7.1.1 Background
The game of Scotland Yard was introduced in 1983. It was developed by Manfred
Burggraf, Dorothy Garrels, Wolf Hörmann, Fritz Ifland, Werner Scheerer and Werner
Schlegel. The original version was published by Ravensburger, but the game was also
distributed for the English-language market by Milton Bradley.

In 1998, Ravensburger Interactive Media GmbH developed a Scotland Yard pro-
gram for Microsoft Windows, which was published by Cryo Interactive Entertain-
ment. It did not only feature the original game, but also a computer enhanced version
which introduced role-playing game elements. Another Scotland Yard program was
developed in 2008. It was developed by Sproing Interactive Media GmbH and pub-
lished by DTP Young Entertainment GmbH & Co. KG. This version of the game was
released for the Nintendo DS. The AI of this program is regarded as quite strong (cf.
Frackowski, 2011).

Only a limited amount of research has been performed in Scotland Yard so far.
Doberkat, Hasselbring, and Pahl (1996) applied prototype evaluation for coopera-
tive planning and conflict resolution. One of their proposed strategies is applied
in the static move evaluator (see Subsection 7.2.2). Furthermore, Sevenster (2008)
performed a complexity analysis on Scotland Yard and proved that the generalized
version of the game is PSPACE-complete.

7.1.2 Rules
Scotland Yard is played by six players: five seekers, called detectives, and one hider,
called Mister X. The game is played on a graph consisting of numbered vertices from
1 to 199. The vertices are connected by four different types of edges representing
different transportation types: taxi, bus, underground, and boat. A subgraph of the
Scotland Yard map is displayed in Figure 7.1. Each player occupies one vertex and a
vertex can hold at most one player. The vertex currently occupied by a player is called
the location of that player.
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Figure 7.1: A subgraph of the Scotland Yard map.

At the start of the game, all players are placed at one of the eighteen possible
pre-defined starting vertices. Each player starts at a different vertex, which is chosen
randomly. In total, there are over 13 million different starting positions. Each detec-
tive receives ten taxi, eight bus, and four underground tickets. Mister X receives four
taxi, three bus, and three underground tickets.

The players move alternately, starting with Mister X. A sequence of six moves,
by Mister X and the five detectives, is called one round. When performing a move, a
player moves along an edge to an unoccupied adjacent vertex, and plays the ticket cor-
responding to the chosen edge. Mister X receives the tickets played by the detectives.
When Mister X plays a ticket, it is removed from the game.

Additionally, Mister X receives five black-fare tickets and two double-move tickets.
A black-fare ticket allows him to use any transportation type, including the boat.
Along with a regular ticket, Mister X may also play one of his double-move tickets.
All detectives then skip their turn for that round.

During the game, Mister X keeps his location secret. Only after moving on rounds
3, 8, 13, 18, and 24 he has to announce his location. When Mister X moves, the
detectives always get informed which ticket he used.

The goal for the detectives is to capture Mister X by moving to the vertex occupied
by him. The goal for Mister X is to avoid being captured until no detective can perform
a move anymore. A detective cannot move if he does not own a ticket which allows
him to leave his current location. The maximum number of rounds in Scotland Yard
is 24. Draws do not occur in this game.
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7.2 MCTS for Scotland Yard
This section discusses how MCTS can incorporate the domain knowledge, imperfect
information and cooperating players for Scotland Yard. This section is structured
as follows. First, Subsection 7.2.1 explains how the selection and the backpropaga-
tion phase are applied in Scotland Yard. Subsection 7.2.2 describes how ε-greedy
playouts are used to incorporate knowledge in the playout phase. Subsection 7.2.3
explains how determinization can be applied to handle imperfect information. Next,
Subsection 7.2.4 discusses how to keep track of the possible locations of the hider.
Subsequently, Subsection 7.2.5 proposes Location Categorization to bias the remain-
ing possible locations. Subsection 7.2.6 shows how to handle the fixed coalition of the
seekers by using the backpropagation strategy called Coalition Reduction. Finally,
Subsection 7.2.7 describes how move filtering allows the hider to use his tickets more
efficiently.

7.2.1 Basic MCTS for the Hider and the Seekers

Though Scotland Yard is a game with six players that all behave autonomously, dur-
ing the MCTS search this game may be considered as a two-player game. This is due
to the fact that the seekers have a common goal, and that if one seeker captures the
hider the game is considered a win for all seekers. Because of this property, in the
selection phase of MCTS the win rate x̄i at the seekers’ plies represents the combined
win rate for all seekers. At the hider’s plies it represents the win rate of the hider.
This means that, for the hider, the MCTS tree is analogous to MCTS with the para-
noid search policy (see Chapter 4), because all opponents essentially try to minimize
the root player’s win rate. In this game, this paranoid assumption is actually correct.
However, the hider also assumes that the seekers know where he is located. This is
due to the fact that the hider himself knows where he is located. This assumption is
incorrect, and may cause the hider to play defensively.

If a seeker has captured the hider during the playout, in the backpropagation
phase a score of 1 is backpropagated for all seekers, regardless of which seeker won
the game. With Coalition Reduction, which is introduced in Subsection 7.2.6, different
values may be backpropagated for the different seekers, dependent on which seeker
captured the hider. If the hider manages to escape during the playout, a score of 1 is
backpropagated for the hider and a score of 0 for all seekers.

7.2.2 ε-greedy Playouts

In the MCTS algorithm, ε-greedy playouts are applied to incorporate domain knowl-
edge (Sutton and Barto, 1998; Sturtevant, 2008a). When selecting a move in the
playouts, the move is chosen randomly with a probability of ε. Otherwise, a heuristic
is used to determine the best move. Because Scotland Yard is an asymmetric game,
different heuristics have to be defined for the hider and the seekers. Furthermore,
separate values for ε may be determined for the hider and the seekers in the playout.

For the hider, we define one heuristic to determine the best move. This heuristic,
Maximize Closest Distance (MCD), maximizes the number of moves the closest seeker
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should make to arrive at the target vertex of the move.
For the seekers, we define two different heuristics. The first, Minimize Total Dis-

tance (MTD), minimizes the sum of the number of moves the seeker should make to
arrive at each possible location of the hider (Doberkat et al., 1996). The second, Chase
Actual Location or Chase Assumed Location (CAL), minimizes the number of moves
the seeker should make from the target vertex of the move to the (assumed) location
of the hider. If this strategy is used by an MCTS seeker, the assumed location of the
hider is used, because he does not know the actual location of the hider. This assumed
location corresponds to the determinization selected at the start of the playout (see
Subsection 7.2.3). If this strategy is employed by the MCTS hider, the actual location
of the hider is used. With this strategy, it is implicitly assumed that the seekers know
the actual location of the hider.

Each MCTS player should use one heuristic for the hider and one for the seekers.
This means that the hider’s heuristic has to be combined with one of the two seekers’
heuristics. These combinations are named MM (MCD and MTD) and MC (MCD and
CAL).

7.2.3 Determinization

In order to deal with imperfect information for the MCTS-based seekers, determiniza-
tion can be used. The principle behind determinization is that, at the start of each
iteration, the hidden information is filled in, while being consistent with the history
of the game. Determinization has several theoretical shortcomings. Frank and Basin
(1998) defined two problems with determinization. The first is strategy fusion, where
a suitable strategy for each separate determinization is found, instead of a single
strategy that overall works well for all determinizations. The second is non-locality,
where determinizations are investigated that are unlikely, because opponents may
direct play in another direction if they possess information that the player does not
have. Russell and Norvig (2002) call determinization ‘averaging over clairvoyancy’,
where players will never try to hide or gain information, because in each determiniza-
tion, all information is already available. Despite its theoretical shortcomings, it has
produced strong results in the past, for instance in the trick-based card game Bridge
(Ginsberg, 1999). Ginsberg’s Bridge program, called GIB, uses determinization by
dealing the cards that have not been played yet among the players while being consis-
tent with the cards played in the previous tricks. This program can play Bridge at an
expert level. Determinization has also lead to expert-level game play in the card game
Skat (Buro et al., 2009; Long et al., 2010). Furthermore, determinization techniques
were successfully applied in various other card games with imperfect information,
such as Dou Di Zhu (Powley, Whitehouse, and Cowling, 2011; Whitehouse, Powley,
and Cowling, 2011), Magic: The Gathering (Cowling, Ward, and Powley, 2012b), and
Spades (Whitehouse et al., 2013).

Other examples of board games where determinization is applied to handle imper-
fect information include Phantom Go (Cazenave, 2006) and Kriegspiel, the imperfect-
information variant of chess (Ciancarini and Favini, 2009). Cazenave (2006) applied
determinization in Phantom Go, creating a Monte-Carlo program that was able to
defeat strong human Go players. In Kriegspiel, the application of determinization
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Figure 7.2: Example of a determinization with separate trees. In this example, L = {35,37,49}
and the selected determinization is 37.

did not work well. The MCTS-based player with determinization only played slightly
better than a random player. Ciancarini and Favini (2009) provided three reasons
why this technique did not work, namely (1) the assumed positions of the opponent’s
pieces were unrealistic, (2) the underestimation of the opponent’s ability to coordinate
an attack, and (3) in Kriegspiel there is no built-in notion of progression, contrary to
games such as Go, Scrabble and Poker.

In Scotland Yard, the hidden information consists of the location of the hider.
Based on the last surface location and the tickets the hider played since then, the
seekers can deduce a list of possible locations of the hider, called L (see Subsection
7.2.4).

At the start of each MCTS iteration, an assumption is made about the location of
the hider. By default, this location is chosen from L in a uniform random manner.
This assumption is used throughout the whole iteration. There are two approaches
to build and traverse the search tree. The first approach is by generating a sepa-
rate tree for each determinization. This technique is similar to determinized UCT
described by Cowling, Powley, and Whitehouse (2012a). In each tree, only the hider’s
moves that are consistent with the corresponding determinization are generated. An
example is given in Figure 7.2. After selecting a determinization at the root node, the
corresponding tree is traversed. In the end, there are two approaches to select the
best move. The first is majority voting (Soejima, Kishimoto, and Watanabe, 2010).
Each candidate move receives one vote from each tree where it is the move that was
played most often. The candidate move with the highest number of votes is selected
as the best move. If more moves are tied, the move with the highest number of visits
over all trees is selected. The second is averaging over all search trees (Cazenave and
Jouandeau, 2007). The move with the highest average number of visits over all trees
is selected as the best move.

The second approach is using single-tree determinization (Nijssen and Winands,
2012d). When generating the tree, at the hider’s ply, all possible moves from all possi-
ble locations are generated. When traversing the tree, only the moves consistent with
the current determinization are considered. The advantage of this technique is that
information is shared between different determinizations, increasing the amount of
usable information. This type of determinization is similar to Single-Observer Infor-
mation Set Monte-Carlo Tree Search, which was proposed by Cowling et al. (2012a)
around the same time as single-tree determinization. An example is given in Figure
7.3.
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Figure 7.3: Example of a determinization with a single tree. In this example, L = {35,37,49}
and the selected determinization is 37.

7.2.4 Limiting the Possible Locations
It is possible for the seekers to limit the list of possible locations by removing the
vertices where the hider cannot be located. The list of possible locations, L, is updated
every move. When the hider plays a ticket, the new list of possible locations Lnew is
calculated, based on the old list of possible locations Lold , the current locations of the
seekers ∆, and the ticket t played by the hider, using Algorithm 7.1. S is the set of
rounds when the hider surfaces. At the start of the game, L is initialized with the
18 possible starting locations, excluding the five starting locations of the seekers. In
this algorithm, the method targets(p, t) returns the list of locations reachable from
location p using ticket t. When the hider surfaces, location(hider) is the vertex he
surfaced at. When a seeker makes a move, the target vertex of this move is excluded
from L, provided this vertex was a possible location and the hider was not captured.

Algorithm 7.1 Pseudo code for computing the list of possible locations of the hider.
Lnew ←;
if currentRound ∈ S then

Lnew ← location(hider)
else

for all p ∈ Lold do
T ← targets(p, t)
Lnew ← Lnew ∪ (T\∆)

end for
end if
return Lnew

An example of this computation is given in Figure 7.4 using the subgraph of the
map in Figure 7.1. Assume the hider surfaces at location 86 in round 8 and the
seekers move to locations 85, 115, 89, 116, and 127, respectively. When the hider
plays a black-fare ticket in round 9, the new list of possible locations becomes L =
{69,87,102,103,104}. Location 116 is also reachable from 86 with a black-fare ticket,
but because this location belongs to D, i.e., there is a seeker on that location, it is not
added to L. After seeker 1 moves to 103 in round 9, this location is removed from
the list of possible locations. After seeker 2 moves to 102, this location is removed as
well. In round 10, the hider plays a taxi ticket. The locations reachable from location
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69 are 53, 68, and 86 and are all added to L. The locations reachable by taxi from
87 are 70 and 88. Because 88 belongs to D, only 70 is added to N. The two locations
reachable from 104 are 86 and 116. Because 86 already belongs to L and 116 belongs
to D, neither location is added to L.

L
old

 = {86}

D = {85, 115, 89, 116, 127}
t = BLACK_FARE

L
new

 = {69, 87, 102, 103, 104}

Detectives' moves:
1: 85-T->103 (remove 103)
2: 115-T->102 (remove 102)
3: 89-T->88
4: 116-B->108
5: 127-B->116

L
old

 = {69, 87, 104}

D = {103, 102, 88, 108, 116}
t = TAXI

L
new

 = {53, 68, 86, 70}

Round 9

Round 10

Figure 7.4: Example of a computation of possible locations.

Figure 7.5 gives an indication of the number of possible locations of the hider for
each round. These numbers were obtained from the actual game and the playouts
in 50 matches between MCTS-based players. The peak at round 2 is the highest. At
this point, the hider has performed two moves without surfacing yet. The peaks at
rounds 12 and 17 are smaller than the peak at round 7. This is because at round 7,
the seekers have not closed in yet on the hider. Once the seekers close in on the hider,
the number of possible locations becomes smaller. Note that if the possible locations
are not limited, this number is always 194.

7.2.5 Location Categorization
Some of the possible locations computed in Algorithm 7.1 are more probable than oth-
ers. The performance of the seekers can be improved by biasing the possible locations
of the hider. This technique is called Location Categorization. The possible locations
in L are divided into categories that are numbered from 1 to c, where c is the number
of categories. Each possible location is assigned to exactly one category, so that the
categorization is a partition of L. The type of categorization is domain dependent. For
Scotland Yard, three different types of categorization are investigated:

(1) Minimum-distance. A categorization is made based on the distance of the pos-
sible location to the nearest seeker. The category number equals the number of moves
this seeker has to perform to reach the possible location. For this categorization, we
set c to 5. To accommodate for locations with a minimum distance larger than 5, all
locations with a minimum distance of 5 or more are grouped into the same category.
The idea behind this categorization is that the possible locations near the seekers
are investigated less often, because it is unlikely that the hider is close to one of the
seekers. The hider could try to exploit this behavior, though it is risky, offsetting a
possible benefit.
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Figure 7.5: Average number of possible locations of the hider for each round.

(2) Average-distance. A categorization is made based on the average distance of
all seekers to the possible location. This number is rounded down. The category
number equals the average number of moves the seekers have to travel to reach the
possible location. Similar to the minimum-distance categorization, the parameter c
is set to 5. This means that all locations with an average distance of 5 or more are
grouped into category 5.

(3) Station. A categorization is made based on the transportation types connected
to the possible location. We distinguish 4 different station types, which means that
c = 4. Locations with only taxi edges belong to category 1, locations with taxi and bus
edges belong to category 2, locations with taxi, bus, and underground edges belong to
category 3, and all locations with at least one boat edge belong to category 4.

After the hider performs a move the possible locations are divided into the different
categories, based on the preselected categorization.

For each category, a weight has to be determined to indicate the probability that
a location of a certain category is chosen, so that a biased, non-uniform preference
distribution can be imposed over L. If available, this statistic may be obtained from
game records of matches played by expert players. In this thesis, the statistics are
gathered by a large number of selfplay games. These statistics can later be used
by the seekers to determine the weights of the categories. This approach is useful
when the opponent is unknown and there are not enough games to gather a sufficient
amount of information.
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Table 7.1 Example of a general table with the minimum-distance categorization after
playing 1000 games.

Category 1 2 3 4 5
a 2454 9735 4047 1109 344
n 12523 14502 7491 2890 1756

Table 7.2 Example of a detailed table with the minimum-distance categorization af-
ter playing 1000 games.

Category 1 2 3 4 5
Combination
1 1542 - - - -
2 - 2801 - - -
1,2 666 4776 - - -
3 - - 977 - -
1,3 14 - 252 - -
2,3 - 67 208 - -
1,2,3 210 1558 1642 - -
4 - - - 262 -
2,3,4 - 23 39 90 -
1,2,3,4 18 224 263 179 -
2,3,4,5 - 57 191 183 88
1,2,3,4,5 2 210 448 307 164

There are two different ways to store the statistics about the possible categories.
In the general table, for each category both the number of times one or more possible
locations belonged to the category, n, and the number of times the actual location of
the hider belonged to the category, a, are stored. This way of storing and using statis-
tics is similar to the transition probabilities used in Realization Probability Search,
which was successful in Shogi (Tsuruoka, Yokoyama, and Chikayama, 2002), Ama-
zons (Higashiuchi and Grimbergen, 2006), and Lines of Action (Winands and Björns-
son, 2008). An example of the general table is given in Table 7.1. In the detailed table,
for each possible combination of categories, i.e., the union of all categories over L, we
store how many times the actual location of the hider belonged to each category. An
example is given in Table 7.2. This table only shows the category combinations (i.e.,
rows) that occurred at least 100 times. For instance, category combination (2,3,4),
where L contains locations in categories 2, 3, and 4, but not in 1 and 5, occurred 152
times, where the hider was 23 times on a location of category 2, 39 times on a location
of category 3, and 90 times on a location of category 4.

The seekers use a vector of length c to select a location for the hider at the
start of each MCTS iteration. The values in this vector represent the weights of
the categories. When using the general table, this vector consists of the values
[w1,w2, · · · ,wc] = [ a1

n1
, a2

n2
, · · · , ac

nc
]. When using the detailed table, the vector corre-

sponding to the combination of categories is directly extracted from the table. For
instance, using Table 7.2, if L contains locations belonging to categories 2, 3, and 4,
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the vector would be [0,23,39,90,0]. If the total number of occurrences of this combi-
nation of categories is below a certain threshold, for instance 100, the table is not used
and the possible locations are randomly chosen. This only occurs on rare occasions.

There are two different ways the vector can be used to select a possible location.
When using one-step selection, each possible location gets a probability to be selected.
Roulette-wheel selection (i.e., sampling from a non-uniform distribution) is used to
select a possible location. The size of each possible location on the wheel is corre-
sponding to the value of its category in the vector. The probability to choose location
l is calculated by using Formula 7.1.

P(l)= wcl∑
m∈L

wcm

(7.1)

In this formula, wcl and wcm represent the weights of the category to which loca-
tions l and m belong, respectively.

When using two-step selection, each location category gets a probability to be se-
lected. Roulette-wheel selection is used to select a category. The size of each category
on the wheel is corresponding to its value in the vector. After selecting a category,
one of the possible locations from this category is randomly chosen. The probability
of choosing location l using two-step selection is calculated by using Formula 7.2.

P(l)= wcl

|cl |
c∑

j=1
w j

(7.2)

In this formula, |cl | represents the number of possible locations that belong to the
category of location l and w j represents weight of category j.

We remark that Location Categorization uses a ‘big-data’ approach to set the
weights. Such an approach, which obtains its statistics from a large set of games,
played by humans or computers, has been successful in Othello (Buro, 2000), Shogi
(Tsuruoka et al., 2002), Amazons (Higashiuchi and Grimbergen, 2006), and Lines
of Action (Winands and Björnsson, 2008). Machine-learning techniques, though less
trivial, may also be used to further tune them.

7.2.6 Coalition Reduction
Scotland Yard is a cooperative multi-player game. Therefore, the seekers can be con-
sidered as one player, reducing the game to a two-player game. If in a playout one
seeker captures the hider, the playout is considered a win for all seekers and the re-
sult is backpropagated accordingly. However, when using this backpropagation rule
we observed that seekers during game play sometimes relied too much on the other
seekers and did not make any efforts to capture the hider. For solving this problem,
we propose Coalition Reduction. If the seeker who is the root player captures the
hider, a score of 1 is returned. If another seeker captures the hider, a smaller score,
1−r, is returned, where r ∈ [0,1]. For this enhancement to work efficiently, it is impor-
tant to tune the value of r. If the value of r is too small, seekers have the tendency to
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become less involved. If their own position is not good, i.e., they are far away from the
possible locations of the hider, they tend to rely on the other seekers too much. If the
value of r is too large, the seekers become too selfish and do not cooperate anymore.
In Subsection 7.4.6, this parameter is experimentally fine-tuned.

7.2.7 Move Filtering

The hider only has a limited number of black-fare and double-move tickets, so he
should use them wisely. Black-fare tickets should only be used by the hider to increase
the uncertainty about his location or to travel by boat, and double-move tickets are
mostly used for escaping from dire positions.

Three straightforward game-specific knowledge rules regarding the use of black-
fare tickets to prevent the hider from squandering them have been implemented. The
hider is not allowed to use black-fare tickets in the following three situations: (1)
during the first two rounds, (2) during a round when he has to surface, or (3) when
all possible locations only have taxi edges. In the first situation, there is already
a large uncertainty about the hider’s location. In the second and third situation,
using a black-fare ticket does not increase the uncertainty about the hider’s location
compared to using a ‘normal’ ticket. An exception is when the hider is located on a
vertex with a boat connection. In this case, the hider may always use a black-fare
ticket.

Double-move tickets are only used when the hider can be captured by one of the
seekers. If all possible moves in the root node lead to a vertex that can be reached by
one of the seekers in the next round, a double move ticket is added to the moves. If
there is at least one ‘safe’ move, then double-move tickets are not added. If the search
still selects a move that allows one of the seekers to capture the hider in the next
round, a double-move ticket is added to the selected move. Of course, a double-move
ticket can only be added if the hider has at least one of these tickets remaining.

Move filtering is a considerable improvement for the hider. Experiments in a pre-
vious version of the program revealed that this enhancement increases the win rate of
an MCTS hider from 19.4% ± 1.6 to 34.0% ± 1.9 against MCTS seekers. These results
show that the performance of the hider improves considerably when he is prevented
from squandering black-fare tickets. It is important for the hider to effectively use
his limited stock of black-fare tickets (Nijssen and Winands, 2011b).

7.3 Minimax-Based Techniques for Scotland Yard

This section gives an overview on how minimax-based search techniques are applied
for playing Scotland Yard as the hider and the seekers. Subsections 7.3.1 and 7.3.2
explain how paranoid search and expectimax are implemented for the hider and the
seekers, respectively. In Subsection 7.3.3 a description of the evaluation functions is
given. Finally, Subsection 7.3.4 explains how Location Categorization can be used
with expectimax.
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7.3.1 Paranoid Search for the Hider

Figure 7.6 shows the general structure of the search tree built by the hider. The
hider is the MAX player, while the seekers are the MIN players. The structure of the
tree is similar to a paranoid search tree used in multi-player games (Sturtevant and
Korf, 2000). However, in this case the paranoid assumption is correct because the
opponents do have a coalition against the current player. On the other hand, the
paranoid hider also assumes that the seekers know where he is located. Similar to
the MCTS hider, this assumption is incorrect.

As discussed in Chapter 2, in a paranoid search tree, αβ pruning is possible. How-
ever, in the best case the tree can only be reduced to O(b

N−1
N d) (Sturtevant and Korf,

2000). This means that for Scotland Yard, the tree can be reduced to O(b
5
6 d) in the

best case. To increase the amount of pruning in the search tree, killer moves and the
history heuristic are applied. Furthermore, move filtering is used to allow the hider
to make use of its black fare and double move tickets more efficiently.

MAX
(hider)

MIN
(seeker 1)

MIN
(seeker 5)

MAX

Figure 7.6: Structure of the paranoid tree for the hider.

7.3.2 Expectimax for the Seekers

To handle imperfect information in the minimax framework, expectimax (Michie,
1966) may be used. Billings et al. (2006) used variations of expectimax, Miximax and
its generalization Miximix, to play poker. Schadd, Winands, and Uiterwijk (2009)
applied expectimax for playing the game Stratego. They enhanced the search with
ChanceProbCut, which allows forward pruning in chance nodes. Expectimax may
also be employed to handle imperfect information for the seekers in Scotland Yard.

Figure 7.7 shows the structure of the expectimax search tree built by the seekers.
At the second layer, the chance nodes are located. The edges leaving these nodes
represent the possible locations of the hider (i.e., possible determinizations). Each
possible location is weighted equally, though it is possible to bias the weights to give
more reliable results (see Subsection 7.3.4).

Another notable feature is that the seeker does not incorporate the other seekers
in the search tree, i.e., the other seekers do not move. This has three advantages.



108 MCTS for a Hide-and-Seek Game

(1) More pruning is possible. Because the game is reduced to two players, the size of
the tree can be reduced to O(|L|× b

d
2 ), where |L| is the number of possible locations.

The amount of pruning is further increased by applying killer moves and the history
heuristic. (2) The seeker keeps actively participating in the game, instead of relying
on other seekers. (3) The seeker achieves more long-term planning by investigating
more MAX nodes. This is analogous to Best-Reply Search (Schadd and Winands, 2011;
see Chapter 4) for multi-player games, where the moves of all subsequent opponents
are reduced to one ply. A disadvantage of this reduction is that the seekers do not
consider the other seekers and thus cooperation is not contemplated. Experiments
with 1000 ms of thinking time per move revealed that reducing the tree produced a
win rate of 40.6% ± 3.0 (see Table 7.7) against an MCTS hider, while without this
reduction the win rate is 5.2% ± 1.4.

This tree reduction technique can also be applied to MCTS. However, experiments
with 10,000 playouts per move showed that it decreases the win rate considerably,
from 63.6% ± 3.0 (see Table 7.5) to 34.3% ± 2.9 against an MCTS hider. This is be-
cause the advantages for expectimax do not apply in MCTS. There are three reasons
for this. (1) αβ-like pruning is not applicable for MCTS. (2) Reliance on other seek-
ers is already smaller due to the random moves in the ε-greedy playouts. Coalition
Reduction reduces this reliance even more. (3) Due to the playouts the seekers can
already look further ahead.

MAX
(seeker)

chance

MIN
(hider)

MAX

Figure 7.7: Structure of the expectimax tree for the seekers.

7.3.3 Evaluation Functions
For both the hider and the seekers, an evaluation function is necessary to evaluate
the leaf nodes of the search tree. For the paranoid hider, an evaluation function is
used that is based on the MCD playout strategy. First, the hider should stay as far
away from the nearest seeker as possible. Second, the hider should save black-fare
tickets, unless he can increase the uncertainty about his location. The leaf nodes of
the paranoid search tree for the hider are valued using Formula 7.3.

shider = 100×min
i∈D

(dhider,i)+10× thider,BF +|L|+ρ (7.3)
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Here, dhider,i is the distance from the location of the hider to the location of seeker
i. thider,BF represents the number of black fare tickets the hider has left. |L| indicates
the number of possible locations of the hider. ρ is a small random value between 0
and 1. Similar to MCD, the hider assumes that the seekers know his actual location.
This may result in the hider playing too cautiously.

For the expectimax seekers, an evaluation function is used that is similar to the
MTD (Doberkat et al., 1996) playout strategy used in MCTS. The seekers try to mini-
mize the sum of the distances to all possible locations. The leaf nodes of the expecti-
max search tree of seeker i are evaluated by using Formula 7.4.

si =− ∑
l∈L

di,l +ρ (7.4)

Here, di,l is the distance from the location of seeker i to possible location l. Be-
cause we want to minimize this distance, we take the negative of the sum. Again, ρ
is a random value between 0 and 1.

7.3.4 Location Categorization for Expectimax
Similar to MCTS, Location Categorization can be used in the expectimax framework
to bias the search towards more likely locations. Usually, in the chance level of the
search tree for Scotland Yard, each location has an equal weight. By applying Loca-
tion Categorization, more likely locations receive a larger weight than unlikely ones.
The weight P(i) of the node representing location i is calculated by using Formula
7.5.

P(i)= wci∑
l∈L

wcl

(7.5)

In this formula, wci and wcl represent the weights of the category to which loca-
tions i and l belong, respectively. This formula is similar to Formula 7.1, which is
used for one-step selection.

7.4 Experiments and Results
This section first provides an overview of the experimental setup in Subsection 7.4.1.
Subsection 7.4.2 presents the results of the experiments with ε-greedy playouts for the
MCTS players. The determinization techniques for MCTS are compared in Subsec-
tion 7.4.3. Subsection 7.4.4 gives an overview of the performance of the MCTS seekers
with Location Categorization. Next, Subsection 7.4.5 shows how Location Categoriza-
tion influences the performance of the expectimax seekers. Subsection 7.4.6 presents
how the MCTS seekers with Coalition Reduction perform. In Subsection 7.4.7, a
comparison between the MCTS and minimax-based players is provided. Finally, Sub-
section 7.4.8 gives an overview of how MCTS performs against the Scotland Yard
program on the Nintendo DS.
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7.4.1 Setup
The engines for Scotland Yard and the AI players are written in Java. For the MCTS-
based hider and seekers, C is set to 0.5. Progressive History (see Chapter 5) is used
for both the hider and the seekers, with W = 5 for both player types. These values
were achieved by systematic testing with C ∈ [0.1,2] and W ∈ [0,25]. Progressive His-
tory does not significantly increase the performance of the hider (from 52.2% ± 3.1
with W = 0 to 53.4% ± 3.1 with W = 5 against MCTS-based seekers), while it does im-
prove the playing strength of the seekers considerably (from 47.8% ± 3.1 with W = 0
to 63.4% ± 3.0 with W = 5 against an MCTS-based hider). The hider uses move fil-
tering and the seekers use single-tree determinization. All MCTS players use 10,000
playouts for selecting the best move, except when stated otherwise. The expectimax
and paranoid players receive 1000 ms of thinking time for each move. In all exper-
iments, 1000 games are played to determine the win rate. The win rates are given
with a 95% confidence interval. The experiments are run on a cluster consisting of
AMD64 Opteron 2.4 GHz processors. Depending on the settings, one game takes ap-
proximately 2 to 4 minutes to finish.

7.4.2 ε-greedy Playouts
In the first set of experiments we determine the influence of ε-greedy playouts (MM
and MC) on the playing strength of the MCTS hider and the seekers. Because the
different playout strategies have different influences on the number of playouts per
second (cf. Chapter 6), the thinking time of the players is limited on time instead of
samples. Due to the asymmetric nature of Scotland Yard, different values of ε for the
hider and the seekers in the playouts may also be used. Systematic testing showed
that the best results are achieved with ε = 0.1 for the hider and ε = 0.2 for the seekers.

Table 7.3 presents the win rates for the seekers with the two different ε-greedy
playout strategies and with random playouts (R) for different time settings (1000 ms,
2500 ms, and 5000 ms per move). The results show that for the MCTS hider, MM is
the best playout strategy, while for the MCTS seekers, MC works best. This shows
that for the MCTS hider, it is best to assume that the seekers do not know his actual
location during the playouts. The MTD strategy of the seekers prevents the hider
from becoming too paranoid. For the MCTS seekers, however, it is best to use the
assumed location of the hider. Apparently, it is best for the MCTS seekers to have a
clear goal during the playouts.

Furthermore, the results show that ε-greedy playouts are a major improvement
for both the MCTS hider and the MCTS seekers over random playouts. For example,
with a thinking time of 5000 ms, the win rate of the seekers with the MC playout
strategy increases from 59.8% ± 3.0 to 79.5% ± 2.5 against the hider with random
playouts. For the MCTS hider, the win rate increases from 40.2% ± 3.0 to 58.2% ± 3.1
with the MM playout strategy against MCTS seekers with random playouts. Similar
results are achieved with 1000 and 2500 ms thinking time. The results also suggest
that the MCTS seekers have a considerable advantage over the MCTS hider, which
may be explained by the asymmetric nature of the game.

For the remainder of the experiments, the MC strategy for the MCTS seekers and
the MM strategy for the MCTS hider is used.
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Table 7.3 Win rates of the MCTS seekers against the MCTS hider with and without
ε-greedy playouts for different time settings.

Thinking time: 1000 ms
hider

MM MC R
MM 60.3% ± 3.0 65.1% ± 3.0 72.9% ± 2.8

seekers MC 73.5% ± 2.7 74.6% ± 2.7 78.1% ± 2.6
R 39.7% ± 3.0 42.4% ± 3.1 49.0% ± 3.1

Thinking time: 2500 ms
hider

MM MC R
MM 64.4% ± 3.0 72.1% ± 2.8 72.2% ± 2.8

seekers MC 74.9% ± 2.7 79.2% ± 2.5 79.9% ± 2.5
R 55.8% ± 3.1 52.4% ± 3.1 59.2% ± 3.0

Thinking time: 5000 ms
hider

MM MC R
MM 68.0% ± 2.9 74.3% ± 2.7 77.5% ± 2.6

seekers MC 74.0% ± 2.7 82.4% ± 2.4 79.5% ± 2.5
R 41.8% ± 3.1 56.6% ± 3.1 59.8% ± 3.0

7.4.3 Determinization

In the previous experiments, determinization was applied with a single tree. This set
of experiments verifies whether this technique works better than using a separate
tree for each determinization. These experiments are performed with two different
playout strategies. In the first, both players apply ε-greedy playouts, while in the
second they both use random playouts. Systematic testing showed that for separate
trees the same values for C and ε are also optimal for the single tree. The results
are summarized in Table 7.4. The upper part of the table shows that single-tree de-
terminization gives the highest win rate with a fixed number of playouts. Especially
when using ε-greedy playouts, this technique performs considerably better than sep-
arate trees. When using separate trees, majority voting performs significantly better
than using the average score, i.e., selecting the move with the highest average num-
ber of visits. We remark that using a single tree generates more overhead, because
at the hider’s ply, the moves have to be checked whether they are consistent with the
selected determinization. This overhead, however, is relatively small. When taking
this overhead into account, the difference between single-tree determinization and
separate trees hardly changes. This may be concluded from the results presented in
the lower part of the table, where the thinking time is limited to 1000 ms per move,
instead of providing a fixed number of playouts.
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These results are similar to the results found by Cowling et al. (2012a). They
showed that Information Set MCTS, which is similar to single-tree determiniza-
tion, performs better than determinized UCT, which is similar to separate-tree de-
terminization, by a significant margin in the modern board game Lord of the Rings:
The Confrontation.

Table 7.4 Win rates of the MCTS seekers with different determinization approaches
against the MCTS hider. Both player types use either ε-greedy or random playouts.

10,000 playouts per move
Playouts

Determinization ε-greedy Random
Single tree 63.6% ± 3.0 51.8% ± 3.1
Separate trees 31.3% ± 2.9 31.2% ± 2.9
Separate trees + majority voting 35.1% ± 3.0 37.5% ± 3.0

1000 ms per move
Playouts

Determinization ε-greedy Random
Single tree 73.5% ± 2.7 54.7% ± 3.1
Separate trees 37.1% ± 3.0 38.5% ± 3.0
Separate trees + majority voting 39.9% ± 3.0 40.1% ± 3.0

7.4.4 Location Categorization for MCTS

The next set of experiments checks which combination of categorization, table type
and number of selection steps works best when using Location Categorization. The
statistics for the general and detailed table are gathered by letting MCTS seekers
play 1000 games against an MCTS hider. The results are summarized in Table 7.5.
We let MCTS seekers with Location Categorization play against an MCTS hider. For
reference, the seekers without Location Categorization win 63.6% ± 3.0 of the games
against the hider. The win rate of the seekers without Location Categorization is
denoted as the default win rate. The results in Table 7.5 show that the minimum-
distance categorization works best. For this categorization, there is no large differ-
ence between the table types and the number of selection steps.

To test the robustness of this technique, the MCTS seekers with Location Catego-
rization play against a different type of hider, namely the paranoid hider. The same
weights that were used against the MCTS hider are used. Because in the previous set
of experiments, it turned out that the minimum-distance categorization works best,
we only use this categorization in this set of experiments. The results are given in
Table 7.6. The results show that Location Categorization also significantly improves
the performance of the seekers against a different type of opponent. For all settings a
significantly better performance is achieved.
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Table 7.5 Win rates of the MCTS seekers with Location Categorization against the
MCTS hider.

Categorization Table Steps Win rate
Minimum-distance General 1 67.7% ± 2.9
Minimum-distance General 2 66.3% ± 2.9
Minimum-distance Detail 1 63.5% ± 3.0
Minimum-distance Detail 2 65.6% ± 2.9
Average-distance General 1 61.7% ± 3.0
Average-distance General 2 59.6% ± 3.0
Average-distance Detail 1 63.9% ± 3.0
Average-distance Detail 2 63.6% ± 3.0

Station General 1 58.6% ± 3.1
Station General 2 58.0% ± 3.1
Station Detail 1 57.9% ± 3.1
Station Detail 2 58.5% ± 3.1

Default win rate: 63.6% ± 3.0

Table 7.6 Win rates of the MCTS seekers with Location Categorization against the
paranoid hider.

Categorization Table Steps Win rate
Minimum-distance General 1 86.4% ± 2.1
Minimum-distance General 2 86.3% ± 2.1
Minimum-distance Detail 1 87.5% ± 2.0
Minimum-distance Detail 2 86.6% ± 2.1

Default win rate: 83.4% ± 2.3

7.4.5 Location Categorization for Expectimax

We also test how Location Categorization increases the performance of the expecti-
max seekers. This enhancement is tested with the same three categorizations as in
the MCTS experiments, including the same weights for the categories. First, the ex-
pectimax seekers play against an MCTS hider. The results are given in Table 7.7.
Both player types receive 1000 ms of thinking time. The results show that Loca-
tion Categorization also works in the expectimax framework. Similar to MCTS, the
minimum-distance categorization performs best, increasing the win rate against the
MCTS hider from 40.6% ± 3.0 to 50.2% ± 3.1 when using the general table.

Location Categorization in the expectimax framework is also tested against a
paranoid hider. We remark that the weights of the categories are gained with a
different type of seekers against a different type of hider. The results of this set of
experiments are displayed in Table 7.8. It appears that the detailed table gives better
results than the general table and that the minimum-distance categorization is still
the best categorization. With these configurations, expectimax with Location Cate-
gorization wins 79.1% ± 2.5, compared to 74.1% ± 2.7 for expectimax without this
enhancement. This confirms that Location Categorization is a robust technique.
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Table 7.7 Win rates of the expectimax seekers with Location Categorization against
the MCTS hider.

Categorization Table Win rate
Minimum-distance General 50.2% ± 3.1
Minimum-distance Detail 44.2% ± 3.1
Average-distance General 41.4% ± 3.1
Average-distance Detail 40.3% ± 3.0

Station General 38.2% ± 3.0
Station Detail 39.9% ± 3.0

Default win rate: 40.6% ± 3.0

Table 7.8 Win rates of the expectimax seekers with Location Categorization against
the paranoid hider.

Categorization Table Win rate
Minimum-distance General 76.3% ± 2.6
Minimum-distance Detail 79.1% ± 2.5
Average-distance General 71.5% ± 2.8
Average-distance Detail 77.3% ± 2.6

Station General 69.3% ± 2.9
Station Detail 65.1% ± 3.0

Default win rate: 74.1% ± 2.7

7.4.6 Coalition Reduction

To test the performance of the MCTS seekers with Coalition Reduction, we let them
play against different hiders with different values of r. For the seekers, the per-
formance of Coalition Reduction is tested with and without Location Categorization
enabled. To verify that this enhancement also works against another type of hider,
matches against a paranoid hider are played as well. Finally, the performance of the
seekers with Coalition Reduction with different time settings is tested. We remark
that for r = 0, Coalition Reduction is disabled. For r = 1, there is no coalition, and all
seekers only work for themselves. The results are presented in Table 7.9 and Figure
7.8. The seekers achieve the highest win rate with r = 0.1. The win rate increases
from 63.6% ± 3.0 to 70.1% ± 2.8. With Location Categorization, the win rate even
increases further, from 67.7% ± 2.9 to 76.2% ± 2.6. Also with r = 0.2 and r = 0.3 the
seekers with Coalition Reduction play at least as strong than without this enhance-
ment. If r is increased further, the performance of the seekers drops significantly.
With these settings, the seekers no longer cooperate well to strategically close in on
the hider, allowing the hider to escape rather easily. If there is no cooperation at
all, the win rate of the seekers drops to 22.6% ± 2.6. To validate these numbers,
Coalition Reduction is also tested against the paranoid hider. Again, the best results
are achieved with r = 0.1, so it turns out that this is a good value that works well
against different hiders. The results also show that MCTS with Location Categoriza-
tion constantly performs better than regular MCTS. Again, this shows that Location
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Table 7.9 Win rates of MCTS seekers with Coalition Reduction for different values of
r against different hiders.

Seekers: MCTS MCTS + LC MCTS MCTS + LC
Hider: MCTS MCTS Paranoid Paranoid

0 63.6% ± 3.0 67.7% ± 2.9 83.4% ± 2.3 87.5% ± 2.1
0.1 70.1% ± 2.8 76.2% ± 2.6 90.2% ± 1.8 92.9% ± 1.6
0.2 65.3% ± 3.0 74.2% ± 2.7 88.0% ± 2.0 92.5% ± 1.6
0.3 64.3% ± 3.0 72.1% ± 2.8 84.3% ± 2.3 91.0% ± 1.8
0.4 54.9% ± 3.1 64.9% ± 3.0 82.1% ± 2.4 88.9% ± 1.9

r 0.5 51.0% ± 3.1 65.0% ± 3.0 79.1% ± 2.5 86.0% ± 2.2
0.6 43.5% ± 3.1 52.9% ± 3.1 72.9% ± 2.8 83.0% ± 2.3
0.7 42.6% ± 3.1 47.5% ± 3.1 70.4% ± 2.8 74.9% ± 2.7
0.8 34.4% ± 2.9 39.7% ± 3.0 63.9% ± 3.0 69.4% ± 2.9
0.9 30.7% ± 2.9 32.3% ± 2.9 57.2% ± 3.1 63.2% ± 3.0
1 22.6% ± 2.6 23.1% ± 2.6 49.7% ± 3.1 50.7% ± 3.1
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Figure 7.8: Graphical representation of Table 7.9.

Categorization is a robust improvement for MCTS.
Finally, Coalition Reduction is tested with different time settings. In addition to

10,000 samples per move, the MCTS seekers with Location Categorization and the
MCTS hider are provided with 1000, 2500 and 100,000 samples per move. The re-
sults are given in Table 7.10 and Figure 7.9. With 1000 samples per move for the
hider and the seekers, better results are achieved with a higher value of r. With
r = 0.5, a win rate of 55.6% ± 3.1 is achieved. When providing 2500 samples, the
seekers achieve the highest win rate with r = 0.2 and r = 0.3. With these time set-
tings they win 64.5% ± 3.0 and 64.1% ± 3.0 of the games, respectively. If 100,000
samples per move are provided for both player types, Coalition Reduction is still a
significant improvement with r = 0.1. The results are similar to 10,000 samples per
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Table 7.10 Win rates of MCTS seekers with Coalition Reduction for different values
of r with different time settings against an MCTS hider.

Playouts: 1000 2500 10,000 100,000
0 34.5% ± 3.0 48.3% ± 3.1 67.7% ± 2.9 77.4% ± 2.6
0.1 43.0% ± 3.1 59.7% ± 3.0 76.2% ± 2.6 83.4% ± 2.3
0.2 49.6% ± 3.1 64.5% ± 3.0 74.2% ± 2.7 75.3% ± 2.7
0.3 49.9% ± 3.1 64.1% ± 3.0 72.1% ± 2.8 72.8% ± 2.8
0.4 55.6% ± 3.1 58.7% ± 3.1 64.9% ± 3.0 68.6% ± 2.9

r 0.5 51.6% ± 3.1 58.5% ± 3.1 65.0% ± 3.0 60.1% ± 3.0
0.6 48.7% ± 3.1 52.4% ± 3.1 52.9% ± 3.1 56.4% ± 3.1
0.7 44.1% ± 3.1 50.1% ± 3.1 47.5% ± 3.1 45.8% ± 3.1
0.8 40.2% ± 3.0 39.7% ± 3.0 39.7% ± 3.0 41.0% ± 3.1
0.9 35.0% ± 3.0 37.0% ± 3.0 32.3% ± 2.9 32.7% ± 2.9
1 26.0% ± 2.7 24.3% ± 2.7 23.1% ± 2.6 27.6% ± 2.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

r

w
in

 r
at

e 
(%

)

1000 samples
2500 samples
10 000 samples
100 000 samples

Figure 7.9: Graphical representation of Table 7.10.

move. In conclusion, these numbers show that Coalition Reduction increases the per-
formance of the seekers significantly. However, cooperation is still important as the
performance decreases if r becomes larger than 0.3. If less time is provided, the value
of r should be increased. This may be because, if the seekers have less computation
time, there is not sufficient time for planning.

7.4.7 MCTS versus Minimax-Based Techniques
In this set of experiments, the MCTS players are compared to the minimax-based
players. For the MCTS hider, UCT with Progressive History, ε-greedy playouts, and
move filtering is applied. For the MCTS seekers, UCT with Progressive History,
single-tree determinization, ε-greedy playouts, Coalition Reduction with r = 0.1, and
Location Categorization with the minimum-distance general table and 1-step selec-
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tion is used. For the paranoid hider, killer moves, the history heuristic, and move
filtering are applied. For the expectimax seekers, killer moves, the history heuristic,
and Location Categorization with the minimum-distance general table are used. All
players receive 1000 ms of thinking time per move.

Against the paranoid hider, the expectimax seekers win 76.2% ± 2.6 of the games
and the MCTS seekers win 94.9% ± 1.4. Against the MCTS hider, the expectimax
seekers manage to win 45.0% ± 3.1 and the MCTS seekers 81.2% ± 2.4 of the games.
Consequently, the paranoid hider wins 23.8% ± 2.6 of the games against the expecti-
max seekers, while the MCTS hider wins 55.0% ± 3.1 of the games. Against the MCTS
seekers, the paranoid hider wins only 5.1% ± 1.4 of the games, while the MCTS hider
wins 18.8% ± 2.4. The results are summarized in Table 7.11. These results show
that for both the hider and the seekers, MCTS appears to work far better than the
minimax-based techniques. Furthermore, it is interesting to note that the win rate of
the MCTS seekers against the MCTS hider is similar to the win rate of the expecti-
max seekers against the paranoid hider. This shows that, with both types of search
techniques, the seekers have a similar advantage against the hider.

Table 7.11 Win rates of the different seekers against different hiders.
hider

seekers MCTS Paranoid
MCTS 81.2% ± 2.4 94.9% ± 1.4
Expectimax 45.0% ± 3.1 76.2% ± 2.6

7.4.8 Performance against the Nintendo DS Program

To test the strength of the MCTS-based program, it is matched against the Scotland
Yard program on the Nintendo DS. The AI of this program is considered to be rather
strong (cf. Frackowski, 2011).

For the hider and the seekers, the same settings and enhancements are used as
described in Subsection 7.4.7. It is not possible to set the thinking time of the Nin-
tendo DS player. It often plays immediately, but it sometimes takes 5 to 10 seconds
to find a move. To have a fair comparison, we set the thinking time of the MCTS
program to 2000 ms.

Because these games have to be played manually, only 50 games are played, where
each program plays 25 times as the seekers and 25 times as the hider. Out of these 50
games, 34 games are won by the MCTS-based player. 23 of these games are won as
the seekers and 11 as the hider. The Nintendo DS program wins 16 games, of which
14 as the seekers and 2 as the hider. These results show that the MCTS program
plays stronger than the Nintendo DS program. Furthermore, they underline that the
seekers have an advantage over the hider, because they win 37 out of the 50 games.
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7.5 Chapter Conclusions and Future Research

This chapter investigated how MCTS can be applied to play the hide-and-seek game
Scotland Yard, how it can be enhanced to improve its performance, and how it com-
pares to minimax-based search techniques.

Using ε-greedy playouts to incorporate basic knowledge into MCTS considerably
improves the performance of both the seekers and the hider. We observed that using
different ε values and different playout strategies for the different players in the play-
outs performs significantly better than random playouts. This difference is caused by
the asymmetric nature of the hide-and-seek game.

For handling the imperfect information, two different determinization techniques
were investigated, namely separate-tree determinization and single-tree determiniza-
tion. When using separate trees, majority voting for selecting the best move produces
a higher win rate than calculating the average over all trees. Single-tree determiniza-
tion has a slight overhead, but even when taking this into account, it performs signif-
icantly better than using separate trees.

Furthermore, Location Categorization was proposed, which is a technique that
can be used by both the MCTS and the expectimax seekers in Scotland Yard to give
a better prediction for the location of the hider. Three types of categorization were
introduced for Scotland Yard: minimum-distance, average-distance and station type.
The experiments revealed that the minimum-distance categorization performs best.
It significantly increases the playing strength of both the MCTS and the expectimax
seekers. The results gave empirical evidence that Location Categorization is a robust
technique, as the weights work for both seeker types against two different hider types.

We also observed that the performance of the MCTS seekers can be improved by
applying Coalition Reduction. This technique allows the seekers to cooperate more
effectively in the coalition, by preventing them from becoming too passive or too self-
ish. It also became clear that cooperation is important, because the performance of
the seekers drops significantly when the reduction becomes too large. Furthermore,
if fewer playouts per move are provided, better results are achieved with a higher
value of r. This may be because planning is more difficult if the seekers have less
computation time.

In a direct comparison, MCTS performs considerably better than paranoid search
for the hider and expectimax for the seeker. A comparison between MCTS and
minimax-based techniques is not easy because each technique can be enhanced in
different ways and the efficiency of the implementations may differ. However, the
results do give an idea of the playing strength of the different search techniques. Fi-
nally, the experimental results showed that MCTS, a technique that uses only basic
domain knowledge, was able to play Scotland Yard on a higher level than the Nin-
tendo DS program, which is generally considered to be a strong player.

We define three possible directions for future research. The first is to improve
Location Categorization. New types of categorization may be tested or different cat-
egorizations may be combined. This can be done by introducing three-step selection.
The first two steps are used to select two categories using two different categoriza-
tions. In the third step, a possible location is selected that belongs to both selected
categories. Other ways of combining two categorizations include taking the Cartesian
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product of the categories of both categorizations or using a weighted combination of
category weights. It may also be interesting to test Location Categorization in other
hide-and-seek games, for instance the two-player game Stratego to guess the ranks of
the opponent’s unknown pieces.

The second future research direction is to continue the recent work of Silver
and Veness (2010), who extended MCTS to Partially Observable Markov Decision
Processes (POMDPs). Their technique, Partially Observable Monte-Carlo Planning
(POMCP), was successfully applied to Battleship and a partially observable variant
of PacMan. Their technique could be applied to the seekers in Scotland Yard as well.
With POMDPs, the theoretical shortcomings of determinization can be avoided.

The third possible future research topic is modeling Scotland Yard as a Bounded
Horizon Hidden Information Game (BHHIG) (Teytaud and Flory, 2011). This tech-
nique does not have the theoretical shortcomings of determinization as well, but it is
also slower. A BHHIG can be used for modeling partially observable games in which
information is regularly revealed. Teytaud and Flory showed that each BHHIG can
be represented as a Game with Simultaneous Actions (GSA) and that UCT can be
adapted to such games.
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CHAPTER 8

Conclusions and Future
Research

This thesis investigated how Monte-Carlo Tree Search (MCTS) can be improved in
multi-player games. It dealt with the enhancement of search policies, selection strate-
gies, and playout strategies in MCTS for deterministic multi-player games with per-
fect information. Furthermore, it examined MCTS in the hide-and-seek game Scot-
land Yard. The research was guided by the problem statement formulated in Section
1.5. This section also provided four research questions that should be answered be-
fore addressing the problem statement. In this chapter we formulate the conclusions
of this thesis and recommendations for future research.

First, Section 8.1 answers the four research questions. Based on these answers,
we address the problem statement in Section 8.2. Finally, Section 8.3 provides five
directions for future research.

8.1 Conclusions on the Research Questions
The four research questions formulated in Chapter 1 concern the enhancement of
MCTS in deterministic multi-player games with perfect information and hide-and-
seek games. These research questions are answered one by one in the following sub-
sections.

8.1.1 Search Policies for Multi-Player Games
The standard MCTS variant for multi-player games has a search policy that is similar
to maxn. However, the paranoid and BRS search technique can also be implemented
in multi-player MCTS as search policies. This led us to the first research question.

Research question 1: How can multi-player search policies be incorpo-
rated in MCTS?

To answer the first research question, we incorporated the paranoid and BRS
search policies, along with the default maxn policy, in MCTS. With these search poli-
cies the selection and the backpropagation phases of MCTS are altered. For test-
ing the performance of these search policies, four different deterministic multi-player
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games with perfect information were chosen as a test bed, namely Chinese Checkers,
Focus, Rolit, and Blokus.

In the MCTS framework, the maxn search policy appeared to perform best. The
advantages of paranoid and BRS in the minimax framework do not apply in MCTS,
because αβ pruning is not applicable in MCTS. An additional problem with MCTS-
BRS may be that, in the tree, invalid positions are investigated, which may reduce
the reliability of the playouts as well. Still, MCTS-paranoid and MCTS-BRS overall
achieved decent win rates against MCTS-maxn, especially with lower time settings.
Furthermore, MCTS-paranoid is on equal footing with MCTS-maxn in Blokus and,
in the vanilla version of MCTS, MCTS-paranoid and MCTS-BRS significantly outper-
formed MCTS-maxn in Focus. Based on the results we may conclude that the maxn

search policy is the most robust, though the BRS and paranoid search policies can
still be competitive.

Finally, we enhanced the maxn search policy by proposing a multi-player variant
of MCTS-Solver, called MP-MCTS-Solver. This variant is able to prove the game-
theoretic value of a position. A win rate between 53% and 55% was achieved in the
sudden-death game Focus with the standard update rule. We may conclude that prov-
ing game-theoretic values improves the playing strength of MCTS in a multi-player
sudden-death domain.

8.1.2 Selection Strategies for Multi-Player MCTS

The selection phase is an important phase in the MCTS procedure. Nodes are chosen
using a selection strategy until a leaf node is reached. Selecting promising moves
while the number of playouts is still low is difficult, because there is only limited
information available. RAVE (Gelly and Silver, 2007), which uses AMAF values to
guide the selection strategy when the number of visits is low, works well in games
such as Go, Havannah, and Hex. For the multi-player game Chinese Checkers, RAVE
does not appear to work well. This led us to the second research question.

Research question 2: How can the selection phase of MCTS be enhanced
in perfect-information multi-player games?

To answer this question a new domain-independent selection strategy, called Pro-
gressive History, was proposed. This technique is a combination of the relative history
heuristic (Schaeffer, 1983; Winands et al., 2006) and Progressive Bias (Chaslot et al.,
2008b). Contrary to RAVE, Progressive History maintains its gathered data in a
global table, in a similar way as the playout strategy MAST (Finnsson and Björns-
son, 2008). The performance of this technique was tested in Chinese Checkers, Focus,
Rolit, and Blokus.

Progressive History was a significant improvement in all games with different
numbers of players. In a comparison with UCT, Progressive History gained the high-
est win rates in the two-player variants, winning around 80% of the games. More-
over, Progressive History performed better than standard UCT in the multi-player
variants as well. Progressive AMAF, which applies AMAF values instead of history
values, overall performed significantly worse than Progressive History. Additionally,
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experiments in the two-player game Havannah showed that Progressive History per-
formed better in this game than RAVE. Furthermore, experiments revealed that Pro-
gressive History also significantly increases the playing strength of the seekers in the
hide-and-seek game Scotland Yard. Based on the results we may conclude that Pro-
gressive History considerably enhances MCTS in both two-player and multi-player
games.

8.1.3 Playout Strategies for Multi-Player MCTS

During the playouts, moves are selected using a playout strategy. The results of
the playouts are backpropagated in the tree, which are then used in the selection
phase. In order to support the selection phase, the playouts have two conflicting goals:
they should be quick, so that more playouts are performed and more information is
available, and they should resemble decent or strong play, which can be quite time-
costly. This led us to the third research question.

Research question 3: How can the playouts of MCTS be enhanced in
perfect-information multi-player games?

To answer this research question, two-ply searches for selecting moves in the play-
out phase in MCTS were introduced for multi-player games. Three different search
techniques were investigated for multi-player games, namely maxn, paranoid, and
BRS. These playout strategies were compared against random, greedy, and one-ply
playouts to determine how to balance search and speed in the playouts of multi-player
MCTS.

The results showed that search-based playouts significantly improved the qual-
ity of the playouts in MCTS. Among the different playout strategies, BRS performed
best, followed by paranoid and maxn. This benefit was countered by a reduction of
the number of playouts per second. Especially BRS and maxn suffered from this ef-
fect. Among the tested two-ply search-based playouts, paranoid overall performed
best with both short and long time settings. With more thinking time, the two-
ply search-based playout strategies performed relatively better than the one-ply and
greedy strategies. This indicates that with longer time settings, more computation-
ally expensive playouts may be used to increase the playing strength of MCTS-based
players. Under these conditions, search-based playouts outperforms one-ply searches
in the four-player variant of Focus and the three-player variant of Chinese Checkers.
Based on the experimental results we may conclude that search-based playouts for
multi-player games may be beneficial if the players receive sufficient thinking time.

8.1.4 MCTS for a Hide-and-Seek Game

Hide-and-seek games feature properties that make them a challenging test domain
for MCTS-based programs. These properties are the following. (1) They feature hid-
den information for the seekers, (2) they are asymmetric, and (3) the seekers cooper-
ate in a fixed coalition. In order to tackle these issues, we formulated the following
research question.
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Research question 4: How can MCTS be adapted for hide-and-seek
games?

To answer the fourth research question, we chose the game Scotland Yard as the
test domain. This hide-and-seek game features the aforementioned properties and is
currently too complex for computers to solve.

For handling the imperfect information, two different determinization techniques
were investigated, namely single-tree determinization and separate-tree determiniza-
tion. Single-tree determinization had a slight overhead, but even when taking this
into account, it performed significantly better than using separate trees.

Furthermore, Location Categorization was proposed, which is a technique that
can be used by both the MCTS and the expectimax seekers to give a better predic-
tion for the location of the hider. The experiments revealed that for Scotland Yard
the minimum-distance categorization performs best. It significantly increased the
playing strength of both the MCTS and the expectimax seekers. The results gave
empirical evidence that Location Categorization is a robust technique, as the weights
worked for both seeker types against two different types of hider.

Because of the asymmetric nature of the hide-and-seek game Scotland Yard, dur-
ing the playouts, different playout strategies may be used by the different types of
players. We found that, for the MCTS hider, it is best to assume during the playouts
that the seekers do not know where the hider is, while the MCTS seekers perform
best if they do assume where the hider is located.

For dealing with the cooperation of the seekers, Coalition Reduction was proposed.
This technique reduces the rewarded value for the root player if another player in
the coalition wins the game, allowing the seekers to cooperate more effectively in
the coalition. We observed that the performance of the MCTS seekers increased by
applying Coalition Reduction. Cooperation still appeared to be important, because
the performance of the seekers dropped significantly when the reduction became too
large.

In a direct comparison, MCTS performed considerably better than paranoid search
for the hider and expectimax for the seekers. Finally, the experimental results showed
that MCTS was able to play Scotland Yard on a higher level than a commercial Nin-
tendo DS program, which is generally considered to be a strong player.

In conclusion, with the incorporation of enhancements such as single-tree deter-
minization, Location Categorization, and Coalition Reduction, we were able to let an
MCTS-based player play the hide-and-seek game Scotland Yard on a strong level.

8.2 Conclusions on the Problem Statement
After answering the four research questions, we can now address the problem state-
ment.

Problem statement: How can Monte-Carlo Tree Search be improved to
increase the performance in multi-player games?

The answer to the problem statement may be summarized in four points, based
on the research questions. First, the maxn search policy performs the best in multi-
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player MCTS, while the BRS and paranoid policies are still competitive. The maxn

search policy can be enhanced with a multi-player variant of the MCTS-Solver. Sec-
ond, the Progressive History selection strategy significantly increases the perfor-
mance of two-player and multi-player MCTS. Third, two-ply search-based playouts
significantly improve the quality of the playouts and, assuming a sufficient amount
of thinking time is provided, increases the performance of MCTS in multi-player do-
mains. Fourth, incorporating single-tree determinization, Location Categorization,
and Coalition Reduction into MCTS significantly improves its performance in the
multi-player hide-and-seek game Scotland Yard.

8.3 Recommendations for Future Research
The research presented in this thesis indicates the following five areas of future re-
search.

1. Application of other search policies. Chapter 4 investigated three common
search policies for multi-player games, namely maxn, paranoid, and BRS, in the
MCTS framework. We did not consider policies derived from these techniques,
such as the Coalition-Mixer (Lorenz and Tscheuschner, 2006) or MP-Mix (Zuck-
erman et al., 2009). They use a combination of maxn and (variations of) paranoid
search. Tuning and testing such policies for multi-player MCTS is a direction
of future research. Another future research direction is the application of BRS+
as proposed by Esser et al. (2013) in MCTS. The basic idea is that, besides the
opponent with the best counter move, the other opponents are allowed to per-
form a move as well. These moves are selected using a static move ordering.
The advantage of these variants is that no invalid positions are searched, while
maintaining the advantages of the original BRS algorithm.

2. Combination of Progressive History with other selection strategies. In
Chapter 5, the Progressive History selection strategy was introduced. It may
be interesting to combine Progressive History with domain-dependent selec-
tion strategies such as prior knowledge (Gelly and Silver, 2007), Progressive
Widening (Coulom, 2007b; Chaslot et al., 2008b), or Progressive Bias (Chas-
lot et al., 2008b). Progressive History may also be combined with N-grams
(Stankiewicz et al., 2012; Tak et al., 2012), which keeps track of move sequences
instead of single moves. By using N-grams, more context is offered.

3. Enhancement of search-based playouts. In Chapter 6, we performed a com-
parison between several playout strategies that require domain knowledge to
function. The proposed two-ply searches may be further optimized. Though a
two-ply search will always be slower than a one-ply search, the current speed
difference could be reduced further. This can be achieved for instance by im-
proved move ordering or lazy evaluation functions.

Another future research direction is the application of three-ply searches in the
playout. While these playouts are more time-intensive than two-ply search-
based playouts, they may increase the reliability of the playouts even more.
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While Winands and Björnsson (2011) mentioned that three-ply αβ searches in
the MCTS playouts for the two-player game Lines of Action are too expensive,
we anticipate that three-ply search-based playouts may be beneficial with in-
creased computing power and enhancements such as parallelization.

4. Further investigation of MCTS in Scotland Yard. Chapter 7 introduced
Location Categorization for biasing the possible locations of the hider. For this
enhancement, new types of categorization may be tested or different categoriza-
tions may be combined. This can be done by introducing three-step selection or
by taking the Cartesian product of the categories of both categorizations.

To handle the imperfect information for the hiders, determinization was ap-
plied. Two different determinization techniques were tested, namely single-tree
determinization and separate-tree determinization. Different determinization
techniques, such as Multiple-Observer Information Set MCTS (Cowling et al.,
2012a) may also be investigated. Determinization, however, has several theo-
retical shortcomings. Besides determinization, there exist various alternatives
to handle imperfect information.

An approach is to continue the work of Silver and Veness (2010), who extended
MCTS to Partially Observable Markov Decision Processes (POMDPs). Their
technique, Partially Observable Monte-Carlo Planning (POMCP), was success-
fully applied to Battleship and a partially observable variant of PacMan. Their
technique could be applied to the seekers in Scotland Yard as well. With
POMDPs, the theoretical shortcomings of determinization can be avoided.

Scotland Yard may also be modeled as a Bounded Horizon Hidden Information
Game (BHHIG) (Teytaud and Flory, 2011). This technique does not have the
theoretical shortcomings of determinization, but it is also slower. A BHHIG can
be used for modeling partially observable games in which information is regu-
larly revealed. Teytaud and Flory showed that each BHHIG can be represented
as a Game with Simultaneous Actions (GSA) and that the UCT algorithm can
be adapted to such games.

5. Application to other domains. The search enhancements in this thesis have
been tested in various domains. However, it may be interesting to test the per-
formance of these enhancements in other domains as well. For instance, Pro-
gressive History was evaluated in the two-player and multi-player variants of
Chinese Checkers, Focus, Rolit, and Blokus and in the two-player game Ha-
vannah. The performance of this enhancement may also be tested in popular
domains such as Go and Hex. The multi-player variant of MCTS-Solver is only
tested in Focus, because this is the only multi-player games investigated that
has the sudden-death property. While this enhancement was tested in the two-
player, three-player and the four-player variant, it may be interesting to test
the performance of the multi-player variant of the MCTS-Solver in other multi-
player sudden-death games, such as the multi-player variant of Tron.

These enhancements may also be applied in modern board games, such as Set-
tlers of Catan (cf. Szita, Chaslot, and Spronck, 2010) and Carcassonne (cf. Hey-
den, 2009).
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Furthermore, only one hide-and-seek game was used as a test domain for en-
hancements such as Location Categorization and Coalition Reduction, namely
Scotland Yard. For the enhancements proposed in Chapter 7, it may be interest-
ing to test these in other games as well. For instance, Location Categorization
may also work in other games with imperfect information, such as Stratego,
and Coalition Reduction may also perform well in different games that feature
a coalition between players, such as the ghosts in Ms. PacMan or in the pursuit-
evasion game Cops and Robbers.
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APPENDIX A

RAVE Formulas

This appendix provides a brief overview of various different RAVE variants that have
been used over the past years. While they apply different formulas, they all have in
common that AMAF values are used to guide the selection strategy while the number
of visits in a node is still low.

In all formulas, ni and np represent the number of times child i and its parent p
have been visited, respectively. x̄i is the win rate of child i and x̄a is the AMAF value
of child i.

Teytaud and Teytaud (2010a) used a variant of RAVE in their Havannah playing
program. They applied the win rate and the AMAF value of the moves, combined with
Hoeffding’s bound, as shown in Formula A.1.

vi = (1−β)x̄i +βx̄a + e

β= R
R+ni

e =
√

K ln(2+np)/ni

(A.1)

In this formula, R represents the number of visits of parent p from which the
weight of the RAVE component equals the weight of the ‘greedy’ component. e rep-
resents Hoeffding’s bound, which is determined by the exploration constant K . This
bound is used instead of UCT, which is applied in most other RAVE formulas.

Tom and Müller (2010) applied Formula A.2 to compute the value of the children
in the MCTS tree in the artificial game Sum of Switches.

vi = ni

ni +Wi
x̄i + Wi

ni +Wi
x̄a +C

√
ln(np)
ni +1

Wi =
naw f wi

w f +wina

(A.2)

In this formula, ni and np represent the number of times child i and its parent
p have been visited, respectively. x̄i is the win rate of child i and x̄a is the AMAF
value of child i. Wi,a is the unnormalized weighting of the RAVE estimator, where
ma indicates the number of times move a has been played after parent p, and wi and



146 Appendix A: RAVE Formulas

w f are two parameters that determine the initial and the final weight of the RAVE
component, respectively.

Another implementation of RAVE was provided by Rimmel et al. (2011a). This
RAVE variant, which is given in Formula A.3, was used in both Havannah and Go.

vi = x̄i +βx̄a +
√

2lnnp

ni
(A.3)

This selection strategy is quite similar to UCB1, with only the addition of the
term βx̄a. Because β is a function that tends to 0 as the number of visits increases,
the influence of the AMAF value decreases accordingly.



APPENDIX B

Detailed Results for Chapter 4

This appendix provides detailed results of the experiments performed in Chapter
4. First, Section B.1 discusses the detailed results of the experiments between the
minimax-based multi-player search techniques maxn, paranoid and BRS. Next, Sec-
tion B.2 gives an overview of the detailed results of the experiments between the
MCTS-based search techniques MCTS-maxn, MCTS-paranoid and MCTS-BRS. Fi-
nally, Section B.3 provides a brief overview of the detailed results of the experiments
between MCTS-maxn and BRS.

B.1 Comparison of Minimax-Based Techniques

This section contains a detailed analysis of the results in Table 4.2. The detailed re-
sults of maxn, paranoid, and BRS for the three-player variants of Chinese Checkers,
Focus, and Rolit are given in Tables B.1, B.2, and B.3, respectively. Note that, in all
tables, n is the number of games on which the win rates are based. The first notable
observation is that players overall perform better if they play after a weaker player.
For instance, in all games and with all time settings, paranoid performs significantly
better after maxn, which is the weaker opponent, than after BRS. Similarly BRS
achieves considerably higher win rates after maxn than after paranoid. A possible ex-
planation for this phenomenon is that weaker players make more mistakes, and that
players moving directly after weaker players can exploit these mistakes. For maxn,
there appears to be no different between playing after paranoid or after BRS. This
may be because both players play relatively strong and do not make many mistakes
that maxn can exploit. Also, maxn may not be strong enough to exploit mistakes made
anyway by paranoid or BRS. The second notable observation is that there appears to
be no clear advantage in playing first in Chinese Checkers or Focus. Apparently, the
difference in playing strength between the different minimax-based players is large
enough so that the advantage of playing first does not have an influence on the out-
come of the game. The same seems to be true for Focus. For Rolit, however, paranoid
and BRS seem to have an advantage when playing last, if at least 1000 ms of thinking
time is provided. In Rolit, the last player has the advantage that any captured stones
cannot be lost anymore. Apparently, only players with a sufficient level of strength
can benefit from this, because maxn, and paranoid and BRS with 250 ms of thinking
time, do not have an advantage when moving last.
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The results in Tables B.4, B.5, B.6, and B.7 show the win rates with a different
number of instances of each player for four-player Chinese Checkers, Focus, Rolit,
and Blokus, respectively. These results show how the player which has two instances
of itself has a significant advantage. This is an expected result, because if there are
more instances of a player type, the probability that one of these players wins the
game is higher. Because each player type has this advantage in an equal number of
games, the final results are fair and give a good indication of the playing strength of
the different players.

Finally, Table B.8 gives the results with different numbers of instances for each
player type in six-player Chinese Checkers. These results show that, similar to the
previous experiments, the more instances there are of a certain player type, the
higher its win rate. The only fair configurations are the ones with two instances of
each player type. Interestingly, the win rates of these configurations are comparable
to the win rates over all configurations.

B.2 Comparison of MCTS-Based Techniques

This section contains a detailed analysis of the results in Table 4.3. The detailed re-
sults of MCTS-maxn, MCTS-paranoid, and MCTS-BRS for the three-player variants
of Chinese Checkers, Focus, and Rolit are given in Tables B.9, B.10, and B.11, respec-
tively. Note that, due to space constraints, in the tables in this section the number of
games n is omitted. This number, however, is the same as in the corresponding ta-
bles in the previous section. The observations presented in these tables are similar to
those found in the experiments with the minimax-based techniques. Again, the play-
ers overall perform better if they play after a weaker opponent. For instance, MCTS-
BRS overall performs better after MCTS-paranoid than after MCTS-maxn, which is
a stronger opponent. Contrary to the experiments with the minimax-based players,
with the MCTS-based players there appears to be a small advantage for the players
when playing first in Chinese Checkers, while playing last gives a slight disadvan-
tage. The reason may be that, because the difference in playing strength is smaller
between the MCTS-based players, the turn order has a relatively larger influence on
the win rates. In Focus, the turn order seems to have no influence on the playing
strength. In Rolit, MCTS-maxn and MCTS-paranoid both have an advantage in mov-
ing last. MCTS-BRS does not have this advantage, similar to maxn, because it does
not have the strength to benefit from this.

Tables B.12, B.13, B.14, and B.15 show the detailed results with a different num-
ber of instances of each MCTS-based player type for four-player Chinese Checkers,
Focus, Rolit, and Blokus, respectively. The results in these tables show a similar
pattern as the results of the experiments with the minimax-based players in the four-
player games. All player types have a significant advantage if there are two instances
of them. When all results are combined, these advantages cancel each other out.

Finally, Table B.16 provides the results with different numbers of instances for
each MCTS-based player type in six-player Chinese Checkers. Again, the more in-
stances there are of a certain player type, the higher its win rate. The win rates of the
configurations with two instances of each player type are slightly different to the win
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rates over all configurations. However, the results are still comparable, as MCTS-
maxn is the strongest technique both with only the fair configurations and with all
configurations.

B.3 BRS versus MCTS-maxn

This section contains a detailed analysis of the matches between BRS and MCTS-
maxn in Tables 4.5 and 4.6.

The detailed results of MCTS-maxn versus BRS for the three-player variants of
Chinese Checkers, Focus, and Rolit are given in Tables B.17, B.18, and B.19, respec-
tively. If there are two player types and three players, there are two instances of one
player type, and one instance of the other. The results in the tables show that, for
all games, the player type with two instances has a considerable advantage over the
other. If the two player types would be equally strong, the type with two instances
would win 66 2

3 % of the games. The results in Table B.19 also show that the player who
moves last in Rolit has an advantage. For example, in the games with one instance of
MCTS-maxn, it wins the most games if it plays last, i.e., in the B–B–M configuration,
compared to the B–M–B and M–B–B configurations.

Subsequently, Tables B.20, B.21, B.22, and B.23 show the detailed results with a
different number of instances of MCTS-maxn and BRS for four-player Chinese Check-
ers, Focus, Rolit, and Blokus, respectively. The results in these tables show that the
unfair configurations, with three instances of one player type and only one of the
other, do not have a significant influence on the overall win rate. Similar to the other
experiments, the win rates of the fair configurations are comparable to the overall
win rates.

Finally, Table B.24 provides the results with different numbers of instances for
MCTS-maxn and BRS in six-player Chinese Checkers. The win rates of the fair con-
figurations, with three instances of each player type, are relatively close to the win
rates over all configurations. While there are configurations with five instances of one
player type and only one of the other, they do not have a large influence on the overall
win rate.
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Table B.1 Detailed results of the minimax-based techniques in three-player Chinese
Checkers.

250 ms n Maxn Paranoid BRS

Order

M–P–B 175 2.3% 33.1% 64.6%
M–B–P 175 1.1% 16.0% 82.9%
P–M–B 175 0.6% 29.7% 69.7%
P–B–M 175 1.1% 29.1% 69.7%
B–M–P 175 0.6% 25.7% 73.7%
B–P–M 175 0.6% 15.4% 84.0%

Position

After maxn 350 - 29.3% 78.9%
After paranoid 350 0.8% - 69.3%

After BRS 350 1.3% 20.4% -
First 350 1.7% 29.4% 78.9%

Second 350 0.6% 24.3% 76.3%
Third 350 0.9% 20.9% 67.2%

1000 ms n Maxn Paranoid BRS

Order

M–P–B 175 0.6% 30.9% 68.6%
M–B–P 175 0.6% 17.7% 81.7%
P–M–B 175 1.1% 11.4% 87.4%
P–B–M 175 1.7% 20.6% 77.7%
B–M–P 175 1.1% 18.3% 80.6%
B–P–M 175 0.6% 24.0% 75.4%

Position

After maxn 350 - 23.3% 81.5%
After paranoid 350 0.8% - 75.6%

After BRS 350 1.1% 17.7% -
First 350 0.6% 16.0% 78.0%

Second 350 1.1% 27.5% 79.7%
Third 350 1.2% 18.0% 78.0%

5000 ms n Maxn Paranoid BRS

Order

M–P–B 175 1.7% 29.1% 69.1%
M–B–P 175 1.7% 16.6% 81.7%
P–M–B 175 1.7% 17.1% 81.1%
P–B–M 175 1.1% 22.9% 76.0%
B–M–P 175 1.7% 24.0% 74.3%
B–P–M 175 0.6% 20.0% 79.4%

Position

After maxn 350 - 25.3% 80.7%
After paranoid 350 1.3% - 73.1%

After BRS 350 1.5% 17.9% -
First 350 1.7% 20.0% 76.9%

Second 350 1.7% 24.6% 78.9%
Third 350 0.9% 20.3% 75.1%
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Table B.2 Detailed results of the minimax-based techniques in three-player Focus.
250 ms n Maxn Paranoid BRS

Order

M–P–B 175 5.7% 44.0% 50.3%
M–B–P 175 3.4% 33.1% 63.4%
P–M–B 175 4.6% 30.9% 64.6%%
P–B–M 175 3.4% 41.1% 55.4%
B–M–P 175 9.1% 36.6% 54.3%
B–P–M 175 0.0% 28.6% 71.4%

Position

After maxn 350 - 40.6% 66.5%
After paranoid 350 2.7% - 53.3%

After BRS 350 6.1% 30.9% -
First 350 4.6% 36.0% 62.9%

Second 350 6.9% 36.3% 59.4%
Third 350 1.7% 34.9% 57.5%

1000 ms n Maxn Paranoid BRS

Order

M–P–B 175 6.3% 41.7% 52.0%
M–B–P 175 0.6% 12.0% 87.4%
P–M–B 175 2.9% 19.4% 77.7%
P–B–M 175 6.3% 29.7% 64.0%
B–M–P 175 6.9% 41.7% 51.4%
B–P–M 175 0.0% 26.9% 73.1%

Position

After maxn 350 - 37.7% 79.4%
After paranoid 350 1.2% - 55.8%

After BRS 350 6.5% 19.4% -
First 350 3.5% 24.6% 62.3%

Second 350 4.9% 34.3% 75.7%
Third 350 3.2% 26.9% 64.9%

5000 ms n Maxn Paranoid BRS

Order

M–P–B 175 6.3% 34.9% 58.9%
M–B–P 175 1.7% 21.7% 76.6%
P–M–B 175 1.7% 30.9% 67.4%
P–B–M 175 6.3% 25.1% 68.6%
B–M–P 175 6.9% 28.6% 64.6%
B–P–M 175 0.0% 22.3% 77.7%

Position

After maxn 350 - 29.5% 73.9%
After paranoid 350 1.1% - 64.0%

After BRS 350 6.5% 25.0% -
First 350 4.0% 28.0% 71.2%

Second 350 4.3% 28.6% 72.6%
Third 350 3.2% 25.2% 63.2%
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Table B.3 Detailed results of the minimax-based techniques in three-player Rolit.
250 ms n Maxn Paranoid BRS

Order

M–P–B 175 7.1% 52.3% 40.6%
M–B–P 175 7.4% 24.9% 67.7%
P–M–B 175 8.0% 22.0% 70.0%
P–B–M 175 10.9% 45.7% 43.4%
B–M–P 175 8.3% 55.7% 36.0%
B–P–M 175 6.9% 30.9% 62.3%

Position

After maxn 350 - 51.2% 66.7%
After paranoid 350 7.4% - 40.0%

After BRS 350 8.8% 25.9% -
First 350 7.3% 33.9% 49.2%

Second 350 8.2% 41.6% 55.6%
Third 350 8.9% 40.3% 55.3%

1000 ms n Maxn Paranoid BRS

Order

M–P–B 175 7.4% 41.1% 51.4%
M–B–P 175 5.4% 41.1% 53.4%
P–M–B 175 13.1% 25.4% 61.4%
P–B–M 175 9.7% 46.3% 44.0%
B–M–P 175 7.1% 50.0% 42.9%
B–P–M 175 10.9% 34.3% 54.9%

Position

After maxn 350 - 45.8% 56.6%
After paranoid 350 9.8% - 46.1%

After BRS 350 8.1% 33.6% -
First 350 6.4% 35.9% 49.8%

Second 350 10.1% 37.7% 48.7%
Third 350 10.3% 45.6% 56.4%

5000 ms n Maxn Paranoid BRS

Order

M–P–B 175 2.3% 46.9% 50.9%
M–B–P 175 5.4% 45.4% 49.1%
P–M–B 175 9.4% 26.6% 64.0%
P–B–M 175 5.4% 48.0% 46.6%
B–M–P 175 7.7% 60.9% 31.4%
B–P–M 175 7.4% 44.3% 48.3%

Position

After maxn 350 - 45.8% 54.4%
After paranoid 350 8.6% - 46.1%

After BRS 350 8.1% 36.9% -
First 350 6.4% 35.9% 45.6%

Second 350 10.1% 42.7% 48.7%
Third 350 8.6% 45.6% 56.4%
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Table B.4 Detailed results of the minimax-based techniques in four-player Chinese
Checkers.

Instances
M P B n Maxn Paranoid BRS
2 1 1 350 11.2% 10.3% 78.4%
1 2 1 350 2.0% 19.3% 78.7%
1 1 2 350 2.6% 5.5% 92.0%

Instances
M P B n Maxn Paranoid BRS
2 1 1 350 7.5% 21.8% 70.7%
1 2 1 350 2.9% 34.8% 62.1%
1 1 2 350 1.7% 12.4% 85.9%

Instances
M P B n Maxn Paranoid BRS
2 1 1 350 11.5% 19.3% 69.3%
1 2 1 350 3.4% 29.3% 67.0%
1 1 2 350 2.0% 9.8% 88.2%

Table B.5 Detailed results of the minimax-based techniques in four-player Focus.
Instances
M P B n Maxn Paranoid BRS
2 1 1 350 17.0% 16.1% 67.0%
1 2 1 350 7.5% 25.9% 66.7%
1 1 2 350 3.7% 10.6% 85.6%

Instances
M P B n Maxn Paranoid BRS
2 1 1 350 13.2% 20.7% 66.1%
1 2 1 350 4.0% 39.9% 56.0%
1 1 2 350 3.7% 11.5% 84.8%

Instances
M P B n Maxn Paranoid BRS
2 1 1 350 12.4% 29.6% 59.2%
1 2 1 350 4.3% 42.0% 54.3%
1 1 2 350 3.4% 12.6% 83.9%
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Table B.6 Detailed results of the minimax-based techniques in four-player Rolit.
Instances
M P B n Maxn Paranoid BRS
2 1 1 350 26.1% 41.1% 32.8%
1 2 1 350 10.9% 56.7% 32.4%
1 1 2 350 10.7% 26.8% 62.5%

Instances
M P B n Maxn Paranoid BRS
2 1 1 350 24.4% 39.4% 36.2%
1 2 1 350 10.3% 59.6% 30.0%
1 1 2 350 9.3% 29.0% 61.6%

Instances
M P B n Maxn Paranoid BRS
2 1 1 350 27.2% 36.2% 37.8%
1 2 1 350 7.5% 61.8% 31.3%
1 1 2 350 10.3% 29.4% 60.2%

Table B.7 Detailed results of the minimax-based techniques in four-player Blokus.
Instances
M P B n Maxn Paranoid BRS
2 1 1 350 29.1% 28.0% 43.0%
1 2 1 350 13.8% 43.2% 43.0%
1 1 2 350 10.5% 20.0% 69.5%

Instances
M P B n Maxn Paranoid BRS
2 1 1 350 25.5% 21.8% 52.7%
1 2 1 350 12.7% 46.6% 40.7%
1 1 2 350 7.9% 20.4% 71.8%

Instances
M P B n Maxn Paranoid BRS
2 1 1 350 14.2% 20.0% 67.0%
1 2 1 350 6.2% 38.5% 55.9%
1 1 2 350 5.5% 12.4% 82.2%
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Table B.8 Detailed results of the minimax-based techniques in six-player Chinese
Checkers.

250 ms
Instances Win rate
M P B n Maxn Paranoid BRS
4 1 1 60 55.0% 8.3% 36.7%
3 2 1 120 30.8% 15.8% 53.3%
3 1 2 120 20.0% 5.0% 75.0%
2 3 1 120 19.2% 27.5% 53.3%
2 2 2 180 11.1% 13.9% 75.0%
2 1 3 120 6.7% 2.5% 90.8%
1 4 1 60 10.0% 41.7% 48.3%
1 3 2 120 5.8% 16.7% 77.5%
1 2 3 120 2.5% 9.2% 88.3%
1 1 4 60 1.7% 5.0% 93.3%

1000 ms
Instances Win rate
M P B n Maxn Paranoid BRS
4 1 1 60 42.8% 6.1% 51.1%
3 2 1 120 20.0% 20.0% 60.0%
3 1 2 120 16.9% 4.4% 78.6%
2 3 1 120 11.9% 25.3% 62.8%
2 2 2 180 15.2% 10.7% 74.1%
2 1 3 120 6.7% 5.0% 88.3%
1 4 1 60 7.2% 40.6% 52.2%
1 3 2 120 5.8% 13.3% 80.8%
1 2 3 120 1.9% 10.3% 87.8%
1 1 4 60 1.7% 3.3% 95.0%

5000 ms
Instances Win rate
M P B n Maxn Paranoid BRS
4 1 1 60 45.0% 6.7% 48.3%
3 2 1 120 36.9% 18.6% 44.4%
3 1 2 120 17.5% 7.5% 75.0%
2 3 1 120 16.4% 26.4% 57.2%
2 2 2 180 15.7% 11.3% 73.0%
2 1 3 120 11.7% 5.0% 83.3%
1 4 1 60 12.2% 32.2% 55.6%
1 3 2 120 9.4% 13.6% 76.9%
1 2 3 120 5.6% 9.7% 84.7%
1 1 4 60 10.0% 0.0% 90.0%
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Table B.9 Detailed results of the MCTS-based techniques in three-player Chinese
Checkers.

250 ms MCTS-maxn MCTS-paranoid MCTS-BRS

Order

M–P–B 38.3% 30.9% 30.9%
M–B–P 44.0% 26.3% 29.7%
P–M–B 45.7% 33.1% 21.1%
P–B–M 33.7% 30.9% 35.4%
B–M–P 38.3% 20.6% 41.1%
B–P–M 41.1% 29.1% 29.7%

Position

After MCTS-maxn - 27.5% 26.8%
After MCTS-paranoid 43.6% - 35.8%

After MCTS-BRS 36.8% 29.5% -
First 41.2% 32.0% 35.4%

Second 42.0% 30.0% 32.6%
Third 37.4% 23.5% 26.0%

1000 ms MCTS-maxn MCTS-paranoid MCTS-BRS

Order

M–P–B 50.3% 18.3% 31.4%
M–B–P 56.0% 22.9% 21.1%
P–M–B 49.1% 24.6% 26.3%
P–B–M 49.1% 18.9% 32.0%
B–M–P 53.1% 14.3% 32.6%
B–P–M 52.6% 20.6% 26.9%

Position

After MCTS-maxn - 17.2% 24.8%
After MCTS-paranoid 52.6% - 32.0%

After MCTS-BRS 50.8% 22.7% -
First 53.2% 21.8% 29.8%

Second 51.1% 19.5% 26.6%
Third 50.9% 18.6% 28.9%

5000 ms MCTS-maxn MCTS-paranoid MCTS-BRS

Order

M–P–B 62.9% 5.7% 31.4%
M–B–P 63.4% 13.7% 22.9%
P–M–B 66.9% 17.1% 16.0%
P–B–M 54.3% 10.3% 35.4%
B–M–P 57.7% 5.1% 37.1%
B–P–M 67.4% 13.1% 19.4%

Position

After MCTS-maxn - 7.0% 19.4%
After MCTS-paranoid 65.9% - 34.6%

After MCTS-BRS 58.3% 14.6% -
First 63.2% 13.7% 28.3%

Second 62.3% 9.4% 29.2%
Third 60.9% 9.4% 23.7%
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Table B.10 Detailed results of the MCTS-based techniques in three-player Focus.
250 ms MCTS-maxn MCTS-paranoid MCTS-BRS

Order

M–P–B 31.4% 29.1% 39.4%
M–B–P 50.9% 22.9% 26.3%
P–M–B 41.7% 32.6% 25.7%
P–B–M 32.6% 29.7% 37.7%
B–M–P 36.0% 35.4% 28.6%
B–P–M 52.0% 24.6% 23.4%

Position

After MCTS-maxn - 31.4% 25.1%
After MCTS-paranoid 48.2% - 35.2%

After MCTS-BRS 33.3% 26.7% -
First 41.2% 31.2% 26.0%

Second 38.9% 26.9% 32.0%
Third 42.3% 29.6% 32.6%

1000 ms MCTS-maxn MCTS-paranoid MCTS-BRS

Order

M–P–B 35.4% 22.9% 41.7%
M–B–P 43.4% 30.3% 26.3%
P–M–B 49.7% 23.4% 26.9%
P–B–M 43.4% 28.6% 28.0%
B–M–P 37.1% 24.6% 38.3%
B–P–M 48.6% 26.9% 24.6%

Position

After MCTS-maxn - 25.4% 25.9%
After MCTS-paranoid 47.2% - 36.0%

After MCTS-BRS 38.6% 26.9% -
First 39.4% 26.0% 31.5%

Second 43.4% 24.9% 27.2%
Third 46.0% 27.5% 34.3%

5000 ms MCTS-maxn MCTS-paranoid MCTS-BRS

Order

M–P–B 42.3% 17.1% 40.6%
M–B–P 47.4% 25.1% 27.4%
P–M–B 55.4% 19.4% 25.1%
P–B–M 42.3% 12.6% 45.1%
B–M–P 50.9% 16.6% 32.6%
B–P–M 53.7% 26.9% 19.4%

Position

After MCTS-maxn - 15.4% 24.0%
After MCTS-paranoid 52.2% - 39.4%

After MCTS-BRS 45.2% 23.8% -
First 44.9% 16.0% 26.0%

Second 53.2% 22.0% 36.3%
Third 48.0% 20.9% 32.9%
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Table B.11 Detailed results of the MCTS-based techniques in three-player Rolit.
250 ms MCTS-maxn MCTS-paranoid MCTS-BRS

Order

M–P–B 48.3% 29.4% 22.3%
M–B–P 41.7% 38.9% 19.4%
P–M–B 47.1% 32.3% 20.6%
P–B–M 63.4% 17.4% 19.1%
B–M–P 51.1% 27.1% 21.7%
B–P–M 51.7% 28.3% 20.5%

Position

After MCTS-maxn - 24.6% 20.0%
After MCTS-paranoid 46.8% - 21.0%

After MCTS-BRS 54.3% 33.2% -
First 45.0% 24.9% 20.9%

Second 49.1% 28.9% 19.3%
Third 57.6% 33.0% 21.5%

1000 ms MCTS-maxn MCTS-paranoid MCTS-BRS

Order

M–P–B 60.3% 20.3% 19.4%
M–B–P 53.4% 35.4% 11.1%
P–M–B 58.9% 28.0% 13.1%
P–B–M 68.9% 14.9% 16.3%
B–M–P 50.0% 23.4% 26.6%
B–P–M 52.3% 25.7% 22.0%

Position

After MCTS-maxn - 19.5% 15.4%
After MCTS-paranoid 54.9% - 20.8%

After MCTS-BRS 59.7% 29.7% -
First 56.9% 21.5% 24.3%

Second 54.5% 23.0% 13.7%
Third 60.0% 29.4% 16.3%

5000 ms MCTS-maxn MCTS-paranoid MCTS-BRS

Order

M–P–B 60.3% 21.7% 18.0%
M–B–P 58.3% 31.7% 10.0%
P–M–B 65.7% 18.6% 15.7%
P–B–M 71.1% 12.3% 16.6%
B–M–P 54.0% 21.1% 24.9%
B–P–M 69.7% 16.9% 13.4%

Position

After MCTS-maxn - 18.4% 13.0%
After MCTS-paranoid 64.6% - 19.8%

After MCTS-BRS 61.8% 22.4% -
First 59.3% 15.5% 19.2%

Second 59.9% 19.3% 13.3%
Third 70.4% 26.4% 16.9%
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Table B.12 Detailed results of the MCTS-based techniques in four-player Chinese
Checkers.

250 ms
Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
2 1 1 66.1% 17.8% 16.1%
1 2 1 40.2% 42.5% 17.2%
1 1 2 37.1% 26.4% 36.5%

1000 ms
Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
2 1 1 71.3% 9.8% 19.0%
1 2 1 43.7% 33.6% 22.7%
1 1 2 43.4% 13.5% 43.1%

5000 ms
Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
2 1 1 78.2% 7.5% 14.4%
1 2 1 60.3% 19.0% 20.7%
1 1 2 54.6% 10.1% 35.3%

Table B.13 Detailed results of the MCTS-based techniques in four-player Focus.
250 ms

Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
2 1 1 54.6% 23.0% 22.4%
1 2 1 29.3% 50.0% 20.7%
1 1 2 27.9% 27.0% 45.1%

1000 ms
Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
2 1 1 60.6% 17.5% 21.8%
1 2 1 33.0% 42.5% 24.4%
1 1 2 29.9% 18.1% 52.0%

5000 ms
Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
2 1 1 72.7% 8.6% 18.7%
1 2 1 45.7% 31.0% 23.3%
1 1 2 38.5% 16.7% 44.8%
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Table B.14 Detailed results of the MCTS-based techniques in four-player Rolit.
250 ms

Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
2 1 1 63.8% 18.5% 17.7%
1 2 1 33.0% 47.6% 19.4%
1 1 2 34.1% 28.1% 37.8%

1000 ms
Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
2 1 1 68.2% 17.2% 14.6%
1 2 1 40.0% 42.5% 17.5%
1 1 2 41.8% 22.7% 35.5%

5000 ms
Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
2 1 1 77.5% 10.2% 12.2%
1 2 1 45.8% 34.1% 20.1%
1 1 2 46.1% 18.1% 35.8%

Table B.15 Detailed results of the MCTS-based techniques in four-player Blokus.
250 ms

Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
2 1 1 54.7% 23.2% 22.1%
1 2 1 26.5% 54.0% 19.5%
1 1 2 29.0% 26.2% 44.8%

1000 ms
Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
2 1 1 52.7% 27.0% 20.4%
1 2 1 27.2% 51.5% 21.3%
1 1 2 28.0% 27.3% 44.7%

5000 ms
Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
2 1 1 51.5% 26.8% 21.7%
1 2 1 21.8% 50.9% 27.3%
1 1 2 27.6% 25.3% 47.1%
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Table B.16 Detailed results of the MCTS-based techniques in six-player Chinese
Checkers.

250 ms
Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
4 1 1 71.7% 10.0% 18.3%
3 2 1 64.2% 28.3% 7.5%
3 1 2 63.3% 15.8% 20.8%
2 3 1 43.3% 41.7% 15.0%
2 2 2 53.9% 25.6% 20.6%
2 1 3 51.7% 15.0% 33.3%
1 4 1 26.7% 63.3% 10.0%
1 3 2 34.2% 37.5% 28.3%
1 2 3 24.2% 31.7% 44.2%
1 1 4 23.3% 18.3% 58.3%

1000 ms
Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
4 1 1 86.7% 3.3% 10.0%
3 2 1 76.7% 17.5% 5.8%
3 1 2 70.0% 8.3% 21.7%
2 3 1 58.3% 22.5% 19.2%
2 2 2 55.0% 20.6% 24.4%
2 1 3 60.0% 8.3% 31.7%
1 4 1 33.3% 55.0% 11.7%
1 3 2 30.0% 42.5% 27.5%
1 2 3 36.7% 21.7% 41.7%
1 1 4 30.0% 11.7% 58.3%

5000 ms
Instances Win rate
M P B MCTS-Maxn MCTS-Paranoid MCTS-BRS
4 1 1 85.0% 6.7% 8.3%
3 2 1 70.0% 15.8% 14.2%
3 1 2 77.5% 4.2% 18.3%
2 3 1 71.7% 16.7% 11.7%
2 2 2 67.2% 12.2% 20.6%
2 1 3 57.5% 6.7% 35.8%
1 4 1 50.0% 31.7% 18.3%
1 3 2 41.7% 25.8% 32.5%
1 2 3 54.2% 15.8% 30.0%
1 1 4 20.0% 8.3% 71.7%
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Table B.17 Detailed results of BRS versus MCTS-maxn in three-player Chinese
Checkers.

250 ms n BRS MCTS-maxn

Order

M–M–B 175 66.9% 33.1%
M–B–M 175 59.4% 40.6%
B–M–M 175 66.9% 33.1%
B–B–M 175 100.0% 0.0%
B–M–B 175 98.9% 1.1%
M–B–B 175 97.7% 2.3%

Instances
1 525 64.4% 1.1%
2 525 98.9% 35.6%

1000 ms n BRS MCTS-maxn

Order

M–M–B 175 34.9% 65.1%
M–B–M 175 35.4% 64.6%
B–M–M 175 37.7% 62.3%
B–B–M 175 83.4% 16.6%
B–M–B 175 77.1% 22.9%
M–B–B 175 77.1% 22.9%

Instances
1 525 36.0% 20.8%
2 525 79.2% 64.0%

5000 ms n BRS MCTS-maxn

Order

M–M–B 175 10.9% 89.1%
M–B–M 175 13.7% 86.3%
B–M–M 175 13.1% 86.9%
B–B–M 175 62.3% 37.7%
B–M–B 175 52.0% 48.0%
M–B–B 175 38.9% 61.1%

Instances
1 525 12.6% 49.0%
2 525 51.0% 87.4%
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Table B.18 Detailed results of BRS versus MCTS-maxn in three-player Focus.
250 ms n BRS MCTS-maxn

Order

M–M–B 175 42.3% 57.7%
M–B–M 175 42.3% 57.7%
B–M–M 175 48.0% 52.0%
B–B–M 175 80.0% 20.0%
B–M–B 175 85.7% 14.3%
M–B–B 175 78.9% 21.1%

Instances
1 525 44.2% 18.5%
2 525 81.5% 55.8%

1000 ms n BRS MCTS-maxn

Order

M–M–B 175 22.9% 77.1%
M–B–M 175 22.9% 77.1%
B–M–M 175 21.1% 78.9%
B–B–M 175 70.9% 29.1%
B–M–B 175 69.1% 30.9%
M–B–B 175 70.3% 29.7%

Instances
1 525 22.3% 29.9%
2 525 70.1% 77.7%

5000 ms n BRS MCTS-maxn

Order

M–M–B 175 9.1% 90.9%
M–B–M 175 13.1% 86.9%
B–M–M 175 8.6% 91.4%
B–B–M 175 58.9% 41.1%
B–M–B 175 67.4% 32.6%
M–B–B 175 65.7% 34.3%

Instances
1 525 10.3% 36.0%
2 525 64.0% 89.7%
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Table B.19 Detailed results of BRS versus MCTS-maxn in three-player Rolit.
250 ms n BRS MCTS-maxn

Order

M–M–B 175 7.7% 92.3%
M–B–M 175 12.9% 87.1%
B–M–M 175 13.1% 86.9%
B–B–M 175 27.7% 72.3%
B–M–B 175 44.9% 55.1%
M–B–B 175 49.1% 50.9%

Instances
1 525 11.2% 59.4%
2 525 40.6% 88.8%

1000 ms n BRS MCTS-maxn

Order

M–M–B 175 3.4% 96.6%
M–B–M 175 4.0% 96.0%
B–M–M 175 2.9% 97.1%
B–B–M 175 20.9% 79.1%
B–M–B 175 23.1% 76.9%
M–B–B 175 38.0% 62.0%

Instances
1 525 3.4% 72.7%
2 525 27.3% 96.6%

5000 ms n BRS MCTS-maxn

Order

M–M–B 175 4.0% 96.0%
M–B–M 175 4.0% 96.0%
B–M–M 175 2.9% 97.1%
B–B–M 175 17.1% 82.9%
B–M–B 175 21.7% 78.3%
M–B–B 175 28.6% 71.4%

Instances
1 525 3.6% 77.5%
2 525 22.5% 96.4%
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Table B.20 Detailed results of BRS versus MCTS-maxn in four-player Chinese Check-
ers.

250 ms
Instances Win rate
B M n BRS MCTS-maxn

3 1 300 97.7% 2.3%
2 2 450 83.1% 16.9%
1 3 300 42.0% 58.0%

1000 ms
Instances Win rate
B M n BRS MCTS-maxn

3 1 300 73.7% 26.3%
2 2 450 42.7% 57.3%
1 3 300 13.0% 87.0%

5000 ms
Instances Win rate
B M n BRS MCTS-maxn

3 1 300 49.7% 50.3%
2 2 450 16.7% 83.3%
1 3 300 3.7% 96.3%

Table B.21 Detailed results of BRS versus MCTS-maxn in four-player Focus.
250 ms

Instances Win rate
B M n BRS MCTS-maxn

3 1 300 86.3% 13.7%
2 2 450 58.4% 41.6%
1 3 300 28.0% 72.0%

1000 ms
Instances Win rate
B M n BRS MCTS-maxn

3 1 300 76.0% 24.0%
2 2 450 45.1% 54.9%
1 3 300 16.3% 83.7%

5000 ms
Instances Win rate
B M n BRS MCTS-maxn

3 1 300 68.0% 32.0%
2 2 450 23.1% 76.9%
1 3 300 7.3% 92.7%
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Table B.22 Detailed results of BRS versus MCTS-maxn in four-player Rolit.
250 ms

Instances Win rate
B M n BRS MCTS-maxn

3 1 300 54.1% 45.9%
2 2 450 24.8% 75.2%
1 3 300 9.5% 90.5%

1000 ms
Instances Win rate
B M n BRS MCTS-maxn

3 1 300 40.2% 59.8%
2 2 450 15.3% 84.7%
1 3 300 6.2% 93.8%

5000 ms
Instances Win rate
B M n BRS MCTS-maxn

3 1 300 40.7% 59.3%
2 2 450 13.3% 86.7%
1 3 300 2.5% 97.5%

Table B.23 Detailed results of BRS versus MCTS-maxn in four-player Blokus.
250 ms

Instances Win rate
B M n BRS MCTS-maxn

3 1 300 67.2% 32.8%
2 2 450 40.6% 59.4%
1 3 300 19.6% 80.4%

1000 ms
Instances Win rate
B M n BRS MCTS-maxn

3 1 300 41.6% 58.4%
2 2 450 20.4% 79.6%
1 3 300 7.0% 93.0%

5000 ms
Instances Win rate
B M n BRS MCTS-maxn

3 1 300 20.8% 79.2%
2 2 450 6.6% 93.4%
1 3 300 2.7% 97.3%



B.3 — BRS versus MCTS-maxn 167

Table B.24 Detailed results of BRS versus MCTS-maxn in six-player Chinese Check-
ers.

250 ms
Instances Win rate
B M n BRS MCTS-maxn

5 1 102 100.0% 0.0%
4 2 255 92.2% 7.8%
3 3 340 73.2% 26.8%
2 4 255 42.0% 58.0%
1 5 102 9.8% 90.2%

1000 ms
Instances Win rate
B M n BRS MCTS-maxn

5 1 102 70.6% 29.4%
4 2 255 45.9% 54.1%
3 3 340 24.7% 75.3%
2 4 255 6.3% 93.7%
1 5 102 4.9% 95.1%

5000 ms
Instances Win rate
B M n BRS MCTS-maxn

5 1 102 42.2% 57.8%
4 2 255 19.2% 80.8%
3 3 340 7.6% 92.4%
2 4 255 2.7% 97.3%
1 5 102 0.0% 100.0%
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Summary

AI research has been quite successful in the field of two-player zero-sum games, such
as chess, checkers, and Go. This has been achieved by developing two-player search
techniques. However, a large number of games does not belong to the area where
these search techniques are unconditionally applicable. Multi-player games are an
example of such domains. This thesis focuses on two different categories of multi-
player games: (1) deterministic multi-player games with perfect information and (2)
multi-player hide-and-seek games. In particular, it investigates how Monte-Carlo
Tree Search (MCTS) can be improved for games in these two categories. This tech-
nique has achieved impressive results in computer Go, but has also shown to be ben-
eficial in a range of other domains.

Chapter 1 provides an introduction to games and the role they play in the field of
AI and gives an overview of different game properties. It also defines the notion of
multi-player games and discusses the two different categories of multi-player games
that are investigated in this thesis. The following problem statement guides the re-
search.

Problem statement: How can Monte-Carlo Tree Search be improved to
increase the performance in multi-player games?

In order to answer the problem statement, four different research questions have
been formulated. They deal with (1) incorporating different search policies in MCTS,
(2) improving the selection phase of MCTS, (3) improving the playout phase of MCTS,
and (4) adapting MCTS to a hide-and-seek game.

Chapter 2 introduces the basic definitions for game-tree search. It discusses the
basic two-player minimax-based search techniques and some of their enhancements.
Furthermore, this chapter describes three different minimax-based search techniques
for multi-player games, namely maxn, paranoid, and Best-Reply Search (BRS). Fi-
nally, it introduces MCTS, and how it can be applied to two-player and multi-player
games.

Chapter 3 describes the test environment used to answer the first three research
questions. We describe the rules and the employed domain knowledge for the four
deterministic perfect-information games used in this thesis: Chinese Checkers, Focus,
Rolit, and Blokus. Furthermore, for each of the games the state-space complexity and
the game-tree complexity is given. They provide an indication on how difficult the
games are for computers to play them optimally. Finally, this chapter introduces the
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program MAGE, which is used to run the experiments in Chapters 4, 5, and 6 of this
thesis.

The advantage of MCTS is that it can be extended to multi-player games. In the
standard multi-player variant of MCTS, each player is concerned with maximizing
his own win rate. This variant is therefore comparable to the minimax-based multi-
player search technique maxn, where each player tries to maximize his own score,
regardless of the scores of the other players. Other multi-player search policies, such
as the ones of paranoid and BRS, could also be considered. This led us to the first
research question.

Research question 1: How can multi-player search policies be incorpo-
rated in MCTS?

Chapter 4 answers the first research question by incorporating the paranoid and
BRS search policies, along with the default maxn policy, in MCTS. With these search
policies the selection and the backpropagation phases of MCTS are altered. In the
MCTS framework, the maxn search policy appeared to perform best. The advantages
of paranoid and BRS in the minimax framework do not apply in MCTS, because αβ

pruning is not applicable in MCTS. An additional problem with MCTS-BRS may be
that, in the tree, invalid positions are investigated, which may reduce the reliability of
the playouts as well. Still, MCTS-paranoid and MCTS-BRS overall achieved decent
win rates against MCTS-maxn, especially with lower time settings. Based on the
results we may conclude that the maxn search policy is the most robust, though the
BRS and paranoid search policies can still be competitive. Finally, we enhanced the
maxn search policy by proposing a multi-player variant of MCTS-Solver, called MP-
MCTS-Solver. This variant is able to prove the game-theoretic value of a position. A
win rate between 53% and 55% was achieved in the sudden-death game Focus. We
may conclude that proving game-theoretic values improves the playing strength of
MCTS in a multi-player sudden-death domain.

An important phase in the MCTS algorithm is the selection phase. During the
selection phase, the search tree is traversed until a leaf node is reached. A selection
strategy determines how the tree is traversed. Over the past years, several selection
strategies and enhancements have been developed for different types of games. The
most popular selection strategy is Upper Confidence bounds applied to Trees (UCT).
There exist various enhancements for the UCT selection strategy. Most of them
are domain dependent, which means that they cannot unconditionally be applied in
every domain. A domain-independent enhancement is Rapid Action Value Estima-
tion (RAVE). This enhancement is based on the all-moves-as-first (AMAF) heuristic.
RAVE is in particular successful in the field of computer Go, but less successful in
others, such as the multi-player game Chinese Checkers. This led us to the second
research question.

Research question 2: How can the selection phase of MCTS be enhanced
in perfect-information multi-player games?

Chapter 5 answers this question by proposing a new domain-independent selec-
tion strategy called Progressive History. This technique is a combination of the rela-
tive history heuristic and Progressive Bias. Contrary to RAVE, Progressive History
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maintains its gathered data in a global table, in a similar way as the playout strategy
Move-Average Sampling Technique. Progressive History was a significant improve-
ment in all games with different numbers of players. In a comparison with UCT,
Progressive History gained the highest win rates in the two-player variants, winning
around 80% of the games. Moreover, Progressive History performed better than stan-
dard UCT in the multi-player variants as well. Progressive AMAF, which applies
AMAF values instead of history values, overall performed significantly worse than
Progressive History. Additionally, experiments in the two-player game Havannah
showed that Progressive History performed better in this game than RAVE. Further-
more, experiments revealed that Progressive History also significantly increases the
playing strength of the seekers in the hide-and-seek game Scotland Yard. Based on
the results we may conclude that Progressive History considerably enhances MCTS
in both two-player and multi-player games.

Similar to the selection phase, the playout phase is an important phase in the
MCTS algorithm. During the playout phase, the game is finished by playing moves
that are selected using a playout strategy. More realistic playouts usually provide
more reliable results, thus increasing the playing strength of an MCTS-based player.
Playouts can be made more realistic by adding domain knowledge. The disadvantage
is that this may reduce the number of playouts per second, decreasing the playing
strength. The challenge is to find a good balance between speed and quality of the
playouts. For the two-player game Lines of Action (LOA), relatively time-expensive
two-ply αβ searches in the playout phase of MCTS have been introduced. While
this significantly reduced the number of playouts per second, it increased the overall
playing strength by improving the quality of the playouts. This led us to the third
research question.

Research question 3: How can the playouts of MCTS be enhanced in
perfect-information multi-player games?

Chapter 6 answers this research question by introducing two-ply searches, which
are equipped with a heuristic evaluation function, for selecting moves in the playout
phase in MCTS for multi-player games. Three different search techniques were in-
vestigated for multi-player games, namely maxn, paranoid and BRS. These playout
strategies were compared against random, greedy and one-ply playouts to determine
how to balance search and speed in the playouts of multi-player MCTS. The results
showed that search-based playouts significantly improved the quality of the playouts
in MCTS. Among the different playout strategies, BRS performed best, followed by
paranoid and maxn. This benefit was countered by a reduction of the number of play-
outs per second. Especially BRS and maxn suffered from this effect. Among the tested
two-ply search-based playouts, paranoid overall performed best with both short and
long time settings. With more thinking time, the two-ply search-based playout strate-
gies performed relatively better than the one-ply and greedy strategies. This indicates
that with longer time settings, more computationally expensive playouts may be used
to increase the playing strength of MCTS-based players. Based on the experimental
results we may conclude that search-based playouts for multi-player games may be
beneficial if the players receive sufficient thinking time.



174 Summary

The previous chapters discussed the application and enhancement of MCTS to de-
terministic multi-player games with perfect information. In Chapter 7, we shift our
focus to hide-and-seek games. In this thesis we are interested in hide-and-seek games
that have the following three properties. First, they feature imperfect information for
some players. Second, some of the players have to cooperate in a fixed coalition.
Though these players have a common goal, each player behaves autonomously and
explicit communication between the players is not applied. Third, they are asymmet-
ric. The different players have different types of goals. A game that features these
properties is the pursuit-evasion game Scotland Yard. In this multi-player game, five
seekers cooperate to try to capture a hider, which only shows its location on regular
intervals. This led us to the fourth research question.

Research question 4: How can MCTS be adapted for hide-and-seek
games?

Chapter 7 answers the fourth research question. For handling the imperfect infor-
mation, two different determinization techniques were investigated, namely single-
tree determinization and separate-tree determinization. Single-tree determinization
had a slight overhead, but even when taking this into account, it performed signif-
icantly better than using separate trees. Furthermore, Location Categorization was
proposed, which is a technique that can be used by both the MCTS and the expecti-
max seekers to give a better prediction for the location of the hider. It significantly
increased the playing strength of both the MCTS and the expectimax seekers. The
results gave empirical evidence that Location Categorization is a robust technique,
as the weights worked for both seeker types against two different types of hider. Be-
cause of the asymmetric nature of the hide-and-seek game Scotland Yard, during the
playouts, different playout strategies may be used by the different types of players.
We found that, for the MCTS hider, it is best to assume during the playouts that the
seekers do not know where the hider is, while the MCTS seekers perform best if they
do assume where the hider is located. For dealing with the cooperation of the seekers,
Coalition Reduction was proposed. This technique reduces the rewarded value for the
root player if another player in the coalition wins the game, allowing the seekers to
cooperate more effectively in the coalition. We observed that the performance of the
MCTS seekers increased by applying Coalition Reduction. Cooperation still appeared
to be important, because the performance of the seekers dropped significantly when
the reduction became too large. In a direct comparison, MCTS performed considerably
better than paranoid search for the hider and expectimax for the seekers. Finally, the
experimental results showed that MCTS was able to play Scotland Yard on a higher
level than a commercial Nintendo DS program, which is generally considered to be a
strong player. In conclusion, with the incorporation of enhancements such as single-
tree determinization, Location Categorization, and Coalition Reduction, we were able
to let an MCTS-based player play the hide-and-seek game Scotland Yard on a strong
level.

Chapter 8 concludes the thesis and provides an outlook on five directions for future
research. The answer to the problem statement may be summarized in four points,
based on the research questions. First, the maxn search policy performs the best in
multi-player MCTS, while the BRS and paranoid policies are still competitive. The
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maxn search policy can be enhanced with a multi-player variant of the MCTS-Solver.
Second, the Progressive History selection strategy significantly increases the perfor-
mance of two-player and multi-player MCTS. Third, two-ply search-based playouts
significantly improve the quality of the playouts and, assuming a sufficient amount
of thinking time is provided, increases the performance of MCTS in multi-player do-
mains. Fourth, incorporating single-tree determinization, Location Categorization,
and Coalition Reduction into MCTS significantly improves its performance in the
multi-player hide-and-seek game Scotland Yard.

The research presented in this thesis indicates five areas of future research. These
areas include (1) the application of other search policies, (2) the combination of Pro-
gressive History with other selection strategies, (3) further optimization of search-
based playouts or the implementation of three-ply search-based playouts, (4) further
investigation of Scotland Yard, and (5) the application if the proposed enhancements
to other domains.
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Samenvatting

Onderzoek in kunstmatige intelligentie is succesvol geweest op het gebied van twee-
speler nulsomspelen, zoals schaak, dammen en Go. Dit is bereikt door het ontwik-
kelen van tweespeler zoektechnieken. Echter, een groot aantal spelen behoort tot
de groep waar deze technieken niet zonder meer kunnen worden toegepast. Meer-
speler spelen zijn een voorbeeld van zo’n domein. Dit proefschrift richt zich op twee
verschillende categorieën meerspeler spelen: (1) deterministische meerspeler spelen
met perfecte informatie en (2) meerspeler zoek-en-verstopspelen. In het bijzonder
wordt onderzocht hoe Monte-Carlo Tree Search (MCTS) voor spelen in deze twee ca-
tegorieën kan worden verbeterd. Deze techniek heeft indrukwekkende resultaten be-
haald in computer Go, maar is ook waardevol gebleken in een reeks andere domeinen.
Hoofdstuk 1 biedt een introductie in spelen en de rol die zij vervullen op het gebied
van kunstmatige intelligentie, en daarnaast geeft het een overzicht van verschillende
speleigenschappen. Ook worden meerspeler spelen gedefinieerd en worden de twee
verschillende categorieën meerspeler spelen die onderzocht worden in dit proefschrift
besproken. De volgende probleemstelling stuurt het onderzoek.

Probleemstelling: Hoe kan Monte-Carlo Tree Search verbeterd worden
om de prestaties in meerspeler spelen te verhogen?

Om een antwoord te geven op de probleemstelling, worden vier onderzoeksvragen
gedefinieerd. Deze behandelen (1) de integratie van verschillende zoekprincipes in
MCTS, (2) het verbeteren van de selectiefase van MCTS, (3) het verbeteren van de
simulatiefase van MCTS, en (4) het aanpassen van MCTS voor zoek-en-verstopspelen.

Hoofdstuk 2 introduceert de basisdefinities voor het zoeken in spelbomen. De
fundamentele tweespeler minimax-gebaseerde zoektechnieken en enkele verbete-
ringen hierop worden besproken. Verder beschrijft dit hoofdstuk drie minimax-
gebaseerde zoektechnieken voor meerspeler spelen, namelijk maxn, paranoid en Best-
Reply Search (BRS). Tenslotte wordt MCTS geïntroduceerd, en wordt er beschreven
hoe het kan worden toegepast in meerspeler spelen.

Hoofdstuk 3 beschrijft de testomgeving die gebruikt wordt om de eerste drie on-
derzoeksvragen te beantwoorden. We beschrijven de regels en de gebruikte domein-
kennis voor de vier deterministische perfecte-informatie spelen die ingezet worden
in dit proefschrift: Chinese Checkers, Focus, Rolit en Blokus. Vervolgens wordt voor
ieder van deze spelen de complexiteit van de toestandsruimte en van de spelboom ge-
geven. Deze geven een indicatie van hoe moeilijk de spelen zijn voor computers om ze
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optimaal te spelen. Tenslotte introduceert dit hoofdstuk het programma MAGE, dat
gebruikt wordt om de experimenten in hoofdstukken 4, 5 en 6 uit te voeren.

Het voordeel van MCTS is dat het kan worden uitgebreid naar meerspeler spe-
len. In de standaard variant van MCTS is iedere speler enkel bezig met het maxi-
maliseren van zijn eigen winstratio. Deze variant is daardoor vergelijkbaar met de
minimax-gebaseerde meerspeler zoektechniek maxn, waar iedere speler probeert zijn
eigen score te maximaliseren, ongeacht de scores van de andere spelers. Andere meer-
speler zoekprincipes, zoals die van paranoid en BRS, kunnen ook worden bekeken. Dit
heeft geleid tot de eerste onderzoeksvraag.

Onderzoeksvraag 1: Hoe kunnen meerspeler zoekprincipes worden ge-
bruikt in MCTS?

Hoofdstuk 4 beantwoordt de eerste onderzoekvraag door de paranoid en BRS zoek-
principes, samen met het standaard maxn principe, te gebruiken in MCTS. Middels
deze drie principes worden de selectie- en de terugpropagatiefase van MCTS aange-
past. In het MCTS raamwerk lijkt het maxn zoekprincipe het beste te werken. De
voordelen van paranoid en BRS in het minimax raamwerk zijn niet van toepassing in
MCTS, omdat αβ snoeiing niet toepasbaar in MCTS is. Een bijkomend probleem van
MCTS-BRS is dat in de boom onjuiste posities worden onderzocht, wat de betrouw-
baarheid van de simulaties kan verlagen. Echter, MCTS-paranoid en MCTS-BRS
behalen over het algemeen redelijke winstpercentages tegen MCTS-maxn, zeker bij
lagere tijdsinstellingen. Op basis van de resultaten mogen we concluderen dat het
maxn zoekprincipe het meest robuust is, hoewel de BRS en paranoid zoekprincipes
nog steeds competitief zijn. Tenslotte verbeterden we het maxn zoekprincipe met de
meerspeler variant van de MCTS-Solver, genaamd MP-MCTS-Solver. Deze variant is
in staat om speltheoretische waarden in een positie te bewijzen. Een winstpercentage
tussen 53% en 55% werd bereikt in het sudden-death spel Focus. We mogen conclu-
deren dat het bewijzen van de speltheoretische waarden de speelsterkte van MCTS
in een meerspeler sudden-death domein verbetert.

Een belangrijke fase in het MCTS algoritme is de selectiefase. Tijdens deze fase
wordt de boom doorlopen totdat een blad is bereikt. Een selectiestrategie bepaalt
hoe de boom wordt doorlopen. Gedurende de afgelopen jaren zijn verschillende se-
lectiestrategieën en verbeteringen ontwikkeld voor verschillende soorten spelen. De
populairste selectiestrategie is Upper Confidence bounds applied to Trees (UCT). Er
bestaan verscheidene verbeteringen voor de UCT selectiestrategie. De meesten zijn
domeinafhankelijk, wat betekent dat ze niet zonder meer in ieder domein toegepast
kunnen worden. Een domeinonafhankelijke verbetering is Rapid Action Value Esti-
mation (RAVE). Deze verbetering is gebaseerd op de all-moves-as-first (AMAF) heu-
ristiek. RAVE is behoorlijk succesvol in het gebied van computer Go, maar minder in
andere gebieden, zoals het meerspeler spel Chinese Checkers. Dit heeft geleid tot de
tweede onderzoeksvraag.

Onderzoeksvraag 2: Hoe kan de selectiefase van MCTS worden verbe-
terd in perfecte-informatie meerspeler spelen?

Hoofdstuk 5 beantwoordt deze vraag door het voorstellen van een nieuwe domein-
onafhankelijke selectiestrategie genaamd Progressive History. Deze techniek is een
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combinatie van de relatieve historie-heuristiek en Progressive Bias. In tegenstelling
tot RAVE slaat Progressive History de verzamelde data op in een globale tabel, op
een manier die vergelijkbaar is met de simulatiestrategie Move-Average Sampling
Technique. Progressive History bleek een significante verbetering in alle spelen met
verschillende aantallen spelers. In een vergelijking met UCT behaalde Progressive
History de hoogste winstpercentages in de tweespeler varianten, waar het ongeveer
80% van de partijen wint. Bovendien presteert Progressive History ook in de meer-
speler varianten beter dan UCT. Progressive AMAF, dat AMAF waarden gebruikt in
plaats van history waarden, presteert over het algemeen slechter dan Progressive
History. Experimenten in het tweespeler spel Havannah lieten zien dat Progressive
History in dit spel beter presteert dan RAVE. Daarnaast bleek ook dat Progressive
History de prestatie van de zoekers in het zoek-en-verstopspel Scotland Yard signi-
ficant verbetert. Op basis van de resultaten mogen we concluderen dat Progressive
History MCTS aanzienlijk verbetert in zowel tweespeler als in meerspeler spelen.

Net als de selectiefase is de simulatiefase een belangrijk onderdeel in het MCTS
algoritme. Tijdens deze fase wordt de partij voltooid met zetten die worden gese-
lecteerd middels een simulatiestrategie. Realistischere simulaties bieden betrouw-
baardere resultaten, wat de speelsterkte van een MCTS-gebaseerde speler verbetert.
Simulaties kunnen realistischer gemaakt worden door het toevoegen van domeinken-
nis. Het nadeel is dat dit het aantal simulaties per seconde kan verkleinen, hetgeen
de speelsterkte verlaagt. De uitdaging is om een goede balans te vinden tussen snel-
heid en kwaliteit van de simulaties. Voor het tweespeler spel Lines of Action (LOA)
zijn relatief dure 2-ply αβ zoekprocessen geïntroduceerd. Hoewel deze het aantal
simulaties per seconde significant verkleinden, nam de speelsterkte door het verbete-
ren van de kwaliteit van de simulaties toe. Dit heeft geleid tot de derde onderzoeks-
vraag.

Onderzoeksvraag 3: Hoe kunnen de simulaties van MCTS verbeterd
worden in perfecte-informatie meerspeler spelen?

Hoofdstuk 6 beantwoordt deze vraag door het introduceren van 2-ply zoekpro-
cessen, uitgerust met een heuristieke evaluatiefunctie, die gebruikt worden voor het
selecteren van zetten in de simulatiefase van MCTS voor meerspeler spelen. Drie ver-
schillende technieken voor meerspeler spelen zijn onderzocht, namelijk maxn, para-
noid, en BRS. Deze simulatiestrategieën werden vergeleken met willekeurig, greedy,
en 1-ply simulaties om te bepalen hoe exploratie en snelheid gebalanceerd dienen te
worden in de simulaties van meerspeler MCTS. De resultaten lieten zien dat zoekge-
baseerde simulaties de kwaliteit van de simulaties significant verhoogden. Onder de
verschillende simulatiestrategieën presteerde BRS het beste, gevolgd door paranoid
en maxn. Dit voordeel werd afgezwakt door het lagere aantal simulaties per seconde.
Vooral BRS en maxn leden hieronder. Onder de geteste 2-ply zoekgebaseerde simu-
laties presteerde paranoid over het algemeen het beste met zowel korte als lange
tijdsinstellingen. Met meer denktijd presteerden de 2-ply zoekgebaseerde simula-
tiestrategieën relatief beter dan de 1-ply en greedy strategieën. Dit geeft aan dat
met langere tijdsinstellingen de computationeel duurdere simulaties gebruikt kun-
nen worden om de speelsterkte van MCTS-gebaseerde spelers te verhogen. Op basis
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van de experimentele resultaten mogen we concluderen dat zoekgebaseerde simula-
ties voor meerspeler spelen voordelig kunnen zijn als de spelers voldoende denktijd
krijgen.

De voorgaande hoofdstukken bespraken de toepassing en verbetering van MCTS
in deterministische meerspeler spelen met perfecte informatie. In hoofdstuk 7 ver-
schuiven we onze aandacht naar zoek-en-verstopspelen. In dit proefschrift zijn we
geïnteresseerd in zoek-en-verstopspelen met de volgende drie eigenschappen. Ten
eerste bevatten ze imperfecte informatie voor sommige spelers. Ten tweede spelen
sommige spelers samen in een vaste coalitie. Ten derde zijn ze asymmetrisch. De
verschillende spelers hebben verschillende soorten doelen. Een spel dat deze eigen-
schappen heeft is het spel Scotland Yard. In dit meerspeler spel werken vijf zoekers
samen om te proberen een verstopper te vangen, die zijn locatie slechts op reguliere
tussenpozen bekendmaakt. Dit heeft geleid tot de vierde onderzoeksvraag.

Onderzoeksvraag 4: Hoe kan MCTS aangepast worden voor een zoek-
en-verstopspel?

Hoofdstuk 7 beantwoordt de vierde onderzoeksvraag. Voor het omgaan met de im-
perfecte informatie werden twee verschillende determinisatietechnieken onderzocht,
namelijk enkele-boom determinisatie en aparte-boom determinisatie. Enkele-boom
determinisatie heeft een kleine overhead, maar zelfs als we hier rekening mee hou-
den presteert het significant beter dan het gebruik van aparte bomen. Vervolgens
werd Location Categorization voorgesteld, wat een techniek is dat gebruikt kan wor-
den door zowel de MCTS als de expectimax zoekers om een betere voorspelling te
maken van de locatie van de verstopper. Het verhoogde de speelsterkte van zowel de
MCTS als de expectimax zoekers significant. De resultaten gaven empirisch bewijs
dat Location Categorization een robuuste techniek is, omdat de gewichten werkten
voor twee verschillende soorten zoekers tegen twee verschillende soorten verstoppers.
Vanwege de asymmetrische natuur van Scotland Yard kunnen verschillende simula-
tiestrategieën voor de verschillende soorten spelers gebruikt worden in de simulaties.
We zagen dat het voor de MCTS verstopper beter was als hij tijdens de simulaties
aanneemt dat de zoekers niet weten waar hij zit, terwijl de MCTS zoekers het beste
presteren als ze aannemen dat ze weten waar de verstopper zit. Om de coalitie tussen
de zoekers te behandelen werd Coalition Reduction voorgesteld. Deze techniek ver-
laagt de toegekende waarde voor de wortelspeler als een andere speler in de coalitie
de partij wint, wat de zoekers in staat stelt effeciënter aan de coalitie deel te ne-
men. We zagen dat de prestatie van de MCTS zoekers verbeterde door het toepassen
van Coalition Reduction. Samenwerking bleek nog steeds belangrijk, want de pres-
tatie van de zoekers daalde significant als de reductie te groot werd. In een directe
vergelijking bleek MCTS aanzienlijk beter te presteren dan het paranoid zoekproces
voor de verstopper en expectimax voor de zoekers. Tenslotte lieten de experimentele
resultaten zien dat MCTS in staat was om op een hoger niveau te spelen dan het com-
mercieel Nintendo DS programma, dat over het algemeen wordt gezien als een sterke
speler. Dus we mogen concluderen dat we met de toevoeging van verbeteringen als
enkele-boom determinisatie, Location Categorization, en Coalition Reduction in staat
zijn om een MCTS-gebaseerde speler het zoek-en-verstopspel Scotland Yard op een
sterk niveau te laten spelen.
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Hoofdstuk 8 sluit het proefschrift af en geeft een vooruitblik op vijf richtingen voor
toekomstig onderzoek. Het antwoord op de probleemstelling kan in vier punten wor-
den samengevat. Ten eerste presteert het maxn zoekprincipe het beste in meerspeler
MCTS, terwijl BRS en paranoid principes nog steeds competitief kunnen zijn. Het
maxn zoekprincipe kan worden verbeterd met een meerspeler variant van MCTS-
Solver. Ten tweede verbetert de Progressive History selectiestrategie de prestatie
van tweespeler en meerspeler MCTS significant. Ten derde, 2-ply zoekgebaseerde
simulaties verbeteren de kwaliteit van de simulaties significant en, aangenomen dat
voldoende denktijd beschikbaar is, verbetert de prestatie van MCTS in meerspeler do-
meinen. Ten vierde, de toevoeging van enkele-boom determinisatie, Location Catego-
rization, en Coalition Reduction aan MCTS verbeteren de prestaties ervan significant
in het meerspeler zoek-en-verstopspel Scotland Yard.

Het onderzoek dat gepresenteerd is in dit proefschrift duidt vijf gebieden voor toe-
komstig onderzoek aan. Deze gebieden bevatten (1) de toepassing van andere zoek-
principes, (2) de combinatie van Progressive History met andere selectiestrategieën,
(3) het verder optimaliseren van de implementatie van 3-ply zoekgebaseerde simu-
laties, (4) het verder onderzoeken van Scotland Yard, en (5) de toepassing van de
voorgestelde verbeteringen in andere domeinen.
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Statements

belonging to the thesis

Monte-Carlo Tree Search for Multi-Player Games

by Pim Nijssen

1. Though maxn is generally outperformed by paranoid and BRS in the minimax
framework, it is a better choice for a search policy in multi-player MCTS (this
thesis, Chapter 4).

2. Progressive History should be considered as an alternative to the all-moves-as-
first heuristic (this thesis, Chapter 5).

3. Two-ply searches in the playout phase of multi-player MCTS may increase the
playing strength significantly, even at the cost of less playouts (this thesis,
Chapter 6).

4. Considering yourself to be more important than your collaborators in a fixed
coalition can be quite beneficial for everyone (this thesis, Chapter 7).

5. Coalitions in multi-player games have more in common with psychology and
sociology than with Artificial Intelligence.

6. Robots will never be indistinguishable from humans.

7. The pinnacle of Artificial Intelligence is to make intelligent behavior emerge
from a simple algorithm.

8. Often, the only reason why computers are better than humans at games with
imperfect information is because they have a better memory, not because they
have a better strategy.

9. When studying how computers play games, playing computer games may be a
welcome diversion.

10. Ph.D. research is like a sudden-death game; it is over before you know it.


