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Preface

During the time I was a programmer and system manager at the department of
Medical Informatics, I saw many Ph.D. students doing their work. From a distance,
such Ph.D. research seemed not that difficult, so I decided to follow this track.
After re-entering and completing my academic studies, I was able to begin with
my own Ph.D. research; first on the subject of my Master’s thesis: reasoning with
uncertainty. Later I switched to the subject of computer game-playing, which was
a new challenging topic for me at that time. My motivation for the new topic was
almost automatic since I like games and playing games, moreover, IKAT had many
people who knew much of the subject and who could criticise me. Apparently, an
issue which encouraged me to do even better. Submitted papers were accepted and
it finally resulted in this thesis.

Research on computers and board games is a joy for me since because, among
other things, it is fundamental science, revealing the properties of complex struc-
tures that are hidden inside games. Owing to my relatively late start I was able
to observe the subject at a somewhat more abstract level. This sometimes led to
interesting discussions in the games group. The goal of my research was to invest-
igate the properties of a promising search method, Opponent-Model search, that
had been invented six years earlier. At the start, the majority of my research was
more theoretical than practical. As time went on, however, I became involved in
competitive computer game-playing and a small olympic flame was lit inside me.

I am convinced that the theoretical and practical results obtained during this
research will be of great value to future researchers. However, the main outcome
of this research is to be summarized as: whatever the promises of Opponent-Model
search, its applicability is clearly less than expected previously.

The enormous efforts, big support and tough lessons by Jaap van den Herik, made
it possible for me to complete the research successfully and to submit this thesis.
Jos Uiterwijk kept me on the road and was never tired to correct the same typos in
whatever draft version again and again. I wish to express my gratitude to IKAT and
the Faculty of General Science for the opportunity to perform and fulfil this research
task. I thank all my colleagues for their patience and co-operation and for taking
the extra work that came on their shoulders. In particular I would like to thank
Floris Wiesman, who introduced me to the wonders of LATEX and who was always
willing to answer those silly little questions on how to write a thesis. My fellow
students taught me much about computer game-playing, so I thank Mark Winands,
Levente Kocsis, and Erik van der Werf for their inspiring discussions and supportive



vi

comments on my research. I thank Sjoerd Druiven for our discussions on game
theory. Eric Postma and Ida Sprinkhuizen-Kuyper are recognized for their advice
on the machine-learning issues. Additionally I would like to acknowledge Marlies
van der Mee for her administrative support in the final stage and Joke Hellemons
for her continuous request for ’lijstjes’.

With much pleasure I recall the discussions with Don Beal, Ken Chen, Hiroyuki
Iida, and Guy Haworth. Alex de Voogt not only introduced me to the intricacies
of the game of bao and other mancala games, but he also made me enthusiast to
play these games myself. I am grateful for our co-operation. Jean Retschitzki is
acknowledged for sending me copies of some historical papers on kalah.

Doing a Ph.D.-research project part-time means that you have to split your
attention over different subjects and to preserve a delicate balance between research
and other activities. It also means that many evenings and weekends are occupied.
Therefore I apologise to my friends and relatives for often not being around. My
parents deserve a special word of thanks since they have always supported me, even
in my headstrong choices. Finally, I wish to thank Hans for his love, caring, and
patience during all these years.

Jeroen Donkers, 2003

“Nosce Hostem”

Motto of the 532d US Military Intelligence
Battalion (Stuttgart)
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Chapter 1

Introduction

Artificial Intelligence (AI) is an interesting research area with
challenging problems. One of the problems is the game of
chess. Already at the start of AI research (around 1950) it
was on the list of problems to be “solved”. Here solving means
building a program that could play at a par with or even
stronger than the human world champion. In 1997 the chess
system Deep Blue (Hsu, 2002) surprised the non-academic
world by winning a match against the world champion Gary
Kasparov. Some then believed that this victory was the end
of chess as a research area, others argued that the game still
was not solved and that many mysteries remained to be un-
ravelled. For instance, the complex method of using opponent
models in search was in the mid 1990s still in its infancy.
The fact that Deep Blue team profited considerably from
the co-operation with grandmasters who studied Kasparov’s
games and fed the system with knowledge on his style, can
be considered as its actual incorporation in match play. The
general goal of this thesis is to investigate to which extent
knowledge of the opponent can be used to improve computer
game-playing.

Chapter contents: Section 1.1 gives an introduction to computer game-playing. Sec-

tion 1.2 is dedicated to mathematical game theory. It also introduces the notational sys-

tem. Section 1.3 deals with heuristic search in computer game-playing. The concept of

Opponent-Model search is introduced in section 1.4. The formulation of our problem state-

ment and research questions is described in section 1.5. Our methodology is given in section

1.6. Finally, section 1.7 provides an overview of the remainder of the thesis.



2 Introduction

1.1 Computer Game-playing

In 1950, Claude Shannon wrote in his seminal paper on programming a computer
for playing chess: “chess is generally considered to require ‘thinking’ for skilful play;
a solution of this problem will force us either to admit the possibility of mechanized
thinking or to further restrict our concept of ‘thinking’.” According to Van den Herik
(1983), this statement can be seen as the birth of artificial-intelligence research.

In the fifty years thereafter, research in computer game-playing1 has seen many
successes. Nowadays, computers are able to play chess at world-champion level and
in other games (e.g., checkers, othello, and backgammon) computers had similar
successes. Moreover, a number of games have even been solved by computers (e.g.,
connect-four, nine-men’s-morris, and awari). For an overview of the achievements
of computer game-playing so far, we refer to Schaeffer and Van den Herik (2002).

Results achieved in one game, however, do not guarantee success in other games.
For example, the game of go, although having far simpler rules than chess, is not
played very well by computers because the successful techniques developed for chess
do not apply satisfactorily to the game of go. This means that new techniques need
to be developed in order to play this game at a similar competitive level as chess.

A particularity of research in computer game-playing is the emphasis on compet-
ition. Since computers play frequently in competitions with other computers and in
matches against human players, there is a constant urge for improvement. This leads
to subsequent refinements of the algorithms involved. A number of these refinements
have found their way successfully to other areas of computing. A telling example
is the application of transposition tables in single-agent search (see, for instance,
Romein et al., 1999). In this respect, computer game-playing is nowadays more like
the Formula One of AI than the Drosophila of AI, as it was called by Alexander
Kronrod in 1965 (see McCarthy, 1990; 1997). In his well-known book on the role of
game playing in human culture, Homo Ludens, Huizinga (1938) hardly allowed any
room for competition (agon) in modern science. He was unable to foresee such a
close relation between game and science as in competitive computer game-playing.
It is encouraging to observe that since half a decade, the competition-driven research
is also applied in other fields of AI: the RoboCup is annually played by teams of AI
researchers who test their theories of computer vision, agent technology, planning,
and robotics.2 Moreover, in conjunction with the ACM conference on Knowledge
Discovery and Data Mining, an annual competition is conducted in data mining:
the KDD Cup.3

A general theoretical question in research on computer game-playing is why com-
puters play some games, like chess, successfully and other games, like go, not. Some
of the answers might be found in the issues that Junghanns (1998) described con-
cerning the basic algorithm of computer game-playing. One of them is that this basic
algorithm, α-β search, does not explicitly use knowledge of the opponent. Anyone
who plays board games will agree that it is natural to use knowledge of the opponent

1In this thesis we will study the playing of human games by computers, not the play-
ing of computer games by humans. Hence we will write “computer game-playing” instead of
“computer-game playing”.

2See: http://www.robocup.org.
3See: http://www.kdnuggets.com/datasets/kddcup.html.
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at some point in order to exploit the opponent’s weaknesses. In this thesis we will
study a number of algorithms that use an explicit model of the opponent. We study
these algorithms both theoretically and experimentally.

In our theoretical research we will use the language of mathematical game the-
ory because we feel that the distance developed between computer game-playing
and mathematical game theory should be decreased. Some issues in computer
game-playing have also been examined in mathematical game theory, but due to
the separation of the scientific communities, the results of these studies are almost
not referred to in the literature on computer game-playing. We mention one illus-
trative case in chapter 3. In passing we mention that the same holds for the opposite
direction.

Below, we start with the mathematical background of game theory in order to
establish the formal language of the thesis, then we return to computer game-playing,
and finally we formulate our problem statement and approach precisely.

1.2 Game Theory

In this section we briefly introduce mathematical game theory and its relation to
computer game-playing. Subsection 1.2.1 informally introduces the type of games
that are of interest for our research. A concise formal base of relevant issues is
provided in subsection 1.2.2 and the fundamental notion of game trees is discussed
in subsection 1.2.3. To clarify the theoretical definitions, subsection 1.2.4 provides
an elaborated example. Subsection 1.2.5 links game theory to the practice of game-
playing by computers.

1.2.1 Games of interest

In this thesis we study (board) games like chess and checkers. In mathematical
game theory, these games are called finite two-player zero-sum games with perfect
information (Fudenberg and Tirole, 1991).

We restrict ourselves to games for two players because their properties are quite
different from games for one player (puzzles, e.g., Sokoban) and for three or more
players (e.g., poker). Consequently, the results for two-player games are hardly
applicable in puzzles and multi-player games, and vice versa.

The games of our interest are zero-sum games: the outcome for a particular game
for one player is the negative of the outcome of the other player. If one player wins
a certain amount, then the other player loses exactly the same amount.

The games are characterized by perfect information. This means that both play-
ers have access to all information needed to know the state of the game at any
moment.4 There are no such things as hidden cards, or an invisible stock. Fur-
thermore, there is no chance involved (no dice, no blind dealing of cards). Perfect
information does not mean that all information is actually visible. For instance,

4The meaning of the term ‘perfect information’ has evolved over time. In Von Neumann and
Morgenstern (1944), another definition was used, close to the modern definition of ‘complete in-
formation’. In this thesis we adopt the widely accepted game-theoretic notions as formulated in
Fudenberg and Tirole (1991).
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many games (chess, go) have a rule that forbids (unlimited) repetition of positions.
Such a rule implies that the history (the positions that appeared earlier in that game)
is part of the state of a game. The configuration of pieces on a chess board does
not reveal previous positions, but both players are assumed to remember the moves
that have been made and in this way they can reconstruct the history perfectly.

The games that we study must be finite: the number of possible moves at every
position must be finite and the duration of a game must be finite.

In game theory, finite two-player zero-sum games with perfect information are the
most elementary type of games. They might be regarded as trivial since the solution
of such game is easily defined. Such a solution consists of the following algorithmic
strategy for both players: in every position, select the move that maximizes the
payoff for the player to move, thereby assuming that the same strategy is followed
for all possible positions in the game. This is called the Maximin Criterion and leads
to the Minimax algorithm (Von Neumann, 1928). Although this solution is easily
defined, it is not always easily found, especially in the case of large, complex games
like chess. The latter is the domain of computer game-playing.

1.2.2 A concise formal base

After this informal introduction, we will now present a concise formal base of relevant
issues in game theory. The goal of this section is to introduce the notations and to
define the game-theoretic terms that are used throughout the thesis. For a detailed
formalization of game theory, we refer to the textbook by Fudenberg and Tirole
(1991).

The word “game” will be used in two senses: first, as a set of rules (e.g., the game
of chess), second, as the activity of playing according to these rules (e.g., a game of
chess). Also the common term “move” has two meanings: first, as a possible action
during the course of a game (e.g., Queen to a5), second, as indication of an action
by the first player and the response by the second player (e.g., “the first move of
the game was: 1. e4 c5”). In the last notion, the term ply is used to indicate “half
a move”, an action of one player only.

The class of games described informally above can be specified formally as fol-
lows: A two-player zero-sum game with perfect information, G, is a tuple G =
(M,H,E, p,m, V ). In this tuple, M is the set of all possible moves in the game,
which can include passes and resignations.

H is the set of all legal move histories (ordered lists of moves 〈m1,m2, ..., mn〉,
mi ∈ M) that can occur in the game, starting from the beginning. H includes the
empty history 〈〉. The length |h| of a history is the number of moves it contains (n).
For every game it must hold that if h = 〈m1,m2, ...,mn〉 ∈ H then all subhistories
h(k) = 〈m1,m2, ...,mk〉, k < n of h are also element of H. A game is defined to be
finite if and only if H is finite.

The set E ⊆ H consists of all move histories that result in a legal ending of the
game. The positions reached after the last move of those histories are the terminal
positions.

The player function p : H → {1, 2} denotes the player to move after every history.
By definition, p(〈〉) = 1. For games with alternating players p(h) = 1 if |h| is even
and p(h) = 2 if |h| is odd.
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The move function m : H → 2M denotes the set of legal moves after each history
in H. For m must hold that if h ∈ H \ E then m(h) �= ∅ and if h ∈ E then
m(h) = ∅. Furthermore, h concatenated with any member m of m(h) must be in
H for all h ∈ H. (We use the notation h +m to denote the concatenation of history
h with move m.)

The value function V : E → R gives the score (payoff) of the game for every
history in E. The scores for the players are V1(h) = V (h) and V2(h) = −V (h).

A player p’s strategy for game G is a function sp : H → M that picks a particular
move for every history after which the player p is to move. Of course, sp(h) ∈ m(h)
if p(h) = p, else sp(h) is undefined. If two players each follow a particular strategy,
then the result of that pair of strategies s = 〈s1, s2〉 is a unique history h(s) and a
corresponding strategy score v(s) ≡ V (h(s)). History h(s) is uniquely determined
by the pair s, because for every k, the move following subhistory h(s)(k−1) is given
by sp(h(s)(k − 1)), where p is the player to move.

A solution s∗ = 〈s∗1, s∗2〉 of a game is a pair of strategies such that there is no
pair s′ = 〈s∗1, s′2〉 with a score lower than v(s∗) and there is no pair s′ = 〈s′1, s∗2〉 with
a score higher than v(s∗). All solutions of a particular game necessarily have the
same score (due to the Minimax Theorem for perfect-information games, see Von
Neumann, 1928), so it is justified to define the score v(G) of a game as the score of
one of its solutions. This score v(G) is also called the game-theoretic value of the
game. History h(s∗) induced by the solution s∗ is a principal variation of the game.

A subgame G(h) of a game G is the restriction of game G to all histories that
share subhistory h ∈ H (including h itself). The game-theoretic value v(G(h)) of
this subgame is also referred to as the value of h itself: v(h). For all h ∈ E, the
subgame G(h) is trivial, because there is no move left. For the empty history 〈〉, the
subgame G(〈〉) is equal to G itself.

This concludes the formal notations from game theory. We will use these nota-
tions to express our ideas and results. Since the work by Von Neumann and Mor-
genstern (1944), the languages of mathematical game theory and computer game-
playing have diverged. We attempt to bridge the gap by adopting these notations;
they allow us to compare ideas and utilize results from both areas.

1.2.3 Game trees

In computer game-playing literature, games are usually represented in a graphical
form, the game tree (see figure 1.2 for an example). In a game tree, the arcs are
marked with moves from M in such a way that every path in the tree starting from
the root corresponds to a history in H and that every history in H occurs as a
path from the root. The nodes in a game tree correspond to game states. The set E
corresponds to all paths leading from the root to the leaf nodes of the game tree. The
internal nodes of the tree are labelled (through their shape) by the player function
of the history corresponding to the path leading to that node: the starting player is
indicated by a square, the second player by a round node. Leaf nodes are labelled
by the score of the corresponding histories. Subgames correspond to subtrees in the
game tree. The value of any node in the game tree is the game-theoretic value of
the corresponding subgame.
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The game tree can be used to give an alternative formulation of the optimal
strategy (or solution) for both players. A strategy for a player consists of the selection
of a branch for every node in the tree at which the player is to move (the resulting
subtree is called a solution tree, see De Bruin, Pijls, and Plaat, 1994). For leaf
nodes, the optimal strategy is trivial because nothing is to be selected and its value
is given by the value function of the game. For internal nodes the optimal strategy
for each player is as follows: first determine (by recursion) the value of all direct
child nodes; then select the child node depending on who is to move; if the first
player is to move, select a child node with the highest value, otherwise select a child
node with the lowest value. The value of the node itself is equal to the value of the
selected child node. This solution is called the Minimax solution and the procedure
to determine the solution is called Minimax search. The value of this solution is
therefore also referred to as the Minimax value of the game.

1.2.4 An example game

Figure 1.1: The game nim-5 is played with 5 matches.

A small example game that might serve to explain the concepts in this chapter
is nim-5 (figure 1.1). This is a simple variant of the well-known game of nim. On
a table are five matches. Two players remove on turn one, two, or three matches.
The player that removes the last match wins the game. Clearly, nim-5 satisfies all
our criteria for a zero-sum two-player game with perfect information.

In the game of nim-5, the set of moves is M = {1, 2, 3} and the complete set of
histories in this game is H = {〈〉, 1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 111, 112, 113,
121, 122, 131, 211, 212, 221, 311, 1111, 1112, 1121, 1211, 2111, 11111}5. These are
all the sequences of the numbers 1, 2 and 3 of which the total of the numbers does
not exceed 5. The terminal histories are: E = {23, 32, 113, 122, 131, 212, 221, 311,
1112, 1121, 1211, 2111, 11111}, being all sequences that add exactly to 5. Because
players alternate their turns, p(h) = 1 if |h| is even and p(h) = 2 if |h| is odd. The
move function m for nim-5 includes all moves for a given history h that do not take
more matches than there are still on the table. Finally, the score for even-length
histories in E is −1 and for odd-length histories it is 1.

The game tree for nim-5 is depicted in figure 1.2, whereas figure 1.3 gives the
optimal strategies for the game tree of nim-5. Player 1 can win the game if she6

5We use the abbreviation i for the sequence 〈i〉, ij for the sequence 〈i, j〉, et cetera.
6We use female gender for the first player and male for the second, when appropriate.
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Figure 1.2: Game tree for nim-5. The square nodes represent positions in which player 1
is to move, the round nodes those with player 2 to move. Inside the nodes are the number
of matches still on the table. Below the tree are the payoffs for every complete history.

Figure 1.3: Optimal strategies for nim-5. Inside the nodes are the values of the subgames
and the thick lines indicate the optimal moves for both players.

starts with picking one match. Observe that after player 1 has picked a single match,
all possible moves by player 2 are optimal (equally bad), resulting in three different
optimal strategies for player 2.
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1.2.5 Game-playing

In order to play a game perfectly (that is, using an optimal strategy), it is not
necessary to determine a complete solution that specifies a move for all nodes in
the tree where the player is to move. The task of game-playing is just to provide
the best move, according to the optimal strategy s∗(h) when a history h of moves
is already played. This task is equivalent to determining the Minimax value of the
subgame G(h).

In research on computer game-playing, many algorithms have been developed
that determine the Minimax value of a game tree without determining a complete
solution. Some examples are α-β search (Knuth and Moore, 1975), SSS* search
(Stockman, 1979), Conspiracy-Number search (McAllester, 1988), Proof-Number
search (Allis, Van der Meulen, and Van den Herik, 1994), and MTD(f) (Plaat,
1996). For an overview, see Junghanns (1998).

1.3 Heuristic Search

Game trees for board games are usually large. This makes it infeasible for humans
and computers to determine optimal moves, except for the last moves of a game when
the subgame that has to be solved becomes sufficiently small. The impossibility
of finding a game-theoretic solution for chess, checkers, or go has stimulated the
development of a range of heuristic methods to replace the optimal strategy. In
subsection 1.3.1 a method is introduced that tries to find the Minimax value of a
reduced game tree. Subsection 1.3.2 discusses a number of alternative, non-Minimax
methods.

1.3.1 Minimax search

The most widely used heuristic-search technique is to determine the best move ac-
cording to the optimal strategy for a reduced game and use the result as an approx-
imation of the optimal strategy for the complete game. Game G′ = (M,H ′, E′, p,
m′, V ′) is a reduced game of game G = (M,H,E, p,m, V ) if (1) H ′ ⊆ H, (2) E′ ⊃
(E ∩H ′) and (3) m′(h) ⊆ m(h). The first condition imposes that the reduced game
does not allow more moves than the original game. The second condition implies
a reduction of the length of some histories: there are histories that are considered
complete in the reduced game but are not complete in the original game. For any
‘truncated’ history h ∈ E′ \ E, the function V ′ returns a provisional payoff that
replaces the game-theoretic value of that history’s subgame in the original game G.
This function is normally called the heuristic static evaluation function. For truly
complete histories, V ′ is kept equal to V , except for a scaling factor that makes
it possible to discriminate between terminal positions of the original games and
heuristic values of truncated histories. The third condition means that for certain
histories, only some selection of moves of the original game may be considered in
the reduced game.

Figure 1.4 shows a reduced game for nim-5, where H ′ is reduced to all histories
of maximum length 2 and E′ contains all histories of exactly length 2. The following
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Figure 1.4: A reduced game for nim-5. Heuristic evaluation values are given within the leaf
nodes.

heuristic evaluation function is used for truncated histories: V ′(h) = 1/(6 − n(h)),
where n(h) is the number of matches already picked up in that history. As the figure
shows, the optimal strategy of this reduced game leads to the same move (picking a
single match) as the optimal strategy of the complete game. This indicates that the
heuristic evaluation function is of such a quality that it leads to a correct prediction
of the optimal move on the basis of truncated histories.

In computer game-playing, a reduced game is called a search tree and the max-
imum length of the truncated histories is the search depth. Algorithms, such as α-β
search, that determine the score of a reduced game are normally called (Minimax)
game-tree search algorithms. The actual size of the search tree depends on the avail-
able resources such as: memory, time, processor speed, and the number of processors.
It also depends on the ability of the search algorithm to prune parts of the search
tree. This pruning of the search tree is of major importance to practical computer
game-playing because the more can be pruned, the larger (deeper and wider) the
search tree can be. We want to distinguish between the search tree, which is the tree
that fully represents the reduced game, and the visited tree which is a subtree of
the search tree containing only nodes that are investigated by the search algorithm.
Pruning a branch in the search tree then means that the branch is not visited and
thus is not included in the visited tree. Search algorithms like α-β search can prune
significantly more if the search tree is ordered in a specific way. Therefore, much
effort is put into achieving a good tree ordering (see Marsland (1983)).

During an actual game, a game-playing computer program starts at every turn a
new game-tree search for a reduced game of the subgame determined by the moves
that have already been played. By convention, the root node of a search tree is
always a maximizing node, regardless of the player who is to move. If this happens
to be player 2, then the scores of the game are negated V () ← −V () and player 2
now maximizes whereas player 1 minimizes. Leaf nodes of the search tree are called
terminal nodes if they correspond with terminal positions. The depth of nodes in a
search tree is expressed in plies. The root node is on ply 0 by convention, its children
are on ply 1, et cetera.

1.3.2 Alternatives for Minimax search

Although it appears that Minimax search is a sufficiently good approach for com-
puter chess in order to play at world-champion level, this success was mainly possible
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owing to a high efficiency, a good heuristic evaluation function, efficient pruning,
good opening books, and a set of endgame databases. The same approach, however,
proved to be not so successful in a number of other games, for instance, go and shogi.

It is not guaranteed that solving a sequence of reduced games during the course
of a game is the best way to defeat the opponent. There are two main reasons.

The first reason is that the evaluation function is often not a good approximation
of the game-theoretic value. This means that the strategy resulting from Minimax
search can be far away from the optimal strategy. We return to the issue of evaluation
functions in chapter 4.

The second reason is that the goal of game-playing is not to find an optimal
strategy, but to win the game against a human being or a computer opponent.
Minimax search assumes that the opponent of the player is using the same evaluation
function and search method as the player itself. It is not likely that this is ever the
case (except in endgame situations). The task of game-playing thus becomes to find
the best strategy against a given opponent. This need not be an optimal strategy
for the game, in the game-theoretical sense.

Because in most positions we are not able to determine an optimal strategy, it
is obvious that alternatives for Minimax search should be investigated in order to
approximate the optimal strategy more adequately. Junghanns (1998) discusses a
number of alternatives for α-β search. Some of these alternatives are still Minimax
search-like methods, but Junghanns also describes several attempts to establish ad-
equate strategies for a game in fundamentally different ways.

Junghanns’ (1998) most important observation is that the search tree contains
a large amount of information that could be used for establishing such an adequate
strategy. However, the information is disregarded by Minimax search because this
search method only needs to compute the game-theoretic value of the root node.
Some of the alternative search methods attempt to use more of the information
available in the tree. For instance, they explicitely use the number of “good moves”
in a certain position. One of these methods is M & N search (Slagle and Dixon,
1970) which we will analyse in section 2.1.2.

1.4 Opponent-Model Search

A specific alternative for Minimax search that explicitly takes the opponent into
account is Opponent-Model search (OM search). This search method was developed
by Iida et al. (1993b) and simultaneously by Carmel and Markovitch (1993). The
method assumes that a player has complete knowledge of the opponent’s strategy.
The opponent is assumed to use Minimax search and at his turn to be unaware of
the player’s strategy. Given this knowledge, the search method determines the best
response for the player with respect to the opponent’s strategy. The advantage of
having such an opponent model is adequately illustrated below, again using the game
of nim-5. Suppose that player 1 will never take three matches and that player 2 knows
this. In figure 1.5 a representation is given for this strategy and its consequences.
The knowledge reduces the strategy of player 1, and consequently player 2 can easily
find an answer to this strategy that allows him to win. A principal variation reads:
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Figure 1.5: Optimal strategies for both players assuming player 1 never picks three matches
(these choices have been struck out). If player 2 knows this strategy (opponent model),
then he can force a win.

1,1,1,2. On the basis of this small example it is tempting to expect that using
knowledge of the opponent can improve computer game-playing.

In practice, however, complete knowledge on the opponent is almost never avail-
able, but some uncertain knowledge might be available. Therefore, we developed an
extension of OM search in which the opponent’s strategy is approximated by a prob-
abilistic mix of a number of known strategies (that is, at every move, the opponent
uses a dice to determine which pure strategy to use for the next move). This search
method is called Probabilistic Opponent-Model search (PrOM search). The mix of
strategies allows for adaptation to a real opponent.

The problem with OM search (and also with PrOM search) is that it is unknown
whether these alternative search methods are indeed able to fulfil the expectation
that they improve computer game-playing. Intuitively, it is clear that having know-
ledge of your opponent at your disposal should provide an advantage, but until now,
nobody has used OM search or PrOM search in tournament programs. Hardly any
experiments have been performed in realistic settings with these methods, so it is not
known: (1) how large the advantage might be, (2) how much risk might be involved
and (3) what the computational burden might be of these search methods. These
three questions will lead us to the problem statement of this thesis.

1.5 Problem Statement and Research Questions

As stated above, the context of our research is computer game-playing. We observed
that although computer game-playing has seen many successes, there is still much
unknown on the nature of search algorithms, especially on the effect of using know-
ledge of the opponent as is done in OM search. The small example of the game
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nim-5 suggests that using such knowledge might be profitable. However, playing
actual games is much more complex, and therefore we should first perform theor-
etical investigations and then combine them with the examination of the results of
practical algorithms. The observations and considerations above have led us to the
following problem statement.

Problem statement: Under what conditions can Opponent-Model search
and Probabilistic Opponent-Model search improve computer game-playing?

To answer this question, both search methods have to be studied in detail in order
to learn their properties. As a guideline to our research we formulated four explicit
research questions. They deal with (1) theoretical properties, (2) efficient implement-
ations, (3) the nature of the game positions in which OM search or PrOM search is
efficient, and (4) the challenge how to learn and formulate an opponent model.

Research question 1: What are the important theoretical properties of
Opponent-Model search and probabilistic Opponent-Model search?

Because of the complex game trees involved, purely theoretical research will not be
able to provide a full answer to the problem statement. We also need to find out
whether the search methods have any practical use. Therefore, the methods have to
be implemented into algorithms and the properties of those algorithms have to be
investigated.

Research question 2: How can these search methods be implemented
efficiently?

If efficient implementations of the search methods are possible, these algorithms have
to be tested in realistic settings because the ultimate reply to our problem statement
depends on whether and when these algorithms work in practice.

Research question 3: What is the nature of the practical circumstances
in which OM search and PrOM search perform better than the current
implementations of Minimax search?

Since Probabilistic Opponent-Model search theoretically has the possibility to be
used when learning opponent models, we wish to test whether this is possible in a
practical setting.

Research question 4: Can probabilistic Opponent-Model search be used
in practice to learn an opponent model?

If this fourth research question is answered positively, PrOM search could be applied
to learn, for instance, the strengths and weaknesses of a chess pupil, or to build a
game-playing program that adapts itself during a game to the opponents’ style. The
answers to these four research questions will allow us to formulate a reply to the
problem statement above.
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1.6 Methodology

To answer the four research questions above, we apply both theoretical and empirical
methods. The theoretical research will reveal the general properties of OM search
and PrOM search and will also lead to the implementation of these methods into
several algorithms. Moreover, a theoretical analysis of the algorithms will be given.
With respect to the power of generalization, theoretical results are frequently pre-
ferred over empirical results. However, due to the high complexity of the game-tree
search algorithms and due to the particular shape of the game trees in real games,
theoretical research alone is not sufficient to provide adequate answers relevant to
the research questions formulated above.

Next to the theoretical approach, we employ a more empirical approach. Here
we study the behaviour of the developed search algorithms on randomly constructed
game trees to measure the average case of the computational complexity. In the case
of learning opponent models, we use randomized methods to measure the properties
of our theoretically developed learning method.

The above approach is still somewhat theoretical since general randomized trees
are used. For a pure empirical comparison we submit our algorithms to three actual
games. They are: lines of action (LOA), chess, and bao. It means that we embed the
algorithms in state-of-the-art game engines and test them under relaxed tournament
conditions: we vary the parameters in a controlled way and let two different engines
play against each other many times. Owing to randomness in the engines or in the
start positions, the experimental results will be rather diverse. However, it will allow
for a statistical interpretation.

The theoretical and empirical approaches are intertwined: the theoretical hypo-
theses ask for experiments, and unexpected results ask for theoretical explanations.
Yet, for clarity, we separate the descriptions of our theoretical and empirical re-
search. Theoretical research is described in detail in the chapters 3, 4, and 6. The
detailed empirical research methods are explained in chapters 5 and 7.

1.7 Thesis Overview

Chapter 2 starts with an overview of methods that preceded OM search. Thereafter
the history and definition of OM search is provided, followed by an overview of
variants of OM search.

In chapter 3, OM search is analysed together with its implementations. First,
we describe some properties of the search method. Next, different implementations
of OM search are presented and analyzed. In chapter 4, we define conditions for a
possibly successful application of OM search. These chapters deal in particular with
research questions 1 and 2 and serve as a stepping stone for the chapters 5 and 6.

Chapter 5 describes the experiments performed with OM search. First some
experiments on random game trees are presented. Then experiments in the games
of lines of action, chess, and bao are described. The chapter provides a variety of
background information too, viz. on the methods used in the experiments and on
the three games involved in the experiments. Research question 3 is the main lead
of this chapter.
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Chapter 6 discusses Probabilistic Opponent-Model search. After a short exposi-
tion of the method and its motivation, we give an overview of related research. This
is followed by the derivation of theoretical properties of PrOM search, an algorithm
for the method, and its analysis. The last part of this chapter describes several
methods for learning a probabilistic opponent model. The chapter deals with the
research question 1, 2, and 4 (see chapters 3 and 4).

In chapter 7, the experiments of PrOM search are described. Some of the exper-
iments are performed in parallel to the experiments of chapter 5. Next to research
question 3, this chapter also answers research question 4.

The results of the experiments of chapters 5 and 7 are compared and discussed
in chapter 8. This chapter first answers the four research questions and then comes
to a conclusive answer of the problem statement.



Chapter 2

Opponent-Model Search

I n 1993, two research groups, one in Israel and one in the Neth-
erlands, simultaneously discovered an alternative for Minimax
search that took knowledge of the opponent into account.
They both called it: Opponent-Model (OM) search. The main
difference with the Minimax approach is that the move selec-
ted at min nodes is not the worst possible move (or the best
for the opponent), but the move that the opponent would se-
lect. This enables the exploitation of a weakness, spotted in
the opponent’s decision-making mechanism.

Chapter contents: In section 2.1 we present how different researchers treated the use of

opponent knowledge before OM search was developed. The birth of OM search is described

in section 2.2. In section 2.3 this method is explained in terms of the inventors. Section 2.4

presents further developments in OM search. In section 2.5 we discuss some related topics

in game theory. The chapter ends with a conclusion (section 2.6).

2.1 Foregoing Research

The idea of taking the opponent into account in game-tree search has been stud-
ied for almost twenty years and a number of solutions have been proposed before
Opponent-Model search was developed. In this section we treat five approaches in
chronological order followed by a comparison. They are: M & N search, *-Minimax
search, Jansen’s HP (Heuristic Program), Jansen’s BO (Best Optimal), and Specu-
lative Play. At the end of the section, we discuss how opponent knowledge is used
in today’s computer game tournaments.
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2.1.1 Terminology

To describe the search methods adequately, we replace the range of terminology used
in the literature referred to, by the terminology and notation provided in chapter 1.
It facilitates the comparison between the different approaches that we would like to
discuss.

In the sequel, we treat the notions ‘history’ and (game-tree) ‘node’ as equivalent
and we use the symbol h for histories and for nodes. We also use the abbreviation
‘value of a move m’ if we mean the subgame value v(h + m). Since in our games,
player 1 is trying to maximize the payoff and player 2 is trying to minimize it, we
call them max and min, respectively. Sometimes we refer to max simply by ‘the
player’ and to min by ‘the opponent’. The nodes in a game tree where max is to
play (viz., p(h) = max) are called max nodes, the nodes where min is to play (viz.,
p(h) = min) are called min nodes.

2.1.2 M & N search

The first attempt to incorporate an opponent model in game-tree search is the
approach by Slagle and Dixon (1970). At the base of their M & N search method
lies the observation that Minimax search does not make a distinction between nodes
in which there are several moves with good values and nodes in which there is only
one move with a good value. In order to compute the game-theoretic value of a
complete game tree, the number of good moves in a node is indeed irrelevant. In
reduced game trees, however, where heuristic evaluations are used to approximate
game-theoretic values, it might be wise to take into account the amount of good
moves available.

The approach by Slagle and Dixon (1970) only differs from the Minimax method
in the way how the values of the nodes are computed: min is still selecting the move
with the lowest value at the min nodes and max analogously selects the move with
the largest value at the max nodes.

The value of a node is defined either as the value of the best move plus a bonus
at max nodes or as the value of the worst move minus a malus1 at min nodes.
The size of the bonus depends on the values of the M best moves in case of a max
node. Analogously the size of the malus depends on the N worst moves in case of
a min node. (Hence the name M & N search): if the M moves have similar values,
the bonus should be large; if the best move differs much from the rest, the bonus
should be small (in min nodes analogous reasonings take place to N and the malus
notions); if there is only one move at a node, the bonus must be zero; if M = N =
1, the bonus and malus are both zero and the method is equivalent to Minimax. In
their description, Slagle and Dixon (1970) mostly dealt with the case for which M
= N = 2. In that case, the bonus and malus were taken as a linear function of the
difference between the first and second move. They also described a bonus/malus
function for M (and N) larger than 2. Their bonus/malus functions, however, seem
ad-hoc. M & N search was tested on the game of kalah by Slagle and Dixon, but

1Following Uiterwijk and Van den Herik (1994) we call an additional amount that must be
subtracted a ‘malus’ (instead of a bonus as the original authors did).
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the search was only 2 ply deep. Therefore, their results are not easy to generalize.
M & N search was able to win 0.21 stones on average from Minimax. Applying
Minimax with a one-ply deeper search than the opponent gave an advantage of 1.61
stones on average.

Although the notion of an opponent model was not mentioned explicitly by Slagle
and Dixon (1970), using a different value for M than for N can be interpreted as
such.

2.1.3 *-Minimax search for fallible opponents

The opponent model by Reibman and Ballard (1983) assumes that min uses the
same evaluation function and search method as max except that min sometimes is
fallible: there is a chance at every min node that min selects another move than
Minimax prescribes. In their model, the probability that min selects a specific move
depends on the rank of that move (with respect to its value) at the current min node
and on the degree of fallibility of min.

Let h be a min node and m(h) = {m1, ..,mn} be the moves available at that
node. The mapping r : m(h) → {1, .., n} then gives a rank of the moves according
to the value of their subgame: r(mi) < r(mj) ⇒ v(h + mi) ≤ v(h + mj). The
probabilities that Reibman and Ballard (1983) assigned to the moves is given by the
following formula:

Pr(mi) =
(1 − Ps)r(mi)−1 · Ps∑
j(1 − Ps)r(mj)−1 · Ps

(2.1)

Symbol Ps ∈ (0, 1] represents the fallibility of min. If Ps = 1, the opponent
is not fallible because in this case Pr(mi) = 1 for the first-rank move. Namely, if
Ps = 1, the factor (1 − Ps) is zero, but the exponent r(mi) − 1 is also zero for the
first ranked move. This means that (1−Ps)r(mi)−1 = 1 for that move. If Ps is close
to zero, then all probabilities become almost equal and min plays randomly. (The
value Ps = 0 is not defined, but the limit of Pr(mi) for Ps descending to 0 is 1/n.)

Because min is not minimizing anymore but is playing instead by chance, the
min nodes of the game tree are replaced by chance nodes. Ballard (1983) introduced
a search procedure for game trees that include chance nodes, called *-Minimax
search. This search procedure was applied in a simplified form by Reibman and
Ballard (1983) to the above situation. Without going into the details of *-Minimax
search, we can say that the *-Minimax search method takes the expected value over
the moves as the value for chance nodes. This means that the value vrb(h) of a min
node is computed as:

vrb(h) =
∑

mj∈m(h)

Pr(mj)·vrb(h+mj) (min nodes) (2.2)

(Subscript ‘rb’ stands for ‘Reibman and Ballard’.) For max nodes, *-Minimax search
behaves like Minimax search: max selects the move that leads to the maximum value
and the value of the node becomes:
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vrb(h) = max
mj∈m(h)

vrb(h+mj) (max nodes) (2.3)

Reibman and Ballard (1983) mentioned that their method can be viewed as a
special case of M & N search, where M = 1, and N is taken as the number of moves
in the position, and where the bonus/malus functions are imposed by the expected
values.

There are two problems with the approach by Reibman and Ballard (1983).
First, the probability of a node is only assigned on the basis of the rank of the move
in a particular node and on a global fallibility measure, whereas, for instance, the
difficulty of a position is not taken into account. Second, because the expected values
in min nodes are used to back-up, that is to compute the values of nodes higher in
the tree, the rank of the moves in min nodes is also determined by mistakes that
min will make deeper in the tree. This would mean that the opponent model of
Reibman and Ballard takes into account that min is aware of his own errors. In this
way, min is not only assumed to be fallible, but also to be irrational. Namely, min

is assumed to know exactly what error he is going to make in the future, but this
knowledge includes the ranking of the moves. A rational player would always select
the first-ranked move if this knowledge is available. As far as we know, the approach
by Reibman and Ballard has never been used in a practical game setting.

2.1.4 Jansen’s approaches

Jansen (1992a; 1993) described two approaches of using an opponent model: ‘Heur-
istic Program’ (HP) and ‘Best Optimal’ (BO). They were both developed for the
special case in which max has perfect knowledge of the game but is on the losing
side, and min can win but is fallible. Such a case could happen in an endgame where
only max has access to the endgame database. One example is the difficult KQKR
endgame in chess (King and Queen versus King and Rook) that has been studied for
this special case by Thompson (1986) and Jansen (1992b; 1992c; 1993; and 1992a,
chapters 3 and 5). In all these studies, max was the computer playing the rook side
having access to the endgame database, and min was a human who played the queen
side, which was obviously the stronger side. We will present some experiments with
the same chess endgame in chapter 4.

In practical game-playing, the game-theoretic value of a subgame (e.g., win,
draw, or loss) is not the only motivation for selecting a move. For instance, we
may distinguish between (1) winning a game whatever the number of moves and (2)
winning a game as fast as possible. So, if two moves lead to a win, a player adhering
strategy 2 is eager to select the move that leads to the shortest win. Similarly, we
may distinguish between (3) accepting a loss immediately and (4) postponing a loss
as long as possible. Another example is the 50-moves rule of chess dictating that
the game is a draw if during 50 moves no capture has occurred or no Pawn has been
moved So, a win has to be secured before the 50-moves rule is applied. Formally,
there is no problem with all these four points. Instead of assigning 1 (win), −1 (loss)
or 0 (draw) to terminal positions of a game, as is normally done, one can assign a



2.1 — Foregoing Research 19

payoff value that incorporates the length of the history leading to that position.
For instance, assign 1000 − |h| to a won terminal position and −1000 + |h| to a
lost terminal position. Positions in which the 50-moves rule is applied, get assigned
the value of 0 (draw). Chess endgame databases usually store the distance from a
position to a win (or to the first capture leaving a won position). The distance to
win or conversion is also called the depth of a position. This information can be
translated into a subgame value if careful precautions are taken.

Jansen’s first approach: Heuristic Program

Jansen (1992a; 1993) called his first approach that takes the opponent into account
‘Heuristic Program’. Later on, Junghanns (1998) called it Probimax search. It is
applied in three variants to the KQKR endgame.

Jansen (1992a; 1993) modelled the opponent by a behaviour strategy (Fudenberg
and Tirole, 1991). Such a strategy assigns a fixed probability Pr(mj) to every move
mj after a given history h. The probability of the moves in Jansen’s first approach is
determined by a set of chess heuristics but also by the depth of the resulting position.
Unfortunately, Jansen did not provide the exact formulae for the probabilities. In
passing we note that the probabilities that Reibman and Ballard (1983) assigned to
the moves do not constitute a behaviour strategy, because their probabilities depend
on the subgames and cannot be assigned just on the basis of the history itself. The
formula for the value vhp(h) of a min node h is the same as in formula 2.2:

vhp(h) =
∑

mj∈m(h)

Pr(mj)·vhp(h+mj) (min nodes) (2.4)

(Subscript ‘hp’ stand for ‘Heuristic Program’.) max is allowed to play suboptimal
only to a level of δ, which means that max may select a move m of which the subgame
value v(h + m) is at most δ less than the true subgame value v(h). In the approach
of Reibman and Ballard (1983), no limit is set to the degree to which the moves
could be suboptimal, but Jansen’s Heuristic Program (1992a; 1993) puts a bound
to the degree of speculation. The value for a max node (cf. formula 2.3) thus is:

vhp(h) = max
mi∈m(h)|v(h+mi)≥v(h)−δ

vhp(h+mi) (max nodes) (2.5)

Jansen’s second approach: Best Optimal

Jansen (1992a; 1993) assumed that an opponent is more likely to make a mistake
when the ratio between the optimal moves and available moves is lower. max uses
this knowledge to choose between optimal moves. The second approach is therefore
called: ‘Best Optimal’. Let opt(h) ⊆ m(h) be defined as:

opt(h) = {mj ∈ m(h) | v(h+mj) = v(h)} (2.6)
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then max will select the following move:2

m = min arg
mi∈m(h) |

v(h+mi)=v(h)

#opt(h + mi)
#m(h + mi)

(2.7)

Junghanns (1998) gave the name ’Speculative Play’ to the second approach of
Jansen (1992a; 1993). Strictly spoken, there is no speculation in this approach:
max is still playing optimally, in contrast to Jansen’s first approach, in which max

is allowed to speculate. We will use this name for the next approach instead.

2.1.5 Speculative Play

Uiterwijk and Van den Herik (1994) designed the Speculative Play approach for the
case in which max knows the true subgame values for at least some part of the
game tree. This will usually happen towards the end of a game. The true subgame
values in this approach are assumed to include the distance to win, as in Jansen’s
(1992a; 1993) approaches.

Uiterwijk and Van den Herik (1994) aimed, like Jansen (1992a; 1993), to exploit
fallibility of the opponent. Assume that an opponent is presented two positions
that theoretically lead to a draw. In the first position, only one move can lead to
a draw and the others lead to a sure loss for the opponent. In the second position,
almost all moves can lead to a draw, and only few moves lead to a loss. A perfect
opponent will select the correct move in both cases but a fallible opponent has a
higher probability to lose in the first position. max should therefore prefer the
first position rather than the second position. This motivation is fundamentally the
same as in the approach by Reibman and Ballard (1983) and in the Best-Optimal
approach of Jansen (1992a; 1993), but the domain of application and the formulae
are different. Uiterwijk and Van den Herik introduced a bonus/malus function to
express the preferences between equal-valued moves. Uiterwijk and Van den Herik
implicitly assumed that min is also speculating about errors of max, which was the
case in M & N search too. Speculative Play is given by:

vsp(h) =




max
mj∈m(h)

vsp(h + mj) + bonus(h + mj) (max nodes)

min
mj∈m(h)

vsp(h + mj) − malus(h + mj) (min nodes)

V (h) (leaf nodes)

(2.8)

bonus(h) = min(wsp·

∑
mj∈m(h) |

d(h+mj)<∞

d(h + mj)

#{mj ∈ m(h) | d(h + mj) = ∞} , limitsp) (2.9)

The function malus is defined analogously. The function d(h) returns the dis-
tance to win from h, or ∞ if that distance is not known yet. The bonus function is

2The notation ‘min argi f(i)’ denotes the value of i for which f(i) is minimal.
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only defined for nodes in which there is at least one move that does not lead to a
certain win. The factor wsp is used to scale the function to the range of v(h); the
factor limitsp is the maximum level of speculation. Observe that limitsp plays the
same role as the factor δ in Jansen’s (1992a; 1993) Heuristic Program: it indicates
by how much the value of vsp(h) is allowed to deviate from v(h). However, the effect
is different because in the Heuristic-Program approach, the true value of h is known,
whereas in this approach, only the value of a reduced subgame at h is known. The
factors limitsp and wsp can also be used to model the level of fallibility of the op-
ponent: the weaker the opponent, the higher these factors will be. This behaviour
is comparable to the factor Ps in the approach of Reibman and Ballard (1983).

Next to opponent modelling, the inventors of Speculative Play also aimed to
improve search on another point. To distinguish between true payoff values and
heuristic values, the true values are always larger (in absolute value) than the heur-
istic values (see also section 4.1.1). One important exception is the value for draw
(0) which lies within the range of heuristic values. This means that a subgame value
of zero in a reduced game does not have to mean that the true value of a posi-
tion is also a draw. When a zero appears isolated among siblings, there is a large
possibility that the true value of that node is not zero. This can be exploited by
Speculative Play. Uiterwijk and Van den Herik applied Speculative Play on a test
set in chess and indeed observed a small increase in the number of positions that
could be solved. Currently, research is going on by Kajihara, Hashimoto, and Iida
(2002) on Speculative Play in the endgame of shogi.

2.1.6 Comparison of the approaches

The five approaches were developed for different stages of a game, which makes
it difficult to compare them. Slagle and Dixon (1970) and Reibman and Ballard
(1983) did not restrict their approaches to a specific part of the game, although
they did not seem to take the endgame explicitly into consideration. Jansen (1992a;
1993) concentrated on the endgame in which only max has access to an endgame
database. Uiterwijk and Van den Herik (1994) studied the phase directly preceding
the endgame: for some parts of the tree the true game value is known.

All five approaches take a fallible opponent into account, thereby using some
model of the opponent. Below we answer the question how the opponent model is
implemented in each of the approaches:

M & N Search : bonus/malus depending on a subset of moves.
*-Minimax Search : move probabilities based on move result.
Heuristic Program : move probabilities based on heuristics and move result.
Best Optimal : bonus depending on the relative number of optimal moves.
Speculative Play : bonus/malus depending on the relative number of certain

wins.

So, either bonuses/maluses or move probabilities are used to model an opponent.
However, not all opponents are equal. Therefore the next question to be answered
is: how should the opponent model be parametrized for a specific opponent in each
of the five approaches above.
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M & N Search : by the difference between M and N.
*-Minimax Search : by the degree of fallibility, Ps.
Heuristic Program : by the selection of move heuristics used.
Best Optimal : not; all opponents are assumed to behave equally.
Speculative Play : by the degree of fallibility in wsp and limitsp.

Next to an opponent model, the five approaches each have their own level of spec-
ulation. The last question therefore is: what level of speculation is allowed, that is,
how much is max allowed to deviate from normal play.

M & N Search : unlimited.
*-Minimax Search : unlimited.
Heuristic Program : at most δ below the true value.
Best Optimal : no speculation.
Speculative Play : at most limitsp above (below) value for bonus (malus).

The speculation in Jansen’s Heuristic-Program (1992a; 1993) approach differs
from that in Uiterwijk and Van den Herik’s (1994), because in the Heuristic Program,
max knows exactly how much risk is being taken in terms of the increased distance
to win. In Speculative Play, max only knows how small the difference between the
reduced-game values of the best and second-best move has to be before a bonus
can cause the second-best move to be selected. There is no way in which max can
measure the real risk at stake.

None of these five approaches have yet been applied in real competition although
some of the current top-range computer-chess programs claim to use a form of spec-
ulative search. The authors of Hiarcs (Mark Uniacke3) and Gambit Tiger 2.0

(Christophe Théron4) claim that their programs perform true speculative sacrifices.
There is no information published on how this is implemented and performed, nor
is there information published on how the opponent is modelled.

2.1.7 Use of opponent knowledge in chess tournaments

During today’s computer-chess tournaments such as the World Computer Chess
Championship of the ICGA5, the authors of chess programs often adapt their pro-
gram to a specific opponent. There are three elements in a computer-chess program
that usually can be tuned to a specific opponent before a game starts: the opening
book, the evaluation function, and the contempt factor. An opening book contains
the moves at the start of the game that are to be played by the program. When
the characteristics of a given opponent are known, for instance through previously
played games, it is possible to build an opening book in a such way that the oppon-
ent is lured into a position that has proven to be more difficult for that opponent.
There are programs commercially available that can generate such opening books
(e.g. Chess Assistant 6.1

6).
3See: http://www.chess4less.com/2-Hiarcs.htm.
4See: http://www.chessbase.com.
5International Computer Games Association, see www.icga.org.
6See: http://icc.convekta.com/CAFamily/CA6.
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The second element of a computer-chess program that can be tuned to an oppon-
ent is the evaluation function. Many chess programs (e.g., Crafty, Chessmaster,
Chess Tiger) offer the possibility to adjust some of the high-level parameters of
the evaluation function. Changing these parameters influences the playing style of
the program, for instance, to play more aggressively or more defensively. When the
playing style of an opponent is known, one can select these parameters carefully in
answer to the specific style.

The third element is the contempt factor. This is one of the first opponent-
modelling mechanisms in computer chess. The contempt factor deals with an evalu-
ation value at which a draw is accepted. Usually, this value is set at zero. However,
it might happen that a threefold repetition occurs due to a zero evaluation which
is the highest evaluation among all variants. Against a strong opponent it might
be worthwhile to accept a draw even at a technically won position (thus even with
an evaluation value > 0) and against a weak opponent, a draw would preferably be
avoided even when a position seems to be lost (thus even with an evaluation value
< 0). The contempt factor is often regarded as a synonym for draw score and is as
such implemented as part of the evaluation function. Most current chess programs
offer the user an option to set a contempt factor at the beginning of a game.

In all three cases above, the opponent model is not explicit. The program does
not know how the opponent will behave, it is only adjusted in such a way that the
author expects the program to perform better.

2.2 The Invention of Opponent-Model Search

The example of nim-5 in chapter 1 clearly shows that to have explicit knowledge of
the opponent’s strategy can be beneficial: a lost game is turned into a won game.
In general, when the opponent’s (min) strategy is fully known to a player (max) in
a perfect-information zero-sum game and the strategy of min is not optimal, then
max can always obtain a payoff that is at least as high, but often higher than when
this knowledge is not available. This is true because of the definition of the Minimax
solution.

Such a situation is highly hypothetical in two respects: (1) max must know
min’s strategy precisely and (2) max must be omniscient in the game because he
must foreknow all the effects of a move. The first condition is difficult to achieve in
practice and the second condition can in principle only be achieved in the final stage
of a game when the player has access to a suitable endgame database.

In the introduction to his thesis, Jansen (1992a) analyzed under which conditions
explicit knowledge of the opponent’s strategy can be exploited. Jansen assumed that
max is omniscient and knows the exact game-theoretic values of all positions. Player
min is fallible and makes errors with a given probability p. Player max is not totally
aware of min’s strategy and makes a prediction error ε. In this setting, Jansen
showed that speculating on the opponent’s move is only useful when the prediction
error ε is not too high and when min does not make too few errors (p > 0) but
also not too many (p < 1). If the prediction error ε is zero, the formulae of Jansen
correctly indicate that speculation on the opponent model is always useful.
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As already discussed in chapter 1, computer game-playing consists of finding
solutions to a series of reduced perfect-information games in which the true payoffs
are (partly) replaced by heuristic values. Normally, game-tree search methods as-
sume that both players behave rationally and therefore apply a Minimax strategy
to this reduced game. Rationality means that a player will always select the move
of which he believes that it will lead to the highest payoff. However, to assume
that players behave rationally is not sufficient to justify the Minimax strategy. Both
players must know that the other player behaves rationally. To put it more precisely,
it must be common knowledge that both players behave rationally.

2.2.1 Haifa, Israel

Carmel and Markovitch (1993; 1996a) developed at Technion, in Haifa – Israel, a
generic search method called M search in which max is assumed to have perfect
knowledge of min’s strategy and payoffs, but min does not necessarily know max’s.
Both players are assumed to play rationally, and both player assume that this is
common knowledge.

The generic M-search approach is parametrized by min’s strategy. When min is
using the same evaluation function as max and is assuming that max does likewise,
then M search is called M0 search and the method is equal to Minimax search.

The next logical step was to assume that min is using an other evaluation function
(Vop) than max and that min assumes that max is using this other evaluation
function Vop. In other words, min is assumed to use a Minimax strategy on a
different version of the reduced game. Carmel and Markovitch call this version M1

search.
M1 search was developed as an intermediate step towards an approach in which

the opponent model is expanded in a recursive epistemic manner. This approach,
called M∗ search, will be treated in section 2.4.4 below.

2.2.2 Maastricht, The Netherlands

At the same period that Carmel and Markovitch developed M search in Israel,
a visitor from Japan, Iida, worked in the Netherlands at Universiteit Maastricht
together with Uiterwijk, Van den Herik, and Herschberg on an approach that is
basically the same as M1 search (Iida, Uiterwijk, and Van den Herik, 1993a). The
authors call their approach Opponent Model (OM) search, a name that we also use
in this thesis.

The developers of OM search stated as a precondition for their approach that
max is completely aware of min’s strategy and that this strategy is fully determined
by the evaluation function of min. Implicitly, the authors assumed that min uses a
Minimax-equivalent search method.

2.3 OM-Search Basics

In this section we will first give the original description of the OM-search method
and a small example. We will then produce an enhanced version of this description
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as intended by the authors. Next, we will briefly deal with some basic properties of
the method as presented in Carmel and Markovitch (1993) and Iida et al. (1993a).
We discuss the issue of risk and possible gain in OM search and finish the section
with some proposed application areas.

2.3.1 Original formulation

OM search is described originally by the equations below (in the notation of chapter
1). In these equations, V0(·) is the evaluation function that max is using and Vop(·)
is the evaluation function for min. The node values computed for the max player
are indicated by v0(·) and for the min player by vop(·).

v0(h) =




max
mj∈m(h)

v0(h + mj) p(h) = max

v0(h + mj), mj = min arg
mi∈m(h)

vop(h + mi) p(h) = min

V0(h) h ∈ E

(2.10)

vop(h) =




max
mj∈m(h)

vop(h + mj) p(h) = max

min
mj∈m(h)

vop(h + mj) p(h) = min

Vop(h) h ∈ E

(2.11)

Observe that the value of vop(h) is exactly the Minimax value (or subgame value)
of h for min.

Figure 2.1: An OM-search example. The numbers inside the nodes indicate the Minimax
values. Next to the nodes are the values for v0 (V0) and vop (Vop).

Figure 2.1 gives a small example of how OM search works. Notice that at leaf
nodes (which are max nodes), the value of v0(·) is equal to V0(·), which is also the
Minimax value for the leaf nodes. At the left min node, the OM-search value (v0)
is equal to the Minimax value for max (7) because min selects the same branch
(right) as max would do. From the right min node, however, max would be led
via the right branch if Minimax was used, but because min’s evaluation for the
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left branch (Vop = 6) is lower than his evaluation for the right branch (Vop = 7),
max may assume that min chooses the left branch (dotted) and so max receives
a higher value (v0 = 8, in bold) than the Minimax value (7). Hence, at the root,
max chooses the right branch (dotted) instead of the left one, which is the Minimax
principal variation. Of course, there is a risk that max has a wrong impression of
the opponent. If the opponent is actually using V0 instead of Vop, then max’s value
of the tree is only 6 instead of 8 (or instead of 7).

Although the terminology and notation for M1 search is rather different from
that of OM search, both approaches are the same. In both cases, max is assumed
to behave rationally in the context of the reduced game, trying to maximize the
own payoff and being aware of the complete strategy of min. At the other side,
min is also assumed to play the same truncated game rationally but with another
evaluation function and unaware of max strategy, assuming that max uses min’s
evaluation function.

2.3.2 Enhanced formulation

The formulations for OM search in the previous section do not cover the intentions of
the developers completely because there are two issues not included. The first issue
occurs when min evaluates two (or more) moves equally (i.e., vop(mi) = vop(mj),
i �= j, mi,mj ∈ m(h)). In such case max has to select either mi or mj . Most safely,
max should select the move with the lowest own evaluation.

The second issue is that the formulation in the previous subsection suggests that
max and min use exactly the same set of leaf nodes. This needs not be the case,
because min might have more limited resources than max or might use different rules
to stop searching at a given node. The developers of OM search implicitly assume
that max will use Minimax search on subgames that are out of reach for min. It
is not difficult to incorporate this into the formulae for OM search. Let H0 denote
the set of histories that max is using and Hop the set for min. The leaf nodes for
both players are E0 and Eop. All together, the issues lead to the following enhanced
formulae for OM search:

v0(h) =




max
mj∈m(h)

v0(h + mj) p(h) = max

min v0(min arg
mi∈m(h)

vop(h + mi)) p(h) = min ∧ h ∈ Hop

min
mj∈m(h)

v0(h + mj) p(h) = min ∧ h �∈ Hop

V0(h) h ∈ E0

(2.12)

vop(h) =




max
mj∈m(h)

vop(h + mj) p(h) = max

min
mj∈m(h)

vop(h + mj) p(h) = min

Vop(h) h ∈ Eop

(2.13)
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2.3.3 Two derived characteristics

Two theoretical characteristics of OM search are described by both Carmel and
Markovitch (1993) and Iida et al. (1993a). The first characteristic of OM search
that both groups describe is that the root value of a tree traversed by OM search is
equal or higher than the (Minimax) game value of that tree. In chapter 5 we will
show that this property holds for a large class of game-tree search algorithms.

The second characteristic is that the value of the root only differs from the
Minimax value if somewhere on the principal variation of the tree, min selects a
move that is suboptimal according to max’s evaluation function. Iida et al. called
these deviations errors of the opponent, but unless max is omniscient, the term
‘error’ is not appropriate. We will give an alternative description of these deviations
in chapter 3.

By providing these characteristics, the inventors of OM search suggest that
OM search allows for exploiting errors of the opponent. Neither characteristic, how-
ever, provides us with any clue on how the quality of play improves when OM search
is used, unless max is omniscient.

2.3.4 Risk and possible gain

An obvious risk that occurs when OM search is applied is caused by errors that
max makes in the prediction of min’s strategy. Although Carmel and Markovitch
(1993; 1996a) also dealt with prediction errors (or modelling errors as they named
it) by max, the analysis by Iida et al. (1993a; 1994) of prediction errors is more
elaborate.

Risk is defined by Iida et al. as the difference between the obtained payoff for max

when using Minimax and the payoff for max when sticking to the OM search strategy
while min is in fact using a Minimax strategy with max’s evaluation function. In
other words, the risk is the difference between the payoff that max can guarantee
(using Minimax) and the worst that can happen if max sticks to the prediction
of min while min is behaving differently. Let smm(V ) denote a Minimax strategy,
using evaluation function V and som(V1,V2) an OM-search strategy with evaluation
functions V1 and V2. In the notation of chapter one, the risk using OM search can
be expressed as:

Risk = v(〈smm(V0), smm(V0)〉) − v(〈som(V0,Vop), smm(V0)〉) (2.14)

This risk can be computed not only for the root node, but for every max node in
the game tree.

Iida et al. (1993a; 1994) also discussed the possible gain of OM search. This is a
measure of how much max could benefit from using OM search. It is defined as the
difference between the OM-search value of the game tree and the Minimax value:

PossibleGain = v(〈som(V0,Vop), smm(Vop)〉) − v(〈smm(V0), smm(V0)〉) (2.15)

The same definition is used to express the possible gain at every max node in the
game tree.
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Both risk and possible gain are properties of the reduced game and not of the
actual full game. This means that the usefulness of these measures is practically
limited to cases in which max is omniscient. In section 4.2 we will show that there
exist another type of risk that is caused by errors in max’s evaluation function.

2.3.5 Application areas

As we already mentioned, Jansen (1992a) indicated under which conditions spec-
ulating on the opponent’s behaviour can be beneficial. Carmel and Markovitch
(1993; 1996a) interpreted these conditions and formulated three types of positions
in which OM search could be of use. The first type is a swindle position in which
max expects min to underestimate a good move and will play a poor move instead.
The second type is a trap position in which max expects min to overestimate a move.
The third type of position is a loosing position where there are more than one moves
that lead to a loss. Instead of selecting an arbitrary move (as Minimax would do),
OM search can use the opponent model to select a swindle move.

Carmel and Markovitch (1993; 1996a) suggested that there is also another situ-
ation in which opponent models might be of use. At the introduction of reduced
games in chapter 1, we assumed that the heuristic evaluation function is symmetric,
that means that the value for the two players is opposite for all positions. It can,
however, happen that this is not the case because the heuristic evaluation func-
tion contains factors that are beneficial to both players at the same time. In such
case, Minimax will not predict the moves of the opponent correctly. Carmel and
Markovitch claimed that their approach can be applied in this case. In section 2.5
we will return to this matter.

Iida et al. (1995; 1997b) gave some other areas of application. The first is in
a tutoring environment (Iida, Handa, and Uiterwijk, 1995). By using an opponent
model of the pupil, a program could develop a tutoring strategy that leads the pupil
to find a good move ‘by accident’. Another area of application that the authors
provided is in the field of coalition games like bridge where opponent models can be
used to model the partner. In this way, a co-operative strategy could be developed
(Iida, Uiterwijk, and Van den Herik, 1997b).

2.4 Developments in OM-Search

The description of OM search as given above is denoted by Carmel and Markovitch
as M1 search and by Iida et al. as pure OM search. Both groups have produced
variants of the basic search method. In this chapter we will enumerate and discuss
all known variants. In chapter 5 we will introduce yet another variant of OM search
that is called probabilistic OM search.

2.4.1 Pure OM search

Iida et al. (1993b) gave two implementations of pure OM search. The first algorithm
is called β-pruning OM search. This algorithm computes v0 and vop in one pass and
is able to prune the tree at max nodes. Pruning at min nodes is not possible. In
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chapter 3 we will return to this algorithm. The second algorithm is called Root-value
Pruning OM search. This is a two-pass algorithm. In the first pass, the Minimax
value of the root is determined (based on V0). In the second pass, the OM-search
value is determined, but the search tree is pruned at max nodes as soon as at least
the root value can be obtained. This algorithm appears to be more efficient than
β-pruning, but unfortunately, the root-value pruning does not necessarily produce
the same outcome as OM search because it could fail to find all possibilities to utilize
min’s weaknesses.

2.4.2 OM search with risk management

Above we gave the definitions for risk and possible gain in OM search. Iida et al.
(1993a; 1997a) defined three variants of OM search that explicitly deal with risk and
possible gain.

The first variant is called OMGF search (OM Gain First). In this variant, max

first selects moves at a max node that maximize the possible gain of the max node.
If there is more than one move with the same maximal possible gain, max selects a
move that minimizes the risk.

The second variant is called OMLF search (OM Loss First). This variant is the
opposite: max first selects moves at a max node that minimize the risk of the max
node. If there is more than one move with the same minimal risk, max selects a
move that maximizes the possible gain.

The third variant, OMB search (OM Balanced), combines OMGF search and
OMLF search. In this variant, max selects the move at every max node that max-
imizes the following factor (δ is used to balance between possible gain and risk):

ε(h) =
PossibleGain(h)

Risk(h) + δ
(2.16)

The authors did not indicate how these methods can be implemented in an
efficient way.

2.4.3 (D, d)-OM search

Iida et al. (1993b; 1994), and Gao et al. (1999; 2001) described a variant of
OM search called (D, d)-OM search. In this variant, the focus is on the difference
in search depth between max and min: while max is searching with fixed depth D,
min is assumed to search only with fixed depth d, where d ≤ D−2. For larger values
of d, applying this method is not useful, according to Iida et al. (1993b). Strictly
spoken, (D, d)-OM search is not a variant of OM search, but a specialization of this
method because the formulae 2.12 and 2.13 cover (D, d)-OM search completely. The
definition of (D, d)-OM search in Gao et al. (2001) includes the possibility for min

and max to have different evaluation functions, but in all examples and experiments
both players used the same evaluation function.

The authors gave an implementation of (D, d)-OM search that is called α-β2

pruning OM search. This algorithm is a one-pass algorithm, like β-pruning. The
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main difference lies in the lower parts of the search tree in which max is still search-
ing, but min has reached the search horizon. In this part of the tree, α-β search is
used to compute the value of the nodes for max. We will discuss this algorithm in
more detail in section 3.1.3.

Gao et al. (2001) performed some experiments with (D, d)-OM search on random
game trees, and also in the game of othello. In the latter experiments max had
perfect knowledge of min’s evaluation function, so max was able to predict the moves
of min without any error. The performance of (D, d)-OM search was compared with
plain Minimax search with search depth D. The results showed that (D, d)-OM
search seemed to outperform Minimax search (but no proof of statistical significance
is provided). With larger difference between D and d, the distance between the
performance of (D, d)-OM search and Minimax search increased to a maximum of 4
per cent.

2.4.4 M∗ search

As already mentioned, Carmel and Markovitch (1993; 1994; 1996a; 1996b; 1998)
provided a search method that generalizes OM search, called M∗ search. In this
method, max has an opponent model of min that possibly includes an opponent
model of max, which can include a second-order opponent model of min, and so on.
The assumed knowledge of the players is asymmetric: max has full knowledge of
min’s strategy, including the opponent model that min is using, but this is not the
case for min. Furthermore, the opponent models are used at different time points in
the game: at the root node, max is predicting the moves of min at the min nodes
just below the root, knowing that min is predicting max’s moves at the max nodes
just below that, and in turn knowing that max is predicting min’s moves on the
next layer of min nodes, and so on. So the maximum number of nested opponent
models that is used is equal to the search depth. Most of the times, the number of
nested opponent models will be restricted to a few. The inner most opponent model
will normally be a Minimax strategy.

The opponent models in M∗ search are determined by evaluation functions V0,
V1, . . . , Vn, where V0 is max’s evaluation function, V1 the evaluation that min is
using, V2 the evaluation function that min thinks max is using, until the inner-most
opponent model n is reached, which is assumed to be a Minimax strategy. M∗ search
then is described by the following formulae:

vi(h)
0≤i<n

=




max
mj∈m(h)

vi(h + mj) p(h) = p(Vi)

vi(h + mj), mj = max arg
mk∈m(h)

vi+1(h + mk) p(h) �= p(Vi)

Vi(h) h ∈ E

(2.17)

vn(h) =




max
mj∈m(h)

vn(h + mj) p(h) = p(Vn)

min
mj∈m(h)

vn(h + mj) p(h) �= p(Vn)

Vn(h) h ∈ E

(2.18)
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We used the notation p(Vi) to indicate the player that is assumed to be using
evaluation function Vi. So, p(V0) is max, p(V1) is min, et cetera. When n = 1,
the formulae coincide with those of OM search (2.10, 2.11) and when n = 0, the
formulae describe Minimax search because formula (2.17) is not applicable in that
case.

Carmel and Markovitch (1996a) provided a number of algorithms for this search
method. The first algorithm (also called M∗ search) is a multi-pass version in which
at every max node, the algorithm is called recursively, once with the opponent
model only, and once with the own evaluation function together with the opponent
model. The first call strips away the own evaluation function, unveiling the next
level of opponent model. As a result, the number of calls to the algorithm increases
exponentially with the number of nested opponent models.

The second algorithm that Carmel and Markovitch (1996a) provided is a one-
pass algorithm (called M∗

1-pass search). This algorithm returns a vector of values at
every max node, one value for every nested opponent model. The number of node
expansions in the one-pass algorithm is smaller than in the multi-pass version, but
the number of evaluations is larger.

These two algorithms can be augmented with ‘simple pruning’ by replacing
search at the innermost model level by α-β search. When M∗ search coincides
with OM search, the algorithm M∗

1-pass search with simple pruning is equal to the
β-pruning algorithm of Iida et al. (1993b).

The third and fourth algorithms incorporate pruning of the search tree. The
algorithms are called α-β∗ search and α-β∗

1-pass search. Pruning in these algorithms
is based on bounds on the difference between opponent models. We will go into
more detail on these algorithms in subsection 3.2.4.

Carmel and Markovitch (1996a) also gave a (nameless) algorithm that takes
differences in search depth into account. They do not provide any means of pruning
in this algorithm, but it must be possible to add pruning in an analogous manner
as in α-β2 pruning OM search.

Some experiments with M∗ search were conducted in the game of checkers (Car-
mel and Markovitch, 1996a, 1998). In these experiments, the authors tested four
aspects: (1) difference in search depth between max and min, (2) difference in evalu-
ation function, (3) error in the modelled search depth, and (4) error in the modelled
evaluation function. The opponent model used in the experiments consisted of only
one level, which makes the experiments comparable to the experiments by Gao et al.
(2001) in the previous subsection.

When max had correct knowledge of min’s strategy, the results showed that M∗

search outperformed Minimax search, similar to (D, d)-OM search. When the differ-
ence in search depth increased, the effect increased and likewise when the difference
in evaluation quality increased. The results of experiments with erroneous opponent
models showed that using these models can be harmful. Some of the experiments in
chapter 5 we will also show this effect of OM search.
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2.4.5 M∗
ε search

In order to cope with modelling errors, Carmel and Markovitch (1996a) developed
a variant called M∗

ε search that allows some bounded error ε in the opponent model.
Instead of assuming a given value v(h) for the evaluation of a node h, the method
allows an error of ε such that the real value of the opponent’s evaluation must lie in
the interval [v(h) − ε, v(h) + ε]. The algorithm is analogous to the B∗ algorithm of
Berliner (1977). When ε approaches ∞, M∗

ε search behaves equal to Minimax search.
The authors do not provide any pruning details, nor any experimental results for
this algorithm.

2.5 Opponent Models in Game Theory

In this section we provide a brief overview of topics from modern game theory that
are related to the search methods discussed in this chapter. The goal of this section
is to point out that in mathematical and economical game theory researchers have
dealt with the issue of opponent models too. The solutions that game theory offers
differ from the solutions above, but there are common elements. We are not able
and do not want to give a complete account on modern game theory; for that we
refer, for instance, to the textbook by Fudenberg and Tirole (1991).

2.5.1 Nonzero-sum perfect-information games

Zero-sum perfect-information games were already introduced in chapter 1. They
have a long history in game theory. Zermelo (1913) discussed games that nowadays
would be called finite zero-sum perfect-information games. According to Van den
Herik (1983), Zermelo mainly studied the way in which one player can force a win or
postpone a loss in a game like chess. He provides an algorithm to solve this types of
games, which is basically the Minimax algorithm, also known as the Zermelo-Kuhn
or backward-induction algorithm. Von Neumann (1928) studied games in which
the payoffs are not simply wins or losses as in Zermelo’s paper. Furthermore, von
Neumann was interested in the strategies that players have to adopt in order to
maximize their payoff. He proved that the Minimax algorithm of Zermelo indeed
produces this strategy in case of zero-sum perfect-information games. The work
by Zermelo and von Neumann constitutes the main body of game theory on which
research in computer-game theory is based. It is, however, interesting to travel
further in the history of game theory.

The idea of an optimal Minimax strategy was generalized by Nash (1950) for
games in which the players do not necessarily have opposite payoffs. He defined
the concept of equilibrium in which two players have a strategy such that neither
one can on his own increase the own payoff. In any perfect-information game, such
an equilibrium point must exist and often there will be multiple equilibria possible.
Selten (1965) showed that not all of these Nash equilibria are equally likely when
the players behave truly rationally. Nash equilibria that are subgame perfect are
preferred. Subgame perfect means that the strategies of both players must be such
that they form Nash equilibria in all (proper) subgames. For zero-sum games, all
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Nash equilibria appear to have this property, so the Minimax algorithm is still
producing preferable strategies. (Both Nash and Selten received a Nobel price in
economic sciences for this work in 1994.) The case is different, however, for nonzero-
sum games.

A two-player nonzero-sum game with perfect information can be observed as
a game in which both players have a perfect opponent model of each other. The
difference with the OM-search approach is that the knowledge is symmetrical : both
players know each others model, and furthermore, they are aware of the fact that
the opponent has such a model. The subgame-perfect equilibria for this types of
games can be found by backward induction, which can be described by:

v0(h) =




max
mj∈m(h)

v0(h + mj) p(h) = max

v0(h + mj), mj = max arg
mi∈m(h)

vop(h + mi) p(h) = min

V0(h) h ∈ E

(2.19)

vop(h) =




max
mj∈m(h)

vop(h + mj) p(h) = min

vop(h + mj), mj = max arg
mi∈m(h)

v0(h + mi) p(h) = max

Vop(h) h ∈ E

(2.20)

Since V0 and Vop are not opposite, the ‘min arg’ term is replaced by a ‘max arg’
term. The search method can be implemented in a one-pass algorithm, but pruning
might be an obstacle.

Carmel and Markovitch (1996a) used an opponent model in a setting that is in
fact better suited for the nonzero-sum approach than for M∗ search. In their exper-
iments on checkers, both players used the same evaluation function which included
a factor that both players wanted to reduce, namely the total number of figures on
the board:

f(board, player) = Material(board, player)−0.004·TotalF igures(board) (2.21)

Although both players used the same evaluation function, the Minimax approach
assumed that min was using the opposite of max’s evaluation. This gave the fol-
lowing evaluation function for min:

f(board, player) = Material(board, player)+0.004·TotalF igures(board) (2.22)

Clearly, when using Minimax, max assumed that min was trying to increase
the total figures on the board. In the experiments, max was assumed to know
the correct evaluation function of min, but min was playing Minimax. It is more
realistic to assume that max and min treat each other equally, since they both use
the same evaluation function and both know that the other does so, too. It seems
that this game setting is more adequately modelled by a nonzero-sum game with
perfect information.
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Using bilateral opponent modelling in the form of a nonzero-sum game eliminates
the idea of max exploiting weaknesses in min’s strategy. Both players are trying to
get the best heuristic value and know that the other is also trying to do so.

2.5.2 Problems with subgame-perfect equilibria

Selten’s (1965) motivation for the preference of subgame-perfect equilibria is based
on both players behaving rationally. Rational is defined as to select always the move
that maximizes the own payoff. Aumann (1995) showed that rationality alone is
not sufficient to obtain subgame-perfect equilibria. However, he proved that when
the rationality of both players is common knowledge at the start of the game, this
necessarily will lead to backward induction and to a subgame-perfect equilibrium.

Some scientists (see for instance, Binmore, 1996, and Stalnaker, 1996) had diffi-
culties with accepting this conclusion because of the definition of common knowledge
of rationality. One problem is caused by counterfactuals: when we look at node c in
the game tree of figure 2.2, backward induction tells that min should select the left
branch (f), because max is assumed to behave rationally at nodes f and g. However,
if node c were to be reached, max would have proven not to behave rationally. At
this point, min could have changed his opponent model of max and believe that
max would choose moves leading to o instead of n, which would mean that min

should select the right branch at node c. At some point, this kind of reasoning can
cause max to select another move at the root. The way in which common knowledge
of rationality is defined and dealt with appears to be important for the equilibrium
that is reached. It does not have to be the subgame-perfect one, even in zero-sum
games of perfect information.

The counterfactual at node c needs not to be interpreted as an irrational act of
max. Another explanation could be that max made a simple mistake at that point,
but it is still common knowledge that max is behaving rationally. Selten (1975)

Figure 2.2: A game tree to illustrate the counterfactual problem. The bold lines indicate
the Minimax strategy for both players.
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extended this idea and stated that players might have a small but positive chance to
make mistakes. He called a game which includes such mistakes a perturbed game.
When the perturbations are decreased to zero in a series of perturbed games, the
equilibria approximate an equilibrium in the original game that (may) differ from
the subgame-perfect equilibrium: the so-called trembling-hand equilibrium. Unfor-
tunately, there is no practical algorithm to compute this equilibrium for large game
trees.

The idea of perturbed games has a close resemblance with the earlier work of
Reibman and Ballard (1983). Their *-Minimax search method assumes that min

has a probability to be fallible (see section 2.1.3). It is, however, not clear whether
*-Minimax search would yield other results than Minimax when the fallibility of min

approaches zero. Also the methods of Slagle and Dixon (1970) and Uiterwijk and
Van den Herik (1994) can be related to the idea of the trembling-hand equilibrium.

For a detailed discussion on the many alternatives for subgame-perfect equilibria,
we refer to chapter 8 of Fudenberg and Tirole (1991).

2.6 Concluding Remarks

We started this chapter with search methods that preceded the discovery of OM
search. These methods all used some implicit model of the opponent’s behaviour to
improve the search result. OM search is a search method that utilizes an explicit
opponent model. Since OM search depends on the exact prediction of the opponent’s
move, knowledge of the opponent is important and errors in the prediction can
destroy the possible gains of OM search. In the experiments that both Carmel
and Markovitch (1996a) and Gao et al. (2001) performed with OM search, perfect
knowledge of the opponent was available. The influence of prediction errors on the
performance of OM search is one of the topics that is investigated in this thesis, not
only theoretically, but also in real game settings.

For the practical applicability of a search method, the efficiency is as important as
the quality of the search result. Several implementations of OM search and M search
have been developed, including β pruning, but there is still room for improvement.
In this thesis we present alternative implementations that can prune more of the
game tree and can profit from search enhancements such as iterative deepening and
transposition tables.

A more fundamental study is needed on the essentials of how OM search treats
a game tree. From a game-theoretical point of view, OM search is solving an
incomplete-information game: max has considerably more knowledge on the payoffs
than min. The type of knowledge is such that a solution is easily defined: max knows
min’s complete strategy, so the task is to find the best strategy as an answer to this.
It is a maximization task: find the strategy that, given the opponent’s strategy,
maximizes the own payoff. Maximizing is quite different from minimaxing, because
maximizing is attracted to places in the tree with maximal payoffs. Minimaxing is
somehow trying to find the mean of all possible payoffs. The maximizing behaviour
of OM search has influence on how OM search responds to errors in max’s evaluation
function.



36 Opponent-Model Search

Perfect knowledge of the opponent is rare in practice. In this thesis we want
to relax the perfect-predictability demand of OM search. In a new search method
(PrOM search, for Probabilistic Opponent-Model search), we will introduce uncer-
tainty in the opponent model. We will investigate whether PrOM search will elevate
some of the problems of OM search.

In the last part of this chapter we showed that some of the search methods
described are connected to the recent discussion on equilibria in game theory. This
connection expresses a mutual interest which we formulate by the following two
questions: (1) can search methods be developed that can efficiently find equilibria
in other game types than the classical zero-sum games? and (2) can the definition
of new equilibria be used to improve the quality of play by computers?



Chapter 3

Opponent-Model Search:
Probing and Pruning

At first glance, OM search seems a promising search method
since it incorporates an opponent model. The question how
this method can be applied in a practical setting turns out to
be difficult. There are issues of efficiency and of effectiveness.
In this chapter we deal with efficiency: the search method
must be implemented efficiently. One approach is applying
probes that use α-β search. However, a major factor of effi-
ciency is the prevailing question how much of the tree can be
pruned during search. For this purpose a full list of search
enhancements is investigated.

Chapter contents: In this chapter, the implementation of OM search is investigated.

Plain OM search is treated in section 3.1; then pruning is added in section 3.2. A best-case

analysis of the algorithms is performed in section 3.3. In section 3.4 the applicability of a

list of search enhancements on OM search is investigated. Finally, section 3.5 provides the

chapter conclusions.1

3.1 Implementing OM Search

The description of OM search in subsection 2.3.1 specified the relation between
the values of parent nodes and child nodes, but it did not impose in which order

1Parts of this chapter have been published in Donkers, H.H.L.M., Uiterwijk, J.W.H.M., Herik,
H.J. van den (2001), Probabilistic Opponent-Model Search, Information Sciences, Vol. 135, Nos.
3–4, pp. 123–149, and in Donkers, H.H.L.M., Uiterwijk, J.W.H.M., Herik, H.J. van den (2003),
Admissibility in Opponent-Model Search, Information Sciences, Vol. 154, Nos. 3–4, pp. 119–140.
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these values are determined. In this section we will study a number of possible
implementations of OM seach.

3.1.1 Notation

Before we discuss the implementation of OM search, we first introduce our notation
of the algorithms and some conventions. In algorithm 3.1 we present a version of α-β
search as an example; it uses the symbols as introduced in section 1.2. As is clear
from the head of the algorithm, we do not use a parameter for the search depth, but
we use the set of terminal histories E of the (reduced) game to indicate the leaf nodes
of our search. In this way, we do not have to distinguish between true end positions
and leaf nodes due to limited search depth. Furthermore, this notation allows for
heterogeneous game trees. We use V (·) to indicate the passing of an evaluation
function because in some of the algorithms below, we will call this algorithm with
different evaluation functions from within an OM-search implementation. The set
E and the function m(·) are assumed to be globally available.

AlphaBetaSearch(h, α, β, V (·))
1 if (h ∈ E) return (V (h),null)
2 L ← m(h) ; m ← firstMove(L) ; m∗ ← m
3 if (p(h) = max)
4 v∗ ← α
5 while (m �= null)
6 (v,mm) ← AlphaBetaSearch(h + m, v∗, β, V (·))
7 if (v > v∗) v∗ ← v ; m∗ ← m
8 if (v∗ ≥ β) m ← null else m ← nextMove(L)
9 if (p(h) = min)
10 v∗ ← β
11 while (m �= null)
12 (v,mm) ← AlphaBetaSearch(h + m,α, v∗, V (·))
13 if (v < v∗) v∗ ← v ; m∗ ← m
14 if (v∗ ≤ α) m ← null else m ← nextMove(L)
15 return (v∗,m∗)

Algorithm 3.1: α-β search.

The symbol L is used to indicate a list of moves and the two operations firstMove
and nextMove indicate the retrieval of the first and subsequent moves from this
list. When no move is available (anymore), the operations return null. The actual
ordering of the moves is implicit in the assignment of L. The execution of moves
is not explicitly notated, but is inherent in the notation h + m of the recursive call
at lines 6 and 12. The search algorithms that we discuss in this chapter can return
more than one value at a time. The algorithm AlphaBetaSearch returns two
values: first the game-tree value and second the best move. An asterisk is used to
indicate optimal values or best choices. The player function p(h) allows to distinguish
between max nodes and min nodes.
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We use indentation to express the flow of the algorithm: after an if, else or
while statement, all indented statements are conditional. If there is more than
one statement at one line after an if or else statement, these statements are all
conditional.

3.1.2 Plain OM search

There are at least two ways in which the equations 2.10 and 2.11 can be implemented
with respect to the traversal of the game tree. The first way is a one-pass algorithm
that visits all nodes in the algorithm at most once and determines the best choice for
min and max at the same time. This algorithm is called OmSearch1p. The second
way is an algorithm that predicts the choices for min using a Minimax strategy and
then selects the best choices for max. It is called OmSearchPb

Algorithm 3.2 (OmSearch1p) is a one-pass implementation of OM search. It
returns three values: the game-tree values for max and for min and the best choice for
max. The passing of both game-tree values together is necessary for the computation
of the maxima at max nodes for max and min simultaneously (lines 7 and 8). The
passing of both values is also necessary at min nodes in order to determine the value
of v0 for the child node that results in the minimum value of vop. At line 11, v0 is
initialized with an arbitrary value (0). When this value of v0 is wrongly used to set
v∗
0 then this will be repaired at line 17.

The second straightforward way to implement OM search is by applying probing :
at every min node perform Minimax search with the opponent’s evaluation function

OmSearch1p(h)
1 if (h ∈ E) return (V0(h), Vop(h),null)
2 L ← m(h) ; m ← firstMove(L) ; m∗ ← m
3 if (p(h) = max)
4 v∗

0 ← −∞ ; v∗
op ← −∞

5 while (m �= null)
6 (v0, vop,mm) ← OmSearch1p(h + m)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗ ← m

8 if (vop > v∗
op) v∗

op ← vop

9 m ← nextMove(L)
10 if (p(h) = min)
11 v∗

op ← +∞ ; v0 ← 0
12 while (m �= null)
13 if (h + m ∈ E) vop ← Vop(h + m)
14 else (v0, vop,mm) ← OmSearch1p(h + m)
15 if (vop < v∗

op) v∗
op ← vop ; v∗

0 ← v0 ; m∗ ← m
16 m ← nextMove(L)
17 if (h + m∗ ∈ E) v∗

0 ← V0(h + m∗)
18 return (v∗

0 , v∗
op,m

∗)

Algorithm 3.2: One-pass OM search.
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OmSearchPb(h)
1 if (h ∈ E) return (V0(h),null)
2 if (p(h) = max)
3 L ← m(h) ; m ← firstMove(L)
4 m∗ ← m ; v∗

0 ← −∞
5 while (m �= null)
6 (v0,mm) ← OmSearchPb(h + m)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗ ← m

8 m ← nextMove(L)
9 if (p(h) = min)
10 (v∗

op,m
∗) ← AlphaBetaSearch(h,−∞,∞, Vop(·))

11 (v∗
0 ,mm) ← OmSearchPb(h + m∗)

12 return (v∗
0 ,m∗)

Algorithm 3.3: OM search with α-β probing.

(the probe), and perform OM search at the position that is reached after the move
that the probe returns is performed; at every max node, maximize over all child
nodes. The probes can in fact be implemented using any enhanced Minimax search
algorithm available. Because a separate probe is performed for every min node,
many nodes are visited during multiple probes. Algorithm 3.3 (OmSearchPb) is
an implementation of OM search using α-β probing (at line 10). Since there is
no concurrent maximization of values for max and min, this version of OM search
returns only two values: the game-tree value for max and the best choice for max.

The one-pass algorithm 3.2 (OmSearch1p) is equivalent to the M∗
1-pass im-

plementation of Carmel and Markovitch (1996a; 1998) in case of a one-level op-
ponent model and a fixed search depth (see subsection 2.4.4). Algorithm 3.3 (Om-
SearchPb) is equivalent to the M∗ search implementation of Carmel and Markovitch
augmented with simple pruning as described in section 3.1 of their (1998) publication
(also in case of a one-level opponent model and fixed search depth).

3.1.3 Implementing the enhanced formulae of OM search

Both algorithms 3.2 (OmSearch1p) and 3.3 (OmSearchPb) are based on the
formulae for OM search in subsection 2.3.1. In subsection 2.3.2 we gave an enhanced
version of these formulae. The enhanced formulae deal with different search depths
for max and min and with moves that are equally evaluated by min.

The handling of different search depths can be incorporated by changing line
1 in algorithms 3.2 and 3.3. (In general, we have marked changes with respect to
main algorithms by printing the line numbers bold.) In the one-pass version of the
enhanced algorithm (3.4), called OmSearchEnh1p, a node is evaluated if it is a
leaf node for max or for min. If a node is a leaf node for both players at the same
time, the algorithm returns the two evaluations (V0(h) and Vop(h) immediately (line
1a). Otherwise, a call to AlphaBetaSearch is performed for the player who still
has some search depth left (for max: line 1b; for min: line 1c). Because lines 13 and
17 in the original algorithm 3.2 (OmSearch1p) look one move ahead, these lines
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OmSearchEnh1p(h)
1a if (h ∈ E0 ∩ Eop) return (V0(h), Vop(h),null)
1b if (h ∈ E0) (v∗

op,m
∗) ← AlphaBetaSearch(h,−∞,∞, Vop(·)) ;

return (V0(h), v∗
op,null)

1c if (h ∈ Eop) (v∗
0 ,m∗) ← AlphaBetaSearch(h,−∞,∞, V0(·)) ;

return (v∗
0 , Vop(h),m∗)

2 L ← m(h) ; m ← firstMove(L) ; m∗ ← m
3 if (p(h) = max)
4 v∗

0 ← −∞ ; v∗
op ← −∞

5 while (m �= null)
6 (v0, vop,mm) ← OmSearchEnh1p(h + m)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗ ← m

8 if (vop > v∗
op) v∗

op ← vop

9 m ← nextMove(L)
10 if (p(h) = min)
11 v∗

op ← +∞ ; v0 ← 0
12 while (m �= null)
13 if (h + m ∈ Eop) vop ← Vop(h + m)
14 else (v0, vop,mm) ← OmSearchEnh1p(h + m)
15 if (vop < v∗

op) v∗
op ← vop ; v∗

0 ← v0 ; m∗ ← m
15a else if (vop = v∗

op and v0 < v∗
0) v∗

0 ← v0 ; m∗ ← m
16 m ← nextMove(L)
17 if (h + m∗ ∈ Eop)

(v∗
0 ,m′) ← AlphaBetaSearch(h + m∗,−∞,∞, V0(·))

18 return (v∗
0 , v∗

op,m
∗)

Algorithm 3.4: One-pass enhanced OM search.

are slightly adapted, too, in algorithm 3.4 (OmSearchEnh1p).
In the probing version of OM search, the adaptation to different search depths

is different. Below we describe the implementation of enhanced OM search with
α-β probing. It is called OmSearchEnhPb, see algorithm 3.5. At a leaf node for
max, the enhanced algorithm returns max’s evaluation only (line 1a); at nodes where
max searches deeper than min (i.e., all histories outside Hop \ Eop; histories that
are not internal nodes for min), the algorithm calls AlphaBetaSearch with max’s
evaluation function (line 1b). The cases in which min searches deeper than max

are covered by the probes at line 10, under the condition that AlphaBetaSearch
knows which set E is to be used. Both algorithms 3.4 and 3.5 can also be used as
an implementation of (D, d)-OM search (see subsection 2.4.3).

The algorithms are also easily adapted to cope with moves that are equally eval-
uated by min. Line 15a in the one-pass algorithm 3.4 (OmSearchEnh1p) deals
with equal values of v∗

op: in such case it selects the move with the minimum value
for v0. The handling of equally evaluated moves in the probing version (algorithm
3.5: OmSearchEnhPb) requires an adaptation of the α-β-search implementation:
instead of returning one best choice, it should return a list of all best choices (indic-
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OmSearchEnhPb(h)
1a if (h ∈ E0) return (V0(h),null)
1b if (h �∈ Hop \ Eop) return AlphaBetaSearch(h,−∞,∞, V0(·))
2 if (p(h) = max)
3 L ← m(h) ; m ← firstMove(L)
4 m∗ ← m ; v∗

0 ← −∞
5 while (m �= null)
6 (v0,mm) ← OmSearchEnhPb(h + m)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗ ← m

8 m ← nextMove(L)
9 if (p(h) = min)
10 (v∗

op, L) ← AlphaBetaSearch(h,−∞,∞, Vop(·))
11 m ← firstMove(L) ; m∗ ← m ; v∗

0 ← +∞
12 while (m �= null)
13 (v0,mm) ← OmSearchEnhPb(h + m)
14 if (v0 < v∗

0) v∗
0 ← v0 ; m∗ ← m

15 m ← nextMove(L)
16 return (v∗

0 ,m∗)

Algorithm 3.5: Enhanced OM search with α-β probing.

ated by L in line 10). For all moves on this list, OM search must be called in order
to determine the minimum value for these moves for max (lines 11 to 15).

The algorithms in the rest of this chapter are based on the plain implementations
of OM search (algorithms 3.2 and 3.3). The adaptations that are introduced in
algorithms 3.4 and 3.5 can easily be added to the algorithms below, so it is not
needed to mention them each time. It keeps the algorithms smaller and more clear.

3.1.4 Restricted speculation

OM search assumes that max speculates at all min nodes about the move that min

is going to choose. In deeper parts of the search tree, the prediction of min’s move
is based on shallower probes than in the higher parts of the tree. It could therefore
be justified to speculate only in the upper portion of the search tree. Algorithm
3.6, called OmSearchRsPb, is an adaptation of OM search with α-β probing in
which speculation is restricted to the histories in Hspec ⊆ H. The speculative search
depth is defined as the (maximum) length of the histories in Hspec. We provide a
version of restricted speculation with α-β probing only. The one-pass version is a
similar straightforward adaptation of algorithm 3.2. The most restricted speculation
occurs when Hspec is empty, since in that case only α-β search is performed. A more
realistic setting is the restriction of Hspec to all histories h ∈ H that do not exceed
length 2, resulting in speculation only at the upmost min nodes in the tree.
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OmSearchRsPb(h)
1 if (h �∈ Hspec) return AlphaBetaSearch(h,−∞,∞, V0(·))
2 if (p(h) = max)
3 L ← m(h) ; m ← firstMove(L)
4 m∗ ← m ; v∗

0 ← −∞
5 while (m �= null)
6 (v0,mm) ← OmSearchRsPb(h + m)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗ ← m

8 m ← nextMove(L)
9 if (p(h) = min)
10 (v∗

op,m
∗) ← AlphaBetaSearch(h,−∞,∞, Vop(·))

11 (v∗
0 ,mm) ← OmSearchRsPb(h + m∗)

12 return (v∗
0 ,m∗)

Algorithm 3.6: OM search with α-β probing and restricted speculation.

3.2 Pruning in OM Search

The success of α-β search is mainly caused by the large power of this algorithm
to prune the search tree (Knuth and Moore, 1975). If OM search is ever to be
practically applicable, it must be able to apply pruning to the search tree as well.
In this section we will discuss two pruning mechanisms that have been developed
for OM search: β pruning and bounded-sum pruning. We will provide a one-pass
version and a version with α-β probing for both pruning mechanisms. In section 3.3
we will analyze the best-case efficiency of the two β-pruning versions.

3.2.1 β-pruning OM search

β-Pruning OM search (Iida et al., 1993a) is an improvement of plain OM search; it
has a better efficiency and yields the same result. The method prunes the search
tree in max nodes (not in min nodes, hence the name ‘β-pruning’). The pruning in
this method is analogous to the pruning in α-β search: when for one of the children
mj of a non-leaf max node h the value of vop(h + mj) is higher than for the already
evaluated siblings of the max node, then the remaining children of the max node
can be pruned. At node e in figure 3.1, for example, the inspection of further child
nodes can be omitted after the child j returned a value greater than the current
value of β. The same happens at node g after the evaluation of node m. It is a
safe pruning since it is certain that such a max node h will never be chosen at its
parent min node and so its value cannot influence the value of the root. This means
that the precise values for v0(h) and vop(h) are not needed. Pruning at internal min
nodes h is not possible, because the value of v0(h) depends on the exact minimum
of vop(h + mj) over moves mj ∈ m(h).

β-Pruning OM search also discards unnecessary evaluations of V0(·) at leaf nodes.
There are two cases to distinguish. The first case concerns leaf nodes of the search
tree that are max nodes. In this case V0 only has to be determined for those leaf
nodes that have the lowest Vop among their siblings (nodes o, p, t, and w in figure
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Figure 3.1: A β-pruning OM-search example. The upper numbers next to the nodes (and
under the leafs) indicate v0, the lower numbers indicate vop. A dash means that a value
need not to be determined.

3.1). When the value of the lowest Vop among siblings happens to be higher than
the current value of β, the value of V0 does not have to be determined at all for this
node (node r in figure 3.1).

The second case concerns leaf nodes that are min nodes. The value of V0 only
has to be determined for those min leaf nodes that have a value of Vop that does not
exceed the current value of β (node m in figure 3.1).

Depth-first β-pruning OM search can be implemented both in a one-pass version
and in a version with α-β probing as enhancements of the non-pruning versions of
OM search (algorithms 3.2 and 3.3).

3.2.2 One-pass β-pruning OM search

Dealing with max nodes is easy since one-pass β-pruning OM search can simply be
called recursively for all child nodes from left to right until the value of β is exceeded,
see figure 3.1.

Dealing with min nodes is more elaborate. When a min node h has only child
nodes that are leaf nodes then it is easy to find the move mj that leads to the lowest
value of vop(h + mj) because only the value of Vop(·) has to be computed for every
child node. The value of V0(·) needs to be computed only for the child node with
the lowest value of Vop(·), provided that the lowest value of Vop(·) is smaller than
the value of β that was passed to the node. If the lowest value of Vop(·) is equal to
or smaller than the β no V0(·) value has to be computed at all.

When the child nodes of a min node are internal nodes, it is more difficult to find
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OmSearchBeta1p(h, β)
1 if (h ∈ E) return (V0(h), Vop(h),null)
2 L ← m(h) ; m ← firstMove(L) ; m∗ ← m
3 if (p(h) = max)
4 v∗

0 ← −∞ ; v∗
op ← −∞

5 while (m �= null)
6 if (h + m ∈ E) vop ← Vop(h + m) ; if (vop < β) v0 ← V0(h + m)
7 else (v0, vop,mm) ← OmSearchBeta1p(h + m,β)
8 if (v0 > v∗

0) v∗
0 ← v0 ; m∗ ← m

9 if (vop > v∗
op) v∗

op ← vop

10 if (v∗
op ≥ β) m ← null else m ← nextMove(L)

11 if (p(h) = min)
12 v∗

op ← β ; v0 ← 0
13 while (m �= null)
14 if (h + m ∈ E) vop ← Vop(h + m)
15 else (v0, vop,mm) ← OmSearchBeta1p(h + m, v∗

op)
16 if (vop < v∗

op) v∗
op ← vop ; v∗

0 ← v0 ; m∗ ← m
17 m ← nextMove(L)
18 if (h + m∗ ∈ E ∧ v∗

op < β) v∗
0 ← V0(h + m∗)

19 return (v∗
0 , v∗

op,m
∗)

Algorithm 3.7: One-pass β-pruning OM search.

the move with the lowest value of vop(·). The one-pass version applies β-pruning OM
search recursively to all child nodes h + mj of h. This results in the simultaneous
computation of two values, viz. that of v0(h + mj) and of vop(h + mj), for every
child node. So, the value of v0(h) is found as soon as the minimum value for vop(·)
is detected. The value of β that the recursive call passes is either the value of β
that was received from the parent node, or the largest value of vop(·) if this value
is greater than the current β parameter. This is equal to handling the β parameter
in AlphaBetaSearch (algorithm 3.1). We call the one-pass version of β pruning
OM search OmSearchBeta1p and abbreviate this name in the text to OMβ1p.

The implementation of OMβ1p is given in algorithm 3.7. The β-pruning at leaf
nodes takes place in the lines 6 and 18. The β-pruning at internal max nodes takes
place in line 10: by setting m to null, the iteration of child nodes is terminated and
the remaining child nodes are pruned.

Finally we remark that the value of vop(h + mj) is needed for all mj , and that
the value of v0(h + mj) is only needed for that move mj that has the lowest value
for vop(h + mj). This means that values of V0(·) will thus be computed too often in
the one-pass version.

3.2.3 β-pruning OM search with α-β probes

It is also possible to apply β pruning to the version with α-β probes. When an
α-β probe with a [−∞,+∞] window is applied to a min node, as in line 10 of
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Figure 3.2: An example to illustrate the β parameter of α-β probes.

algorithm 3.3, then β pruning below max nodes already takes place automatically.
However, the α-β probes at a min node h and at its grandchild min nodes h+mj+mk

are not independent because the α-β value of h (vop(h)) is necessarily equal or greater
than all α-β values of h + mj + mk. This means that vop(h) can be used to reduce
the window of the probes at the grandchild nodes.

Figure 3.2 illustrates how the β parameters for the probes can be set. Assume
that an α-β probe at node a has returned value v and the move leading to node c.
The following four conclusions can be derived from this knowledge:

(1) the subgame value for node b is greater than v,
(2) the subgame value for node d is greater than or equal to v,
(3) no bound can be given for the subgame values of nodes e, f, i, and j,
(4) the subgame values for nodes g and h are less than or equal to v.

This knowledge has consequences for nodes g and h: a window of [−∞, v + 1] is
allowed for the α-β probes at these nodes. The β parameter must be set to v + 1 in

OmSearchBetaPb(h, β)
1 if (h ∈ E) return (V0(h),null)
2 if (p(h) = max)
3 L ← m(h) ; m ← firstMove(L)
4 m∗ ← m ; v∗

0 ← −∞
5 while (m �= null)
6 (v0,mm) ← OmSearchBetaPb(h + m,β)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗ ← m

8 m ← nextMove(L)
9 if (p(h) = min)
10 (v∗

op,m
∗) ← AlphaBetaSearch(h,−∞, β, Vop(·))

11 (v∗
0 ,mm) ← OmSearchBetaPb(h + m∗, v∗

op + 1)
12 return (v∗

0 ,m∗)

Algorithm 3.8: β-pruning OM search with α-β probing.
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order to prevent premature cuts in the α-β probe in the case that the value of the
node is equal to v. These premature cuts can cause α-β probes to select the wrong
move as optimal.

This enhancement of OM search was called β-passing in Donkers, Uiterwijk, and
Van den Herik (2001). In this thesis we will speak about β-pruning OM search with
α-β probes. The algorithm that implements this enhancement is called OmSearch-
BetaPb, which we will abbreviate to OMβPb for convenience. The implementation
of OMβPb is given in algorithm 3.8.

3.2.4 Bounded-sum pruning

Carmel and Markovitch (1996a; 1998) developed another pruning method for M∗

search, based on a bounded difference between the opponent models (introduced in
1996a, improved in 1998). Since OM search is a special case of M∗ search, this prun-
ing method is evidently applicable to OM search as well. The absence of a recursive
opponent model in OM search causes the pruning to be less complex in OM search
than in the general case of M∗ search. We will call the pruning method bounded-sum
pruning to indicate the preconditions for the application of this method.2

The fundament for bounded-sum pruning is the observation that if the absolute
difference between V0(h) and Vop(h) is bounded to some positive limit B for all
h ∈ E, then the absolute difference between values v0(h) and vop(h) is also bounded
to B for all h ∈ H. This means that the value of vop(h) can be used to give a bound
for the value of v0(h) before it is determined, possibly resulting in pruning at max
nodes.

The truth of the observation is easily proven by induction; the reasoning is as
follows.3 The observation is clearly true for all h ∈ E. Assume that for a given h,
|v0(h+m)−vop(h+m)| ≤ B for all m ∈ m(h). Further, assume that v0(h) = v0(h+
mi) and vop(h) = vop(h+mj) (max selects mi and min selects mj). If i = j, which is
always true when p(h)=min, then v0(h) and vop(h) were propagated from the same
node and therefore their difference is bounded by B. If p(h)=max and i �= j, it must
hold that v0(h + mj) ≤ v0(h + mi) and vop(h + mi) ≤ vop(h + mj); otherwise moves
mi and mj would not have been selected. There are two different cases (see figure
3.3). The first case is the crossed configuration in which v0(h + mi) ≥ vop(h + mi)
and vop(h + mj) ≥ v0(h + mj). The value of vop(h + mj) cannot be smaller than
vop(h + mi), so vop(h + mj) cannot lie more below v0(h + mi) than B. Likewise,
v0(h + mj) can never be greater than v0(h + mi), so vop(h + mj) can never lie more
above v0(h + mi) than B. The second case is the parallel configuration in which
either v0 or vop is maximal at both nodes. In this type of configuration, one of the
intervals encloses the other: if vop is maximal, then the interval at mj encloses the
interval at mi (as in the figure), if v0 is maximal the interval at mj is enclosed. In

2We prefer the term bounded-sum as analogue to zero-sum games, although it is in fact the
difference between evaluation functions V0 and Vop that has to be bounded. The preference is
caused by the way how we deal with both V0 and Vop, viz. from the viewpoint of max. In a
standard description of a non-zerosum game, V0 and Vop would have opposite viewpoints, so their
sum should be bounded.

3Extension of the proof in Carmel and Markovitch (1998), where the case of a one-level model
is not discussed.
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Figure 3.3: Example to support the proof of the bounded-sum property of OM-search trees.

both situations it is clear that the difference between v0(h + mi) and vop(h + mj)
never can exceed B. All together, it implies that the difference between v0(h) and
vop(h) is bounded to B in all cases, which concludes the proof.

The one-pass version of the bounded-sum pruning algorithm for M∗
1-pass is called

α-β∗
1-pass. Carmel and Markovitch prove that this pruning algorithm is optimal in

the sense that any one-pass algorithm that wants to prove the value of a game tree
using the recursive opponent model, must evaluate all nodes that α-β∗

1-pass does. Of
course, α-β∗

1-pass is also applicable to OM search. Algorithm 3.9 gives a translation
of α-β∗

1-pass to OM search. The algorithm is called OmSearchBounded1p and
uses separate α’s and β’s for min and max. In lines 5 and 10, the search window
for max is enlarged with two times B because the (exact) value for min is only an
approximate prediction for the value for max.

Algorithm 3.10 gives the version of bounded-sum pruning with α-β probing.
It is called OmSearchBoundedPb and the code is a direct translation of the
α-β∗ algorithm by Carmel and Markovitch (1998). Pruning takes place at three
places: at lines 8 and 13, and by the adaptations to the parameters of the α-β probe
at line 10.

Bounded-sum pruning is only possible when both players have the same search
depth (E0 = Eop); otherwise it is not guaranteed that v0(h) and vop(h) are bounded
to each other for all h ∈ H. If the bounded-sum property does hold, then this prop-
erty has an interesting consequence because the proof above can easily be extended
to the case in which min and max are both using Minimax search. In that case, the
differences between the values for max and min (vop(h)) are bounded to B, too, for
all h ∈ H, including the root. The values of v0 and vop at the root of the search tree
are already bounded to B. This means that the maximum gain that can be reached
by using OM search is bounded to 2B: one time the maximum distance between the
minimax value for max and vop and one time the maximum distance between vop

and v0.
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OmSearchBounded1p(h, α0, αop, β0, βop)
1 if (h ∈ E) return (V0(h), Vop(h),null)
2 L ← m(h) ; m ← firstMove(L) ; m∗ ← m
3 if (p(h) = max)
4 v∗

0 ← α0 ; v∗
op ← α0 ; β ← β0

5 if (α0 < β0) v∗
op ← α0 − B ; β ← β0 + B

6 while (m �= null)
7 if (h + m ∈ E) vop ← Vop(h + m) ; if (vop ≤ βop) v0 ← V0(h + m)
8 else (v0, vop,mm) ← OmSearchBounded1p(h + m, v∗

0 ,
v∗

op − B, βop + B, β)
9 if (v0 > v∗

0) v∗
0 ← v0 ; m∗ ← m

10 if (vop > v∗
op) v∗

op ← vop

11 if (v∗
op ≥ βop) m ← null else m ← nextMove(L)

12 if (p(h) = min)
13 v∗

op ← β0 ; α ← α0 ; v0 ← 0
14 if (α0 < β0) v∗

op ← β0 + B ; α ← α0 − B
15 while (m �= null)
16 if (h + m ∈ E) vop ← Vop(h + m)
17 else (v0, vop,mm) ←

OmSearchBounded1p(h + m,αop − B,α, β0, v
∗
op)

18 if (vop < v∗
op) v∗

op ← vop ; v∗
0 ← v0 ; m∗ ← m

19 if (v∗
op ≤ αop) m ← null else m ← nextMove(L)

20 if (h + m∗ ∈ E ∧ v∗
op < βop) v∗

0 ← V0(h + m∗)
21 return (v∗

0 , v∗
op,m

∗)

Algorithm 3.9: One-pass bounded-sum pruning OM search.

OmSearchBoundedPb(h, α, β)
1 if (h ∈ E) return (V0(h),null)
2 if (p(h) = max)
3 L ← m(h) ; m ← firstMove(L)
4 m∗ ← m ; v∗

0 ← α
5 while (m �= null)
6 (v0,mm) ← OmSearchBoundedPb(h + m∗, α, β)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗ ← m ; if (v∗

0 > α) α ← v∗
0

8 if (α ≥ β) m ← null ; else m ← nextMove(L)
9 if (p(h) = min)
10 (v∗

op,m
∗) ← AlphaBetaSearch(h, α − B, β + B, Vop(·))

11 if (v∗
op − B > α) α ← v∗

op − B
12 if (v∗

op + B < β) β ← v∗
op + B

13 if (α < β) (v∗
0 ,mm) ← OmSearchBoundedPb(h + m∗, α, β)

14 else v∗
0 ← α

15 return (v∗
0 ,m∗)

Algorithm 3.10: Bounded-sum pruning OM search with α-β probing.
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3.3 Best-case analyses

In this section, the best-case behaviour of the two variants of β-pruning OM search
is compared to α-β with respect to the time complexity. This behaviour is described
for uniform game trees only. A uniform tree is a tree in which all internal nodes
have the same number of children (w) and in which every leaf node is at the same
depth (d). The game trees considered are assumed to contain no terminal positions.

The best-case input for a search algorithm can be defined in different ways. For
α-β-type search algorithms, it is normally defined as that specific ordering of a
given tree among all possible orderings for which the algorithm needs to perform
the minimal number of leaf-node evaluations. For algorithms like β-pruning OM
search, such ordering is more difficult to define. Therefore the best-case input is
defined here more generally as that ordered game tree among all possible ordered
game trees of given size for which the algorithm performs the minimal number of
leaf-node evaluations.

For α-β search, the two definitions coincide because a uniform game tree in which
the nodes are optimally ordered, causes optimal pruning in α-β search. The number
of leaf nodes from the total of wd in a uniform search tree of branching factor w and
depth d that are evaluated reduces to:

Cα−β(d,w) = w�d/2�+w�d/2	−1 (3.1)

if the tree is optimally ordered (see Knuth and Moore, 1975).
Below we will first discuss the best-case behaviour of the one-pass version of

β-pruning OM search, followed by the best-case behaviour of the version with
α-β probes. We do not discuss the best-case analysis for bounded-sum pruning,
since its results depend heavily on the bound B in relation to the detailed rank-
ing of both evaluation functions. There are two limit cases for B: if B = 0 then
bounded-sum pruning is equal to α-β search. If B = +∞ then bounded-sum pruning
is equal to β-pruning OM search and best-case analysis will follow below. Also, the
enhanced versions of OM search and the restricted-speculation version will not be
analysed separately.

3.3.1 Best-case analysis of OMβ1p

In OMβ1p, the effect of β-pruning is only dependent on the ordering of child nodes
with respect to vop(·). In uniform trees, the pruning is maximal if the tree is well
ordered, which means that the child nodes hj of all nodes h are sorted on their value
of vop(hj). For max nodes the child nodes must be ordered in decreasing order and
for min nodes in increasing order.

Theorem 1. Any algorithm that implements β-pruning OM search needs at least
the number of evaluations on a well-ordered uniform tree that OMβ1p needs.

Proof. To prove this theorem, we first determine this minimal number and then show
that one-pass β-pruning OM search uses exactly the same number of evaluations.
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Figure 3.4: Theoretically best-case tree for β-pruning OM search.

Figure 3.4 gives a schematic representation of a well-ordered uniform tree to
which β-pruning OM search is applied. From this figure we will derive a formula in
closed form for the number of evaluations at least needed for β-pruning OM search.

Assume a uniform tree with branching factor w and depth d. There are w2 nodes
at depth 2 to be expanded in such a search tree, because only branches at max nodes
can be pruned and no pruning takes place at the root. The subtrees at these max
nodes are of two different types. The first type of subtrees (type A) are the subtrees
on the left-most branch of every node at depth 1. These subtrees are of the same
type as the original tree and their number is w. The other w(w − 1) subtrees (type
B) only have to be considered for the opponent’s evaluation using α-β search with
window [−∞, β]. In figure 3.4, one of the type-B subtrees is worked out in detail.
In this subtree, β pruning takes place directly under the root, so only one min node
remains at the first level. Directly below this min node, no α pruning can take
place. The subtree at the first max child node of this min node is again of type B.
The subtrees at the other max child nodes also are of type B. It is not possible that
α pruning takes place in these subtrees because the maximal β pruning at all max
nodes prohibits the passing-through of α values.

The minimum number of evaluations COM in the best case for any implementa-
tion of β-pruning OM search can now be given in the following recursive expression:

COM (d,w) = w COM (d − 2, w) + w(w − 1)C ′
OM (d − 2, w)

COM (1, w) = 2w

COM (2, w) = w(w + 1)
(3.2)

In these formulae, COM (d,w) stands for the number of evaluations needed at a
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subtree of type A, and C ′
OM (d,w) for a subtree of type B. In the case that the

type-A subtree has depth 1, 2w evaluations are needed: v0(.) and vop(.) have to be
evaluated for all w leaf min nodes. When it has depth 2, w(w + 1) evaluations are
needed: for all w2 leaf max nodes, vop(.) has to be obtained, but only for the most
left max node at every min child node, v0(.) is needed. The value of C ′

OM (d,w) is
given by the next recursive expression:

C ′
OM (d,w) = w C ′

OM (d − 2, w)
C ′

OM (1, w) = 1
C ′

OM (2, w) = w

(3.3)

In the case that the type-B subtree has depth 1, only 1 evaluation is needed in the
best case, since the value of vop(.) for the first child will be greater than β and v0(.)
does not have to be obtained. If the type-B subtree has depth 2, w evaluations are
needed, one for every grandchild of the first child node. Since all values for vop(.)
will be greater than β, no value of v0(.) has to be obtained. Formula 3.3 can easily
be written in closed form:

C ′
OM (d,w) = w�d/2� (3.4)

The equation for COM can also be written in closed form (which can be found by
applying repeated substitution):

COM (d,w) = k w�d/2	 + (w − 1)
�d/2	−1∑

i=1

wi C ′
OM (d − 2i, w)

(k = 2 if d is odd, k = w + 1 if d is even)

(3.5)

The validity of the closed form can be proven by complete induction on d. For d = 1
and d = 2 equation (3.5) is clearly correct: the summation on the right hand side
is zero in both cases. For d > 2 we first write down equation (3.5) with parameter
d − 2:

COM (d − 2, w)

= k w�(d−2)/2	 + (w − 1)
�(d−2)/2	−1∑

i=1

wi C ′
OM (d − 2 − 2i, w)

= k w�d/2	−1 + (w − 1)
�d/2	−2∑

i=1

wi C ′
OM (d − 2 − 2i, w)

= k w�d/2	−1 + (w − 1)
�d/2	−1∑

i=2

wi−1 C ′
OM (d − 2i, w)

(3.6)

Substituting equation (3.6) into (3.2) results directly in equation (3.5), which proves
the correctness of the closed form. The closed form of equation (3.5) can be reduced
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further by applying equation (3.4) and canceling out the summation:

COM (d,w) = k w�d/2	 + (w − 1)
�d/2	−1∑

i=1

wiw�(d−2i)/2�

= k w�d/2	 + (w − 1)
�d/2	−1∑

i=1

w�d/2�
(3.7)

which can be reduced to:

COM (d,w) = k w�d/2	+(w−1) (�d/2�−1)w�d/2� (3.8)

The expression k w�d/2	 can be rewritten to w�d/2�+1 + w�d/2	, which removes the
k. This can be used to rewrite the equation to:

COM (d,w) = w�d/2	+w�d/2�+(w−1) �d/2�w�d/2� (3.9)

This concludes the first part of the proof. The number of evaluations in the
best case for OMβ1p appears to be equal to COM (d,w). The reasoning is as follows
(figure 3.4 can be used to illustrate this result). The type-A subtrees are of the same
type as the original tree, just like the theoretical case. This means that the overall
formula 3.5 also holds for OMβ1p. However, OMβ1p does not apply α-β search to the
type-B subtrees. Fortunately, in the best case optimal β pruning on all internal max
nodes and on all leaf nodes can take place. So no evaluation of V0 takes place at all
in type-B subtrees and the number of evaluations in these type-B subtrees is given
by equation 3.4. Now the theoretical derivation van be followed. This concludes the
proof.

3.3.2 Best-case analysis of OMβPb

In β-pruning OM search with α-β probes, the number of leaf nodes that are evaluated
for max’s evaluation function depends only on the size of the tree, not on the ordering
of the nodes. For the moment, the α-β probes can be disregarded. At every max
node, all w child nodes are visited and at every min node, exactly 1 child is visited.
This means that there are exactly w�d/2	 leaf nodes visited and evaluated for max.

The number of α-β probes in OM search is also dependent only on the size of
the tree. At every odd ply 2i − 1 (i > 0), exactly wi probes are performed. The
α-β probes at the first odd ply have a β parameter of +∞ and take Cα−β(w, d− 1)
evaluations. All other α-β probes have a smaller β parameter. Figure 3.5 illustrates
the best case for these α-β probes.

The best case (i.e., the most pruning) for an α-β probe with β = v + 1 on a
min node a occurs when the values of nodes a . . . k are as indicated in figure 3.5.
A careful inspection of the figure indicates that in the best case, the β parameter
v + 1 does not have influence on the pruning in the tree. The amount of pruning
is therefore equal to the best case of α-β search with an open window on the same
tree: w�d/2� + w�d/2	 − 1.
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Figure 3.5: An example to illustrate the best case for α-β probes. The [α, β] windows and
the subgame values are given next to the nodes.

As stated above, there are wi probes at every odd ply 2i − 1 that each cost
Cα−β(d − 2i + 1, w) evaluations. Together with the w�d/2	 evaluations for the max
player, β-pruning OM search with α-β probes in the best case costs:

COMβpb(d,w) = w�d/2	 +
�d/2	∑
i=1

wi Cα−β(d − 2i + 1, w)

= w�d/2	 +
�d/2	∑
i=1

wi (w�(d−2i+1)/2� + w�(d−2i+1)/2	 − 1)

= w�d/2	 +
�d/2	∑
i=1

wi w�(d−2i+1)/2� + wi w�(d−2i+1)/2	 − wi

= w�d/2	 + �d/2�(w�(d+1)/2� + w�(d+1)/2	) − w�d/2	+1 − w

w − 1

(3.10)

3.3.3 A comparison

The next formulae summarize the best-case analyses for β-pruning OM search:

OMβ1p: w�d/2	 + w�d/2� + (w − 1) �d/2�w�d/2�

OMβPb: w�d/2	 + �d/2�(w�(d+1)/2� + w�(d+1)/2	) − w�d/2	+1 − w

w − 1

Despite the closed forms of the functions, their relation is not immediately clear.
In figure 3.6 these functions are plotted next to each other. All graphs show the
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value of the equation above divided by the best case of α-β search for the same depth
and branching factor. Because the behaviour of the functions differs considerably for
odd and even search depths, we present separate graphs for both cases (see x-axis).
The two graphs on the top show the best-case complexities of OMβ1p and OMβPb for
even search depths, the two graphs at the bottom show the best-case complexities
of OMβ1p and OMβPb for odd depths.

In all cases the complexity of OMβ1p is smaller than the complexity of OMβPb.
Furthermore, the complexity approximates a linear function of the (odd or even)
search depth for both OMβ1p and OMβPb. It is also approximately linear in the
branching factor for both OMβ1p and OMβPb, but only in the case of even search
depths.
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Figure 3.6: Best-case results of OMβ1p and OMβPb compared.
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3.4 Applicability of Search Enhancements in OM
Search

The current successes of α-β search are largely owed to a range of search enhance-
ments that have been added to the basic search algorithm (Hsu, 2002). In this
section we will discuss the applicability of the most important search enhancements
to OM search: move ordering (3.4.1), transposition tables (3.4.2), iterative deepening
(3.4.3), search extensions and forward pruning (3.4.4), endgame databases (3.4.5),
and aspiration search (3.4.6). We will not provide any quantifications because the
application and effectiveness of a search enhancement is often dependent on a spe-
cific game and also on the presence or absence of other search enhancements. In
chapter 5 some of the enhancements will be studied in more detail.

3.4.1 Move ordering

As discussed in section 3.3, the effect of pruning in α-β search depends strongly on
the order in which the positions are inspected. Much effort must therefore be put on
the ordering of moves during the search. In practice, move ordering is often based on
game-specific heuristics, such as the rule that capture moves should be investigated
before non-capture moves. To achieve the best pruning, the moves should be ordered
according to the evaluation function.

For the pruning versions of OM search, the ordering of moves is also important.
The best move ordering, however, diverges between the different implementations of
OM search. We distinguish three cases:

(1) In β-pruning OM search with α-β probing, the need for ordering of moves is
evident inside the probes, but this ordering must be based on the opponent’s evalu-
ation function. Moreover, the ordering at max nodes outside the probes is important,
because the β parameters for the probes are passed from sibling to sibling in the
max nodes. This ordering should therefore be based on the opponent’s evaluation
function too. Also in one-pass β-pruning OM search, pruning is performed on the
opponent’s values, so the ordering should again be based on these values.

(2) The bounded-sum pruning algorithms are somewhat ambiguous with respect
to move ordering. If α-β probes are used, the ordering inside those probes must
be imposed by the opponent’s evaluation function. Elsewhere, pruning takes place
intermingled for both players, so an ordering must be found that is profitable for
both evaluation functions at the same time. This task will be easier if the bound B
is small. If B is large, pruning on max’s evaluation function will seldom take place
so ordering can concentrate on the opponent’s evaluation function.

(3) In case of restricted speculation or different search depths for max and min,
the move ordering on positions must depend on which evaluation function is used in
the α-β probe: V0(·) or Vop(·).

The killer-move heuristic (Akl and Newborn, 1977) and the history heuristic
(Schaeffer 1983; 1989) are game-dependent move-ordering heuristics. Both heuristics
are based on the observation that a good move in one position might also be a good
move in another position. The killer-move heuristic stores one move per search-tree
layer that was the best or caused a cut-off. The history heuristic stores the count
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of successes for every possible move (or move class). Both heuristics are used to
reorder the moves after move generation. The applicability of both heuristics inside
α-β probes is evident, but separate tables are needed for max and min.

3.4.2 Transposition tables

A transposition table (Greenblatt, Eastlake, and Crocker, 1967; Slate and Atkin,
1977) is a hash table in which information is stored on positions that are encountered
during search. The table is indexed by a hash function that is based on the actual
position, but not on history information. When a position is re-encountered during
search, for instance because of a transposition in the game, the information in the
transposition table can be used to prune the search tree. Transpositions are histories
that lead to the same position in the game. It depends on the rules of a game whether
transpositions are treated as completely identical. But even if transpositions are
not totally identical, the information in the transposition table can be of use. For
instance, the move that is stored in the transposition table because it was the best
move, can be put in front of the move list when a transposition is encountered so
that it is inspected first. It is also possible to adjust α and β values on the basis of
the information stored in the table.

Since the number of positions that is encountered during a search is often much
larger than any transposition table can hold, a replacement mechanism (Breuker,
Uiterwijk, and Van den Herik, 1994) is needed to deal with decisions whether in-
formation of old positions must be overwritten by newly encountered positions. The
kind of information that is stored in the transposition table depends on the search
algorithm that is used, the set of search enhancements, and on game-specific aspects.
For more information on transposition tables and replacement schemes we refer to
Breuker (1998). Sometimes multiple transposition tables are used for different as-
pects of the positions. Chess 4.5, for instance, uses a separate transposition table
for pawn structures (Slate and Atkin, 1977).

In OM search, transposition tables can help pruning the search tree in multiple
ways. The most straightforward way is to incorporate transposition tables in the
α-β probes, using the standard method as described by Breuker (1998). Since these
probes are performed many times and some of them are partly repeated a number of
times, it is probable that positions are reencountered during search and that informa-
tion of those positions is found to be stored in the transposition table. Transposition
tables therefore are likely to decrease the effort inside the α-β probes significantly.

In β-pruning OM search with probes, next to a transposition table used during
the α-β probes, a separate transposition table can be used to store v0(h) values.
This second table can only be used to handle real transpositions (i.e., positions that
are encountered twice or more during search) since move ordering must be imposed
by the opponent’s evaluation function. Furthermore, no bound information on v0(h)
is available, so the usual flags indicating an upper bound or lower bound are not
needed in this transposition table.

An extended transposition table can be used in the one-pass versions of both β-
pruning and bounded-sum pruning OM search. This transposition table could hold
information on v0(h) and vop(h) and could include flags to indicate whether these
values are lower bounds, upper bounds or exact values.
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3.4.3 Iterative deepening

Iterative deepening is a search enhancement that allows a better move ordering with
the aid of a transposition table. It also allows any-time behaviour which means
that the algorithm can be terminated at any time and always gives a reasonable
answer; the longer the algorithm runs, the better the answer becomes. It was first
applied in the program Chess 4.5 (Slate and Atkin, 1977). The basic idea behind
iterative deepening is that not a single (reduced) game G is solved, but a series
G1, G2, G3, . . . of reduced games of G such that H1 � H2 � H3 � . . . � H. The
relation Hi � Hj means that Hi is less deep than Hj : for every history hj ∈ Hj there
is a history hi ∈ Hi and a sequence of moves mm such that hj = hi + mm. During
the searches, information on encountered positions is stored in a single transposition
table, including the best move to play. In the move-ordering phase, a position is first
looked up in the transposition table. If the position is found, the suggested move is
put in front of the list of moves. The rationale of this is that a search with a smaller
reduced game might produce good predictions of the best move to play during the
next reduced game. Because the search can stop safely after every solved game Gi,
iterative deepening makes it possible to be used in time-critical settings that request
any-time behaviour.

It is clear that OM search is well-suited for iterative deepening. No major ad-
aptations of the algorithms are needed to implement this enhancement.

3.4.4 Search extensions and forward pruning

The reduction of a game tree during heuristic search does not have to lead to a uni-
form game tree in which every history (except for histories that lead to the end of the
game) has the same length. Some positions might be searched more deeply than oth-
ers because they seem unstable (quiescence search: Shannon (1950)) or interesting
(search extensions: Anantharaman, Campbell, and Hsu (1988)). In other positions,
certain moves are not considered because there are too many moves (selective search:
Shannon (1950), Wilkins (1982), Kaindl, Horacek, and Wagner (1986)), some of the
moves are clearly too bad to be played (forward pruning : Shannon (1950), Smith
and Nau (1994)), or a shallow search starting with a pass indicates that expansion
is not needed (null move: Beal (1989)). The application of these enhancements
requires game-specific knowledge.

It is possible to apply these techniques in OM search, but care should be taken
that the opponent’s strategy still can be predicted as good as possible. It may hap-
pen that the opponent is actually using different search extensions or a different
forward-pruning technique than max is assuming. Algorithm 3.5 covers the differ-
ences between max and min and is in principle suitable for the search enhancements
discussed above.

3.4.5 Endgame databases

Endgame databases (Ströhlein, 1970; Van den Herik and Herschberg, 1985) store
pre-computed game-theoretic values of positions near the end of a game. The tables
can store, for instance, in how many moves a game can be won (distance to win) or
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in how many moves a piece can be captured or promoted (distance to conversion).
Since most endgame databases contain information about board positions, not about
histories, it is not trivial to convert the endgame-database value of a position into
the game-theoretic value of a history. Nevertheless, endgame databases can be seen
as part of the evaluation function. The availability of endgame databases for the
opponent is therefore part of the opponent modelling in OM search.

3.4.6 Aspiration search

Aspiration search (Brudno, 1963; Pearl, 1980) is an application of α-β search in
which the bounds α and β at the root of the search tree are not set to the ‘open
window’, [−∞,+∞], but to a narrower window. The smallest window applied is
the ‘null window’ (Baudet, 1978): [α, α + 1]. When a call to α-β search at the root
level returns with a value within the interval [α, β) then this is the true value of the
root. Otherwise a re-search is needed with another window. Search with a small
window is fast since many branches of the game tree will be pruned. Two popular
applications of aspiration search (with null windows) that also involve transposition
tables and iterative deepening are: PV search (Marsland, 1983) and MTD(f) search
(Plaat, 1996). PV search (principal variation search) assumes that the first move at
every position is the best move to play. After the evaluation of the first move, the
other moves are searched with a null window at the current α. If the return value is
lower than or equal to α, the move is disregarded; else the move is re-searched with
a larger window. MTD(f) search (Memory-enhanced Test Driver) applies a series of
null-window searches at the root of the search tree in order to find the true value,
using binary search. In combination with iterative deepening and transposition
tables, MTD(f) search is equivalent to a best-first search method.

The β-pruning variants of OM search only have a β parameter, so there is no
role for null windows. The bounded-sum versions, however, could be enhanced with
some form of aspiration search at the root level, but since the value for max and min

are expected to be different, two separate windows have to be used. Furthermore,
the effect of the aspiration search will depend on the bound B because this bound
‘opens up’ the window which causes less pruning.

When α-β probes are used, it is theoretically possible to apply MTD(f) search
to the probes, but the binary search has to be performed at every probe separately.
It is likely that the extra overhead will outweigh the advantages of MTD(f) search.
The application of PV search is appropriate inside the α-β probes. The negative
effect of multiple execution of parts of the probes is diminished when PV search is
used because the information in the transposition tables of a previous probe will
lead to a good move ordering and less re-searches. When PV search is applied in
the α-β probes, it is possible to add, for instance, an enhancement called multi-cut
pruning (Björnsson, 2002) that allows further forward pruning. This enhancement
decides on the basis of a series of shallow pre-searches to prune a node if more than
a given number of moves in that node are likely to lead to a violation of the current
α or β boundary.
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3.5 Chapter Conclusions

In this chapter we introduced two different approaches to OM search: a one-pass
approach and an approach that involves α-β probes. Below we summarize the con-
clusions arrived in this chapter. We showed that like in α-β search, pruning is also
possible in OM search. However, the amount of pruning is limited because in general
pruning is only possible at max nodes (β pruning). If the difference between eval-
uation functions is bounded, pruning is possible at min nodes, too (bounded-sum
pruning). The best-case study of β-pruning OM search showed that the one-pass
approach is optimal in the best case. Both approaches (one-pass and α-β probing)
show a (nearly) linear relation with α-β search with respect to the number of ne-
cessary evaluations. Finally, we studied a range of well-known search enhancements
of which most appeared to be applicable to OM search, especially within the frame-
work of α-β probes. The enhancements are predominantly guided by the opponent’s
evaluation function.



Chapter 4

Opponent-Model Search:
Evaluation and Admissibility

T he previous chapter dealt with the efficient implementation of
OM search. In this chapter we concentrate on the effective-
ness of the search method. Obviously, the evaluation functions
play a major role. At first glance, OM search should only be
applied if the own evaluation function is better than the op-
ponent’s one. Since the notion ‘better’ is unclear, we analyse a
variety of relations between evaluation functions more closely.
A further analysis of OM search reveals a rather unexpected
condition on the pair of evaluation functions that is important
for the effectiveness of OM search: admissibility.

Chapter contents: This chapter concentrates on the evaluation functions that are used in

OM search. Section 4.1 is a study of possible relations between evaluation functions. Section

4.2 describes to a restriction on pairs of evaluation functions, called admissibility, that can

increase the effect of OM search. Finally, section 4.3 provides the chapter conclusions.1

4.1 Evaluation Functions in OM search

Evaluation functions play a central role in OM search since the opponent model is
primarily based on an evaluation function. There is an intuitive feeling that one
should not use OM search if the opponent’s evaluation function is better than the
own one, since in such a case it seems better to adopt the opponent’s evaluation
function and use Minimax search. However, the term ’better’ is not easy to define.

1The contents of this chapter have been published in Donkers, H.H.L.M., Uiterwijk, J.W.H.M.,
Herik, H.J. van den (2003). Admissibility in Opponent-Model Search. Information Sciences, Vol.
154, Nos. 3–4, pp. 119–140.
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In this section we will look in detail to evaluation functions and, in particular, how
evaluation functions can be compared to each other.

4.1.1 Analysis of evaluation functions

In chapter 1 we introduced the concept of a static heuristic evaluation function.
Static heuristic evaluation functions (or evaluation function for short) in game-tree
search algorithms are used to replace the game-theoretic value of game positions
that have been reached during search but are not searched any further (they are
leaf nodes in the reduced game). For an introduction to heuristics in general and to
static evaluation functions in particular, we refer to Pearl (1984).

An evaluation function returns a scalar value that measures the strength of that
position for max. If a position happens to be an end position of the game (or the
evaluation function can deduce the true value), then the evaluation function returns
some encoding of the game-theoretic value (usually win, loss, or draw). Otherwise,
the evaluation function returns a heuristic value. A common encoding scheme for
evaluation functions is as follows: heuristic values lie within some range [−H,H]; a
proper draw is rewarded by 0; immediate win for max is rewarded by some large
value W > H; and immediate loss for max by −W . The depth at which a win or
loss is found (relative to the root of the search tree) is usually incorporated in the
value: W − d for a win at depth d and d − W for a loss at depth d.

The heuristic values can be interpreted in three different ways. The first inter-
pretation is to view the heuristic value as a predictor for the true game-theoretic
value: the higher the heuristic value for a position, the higher the chance that the
position is a game-theoretic win. This interpretation is used by Pearl (1984) and
others in their theoretical study of Minimax search and α-β search.

The second interpretation is to view the heuristic value as some encoding of the
probability to win the game at that position. This interpretation is used by authors
that use machine-learning techniques like temporal-difference learning to achieve
evaluation functions (cf. Baxter, Trigdell, and Weaver, 1998). The probability to
win the game from a given position, however, depends on the specific opponent and
on a number of game settings like the start position, the search time, and the search
technique used.

The third interpretation is to view the heuristic value as a measure of the prof-
itability of the position for max. The profitability of a position is only partly based
on the prediction of the game-theoretic value. It also incorporates the possibility of
errors on both sides, independent of a specific opponent. In addition, it includes the
own strengths and weaknesses of max. The profitability of a position is independent
of the actual opponent and of the actual game setting. For example, a position that
is a game-theoretic win, but from which the winning solution is difficult to reach
because of many threats and many possible errors, is not profitable. In contrast, a
position that is a game-theoretically loss could offer so many opportunities to exploit
an opponent’s error, that the position may become profitable. This third interpret-
ation is, in our view, used in hand-made, knowledge-based evaluation functions,
although during tournaments, evaluation functions are often fine-tuned to specific
circumstances or to a specific opponent. In the sequel, we will use the profitability
interpretation of evaluation functions, unless stated otherwise.
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It is a complication that the profitability of a position is just as difficult to de-
termine as the game-theoretic value itself. An evaluation function can only estimate
the profitability of a position. Furthermore, the profitability of a position is based
on a whole set of scalar and symbolic properties of a position. All these properties
have to be projected together onto a single scalar value.

4.1.2 Comparing evaluation functions

When building an evaluation function for a specific game, there are many decisions
to take. Consequently, there are many different evaluation functions possible for a
game. In order to compare the evaluation functions and to select the ‘best’ one, a
formal analysis of evaluation functions and their mutual relations is needed. Multiple
orderings of evaluation appear to be possible: below we will define eight different
orderings.

The first way in which evaluations can be ordered is on the degree in which they
predict the game-theoretic values. Assume that the true payoffs in a game G are
restricted to: {win, loss, draw} and that the ranges of the heuristic evaluation func-
tions are restricted to the interval [−W,W ] ⊂ Z.2 Let V : E′ → {win, loss, draw}
denote the true game-theoretic value of the end positions in the reduced game G′

and let V denote the set of all evaluation functions V : E′ → [−W,W ].

Definition 1. An evaluation function V is called a perfect predictor if a function
t : [−W,W ] → {win, loss, draw} exists such that for all h ∈ E′ holds that t(V (h)) =
V(h).

A perfect predictor makes any search superfluous, provided that t is known.

Definition 2. An evaluation function V is called a partial predictor if function t
and a subset Q ⊂ E′ exist such that for all h ∈ Q holds that t(V (h)) = V(h). Any
such subset Q is called a perfectly predicted set for V .

The definition of a perfect predictor is equivalent to the definition of perfect play
by Christensen and Korf (1986). In their definition, an evaluation function performs
perfect play if it exhibits outcome determination and is move invariant. Outcome
determination means that the evaluation function returns game-theoretic values for
terminal positions and move invariance means that making optimal moves does not
change the evaluation value.

The first ordering of evaluation functions is based on the size of the set on which
an evaluation function is a perfect predictor.

Ordering 1. Evaluation function V1 ∈ V is called a larger predictor than function
V2 ∈ V if V1 has a larger perfectly predicted set than V2.

It is possible to define an ordering of evaluation function on the basis of the
following domination relation, but since this is only a partial ordering3, it will not
be of major use.

2We disregard real-valued evaluation functions since E′ is a finite set. Any evaluation function
f : E′ → R can be mapped isomorphically to a function V : E′ → Z such that f(h1) ≤ f(h2) ⇔
V (h1) ≤ V (h2).

3This means that not every pair of evaluation functions is comparable in this respect.



64 Opponent-Model Search: Evaluation and Admissibility

Ordering 2. Evaluation function V1 ∈ V is said to be a dominating predictor
with respect to V2 ∈ V if the perfectly predicted set of V2 is a proper subset of the
perfectly predicted set of V1.

In the case of most games that are of interest, the perfectly predicted set of
positions is small and will mainly occur at the end of the game. To be able to
classify and order evaluation functions more usefully, the mapping function t must
be relaxed. One way to relax t is to add some probability and statistics: take a
sample Ei ⊆ E′ of end positions and determine for every position both the evaluation
value and the game-theoretic value. The sample should be representative for real
game positions. Determine statistically the influence of the game-theoretic value
on the evaluation value. If the game-theoretic value has no significant influence on
the evaluation value, then presumably, the evaluation function is also not a good
predictor of the game-theoretic value. The exact statistical procedure depends on the
shape of the samples and on the number of game-theoretic values. For instance, one
could just determine the (statistical) P-value of the test on difference between win
positions and loss positions and use this P-value to order the evaluation functions.
This leads to the third ordering of evaluation functions.

Ordering 3. Evaluation function V1 ∈ V is called a better statistical predictor than
function V2 ∈ V if V1 provides a more significant prediction of the game-theoretic
value than V2.

The three orderings above concentrated on the predictability of the evaluation
function for the game-theoretic value. However, as already noted, a prediction of
the game-theoretic value might be of less use than a prediction of the profitability,
unless the prediction is perfect.

The fourth way in which evaluation functions can be ordered is based on their
operational behaviour.

Ordering 4. Evaluation function V1 is called operationally better than evaluation
function V2 if a player A that uses V1, receives a higher score in a given tournament
than a player B that uses V2 instead of V1, but is equal to A in all other aspects.

The set-up of the tournament influences the exact meaning of this operational
relation between evaluation functions. Important factors are the set of used opening
positions, the search depth, and the size of the tournament: are other players also
included or are these two players only playing against each other? The operational
relation between evaluation functions is an overall measurement of the estimation
that the evaluation functions give for the profitability of the positions. The oper-
ational relation is one of the orderings used in the field of automatically learning
evaluation functions (for instance, in genetic algorithms and temporal-difference
learning). Another ordering often used in evaluation-function learning, is related to
move invariance as explained by Christensen and Korf (1986). In this ordering, an
evaluation function is preferred if it shows less difference between the static eval-
uation function of a position and the minimax value of a game tree at the same
position. Samuel (1959; 1967) used this ordering implicitly in his pioneering work
on the game of checkers.
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The relation between evaluation functions that is of most use in the discussion
on OM search below is based on their estimation of the profitability. This relation
is quite opposite to the operational one since profitability is not measurable. For
a start, we have to assume that an evaluation function V : E′ → Z exists that
measures the real profitability of all end positions h ∈ E′. The higher the value of
V(h), the higher the profitability is. First we give a general definition.

Definition 3. Two evaluation functions V1 and V2 are equivalent on E if they order
the positions equally: ∀ha, hb ∈ E′ : V1(ha) ≤ V1(hb) ⇐⇒ V2(ha) ≤ V2(hb).

Equivalent evaluation functions are indistinguishable for search algorithms. This
leads us to the definition of perfect evaluation functions.

Definition 4. A perfect evaluation function V is a function that is equivalent to V.

Just like the perfectly predicting evaluation function, a perfect evaluation func-
tion in this sense removes the need for any search. Unfortunately, one never knows
when an evaluation function is perfect. A good evaluation function is a good estim-
ation of V.

The fifth ordering of evaluation functions is analogous to the first ordering: it
compares the evaluation functions on the size of the set for which they are equivalent
with V.

Ordering 5. Evaluation function V1 is called a larger profitability estimator than
evaluation function V2 if it equivalent with V on a larger subset of E′ than V2.

Also in the case of profitability estimation, a partial ordering of evaluation func-
tions can be defined on the basis of a domination relation.

Ordering 6. Evaluation function V1 is a dominating profitability estimator with
respect to V2 if it is at least equivalent with V for all positions for which V2 is
equivalent with V, but also is equivalent with V for other positions.

Analogously to our third ordering, the seventh ordering uses the degree of cor-
relation.

Ordering 7. Evaluation function V1 is called a statistically better profitability es-
timator than evaluation function V2 simply if V1 and V are higher correlated than
V2 and V.

Finally, evaluation functions can be ordered on their rank-difference sum4 with
V. This sum is calculated by first rank-transforming the evaluation values of all
positions for V and V and then computing

∑
h |rank(h, V ) − rank(h, V)|. This

produces the eighth ordering of evaluation functions.

Ordering 8. Evaluation function V1 is called a better ranked profitability estimator
than evaluation function V2 if the rank-difference sum of V1 with V is smaller than
the rank-difference sum of V2 with V.

The advantage of this method is that equivalent evaluation functions obtain the
same rank-difference sum. A disadvantage is, of course, that this sum cannot be

4This is similar to Spearman’s Rank Correlation Coefficient (Spearman, 1904), which also can
be used here.
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computed in practice. The ranking approach to evaluation functions also gives rise
to the following definitions of overestimation and underestimation (which we both
will call estimation error).

Definition 5. An evaluation function V overestimates a position h if the rank of
V (h) is higher than the rank of V(h).

Definition 6. An evaluation function V underestimates a position h if the rank of
V (h) is lower than the rank of V(h).

The analysis of evaluation functions and their ordering makes it clear that a
simple use of a relation ‘better’ with respect to evaluation functions is not possible.
Which one of the following orderings should be used?

(1) V1 is a larger predictor than V2

(2) V1 is a dominating predictor with respect to V2

(3) V1 is a better statistical predictor than V2

(4) V1 is operationally better than V2

(5) V1 is a larger profitability estimator than V2

(6) V1 is a dominating profitability estimator with respect to V2

(7) V1 is a statistically better profitability estimator than V2

(8) V1 is a better ranked profitability estimator than V2

The orderings will have strong correlations in the sense that if V1 is better than
V2 in one of the orderings, it will probably also be better in another one of the
orderings (except for the two domination orderings 2 and 6). However, the orderings
are not equivalent. The selection of one of the orderings should be made by a three-
step procedure: (1) the manner in which the evaluation functions are constructed,
(2) the purpose of the comparison of evaluation functions, and (3) the practical
circumstances.

4.2 Estimation errors in OM search

In this section5 we study the effect of estimation errors (underestimations and over-
estimations) in both evaluation functions V0 and Vop on the outcome of OM search.
This will lead to a condition on the pair of evaluation functions, called admissibility,
that is related to the rank-based ordering (8) in the previous section.

4.2.1 An alternative view on OM search

In OM search, underestimations and overestimations can have a large influence on
the outcome of the search. In order to illustrate this, we use an alternative view on
OM search. Let G be the game tree under consideration by OM search. At every
min node, min determines which branch is selected. Let Gmin be the subtree of G in

5This section has been published in Donkers, H.H.L.M., Uiterwijk, J.W.H.M., and Herik, H.J.
van den (2003). Admissibility in Opponent-Model Search. Information Sciences, Vol. 154, Nos.
3–4, pp. 95–202.
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which all branches at min nodes are removed except for the branches selected by min

(i.e., the solution tree for min), and let Emin be the set of positions corresponding
with the leaves of Gmin. The remaining task of max is to find the position h∗ ∈ Emin

that has the largest value of V0.
Obviously, evaluation function Vop determines the set Emin, and V0 determines

h∗. Assume that V0 and Vop start as perfect evaluation functions (V0 = Vop = V).
Assume further that we introduce estimation errors in V0 and/or Vop in the sense
of the definitions 5 and 6 in section 4.1.2. These are modifications in the evaluation
functions that change the rank of the positions. We define estimation errors in both
V0 and Vop from the perspective of max. So, when the rank of Vop(h) is lower than
the rank of V(h), then this is called an underestimation although Vop is judging the
position too beneficial for min. Likewise, when the rank of Vop(h) is higher than
the rank of V(h), then this is called an overestimation although Vop is judging the
position too harmful for min.

Estimation errors in V0 and Vop only have effect on the outcome of OM search if
they influence Emin or h∗. There are four types of estimation errors that can lead
to such an effect. They are:

Type-I error : V0 overestimates a position in Emin

Type-II error : V0 underestimates a position in Emin

Type-III error : Vop underestimates a position that thus enters Emin

Type-IV error : Vop overestimates a position in Emin

Type-I error

A type-I error is characterized by the fact that V0 overestimates a position in Emin.
It is the most serious error of OM search. V0 can overestimate any of the positions

Figure 4.1: Example of a type-I error. Figure 4.2: Example of a type-I error van-
ishing.
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in Emin and subsequently select it as a maximum. A type-I error vanishes if Vop,
too, overestimates the same position (already overestimated by V0) and does so by
a sufficiently large margin. The overestimation of the position by Vop causes it to
be removed from Emin.

Figure 4.1 gives an example of a type-I error. max is in error, but believes min

is in error. In the figure, the numbers inside the nodes give the true values (the V

values) of the profitability of the nodes. Next to the nodes the values of V0 and Vop

(or v0 and vop for the internal nodes) are given. Two additional values are presented
at an internal node: mmx is the minimax value that max would obtain if V0 was
used with Minimax search, and obt gives the truly obtained profitability for max,
e.g., the true value of the chosen variation. In the example a type-I error is generated
by max’s overestimation of the right-most leaf. This causes that max would expect
to obtain a value of 9 but in reality, max only obtains 2, which is 4 points fewer
than the true profitability of the root.

The tree in figure 4.2 shows how this error might vanish. If min sufficiently
overestimates the same position that max overestimates, the position will not be
selected by min anymore. The difference between believed and obtained value dis-
appears (both values are now 8). Type-I errors are severe since the overestimation
acts as an attractor : the larger the error in V0, the larger the probability that it
changes the value of v0 at the root of the tree.

Type-II error

A type-II error is characterized by the fact that V0 underestimates a position in
Emin. It is a less serious error for max than a type-I error because it only results
in another move if the best position h∗ is underestimated (figure 4.3). Furthermore,
if h∗ is strongly underestimated, the second-best position will take its place and

Figure 4.3: Example of a type-II error. Figure 4.4: Example of a type-II error van-
ishing.
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the overall harm is limited. Type-II errors vanish when Vop overestimates the same
positions, causing these positions to disappear from Emin. See figure 4.4, where min

evaluates the left most leaf at 8 instead of at 6.

Type-III error

A type-III error is characterized by the fact that Vop underestimates a position that
thus enters Emin. It is the major error for min. By underestimation, any position
could enter Emin, even positions that are unprofitable for min (see figure 4.5). max

can profit the most from this error. The error vanishes if V0 underestimates these
positions too (figure 4.6).

Figure 4.5: Example of a type-III error. Figure 4.6: Example of a type-III error
vanishing.

Type-IV error

Finally, a type-IV error is characterized by the fact that Vop overestimates a position
in Emin. It is less serious for min than a type-III error. It may cause a position
to disappear from Emin (see figure 4.7). min is not able anymore to profit from
opportunities in this position, but a second-best position will take its place. This
type cannot vanish by a change in V0.

The effect of errors

Errors due to overestimation and underestimation are not unique to OM search, but
the effect of these errors in Minimax is bounded by the value of siblings, just like
the errors of type II and IV above. In Minimax search, a single underestimation
or overestimation will, in general, not do much harm, whatever the size of the
error (see, for instance, Pearl (1984)). The example in figure 4.1 illustrates this
observation. The overestimation of the right-most leaf with any amount larger than
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Figure 4.7: Example of a type-IV error.

8 causes Minimax to select the sibling of this node. Once this sibling is selected,
the extent of the overestimation does not matter anymore. However, this Minimax-
search behaviour is in clear contrast with the OM-search behaviour for errors of
type I. There, the extent matters seriously. The value v0 of the root depends on
this overestimated value. If the example tree is a subtree of a larger search tree, the
root value v0 will be propagated upwards within the larger search tree. The larger
the overestimation, the larger the damage will be in the search tree. A single large
type-I error can thus cause major damage to the position of max. (In Minimax
search, the larger the overestimation, the more likely it is that it will not be selected
at one of the parent min nodes. Therefore it will not easily propagate upwards in
the tree.) Fortunately, there is also another side of this coin: a single large type-III
error can lead max to a considerable win.

4.2.2 Admissibility

For OM search to be at least as successful as Minimax, type-I errors are undesirable.
In fact, the relation between V0 and Vop must be such that type-I errors do not (or
are rather unlikely to) occur. Furthermore, type-III and type-IV errors should occur
as often as possible in order to let OM search profit from them. This leads to the
following admissible-pair conditions on the evaluation functions V0 and Vop.

Definition 7. A pair of evaluation functions (V0, Vop) is admissible for OM search
if (1) V0 is a better profitability estimator than Vop, and (2) V0 never overestimates
a position that Vop does not overestimate likewise.

The condition in definition 7 seems disputable, because it aims to avoid only
type-I errors. However, these errors are the most severe ones. Furthermore, the
condition is not sufficient to prevent type-I errors completely, but under the current
conditions they can occur only when the quality of V0 is low. In this case the
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prevention of type-I errors might fail because it can happen that all children of one
min node are seriously overestimated, and one of them enters Emin. However, in
such case, Minimax search would yield bad results too.

The notion of admissibility in OM search is analogous to the notion of admiss-
ibility in the heuristic single-agent search algorithm A∗ (cf. Pearl, 1984). In order
for A∗ to lead to an optimal solution, the heuristic function h() must be admiss-
ible, which means that h() should never overestimate the real distance (h∗()) to the
goal. This condition on h() is quite similar to the conditions stated above. Pearl
(1984) provides a suggestion on how to discover an admissible function h(): create a
simplified model of the problem domain by either relaxing or over-constraining the
original model of the problem domain. Then use the distance function of the simpli-
fied model as an estimator of the true distance. The construction of the simplified
model must be such that it can be proven that h() is admissible.

A similar approach is also possible in relation to OM search. When an evaluation
function V0 is based on some analytical model of profitability, an opponent’s eval-
uation function Vop can be constructed by a careful manipulation of this analytical
model. Admissibility can be reached when in the opponent model some parts of the
original model are disregarded in such a way that it leads to additional overestima-
tions, but no existing overestimations are removed. An example would be to remove
the capability from the evaluation function to recognize some kind of threat.

4.2.3 Admissibility and bounded-sum pruning OM search

When the pair of evaluation functions V0 and Vop obey the bounded-sum property
(i.e., ∀h ∈ H : |V0(h) − Vop(h)| ≤ B), and the bound B is small, the danger of
type-I errors is likely to be of minor importance, since a small difference in the value
of the evaluation functions will mostly coincide with a small difference in the rank
of positions. Consequently, the error will have a lower probability to propagate to
the root of a larger search tree. However, the advantages of type-III errors for max

are also limited for the same reason. So, for pairs of evaluation functions with a
bounded sum, the absence of admissibility is not very dangerous when OM search is
used, but the extent to which max can profit from min’s errors is probably limited
too.

In order to increase pruning it is possible to transform a pair of evaluation func-
tions (without changing the order of moves) so that their sum bound B is diminished.
However, such an operation would not decrease the effect of estimation errors, since
the transformation does not influence the rank of the moves and therefore does not
change the estimation errors themselves.

4.3 Chapter Conclusions

In this chapter we concentrated on the role of evaluation functions in OM search.
We started with a study of different manners in which evaluation functions can be
compared. In the process we developed the notion of profitability. Although the
profitability of a position is not explicitly measurable, this notion plays a central
role in the theoretical discussion of estimation errors in OM search. We defined four
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types of errors in OM search and concluded that type-I errors are the most dangerous
for max and that type-III errors are the most advantageous for max. The analysis of
these errors leads to the definition of admissibility as a relation between evaluation
functions that can prevent type-I errors.

The last two chapters gave only a theoretical analysis of OM search. The next
chapter will be dedicated to the empirical study. The experiments must show what
the efficiency of OM search under real-world conditions is and whether usage of an
opponent model by OM search really leads to a better performance.



Chapter 5

Experiments in OM Search

T he proof of the pudding is in the eating. After the theoretical
analysis of OM search in chapters 3 and 4, we will test the per-
formance of the search method in some actual games in this
chapter. We start with experiments on random games trees
to gain insight into the average case for the computational
efficiency. Experiments in the game of lines of action show
what can happen if admissibility is not respected. Experi-
ments in a chess endgame reveal how OM search may perform
when admissibility is guaranteed. Finally, we use experiments
in the game of bao to investigate under which circumstances
OM search becomes successful.

Chapter contents: This chapter describes four series of experiments with OM search.

Section 5.2 is dedicated to random game trees, section 5.3 to experiments in lines of action,

section 5.4 to experiments in a chess endgame, KQKR, and section 5.5 to experiments in

the game of bao. The chapter ends with conclusions in section 5.6.1

5.1 Four Different Domains

This chapter is an empirical follow-up to the first four theoretical chapters. We per-
formed four series of experiments, in four different domains (random game trees, lines
of action, chess, and bao), each concentrating on a different aspect of OM search.
Below we provide an overview of their relations.

1Parts of this chapter have been published in Donkers, H.H.L.M., Uiterwijk, J.W.H.M., Herik,
H.J. van den (2001), Probabilistic Opponent-Model Search, Information Sciences, Vol. 135, Nos.
3–4, pp. 123–149, in Donkers, H.H.L.M., Uiterwijk, J.W.H.M., Herik, H.J. van den (2003), Ad-
missibility in Opponent-Model Search, Information Sciences, Vol. 154, Nos. 3–4, pp. 119–140, and
in Donkers, H.H.L.M., Herik, H.J. van den, and Uiterwijk, J.W.H.M., (2003), Opponent-Model
Search in Bao, Advances in Computer Games 10 (eds. H.J. van den Herik, H. Iida, and E. Heinz),
Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 307–323.
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In chapter 3 we introduced two versions of β-pruning OM search. We analysed
the computational complexity of these algorithms for the best-case game trees. In
section 5.2 we will analyse the computational complexity of β-pruning OM search
on random game trees in order to gain insight into its average-case complexity.

The theoretical analysis in chapter 4 suggested that the notion of admissible
pairs of evaluation functions is important in OM search. In section 5.3, experiments
in the domain of lines of action are described that indicate what can happen when
OM search is applied without taking into account the conditions of admissibility,
even if perfect knowledge of the opponent’s strategy is available. The results of
these experiments have led us to the current definition of admissibility. The chess
experiments in section 5.4 were conducted in a setting in which admissibility was
provided by an endgame database. The results for OM search are not convincing,
which means that there must be other aspects than admissibility alone that influence
the effectiveness of OM search. A thorough investigation is provided.

Finally, the bao experiments in section 5.5 were used to study the circumstances
in which OM search can become successful, that is, circumstances in which a player
that uses OM search wins more games than a player that uses Minimax. In the con-
cluding section 5.6 we end this empirical chapter with a listing of the circumstances
under which OM-search can be used successfully.

5.2 Experiments with Random Game Trees

The first series of experiments with OM search were intended to give insight into
the average-case computational complexity of the two basic implementations of the
search method: OMβ1p and OMβPb. In order to obtain a game-independent meas-
urement, we used randomly generated game trees. These random game trees are
only a rough approximation of real games. Because of the absence of move order-
ing in these trees, the computational complexity measured in the experiments is
probably larger than in real game trees.

An important aspect of average-case analysis is the reliable generation of ran-
dom numbers. Our random game-tree experiments have been performed using the
programming language Java. The standard random-number generator in Java uses
linear recurrence with a period of 248 (Sun, 2002). However, we apply an algorithm
with much better properties: the Mersenne Twister (Matsumoto and Nishimura,
1998), also called MT19937, made available in a Java implementation by Luke
(2002). This random-number generator has a period of 219937. The large period
makes the Mersenne Twister suitable for the generation of many random game trees
with a large number of nodes. For an overview and test of random-number generat-
ors including the Mersenne Twister we refer, for instance, to L’ Ecuyer (2001) and
Johnson and Lancaster (2000).

In subsection 5.2.1 we will first discuss how the random game trees are con-
structed. Then in subsection 5.2.2 we will show how the number of evaluations is
distributed over a population of random game trees. In subsection 5.2.3 the effect
of search depth and branching factor on the complexity is studied and in subsection
5.2.4 the effect of transposition tables. In subsection 5.2.5 we close the section with
a discussion of the results.
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5.2.1 Construction of random game trees

In the experiments we applied OM search on random game trees. All end positions
of a tree had the same depth and all internal nodes had the same number of chil-
dren (branching factor or width). With every experiment the tree depth and the
branching factor is specified.

The evaluation function in our game trees was generated analogously to the
approach by Newborn (1977). In his approach, every node in the tree received a
random number. The value of a leaf node was the average of all random numbers at
the nodes on the path from the leaf node to the root of the tree. This assured some
correlation between the values of nodes in neighbouring parts of the tree, partly
simulating real game trees.

We adapted Newborn’s (1977) approach slightly because for experiments with
OM search, we needed two evaluation values per leaf node. Therefore our approach
assigned two different random numbers (called base values) to every node in the
tree: base0 and baseop. These base values were drawn uniformly from [0,1]. Instead
of taking the average of all random numbers on a path, our approach used the sum
of these numbers. For V0 it used the sum of the base0 values, and for Vop the
sum of the baseop values. The base values in the nodes were of float precision, the
evaluation values were integer values obtained by multiplying the sum by 1000 and
then rounding off the result to the nearest integer.

In order to allow paired comparisons of the search methods, we wanted to apply
the different methods to exactly the same game tree. The dimensions of the trees
in our experiments ranged to depth 16 and width 20, so the number of nodes per
tree could become large, which made it impossible to keep these game trees in
memory. Furthermore, since we wanted to test the efficiency of pruning on these
random game trees, we expected that large parts of these trees would not be visited.
Altogether this meant that we needed an algorithm that generated the random
game tree during search and assigned random numbers to the nodes independently
of pruning. Moreover, we assumed that all search methods used the same ordering
of the nodes.

Figure 5.1 illustrates our approach. The generation of a random tree starts with
an external random seed. Every time that the same external seed is used, exactly
the same random game tree will be produced. We use the value of base0 of a node
as random seed for the generation of random numbers for all its direct child nodes.
The generation of these numbers takes place at the move-generating step in the
algorithm (e.g., line 2 in algorithm 3.2: L ← M(h)).

There is a potential problem with our approach of using the value of base0 as
random seed for the child nodes. Namely, at the same time the random-number gen-
erator uses its internal state that generated base0 to produce baseop. It is therefore
possible that there exists a measurable dependency between the value of baseop and
the value base0 of the first child, and between subsequent pairs of generated random
numbers.

In order to check whether such dependency exists in case of the Mersenne Twister,
we compared the distribution of the (Minimax) root values for two sets of 10,000
random game trees each. One set of trees was generated with the above approach,
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Figure 5.1: Flow of random-number generation in a random game tree. The straight arrows
indicate the order of ‘nextfloat’ commands, the curved arrows indicate an additional ‘set-
seed’ command. The squares inside the nodes are the base numbers for the two evaluation
functions.

and one set of trees was generated with a method that did not use the ‘setseed’
commands but generated random numbers in one stream for all nodes in the game
tree. The dimensions of the trees were: depth 6 and width 3. We applied a Student-t
test for unequal variations on the results. The t-value was 0.34 at a critical value of
1.96, so we could not reject the hypothesis (at a confidence level of 95%) that both
samples were taken from the same distribution. This result ensured us that it was
safe to use our approach.

5.2.2 Distribution of evaluation counts

The first experiment that we conducted on random game trees concerned the dis-
tribution of the number of nodes that is evaluated by the one-pass version and the
probing version of β-pruning OM search compared to α-β search. Figure 5.2 shows
the results for 10,000 trees of depth 8 and width 4. The distributions are roughly
shaped as a normal distribution, but the tails reveal that they are slightly skewed
to the right. In this setting, OMβPb used about 3 times more evaluations than α-β
search, and OMβ1p needed more than 4 times the amount that α-β search used, as
can be deduced from the centres of the three distributions. The question is whether
these ratios hold for all individual random game trees.

Since we applied α-β search, OMβ1p, and OMβPb all to the same 10,000 trees,
it is possible to show the relative number of evaluations that OMβ1p and OMβPb
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Figure 5.2: Histograms that show the distribution of the number of evaluations needed in
10,000 random game trees with depth 8 and width 4 for α-β, OMβ1p, and OMβPb.

needed compared to the number of evaluations needed by α-β search. Figure 5.3
shows these relative distributions for OMβ1p and OMβPb on the same population of
random game trees. The figure clearly shows that the peaks of these distribution are
in accordance with the ratios of 3 and 4 as mentioned above, but the distributions
are heavily skewed to the right. It should be mentioned that α-β search used the first
evaluation function (computed with the base0 values) and that β-pruning OM search
pruned on basis of the second evaluation function (computed with the baseop values).
Because these functions were independently distributed, the results in this graph
are probably worse than in real-world situations, especially concerning the large
spreading.

The relative distributions in figure 5.3 provide more information than the ab-
solute distributions in figure 5.2 and therefore we will present relative numbers for
the rest of the experiments in this section. Since the relative distributions are more
skewed than the absolute ones, we will not provide the usual mean value and variance
but the following parameter-free distribution information: the median, the lower and
upper quartile, and the 5th and 95th percentile of every sample.

5.2.3 Influence of the game-tree size

In order to study the relation between the size of the search tree and the compu-
tational complexity of both algorithms in random game trees, we conducted two
series of experiments. In one series we varied the depth of the search trees and in
the other series we varied the branching factor of the trees. Per value of the search
depth and branching factor, a sample of 100 random game trees was taken for which
the number of evaluations that OMβ1p and OMβPb needed was determined. For
every random game tree we also determined the number of evaluations that α-β
search needed.
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Figure 5.3: Histograms that show the distribution of the number of evaluations needed in
10,000 random game trees with depth 8 and width 4 for OMβ1p and OMβPb divided by the
number of evaluations needed by α-β on the same trees.

Figure 5.4 shows the results for the influence of the search depth. It shows clearly
that OMβ1p needed more evaluations than OMβPb on these random game trees for
depths larger than 8. Furthermore, the shape of the lines suggests that the relation in
the case of OMβ1p is non-linear whereas OMβPb shows a more-or-less linear relation
between the number of evaluations per α-β evaluation and the search depth.
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Figure 5.4: Relative number of evaluations needed by OMβ1p and OMβPb as a function of
the search depth. The branching factor is 3 and the sample size is 100. The solid line in the
middle is the median of each sample, the inner dashed lines represent the lower and upper
quartiles, and the outer dotted lines represent the 5th and 95th percentile of the samples.
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The influence of the branching factor is shown in figure 5.5. Again the figure
clearly shows that OMβ1p needed more evaluations than OMβPb on these random
game trees. Both algorithms show a more-or-less linear relation between the number
of evaluations per α-β evaluation and the branching factor.

The analysis in section 3.3 showed that in the best case, OMβPb performs worse
than OMβ1p, which appears to be in contrast with the average case.
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Figure 5.5: Relative number of evaluations needed by OMβ1p and OMβPb as a function of
the branching factor. The search depth is 5 and the sample size is 100. The meaning of
the lines is the same as in figure 5.4.

5.2.4 Effect of transposition tables

As we explained in subsection 3.4.2, the α-β probes in the probing versions of
OM search allow for the application of transposition tables. Since some parts of
the search tree will be visited during more than one probe, we expect an advantage
of the transposition table, even if no iterative deepening is applied. We performed
an experiment to measure the effect of a transposition table on OMβPb for different
sizes of random game trees. The size of the transposition table was 218 entries, the
replacement scheme used was deep (see Breuker et al., 1994). We did not apply
iterative deepening.

Figure 5.6 shows the effect for various search depths (left) and branching factors
(right). Since it is difficult to see the precise difference with the results in figures 5.4
and 5.5, we present in figure 5.7 the improvement that is caused by the transposition
table. The figure shows that with increasing search depth the improvement grew
to a level of 40 %. The improvement of transposition tables for higher branching
factors was less pronounced than for lower branching factors.
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Figure 5.6: Relative number of evaluations needed by OMβPb augmented with a transpos-
ition table as a function of the search depth and branching factor. The branching factor
is 3 in the left graph and the search depth is 5 in the right graph. The sample size is 100.
The meaning of the lines is the same as in figure 5.4.
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Figure 5.7: Improvement caused by a transposition table in OMβPb, as a function of the
search depth and branching factor. The graph shows the percentage of evaluations that is
skipped when the transposition table is used.

5.2.5 Discussion

The experiments with random game trees indicated that OMβPb performs better in
this setting than OMβ1p. This is in contrast with the best case in which OMβ1p is the
most efficient. Furthermore, OMβPb can be augmented with transposition tables.
The experiments in subsection 5.2.4 showed that the improvement was considerable,
even without iterative deepening.
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The results of the random game trees are not easy to extrapolate to real games.
There are two reasons for this. First, in these experiments there was no correlation
between the evaluation functions V0 and Vop. In real games the two evaluation func-
tions will be correlated to some extent. A higher correlation between the evaluation
functions will probably reduce the spreading in the distributions of figure 5.3, be-
cause when V0 and Vop are highly correlated, a move ordering that causes much or
less pruning in α-β search will then also cause much or less pruning in OM search.
Second, the random game trees have a random move ordering. The pruning in both
α-β search and OM search will heavily profit from a better move ordering. Together
this means that the computational-complexity results for the random game trees
must be viewed more as a ‘worst-case’ scenario than an ‘average case’.

5.3 Experiments in Lines of Action

As a first investigation of the effectiveness of OM search, we conducted tournaments
in the game lines of action (LOA) between players using α-β search and OM search
at several search depths. LOA was selected because the game is not trivial and
also not too complex so that a reasonable amount of games could be played with
a varying set of parameters. Furthermore, there are various evaluation functions
available, which allowed for the application of OM search.

5.3.1 Rules of the game

LOA is a board game invented in 1960 by Claude Soucie (and described in Sackson,
1992). It is played on an 8×8 checkers board. The starting player uses twelve black
stones, the other player uses twelve white stones. The black stones are placed in
two horizontal rows along the top and bottom of the board, while the white stones
are placed in two vertical rows at the left and right edge of the board (see figure
5.8, left). The players move in turn. A player may move only one stone at the
time (i.e., per turn) in a straight line in any of the eight principal directions. The
step length of the move is exactly equal to the total number of stones (black and

Opening position Some legal moves Black wins

Figure 5.8: LOAexamples: the opening position, legal moves for one piece, and an end
position.
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white) on the line of movement (figure 5.8, middle). A player is only allowed to
jump over the own stones. When the move lands on an opponent’s stone, this stone
is captured. The object of the game is to move the stones until all own stones are
connected orthogonally or diagonally (figure 5.8, right). In the implementation used
in the experiments, a repetition of a board position instantaneously ends the game
(in a draw). There is some dispute on details in the rules of the game (see Winands,
2003), but these are not crucial to our research.

5.3.2 Evaluation functions

In the tournaments we applied three different evaluation functions. The first one
(Vc) is a simple function that assigns values to stones depending on their board
position: the four centre squares produce 10 points, their 12 surrounding squares
produce 5 points, and the 20 squares surrounding the latter squares produce 1 point.
The remaining 28 border squares give no points. Opponent stones receive the same
amount of points (expressed as minus points). The score of a board position is the
total of all points assigned to the stones. This centre-oriented evaluation function is
in general only one part of the evaluation function in a LOA-playing program. Of
course, in practice many more aspects are used to evaluate a position.

The two other evaluation functions that were used in the tournaments (VNNa

and VNNb) are neural network functions that are trained especially to evaluate board
positions in LOA (Kocsis, Uiterwijk, and Van den Herik, 2001). The neural networks
are feed-forward networks, consisting of three layers. The first layer (X) has 64 input
nodes corresponding to the squares on the board and 1 node to indicate the player
to move. The second layer (H) has 40 nodes. The third layer (Y) is a single output
node, corresponding to the evaluation value. Every node is connected to all nodes in
the following layers (nodes in X to nodes in H and Y, nodes in H to the node in Y).
The activation level of the nodes is controlled by a sigmoid function. The networks
were tuned by the weights on their 2705 connections. These weights were produced
by a type of reinforcement learning (TD(λ), see Sutton, 1988) during which neural-
network players competed with each other in many games meanwhile learning from
the own prediction errors. The search depth during the training was 3.

5.3.3 Set-up of the tournaments

We conducted three tournaments (A,B,C) with the following set-up. In every tour-
nament we tested two evaluation functions (indicated here by V1 and V2). Each
tournament consisted of an OM part and a normal part. In the OM part the first
player used β-pruning OM search with α-β probing (taking V0 = V1 and Vop = V2)
and the second player used α-β search (with V2). The evaluation function that the
first player assumed for min was the same one that the second player actually used.
So, the first player had perfect knowledge of the opponent. To be able to compare
the results of OM search with α-β search, each OM part was replayed in the normal
part of that tournament; now both players used α-β search, the first player with V1,
the second player with V2. To investigate the influence of the search depth, every
set was played using four different search depths (2, 3, 4, and 5). No time limit was
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given. Hence each tournament consisted of four OM matches and 4 normal matches.
In each match a set of 30 different positions was played to the end. These positions
are provided in appendix A. The set had to be played twice, since we reversed
colours, so the total number of games was 60 per match.

5.3.4 Results and discussion

The outcomes of the tournaments are presented in table 5.1. The outcome of a
match is given by its results; +24 means 42-18 and −12 means 24-36.

The results for OM search in tournament A are surprising. Although the oppon-
ent model was correct, the player using OM search profited only at search depth 2
from the knowledge given. At the search depths 3, 4, and 5 using OM search with
the correct opponent model even led to a decrease in performance in relation to α-β
search.

In tournament B the matches were between the evaluation functions VNNa and
Vc, of which we proved in a separate tournament that Vc is much weaker than VNNa.
Here the results of OM search were even more remarkable than in tournament A. A
winning evaluation function (see the normal part) was transferred into a losing one
by using the correct opponent model.

Tournament C was the reverse of tournament B, i.e., with Vc having an opponent
model of VNNa. Hence the results of the normal part were exactly opposite to those
of tournament B. However, using OM search gave analogous bad results at the depths
3, 4, and 5.

We remark that in all three tournaments, the OM player was given a serious
advantage because not only perfect knowledge of the opponent was provided, but
the search depth was kept constant, independent of the time that is needed to search
the tree. The difference in performance between α-β search and OM search could
not be caused by a difference in search efficiency.

An explanation for the poor behaviour of OM search in these experiments is the
observation that the pairs of evaluation functions were not admissible (see section
4.2.2). The absence of admissibility can have caused type-I errors that led to bad
choices for the OM player, even if perfect knowledge of the opponent was available.

Table 5.1: Results of the three LOA tournaments. The numbers indicate the result over
60 games for the first player.

Tournament A Tournament B Tournament C
V1 = VNNa, V2 = VNNb V1 = VNNa, V2 = Vc V1 = Vc, V2 = VNNa

Search
Depth OM - α-β α-β - α-β OM - α-β α-β - α-β OM - α-β α-β - α-β

2 +24 +18 −2 −4 +6 +4
3 −12 +4 −12 +24 −8 −24
4 −4 +6 −32 +18 −28 −18
5 −16 −20 −32 +24 −36 −24



84 Experiments in OM Search

Furthermore, the quality of the evaluation functions was not high, resulting in large
overestimations, thereby increasing the effect of type-I errors.

5.4 Experiments in the Chess Endgame KQKR

In this section we investigate to what extent the performance of OM search increases
when type-I errors are prevented by using an admissible pair of evaluation functions.
We also want to study the influence of restricted speculation (see subsection 3.1.4)
on the performance of OM search.

An apparent way to achieve admissibility in OM search is to use a perfect evalu-
ation function. An excellent instance of such an evaluation function is an endgame
database. When the player is in a winning position that is available in the endgame
database at hand, OM search is of no use, since the player should just follow the
strategy as dictated by the endgame database. It is more interesting when the player
is in a losing position. Now OM search can be advantageous, because the knowledge
of the opponent’s strategy could be used to lure the opponent in a position that the
endgame database indicates as won for the player, or at least as a draw.

A setting that consists of a player using an endgame database at a losing position
against a fallible player has been studied earlier in the domain of chess. In 1977, Ken
Thompson used two well-known maximin2 positions in the KQKR endgame (figure
5.9) to test the difficulty of the KQKR endgame in a contest with International
Grandmaster Walter Browne (see Fenner, 1979; Levy and Newborn, 1991; Jansen,
1992b; Newborn, 1997; in appendix B we list the complete games as played). In
these matches, Browne played the stronger side (White), but Belle had perfect
knowledge of the endgame. The first match (starting from figure 5.9 left) ended in
a draw at move 45. The second match (starting from figure 5.9 right) was won by
Browne at the 50th move. Both positions are theoretically a win for White in 31
moves3. The properties of the KQKR endgame were analyzed in detail by Jansen
(1992b).

Jansen (1993) also described experiments in the KQKR domain. In these ex-
periments, computer programs with access to the endgame database played against
human players. Jansen used three types of programs: program R selected randomly
from the set of optimal moves, program B selected the best move from the set of
optimal moves (with respect to the number of optimal responses by the opponent),
and program HP (Heuristic Program, see subsection 2.1.4) used some knowledge
on human opponents in general and was allowed to play suboptimally. The results
showed that HP yielded better results against humans than the base case, optimal
play, as executed by R or B.

We decided to conduct our experiments in the same KQKR endgame and on
the same two positions. In our experiments we also used three different programs.

2A maximin position is a position within a given set that takes the maximal number of moves
to reach a win when both sides play optimally, provided that the depth of the win is incorporated
in the payoffs (see subsection 4.1.1).

3This (31) is the distance to conversion (capture of the Rook) of both positions, according to
Thompson’s database. The distance to win of both positions is 35, see appendix B.
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Browne-Belle 1 Browne-Belle 2

Figure 5.9: The starting positions, White to move, that Browne (White) played against
the chess computer Belle in 1977. See appendix B for the complete games.

The first program was a chess program with access to the KQKR endgame data-
base, thus being able to play optimally. The program selected the first optimal
move encountered, so it differed in this respect from both R and B. This program
was our base case. The second program was the subject of our research; it was a
chess program equipped with OM search, the KQKR endgame database, and perfect
knowledge of the opponent. This second program was also able to apply restricted
speculation. The third program was a chess program without access to the endgame
database. In combination with some time restrictions, this third program acted as
a fallible opponent playing the KQ-side in the endgame.

Before the experiments we formulated two hypotheses. Our main hypothesis was
that, as in Jansen’s experiments, OM search (playing the KR-side) would perform
better than plain optimal play because the opponent program would be lured into
traps that will cause it to make errors. The second hypothesis stated that the
depth of the OM search’s speculations on the opponent’s moves would influence the
performance of OM search. If the speculative search would be too shallow, OM
search would not be able to find any opportunities to mislead the opponent. If the
speculative search would be too deep, the predictions of the opponent’s behaviour
would then be based on the remaining shallow α-β probes of which the heuristic
evaluations would no longer be sufficiently reliable and therefore would cause OM
search to make wrong decisions.

5.4.1 Implementation

To test OM search on the Browne-Belle chess endgame positions, we implemented
the enhanced version of β-pruning OM search with probing and restricted specula-
tion (see algorithms 3.5 and 3.6) into Hyatt’s chess program Crafty (version 18.11)
(Hyatt, 2002b). We selected this program for two reasons: (1) the source code is
publicly available and (2) it is a reasonably strong chess program (it finished 7th
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in a field of 18 programs at the 18th World Microcomputer Chess Championship in
2001 (Schneider, 2001)).

Crafty’s core is a negamax implementation of α-β search. The program is
endowed with the usual search enhancements such as iterative deepening and qui-
escence search. Replacing its core search algorithm by OM search made some of
Crafty’s search enhancements impossible. For instance, we had to remove aspir-
ation search because β-pruning OM search uses only β values to prune. However,
many other enhancements remained available because the probes in OM search call
Crafty’s original search routine. The remaining enhancements are transposition
tables, search extensions, null moves, quiescence search, killer moves, history tables,
and (Eugene Nalimov’s) endgame databases4 (The latter were disabled in the op-
ponent player, see the beginning of this section and the next subsection.)

We made an adjustment to the root-level call of OM search: only those moves at
the root level were considered that did not decrease the distance to a loss more than
the single ply that the opponent could force, according to the endgame database. In
other words, we did not allow OM search to play suboptimally.

5.4.2 Set-up of the tournaments

Three versions of the Crafty engine were linked together using Winboard: first,
the base-case version (see above), which was an unchanged version of Crafty 18.11
with access to the KQKR endgame database; second, the version with OM search
(called OmCrafty) and with access to the endgame database too; and, third, the
version of Crafty 18.11 not using the endgame database. Henceforth, we denote
the base-case version by OmCrafty with speculative search depth 0 (see below). In
the experiments, OmCrafty used exactly the same evaluation function as Crafty

18.11, resulting in perfect knowledge of the opponent. During the experiments, we
disabled pondering and book learning.

We performed two tournaments, one starting with the Browne-Belle position
1 and one with position 2 (see figure 5.9). OmCrafty always played the weaker
side (i.e., the black side, with Rook), Crafty without endgame database played the
stronger side (with Queen). The tournaments each consisted of twelve matches. In
every match, OmCrafty used a fixed speculative search depth, ranging from 1 to 11.
As a base case, a match was played in which OmCrafty was replaced by Crafty

with access to the endgame database. This match is indicated by speculative search
depth 0 (see above).

All matches counted 20 games. In each game, the Browne-Belle position 1 or
2 was played to the end (conversion, mate, or applying the 50-move rule). The
total time limit for a game was 10 minutes per side, leading to a search depth of
roughly 10 to 12 ply. Owing to small timing differences (Hyatt, 2002a), all games
were different. Since we used restricted time per game in the chess experiments, it is
important to mention the platform: a 1.33 GHz AMD Athlon PC running Windows
ME. (The Crafty source was compiled with Microsoft Visual C++ 6.0.)

4Nalimov’s endgame databases contain distances to win/loss, whereas Thompson’s endgame
databases contain distances to conversion. See also appendix B.



5.4 — Experiments in the Chess Endgame KQKR 87

5.4.3 Results and discussion

Below we discuss simultaneously the results of both series of matches. By combining
the results we are able to stress the differences. Table 5.2 gives the number of
games that ended in a draw (e.g., the game length is 51). All other games ended in
conversion.

Table 5.2: Number of games (out of 20) that ended in a draw due to the 50-move rule.

Speculative Search Depth (Ply)

0 1 2 3 4 5 6 7 8 9 10 11

Browne-Belle 1 0 0 0 3 1 2 0 0 0 0 0 2

Browne-Belle 2 1 1 4 0 0 0 0 1 0 0 0 0

It should be mentioned that the search depth reached by OmCrafty did not
exceed 11 on average in the experiments. After the sixth move of the games, the
search depth of OmCrafty decreased to 9.5 on average. This means that the results
for speculative search depths 9, 10 and 11 are largely correlated.

Figure 5.10 gives the distribution of the game length (averaged per OM-search
depth) as a function of the OM-search depth. The results of the first Browne-Belle

position (left) show that using OM search increased the average game length for all
values of the speculative search depth. When OM search was not used (depth 0),
the games lasted 37.4 moves on average. The best performance was at OM-search
depth 4, the average game length there being 42.2. Statistical analysis (one-sided
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Figure 5.10: Mean game length (number of moves to conversion or draw) in the two Browne-
Belle experiments as a function of the speculative search depth. Depth 0 means that α-β
is used instead of OM search.
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t-test) indicates that the increase of the game length in comparison with the base
case was significant (for a 95%-confidence level) for all depths except 6.

The results of the second Browne-Belle position (right) showed an opposite
effect. For speculative search depth 0 (the base case) the games lasted 40.3 moves
on average. For speculative search depths 3, 5, 6, 8, 9, 10, and 11 the average
game length was significantly lower with a 95%-confidence level than for the base
case. Since we observed that the base-case version performed better in the second
position than in the first Browne-Belle position, a closer look at the experiments
was needed to explain the difference in results for the two Browne-Belle positions.
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Figure 5.11: Average prediction surplus (OM-value minus endgame-database value) of the
two Browne-Belle positions for varying speculative search depth.

In order to show how OM search performed during the experiments, we measured
the increase of the game length as predicted by OM search, i.e., the OM-search value
minus the endgame-database value. We call this increase the prediction surplus. In
figure 5.11 the average of this prediction surplus is plotted as a function of the
speculative search depth. The figure shows that the prediction surplus grew almost
linearly with the speculative search depth. No significant difference between the
two Browne-Belle positions was registered. This result is to be expected from OM
search: the more deeply speculative search is performed, the more opportunities for
misleading the opponent are expected.

Since no difference in the behaviour of OM search itself was registered between
the two series of matches, the behaviour of the opponent (i.e., the opponent’s error)
might provide some clue. For our investigations we used the same notion of error
as in Jansen (1992b): the number of moves lost with respect to optimal play. Two
graphs provide some insight into the intricacies of OM search. Figure 5.12 (left)
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Figure 5.12: Percentage of correct opponent moves (left) and of the opponent’s moves in
which the opponent made an error that prolonged the distance to win with more than 2
extra moves (right).

shows the percentage of moves in which the opponent made no error, and figure 5.12
(right) shows the distribution of errors larger than 2. The tables 5.3 and 5.4 provide
more detailed information on the distribution of errors of all sizes. It appears that
the opponent made errors in 20 to 25 per cent of the moves. Most of these errors
(about three quarters) had size 1, and only a few had a size larger than 2. The
maximum error recorded had size 11, which occurred only twice.

Figure 5.12 (left) indicates that, in general, the opponent made fewer errors in
the second Browne-Belle positions than in the first one. This agrees with the
shorter lengths of the games in figure 5.10. The correlation is also visible in some
details, e.g., the peak of the game length around speculative search depth 4 for the
first position (figure 5.10, left) is related to the minimal percentage of correct moves
at these depths (figure 5.12, left). The outlaying value for OM-search depth 7 at the
second Browne-Belle position (figure 5.10, right) coincides with the peak of errors
larger than 2 at that depth (figure 5.12, right).
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Table 5.3: Distribution in percentages of the errors (there are no errors of size 8) by
the opponent per speculative search depth in the experiments of the first Browne-Belle

position.

Error size Avg.
Depth 0 1 2 3 4 5 6 7 9 10 Length

0 37.4
1 77.43 18.36 3.56 0.65 40.0
2 75.92 20.39 3.36 0.11 0.11 0.11 40.9
3 72.65 21.33 4.96 0.32 0.32 0.11 0.11 0.11 41.8
4 75.50 19.85 4.22 0.32 0.11 42.2
5 74.86 19.91 4.03 0.65 0.11 0.22 0.11 0.11 41.0
6 80.50 15.67 3.27 0.45 0.11 39.1
7 77.07 19.65 3.06 0.11 0.11 40.6
8 79.19 16.20 3.94 0.67 40.1
9 75.64 20.21 4.15 0.00 41.6

10 77.14 16.92 5.27 0.33 0.33 40.7
11 78.44 18.44 2.56 0.44 0.11 40.3

Table 5.4: Distribution in percentages of the errors (there are no errors of sizes 8, 9, and
10) by the opponent per speculative search depth in the experiments of the second Browne-
Belle position.

Error size Avg.
Depth 0 1 2 3 4 5 6 7 11 Length

0 40.3
1 79.01 17.66 2.29 0.80 0.11 0.11 39.5
2 75.58 19.20 4.22 0.55 0.11 0.22 41.9
3 82.41 16.27 1.20 0.12 36.4
4 79.16 15.96 3.55 0.89 0.33 0.11 40.0
5 81.03 15.98 2.18 0.80 37.5
6 82.02 15.63 1.76 0.47 0.12 37.2
7 78.38 16.19 2.98 2.45 41.0
8 81.81 15.41 1.74 0.93 0.12 37.4
9 82.51 15.93 1.08 0.48 37.2

10 82.23 15.40 2.13 0.24 37.8
11 82.18 15.01 2.23 0.59 37.6
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Why did the opponent make fewer errors in the second Browne-Belle position?
In 1977, Thompson assumed that the two positions were equally difficult, since both
had a maximin distance to conversion of 31. However, in our experiments the results
for the two positions were quite different. To emphasize this observation, we present
in figure 5.13 the number of different variations of the game as encountered in the
experiments; they are given as a function of the the number of moves made. In the
experiments, almost no game developed equally. The graph shows that after 40 plies
there were 180 different variations in the first Browne-Belle position, but only 80
in the second position. This indicates that the variations that started at the second
position were easier to play and therefore led to fewer errors by the opponent.
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Figure 5.13: Game diversity of the two Browne-Belle positions, expressed in the number
of different variations of the game occurring in the experiments.

The difference between the two positions might be caused by some effect in the
evaluation function of Crafty since the first moves of all games played in our
experiments were the same: (1. Kb7 Re7+) for the first Browne-Belle position
and (1. Kb7 Rb4+) for the second Browne-Belle position. The resulting posi-
tions (8/1K2R3/5k2/Q7/8/8/8/8 and 3Q4/1K6/8/8/1r6/2k5/8/8) are symmetrical
copies of each other, so after the first move both positions are basically equal.

To complete the discussion of the results for the chess tournament, we present
some data on the computational efficiency of OM search in this setting. Figure 5.14
shows a comparison of the search depth and the effective branching factor between
OmCrafty and Crafty. The effective branching factor is computed from the
search depth and the number of positions that is evaluated. It can be interpreted as
a measure of the amount of pruning. The figure shows that OmCrafty searched
one ply less deep than Crafty in the same time. The amount of pruning, expressed
by the effective branching factor, was comparable.
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Figure 5.14: Search efficiency of Crafty (dashed line) and OmCrafty as a function of
the move number.

5.5 Experiments in Bao

In the last series of experiments in this chapter we wanted to study under what
conditions OM search can be made successful. We provided the OM-search player
with all the resources needed for this, among them a larger search depth. In contrast
to the previous experiments in the chess endgame, we did not use admissible pairs
of evaluation functions. To lower the risk of type-I errors, we allowed the OM-search
player only 1 ply of speculative search.

The experiments were performed on a game called bao. Since this is a fairly
unknown game, we provide some more information on the background of the game.
We also go into more detail on the generation of a set of evaluation functions that we
use in the experiments. In subsection 5.5.1 we first give an introduction to the family
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of mancala games to which bao belongs. In subsection 5.5.2, the properties of bao
are discussed. In subsection 5.5.3 we explain how we obtained the five evaluation
functions for bao. Subsection 5.5.4 gives the tournament set-up and in the last
subsection, 5.5.5, we present and discuss the results.

5.5.1 Mancala games

In large parts of the world, for a long time board games of the mancala group have
been played in different versions (Murray, 1952; Russ, 2000). Most mancala games
share the following properties:

• the board has a number of holes, usually ordered in rows;
• the game is played with indistinguishable counters (pebbles, seeds, shells);
• players own a fixed set of holes on the board;
• a move consists of taking counters from one hole and putting them one-by-one

in subsequent holes (sowing), possibly followed by some form of capture;
• the goal is to capture the most counters.

Mancala games differ in the number of players (1, 2 or more), the size and form
of the board, the starting configuration of the counters, the rules for sowing and
capturing, and in the way the game ends. The games of the mancala group are
known by many names (for instance, wari, awele, bao, dakon, and pallankuli). For
an overview and rules of many mancala games, we refer to Russ (2000).

Until recently, the western world has had little experience with mancala games.
In the Middle Ages, Arabic traders might have shown a game called manqala to their
European customers, but only vague references exist of Europeans playing the game.
In later times, African slaves played wari in the Caribbean, but in the United States,
slaves were forbidden to play their traditional games. European colonists in Eastern
Asia and India must have observed mancala games being played, but apparently
they were not interested enough to bring it back to Europe (Murray, 1952).

Recently, Western interest in mancala games increased. In the 1950s William
J. Champion invented the game kalah (1963). It is a relatively simple version of a
mancala game intended as an educational game for children. Although the game was
immediately commercialised, it only became widely known when the International
Red Cross adopted the game and disseminated it. In the USA the game of kalah
reached the pubs and in Europe African immigrants took the game awale with them.
Nowadays, several mancala games are played on the Mind Sports Olympiad (wari,
omweso, and bao)5. Much information on mancala games is available on the Internet
and there exist many computer programs for playing mancala games. Even some
mobile phones are provided with them.

Mancala games have a relatively long track in artificial-intelligence research on
games. Kalah has been investigated a decade after its invention as an example of
game programming (Russel, 1964; Bell, 1968; Slagle and Dixon, 1970). The game
of kalah has been solved in 2000 (Irving, Donkers, and Uiterwijk, 2000). Awari has
been studied since the early 1980s (Van der Meulen, Allis, and Van den Herik, 1990)

5See http://www.msoworld.com.
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and has been played in the Computer Olympiads for some time. In the research on
awari, much effort is put on the construction of endgame databases (Allis, Van der
Meulen, and Van den Herik, 1991; Lincke and Marzetta, 2000; Van der Goot, 2001).
This has led to the complete solution of awari in May 2002 (Romein and Bal, 2002).

5.5.2 Properties of bao

Among the mancala games, (Zanzibar) bao is regarded as the most complex one (De
Voogt, 1995). This is mainly owing to the amount of rules and to the complexity of
the rules. Bao is played in Tanzania and on Zanzibar in an organized way. There
exist Bao clubs that own the expensive boards and official tournaments are organized.

The exact rules of the game are given in appendix C. Below, we will summarize
the properties that discriminate the game from the more widely known games kalah
and awari.

Bao is played on a board with 4 rows of 8 holes by two players, called South and
North. There are 64 stones involved. At the start of the game each player has 10
stones on the board and 22 stones in store. Sowing only takes place on the own two
rows of holes. The direction of sowing is not fixed. At the start of a move, a player
can select a direction for the sowing (clockwise or anti-clockwise). During sowing or
at a capture, the direction can turn at some point. This is dictated by deterministic
rules.

If a capture is possible then it is obliged in bao. This means that a position is
either a capture position or a non-capture position. Captured counters do not leave
the board but re-enter the game. Counters are captured from the opponent’s front
row. These counters are immediately sown in the own front row. It implies that the
game does not converge like kalah and awari.

Moves are composite. If at the end of a sowing, a capture is possible, the captured
counters are sowed immediately at the own side of the board. This second sowing
can again result in a new capture followed by a new sowing. If a capture is not
possible, and the hole reached was non-empty, all counters are taken out of that
hole and sowing continues. This goes on until an empty hole is reached.

Moves can be endless because in a non-capture move, sowing can go on forever.
The existence of endless moves can be proven theoretically (Donkers, Uiterwijk, and
De Voogt, 2002). In real games, moves that take more than an hour of sowing
also occasionally happen, but players usually make small mistakes during sowing or
simply quit the game, so real endless moves never lead to endless sowing.

Bao games consist of two stages: in the first stage, stones are entered one by one
on the board at the start of every move. In this stage, a game ends if the player to
move has no counters left in the front row. As soon as all stones are entered, the
second stage begins and a new set of rules applies. In the second stage, a game ends
if the player has no more than one counter in any hole of both rows. A draw is not
defined in bao. We note that the goal of bao is not to capture the most stones, but
to immobilize the opponent.

In Donkers and Uiterwijk (2002), an analysis of the game properties of bao is
provided. The state-space complexity of bao is approximated to be 1.0×1025, which
is much higher than those of awari (2.8× 1011) and kalah (1.3× 1013). The shortest



5.5 — Experiments in Bao 95

game possible takes 5 ply, but most games take between 50 and 60 ply because they
end soon after the start of the second stage. The maximum number of moves possible
at any position is 32, but the average number of possible moves varies between 3
and 5, depending on the stage of the game. Forced moves occur quite often. The
average game length (d) and branching factor (w) are normally used to estimate the
size of a game tree that has to be traversed during search (wd). For bao the estimate
is roughly 1034. This number together with the game-tree complexity (1025) places
bao in the overview of game complexities above checkers and in the neighbourhood
of qubic (Van den Herik, Uiterwijk, and Van Rijswijck, 2002).

5.5.3 Generating evaluation functions

In order to conduct the OM-search experiments, we created 5 different evaluation
functions. We wanted these evaluation functions to have an increasing order of
operational quality, in the sense of ordering 4 in subsection 4.1.2.

The first two evaluation functions were created by hand. The first one, called
Material, simply takes the difference in the number of stones on both sides of the
board as the evaluation score. The second hand-made evaluation function is the one
used in the first version of our competitive bao-playing program6 and is therefore
called Default. This function incorporates some rudimental strategic knowledge of
bao. For instance, it is good to have more stones in the back row since this increases
the mobility in the second stage of the game. The function awards 3 points to
stones in the front row, 5 points to stones in the back row, and 5 additional points
to opponent stones that can be captured. If the own house is still active, 200 extra
points are given. The total score of the position is the score for max minus the
score for min. There is a small asymmetry in this function: if max can capture
min’s house (a special hole, see appendix C) 100 points are rewarded, but if min can
capture max’s house, only 50 points are subtracted. This asymmetry is intended to
produce a more offensive playing style.

The third evaluation function was created by using a genetic algorithm (Holland,
1975). The evaluation function was represented by an integer-valued chromosome
of 27 genes: one gene for the material balance, one gene per hole for the material
in the own back and front row, one gene per hole in the front row for capturing,
one gene for an active house, and another gene for capturing the opponent’s house.
The total score of a position was the score for the player minus the score for the
opponent. The fitness of a chromosome was measured by the number of games out
of 100 that it won against a fixed opponent. In these matches, both players used
α-β search with search depth 6. The genetic-algorithm parameters were as follows:
the population size was 100, only the 10 fittest chromosomes produced offspring
(using a single-point crossover), the mutation rate was 5 per cent for large changes
in a gene (i.e., generating a new random number for the gene) and 20 per cent for
minor changes (i.e., altering the value of a gene slightly). The genetic algorithm was
continued until no improvement occurred anymore. We conducted three runs: in the
first run, the opponent was Default. In the second and third run, the opponent

6Available at http://www.cs.unimaas.nl/∼donkers/games/bao.
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was the winner of the previous run. The name of the resulting evaluation function
is Ga3.

Thereafter we used another machine-learning technique to create the fourth eval-
uation function, namely TD-Leaf learning (Baxter et al., 1998). This is a temporal-
difference learning method that is specialized for learning evaluation functions in
games. The evaluation function trained was a linear real-valued function with the
same parameters as the genes in the chromosomes above, except that there were sep-
arate parameters for the two sides of the board. Batch learning was applied with 25
games per batch. The reinforcement signal that was used to update the parameters
was the number of games in the batch that the player won against a fixed opponent,
in this case Ga3. The search depth used in the games was 10. The λ-factor and
the annealing factor both were set to 0.99. This produced our fourth evaluation
function, called Tdl2b.

The last evaluation function was also produced by TD-Leaf learning, but this time
we used a normalized Gaussian network (NGN) as evaluation function, similar to the
way in which Yoshioka, Ishii, and Ito (1999) trained an evaluation function for the
game othello. The NGN had 54 nuclei in a 54-dimensional space. Every dimension
correlated with a parameter in the previous evaluation function. The reinforcement
signal was the number of games won out of 25 against a fixed opponent, being
Tdl2b. The search depth used in the games was 6, because the computation of
the output for an NGN is relatively slow. No batch learning was applied here. The
λ-factor was set to 0.8 and the annealing factor was set to 0.993. The last evaluation
function is called Ngnd6a.

5.5.4 Set-up of the tournaments

We conducted seven different tournaments between five players that each used one of
the five evaluation functions. We denote the players by the name of their evaluation
function. All tournaments followed a double round-robin system: every player was
matched against every other player, one time playing South and one time playing
North. Each match between two players consisted of 100 games; hence each tour-
nament counted 2000 games. These games began at the start positions given in
appendix D and were played to the end. To prevent problems with infinite moves,
any move that involved the sowing of more than 100 stones was considered infinite
and therefore illegal. A position at which a player could perform only one of these
long moves was a loss for that player.

In the first two tournaments, both players used α-β search. In the other five
tournaments, South used OM search with perfect knowledge of the opponent’s eval-
uation function. North always used α-β search with search depth 6. The search
depth of South differed per tournament. No time restriction was given. We used the
β-pruning implementation of OM search with α-β probes, and allowed only one ply
of speculation. Since in bao draws are not possible, and since we aimed to compare
the performance of the different search algorithms used by South, the score of a
match was just the number of games out of 100 that was won by South.

At every position at which South was to move, we also detected the move(s) that
α-β search would select for South. In this way we were able to count the number of
times that OM search differed from α-β search.
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In the implementation of the α-β probes for OM search we took care of the fact
that (some of) the evaluation functions are asymmetric. The asymmetry implies that
evaluating a position when South is max, is not the same as evaluating the same
position when North is max and taking the negative of the value. Furthermore, we
implemented the part of the enhanced version of OM search (see section 2.3.2) that
deals with multiple equipotent moves for min: if min has multiple equal choices,
max would select the move with the lowest value for v0.

The exact set-up of each of the seven tournaments will be explained along with
the results in the next subsection.

5.5.5 Results and discussion

First tournament: α-β plain

Table 5.5 gives the outcome of the first tournament. Both South and North used α-β
search with search depth 6. The table clearly shows that the evaluation functions
differ in quality and that every evaluation function is indeed operationally better
than any of the evaluation functions above them in the table.

Second tournament: α-β extended

The second tournament was a checking tournament. South was allowed to search
two extra plies (8 instead of 6). The results are presented in table 5.6. The table
shows that all players profited from the increased search depth. Only the match of
Default against Ga3 was less fortunate for Default. This illustrates the poor
quality of this evaluator.

Third tournament: OM plain

In the third tournament, South used OM search with one ply of speculation (OM-
search depth 1) and with search depth 6. The results in table 5.7 show that three
players, Material, Ga3, and Tdl2b, profited from using OM search, but that the
two other players, Default and Ngnd6a, did not profit and played worse than in
the first tournament.

Table 5.5: Results of the first tournament between 5 evaluation functions for bao. Each
cell shows the number of games won by South (the row) against North (the column). The
column on the right shows the number of games won by each evaluation function when
playing South.

S \ N Material Default Ga3 Tdl2b Ngnd6 Score

Material - 55 35 19 18 127

Default 48 - 54 30 28 160

Ga3 55 61 - 36 30 182

Tdl2b 69 65 57 - 39 230

Ngnd6a 79 73 75 60 - 287
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Table 5.6: Results of the second tournament between 5 evaluation functions for bao. Both
sides use α-β, but South searches 2 ply deeper (8) than North (6).

S \ N Material Default Ga3 Tdl2b Ngnd6 Score

Material - 57 62 40 32 191

Default 71 - 52 49 34 206

Ga3 80 75 - 62 49 266

Tdl2b 86 76 69 - 57 288

Ngnd6a 88 76 80 70 - 314

Table 5.7: Results of the third tournament between 5 evaluation functions for bao. South
uses OM search with perfect knowledge of the opponent’s evaluation function. The search
depth is 6 for both sides, the OM-search depth is 1.

S \ N Material Default Ga3 Tdl2b Ngnd6 Score

Material - 57 50 30 24 161

Default 46 - 46 26 25 143

Ga3 59 57 - 40 35 191

Tdl2b 78 64 60 - 46 248

Ngnd6a 71 58 66 61 - 256

Fourth tournament: OM extended

South was using OM search with one ply of speculation as in the third tournament,
but in this tournament it was allowed to search two ply deeper. The α-β probes
were still restricted to depth 6. This means that South had better knowledge over
the game than North, a situation that is comparable to the second tournament.
Table 5.8 shows that South was not able to profit fully from the extra search depth.
Although all players performed better than in the third tournament, where they
were allowed to search just 6 ply deep, only Material played better than in the
second tournament. This indicates that searching deeper for yourself in OM search
is not sufficient for success.

Fifth tournament: OM with perfect opponent prediction

The fifth tournament gave South a different advantage: it was allowed to extend the
α-β probes to depth 7. The search depth (for the own evaluation) was 6. In this
way, South not only had perfect knowledge of the opponent’s evaluation function,
but South could also predict almost perfectly what North would be doing in the next
move. The search depth of the α-β probes (which was 6, because the probes started
at depth 1) was namely exactly the same as the search depth of North. In the case
of equal evaluated moves, South selected the move with the lowest own evaluation.
This was not necessarily the move that North would play. Table 5.9 gives the results
of this tournament. All players, except Default profited from this advantage, and
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Table 5.8: Results of the fourth tournament between 5 evaluation functions for bao. South
uses OM search with perfect knowledge of the opponent’s evaluation function. The search
depth is 8 for South, with α-β-probes to depth 6, and the search depth is 6 for North. The
OM-search depth is 1.

S \ N Material Default Ga3 Tdl2b Ngnd6 Score

Material - 60 64 49 39 212

Default 63 - 47 44 41 195

Ga3 70 66 - 57 40 233

Tdl2b 80 69 70 - 56 275

Ngnd6a 84 68 71 59 - 282

Table 5.9: Results of the fifth tournament between 5 evaluation functions for bao. South
uses OM search with perfect knowledge of the opponent’s evaluation function. The search
depth is 6 for both sides, but South uses α-β probes to depth 7. The OM-search depth is
1.

S \ N Material Default Ga3 Tdl2b Ngnd6 Score

Material - 59 57 31 27 174

Default 50 - 48 32 23 153

Ga3 53 64 - 36 30 183

Tdl2b 69 73 66 - 40 248

Ngnd6a 77 82 77 63 - 299

played better than in tournament 1, albeit less good than in the second tournament
in which they just searched deeper. The advantage also gave less good results than
the advantage in tournament 4, except for player Ngnd6a. From these results we
can infer that knowing exactly the moves of the opponent does not help if the own
judgement is too weak.

Sixth tournament: OM perfect

The sixth tournament combined the advantages of the fourth and fifth tourna-
ment for South. The search depth for the own evaluation was 8 for South and
the α-β probes for the opponent extended to depth 7. The results in table 5.10
show that the power of South was significantly increased. All players performed
better than in tournament 1, and all players, except Ga3 also played better than in
tournament 2. The results of Ga3 were only slightly less than in tournament 2.

Seventh tournament: OM with strict risk management

In the seventh and last tournament, South applied OM search with strict risk man-
agement. South only deviated from the strategy that α-β search imposed if the
move that OM search advised had the same Minimax value. The search depth was
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Table 5.10: Results of the sixth tournament between 5 evaluation functions for bao. South
uses OM search with perfect knowledge of the opponent’s evaluation function. The search
depth is 8 for South, with α-β probes to depth 7, and the search depth is 6 for North. The
OM-search depth is 1.

S \ N Material Default Ga3 Tdl2b Ngnd6 Score

Material - 76 69 54 58 257

Default 59 - 66 48 46 219

Ga3 75 77 - 56 55 263

Tdl2b 79 88 83 - 57 307

Ngnd6a 80 88 85 68 - 321

Table 5.11: Results of the seventh tournament between 5 evaluation functions for bao.
South uses OM search with perfect knowledge of the opponent’s evaluation function and
strict risk management. The search depth is 6 for both sides. The OM-search depth is 1.

S \ N Material Default Ga3 Tdl2b Ngnd6 Score

Material - 66 49 32 33 180

Default 49 - 45 37 31 162

Ga3 63 62 - 35 33 193

Tdl2b 72 66 64 - 46 248

Ngnd6a 75 71 76 69 - 291

equal to the third tournament. Since it occurred relatively often in bao that multiple
moves at the same position had the same Minimax value, South did have some room
to speculate. The results in table 5.11 show that this approach was successful too.
All players performed better than in the first tournament. They also all performed
better than in the third tournament (or equally poor in case of Tdl2b).

A summary

Table 5.12 summarizes the results of the seven tournaments. Each cell contains the
total score of a tournament (400 games, playing South). On all rows the scores are
increasing from left to right (except for the first two columns). This means that
the order of quality for the evaluation functions indeed is as follows: (Material,
Default) < Ga3 < Tdl2b < Ngnd6a. The ordering of Material and Default

is unclear, but both evaluation functions are poor. The table shows that if only the
search depth was increased (4: OM extended) or only the prediction of the opponent
was improved (5: OM perf. opp.), the results were not as good as just using α-β
search with two additional ply of search. When both methods were combined, (6:
OM perfect), the results were better. Furthermore, the table shows that using
OM search with strict risk management (7: OM no risk) led to better results than
using plain OM search and plain α-β search.
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Table 5.12: Overview of the seven bao tournaments. Column d indicates the search depth
used by South and column p indicates the depth of the α-β probes.

Tournament d p Material Default Ga3 Tdl2b Ngnd6a

1: α-β plain 6 - 127 160 182 230 287

2: α-β extended 8 - 191 206 266 288 314

3: OM plain 6 6 161 143 191 248 256

4: OM extended 8 6 212 195 233 275 282

5: OM perf. opp. 6 7 174 153 183 248 299

6: OM perfect 8 7 257 219 263 307 321

7: OM no risk 6 6 180 162 193 248 291

Table 5.13: Overview of the average number of moves per game in which the move that
OM search selects differed from the move that α-β search (with search depth 6) suggested.
The standard deviation ranges between 0.5 and 2.5. The average number of moves per
game for South is 19.8 over all games in the tournaments.

Tournament Material Default Ga3 Tdl2b Ngnd6

3: OM plain 3.27±2.1 3.36±1.8 2.38±1.8 2.47±1.7 2.21±1.6

4: OM extended 4.85±2.5 5.43±2.3 4.90±2.4 4.46±2.3 4.55±2.3

5: OM perf. opp. 3.30±1.9 3.12±1.8 2.52±1.6 2.43±1.6 2.26±1.6

6: OM perfect 4.35±2.1 5.14±2.5 4.47±2.2 3.93±1.9 3.98±1.9

7: OM no risk 1.83±1.5 0.82±1.0 0.29±0.5 0.73±0.9 0.50±0.7

Deviations

The last overview, in table 5.13, provides insight into the number of times that
OM search deviated from the α-β-search strategy. The table shows that searching
more deeply for the own evaluation had a larger effect than searching more deeply for
the prediction of the opponent. The table also shows that the number of deviations
was larger in tournament 4 than in tournament 6. Since the results of tournament 4
were less good than the results of tournament 6, it seems that incorrect prediction of
the opponent led to extra deviations that did not contribute to a positive outcome.

5.6 Chapter Conclusions

In section 5.2, we studied the efficiency of two OM-search implementations on ran-
dom game trees: OMβ1p and OMβPb. The second algorithm appeared to be the
most efficient one, in contrast to the best-case situation in which OMβ1p is more
efficient. Moreover, the efficiency of OMβPb can be increased by using transposition
tables. Depending on the branching factor and search depth, OMβPb takes on the
average between 2 and 4 times the amount of evaluations that α-β search needs on
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the same tree. In most cases this will be equivalent to the cost of at most one ply
of search in the same amount of time.

The experiments with lines of action in section 5.3 illustrated what can happen if
OM search is used with evaluation functions that are of poor quality and that do not
obey the demand of admissibility: using OM search, even with perfect knowledge of
the opponent, performs worse than α-β search.

In the chess experiments of section 5.4, admissibility was enforced because the
player that uses OM search had access to an endgame database, which acted as
a perfect evaluation function. The result for OM search, however, were still not
convincing. In the experiments on the first position, OM search yielded slightly
better results than α-β search, but the experiments on the second position showed
for the most cases a worse result for OM search than for α-β search. The relation
between the OM-search depth and the results for OM search is not clear and does not
provide any clues for the results of these experiments. The efficiency of OM search
in the chess setting was good: it again (as in the random game trees) costs only one
ply of search depth.

The results for the bao experiments in section 5.5 gave far more insights into
the working of OM search. It appears that a combination of good opponent predic-
tion and extended search depth was needed for good results. Of these two factors,
the extended search depth seemed to be more important than the good prediction.
The quality of the evaluation functions appeared to be important for the effect of
OM search. Because the evaluation functions did not obey the admissibility de-
mand, the results for plain OM search were not good for most of the players. With
additional resources, however, OM search was made successful.

To summarize, in our experiments there were nine factors that influenced the
performance of OM search with perfect knowledge of the opponent: (1) the extent
of the knowledge of the opponent’s evaluation function (the more knowledge the
better), (2) the extent of the knowledge of the opponent’s search depth (the more
knowledge the better), (3) the quality of both evaluation functions (the higher qual-
ity the better), (4) the difference in quality of the evaluation functions (the larger
difference the better), (5) the existence of admissibility of the pair of evaluation
functions (admissibility is a pre), (6) the quality of the prediction of the opponent
(the higher quality the better), (7) the quality of the prediction of the own moves
(the higher quality the better), (8) the (effective) branching factor (the larger the
better), and (9) the search depth (the effect is ambiguous).



Chapter 6

Probabilistic
Opponent-Model Search

O btaining perfect knowledge of an opponent’s strategy is a
severe demand in itself. And even if the knowledge is available,
Opponent-Model search is not easily made successful. In this
chapter we propose a new approach: Probabilistic Opponent-
Model search (PrOM search). The approach is based on a
probabilistic opponent model that incorporates the player’s
uncertainty about the opponent’s strategy, which possibly di-
minishes the disadvantages of OM search. We will first study
the theoretical properties of the method and then investigate
how it can be implemented efficiently. Finally we will study
how probabilistic opponent models can be learned from ob-
serving the opponent.

Chapter contents: The probabilistic opponent model is introduced in section 6.1. In

section 6.2, we formalize a search method based on this probabilistic opponent model, called

PrOM search. We then study some related methods and some of its properties. Section

6.3 is dedicated to the basic implementations of PrOM search and to implementations with

pruning. Further search enhancements are studied in section 6.4. In section 6.5 we give

a best-case analysis of the pruning algorithms. Variants of opponent-model learning are

discussed in section 6.6. The chapter ends with some conclusions in section 6.7.1

1Parts of this chapter have been published in Donkers, H.H.L.M., Uiterwijk, J.W.H.M., Herik,
H.J. van den (2001), Probabilistic Opponent-Model Search, Information Sciences, Vol. 135, Nos.
3–4, pp. 123–149.
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6.1 A New Opponent Model

The experiments in chapter 4 illustrated the two main disadvantages of OM search:
(1) max must predict the opponent’s move as precise as possible, and (2) max must
avoid to be trapped in its own overestimated positions.

The first disadvantage is caused by the strict opponent model that is used in
OM search: max is assumed to have perfect knowledge of min’s strategy (i.e., the
evaluation function, search depth, and move order used by min). Perfect knowledge
is often not available in which case OM search will be applied with an incorrect op-
ponent model. If the opponent model is not correct, the predictions of the opponent’s
moves can be wrong.

However, although max may not have perfect knowledge of the opponent, max

may have knowledge of the opponent to some degree of certainty. Our proposal
is to represent max’s uncertainty in the opponent’s model by changing the fixed
opponent model of OM search into a probabilistic model. This model approximates
the opponent’s strategy by using a probabilistic composition of strategies known to
max.

6.1.1 Mixed strategy

Our proposed probabilistic opponent model is based on the game-theoretical concept
of a mixed strategy . In chapter 1 we defined a strategy for a player as a function that
assigns a move to every history in the game after which the player is to move. Such
a deterministic strategy is called a pure strategy in game theory. A mixed strategy
σ is a set of pure strategies {s1, . . . , sn} together with a probability distribution
{Pr(s1), . . . ,Pr(sn)} over these strategies. A player that follows a mixed strategy,
first throws a dice according to the probability distribution in order to select a pure
strategy and then plays accordingly to this selected pure strategy.

In game theory, players that follow a mixed strategy are assumed to select a pure
strategy before the game is actually played. This is in contrast with computer (and
human) game-playing in which the strategy is determined during actual playing by
means of game-tree search. If a player in this context would throw a dice before the
start of the game and would stick to the selected pure strategy, the opponent would
be able to deduce this strategy from the player’s moves during the game and could
adapt the own strategy accordingly. The execution of a mixed strategy for computer
game-playing must therefore be stated differently in order to obtain the same results
as in game theory. Instead of assuming that a player only throws a dice before the
game starts, the player is now assumed to throw a dice at every turn to select the
strategy for the next move.

Throwing a dice at every turn might seem a fundamental change. However, it is
in accordance with the game-theoretic result that a mixed strategy is equivalent to
a behaviour strategy in games of perfect information. A behaviour strategy bp for
a player p is a function that assigns a probability distribution over the set of moves
m(h) to all histories h where player p is to move. A player that follows a behaviour
strategy throws a dice at every turn according to this probability distribution and
plays the selected move. For example, both *-Minimax and the Heuristic Program
of Jansen described in chapter 3 involve behaviour strategies.
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Any mixed strategy σ can be transformed into an equivalent behaviour strategy
b by the following equation:

b(mj |h) = Pr(mj |h, σ) =
∑

si∈σ and si(h)=mj

Pr(si) (6.1)

In games of perfect information, the best response to a behaviour strategy (and
therefore also to a mixed strategy) is a pure strategy that can be determined as
follows (similar to the procedure in subsection 1.2.3). Assume that min is using a
behaviour strategy with move probabilities Pr(mj |h). For leaf nodes, the strategy
for max is trivial because nothing is to be selected and its value is given by the value
function of the game. For internal nodes, the strategy is to first determine the value
of all direct child nodes. The value of min nodes h, is equal to the expected payoff:
v(h) =

∑
j Pr(mj |h) v(h + mj). No move has to be selected here, since we describe

the strategy for max. At max nodes, the strategy is to select a move that leads to
a child node with the highest value. The value of the max node is the value of the
selected child node.

6.1.2 Including oneself

The second disadvantage of OM search mentioned in section 6.1 is the possibility
of max to get trapped in overestimated positions. As we explained in chapter 4,
this effect will not easily occur in Minimax search because in Minimax the opponent
model is equal to max’s strategy which causes the overestimated positions to be
filtered out at min nodes. A way to repair this effect of OM search might be to
make max’s own strategy part of the opponent model. In our new opponent model,
the evaluation function of max is therefore included as one of the pure strategies.
An advantage of this approach is that possible overestimations are accounted for, a
disadvantage is that it increases the complexity of the algorithm.

6.1.3 A probabilistic opponent model

All considerations above lead to the following probabilistic opponent model for min.
It consists of a set of n opponent types, ω0 . . . ωn−1, together with a probability
distribution Pr(ωi) over these types. Each opponent type ωi is a Minimax player
that is characterized by an evaluation function Vi(·). The evaluation function of the
first opponent type (V0(·)) is the same evaluation function that max is using.

min’s strategy is a mixed strategy which consists of the Minimax strategies of the
n opponent types and the corresponding probabilities Pr(ωi). At every min node,
min randomly picks one opponent type according to the probabilities Pr(ωi) and
plays the move that is imposed by the Minimax strategy of that opponent type. All
opponent types are assumed to use the same move ordering (or to select randomly
from equipotent moves) and to use the same set of terminal positions E, although
these conditions can be relaxed.

This probabilistic opponent model must be interpreted as max’s approximation
of min’s true behaviour, which is unknown to max. max has only explicit knowledge
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of a number of opponent types, based on evaluation functions, including the own one.
The probabilities on these opponent types represent max’s subjective belief that the
true opponent is using that strategy. (A similar probabilistic opponent model is
used by Carmel and Markovitch (1999) in the context of multi-agent systems.)

One simple example of a probabilistic opponent model is the case in which n = 2,
and V1(·) = Random(). This example implies that max beliefs that min is using
V0(·), like herself, but sometimes (with a probability of Pr(ω1)) makes a random
selection at every move.

6.2 The PrOM-Search Method

When the procedure for determining the best reply to a behaviour strategy is applied
to the probabilistic opponent model, then this leads to the a search method that we
call Probabilistic Opponent-Model Search (PrOM search) (Donkers et al., 2001).

6.2.1 Basic formulation

The first task is to transform the mixed strategy of the probabilistic opponent model
into an equivalent behaviour strategy, that is, to determine the move probabilities
Pr(mj |h).2 These probabilities are computed as follows. At a min node h, each
opponent type ωi plays Minimax and hence will select a move mj ∈ m(h) with a
minimal value for that type ωi. If more than one move have the same minimal
value for ωi, then either the first one is selected or one of these moves is selected
at random. The probability that the opponent actually selects a certain move mj

depends on the probabilities Pr(ωi) of the opponent types and the probability that
a move is selected by an opponent type:

Pr(mj |h) =
∑

i Pr(ωi) Pr(mj |ωi, h) (6.2)

The probability Pr(mj |ωi, h) is either 0 or 1. It is 0 if the move is not minimal. It
is 1 if the move is the first minimal move and the opponent type selects the first of
the minimal moves otherwise it is 0. If the move is minimal and the opponent types
select randomly between equipotent moves, the probability will be 1/K instead of 1,
where K is the number of equipotent moves mk with minimal value of vωi

(h + mk).
The values for vωi

(h) are computed by Minimax:

vωi
(h) =




max
mj∈m(h)

vωi
(h + mj) p(h) = max

min
mj∈m(h)

vωi
(h + mj) p(h) = min

Vi(h) h ∈ E

(6.3)

The PrOM-search value v0(h) of min node h is the expected value of the child
nodes’ values v0(h + mj):

v0(h) =
∑

j Pr(mj |h) v0(h+mj) (6.4)

2In contrast with the Heuristic Program in Jansen (1992a) these probabilities are computed and
not provided as part of the opponent model.
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At max nodes, PrOM search just maximizes over the child node values and at leaf
nodes the evaluation function V0 is used directly. So the complete PrOM-search
value is given by:

v0(h) =




max
mj∈m(h)

v0(h + mj) p(h) = max

∑
j Pr(mj |h) v0(h + mj) p(h) = min

V0(h) h ∈ E

(6.5)

6.2.2 An example

In figure 6.1, an example search tree is presented that demonstrates the working
of PrOM search. The squares denote max nodes and the circles min nodes. The
values inside the nodes are standard minimax values. In the example, there are two
opponent types: ω0 and ω1 with probability 0.3 and 0.7, respectively. To the right
of the nodes, the minimax values for these opponent types are given. By definition,
the values for ω0 are equal to the minimax values. The PrOM-search values are
above the nodes. The PrOM-search value of the left-hand min node is trivial to
compute because both opponent types select the same move. The right-hand min
node is more interesting, because ω0 would select the right-hand child (vω0 = 6),
but ω1 would select the left-hand child (vω1 = 8). The expected value of this min
node is equal to the weighed values of the two children (7.4), which is higher than
the minimax value of this node (6), and even higher than the minimax value of the
left-hand min node (7). At the root, PrOM search will thus select another move
than Minimax does, which is indicated by the dotted line in the figure.

Figure 6.1: PrOM search and Minimax compared.
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6.2.3 Related search methods

In section 2.1 we discussed five different search methods that preceded OM search.
Among these five methods, both the *-Minimax method (Reibman and Ballard,
1983) and the heuristic program of Jansen (1992a; 1993) use move probabilities,
like PrOM search. In Reibman and Ballard’s approach, the move probabilities are
assigned using a fixed formula based on the fallibility of the opponent and the ranking
of the moves. In Jansen’s approach the move probabilities are assigned on the basis
of some heuristics concerning the positions reached by the moves. Both approaches
constitute a behaviour strategy for min, not a mixed strategy like PrOM search.

There is also some similarity between PrOM search and M∗ search (see subsection
2.4.4). Both PrOM search and M∗ search use multiple opponent models. In M∗,
the opponent is assumed to have a model of the player that can recursively include a
second-level opponent model and so on. The way in which multiple opponent models
are used in M∗ search is orthogonal to PrOM search: the approach of Carmel and
Markovitch (1993) could be combined with PrOM search by taking n-level players
instead of 1-level players for the m opponent types in PrOM search. This would mean
that at the leaf nodes n × m different evaluation functions have to be computed.

6.2.4 PrOM-search value

The PrOM-search value has a distinct relation with the minimax value and with
OM-search values of a search tree. The following two lemmata are important and
obvious.

Lemma 1. If the probability of opponent type ω0 is 1, then PrOM search is
equivalent to Minimax, and the PrOM-search value will be equal to the Minimax
value.

Lemma 2. When the probability of another opponent type ωj (j > 0) is 1, then
PrOM search is equivalent to OM search with opponent ωj , and the PrOM-search
value will be equal to the OM-search value of opponent type ωj .

The next property of PrOM search is less obvious:

Theorem 3. The PrOM-search value v0 is never less than the Minimax value vmm

of that tree.

Proof. Any search method y that maximizes on max nodes, but backs-up an arbit-
rary affine combination of child-node values at min nodes, produces a search-tree
value that is never less than the Minimax value. Namely, let y be defined by:

vy(h) =




max
mj∈m(h)

vy(h + mj) p(h) = max

∑
j αjvy(h + mj) (

∑
j αj = 1, αj ≥ 0) p(h) = min

V (h) h ∈ E

(6.6)

then vy(h) ≥ vmm(h) for all histories h ∈ H. At terminal histories h ∈ E this is
true, because vy(h) = vmm(h) = V (h). Now assume that the inequality holds for all
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histories h + mj . If h is a max node, then it holds for h because the maximum over
vy(h + mj) is necessarily equal to or greater than the maximum over vmm(h + mj).
If h is a min node, then the inequality also holds, because:

∀mj∈m(h) : vy(h + mj) ≥ vmm(h + mj) ≥ vmm(h)

⇒ ∑
j αjvy(h + mj) ≥ vmm(h)

⇒ vy(h) ≥ vmm(h)

(6.7)

PrOM search is an instance of search method y because the value at min nodes is
computed by equation 6.4 where the probabilities form an affine combination of the
child-node values (take αj = Pr(Pj)). This means that the PrOM-search value is
never less than the Minimax value.

Because OM-search is also an instance of algorithm y (take αj = 1 if vop(Pj) is
minimal, else take αj = 0), the proof of theorem 3 is an alternative proof for the
first characteristic of OM search in subsection 2.3.3, namely, that the OM-search
value is never less than the Minimax value.

Theorem 3 describes how the PrOM-search value of a given game tree behaves as
a function of the opponent-type probabilities. In all remote corners of the probability
space where one of the opponent types has probability 1, the PrOM-search value is
either equal to the Minimax value (if Pr(ω0) = 1), or equal to an OM-search value,
which usually is higher than Minimax. Everywhere else, PrOM search returns a
search-tree value that is at least as high as the Minimax value.

The exact form of the search-value function is difficult to predict. The determ-
ination of the PrOM-search value for a given opponent-type probability distribution
is equivalent to the task of finding the maximum over a set of polynomials.3 Every
solution tree for max in the game tree represents a separate polynomial over the
opponent-type probabilities. It is a polynomial function because of the repeated
application of equation 6.4. Determining the PrOM-search value for a given prob-
ability distribution is the same as finding the strategy with the highest polynomial
value for that distribution.

The search-value function is necessarily continuous and piece-wise smooth in the
probability space, but it is not convex per se. It can have local minima and local
maxima. The minima are always equal to or greater than the Minimax value, but
the maxima can be higher than any of the OM-search values. In chapter 7 we present
an experiment that proves that in PrOM search values can occur that are higher
than the maximum OM-search value for each opponent type separately.

The search-value function being not convex makes it difficult to predict or ap-
proximate the PrOM-search value for a given probability distribution on the basis
of the Minimax value and the OM-search values alone.

6.2.5 Risk

Using PrOM search implies three types of risks. First, the PrOM-search value is an
expected value and not a guaranteed value. When max selects the most promising

3This is part of the mathematical field of nonlinear programming.
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move having the highest expected value, min could by chance select a move that has
a low probability but is inconvenient for max. This inherent risk of PrOM search
could be adjusted to the risk-acceptance level of max by using a utility function
U(V (h)) in formula 6.4 instead of the static evaluation function V (h) to model
either risk-seeking or risk-avoiding behaviour. Of course, the PrOM-search value
would lose its relation with the minimax value of the tree and with the OM-search
values when U(V (h)) is used instead of V (h). In this thesis, we only investigate the
risk-neutral form V (h).

Second, the approximation of the opponent by the opponent types might deviate
(considerably) from reality, causing the opponent to behave not as expected. Either
the evaluation functions could be badly chosen, or the opponent-type probabilit-
ies could be wrong. The first error is inherent to OM search too, see subsection
2.3.4. The latter error is specific to PrOM search. In section 6.6 we will study the
adaptation of these probabilities in case of observed prediction errors.

Third, especially when the probability on the first opponent type (ω0) is low,
the same risk of running into type-I errors as discussed in section 4.2 is present
in PrOM search. However, our hypothesis is that this risk is diminished by using
the probabilistic opponent model. Experiments that test this hypothesis will be
described in chapter 7.

6.3 Implementing PrOM Search

Since the PrOM-search method is derived from OM search, the implementation
of PrOM search is similar to the OM-search implementations, and similar issues
have to be dealt with. In subsection 6.3.1 we introduce two basic implementations.
In subsection 6.3.2 we discuss how to deal with differing search depths and with
restricted speculation is discussed. In subsection 6.3.3 we deal with pruning in
PrOM search and in subsections 6.3.4 and 6.3.5 we add pruning to the two basic
implementations of subsection 6.3.1. We briefly discuss bounded-sum pruning in
subsection 6.3.6.

6.3.1 Basic implementations

Analogously to OM search, PrOM search can be implemented in a one-pass version
and in a version with α-β probing. In this section, we provide implementations for
both versions. However, we only treat the case in which the opponent types select
just one move each at every min node and not the case in which the opponent types
select multiple, equipotent moves.

The one-pass version is presented in algorithm 6.1. In this version, the node
values for max (v0) and for all opponent types (vωi

) are computed in one pass.
For this computation, the algorithm returns a vector containing all values for the
opponent types, next to v0 and the best move for max. At max nodes, the only task
is to maximize all node values. At min nodes, the values for the opponent types
have to be minimized, but also the move probabilities have to be computed and
the expected value of v0 has to be computed. The vector w̄∗ is used to store the
value v0(h + mj) in case node h + mj had the lowest value for opponent type ωi so
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PromSearch1p(h)
1 if (h ∈ E) return (V0(h), [V0(h), V1(h), . . . , Vn−1(h)],null)
2 L ← m(h) ; m ← firstMove(L) ; m∗

0 ← m
3 if (p(h) = max)
4 v∗

0 ← −∞ ; v̄∗ ← [−∞, . . . ,−∞]
5 while (m �= null)
6 (v0, v̄,mm) ← PromSearch1p(h + m)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗

0 ← m
8 for i ∈ {0, . . . , n − 1} if (v̄i > v̄∗

i ) v̄∗
i ← v̄i

9 m ← nextMove(L)
10 if (p(h) = min)
11 v̄∗ ← [+∞, . . . ,+∞]; w̄∗ ← [0, . . . , 0]
12 while (m �= null)
13 (v0, v̄,mm) ← PromSearch1p(h + m)
14 for i ∈ {0, . . . , n − 1} if (v̄i < v̄∗

i ) v̄∗
i ← v̄i ; w̄∗

i ← v0

15 m ← nextMove(L)
16 v∗

0 ← 0 ; m∗
0 ← null

17 for i ∈ {0, . . . , n − 1} v∗
0 ← v∗

0 + Pr(ωi) w̄∗
i

18 return (v∗
0 , v̄∗,m∗

0)

Algorithm 6.1: One-pass PrOM search.

far. In line 17, these values are multiplied by the opponent-type probabilities Pr(ωi)
and summed to obtain the value of v0. This approach is justified by the following
formulae:

v0(h) =
∑

j

Pr(mj |h) v0(h + mj)

=
∑

j

∑
i

Pr(ωi) Pr(mj |ωi, h) v0(h + mj)

=
∑

i

Pr(ωi) (
∑

j

Pr(mj |ωi, h) v0(h + mj))

(6.8)

since Pr(mj |ωi, h) = 1 when node mj is selected by opponent type ωi. With some
additional adminstration, the same algorithm can be used in the case that the op-
ponent types are allowed to select multiple equipotent moves.

The version of PrOM search with α-β probes is given in algorithm 6.2. The node
values for the opponent types are determined in standard calls to the α-β procedure,
similar to OM search with α-β probes (algorithm 3.3). This means that these values
do not have to be returned by this algorithm. At max nodes, only the maximum
value for max has to determined. The handling of min nodes is more elaborate. In
a first loop, a separate α-β probe is performed for each opponent type. The moves
returned by the probes are collected in a set L (without duplicates). In a second
loop, for each move in L, the algorithm is called recursively and the resulting values
are collected. The computation of the expected value for max is performed again on
the basis of formula 6.8. The condition (m = m̄∗

i ) in line 17 indicates a probability
of 1 for the current move m and opponent type ωi.
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PromSearchPb(h)
1 if (h ∈ E) return (V0(h),null)
2 if (p(h) = max)
3 L ← m(h) ; m ← firstMove(L) ; m∗

0 ← m
4 v∗

0 ← −∞
5 while (m �= null)
6 (v0,mm) ← PromSearchPb(h + m)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗

0 ← m
8 m ← nextMove(L)
9 if (p(h) = min)
10 L ← ∅

11 for i ∈ {0, . . . , n − 1}
12 (v, m̄∗

i ) ← AlphaBetaSearch(h,−∞,∞, Vi(·))
13 L ← L ∪ {m̄∗

i }
14 v∗

0 ← 0; m∗
0 ← null ; m ← firstMove(L)

15 while (m �= null)
16 (v0,mm) ← PromSearchPb(h + m)
17 for i ∈ {0, . . . , n − 1} if (m = m̄∗

i ) v∗
0 ← v∗

0 + Pr(ωi) v0

18 m ← nextMove(L)
19 return (v∗

0 ,m∗
0)

Algorithm 6.2: PrOM search with α-β probing.

In order to make this algorithm suitable for multiple selections by the opponent
types, first the α-β probes must be changed so that they return a list of moves
selected by the opponent type. A vector n̄ can store the number of moves selected
by each type. The lists have to be combined into a single list L with no duplicates.
Finally, the assignment in line 17 has to change to: v∗

0 ← v∗
0 + Pr(ωi) w̄∗

i /n̄i.

6.3.2 Differing search depths and restricted speculation

In subsections 3.1.3 and 3.1.4 we discussed two refinements of OM search that also
are applicable to PrOM search: unequal search depths and restricted speculation.
In PrOM search, the two refinements are preferably combined since the computation
of move probabilities at min nodes requires the determination of the value for all
opponent types. Different search depth per opponent type (different sets of terminal
histories Eωi

) can be allowed as long as all opponent types include at least the set of
speculative positions Hspec. Algorithm 6.3 shows an implementation of PrOM search
with α-β probes and these refinements. The only visible change with respect to
algorithm 6.2 is in line 1. The other change is within the α-β probes per opponent
type. These probes should obey the opponent-type dependent sets Eωi

.

6.3.3 Pruning in PrOM search

The core of α-β search is the pruning of the search tree. The appropriateness of
PrOM search will increase with the possibility to prune the search tree according to
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PromSearchEnh(h)
1 if (h �∈ Hspec or h ∈ E0) return AlphaBetaSearch(h,−∞,∞, V0(·))
2 if (p(h) = max)
3 L ← m(h) ; m ← firstMove(L) ; m∗

0 ← m
4 v∗

0 ← −∞
5 while (m �= null)
6 (v0,mm) ← PromSearchEnh(h + m)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗

0 ← m
8 m ← nextMove(L)
9 if (p(h) = min)
10 L ← ∅

11 for i ∈ {0, . . . , n − 1}
12 (v, m̄∗

i ) ← AlphaBetaSearch(h,−∞,∞, Vi(·))
13 L ← L ∪ {m̄∗

i }
14 v∗

0 ← 0; m∗
0 ← null ; m ← firstMove(L)

15 while (m �= null)
16 (v0,mm) ← PromSearchEnh(h + m)
17 for i ∈ {0, . . . , n − 1} if (m = m̄∗

i ) v∗
0 ← v∗

0 + Pr(ωi) v0

18 m ← nextMove(L)
19 return (v∗

0 ,m∗
0)

Algorithm 6.3: PrOM search with α-β probing enhanced with differing search depths and
restricted speculation.

the standards of α-β search. Since PrOM search is derived from OM search it seems
plausible that the pruning techniques used in OM search can be applied to PrOM
search too. Just as in OM search, a branch at a max node can be pruned as soon
as it is clear that the max node will not be selected at the parent min node. In that
case, none of the information in the subtree under that max node has any influence
on the value of its predecessors including the root of the search tree. Pruning at a
min node is not possible in PrOM search because the values of all child nodes (with
non-zero move probability) of a min node are needed to decide whether that min
node will be selected by its parent max node. It is not possible to determine an
intermediate upper bound for the value of the min node that would lead to pruning.

In OM search, pruning at a max node can happen as soon as it becomes clear
that the opponent will select another move at the parent min node. This pruning is
controlled by a β value that is passed from sibling to sibling at min nodes (and to
their child nodes). Hence the pruning method in OM search was called β pruning.
In PrOM search, it is only certain that a max node h + m will not be needed
at a parent min node h when the move probability Pr(m|h) is zero. This move
probability is determined by the selection of all opponent types and the opponent-
type probabilities. The probability of a move is zero when none of the opponent
types with a non-zero opponent-type probability selects that move. If we assume
that all opponent-type probabilities are larger than zero, then the remaining demand
is that the max node must be selected by none of the opponent types. We will discuss
pruning in PrOM search separately for the one-pass version (subsection 6.3.4) and
the version with α-β probing (subsection 6.3.5).
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6.3.4 Pruning in one-pass PrOM search

Whether a max node will be selected by any opponent type can be checked for
all opponent types simultaneously in one-pass PrOM search by using a separate βi

value per opponent type ωi. These βi values are the minimum values of vωi
so far

among the sibling nodes. As soon as all βi values are exceeded by the corresponding
vωi

values of (at least) one of the child nodes, the remaining subtree under the max
node can be pruned. So, “β-pruning” is an appropriate name for pruning in one-pass
PrOM search too.

In one-pass PrOM search, the βi values can safely be passed from a max node to
the next sibling max node. This is called shallow β pruning in α-β search. Figure
6.2 shows an example of shallow pruning. The values for vω0 and vω1 at node b are
passed as βi values to node c. After the evaluation at node f it is clear that both βi

values are exceeded, which means that node c will not be selected by any opponent
type at node a. Further investigation of node c is meaningless.

Passing βi values to child nodes in order to perform deep β pruning is impossible
in one-pass PrOM search. Figure 6.3 shows an example of the problems with deep
β pruning. The values for vω0 and vω1 at node b are both the lowest values so far
between the child nodes of node a so they act as βi values for node c. In deep
pruning, these βi values are passed to the nodes d and e. At node g, both values
vω0 and vω1 exceed the βi values. It would seem reasonable to prune the rest of the
subtree under node e, but this is not true. The values at node f are such that for
opponent type 1, node f would be preferred over node e, so the value of vω1 at node

Figure 6.2: An example to illustrate shal-
low β-pruning in one-pass PrOM search.
Only the values for vω0 and vω1 are given,
next to the nodes.

Figure 6.3: An example to illustrate why
deep β-pruning in one-pass PrOM search is
not possible. Only the values for vω0 and
vω1 are given, next to the nodes. The ques-
tion mark indicates a spot where pruning
is disputable.
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PromSearchBeta1p(h, β̄)
1 if (h ∈ E) return (V0(h), [V0(h), V1(h), . . . , Vn−1(h)],null)
2 L ← m(h) ; m ← firstMove(L) ; m∗

0 ← m
3 if (p(h) = max)
4 v∗

0 ← −∞ ; v̄∗ ← [−∞, . . . ,−∞]
5 while (m �= null)
6 (v0, v̄,mm) ← PromSearchBeta1p(h + m, β̄)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗

0 ← m
8 for i ∈ {0, . . . , n − 1} if (v̄i > v̄∗

i ) v̄∗
i ← v̄i

9 prune ← true ; for i ∈ {0, . . . , n − 1} if (v̄∗
i < βi) prune ← false

10 if (prune) m ← null else m ← nextMove(L)
11 if (p(h) = min)
12 v̄∗ ← [+∞, . . . ,+∞]; w̄∗ ← [0, . . . , 0]
13 while (m �= null)
14 (v0, v̄,mm) ← PromSearchBeta1p(h + m, v̄∗)
15 for i ∈ {0, . . . , n − 1} if (v̄i < v̄∗

i ) v̄∗
i ← v̄i ; w̄∗

i ← v0

16 m ← nextMove(L)
17 v∗

0 ← 0 ; m∗
0 ← null

18 for i ∈ {0, . . . , n − 1} v∗
0 ← v∗

0 + Pr(ωi) w̄∗
i

19 return (v∗
0 , v̄∗,m∗

0)

Algorithm 6.4: One-pass β-pruning PrOM search.

d is smaller than β1. At the same time, opponent type 0 will prefer node e over
node f. The values at node c indicate that the move probabilities for both nodes b
and c are non-zero at node a, so the information of node e is needed to compute the
value of node a. This means that pruning at node e is prohibited.

Algorithm 6.4 shows the implementation of β-pruning in one-pass PrOM search.
The check whether pruning is allowed is performed in line 9 and the actual pruning
takes place in line 10. The β parameter in the recursive call in line 6 is set to β̄,
but since deep pruning is not possible, this value is ignored at min nodes. Below,
we will denote this algorithm by PrOMβ1p.

6.3.5 Pruning in PrOM search with α-β probing

The shallow β pruning as described above is intrinsic to PrOM search with α-β probes
as described in algorithm 6.2. At a min node, every separate α-β probe will stop
executing the evaluation of a child max node as soon as it is clear that this max node
does not influence the value of the parent min node. Any part of the subtree that is
pruned in β-pruning one-pass PrOM search is also not investigated by PrOM search
with α-β probing since all individual α-β probes will ignore (at least) these parts of
the tree.

Nevertheless, more pruning can be added to algorithm 6.2. Similar to β pruning
in OM search with α-β probes (see subsection 3.2.3), it is not necessary to call always
the α-β probes with open [−∞,+∞] windows, but the decision whether to close a
windows is more delicate. Figure 6.4 (originally figure 3.2, repeated here for the
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Figure 6.4: An example to illustrate the β parameter of α-β probes.

readers’ convenience) can be used to illustrate how the β parameters for the probes
in PrOM search can be set. Assume that an opponent type has selected the move
leading to c. Since no bound can be given for the subgame values of nodes e, f, i,
and j, α-β probes for this opponent type must have [−∞,+∞] windows. The bound
on the values for nodes g and h allows a window of [−∞, v + 1] for the α-β probes
at these nodes.

PromSearchBetaPb(h, β̄)
1 if (h ∈ E) return (V0(h),null)
2 if p(h) = max

3 L ← m(h) ; m ← firstMove(L) ; m∗
0 ← m

4 v∗
0 ← −∞

5 while (m �= null)
6 (v0,mm) ← PromSearchBetaPb(h + m, β̄)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗

0 ← m
8 m ← nextMove(L)
9 if p(h) = min

10 L ← ∅

11 for i ∈ {0, . . . , n − 1}
12 (v̄∗

i , m̄∗
i ) ← AlphaBetaSearch(h,−∞, β̄i, Vi(·))

13 L ← L ∪ {m̄∗
i }

14 v∗
0 ← 0; m∗

0 ← null ; m ← firstMove(L)
15 while (m �= null)
16 for i ∈ {0, . . . , n − 1} if (m = m̄∗

i ) β̄i ← v̄∗
i + 1 else β̄i ← ∞

17 (v0,mm) ← PromSearchBetaPb(h + m, β̄)
18 for i ∈ {0, . . . , n − 1} if (m = m̄∗

i ) v∗
0 ← v∗

0 + Pr(ωi) v0

19 m ← nextMove(L)
20 return (v∗

0 ,m∗
0)

Algorithm 6.5: β-pruning PrOM search with α-β probing.
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To summarize, the β parameter for the α-β probe of an opponent type at a min
node can be set to v+1 when the parent max node was selected by that opponent type
and the value of the parent max node is v. Algorithm 6.5 shows the implementation
of this pruning in PrOM search with α-β probing4. We will denote this algorithm
by the abbreviation PrOMβPb.

6.3.6 Bounded-sum pruning

A pruning method similar to the method developed by Carmel and Markovitch
(1996a) for M∗ search, which we called bounded-sum pruning in subsection 3.2.4,
can be applied to PrOM search too. The condition on the opponent types should be
restated for bounded pruning as follows: for all histories in E and for all opponent
types ωi (i > 0), the distance between V0(h) and Vi(h) should not exceed a given
bound B. If this is the case, it is possible to allow limited deep pruning in PrOMβ1p.
The condition on the evaluation of leaf nodes implies that the values of vω0 and vωi

’s
on internal nodes are also bound to a difference B. So if, in figure 6.3, the value for
vω1 of node c is known to exceed the current value of β̄1, something can be said on
the value of vω0 for that node too, since vω0 will not be smaller than vω1 −B. If the
extent to which vω1 exceeds the current β̄1 is sufficiently large, it can be deduced
that node c will also not be selected by opponent type ω0 at node a. Pruning at
node e would then be safe.

In PrOMβPb, bounded-sum pruning can be used in the form of adjusting the α
and β parameters in the subsequent α-β probes at a min node. The value returned
from the first probe minus B can, for instance, be used as lower bound for the other
probes.

6.4 Search Enhancements

In this section we briefly discuss the same search enhancements as discussed in
section 3.4. Most of the search enhancements applicable to OM search are also of use
in PrOM search, but there are some differences. Furthermore, there is one additional
enhancement that is specific to PrOM search. We start with this enhancement.

6.4.1 Shared evaluation

In PrOM search an opponent type is represented by the evaluation function Vωi
,

but nothing is stated on the nature of this evaluation function. In some cases, the
evaluation of a position is a weighted sum over a series of numbers, each number
being the result of a costly computation for a distinct evaluation component. The
difference between opponent types could be caused by the way in which these costly
computations are performed, but more likely, the difference between opponent types
stems simply from differences in weights that are assigned to the components of the
evaluation. In the latter case, the opponent types can share a large amount of the
computations needed for their evaluation function.

4In Donkers et al. (2001), the same algorithm is called β-passing PrOM search.
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If the opponent types can share the costly part of their evaluation function, the
efficiency of PrOM search will improve greatly. In the one-pass implementations of
PrOM search, it is trivial to apply shared evaluation since all evaluation functions
are applied at the same time on a leaf node (e.g., line 1 in algorithm 6.1). But in the
probing implementations, shared evaluation can be applied too. When for the first
time the position of a leaf node is evaluated for one opponent type, the results of the
distinct evaluation components can be stored (for instance, in a transposition table)
and reused for other opponent types that need to evaluate the position at that leaf
node.

The same holds for OM search: when at a leaf node h the value Vop(h) has been
computed, the result of the shared part of the evaluation can be reused to compute
V0(h). However, the gain of using shared computation will be less in OM search
than in PrOM search because OM search deals with two evaluation functions and
PrOM search possibly with many. Moreover, pruning happens more in OM search
than in PrOM search. This means that the number of leaf nodes for which Vop(h)
and V0(h) have to be performed both is relatively low.

Carmel and Markovitch (see 1998, page 332) mention a similar efficiency im-
provement in M∗

1-pass where multiple evaluations take place at leaf nodes.

6.4.2 Move ordering

Move ordering in PrOM search is more delicate than in OM search since the move
ordering should be profitable for all opponent types together. Inside α-β probes for
a given opponent type, move ordering can be tuned to that opponent type, but in
PrOMβ1p and in the max nodes of PrOMβPb, the availability of a good ordering
depends on the correlation between the opponent types. The higher the correlation,
the better ordering is possible. History tables and the killer-move heuristic are
applicable inside α-β probes, but separate tables are needed per opponent type.

6.4.3 Transposition tables and iterative deepening

The use of transposition tables is evidently important inside the α-β probes of
PrOMβPb. In chapter 7 we will conduct experiments to measure the impact of
transposition tables on the efficiency of PrOMβPb. A transposition table can also
be used to store the value for max, but similar to OM search, the use of this table
is limited.

When shared evaluation is applicable, instead of using a separate transposition
table per opponent type, one common transposition table can be used for all op-
ponent types together. In this way, PrOMβPb is capable of profiting from shared
evaluation (see subsection 6.4.1).

6.4.4 Search extensions and forward pruning

The techniques for search extensions and forward pruning are applicable inside the
α-β probes of PrOMβPb, but the same care should be taken with these enhancements
as in OM search. In PrOMβ1p, it is only possible to apply these techniques for max



6.5 — Best-case Analyses 119

and for all opponent types simultaneously. The computation of move probabilities
might however be an issue when not all moves at a position are evaluated. It is
not clear how move probabilities should be assigned in a node that is investigated
by one of the opponent types but not by at least one of the other types: should
all opponent types be involved or should only the opponent types be involved that
investigate the node? This issue is analogous to the counterfactual problems that
we discussed in subsection 2.5.2.

6.4.5 Endgame databases

Similar to OM search, the availability of an endgame database can be taken as
part of an opponent type. For instance, when it is not completely certain to which
endgame databases the opponent has access to (e.g., the three-men’s or four-men’s
databases in chess), it could be useful to design an opponent model of different types,
all sharing the same evaluation function, but each one having access to different
endgame databases.

6.4.6 Aspiration search

The application of PV search (see subsection 3.4.6) inside α-β probes of PrOMβPb is
just as valid and profitable as in OM search. Of course, this enhancement should be
combined with transposition tables and iterative deepening. Anywhere else, there is
not much room for aspiration search in PrOM search.

6.5 Best-case Analyses

The best-case analysis for β-pruning PrOM search is analogous to the best-case
analysis for OM search in section 3.3. We will first define the best case for pruning in
PrOM search. Then we will deduce the best-case complexity for the one-pass version
(subsection 6.5.1) and the version with α-β probing (subsection 6.5.2). Finally we
will discuss the results (subsection 6.5.3).

The best case for pruning in PrOM search is defined as a game tree in which the
children h + mj of every node are ordered simultaneously on all values vωj

(h + mj),
for max nodes in decreasing order and for min nodes in increasing order. It is clear
that such node ordering does not exist in all game trees. The best-case analysis
that is presented here assumes a tree in which such a simultaneous ordering for all
opponent types is possible. Furthermore, we assume that the game tree is uniform
with depth d and branching factor w, and that there are n opponent types.

6.5.1 Best-case analysis of PrOMβ1p

Figure 6.5 gives a schematic representation of the best-case game tree for one-pass
β-pruning PrOM search. The difference with the similar game tree of figure 3.4 is
the absence of deep pruning: the β̄ values are not passed to the children of max
nodes. This means that the subtree at the leftmost grandchild of each B-node is
congruent to a subtree at an A-node since no pruning can take place directly under
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Figure 6.5: Theoretically best-case tree for one-pass β-pruning OM search.

this grandchild node. The number of evaluations needed in this tree for one-pass
β-pruning PrOM search is given by the following formulae:

CPrOMβ1p(d,w, n) = (2w − 1)CPrOMβ1p(d − 2, w, n)
CPrOMβ1p(1, w, n) = nw

CPrOMβ1p(2, w, n) = nw2

(6.9)

These formulae can be understood as follows. Figure 6.5 shows that the number
of evaluations needed under A-nodes is w times the number of evaluations needed
under B-nodes of the same depth. For an A-node of depth d, w times an A-node of
depth d − 2 is needed plus w(w − 1) times a B-node of depth d − 2. The w(w − 1)
B-nodes together take the same amount of evaluations as w − 1 A-nodes of depth
d − 2. In total, this leads to (2w − 1) times an A-node of depth d − 2. For nodes
of depth 1, nw evaluations are needed, one for every opponent type at every child
node. Nodes of depth 2 take nw2 evaluations, since no pruning can occur. The
three formulae (6.9) are easily put in a single closed form:

CPrOMβ1p(d,w, n) = n (2w−1)�d/2	−1 w2+�d/2�−�d/2	 (6.10)

This closed form can be found by repeated substitution; its validity can be checked
by complete induction.

6.5.2 Best-case analysis of PrOMβPb

The best-case of β-pruning PrOM search with α-β probes, can be derived from the
analysis of OMβPb in subsection 3.3.2. An important observation is that in the



6.5 — Best-case Analyses 121

best case, all opponent types will select the same move at every min node (i.e., the
first move), so only one α-β probe is performed at every min node per opponent
type. A further observation is that at leaf nodes, no separate evaluation for max is
needed, since the evaluation for opponent type ω0 can be used.5 This means that
all evaluations are performed inside the probes. The number of evaluations in every
probe of depth d is, in the best case, equal to Cα−β(d,w). The number of evaluations
needed in PrOMβPb thus is:

CPrOMβP b(d,w, n) = n

�d/2	∑
i=1

wi Cα−β(d − 2i + 1, w)

= n

�d/2	∑
i=1

wi (w�(d−2i+1)/2� + w�(d−2i+1)/2	 − 1)

= n

�d/2	∑
i=1

wi w�(d−2i+1)/2� + wi w�(d−2i+1)/2	 − wi

= n �d/2�(w�(d+1)/2� + w�(d+1)/2	) − n
w�d/2	+1 − w

w − 1

(6.11)

6.5.3 A comparison

The following two formulae summarize the best-case analysis of β-pruning PrOM search:

PrOMβ1p: n (2w − 1)�d/2	−1 w2+�d/2�−�d/2	

PrOMβPb: n �d/2�(w�(d+1)/2� + w�(d+1)/2	) − n
w�d/2	+1 − w

w − 1

While these formulae might not immediately reveal a preference, figure 6.6 shows
clearly that on the basis of the best-case analysis, the version of β pruning with
α-β probes is to be preferred. The absence of deep-pruning in the one-pass ver-
sion causes a significant worse behaviour in terms of the number of evaluations per
α-β evaluation.

Even in the case that shared evaluation is possible, its advantage for one-pass
version is not enough since the best-case time complexity is linear in the number
of opponent types. Moreover, a careful application of transposition tables in the
α-β probes also allows for reuse of computations.

5However, care has to be taken in case of an asymmetric evaluation function that evaluates a
position differently for max and for min.
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Figure 6.6: Best-case results of PrOMβ1p and PrOMβPb compared. The graphs show the
number of evaluations per α-β evaluation per opponent type.

6.6 Learning a Probabilistic Opponent Model

The probabilistic opponent model of PrOM search consists of two parts: the set of
opponent types and the opponent-type probabilities. These parts need their own
approach in learning. In this thesis, we concentrate on learning of the opponent-
type probabilities for a given set of opponent types and we will only briefly discuss
learning of the opponent types themselves.

The task that we want to solve concerning opponent-type probabilities is: given
a set of opponent types ω0 . . . ωn, what is the best probability distribution over
these types to be used by PrOM search against a given target opponent Ω? This
learning task has two manifestations: off-line learning and on-line learning. In off-
line learning, we have available a (preferably large) set of positions together with
the moves that our target opponent Ω selects. During on-line learning, we only have
the few moves by Ω that are observed during the actual play.
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6.6.1 Off-line learning of probabilities

Let T be a recorded (randomized) set of positions, T ⊆ H and let the function
mΩ : T → M indicate the moves selected by the target opponent Ω in these positions.
Let also be given an opponent model Ω(π̄) which consists of a set of opponent types
ω0, . . . , ωn and a probability distribution π̄, where π̄i = Pr(ωi). The objective of
off-line learning is to find, using mΩ(·) and T , a probability distribution π̄ such that
PrOM search with Ω(π̄) plays best against Ω.

The definition of PrOM search suggests that this probability distribution is the
same as the probability distribution that predicts the behaviour of Ω the best. This
hypothesis seems straightforward, but only actual game-playing can prove the cor-
rectness. We define the best predictor as the probability distribution π̄ that max-
imizes the likelihood of Ω(π̄) selecting the same moves as Ω at the positions in T .
In off-line learning, we do not prefer one probability distribution over another one,
so the maximum likelihood estimator (MLE) is the appropriate method to obtain π̄
(see Mood, Graybill, and Boes, 1974, page 276).

Before we can determine the MLE, a closer look at the set of positions is needed
in relation to the opponent types. Define a subset Hωi

⊆ H for every opponent type
ωi as the set of positions h such that the move mωi

(h) selected by ωi at h is not
selected by any of the other opponent types. Hωi

contains all positions that are said
to be unambiguous with respect to ωi. Define further Pr(hωi

) as the probability of
a position to be unambiguous with respect to ωi. The set H is finite, since we study
only finite games, so Pr(hωi

) is equal to #Hωi
/# H. We assume that Pr(hωi

) > 0
for all opponent types ωi. (If Pr(hωi

) = 0, the opponent type can be neglected.)
The likelihood that Ω(π̄) selects move mΩ(h) and that the selection is unambigu-

ous for the opponent type that selected the move, is given by:

L(mΩ(h) | π̄) = π̄i Pr(hωi
), where mΩ(h) = mωi

(h) (6.12)

Let T ′ ⊆ T be the subset of all positions in T that are unambiguous with respect
to the opponent types that selected Ω’s moves at those positions. The likelihood for
all positions in T ′ together (assuming that the observations are independent) is:

L(T ′|π̄) =
∏

h∈T ′
L(mΩ(h) | π̄) =

n−1∏
i=0

(π̄i Pr(hωi
))Ni (6.13)

where Ni = #{h ∈ T ′ |mωi
(h) = mΩ(h)}. The value of π̄ for which the likelihood is

maximal can easily be determined on the basis of the logarithm of the likelihood:

ln L(T ′|π̄) =
n−1∑
i=0

Ni ln π̄i + Ni ln Pr(hωi
)

= N0 ln(1 −
n−1∑
i=1

π̄i) +
n−1∑
i=1

Ni ln π̄i +
n−1∑
i=0

Ni ln Pr(hωi
)

(6.14)

thereby taking into account that π̄0 = 1−∑n−1
i=1 π̄i. Since the function is smooth and

continuous on the domain, the optimal value for π̄ occurs when all partial deriviates
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of this function are zero:

∂ ln L(mΩ(T )|π̄)
∂ π̄i

= 0 ⇒ Ni

π̄i
− N0

1 − ∑n−1
i=1 π̄i

= 0 ⇒ Ni

π̄i
=

N0

π̄0
(6.15)

This set of equations implies that the MLE ˆ̄π for π̄ is given by the proportions of
the Ni’s:

ˆ̄πi =
Ni∑
j Nj

=
#{h ∈ T |mωi

(h) = mΩ(h)}
#T

(6.16)

To conclude, off-line learning of opponent-type probabilities can be done by first
determining for all positions in T , the opponent types that select the same move as
Ω, then removing all positions in which not exactly one opponent type agrees with
Ω and, finally, computing the proportion for every opponent type. The resulting
proportions are maximum-likelihood estimators of the opponent-type probabilities.

It is important to realize that the statistical method assumes that the real op-
ponent Ω is using a mixed strategy of the same opponent types, an assumption that
is inevitable. This method does not depend on correlations between opponent types
or on the probability distribution over positions, although it is assumed that the set
T is representative for the set of positions encountered in real games. Furthermore,
the size of the set T ′ is important for the quality of the learned probabilities. The
number of unambiguous moves in T might be small if the branching factor of the
game is low or if the opponent types are highly correlated on the positions in T .
Also when one of the opponent-type probabilities is low, the number of positions in
T ′ for that opponent type might be too small to obtain a reliable estimation.

6.6.2 On-line learning of probabilities

The learning of opponent-type probabilities during a game is limited since the num-
ber of observations is low. It can, however, be useful to adapt probabilities that
were achieved earlier, for instance by off-line learning. Two types of on-line learning
can be distinguished: a fast one in which only the best move of every opponent type
is used, and a slow one in which the search value of all moves is computed for all
opponent types.

Fast on-line learning happens straightforwardly as follows: start with the prior
obtained probabilities. At every move of the opponent do the following: for all
opponent types detect whether their best move is equal to the actually selected
move. If so, reward that opponent type with a small increase of the probability. If
not, punish the opponent type. The size of the reward or punishment should not be
too large because this type of learning will lead to the false supremacy of one of the
opponent types. This type of incremental learning is also applied in the prediction
of user actions (Davison and Hirsh, 1998).

Slow on-line learning would be an application of the naive Bayesian learner (see
Domingos and Pazzani, 1997). A similar approach is used in learning probabilistic
user profiles (Pazzani and Billsus, 1997). Slow on-line learning works as follows. For
all opponent types ωi, the sub-game values vωi

(h + mj) of all possible moves mj at
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position h are computed. These values are transformed into conditional probabilities
Pr(mj |ωi), that indicate the “willingness” of the opponent type to select that move.
This transformation can be done in a number of ways. An example is the method
by Reibman and Ballard (see subsection 2.1.3): first determine the rank r(mj) of
the moves according to vωi

(h + mj) and then assign probabilities:

Pr(mj |ωi) =
(1 − Ps)r(mj)−1 · Ps∑
k(1 − Ps)r(mk)−1 · Ps

(6.17)

Ps (∈ (0, 1]) can be interpreted as the likeliness of the opponent type not to deviate
from the best move: the higher Ps, the higher the probability on the best move. It
is however also possible to use the actual values of vωi

(h + mj). Now Bayes’ rule
is used to compute the opponent-type probabilities given the observed move of the
opponent.

Pr(ωi|mΩ(h)) =
Pr(mΩ(h)|ωi) Pr(ωi)t∑
k Pr(mΩ(h)|ωk) Pr(ωk)t

(6.18)

These a-posteriori probabilities are used to update the opponent-type probabilities.

Pr(ωi)t+1 = (1−γ) Pr(ωi)t+γ Pr(ωi|mΩ(h)) (6.19)

In this formula, parameter γ (∈ [0, 1]) is the learning factor: the higher γ, the more
influence the observations have on the opponent-type probabilities. The approach
is called naive Bayesian learning, because the last formula assumes that the obser-
vations at the subsequent positions in the game are independent.

6.6.3 Learning opponent types

The second part of the probabilistic opponent model is the set of opponent types
themselves. There are two basic approaches to the learning of individual opponent
types: (1) to learn an evaluation function, a move ordering, the search depth and
other search preferences used by a given opponent, and (2) to learn the opponent’s
strategy, which means to learn directly the move that the opponent selects at every
position.

The first approach has been studied in computer chess, especially the learning of
evaluation functions. Although the goal often is to obtain a good evaluation function
for α-β search, similar techniques can be used for obtaining the evaluation function of
an opponent type. Anantharaman (1997), for instance, describes a method to learn
or tune an evaluation function with the aid of a large set of positions and the moves
selected at those positions by master-level human players. The core of the approach
is to adapt weights in an evaluation function by using a linear discriminant method
in such a way that a certain score of the evaluation function is maximized. The
evaluation function is assumed to have the following form: V (h) =

∑
i Wi Ci(h).

The components Ci(h) are kept constant, only the weights Wi are tuned. The
method was used to tune an evaluation function for the program Deep Thought,
a predecessor of Deep Blue. Although the method obtained a better function
than the hand-tuned evaluation function of the program, the author admits that it
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is difficult to avoid local maxima. Fürnkranz (1996) gives an overview of machine
learning in computer chess, including several other methods to obtain evaluation
functions from move databases.

Direct learning of opponent strategies is studied extensively on repeated games
(Fudenberg and Levine, 1998). These are (mostly) small games in which all play-
ers move simultaneously and immediately receive a payoff. The number of moves
typically is small but the game is played many times. The goal is to maximize the
payoff over time. Examples of repeated games are iterated prisoners dilemma and
roshambo (rock-paper-scissors). Opponent modelling is important in these games,
but the game complexity is so low that game-tree search is not an issue. This means
that the opponent’s strategy is modelled directly. Since the game is repeated, a
player’s strategy is not limited to one game but extends over multiple (even infinite)
games. For learning opponent strategies in roshambo we refer to Egnor (2000). Gen-
eral learning in repeated games is studied, for example, by Carmel and Markovitch
(1999).

A particular complex repeated game is poker. Billings et al. (2000) describe a
poker-playing program, Poki, that incorporates an opponent-modelling component:
“No poker strategy is complete without a good opponent modelling system. A strong
poker player must develop a dynamically changing (adaptive) model of each oppon-
ent, to identify potential weaknesses.” Opponent modelling is used with two distinct
goals: to predict the next move of each opponent and to estimate the strength of
each opponent’s hand. The program uses a neural network for these predictions.

The applicability of these learning techniques for obtaining opponent types is
limited since the nature of board games is too different from repeated games like
roshambo and poker.

6.7 Chapter Conclusions

In this chapter we introduced a new approach for using an opponent model in game-
tree search: Probabilistic Opponent-Model search. The approach is based on a
probabilistic opponent model that constitutes a mixed strategy of a number of known
opponent types. One of the opponent types is the player herself - a mechanism that
should prevent the negative effects of overestimations.

PrOM search can be implemented in two forms: a one-pass version and a version
with α-β probing. A number of standard search enhancements can be applied to
PrOM search. The computational complexity of PrOM search is much higher than
OM search in the versions with α-β probing but especially in the one-pass versions.
This is mainly caused by the impossibility of deep pruning in PrOM search.

Opponent models for PrOM search can be learned from observations of the op-
ponent. We concentrated on the learning of the opponent-type probabilities in an
off-line and on-line setting.

Experiments with PrOM search will indicate whether this method indeed per-
forms better than OM search and whether the learned opponent models are indeed
nearly optimal.



Chapter 7

Experiments in PrOM Search

T o show the power of probabilistic Opponent-Model search we
offer the reader a second proverbial pudding to be eaten. Like
we did with OM search, we tested the performance of the
search method in some actual games. We start with de-
scribing experiments on random game trees that aimed to
gain insight into the average case for the computational ef-
ficiency. Experiments in the game lines of action showed that
PrOM search can outperform OM search as well as Minimax.
Off-line learning opponent-type probabilities was tested in a
simulated game and in the game of bao. Finally, experiments
in bao revealed that PrOM search, with imperfect knowledge
of the opponent, sometimes performed better than Minimax.
Although the difference was statistically significant, it was still
small in bao.

Chapter contents: This chapter describes four series of experiments with PrOM search.

Section 7.1 names the four domains. Section 7.2 is dedicated to random game trees, section

7.3 to experiments in lines of action, section 7.4 to experiments with off-line learning in a

simulated game, and section 7.5 to experiments in the game of bao. The chapter ends with

conclusions in section 7.6.1

7.1 Four Different Domains

This chapter is, like chapter 5, an empirical follow-up of the previous theoretical
chapter. Again we performed four series of experiments, in four different domains,

1Parts of this chapter have been published in Donkers, H.H.L.M., Uiterwijk, J.W.H.M., Herik,
H.J. van den (2001), Probabilistic Opponent-Model Search, Information Sciences, Vol. 135, Nos.
3–4, pp. 123–149.
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each concentrating on a different facet of PrOM search. Three of the domains (e.g.,
random game trees, the game LOA, and the game bao) are identical to domains
in chapter 5, so there is no need to introduce those domains in this chapter. The
fourth domain is the learning of opponent-type probabilities for which we refer to
chapter 6.

In section 7.2 we concentrate on the analysis of the computational complexity of
different implementations of PrOM search applied to random game trees in order to
gain insight into their average-case complexities. Experiments in LOA are described
in section 7.3. These experiments hinted that PrOM search can perform better than
OM search and sometimes also better than Minimax.

Section 7.4 describes experiments with off-line learning of opponent-type probab-
ilities in a simulated game. The experiments in section 7.5 are used to study in detail
the effectiveness of PrOM search in the game of bao. First, opponent-type probabil-
ities are learned for different probabilistic opponent models. Then one probabilistic
opponent model is studied in detail. Finally, the effectiveness of PrOM search in
bao is investigated for a range of different opponent models. We end the chapter
with a discussion and concluding remarks in section 7.6.

7.2 Experiments with Random Game Trees

The first series of experiments with PrOM search were performed on the same type
of random game trees as introduced in section 5.2. The experiments were intended
to provide insight into the average computational complexity of the different imple-
mentations of PrOM search presented in chapter 6. We conducted three experiments
similar to the three experiments in section 5.2. In the first experiment (subsection
7.2.1) we concentrated on the distribution of the relative number of evaluations that
the different implementations for PrOM search needed in comparison to α-β search.
The second experiment (subsection 7.2.2) measured the influence of search depth,
branching factor, and number of opponent types on the number of evaluations in
PrOMβ1p and PrOMβPb. The third experiment (subsection 7.2.3) concentrated on
the improvement that transposition tables can cause in PrOMβPb. An additional
experiment (subsection 7.2.4) deals with the PrOM-search value.

7.2.1 Distribution of evaluation counts

As an extension to the experiment in subsection 5.2.2, the 10,000 random game
trees from that experiment were also used as input to four different implementations
of PrOM search: PrOMβ1p, PrOM1p, PrOMβPb, and PrOMPb (i.e., a version with
and without β pruning for one-pass PrOM search as well as for PrOM search with
probing). Figure 7.1 shows the results. In the figure the distributions for OMβ1p and
OMβPb are repeated from figure 5.3. The figure shows that the effect of β pruning
was much larger for one-pass PrOM search than for PrOM search with β probing.
Furthermore, the relative number of evaluations in one-pass PrOM search, even with
β pruning, was larger than the number of evaluations needed in PrOM search with
probing. The figure also shows that the spreading increased from OM search via
probing PrOM search to one-pass PrOM search. In the sequel we will not consider
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Figure 7.1: Distributions of the number of evaluations needed in 10,000 random game trees
with depth 8 and width 4 for PrOMβPb, PrOMPb, PrOMβ1p, and PrOM1p, divided by the
number of evaluations needed by α-β on the same trees. PrOM search used a opponent
model with 2 opponent types. In the bottom figure, the graphs are repeated together with
the data for OM search, repeated from figure 5.3.

non-pruning versions of PrOM search anymore and will concentrate on the differences
between PrOMβ1p and PrOMβPb.

7.2.2 Influence of the game-tree size

In order to study the relation between the size of the search tree and the computa-
tional complexity of PrOMβ1p and PrOMβPb in random game trees, we conducted
three series of experiments. In the first series we varied the depth of the search
trees, in the second series we varied the branching factor of the trees, and in the
third series we varied the number of opponent types in the probabilistic opponent
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model. Per value of the search depth, branching factor, and number of opponent
types, a sample of 100 random game trees was taken for which the number of eval-
uations that PrOMβ1p and PrOMβPb needed was determined. For every random
game tree we also determined the number of evaluations that α-β search needed.

Figure 7.2 shows the results for the influence of the search depth. Since the
number of evaluations appeared to behave exponentially in the search depth, we
use a logarithmic scale for the y-axis. The resulting lines are almost linear, which
confirms the exponential behaviour. The graphs show that for larger search depths
PrOMβ1p needed more evaluations than PrOMβPb on these random game trees. We
noticed that the spread as indicated by the dotted lines lies almost symmetrical
around the centre lines in this logarithmic scale.
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Figure 7.2: Relative number of evaluations needed by PrOMβ1p and PrOMβPb as a function
of the search depth. The branching factor is 3, there are three opponent types, and the
sample size is 100. The solid line in the middle is the median of each sample, the inner
dashed lines represent the lower and upper quartiles, and the outer dotted lines represent
the 5th and 95th percentile of the samples.

The influence of the branching factor is shown in figure 7.3. The figure clearly
shows that PrOMβ1p needed more evaluations than PrOMβPb on these random game
trees. Both algorithms show a more-or-less linear relation between the number of
evaluations per α-β evaluation and the branching factor.

The next figure, 7.4, depicts the influence of the number of opponent types. It
shows no significant difference between PrOMβ1p and PrOMβPb. Both algorithms
behaved almost linearly in the number of opponent types.
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Figure 7.3: Relative number of evaluations needed by PrOMβ1p and PrOMβPb as a function
of the branching factor. The search depth is 5, there are three opponent types, and the
sample size is 100. The meaning of the lines is the same as in figure 7.2.
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Figure 7.4: Relative number of evaluations needed by PrOMβ1p and PrOMβPb as a function
of the number of opponent types. The search depth is 5, the branching factor is 3, and the
sample size is 100. The meaning of the lines is the same as in figure 7.2.
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7.2.3 Effect of transposition tables

In the next experiment on random game trees, we tested the effect of transposition
tables in PrOMβPb. We provided every opponent type with a separate transposition
table of 217 entries. We used the same random game trees as in the previous subsec-
tion and measured the decrease in number of evaluations for each tree. No iterative
deepening was used. Figure 7.5 shows the result of the experiment. It appears that
the improvement by transposition tables increased with larger search depth, but
at a given point (search depth 9 - 10), the transposition tables became overloaded
and further improvement was not possible. With increasing branching factor, the
improvement by transposition tables decreased. No overloading of the tables was
visible here. When the number of opponent types was increased, the improvement
by the tables increased slightly.
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Figure 7.5: Improvement caused by transposition tables in PrOMβPb, as a function of the
search depth, the branching factor, and the number of opponent types. The graph shows
the percentage of evaluations that is ignored when the transposition table is used. The
default search depth is 5, the default branching factor is 3, and the default number of
opponent types is 3.

7.2.4 PrOM-search value

Figure 7.6 shows the result of a small experiment in which we wanted to investigate
whether the PrOM-search value can be larger than the OM-search value with respect
to one of the opponent types. In the experiment we used two opponent types, ω0 and
ω1. We computed for every one of 10,000 trees the Minimax value with respect to
ω0, the OM search value for V0 = ω0 and Vop = ω1, and the PrOM-search value for
the opponent model [ω0, ω1] with probabilities (0.4, 0.6). In the figure we plotted the
ratio between the value-surplus of PrOM search and the value-surplus of OM search.
The figure shows that there are values above 1 which indicated that for some trees
the PrOM search value indeed was higher than the OM-search value. The peak at 0
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Figure 7.6: Histogram of the PrOM-search value surplus in relation to the OM-search value
surplus of the same random game trees. There are two opponent types with probabilities
(0.4, 0.6). The x-value 0 indicates the Minimax-value, the x-value 1 indicates the OM-
search value. The game trees have depth 5 and branching factor 2. The sample size is
10,000.

represents the cases in which either the PrOM-search value or the OM-search value
was equal to the Minimax value. The peak at 0.6 is an artefact that was produced
by the branching factor of 2 in combination with the opponent-type probabilities2.

7.2.5 Discussion

In line with the best-case analysis, the experiments with random game trees indic-
ate that the probing versions of PrOM search performed better than the one-pass
versions in this setting. Both PrOMβ1p and PrOMβPb behaved exponentially in
the search depth, which is a serious obstruction for the practical applicability of
PrOM search. Fortunately, PrOMβPb can be improved considerably by transpos-
ition tables, but in case of larger search depths, the transposition table will be
vulnerable to overloading.

Similar to the discussion in subsection 5.2.5, it should be noted that since the
evaluation functions in random game trees are less correlated than in real games, the
computational complexity results for the random game trees must be viewed more
as a ‘worst-case’ scenario than as an ‘average case’.

2The artefact is explained as follows. Let node a be at ply 1 on the principal variation. Assume
that ω0 selects node b and ω1 selects node c at node a. Assume further that v(b) = v0(b) = vmmx

and v(c) = vom. The PrOM-search value of the root in that case is vprom = 0.4vmmx + 0.6vom.
This leads to a value of 0.6 in the histogram: (vprom − vmmx)/(vom − vmmx) = (−0.6vmmx +
0.6vom)/(vom − vmmx) = 0.6.
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7.3 Experiments in Lines of Action

The experiments with PrOM search in the game of LOA were performed alongside
with the experiments in section 5.3. The set-up of the experiments therefore was
almost the same as described in subsection 5.3.3. The difference was that in every
tournament, every position was played again with three different settings for the first
player. In all three settings, the first player used PrOM search with two opponent
types: ω0 which is characterized by evaluation function V1 and ω1 which is charac-
terized by evaluation function V2. The three settings varied in the opponent-type
probabilities using opponent model [ω0, ω1] with probabilities (0.25, 0.75), (0.5, 0.5),
and (0.75, 0.25), respectively. Tables 7.1, 7.2, and 7.3 show the results for the three
tournaments A, B, and C. In the tables we repeated the results of the control matches
from the tables in section 5.1.

Tournament A was a success for PrOM search. In every match except one,
PrOM search played better than α-β search. Tournament B was no success: PrOM
search played worse than α-β search (but not as bad as OM search). The last
tournament (C) in which the evaluation functions were swapped, turned out to be a
success for PrOM search again: in all but three matches, PrOM search played better
(less worse) than α-β search.

In all three tournaments, the best results were obtained with the opponent-type
probabilities (0.5, 0.5). The fact that PrOM search played better than OM search
in these experiments could be caused by the incorporation of the own evaluation
function (V 1) as opponent type ω0 in the opponent model. This could have com-
pensated for the absence of admissibility in the pairs of evaluation functions. The
tables show that roughly 50 percent of the probability had to be assigned to the own
evaluation function for the best results.
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Table 7.1: Results of the first LOA tournament. The numbers indicate the result over 60
games for the first player.

Tournament A: V1 = VNNa, V2 = VNNb

Search PrOM - α-β
Depth Pr(ω0) = 0.25 Pr(ω0) = 0.5 Pr(ω0) = 0.75 α-β - α-β

2 +20 +46 +42 +18
3 +20 +8 −12 +4
4 +22 +38 +14 +6
5 +4 +12 −4 −20

Table 7.2: Results of the second LOA tournament. The numbers indicate the result over
60 games for the first player.

Tournament B: V1 = VNNa, V2 = Vc

Search PrOM - α-β
Depth Pr(ω0) = 0.25 Pr(ω0) = 0.5 Pr(ω0) = 0.75 α-β - α-β

2 −4 +2 +4 −4
3 +8 +22 0 +24
4 +6 +8 +2 +18
5 +4 0 −2 +24

Table 7.3: Results of the third LOA tournament. The numbers indicate the result over 60
games for the first player.

Tournament C: V1 = Vc, V2 = VNNa

Search PrOM - α-β
Depth Pr(ω0) = 0.25 Pr(ω0) = 0.5 Pr(ω0) = 0.75 α-β - α-β

2 +12 −4 −4 +4
3 −24 −20 −12 −24
4 −10 +10 −8 −18
5 −20 −4 −28 −24
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7.4 Experiments in Off-line Learning

In this section we describe experiments designed to investigate off-line learning of
opponent-type probabilities as described in subsection 6.6.1. The experiments in this
section are performed in a simulated game environment. In the simulations, moves
are selected by means of a predefined probability distribution, not by game-tree
search. In subsection 7.5.1 we will also describe experiments with off-line learning
in the real game bao.

7.4.1 Known opponent types

Since the goal of off-line learning is to find a probability distribution that predicts
the moves of a target opponent as good as possible, game playing was simulated in
the experiments by simply picking a number out of a given range of numbers. This
number represented a move that supposedly was played.

We performed three experiments. We will discuss the first two experiments
simultaneously in this subsection and will discuss the third experiment in subsection
7.4.2. In the first experiment, the target opponent Ω used a mixed strategy which
consisted of opponent types ω0, . . . , ωn and probabilities Pr(ωi). The strategy of each
opponent type ωi was to pick a number mi randomly from the set {0, . . . , M−1} with
equal probabilities for every number. This means that the choices of the opponent
types were independent. In the second experiment, the strategies of the opponent
types were not independent. The first opponent type (ω0) selected a number m0

using with equal probability for all M moves. Opponent type ωi, i > 0, selected
a move from the set {(mi−1 + k) mod M | k ∈ [−4, 4]}. In both experiments, the
opponent types and there choices were known to the learning player.

The simulations were conducted as follows. Every time step (1 . . . T) consisted
of three actions: (1) all opponent types ωi selected a number mi, (2) the target
opponent Ω selected one opponent type ωΩ, according to Pr(ωΩ) and (3) Ω produced
the number, mΩ, that was selected by ωΩ. The observed mi’s and mΩ’s led to an
estimation P̂r(ωi) of Pr(ωi) by counting the number of times Ni that only move
mi agreed with mΩ and divided this by the sum of the numbers of times Nj that
only move mj agreed with mΩ (according to formula 6.16 in subsection 6.6.1). As
a measure of the quality, a learning error ε was introduced, being the Euclidian
distance

√ ∑
i(P̂r(ωi) − Pr(ωi))2. The range of ε was [0 . . .

√
2].

In both experiments, the number of opponent types N varied from 2 to 20. The
probability distribution Pr(ω0, ω1, . . . , ωN−1) of the opponent types was of the form
(a, b, . . . , b) (where a varied between 0 and 1, and b = (1 − a)/(N − 1)). The range
of available numbers, M , was fixed to 20. The learning time T varied from 101 to
105 runs. The sample size was 100 everywhere.

Figures 7.7 shows the results for 5 opponents. The y-scale in these figures is
logarithmic to indicate that the error is approaching zero with increasing learning
time. It appears that the probabilities can be learned exactly, although in the case
of dependent opponent types, there appears to be a slow-down in the decrease of
the error. This difference can be explained by the number of observations that had
to be disregarded because more than one opponent type agreed with Ω’s choice.
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In the experiments, the fraction of disregarded events with independent opponent
types was constantly 18.6%; in the case of dependent opponent types, the fraction
of disregarded events varied between 48.7% and 53.8%. The figures also show that
the learning error decreases when Pr(ω0) approaches 1.
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Figure 7.7: Average learning error ε for a set of 5 opponent types as a function of the
opponent-type probabilities.
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Figure 7.8: Average learning error ε as a function of opponent-type probabilities and the
number of opponent types for T = 105.

Figure 7.8 shows the results for varying numbers of opponent types. There ap-
pears to be a gap between the learning efficiencies of two and of more than two
opponent types, especially at low probabilities. This gap is larger in the case of de-
pendent types. The effect can be explained as follows. If there are only two opponent
types, the learning error should be symmetrical in Pr(ω0): the error at Pr(ω0) = p
should approximate the error at Pr(ω0) = 1 − p. The figures show this symmetry
for the case of two opponent types. However, such a symmetry is not required for
the case of more than two opponent types. There is a peculiar, unexplained effect
in the right graph of figure 7.8. The learning error for the cases of more than two
opponent types seem to converge to ε =10-3 when Pr(ω0) approaches 0.
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7.4.2 Unknown opponent types

In the third experiment the learning player still assumed that Ω was using a mixed
strategy as in the first two experiments, but Ω was in fact using another strategy.
It simply picked the same move every time. The opponent types that we used in
learning were the same ones as in the second experiment in subsection 7.4.1. The
probability distribution that was being learned represented the player’s approxim-
ative opponent model of Ω. The goal of this experiment was to investigate whether
a stable probability distribution was learned and how this distribution depends on
the particular move that Ω selected all the time.

Since the correct probability distribution was unknown (unlike in the first two
experiments), the Eucledian distance was not an appropriate measure of error, so
we defined the learning error ε as the standard deviation over 100 samples. The
experiment was performed with 5 opponent types only.
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Figure 7.9: Average learning error ε as a
function of opponent’s choice for varying
learning times.

ω4

ω3

ω2

ω1

ω0

Choice

P
ro

ba
bi

lit
y

2018161412108642

1

0.8

0.6

0.4

0.2

0

Figure 7.10: Average learned probability
distribution over opponent types as a func-
tion of opponent’s choice.

The way in which the errors decreased, as illustrated in figure 7.9, indicate that
the learning resulted in stable probability distributions over the opponent types.
Figure 7.10 shows the learned probability distributions. These are in concordance
with the way in which the opponent types were defined. Since there are five opponent
types and the shift between the move-selection windows for the opponent types was
4, Opponent type ω0 most probably selected low numbers and ω4 most probably
high numbers. So, when Ω selects low numbers, ω0 agrees the most with Ω and
when Ω selects high numbers, ω4 agrees the most.

7.4.3 Discussion

The experiments with off-line learning of opponent-type probabilities in a simulated
game did not only confirm some of the expectations from the theoretical analysis, but
also gave insights into the dynamics of the learning. It appeared that dependencies
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between opponent types can slow down the learning. The last experiment showed
that an approximative probabilistic opponent model can be learned.

The experiments did not give any hint on the effect that the learned opponent
models will have on the actual performance of PrOM search. In subsection 6.6.1
we hypothesized that the best opponent model for PrOM search is the model that
predicts the moves of the opponent the best. The experiments in this section did
not give an answer to this hypothesis. In the next section, we will therefore learn
opponent models in a real game and test these models in PrOM search.

7.5 Experiments in Bao

We performed three experiments with PrOM search in the game of bao. The proper-
ties of this game are explained in subsection 5.5.2. In the first experiment (subsection
7.5.1) we used off-line learning to obtain the opponent-type probabilities for a range
of opponent models. In the second experiment (subsection 7.5.2) we studied the
performance of one opponent model in particular for different opponent-type prob-
abilities. The last experiment (subsection 7.5.3) was a large tournament in which we
studied the performance of a range of opponent models for different opponent-type
probabilities.

In all experiments, the opponent used evaluation function Ngnd6a (see subsec-
tion 5.5.3). Except for some part of the third experiment, the probabilistic opponent
models were based on Material, Default, Ga3, and Tdl2b. This means that the
player using PrOM search did not have perfect knowledge of the opponent. This is
in contrast with the experiments with OM search in bao as described in section 5.5.

7.5.1 Learning opponent-type probabilities

The first experiment with PrOM search in bao concentrated on learning opponent-
type probabilities. The real opponent Ω used Ngnd6a and we learned opponent-type
probabilities for all eleven combinations of two or more from Material, Default,
Ga3, and Tdl2b. These evaluation functions all are (operationally) weaker than
Ngnd6a, according to table 5.5.

The procedure that we applied for learning was as follows. At every time step
we randomly generated a legal bao position. Then we used α-β search with search
depth 4 to determine the move that Ω (Ngnd6a) would select and used α-β search
with again depth 4 for every opponent type involved in the model to determine the
moves selected by those types. When either none or more than one opponent type
selected the same move as Ω, the position was disposed. The process continues until
100,000 non-disposed positions were encountered. This sample size was chosen in
order to ensure an estimation error of at most 0.3% at a confidence level of 95%.

The random bao positions were obtained by first picking a uniformly random
number k from the range 3 . . . 30, and then generating and executing 2k random but
legal moves, beginning at the official start position of bao (see appendix B). If an
end position was reached before 2k moves were executed, the position was discarded
and the random generation of moves started all over.
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Table 7.4: The probabilistic opponent models of the opponent Ngnd6a for all eleven
combinations of the other opponent types. The last two columns give the number of
positions generated and the percentage of positions used among these. The estimation
error is everywhere smaller than 0.3% with a confidence level of 95%.

Opponent type
Model Material Default Ga3 Tdl2b Positions Used

1 49.28% 50.72% - - 351,124 28.48%
2 42.49% - 57.51% - 483,092 20.70%
3 33.04% - - 66.96% 410,509 24.36%
4 - 45.80% 54.20% - 343,171 29.14%
5 - 36.93% - 63.07% 338,066 29.58%
6 - - 40.06% 59.94% 415,282 24.08%
7 20.86% 47.10% 32.04% - 579,710 17.25%
8 18.76% 35.72% - 45.52% 583,431 17.14%
9 17.47% - 28.28% 54.25% 644,745 15.51%
10 - 33.47% 25.68% 40.85% 608,643 16.43%
11 10.53% 34.61% 18.17% 36.69% 845,309 11.83%

Table 7.4 shows the learned opponent-type probabilities for the eleven opponent
models. The first observation from this table is that the amount of disregarded posi-
tions increases with the number of opponent types involved. A second observation is
that the probability of an opponent type is higher when that type received a higher
score in table 5.5. An exception is the pair Default and Ga3 in models 7, 10, and
11. But also in table 5.5, the relation between these two types is not straightforward.

7.5.2 Performance of Tdl2b-Default versus Ngnd6a

In this subsection we study in detail the behaviour of one opponent model, consisting
of the types Tdl2b and Default, against the target opponent Ngnd6a in order
to discover which circumstances influence the performance of PrOM search. We
performed a series of 120,000 games between a player using PrOM search with
the opponent model [ω0 = Tdl2b, ω1 = Default] and a player using α-β search
with Ngnd6a. The games where divided in 12 groups of 10,000 games in which
the opponent-type probability Pr(Tdl2b) was set to 0, 0.1, 0.2, ..., 1, and 0.6307
respectively, the latter value being the probability that was learned in the previous
subsection.

The setting of every game was as follows: PrOM search was used by South, α-β
search by North. The search depth was 6 for both players. The start positions were
generated exactly in the same way as the random positions in the previous subsection
with k ranging from 3 to 32. From every game we recorded (a) the winner, (b) the
length of the game in plies, (c) the move number at which the game started (the
number k), and (d) the search value of the first move by South. Below we present
different views on the recorded data.
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Figure 7.11: Win probability of PrOM search for the model Tdl2b-Default versus
Ngnd6a plotted against the start move of the game and the opponent-type probability
of Tdl2b. At the floor of the graph the isolines with equal win probability are presented.

Figure 7.11 shows the probability of South to win as a function of the move at
which the games started and the opponent-type probability of Tdl2b. The picture
shows that for games that started early (moves 3-8) the win probability is generally
lower than for games that started later (moves 18-32). It also shows that when games
started earlier, the win probability depended more on Pr(Tdl2b) than when games
started later. At early start moves, the win probability clearly drops if Pr(Tdl2b)
approaches zero. In passing we note that for Pr(Tdl2b) = 0, PrOM search is equal
to OM search and for Pr(Tdl2b) = 1, PrOM search is equal to Minimax search.
The figure suggests that for Pr(Tdl2b) = 0.8, the win probability is slightly higher
than for Pr(Tdl2b) = 1, which would mean that PrOM search is performing better
than Minimax at that point.

To emphasize the dependency of the win probability on the start move, we present
in figure 7.12 the win probability for South as a function of Pr(Tdl2b) for three
groups of start moves: (3-8), (9-19), and (20-32). The figure confirms that the win
probability increases if the start move is later. Furthermore, the win probability is
almost constant for start moves later than 20, and it is increasing almost monotone
for the middle range of start moves. For the early start moves, there clearly is an
optimum at Pr(Tdl2b) = 0.8.

Before we attempt to explain the dependency of the win probability on the start
move, we first present a second view on the data. In figure 7.13 the win probability
for South as a function of Pr(Tdl2b) is plotted for two sets of games: those that
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Figure 7.12: Win probability of PrOM search for the model Tdl2b-Default versus
Ngnd6a plotted against the opponent-type probability of Tdl2b for three groups of start
moves. The dotted lines give the 95%-confidence intervals. The arrow indicates the value
of Pr(Tdl2b) (0.6307) that was learned in subsection 7.5.1 and the win probability at that
point.

end within 27 ply and those that end after 27 ply. The number 27 is chosen because
it appeared to provide the most informative division. The effect is comparable to
the results in figure 7.12. For long games, there is a clear dependency of the win
probability on Pr(Tdl2b) and an optimum appears at Pr(Tdl2b) = 0.8. For short
games, the dependency and the optimum are less clear.
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Figure 7.13: Win probability of PrOM
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ply) as a function of the start move.
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The resemblance between figures 7.12 and 7.13 suggests that the start move and
game length are correlated. Figure 7.14 confirms this. At early start moves, almost
all games last more than 27 ply, at late start moves, almost no game lasts more than
27 ply. This correlation can be explained by a special property of bao. The game of
bao has two stages with different sets of rules. The second stage starts after exactly
22 moves (44 ply). Studies in random play revealed that most bao games last the
whole first stage but are finished around 5 moves after the start of the second stage,
which is 54 ply from the beginning. The sharp drop of long games begins at about
start move 12 (ply 24). When 27 ply is added to this start, we obtain 51 ply. The
drop in figure 7.14 ends at move 23 (ply 46) which is close to the 54 ply. This
explains the relation between the start move and the game length.

The relation between the start move and the general height of the win probability
is less obvious. It might be caused by the random generation of the positions that
gave the South player an advantage over North at these positions, since the effect
also occurs for Pr(Tdl2b) = 1 (Minimax). The effect of the start move on the
dependency of the win probability on Pr(Tdl2b) can be explained by the fact that
when the games started early, the length of the games was longer, which gave the
PrOM search player more opportunities to speculate. Apparently, the effects of the
speculations depended on the opponent-type probabilities.

The win probability at the optimum (Pr(Tdl2b) = 0.8) for start moves earlier
than 9 is statistically significant higher than the win probability at Pr(Tdl2b) = 1
with a confidence of 95%. This means, stated carefully, that we cannot reject
the hypothesis that PrOM search performs better at this point than Minimax
on the basis of this experiment. However, the difference is not very large: 0.446
at Pr(Tdl2b) = 0.8 against 0.413 at Pr(Tdl2b) = 1. The win probability at
Pr(Tdl2b) = 0.6307 (the probability that was learned in the subsection 7.5.1) was
0.407, which is lower than the value for Minimax. This means that the optimal effect
of PrOM search does not occur at the learned probability but at a higher value of
Pr(Tdl2b).

Another aspect of PrOM search and OM search is revealed by figures 7.15 and
7.16. In these figures we plotted the win probability against the score (search value)
of the first move. The figures show the accuracy of the prognosis of this value. Since
Tdl2b is a weaker evaluation function than Ngnd6a, the graph for Pr(Tdl2b) =
1 (Minimax) is not symmetric around zero but is shifted to the right. The win
probability at score zero is about 0.4, which is not far from the result of table
5.5. The graph for Pr(Tdl2b) = 0 (OM search) lies below that of Minimax. This
illustrates the self-overestimation of OM search: at a score of zero, only 10% of the
games is won. At score 80 above which Minimax wins all games, OM search only
wins 50% of the games. This self-overestimation can be caused by type-I errors
as described in subsection 4.2.1. Figure 7.16 shows that for the opponent-type
probabilities between 0 and 1 there is a gradual transition from the Minimax graph to
the OM-search graph. This indicates that the mixed-strategy model of PrOM search
probably diminishes the effects of type-I errors; the higher Pr(Tdl2b) the less self-
overestimation occurs.
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Figure 7.15: Win prognosis of Minimax and OM search compared. These are the
two border-cases in figure 7.16 for the probabilities Pr(Tdl2b) = 0 (OM search) and
Pr(Tdl2b) = 1 (Minimax search) respectively.

Pr(South wins)

1

0.8

0.6

0.4

0.2

0

Score First Move

80400-40-80
Pr(Tdl2b)

1
.8

.6
.4

.2
0

Prognosis

Figure 7.16: Win prognosis of PrOM search for the model Tdl2b-Default versus Ngnd6a

plotted against the the opponent-type probability of Tdl2b and the PrOM-search value of
the first move.
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7.5.3 Grand tournament

The last experiment that we performed on the game of bao was a tournament
between all opponent models constructed from combinations of two opponent types
out of five against Ngnd6a. For every opponent model we played 2,000 games for
each value 0, 0.1, 0.2, . . ., 1.0 of Pr(ω0). PrOM search was used by South, α-β
search with Ngnd6a was used by North. The search depth was 6 for both players.
The start positions were randomly generated in the same way as in the previous
subsections, but the range was restricted to start move 3 to 8. Figure 7.17 shows the
results of this experiment. Every square contains the results for a different oppon-
ent model. The names of the two players in each opponent model are indicated in
the squares. The first player constitutes ω0, the second player constitutes ω1. The
squares are arranged in such way that on every row, ω0 is constant and on every
column ω1 is constant, except for the diagonal. The squares on the diagonal show
the results for the opponent models that have the true opponent, Ngnd6a, as ω1.
On the vertical axis of each square is the win probability. On the horizontal axis
of each square is the probability Pr(ω0). At probability Pr(ω0) = 0 (at the left of
each square) PrOM search is equivalent to OM search; at probability Pr(ω0) = 1
(at the right of each square) PrOM search is equivalent to Minimax search. The
arrows indicate the opponent-type probabilities learned in subsection 7.5.1. There
are no arrows placed in the squares on the diagonal since ω1 is the true opponent in
those opponent models and hence the opponent-type probabilities would be learned
to be 0 for ω0. The dotted lines above and below the straight lines indicate the 95%
confidence interval for the win probabilities.

The win probability at Pr(ω0) = 1 (the point where PrOM search is equivalent
to Minimax search) is the same in every square of each row since ω0 is the same
at each row. The win probability at Pr(ω0) = 1 is the highest at the bottom row
(where ω0 is Ngnd6a).

In all squares the win probability is the lowest at Pr(ω0) = 0, which is the
probability where PrOM search is equivalent to OM search. It means that for
all cases that Pr(ω0) was larger than zero, PrOM search performed better than
OM search. This result agrees with our hypothesis that including the own evaluation
function into the opponent model is beneficial.

There are four squares in which there is a probability Pr(ω0) smaller than 1 at
which the win probability was higher than the win probability at Pr(ω0) = 1 (where
PrOM search is equivalent to Minimax search) with statistical significance. These
are: Default-Material at Pr(ω0) = 0.9, Ga3-Default at Pr(ω0) = 0.8, Ga3-
Ngnd6a at Pr(ω0) = 0.7, and Tdl2b-Default at Pr(ω0) = 0.8. It means that
in these cases, PrOM search performed better than Minimax search. Although an
optimum above the value for Minimax is only statistically significant in those four
cases, in all other cases, except one (Ga3-Material), an optimum above the Min-
imax value is at least suggested by the graphs. However, the effect of PrOM search
at these optima is small.

We make two further observations on the results. The first one is that optima all
lie at probabilities considerably higher than the probabilities learned in subsection
7.5.1 (indicated by the arrows). This suggests that the learned opponent-type prob-
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abilities are not the probabilities with which PrOM search performs best: it seems
that more probability should be assigned to the own evaluation function (ω0).

The second observation is that some of the graphs in figure 7.17 show a peculiarity
that seems too regular to be explained by noise: there is a wave-like pattern in
the graph of Tdl2b-Ngnd6. The waves have a length of 0.3. Waves of the same
length are visible in the graph of Ga3-Ngnd6 and in the graph of Default-Ngnd6.
Further research is needed to explain these waves.
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Figure 7.17: Overview of the performance of probabilistic opponent models in bao, ex-
pressed in South’ win probability as a function of Pr(ω0). The opponent models ω0-ω1

are indicated inside the boxes. The arrows indicate the probabilities learned in subsection
7.5.1. The dotted lines indicate the 95% confidence interval for the win probabilities.
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7.5.4 Discussion

The experiments with PrOM search showed that PrOM search in all cases performed
better then OM search. The experiments also showed that PrOM search can perform
better in bao than Minimax even when no perfect knowledge of the opponent is
available. However, the gain from using PrOM search is not very large. Furthermore,
the search depth was kept constant to six for both sides, which means a considerable
advantage for PrOM search since this search method evaluates much more leaf nodes
than α-β search and therefore uses much more time for the same search depth.

The opponent-type probabilities that were learned off-line, appeared not to be
the best probabilities to use in PrOM search: the probability Pr(ω0) had to be
larger than the learned value. This suggests that the opponent model should put
more weight on the player’s own evaluation function than is needed for the prediction
of the opponent’s moves. A possible explanation for this is that the extra weight
balances the negative effects of type-I errors.

7.6 Chapter Conclusions

The main conclusion that we can draw from the experiments in this chapter is that
PrOM search performs better than OM search in the game of LOA as well as in
bao. It also can perform better than Minimax. This is certainly so for LOA, but
PrOM search also performs slightly better than Minimax in bao. The difference in
performance between LOA and bao could be explained by the low branching factor
of bao (3 to 5 on average). This property allowed us to play many games, but
it possibly offered fewer opportunities to PrOM search for speculation. However,
the large difference between the performance of Minimax and OM search in bao
suggests that speculation occurs at a certain pace, sufficient to allow OM search to
make many errors. Therefore more research is needed in these and other games to
study the exact factors that influence the performance of PrOM search.

The fact that the opponent-type probabilities that are learned using the off-line
procedure are not the ones that perform optimally, has as a consequence that on-
line learning of opponent-type probabilities in PrOM search is not feasible in the
way that is described in subsection 6.6.2. The procedure described will drive the
probabilities to suboptimal values. Therefore, no experiments were performed with
this type of on-line learning. A possible way to learn opponent-type probabilities in
a correct way might be by using a form of reinforcement learning. This should be a
subject of future research.

Finally we have to remark that the computational costs of PrOM search are very
high, especially when the search depth increases. The application of transposition
tables in PrOMβPb can take some of the costs away, but this will not remove the
exponential character of the ratio between PrOM-search costs and α-β-search costs.



Chapter 8

Conclusions

At the end of this thesis we return to the problem statement
and research questions. Some of our research questions are
answered in a positive way, but the main outcome is that there
exists a great risk when using opponent models in search. This
risk partly comes from sources that were already known, but
in this thesis we discovered new causes of risk. One important
cause of risk is the occurrence of estimation errors in the own
evaluation function. The title of this thesis, Nosce Hostem,
means ‘know the opponent’ and hints at the quality of the op-
ponent models. Our analysis, however, suggests that Thales
of Miletos’ original maxim should be applied too: Nosce Te
Ipsum ( : know thyself).

Chapter contents: In section 8.1, our four research questions are revisited. The problem

statement is answered in section 8.2. We list our contributions and the significance of the

thesis in section 8.3. The chapter ends with future research and recommendations in section

8.4.

8.1 Answers to the Research Questions

In section 1.5 we presented our problem statement and posed four research questions
that should be answered before we could deal with the problem statement. In this
section we answer these research questions one by one. In the next section we will
formulate from these answers a reply to the problem statement.
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8.1.1 Theoretical properties

The first research question posed was on the theoretical properties of OM search
and PrOM search.

Research question 1: What are the important theoretical properties of
Opponent-Model search and probabilistic Opponent-Model search?

This research question was the subject of chapters 2, 4, and 6. In chapter 2, we
collected the theoretical properties of OM search described previously. The first
property was the relation between the OM search value and the Minimax value at
the root of a search tree (Carmel and Markovitch, 1993; Iida et al., 1993a). We
showed in subsection 6.2.4 that this relation is valid for a whole range of search
methods, including PrOM search. The importance of this property is limited since an
OM search value that is higher than the Minimax value of a tree does not guarantee
a higher win probability. Figure 7.15 illustrates that the OM-search value does not
constitute a high-quality prognosis.

The second property of OM search previously described (Carmel and Markovitch,
1993; Iida et al., 1993a) is the risk of OM search which is caused by imperfect know-
ledge of the opponent. More precisely, this risk comes from imperfect predictions of
the opponent moves. Both OM search and PrOM search rely on knowing exactly
which move the opponent is going to take. When the opponent deviates from the
predicted move, the result might be disastrous for the player. Imperfect predictions
can come from imperfect knowledge, but also from normal search itself. This is be-
cause when both players are using the same search depth, say 6 ply, the opponent’s
moves are predicted by using only a 5-ply search. The one-ply difference between
the prediction and the actual search can cause deviations from the predicted move.

In chapter 4 we showed that there is another risk involved in using opponent
models in search, namely the risk caused by overestimations in the own evaluation
function. The risk is especially present if the overestimation of a position is large
and the opponent does not overestimate that position too. Such an overestimated
position can act as an attractor: the player is so eager to reach that position that she
is willing to speculate on the opponent’s moves in order to lure the opponent in the
direction of the position. The opponent is willingly following, because he evaluates
that position much more profitable than the speculating player. Since the opponent
does not make the same estimation error, the outcome once that position is reached,
is better for the opponent than for the player. We stated a condition on the pair of
evaluation functions (admissibility) that forbids these situations. In the case when
the differences between the evaluation functions are small, the effects of these errors
will be limited, too.

From a game-theoretic point of view, the opponent model in OM search is equi-
valent to a pure strategy. In chapter 6 we introduced PrOM search and showed
that the probabilistic opponent model on which it is based is equivalent to a mixed
strategy in game theory. The introduction of probabilities in the model gives rise to
yet another type of risk: not only the individual opponent types might be wrong,
also the probabilities themselves could be inaccurate.

In chapter 6 we hypothesized that the best opponent-probabilities for PrOM
search are those that predict the opponent’s move the best. However, the experi-
ments in chapter 7 showed that this hypothesis is not true.
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8.1.2 Implementation

Because of the complex game trees involved, purely theoretical research would not be
able to provide a full answer to the problem statement. Moreover, we also needed to
find out whether the search methods have any practical use. Therefore, the methods
had to be implemented into algorithms and the properties of those algorithms had
to be investigated. This led to the second research question.

Research question 2: How can these search methods be implemented
efficiently?

In chapter 3 we presented two basic approaches for implementing OM search: a one-
pass approach (OMβ1p) and an approach that uses- α-β probes (OMβPb), both en-
hanced with β pruning. We showed that OMβ1p has a better best-case performance
than OMβPb but experiments indicated that OMβ1p performs worse than OMβPb

in the case of random game trees, especially with increasing search depth. Further-
more, our analysis of standard search enhancements showed that there are more
opportunities for these enhancements in OMβPb than there are in OMβ1p, resulting
in an even larger gap between the two approaches.

The best-case analysis and the random game-tree experiments showed that the
number of evaluations that OMβPb needs for a given tree divided by the number of
evaluations that α-β search needs, is approximately linear in the search depth and
in the branching factor. In terms of asymptotic complexity this means that using
OMβPb instead of α-β search costs only a constant times the costs of one ply of
extra search. The one-pass algorithm OMβ1p behaved above-linear with respect to
the search depth in the random game-tree experiments.

The implementation of PrOM search was subject of chapter 6. Analogous to
OM search, we proposed two approaches: a one-pass approach (PrOMβ1p) and an
approach that uses α-β probes (PrOMβPb), both also enhanced with β pruning.
Pruning is less profound in PrOM search than in OM search since deep pruning is
not allowed.

The best-case analysis showed a worse time complexity for PrOMβ1p than for
PrOMβPb, but the number of evaluations that both algorithms needed, divided by
the number of α-β evaluations, seemed to be an exponential function of the search
depth (for odd search depths – for even search depths the relation is linear). The
analysis on random game trees in chapter 7 indicated that on these trees, both
PrOMβ1p and PrOMβPb behave exponentially with respect to the search depth, for
odd as well as even depths. Like in the best-case analysis, PrOMβPb used less eval-
uations than PrOMβ1p on the random game trees. We also studied the application
of standard search enhancements on PrOM search and, again, the probing version
offered more opportunities for application than the one-pass version.

So, to recapitulate, in general we may state that the more efficient way to im-
plement OM search and PrOM search is by using α-β probes, preferably enhanced
with transposition tables. However, the computational costs of PrOM search are
considerable, especially for larger search depths.
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8.1.3 Practical applicability

Now that efficient implementations of the search methods were possible, these al-
gorithms had to be tested in a realistic setting because the ultimate reply to our
problem statement depends on whether and when these algorithms work in practice.

Research question 3: What is the nature of the practical circumstances
in which OM search and PrOM search perform better than the current
implementations of Minimax search?

We tested the search algorithms in three real board games: in lines of action (LOA),
in the chess endgame KQKR, and in bao. Furthermore, Carmel and Markovitch
(1998) had performed experiments in checkers and Gao et al. (2001) performed
some experiments in the game of othello. We discuss those experiments along with
our own ones. We will treat the experiments in the following order: LOA, chess,
checkers, othello, and finally bao.

LOA experiments

The experiments in LOA were disastrous for OM search (see table 5.1). Even with
perfect knowledge of the opponent’s evaluation functions, OM search played consid-
erably worse than Minimax search in most cases. In these experiments, the search
depth was kept constant, which should provide an advantage to the OM-search
player. The bad results for OM search can probably be ascribed to the poor quality
of the evaluation functions and to the absence of admissibility.

The experiments with PrOM search were more fortunate (see tables 7.1, 7.2, and
7.3). In two of the three tournaments, PrOM search outperformed Minimax search.
Also in these experiments, the search depth was kept constant, which meant an even
bigger advantage for PrOM search.

Since the number of games was fairly small in the LOA experiments (60 per
setting), it is not possible to formulate detailed conclusions from them. Furthermore,
the search depth was shallow (2 to 5 plies) and the test set of 30 positions used might
have been not too representative. Together this means that the LOA experiments
provided only a preliminary judgement on the practical applicability of OM search
and PrOM search.

KQKR experiments

The OM-search experiments in the KQKR chess endgame (section 5.4) were conduc-
ted in order to test the performance of OM search in a situation in which admissibility
was guaranteed by using an endgame database. Furthermore, the OM search player
was provided with perfect knowledge of the opponent’s evaluation function. In these
experiments we also tested our hypothesis on the effect of the speculative search
depth.

The results of this experiment were not conclusive with respect to OM search.
In the first one of the two positions used, OM search most of the times performed
better than Minimax search, but in the second position, OM search performed most
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of the times worse. Since the number of games per setting was 20, the outcomes
were statistically significant only in a few cases.

Further analysis of the games played revealed a difference in the two positions
that could explain the difference in performance of OM search. Figure 5.13 revealed
that games played from the second position showed less diversity than games played
from the first position. This could have led to less opportunities for the OM search
player to lure the opponent into unprofitable situations.

The KQKR experiments showed that perfect knowledge of the opponent’s eval-
uation function, a perfect evaluation function (i.e., an endgame database), and ad-
missibility together are still not sufficient to make OM search successful.

We did not find sufficient evidence to reject our hypothesis on the effect of the
speculative search depth. A statistical test (Anova) showed that the speculative
search depth did have a significant influence on the performance, but the effect was
not univocal.

Checkers experiments

Carmel and Markovitch (1998) described experiments with OM search in the game of
checkers (see subsection 2.4.4). These experiments were conducted with M∗ search,
but since the applied opponent model had depth 1, the algorithm was equivalent
to OM search. The evaluation functions V0 and Vop were closely related (see our
discussion in section 2.5) and probably were close to admissibility. In contrast to all
other experiments discussed in this subsection, the players in these experiments had
only limited resources: the total number of evaluations per move was restricted.

In this setting, the OM-search implementation appeared to outperform α-β
search. The improvement is not very large, but statistically significant. The experi-
ments showed a remarkable effect: the improvement diminished when more resources
became available to the players.

Othello experiments

The experiments in othello with (D, d)-OM search by Gao et al. (2001) (see subsec-
tion 2.4.3), showed a slight improvement of the performance if (D, d)-OM search was
used instead of Minimax. The improvement seemed to increase with larger difference
in search depth between the players. (It should be noted, however, that because of a
small sample size, none of the measured improvements were statistically significant.)
In these experiments, the speculating player was provided with perfect knowledge of
the opponent’s evaluation function since both players used the same one. The true
opponent’s search depth was also known. Furthermore, the speculating player was
given an additional advantage because of the absence of time restrictions.

The experiment indicated that when playing against an opponent using the same
evaluation function as you, but searching less deep than yourself, (D, d)-OM search
might be profitable.
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Bao experiments

We performed two unconnected experiments in bao. The bao experiments with
OM search in section 5.5 were designed to find out how OM search can be brought
to good results. In these experiments, the opponent had perfect knowledge of the
opponent’s evaluation function, no time restriction was given and the speculative
search depth of OM search was limited to 1.

It appeared that a combination of good opponent prediction and extended search
depth was needed for good results. Of these two factors, the extended search depth
seemed to be more important than the good prediction. The quality of the evalu-
ation functions appeared to be important for the effect of OM search. Because the
evaluation functions did not obey the admissibility demand, the results for plain
OM search were not good for most of the players. With additional resources, how-
ever, OM search was made successful. The last tournament (see table 5.11) showed
that strict risk avoidance also led to good performance.

The experiments with PrOM search in section 7.5 differed in one important
aspect from the OM-search experiments: the player using PrOM search did not
have perfect knowledge of the opponent. The speculating player was still given
advantages since the search time was unrestricted. OM search was also included in
the PrOM search experiments, since one of the probabilistic opponent models was
equivalent to OM search.

In these experiments PrOM search always performed better than OM search (as
soon as Pr(ω0) was larger than 0). It also performed better than Minimax search in
some cases. In those cases, the improvement was small but significant.

Recapitulation

The experiments showed that it is not a straightforward matter to apply OM search
successfully in a practical setting. There are several factors that influence the per-
formance. Below we mention nine of them.

• the extent of the knowledge of the opponent’s evaluation function (the more
knowledge the better)

• the extent of the knowledge of the opponent’s search depth (the more know-
ledge the better)

• the quality of both evaluation functions (the higher quality the better)

• the difference in quality of the evaluation functions (the larger difference the
better)

• the existence of admissibility of the pair of evaluation functions (admissibility
is a pre)

• the quality of the prediction of the opponent (the higher quality the better)

• the quality of the prediction of the own moves (the higher quality the better)
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• the (effective) branching factor (the larger the better)

• the search depth (ambiguous)

Since the performance of OM search varied from game to game, there must exist
other, game-dependent, factors that influence the performance.

Whatever the case, PrOM search seems to have more potential than OM search.
However, the computational costs of the former are much higher. The results of
PrOM search for LOA were better than those for bao, but in LOA, one of the
opponent types was the same as the evaluation function that the opponent really
used, whereas in bao, the opponent used an other evaluation function than any of
the opponent types.

8.1.4 Learning opponent models

Since PrOM search theoretically has the possibility to be used when learning op-
ponent models, we wished to test whether this is possible in a practical setting.

Research question 4: Can probabilistic Opponent-Model search be used
in practice to learn an opponent model?

The answer to this research question is negative. The bao experiments in section 7.5,
and especially the results in figure 7.17, show that the opponent-type probabilities
that predict the opponent’s moves the best are not the opponent-type probabilities
that lead to the best performance of PrOM search. This means that on-line learning
based on the move probabilities of PrOM search as described in subsection 6.6.2 is
not feasible. To find optimal opponent-type probabilities, other techniques will be
needed, such as reinforcement learning. It is questionable if such a technique can be
used for on-line learning.

8.2 Answer to the Problem Statement

Our problem statement was:

Problem statement: Under what conditions can Opponent-Model search
and Probabilistic Opponent-Model search improve computer game-playing?

Taking the answers to the research questions above into consideration, the answer
to the problem statement must be that OM search or PrOM search can improve
computer game-playing, but only when the circumstances are sufficiently profitable.
Both search methods need (far) more resources than the current search methods
based on α-β search. Moreover, especially OM search suffers from many risks. If
both methods are applied without serious precautions, the performance of computer
game-playing is bound to decrease instead of to improve.
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8.3 Contributions and Significance

In this section we list the contributions of the thesis and state its significance. There
are 3 main contributions and 3 additional contributions.

Main contributions

The first main contribution of this thesis is the increased knowledge about using op-
ponent models in computer game-playing. We made clear that more risk is involved
in using opponent models by means of OM search (and its derivatives) than was
anticipated so far. This risk does not only come from imperfect knowledge of the
opponent, or from failures to predict the opponent’s moves precisely, it also comes
from errors in the own evaluation function. This risk-sensitiveness of OM search
(and PrOM search) reveals an important property of Minimax search. Apparently,
Minimax search can render estimation errors in an evaluation function harmless; a
property that outweighs the lack of an opponent model in Minimax.

The second main contribution is a search method that is based on a probabil-
istic opponent model: PrOM search. This method is an extension of the existing
OM search. The method is designed to incorporate a player’s uncertainty of the
opponent. It appears to have a built-in risk management.

The third main contribution consists a number of algorithms for both OM search
and PrOM search. The algorithms can be divided into one-pass algorithms and
algorithms that use α-β probes. For the four most important algorithms, best-case
analyses and average-case (random-game) analyses were provided. We also showed
the applicability of standard search enhancements, such as transposition tables.

Additional contributions

Our first additional contribution is an analysis of the ordering of evaluation functions
in chapter 4. We showed that the simple ordering relation ‘better’ between evaluation
function does not exist. There are at least eight different ordering relations possible;
each of them has its own particular use in a specific context.

The second additional contribution of the thesis is the computer-science intro-
duction to the fairly unknown game of bao, which has some interesting properties.
The game is regarded as the most complex member of the mancala family. Some
mancala games have already been solved (e.g., awari and kalah), but bao differs so
much from these games that solving bao is a challenge on its own. Furthermore, no
competition in computerized bao has been held yet.

The third additional contribution is partly bridging the gap that has grown
between computer game-playing and game theory. Our attempt was twofold: (1)
using the language of game theory in our analysis and (2) showing that some sub-
jects in computer game-playing have parallels in modern game theory. In particu-
lar we mention here the relation between some of the search methods discussed in
chapter 2 and the recent discussion on subgame-perfect equilibria in game theory.
Another issue is the importance of nonzero-sum games in computer game-playing
since heuristic evaluation functions sometimes have asymmetric aspects that destroy
the zero-sum character of the game.
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Significance

The significance of the thesis is that it makes clear that using opponent models in
game-tree search can be profitable, but that the circumstances have to be ideal and
that serious precautions have to be taken.

8.4 Recommendations for Future Research

We end the chapter by listing nine recommendations for future research.

1. Further study of risk management in OM search and PrOM search.
In our experiments we only applied risk avoidance with OM search in the
KQKR experiments and in one of the bao tournaments. In particular the
results of the seventh bao tournament show that risk management might be a
promising way to improve OM search, but maybe also PrOM search.

2. Application to other game domains. The performance of OM search and
PrOM search seem to be game-dependent. It could therefore be the case that
there are game domains in which these methods perform sufficiently well to be
of practical interest. A game domain is to be understood as a specific game or
as a specific phase of a game.

3. Application of reinforcement learning for obtaining optimal opponent-
type probabilities. Since our hypothesis on the opponent-type probabilities
had to be rejected, further research is needed to find means for obtaining these
probabilities. One option might be reinforcement learning.

4. Combination of PrOM search and (D, d)-OM search. An interesting
specialisation of PrOM search might be the following: instead of providing
a separate evaluation function per opponent type, all opponent types use
the same evaluation function, but each one uses a different search depth. It
could be that such an application of PrOM search suffers from less risk than
OM search and could handle uncertainty about the opponent’s true search
depth.

5. Parallel computing. The implementations of OM search and PrOM search
could benefit from parallel computing. For instance, the execution of inde-
pendent α-β probes can be done in parallel. In the case of PrOM search, the
α-β probes for each opponent type at a node could be delegated to separate
processors.

6. Further study of bounded-sum pruning. The case in which evaluation
functions are closely related by a bounded sum is profitable to OM search since
the risk of overestimations is inherently small. Furthermore, pruning can be
more effective in this case. More studies in different game domains are needed
to find out whether this has a practical use.

7. Search in near-zero-sum games. Closely related to the previous recom-
mendation is a study of games that are not zero-sum, or of which the reduced
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games are not zero-sum, but of which the differences of the payoffs are small.
New search methods have to be developed for this case and an analysis of risks
and gains has to be performed.

8. New equilibria in game-tree search. As indicated at the end of chapter
2, a study of the applicability of new sorts of equilibria from game theory in
computer game-tree search might lead to improved search algorithms.

9. A further study of bao. The game of bao has many strategies and tactics
that have not been incorporated in a computer program yet. Although the
game is easily won by a computer against a human (Donkers, 2002), a true
computer competition would bring new knowledge of the game and its players.
Furthermore, since bao is much more complex than awari and kalah, solving
the game poses a new challenge to computer science.

Why did my parents send me to the schooles
That I with knowledge might enrich my mind?
Since the desire to know first made men fools,
And did corrupt the root of all mankind.

. . .

My selfe am center of my circling thought,
Only my selfe I studie, learne, and know.

Sir John Davies - Nosce Teipsum (1599)
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Loa Test Set

Below we reproduce the set of positions from the game of loa as used in the exper-
iments. From 10 games, three positions were selected, one at the beginning of the
game, one at the middle, and one at the end. Below every position it is indicated
whether black (BTM) or white (WTM) is to move.

1a: WTM 1b: BTM 1c: WTM

2a: WTM 2b: BTM 2c: WTM

3a: BTM 3b: WTM 3c: WTM

4a: WTM 4b: WTM 4c: BTM

5a: BTM 5b: BTM 5c: WTM

6a: WTM 6b: WTM 6c: WTM

7a: BTM 7b: BTM 7c: BTM

8a: BTM 8b: WTM 8c: BTM

9a: BTM 9b: WTM 9c: WTM

10a: WTM 10b: WTM 10c: BTM
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Browne-Belle Games

Below we present the two games that Walter Browne played against Ken Thompson’s
chess machine Belle in 1977. Annotated versions of these games can be found in
Newborn (1997). A thorough analysis of both games is provided in Haworth (2003).
Next to the games we provide two versions of optimal play for each starting posi-
tion. One version is generated by the program Chess Genius Classic using Ken
Thompson’s distance to conversion (DTC) endgame databases. The other version is
generated by the program Crafty using Eugene Nalimov’s distance to win (DTW)
endgame databases. Both positions are won in 35 moves if both sides play optimally,
regardless whether the DTC or the DTW database is used.

First Game White: Walter Browne, Black: Belle

(1977, New York). 1. Kb7 Re7+ 2. Kc6 Re6+
3. Kd7 Re7+ 4. Kd8 Re4 5. Qc5 Re5 6. Qd4 Kf5
7. Kd7 Re4 8. Qd3 Kf4 9. Kd6 Re3 10. Qd4+
Re4 11. Qf2+ Kg4 12. Kd5 Re8 13. Qf6 Re3 14.
Kd4 Rf3 15. Qg6+ Kf4 16. Qg2 Ra3 17. Qc6
Ra1 18. Qc7+ Kf5 19. Qc2+ Ke6 20. Qd2 Ra7
21. Qb4 Re7 22. Ke4 Kf6+ 23. Kf4 Ke6 24. Qd4
Rf7+ 25. Ke4 Rf6 26. Qd5+ Ke7 27. Ke5 Rh6
28. Qb7+ Kd8 29. Qf7 Rc6 30. Kd5 Rb6 31. Kc5
Ra6 32. Qc4 Rf6 33. Qh4 Ke7 34. Kd5 Kf7 35.
Ke5 Re6+ 36. Kf5 Rd6 37. Qc4+ Ke7 38. Ke5
Rh6 39. Qc7+ Kf8 40. Kf5 Ke8 41. Qc1 Rd6 42.
Qc8+ Ke7 43. Qc7+ Rd7 44. Qc5+ Kd8 45. Ke6
Rb7 1/2 – 1/2 (draw agreed)

Optimal play according to Thompson’s DTC tables (Generated using Chess Genius

Classic). 1. Ka7 Re7+ 2. Kb6 Re6+ 3. Kc7 Re7+ 4. Kd8 Re4 5. Qc5 Re5 6. Qc3 Ke6

7. Kc7 Rd5 8. Qe3+ Re5 9. Qb3+ Kf5 10. Qf3+ Ke6 11. Kc6 Ke7 12. Qg3 Kf6 13. Kd6

Re6+ 14. Kd5 Kf7 15. Qc7+ Re7 16. Qf4+ Kg6 17. Qg4+ Kf6 18. Kd6 Re8 19. Qf4+

Kg6 20. Kd7 Rg8 21. Ke7 Kh5 22. Qh2+ Kg6 23. Qh4 Rg7+ 24. Ke6 Ra7 25. Qe4+ Kh5

26. Qh1+ Kg5 27. Qg1+ Kf4 28. Q×a7 Ke4 29. Qb6 Kd3 30. Kd5 Kc3 31. Qd4+ Kc2

32. Kc4 Kb1 33. Kc3 Ka1 34. Qb4 Ka2 35. Qb2+ 1–0.
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Optimal play according to Nalimov’s DTW tables (Generated using Crafty). 1.

Kb7 Re7+ 2. Kc8 Re8+ 3. Kd7 Re7+ 4. Kd8 Re3 5. Qb6+ Re6 6. Qb2+ Kf5 7. Kd7

Re3 8. Kd6 Ke4 9. Ke6 Kf4+ 10. Kd5 Rd3+ 11. Kc4 Re3 12. Qf6+ Kg4 13. Kd4 Re2 14.

Qg6+ Kf4 15. Qh6+ Kg4 16. Qf6 Re1 17. Kd3 Kg3 18. Qg5+ Kf3 19. Qf5+ Kg3 20. Kd2

Rg1 21. Ke2 Rg2+ 22. Kf1 Rh2 23. Qe5+ Kh3 24. Qd6 Rh1+ 25. Kf2 Kg4 26. Qd4+

Kf5 27. Qd5+ Kf6 28. Q×h1 Ke7 29. Qc6 Kf7 30. Kg3 Ke7 31. Kg4 Kf7 32. Kf5 Ke7 33.

Qc7+ Ke8 34. Kg6 Kf8 35. Qd8 1–0.

Second Game White: Walter Browne, Black: Belle

(1977, New York). 1. Kb7 Rb4+ 2. Kc6 Rc4+
3. Kb5 Rb4+ 4. Ka5 Re4 5. Qd6 Rd4 6. Qe5
Kd3 7. Kb5 Re4 8. Qf6 Ke3 9. Kc5 Rf4 10. Qg6
Ra4 11. Qg3+ Ke2 12. Qc3 Rf4 13. Kd5 Rh4
14. Qc2+ Ke3 15. Qd1 Kf2 16. Qd2+ Kf3 17.
Qe1 Rg4 18. Qd1+ Kf4 19. Qe2 Rg5+ 20. Kd4
Rf5 21. Qe3+ Kg4 22. Ke4 Rf7 23. Qg1+ Kh5
24. Qg3 Rf8 25. Ke5 Rf7 26. Ke6 Rf8 27. Qa3
Rf4 28. Qh3+ Kg5 29. Qg3+ Rg4 30. Qe5+ Kh4
31. Qh2+ Kg5 32. Ke5 Kg6 33. Qh8 Rg5+ 34.
Ke6 Rg4 35. Qg8+ Kh5 36. Qh7+ Kg5 37. Ke5
Rg3 38. Qg7+ Kh4 39. Qh6+ Kg4 40. Ke4 Rg2
41. Qg6+ Kh3 42. Qh5+ Kg3 43. Ke3 Rg1 44.
Qg5+ Kh2 45. Qh4+ Kg2 46. Ke2 Ra1 47. Qe4+
Kh3 48. Qh7+ Kg3 49. Qg7+ Kh3 50. Q×a1 1–0
(Black resigns)

Optimal play according to Thompson’s DTC tables (Generated using Chess Genius

Classic). 1. Kb8 Rb4+ 2. Ka7 Ra4+ 3. Kb6 Rb4+ 4. Ka5 Re4 5. Qd6 Rd4 6. Qa3+

Kc4 7. Kb6 Rd2 8. Qf8 Rd4 9. Qf7+ Kd3 10. Qf3+ Kc4 11. Kc6 Kb4 12. Qf2 Kc3 13.

Kc5 Rc4+ 14. Kd5 Kb3 15. Qe2 Rc2 16. Qd3+ Rc3 17. Qb5+ Ka3 18. Kd4 Rg3 19. Qb6

Rb3 20. Qa5+ Kb2 21. Kc4 Ra3 22. Qb4+ Ka2 23. Qb8 Rh3 24. Qg8 Rb3 25. Qd5 Rb2

26. Kc3+ Kb1 27. Qh1+ Ka2 28. Qd1 Rh2 29. Qa4+ Kb1 30. Qe4+ Ka1 31. Qa8+ Kb1

32. Qb8+ Ka2 33. Q×h2+ Ka3 34. Kc4 Ka4 35. Qa2+ 1–0.

Optimal play according to Nalimov’s DTW tables (Generated using Crafty). 1.

Kb7 Rb4+ 2. Kc6 Rc4+ 3. Kb5 Rb4+ 4. Ka5 Re4 5. Qd6 Rd4 6. Qf6 Kd3 7. Kb5 Ke3

8. Kc5 Rf4 9. Qe5+ Re4 10. Qc3+ Kf4 11. Kd5 Re2 12. Qf6+ Kg3 13. Qf5 Re1 14. Qh5

Re3 15. Kd4 Ra3 16. Qd5 Ra1 17. Ke3 Re1+ 18. Kd2 Rf1 19. Qg5+ Kf3 20. Qf5+ Kg2

21. Qg4+ Kh2 22. Ke3 Rg1 23. Qh4+ Kg2 24. Ke2 Ra1 25. Qe4+ Kg3 26. Qe5+ Kg4

27. Q×a1 Kf5 28. Kf3 Ke6 29. Kf4 Kd5 30. Qa5+ Kc4 31. Ke4 Kb3 32. Kd3 Kb2 33.

Qb4+ Ka2 34. Kc3 Ka1 35. Qb2 1–0.
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Zanzibar Bao Rules for the
Computer

In this appendix we provide a version of the rules for Zanzibar bao especially adapted
for computer use. These rules are based on De Voogt’s (1995) thesis.

The Board

South

North

Figure C.1: The bao board.

Zanzibar bao (or bao for short) is a game from the mancala family (De Voogt,
1995). It is played by two persons on a board with four rows of eight pits or holes,
see figure C.1. The two lower rows are owned by the player called South, the two
upper rows are owned by the player called North. The two middle rows are called
front rows and the two outer rows are called back rows. The fifth pit from the left
(in perspective of the player) on each front row is shaped differently and is called
the nyumba or house. The two outer pits of the front row are called kitchwa, and
the two pits on the front row next to the kitchwa are called the kimbi. Bao is played
with 64 equal counters (seeds, stones, or kete).

The front row of South is indicated by the character ‘A’, the back row is indicated
by ‘B’. For North, ‘a’ and ‘b’ are used for the front row and back row, respectively.
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South

North

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4 B5 B6 B7 B8

S
a1a2a3a4a5a6a7a8

b1b2b3b4b5b6b7b8

N

Figure C.2: Numbering of the holes in bao.

The holes on each rows are numbered from 1 to 8, starting at the left hand of the
player owning the rows, see figure C.2. South’s nyumba is indicated by ‘A5’ and
North’s by ‘a5’. The kitchwas are: A1, A8, a1, and a8, the kimbis are: A2, A7, a2,
and a7.

A configuration of stones on the board is indicated by four rows of numbers, or
two rows if the back rows are not of interest, in the same pit order as in figure C.2.
The rows of North are always on top. A wildcard ‘x’ can be used to indicate that
the content of a non-empty pit is not of interest or not known.

General Rules

rule 1.1: Goal of the game. The goal of bao is to empty the front row of the
opponent or to make it impossible for the opponent to move.
rule 1.2: End of the game. The game ends if (1) the front row of a player is
empty (even during a move) or (2) if a player cannot move. In both cases the other
player wins.
rule 1.3: Sowing. The basic move of bao is sowing (spreading) of stones. Sowing is
the process of putting a determined number of stones one by one in consecutive holes
in the own two rows of the board in clockwise or anti-clockwise direction. During
sowing, the direction of the sowing cannot change. Every sowing (spread) has a
starting pit, a number of stones to sow, a sowing direction, and an ending pit.
rule 1.4: Single capture. Capturing in bao is allowed only if a sowing ends in
a non-empty pit at the front row that has an opposing non-empty pit at the front
row of the opponent (this is called mtaji). The player’s pit is called the capturing
pit and the opponent’s pit is called the captured pit. The capture in bao consists
of taking all stones out of the captured pit in the opponent’s front row and sowing
them immediately at the own side of the board. The sowing of captured stones must
start at one of the kitchwas.

1.4a: If the sowing starts at the left kitchwa, the sowing direction is clockwise,
if the sowing starts at the right kitchwa, the sowing direction is anti-clockwise.

1.4b: If the capturing pit is the left kitchwa or kimbi, the sowing must start at
the left kitchwa. If the capturing pit is the right kitchwa or kimbi, the sowing must
start at the right kitchwa.
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1.4c: If the capturing pit is not a kitchwa or kimbi, then the direction can be
chosen by the player if the capture is the start of a move in namua stage (see below).
Otherwise the existing direction of the move must be sustained.
rule 1.5: Move. A move in bao is a sequence of sowings and captures by one player.
A move stops if a sowing ends in an empty pit, but may also stop at the house (see
rule 2.5b) or at a takasia-ed hole (see rule 4.1b). After a move the opponent is to
move.
rule 1.5a: Infinite Moves (special computer rule). A move can take a long
time and sometimes last forever. However, these infinite moves are illegal. If no
finite move is available, the game is lost for the player to move. Because infinity
of a move can be very tedious to prove, a move is regarded infinite if more than a
previously designated number of stones is sown.
rule 1.6: Endelea. If a sowing ends in a non-empty pit (e.g., after sowing there are
more than one stone in the ending pit) and a capture is not allowed, then the move
continues in the same direction by taking all the stones from that pit and sowing the
stones starting at the next pit in the same direction. This continuation of sowing is
called endelea.

1.6a: Endelea stops if the sowing ends at the owned house that contains six or
more stones if the player does not (or cannot) decide to play the house (see rule
2.5b).

1.6b: Endelea stops if the sowing ends at a takasia-ed hole.
1.6c: Endelea stops if a capture is possible. The move continues with the capture.

The direction of the sowing of captured stones is the same as the direction of endelea,
unless capture occurs at the kichwa or kimbi.
rule 1.7: No-capture moves (takasa). If a move does not start with a capture,
then capturing is not allowed at all during that move. The player is then called
to takasa. During takasa, the player keeps performing endelea until it ends (rule
1.6a/b). During takasa, the direction of the move cannot change.
rule 1.8: Capture moves. If a move starts with a capture, then more captures
can occur during endelea later on. If captures take place at the kitchwa or kimbi,
the direction of the moves changes.

1.8a: It is obligatory to capture, if possible.
rule 1.9: Stages. There are two stages in bao: namua and mtaji.

Namua stage

rule 2.1: Start of namua stage. The game starts in namua stage with the
following board configuration (see figure C.3): there are six stones in South’s nyumba
and two stones in the hole to the right of the nyumba and again two stones in the
next hole to the right. The same number of stones are in North’s nyumba and in
the consecutive holes to the right (of North). Each player has 22 stones in store.
The first player is South.
rule 2.2: Move. During namua stage, the player starts each move with sowing
one stone from the store on the board. When all stones are on the board (after 22
moves or 44 plies) the game enters the mtaji stage.
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South

North

0 0 0 0 6 2 2 0

0 0 0 0 0 0 0 0

22
00006220

00000000

22

Figure C.3: Official opening position of bao.

rule 2.3: Capturing in namua stage. A player is allowed to capture a non-
empty opponent’s hole from the front row if there is a non-empty hole at the own
front row (the capturing hole), directly opposite to the captured hole. The player
puts (‘sows’) one stone from the store in the capturing hole, takes all stones from
the opponent’s captured hole and start sowing them at one of the own kichwas as
described in rule 1.4.

2.3a: If the capturing hole is not a kichwa or kimbi, the player may choose which
kichwa to sow from. The move continues as described above.

2.3b: If a player can capture, he must do so.

rule 2.4: Takasa in namua stage. If a player cannot capture, he must takasa.
In namua, takasa starts with sowing one stone from the store in a non-empty hole
in the front row. Takasa cannot start in the back row.

2.4a: If the only filled hole on the front row is one of the kichwas, then takasa
cannot be done in the direction of the back row (because the front row will be empty
and the game is a loss).

2.4b: Takasa cannot start from the owned house with six or more seeds unless
it is the only filled hole in the front row. If it is the only hole filled at the front row,
then one stone from the store must be put in it, two stones have to be taken out
and spread to the left or to the right.

2.4c: Takasa cannot start from a hole with only one stone, unless there are no
holes with more than one stone on the front row or unless the house is still owned
(even with fewer than 6 stones).

rule 2.5: The house (nyumba). At the start of the game, both players own their
house.

2.5a: Players lose their house if it is emptied or when the first capture is made
in mtaji stage.

2.5b: If the player still owns the nyumba and a sowing ends in the nyumba then
(1) the move ends during takasa if the house contains six or more stones, or (2) the
move ends during a capture move if no capture is possible at the nyumba and if the
player wishes to stop. If a player does not wish to stop then the player is said to
play the house, which means that the house is emptied and its stones are spread.
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Mtaji stage

rule 3.1: Start of mtaji stage. The mtaji stage starts as soon as all stones are
on the board.
rule 3.2: The house. If the house happens to be still owned by one of the players,
it stays owned until the first capture occurs. The namua rules for the house (2.4b,
2.4c and 2.5b) do not apply anymore. Takasia rules do apply (4.1c) on the house.
rule 3.3: Moves. In mtaji stage, only holes can be played that contain more than
one stone. If both rows of a player only contain holes with zero or one stones, this
player loses the game. Every move in mtaji stage starts with selecting a hole and
sowing the contents in a chosen directory.
rule 3.4: Capture move in mtaji stage. A capture move in mtaji stage must
start from a hole on the front row or back row that contains more than one but
fewer than 16 stones. After spreading in a chosen direction, the last stone must
allow capturing. If a capture is possible, it is obligatory. The direction of the sowing
of the captured stones is the same as the selected move direction, unless capture
occurs on the kichwa or kimbi.
rule 3.5: Takasa in mtaji stage. If no capture move is possible, the player must
takasa.

3.5a: If possible, the player must takasa from the front row.
3.5b: If the only filled hole on the front row is one of the kichwas, takasa cannot

go in the direction of the back row (because the front row will be empty and the
game is a loss).

Special rule

rule 4.1: Takasia. If a player must takasa, but can play such that (1) the opponent
also must takasa next move and (2) exactly one of the opponent’s hole can be
captured after that, then the opponent is not allowed to empty this takasia-ed hole.
(This can only happen in mtaji stage.)

4.1a: However, a hole cannot be takasia-ed (e.g., the opponent is allowed to
empty it) if it is the house, or if it is the only occupied hole in the front row, or if it
is the only hole containing more than one stone in the front row.

4.1b: If endelea ends in a takasia-ed hole, the move ends.
4.1c: If a house is still owned during mtaji stage, it cannot be takasia-ed.

Notational system

Moves are indicated by the row (’A’,’B’,’a’,’b’) and number of the hole from which
the move starts(’1’-’8’). The direction of the move is indicated by ’L’ or ’R’. When
a player decides to play the house, a ’>’ is added to the move. A takasa move is
indicated by an asterisk ’∗’, a takasia is indicated by two asterisks ’∗∗’.

In namua stage, the row indication can be omitted. If the capturing hole is a
kichwa or kimbi, the direction indication can be omitted.
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The direction indicator is relative to the player at move. It indicates the direction
in which the hand moves after putting the first stone in namua stage or after picking
up the stones of a pit in mtaji stage. So, in a capture move during namua stage, the
direction indicates whether the left (L) or right (R) kichwa is chosen to be started
from.

A game transcript consists of a head containing the game information and one
line for every two plies (one move). A move line starts with the move number, then
a colon, a space, the move for South, a space, the move for North and a semicolon
follow. After the semicolon, comments may be added. An example game transcript
is given in figure C.4.

South: Ramadhan 11: 3R 1;
North: Kijumbe 12: 5R 7R∗; end in nyumba
place: Zanzibar 13: 8 2;
date: 17-10-94 14: 8 2;
winner: North 15: 3R∗ 5R>;
time: 30 minutes 10 seconds 16: 5R 3L;
takasia: yes 17: 8 6R;
1: 7L∗ 5R; 18: 4R 7;
2: 6R∗ 6R∗; 19: 5R 8;
3: 7R∗ 8L∗; 20: 5R 7;
4: 8R∗ 6R∗; 21: 7 6L;
5: 5R∗ 8L∗; 22: 2 8;
6: 7R∗ 6R∗; 23: B2L b7R;
7: 6R∗ 8L∗; 24: A7L b8R;
8: 7R∗ 6R∗; 25: A3R a6L;
9: 8R∗ 7; 26: A7L a6L; South resigns
10: 5L∗ 5L;

Figure C.4: A bao game transcript.
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Bao Test Set

The following table gives the 100 start positions used in the bao experiments of
section 5.5. The positions are generated by playing 10 random legal moves for every
player from the official bao opening position. Each row gives the contents of the
holes of one position. The numbering of the holes is according to figure C.2. The
last two columns indicate whether South and North have an active house.

Row b Row a Row A Row B House
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 S N
1 1 0 0 1 1 1 1 0 0 0 0 1 2 10 0 0 3 9 1 2 4 0 0 0 0 0 0 0 0 1 1 F F
1 1 1 1 1 1 1 1 1 3 7 0 4 0 6 2 0 1 0 1 0 5 0 0 0 0 0 0 0 0 1 1 F F
3 2 1 0 0 0 0 0 0 1 1 11 1 0 1 0 0 2 2 0 0 2 4 0 1 1 1 1 1 1 2 1 F T
0 0 0 0 0 0 0 0 1 5 6 0 1 3 0 1 0 0 1 7 1 1 5 0 1 1 1 1 1 1 0 2 F F
1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 3 15 1 1 5 1 1 0 0 0 1 2 2 T F
1 0 3 3 1 0 4 1 6 0 1 1 10 5 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 F F
0 1 1 0 2 1 3 3 0 3 6 6 0 0 0 1 1 1 0 1 0 4 3 0 1 0 0 0 0 0 1 1 F F
2 2 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 8 12 1 0 0 2 1 1 1 0 0 0 0 T F
1 1 1 1 1 1 1 3 3 1 1 1 0 4 3 1 0 4 1 2 0 6 2 1 0 0 0 0 0 0 0 0 F F
2 1 0 0 0 1 2 0 0 0 1 3 4 1 0 4 1 1 5 0 2 5 0 0 1 0 0 0 0 1 2 3 F F
3 0 1 1 0 0 0 0 0 2 0 9 0 0 3 1 1 0 2 0 8 0 0 0 1 1 1 1 0 2 0 3 T T
1 1 0 0 0 0 1 1 0 1 1 1 6 1 3 2 1 1 5 3 1 2 0 1 2 2 1 0 0 0 1 1 F F
2 1 1 1 1 1 1 1 1 1 0 1 2 0 5 1 2 1 1 0 0 4 0 3 0 2 0 2 0 2 2 1 F F
2 2 1 0 0 0 0 0 0 3 2 11 1 0 1 0 0 0 0 1 13 0 0 0 0 0 0 0 0 1 2 0 T T
0 0 0 1 1 1 1 1 0 0 7 0 1 1 1 0 2 6 0 0 1 0 6 0 0 2 0 2 0 2 1 3 F F
1 1 0 0 0 0 0 0 1 2 4 14 4 4 1 1 0 0 0 0 1 0 1 0 0 2 1 0 0 0 1 1 F T
0 2 2 0 1 1 0 0 1 4 2 11 0 0 0 0 0 0 0 0 9 1 1 0 0 0 0 0 1 1 1 2 T T
0 0 0 0 0 0 1 1 2 2 1 1 2 2 1 1 1 7 0 0 13 0 0 1 1 1 1 0 0 0 0 1 T F
1 1 0 1 1 1 1 1 1 4 1 1 1 5 1 0 0 0 0 0 13 0 5 0 0 0 0 0 0 0 0 1 T F
3 1 1 1 0 0 1 1 0 1 0 11 0 0 0 0 0 0 0 0 10 1 1 0 2 0 1 1 1 1 0 2 T T
1 1 0 0 1 1 1 1 2 4 1 6 0 4 3 3 1 3 6 1 0 0 0 0 0 0 0 0 0 0 0 0 F F
1 0 2 1 0 2 0 2 0 4 0 0 7 5 0 1 0 0 6 2 0 1 1 1 0 0 0 0 1 1 0 2 F F
2 2 1 1 1 1 1 1 1 2 2 0 1 2 0 2 0 0 0 0 12 1 0 1 1 1 0 0 0 1 1 2 T F
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Row b Row a Row A Row B House
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 S N

0 1 3 0 1 4 4 0 1 5 1 4 2 4 5 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 F F
1 1 0 0 0 1 1 2 0 3 0 9 0 0 2 1 1 0 0 0 11 0 0 0 0 0 1 1 0 2 0 3 T T
0 2 2 1 3 0 1 1 6 1 0 2 1 0 1 2 2 1 6 0 1 0 3 3 0 0 0 0 0 0 0 1 F F
0 0 0 0 0 0 0 0 1 0 3 10 0 5 0 1 1 1 0 0 15 0 2 1 0 0 0 0 0 0 0 0 T T
1 1 0 2 0 2 2 2 0 1 4 5 7 4 0 1 0 0 0 0 0 1 1 3 0 0 0 0 0 1 2 0 F F
2 2 2 1 1 1 1 1 2 3 1 3 6 2 1 0 0 0 0 0 0 1 3 0 1 1 1 1 1 0 1 1 F F
0 0 0 0 0 0 0 1 1 0 8 0 0 0 3 0 0 8 0 4 4 0 2 2 1 1 1 1 0 2 1 0 F F
2 1 2 2 1 1 1 1 0 1 4 0 1 0 6 1 1 0 0 0 2 9 0 0 0 0 0 0 1 1 0 2 F F
0 0 0 1 1 1 1 1 0 0 0 6 0 1 1 0 0 9 1 0 2 1 5 0 2 2 0 2 0 2 1 0 F F
0 0 0 0 0 0 0 0 1 2 1 3 1 3 1 1 1 2 0 0 6 1 0 2 2 0 2 2 2 1 4 2 F F
1 1 0 1 1 1 1 1 0 5 4 0 5 1 7 0 0 1 0 1 0 6 0 0 0 0 0 0 0 1 2 0 F F
0 1 1 0 1 1 1 1 3 1 0 0 0 0 0 0 0 4 3 4 5 5 3 2 1 0 0 0 0 1 1 1 F F
0 2 1 2 0 2 0 2 0 5 1 1 5 0 6 0 0 0 0 3 0 1 1 3 0 2 1 0 0 0 1 1 F F
0 0 0 0 0 0 0 0 1 3 1 3 1 1 1 1 2 1 4 0 1 3 2 5 2 1 2 0 4 0 1 0 F F
1 1 1 1 1 0 1 1 0 1 4 0 0 5 0 1 4 2 0 3 1 1 0 6 2 1 0 0 0 0 1 1 F F
3 0 2 0 2 0 2 2 1 3 1 0 0 0 0 2 1 0 0 0 11 2 0 0 0 0 0 1 1 2 0 4 T F
1 1 2 0 4 2 4 0 0 6 0 1 9 4 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 1 F F
0 0 0 0 0 0 0 0 4 1 1 3 4 0 0 5 1 2 0 0 0 3 3 3 1 1 1 1 1 2 2 1 F F
1 1 1 0 0 0 0 0 1 0 0 14 0 0 1 0 1 6 0 0 0 1 3 0 2 2 2 2 0 1 1 0 F T
1 1 1 0 0 0 0 1 0 0 0 1 1 3 0 5 2 1 2 3 2 0 0 0 0 2 1 3 1 3 3 3 F F
1 1 0 0 0 0 0 0 1 0 2 12 5 4 0 1 0 0 0 0 0 0 3 1 0 1 2 0 2 0 2 2 F T
0 1 2 0 1 1 0 1 0 1 2 11 0 4 2 0 0 1 1 2 0 0 1 0 2 0 2 0 2 0 1 2 F T
2 2 2 2 1 0 0 0 0 2 1 3 1 1 3 1 0 1 3 0 10 0 0 1 1 1 0 0 0 0 1 1 T F
1 1 0 0 0 0 0 0 0 0 0 0 2 6 1 1 1 6 9 4 2 0 1 0 1 1 1 1 1 0 0 0 F F
0 0 0 0 0 0 0 1 0 0 6 1 2 2 1 1 4 1 3 4 0 0 0 4 3 1 0 1 3 0 1 1 F F
0 0 0 0 0 0 0 0 0 6 1 1 0 4 3 1 1 0 1 3 15 0 1 0 0 0 0 0 0 1 1 1 T F
1 0 0 0 1 1 1 1 0 4 2 2 2 0 1 1 0 0 0 3 3 0 8 0 0 2 0 2 0 4 0 1 F F
1 1 0 0 0 0 1 1 2 1 0 1 2 5 2 0 2 3 3 6 2 0 1 0 1 1 0 0 1 1 0 2 F F
0 0 0 0 0 0 0 0 0 0 1 1 1 3 0 1 1 5 1 9 4 2 0 0 3 1 2 0 2 2 0 1 F F
0 0 0 0 0 0 0 0 5 0 3 5 4 0 0 1 0 0 0 0 0 9 3 0 1 3 1 0 1 3 1 0 F F
1 0 2 0 2 0 2 0 0 3 1 1 5 0 1 1 0 0 3 1 2 1 12 0 0 0 0 0 0 1 1 0 F F
2 1 1 2 2 0 2 0 0 3 1 1 0 7 0 0 0 0 0 0 15 0 1 0 0 0 0 0 0 0 1 1 T F
2 1 1 1 0 0 0 0 0 5 0 13 0 0 0 1 0 1 4 0 0 2 2 0 1 1 1 1 1 0 1 1 F T
2 0 1 1 0 0 0 0 0 4 1 8 0 5 1 0 0 0 0 0 9 0 0 0 0 0 1 1 1 3 0 2 T T
2 1 2 1 0 1 3 0 0 6 1 5 5 1 3 1 0 0 0 0 0 0 0 3 0 0 1 1 0 2 1 0 F F
0 1 2 0 1 1 0 0 0 3 1 13 1 0 1 0 0 0 1 0 9 0 0 0 0 0 0 0 1 1 1 3 T T
2 0 1 0 2 0 2 2 0 3 5 1 3 2 1 1 0 3 0 0 0 0 5 1 0 0 0 1 1 1 1 2 F F
1 0 3 2 1 0 0 0 0 1 1 10 0 0 0 0 0 0 0 0 12 1 2 1 0 0 0 0 0 1 2 2 T T
0 2 1 0 0 0 0 0 0 1 1 1 1 3 4 0 0 5 8 2 4 0 0 0 1 0 0 0 1 1 2 2 F F
1 1 1 3 1 0 3 3 1 4 2 0 0 4 0 0 0 0 0 1 11 0 0 0 1 1 0 0 0 0 1 1 T F
1 0 0 0 0 1 1 1 2 0 3 1 1 6 1 1 1 0 1 3 1 1 2 2 0 1 1 0 2 0 3 3 F F
2 2 3 1 3 1 2 0 1 2 1 0 4 0 1 5 3 1 0 0 0 0 0 0 0 0 1 1 1 1 2 2 F F
2 2 0 2 1 0 0 0 0 0 3 1 0 1 3 1 5 0 2 4 1 0 0 1 1 1 1 0 2 0 3 3 F F
0 2 0 1 1 0 0 0 3 1 1 0 0 0 0 0 0 6 3 5 0 4 8 2 1 1 0 0 0 0 0 1 F F
1 0 0 0 0 0 1 1 1 2 3 3 3 0 2 0 0 7 1 0 0 1 5 0 1 0 3 1 2 0 2 0 F F
1 1 1 0 2 1 3 3 0 2 0 0 0 1 4 1 2 1 1 2 1 1 0 0 1 1 1 1 1 2 2 3 F F
0 3 0 3 1 0 1 3 1 3 1 3 1 9 3 1 0 4 0 0 1 0 0 0 0 0 0 0 0 0 1 1 F F
0 2 3 1 0 1 3 1 1 1 0 4 6 1 3 0 0 5 0 2 2 1 0 0 0 0 0 0 0 0 1 2 F F
2 1 1 1 0 0 0 0 0 0 0 8 1 1 0 0 0 2 1 0 10 1 6 0 1 1 1 0 0 0 1 1 T T
0 0 1 1 1 1 1 1 0 10 0 1 1 3 1 1 1 4 3 4 3 0 1 1 0 0 0 0 0 0 0 0 F F
1 0 4 1 2 1 0 2 0 0 0 6 1 1 0 0 1 1 0 0 10 2 0 0 1 1 0 1 1 2 0 1 T T
1 0 1 3 2 0 2 1 1 2 3 1 2 4 1 0 0 1 0 0 2 0 5 0 1 1 1 1 1 1 1 1 F F
0 1 2 0 2 0 2 0 0 5 7 3 1 2 0 1 0 0 0 0 0 0 4 1 2 2 1 1 1 1 1 0 F F
1 1 2 0 2 0 2 0 3 2 1 0 0 4 0 1 0 4 0 4 5 1 0 2 0 0 0 0 0 1 2 2 F F
0 0 0 0 0 0 0 0 0 0 0 13 2 1 1 1 1 3 0 1 0 4 4 1 2 0 2 0 2 0 1 1 F T
1 0 0 0 0 0 1 1 1 2 3 1 6 0 1 1 0 4 1 3 0 4 0 1 1 1 1 0 1 1 2 2 F F
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Row b Row a Row A Row B House
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 S N

2 2 1 0 0 0 0 0 0 1 7 13 0 0 0 1 0 5 1 0 0 4 1 0 0 0 0 0 0 0 1 1 F T
1 1 0 0 0 0 0 0 1 2 1 3 1 2 1 0 1 8 2 0 11 0 0 0 0 0 0 1 1 2 0 1 T F
2 1 0 0 0 0 0 0 2 1 2 7 1 0 0 0 0 1 8 0 5 2 3 2 0 0 0 0 0 1 2 0 F F
0 2 0 2 1 0 0 0 2 0 0 11 0 2 1 1 0 0 0 1 12 0 1 1 0 0 0 0 0 1 1 1 T T
2 0 1 1 0 0 0 0 1 0 0 10 3 0 0 1 1 3 4 1 0 0 3 1 1 1 2 0 1 0 2 1 F T
1 1 0 0 0 0 0 1 7 1 8 0 3 5 3 0 0 0 0 0 2 0 5 0 0 0 0 0 0 0 1 2 F F
0 2 1 1 0 0 0 0 1 0 0 9 0 2 0 0 0 4 1 0 11 0 2 1 0 0 1 1 0 2 1 0 T T
1 0 0 0 0 0 0 0 2 4 1 0 1 1 2 1 1 0 1 3 13 1 1 1 1 1 1 1 1 0 0 1 T F
0 0 0 0 0 0 0 0 1 1 4 0 0 5 0 1 1 1 0 4 13 0 3 0 1 1 0 0 1 1 0 2 T F
0 2 1 0 0 0 1 1 0 0 3 12 4 1 1 0 2 3 0 1 0 2 4 0 0 0 0 0 0 1 1 0 F T
1 1 0 0 0 0 0 1 0 6 1 1 1 1 2 0 1 0 2 3 0 5 6 0 1 1 1 1 0 1 1 2 F F
2 2 1 1 1 1 0 0 0 7 1 1 0 0 0 0 0 0 1 0 11 2 1 1 1 1 1 1 0 1 2 0 T F
1 1 0 0 0 0 0 0 0 1 1 14 0 0 0 0 0 8 1 0 8 1 0 2 1 0 0 0 0 0 0 1 T T
2 0 1 1 0 0 0 0 0 0 0 0 1 1 3 0 1 4 0 0 12 3 1 0 1 2 0 3 1 2 1 0 T F
0 0 0 0 0 1 1 1 0 4 4 10 1 7 3 1 1 1 1 0 2 0 0 0 0 0 0 0 0 0 1 1 F T
2 1 2 1 1 0 0 1 0 3 4 1 7 1 0 0 0 1 1 1 1 2 0 3 2 1 1 0 0 1 2 0 F F
1 1 0 0 0 0 1 1 1 5 3 1 2 0 1 0 0 0 0 0 2 2 7 1 2 0 2 0 2 1 4 0 F F
0 0 0 0 1 1 1 1 0 0 0 1 2 1 5 0 0 10 6 2 1 0 0 0 1 1 1 1 1 1 1 1 F F
4 3 1 1 1 0 1 1 2 0 0 2 5 5 0 0 0 0 0 0 0 0 0 1 0 1 1 0 2 2 3 4 F F
0 0 0 0 1 1 1 1 2 3 1 1 3 4 2 1 1 1 4 3 0 1 1 1 1 0 0 0 1 2 3 0 F F
1 3 2 2 1 1 1 1 2 3 1 0 1 4 1 2 0 2 4 0 0 0 0 1 0 0 0 1 1 0 2 3 F F
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Ströhlein, T. (1970). Untersuchungen über Kombinatorische Spiele. M.Sc. thesis,
Fakultät für Allgemeine Wissenschaften der Technischen Hochshule München.
[58]



References 181

Sun (2002). JavaTM 2 SDK, Standard Edition Documentation. http://java.sun.com/
j2se/1.4/docs. [74]

Sutton, R.S. (1988). Learning to Predict by the Methods of Temporal Differences.
Machine Learning, Vol. 3, No. 1, pp. 9–44. [82]

Thompson, K. (1986). Retrograde Analysis of Certain Endgames. ICCA Journal,
Vol. 9, No. 3, pp. 131–139. [18]

Uiterwijk, J.W.H.M. and Herik, H.J. van den (1994). Speculative Play in Computer
Chess. Advances in Computer Chess 7 (eds. H.J. van den Herik, I.S. Herschberg,
and J.W.H.M. Uiterwijk), pp. 79–90, Rijksuniversiteit Limburg, Maastricht,
The Netherlands. ISBN 9–062–16101–4. [16, 20, 21, 22, 35]

Voogt, A.J. de (1995). Limits of the Mind. Towards a Characterisation of Bao
Mastership. Ph.D. thesis, University of Leiden, The Netherlands. ISBN 90–
73782–50–3. [94, 163]

Wilkins, D.E. (1982). Using Knowledge to Control Tree Searching. Artificial Intel-
ligence, Vol. 18, No. 1, pp. 1–51. [58]

Winands, M. (2003). Lines Of Action Page. http://www.cs.unimaas.nl/m.winands/
loa. [82]

Yoshioka, T., Ishii, S., and Ito, M. (1999). Strategy Acquisition for the Game
Othello Based on Reinforcement Learning. IEICE Transactions on Information
and Systems, Vol. E82-D, No. 12, pp. 1618–1626. [96]
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Summary

The thesis deals with the question how opponent models can be used in computer
game-playing. The search algorithms normally used in programs that play games like
chess are algorithms equivalent with Minimax. They do not use explicit knowledge
of the opponent. Yet it seems obvious that knowledge of the opponent can improve
game playing. In 1993 two research teams, one in Israel and one in the Netherlands,
simultaneously and independently invented a game-tree search method that involved
knowledge of the opponent. It is called Opponent-Model search (OM search). This
search method is our first main subject. The second main subject is a new search
method that also uses an opponent model, but in contrast to the previous model in-
corporates uncertainty. Therefore, it is called Probabilistic Opponent-Model search
(PrOM search).

In the first chapter we provide a short introduction to the research domain,
which is the playing of board games by computers, then some relevant notions of
mathematical game theory are given together with the basic notions of computer
game-playing. The introduction is completed by the following problem statement:
under what conditions can OM search and PrOM search improve computer game-
playing? To answer this statement we formulate four research questions: (1) what
are the important theoretical properties of OM search and PrOM search? (2) how
can these search methods be implemented efficiently? (3) what is the nature of the
practical circumstances in which OM search and PrOM search perform better than
the current implementations of Minimax search? and (4) can PrOM search be used
in practice to learn an opponent model?

The second chapter is dedicated to related research. We start with a comparison
of five foregoing search methods that use some form of opponent model. Then we
treat the simultaneous invention of OM search by Carmel and Markovitch in Israel
and by Iida, Uiterwijk, Van den Herik, and Herschberg in the Netherlands. The
core idea of OM search is that when the strategy of the opponent is known to the
player, and the opponent uses Minimax search, then this knowledge can be used
to lure the opponent into positions that are profitable for the player. The chapter
presents the basic formulation of the search method and discuss the work that has
been performed by both research teams. Each of them has developed specialisations
and generalisations of OM search. The chapter ends with a discussion of some topics
from mathematical game theory that are related to opponent models, such as special
equilibria and nonzero-sum games.
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The topic of the third chapter is the efficient implementation of OM search. We
discuss two basic approaches for implementation: a one-pass approach and an ap-
proach that uses α-β probes. An important factor of efficiency is the number of game
positions that can be disregarded when searching for the best move. Therefore effi-
cient pruning of the search tree is a main research issue. We discuss several pruning
algorithms for OM search for both the one-pass version and the probing version.
For one-pass β-pruning OM search and β-pruning OM search with α-β probes, we
provide a best-case analysis, showing that the former is the most efficient in the best
case. The number of position evaluations that both algorithms need appear to be an
almost linear function of the number of evaluations that α-β search needs. The last
part of the chapter discusses the application of a range of search enhancements that
are widely used in computer game-playing. Not surprisingly many enhancements
are applicable, especially in the versions of OM search with α-β probes.

In chapter four we discuss the role of evaluation functions in OM search, and espe-
cially of errors in these functions. Since it is impossible to investigate all positions of
a game, evaluation functions are used in computer game-playing to assess positions
at the point where the search is exhausted. The inventors of OM search assume
that the own evaluation function should be better than the opponent’s function.
However, evaluation functions can be interpreted in different ways. The chapter
compares three interpretations of evaluation functions and lists eight possible order-
ings of functions. One of the orderings leads to the definition of estimation errors
in evaluation functions. The second part of the chapter shows that these estimation
errors can cause serious problems in OM search. We define four types of errors in
OM search that follow from estimation errors; two of them are beneficial but the
other two are harmful. Especially the type-I error can be dangerous. They appear
when the own evaluation function overestimates a position that is assessed correctly
by the opponent’s evaluation function. In such circumstances OM search tries to
lure the opponent into this position, because it seems profitable. The opponent fol-
lows willingly, causing the player to be caught in his or her own trap. Therefore, we
define a condition, called admissibility condition, on the pair of evaluation functions
that should prevent such awful circumstances.

After these theoretical chapters, we present in the fifth chapter the results of
experiments with OM search in four different game domains. The first domain is
random game trees. It is used to measure the average-case behaviour of the two
β-pruning OM-search algorithms mentioned above. The version with α-β probes
appears to be more efficient on the random game trees. We used the same do-
main to show that transposition tables have a positive effect on the efficiency of
β-pruning OM search with α-β probes. The second domain is the game lines of
action (LOA). The experiments performed show a poor performance of OM search
although perfect knowledge of the opponent is available. An explanation is the ab-
sence of admissibility of the evaluation functions used. The third game domain is
the King-Queen-King-Rook endgame of chess. In the experiments, admissibility is
guaranteed since the player has access to an endgame database and the opponent
not. The experiments are designed to show whether a player in a lost position could
reach a draw or a win with the use of OM search. The results are not conclusive
although in some conditions, OM search plays better than α-β search. The fourth
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game domain is the mancala game bao. In these experiments, we attempt to discover
what exactly is needed to bring OM search to success. It appears that a combination
of good opponent prediction and extended search depth is needed for good results.
Both factors cause OM search to use more resources. Of these two factors, an exten-
ded search depth seems to be more important than a good prediction. For the effect
of OM search, the quality of the evaluation functions appears to be important, too.

Chapter six describes PrOM search. The chapter begins with an explanation of
the probabilistic opponent model that underlies PrOM search. The model is related
to the game-theoretic notion of a mixed strategy. It consists of a series of opponent
types, characterized by evaluation functions, and a probability distribution. One of
the opponent types is the player self, a mechanism that should prevent the negative
effects of overestimations. Next we formulate the PrOM-search method and some
of its theoretical properties. We present two different implementations of PrOM
search: a one-pass version and a version with α-β probing. Similar to OM search,
pruning is studied in PrOM search, too. It appears that pruning is even more
restricted in PrOM search than in OM search. A best-case study reveals that the
computational complexity of PrOM search is much higher than that of OM search in
the version with α-β probing and even more in the one-pass version. This is mainly
caused by the impossibility of deep pruning in PrOM search. The chapter ends with
a discussion on how a probabilistic opponent model can be obtained. Opponent
models for PrOM search can in theory be learned from observing the opponent.
We concentrate on the learning of the opponent-type probabilities in an off-line and
on-line setting.

In the seventh chapter we present experiments with PrOM search, again in four
game domains. Experiments in the first domain (random game trees) show that
also in the average case, the version of PrOM search with α-β probing is again
more efficient than the one-pass version, but both versions use more much resources
than OM search. The experiments show that transposition tables can increase the
efficiency of the version with α-β probes. The second game domain is LOA. The
experiments are performed alongside the OM-search experiments above. PrOM
search clearly outperforms OM search and α-β search in these experiments. It
indicates that admissibility might be a less strong demand for PrOM search than
it is for OM search. The third game domain is a simulated game that we use to
test the learning of opponent-type probabilities. The experiments not only confirm
some of the expectations from the theoretical analysis, but also give some insight
into the dynamics of the learning. It appears that dependencies between opponent
types can slow down the learning. The last game domain is bao. We first perform
some experiments to learn opponent-type probabilities for a number of probabilistic
opponent models. Next we study the performance of PrOM search with different
opponent models. The experiments show that PrOM search can perform better in
bao than α-β search even when no perfect knowledge of the opponent is available.
However, the gain from using PrOM search is not very large. Furthermore, the
search depth was kept constant to six plies for both sides, which means a considerable
advantage for PrOM search. The opponent-type probabilities that are learned off-
line, appear not to be the best probabilities to use in PrOM search: the probability
on the ‘self’ should be larger than the learned value. Hence, the opponent model
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should put more weight on the player’s own evaluation function than is needed for
the prediction of the opponent’s moves. A possible explanation for this is that the
additional weight balances the negative effects of type-I errors.

The last chapter of the thesis returns to the research questions and the problem
statement as formulated in chapter one. From the experiments we learned factors
that influence the performance of OM search and PrOM search: the quality of the
knowledge and prediction of the opponent, the quality of the evaluation functions,
admissibility and the size of the game tree. Taking the answers to the research
questions into consideration, the answer to the problem statement must be that
OM search or PrOM search can improve computer game-playing, but only in suf-
ficiently profitable circumstances. Both search methods need (far) more resources
than the current search methods that are based on α-β search. Yet, especially
OM search suffers from many severe risks. If both methods are applied without ser-
ious precautions, the performance of computer game-playing is bound to decrease
instead of to improve.



Samenvatting

Het proefschrift behandelt de vraag hoe opponentmodellen door computerprogram-
ma’s kunnen worden toegepast in bordspelen. De zoekmethoden die meestal in
programma’s voor schaken en andere spelen worden toegepast, gebruiken geen ex-
pliciete kennis over de tegenstander (opponent). Het lijkt echter vanzelfsprekend
dat kennis over de tegenstander het spel kan verbeteren. In 1993 ontdekten twee
onderzoeksgroepen, een in Israël en een in Nederland, tegelijkertijd en onafhanke-
lijk van elkaar een zoekmethode die kennis over de opponent gebruikt. De methode
wordt Opponent-Model search (OM search) genoemd. Deze zoekmethode is het
eerste hoofdonderwerp. Het tweede hoofdonderwerp is een nieuwe zoekmethode die
eveneens een model van de tegenstander gebruikt. In tegenstelling tot OM search
wordt in dit model ook onzekerheid over de opponent gemodelleerd. De methode
wordt Probabilistic Opponent-Model search (PrOM search) genoemd.

In het eerste hoofdstuk wordt een korte inleiding van het onderzoeksgebied ge-
geven, namelijk het spelen van bordspelen door computerprogramma’s. Dan volgen
enige relevante begrippen uit de wiskundige speltheorie en de grondbeginselen van
het computerspelen. Na deze introductie komen we tot de volgende probleemstel-
ling: onder welke condities kunnen OM search en PrOM search het spelen door
computers verbeteren? Teneinde deze probleemstelling te beantwoorden zijn vier
onderzoeksvragen opgesteld: (1) wat zijn de belangrijkste theoretische eigenschap-
pen van OM search en PrOM search? (2) hoe kunnen deze methoden efficiënt worden
gëımplementeerd? (3) wat is de aard van de omstandigheden waaronder OM search
en PrOM search beter presteren dan de huidige implementaties van Minimax search?
en (4) kan PrOM search in de praktijk worden gebruikt om een opponent model te
leren?

Het tweede hoofdstuk is gewijd aan verwant onderzoek. We beginnen met een
vergelijking van vijf voorafgaande zoekmethoden die een of andere vorm van een op-
ponentmodel gebruiken. Daarna behandelen we de gelijktijdige uitvinding van OM
search door Carmel en Markovitch in Israël en door Iida, Uiterwijk, Van den Herik
en Herschberg in Nederland. De kerngedachte van OM search is dat wanneer de stra-
tegie van de tegenstander bij de speler bekend is en de tegenstander gebruik maakt
van Minimax, de speler deze kennis kan gebruiken om de tegenstander in posities te
lokken die gunstig voor de speler zijn. In het hoofdstuk presenteren we de basisfor-
mulering van de zoekmethode en bespreken het werk dat beide onderzoeksgroepen
verder aan dit onderwerp hebben gewijd. Elk van de twee groepen heeft specialisa-
ties en generalisaties van de zoekmethode ontwikkeld. Het hoofdstuk eindigt met de
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bespreking van enkele thema’s uit de wiskundige speltheorie die te maken hebben
met opponentmodellen, zoals bijzondere evenwichten en niet-nulsomspelen.

Het onderwerp van het derde hoofdstuk is een efficiënte implementatie van OM
search. We bespreken twee elementaire wijzen van implementatie: een eengangs-
aanpak (one-pass) en een aanpak met α-β-peilingen (α-β-probing). Een bepalende
factor voor de efficiëntie is het aantal spelposities dat kan worden overgeslagen tij-
dens het zoeken naar de beste zet: het efficiënt snoeien (pruning) van de zoekboom
is een belangrijk onderzoeksonderwerp. We bespreken verschillende snoeimethoden
voor OM search voor zowel de eengangsversie als de versie met peilingen. Voor
de belangrijkste twee algoritmen (one-pass β-pruning OM search en β-pruning OM
search met α-β-probing) geven we een best-case analyse. De analyse toont aan dat
het eerste algoritme het efficiënst is in de beste-case. Het aantal positie-evaluaties
dat beide algoritmen nodig hebben blijkt een nagenoeg lineaire functie te zijn van het
aantal evaluaties dat α-β search nodig heeft. Het laatste gedeelte van het hoofdstuk
bespreekt de toepasbaarheid van een reeks zoekverbeteringen die algemeen gebrui-
kelijk zijn in computerspelen. Menig verbetering is toepasbaar, in het bijzonder in
OM search met α-β-probing.

In hoofdstuk vier bespreken we de rol van evaluatiefuncties in OM search en met
name de fouten in die evaluatiefuncties. Aangezien het onmogelijk is om alle posities
van een spel te onderzoeken gebruiken computerprogramma’s evaluatiefuncties om
posities te beoordelen op het moment dat het zoeken is uitgeput. De uitvinders van
OM search namen aan dat de eigen evaluatiefunctie beter moest zijn dan die van de
opponent. Er zijn echter verschillende interpretaties van evaluatiefuncties mogelijk
die leiden tot verschillende definities van ‘beter’. Het hoofdstuk behandelt drie in-
terpretaties en acht ordeningen van evaluatiefuncties die daaruit voortkomen. Een
van de ordeningen leidt tot de definitie van inschattingsfouten in evaluatiefuncties.
Het tweede deel van dit hoofdstuk toont aan dat deze inschattingsfouten grote pro-
blemen kunnen veroorzaken in OM search. We definiëren vier foutsituaties in OM
search; twee van deze zijn gunstig, de andere zijn ongunstig. Met name de type-I
fouten zijn gevaarlijk. Zij treden op wanneer de eigen evaluatiefunctie een positie
overschat die door de tegenstander correct wordt ingeschat. OM search zal proberen
om de tegenstander in deze positie te lokken en de tegenstander zal zonder weer-
stand volgen - hetgeen ertoe leidt dat de speler in zijn of haar eigen valkuil stapt.
We formuleren een voorwaarde die deze situatie moet vermijden: admissibility.

Na de theoretische hoofdstukken geven we in hoofdstuk vijf de resultaten van
experimenten met OM search in vier domeinen. Het eerste domein is random spel-
bomen. Het wordt ingezet om het average-case gedrag van de twee bovengenoemde
β-pruning varianten van OM search te meten. Het blijkt dat de versie met α-β-
probing efficiënter is met deze random spelbomen. We benutten dit domein tevens
om aan te tonen dat transpositietabellen een positief effect hebben op β-pruning OM
search met α-β-probing. Het tweede domein is het spel lines of action (LOA). De
experimenten in dit domein tonen een slechte prestatie van OM search ondanks de
beschikbaarheid van perfecte kennis over de tegenstander. Een mogelijke verklaring
is het ontbreken van admissibility in de betrokken evaluatiefuncties. Het volgende
domein is het Koning-Dame-Koning-Toren eindspel in schaken. In deze experimen-
ten kan admissibility gegarandeerd worden omdat de speler een eindspel-database
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ter beschikking heeft in tegenstelling tot de tegenstander. De experimenten zijn
ontworpen om aan te tonen of een speler in een verloren positie remise of winst kan
bereiken met OM search. De resultaten zijn niet eenduidig alhoewel in sommige
omstandigheden OM search beter speelt dan α-β search. Het vierde domein is het
mancalaspel bao. In deze experimenten proberen we te ontdekken wat precies no-
dig is om OM search succesvol te maken. Het blijkt dat een combinatie van een
goede voorspelling van de tegenstander en grotere zoekdiepte noodzakelijk is voor
goede resultaten. Beide factoren veroorzaken dat OM search meer middelen (tijd)
nodig heeft. Van deze twee factoren blijkt extra zoekdiepte belangrijker dan een
goede voorspelling. Daarnaast is ook de kwaliteit van de gebruikte evaluatiefuncties
belangrijk.

Hoofdstuk zes beschrijft PrOM search. Het hoofdstuk begint met een exposé
over het probabilistich opponentmodel dat aan PrOM search ten grondslag ligt. Het
model is verwant aan het speltheoretisch begrip van gemengde strategie. Het mo-
del bestaat uit een reeks opponenttypes die ieder door een evaluatiefunctie worden
gekenmerkt, en een kansverdeling. Een van de opponenttypes is de speler zelf, een
voorziening die de negatieve effecten van overschattingen moet opheffen. Vervolgens
formuleren we de PrOM search zoekmethode en een aantal theoretische eigenschap-
pen. We presenteren twee verschillende implementaties van PrOM search: een one-
pass aanpak en een aanpak met α-β-probing. Net zoals bij OM search bestuderen we
ook pruning in PrOM search. Het blijkt dat pruning in PrOM search nog beperkter
is dan in OM search. Een best-case analyse toont aan dat de computationele kosten
van PrOM search veel hoger zijn dan die van OM search, met name in de one-pass
versie. Dit wordt voornamelijk veroorzaakt door de onmogelijkheid van zogenaamd
diep snoeien in PrOM search. Het hoofdstuk eindigt met de bespreking hoe een
probabilistisch opponentmodel verkregen kan worden. We bestuderen met name het
leren van kansverdelingen in een off-line en een on-line opstelling.

In het zevende hoofdstuk presenteren we experimenten met PrOM search, op-
nieuw in vier domeinen. De experimenten in het eerste domein, random spelbomen,
laten zien dat ook in average case de versie van PrOM search met α-β-probing ef-
ficiënter is dan de one-pass versie, maar beide versies benutten veel meer middelen
dan OM search. De experimenten tonen ook aan dat transpositietabellen de ef-
ficiëntie van de versie met α-β-probing kan vergroten. Het tweede domein is LOA.
Deze experimenten zijn tegelijk met de experimenten hierboven voor OM search uit-
gevoerd. PrOM search speelt duidelijk beter dan OM search en α-β search. Dit duidt
erop dat admissibility wellicht een minder sterke voorwaarde voor PrOM search is
dan voor OM search. Het derde domein is een gesimuleerd spel dat wordt benut om
het leren van kansen op opponenttypes te bestuderen. Niet alleen bevestigen de ex-
perimenten enkele van de verwachtingen van de theoretische analyse, maar ze geven
ook inzicht in de dynamiek van het leren. Het blijkt dat afhankelijkheden tussen
opponenttypes het leren vertraagt. Het laatste domein is bao. In dit domein voeren
we eerst een reeks experimenten uit om kansen op opponenttypes te bepalen voor
een aantal probabilistische opponentmodellen. Daarna bestuderen we de prestaties
van PrOM search in een aantal toernooien. De experimenten tonen aan dat PrOM
search soms beter presteert dan α-β search, zelfs wanneer geen perfecte kennis over
de opponent aanwezig is. De winst van PrOM search is echter niet groot. Bovendien
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wordt de zoekdiepte constant gehouden, wat een enorm voordeel voor PrOM search
betekent. De kansverdeling over opponenttypes die we hadden geleerd blijkt niet de
optimale kansverdelingen te zijn in de toernooien: de kans op het eigen opponent-
type blijkt steeds hoger te zijn bij de optimale prestaties. Dit suggereert dat het
opponentmodel meer kans moet toekennen aan het eigen opponenttype dan op basis
van de zetten van de opponent wordt voorspeld. Een mogelijke verklaring hiervoor
is dat de extra kans een tegenwicht is voor de negatieve effecten van type-I fouten.

Het laatste hoofdstuk van dit proefschrift keert terug naar de onderzoeksvragen
en de probleemstelling zoals opgesteld in het eerste hoofdstuk. Uit de experimen-
ten leren we de factoren die van invloed zijn op de prestaties van OM search en
PrOM search: de kwaliteit van de kennis over de tegenstander en de voorspellingen,
de kwaliteit van de evaluatiefuncties, aanwezigheid van admissibility en tenslotte
de omvang van de zoekboom. Wanneer we de antwoorden op de onderzoeksvragen
in overweging nemen, moet het antwoord op onze probleemstelling luiden dat zo-
wel OM search als PrOM search het spelen door computers kan verbeteren, maar
slechts onder zeer gunstige omstandigheden. Beide zoekmethoden benutten veel
meer middelen dan het gebruikelijke α-β search, desalniettemin lijdt met name OM
search onder ernstige risico’s. Wanneer een van beide methoden zonder ernstige
voorzorgsmaatregelen wordt toegepast is het spelen door computers eerder gedoemd
te verslechteren dan te verbeteren.
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den Herik), pp. 47–156.



198 Publications

[11] Donkers, H.H.L.M., Ferreira, R., Uiterwijk, J.W.H.M., and Herik, H.J. van den
(1999). VAS: Quantifying a Qualitative Network. Proceedings of the Eleventh Belgium-
Netherlands Conference on Artificial Intelligence (BNAIC99) (eds. E.O. Postma and
M. Gyssens), pp. 139–146. IKAT, Universiteit Maastricht.

[12] Tange, H.J., Dreesen, V.A.B., Donkers, H.H.L.M., and Hasman A. (1999). A
Computer-Based, Communication-Oriented, Medical Record. International Journal
of Healthcare Technology and Management, Vol. 1 Nos. 3-4, pp. 288–300.

[13] Donkers, H.H.L.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2000). Investig-
ating Probabilistic Opponent-Model Search. Proceedings JCIS 2000 (ed. P.P. Wang),
pp. 982–985. Association for Intelligent Machinery, Inc. ISBN 0-9643456-9-2.

[14] Irving, G., Donkers, H.H.L.M., and Uiterwijk, J.W.H.M. (2000). Solving Kalah. ICGA
Journal. Vol. 23, No. 3. pp. 139–148.

[15] Donkers, H.H.L.M., Voogt, A. de, and Uiterwijk, J.W.H.M. (2000). Human versus
Machine Problem Solving: Winning Openings in Dakon. Board Games studies. Vol. 3,
pp. 79–88. ISBN 90-5789-057-7, ISSN 1566-1962.

[16] Donkers, H.H.L.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2000). Investigat-
ing Probabilistic Opponent-Model Search. Proceedings BNAIC 2000 (eds. A. van den
Bosch and H. Weigand), pp. 337–338.

[17] Donkers, H.H.L.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2001). Probabil-
istic Opponent-Model Search. Information Sciences, Vol. 135, Nos. 3–4, pp. 123–149.

[18] Donkers, H.H.L.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2001). Admissibil-
ity in Opponent Model Search. Proceedings BNAIC 2001 (eds. B. Kröse, M. de Rijke,
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Stellingen

behorende bij het proefschrift
“Nosce Hostem - Searching with Opponent Models”

Jeroen Donkers, 5 december 2003.

1. Alhoewel het motto “Nosce Hostem” (ken de tegenstander) uiteraard van het groot-
ste belang is bij het zoeken met opponent-modellen, blijkt het motto “Nosce Te
Ipsum” (ken uzelf) hierbij van even groot belang te zijn aangezien fouten in de eigen
evaluatiefunctie ernstige gevolgen kunnen hebben voor de uitkomst van het spel.

Hoofdstuk 8 van dit proefschrift.

2. De zoekmethoden Opponent-Model Search en Probabilistic Opponent-Model Search
kunnen slechts onder strenge voorwaarden met succes worden toegepast.

Hoofdstuk 8 van dit proefschrift.

3. Als Huizinga het onderzoek naar spelen had kunnen observeren binnen de kunst-
matige intelligentie, zou hij zeker tot andere gedachten zijn gekomen inzake de rol
van het spel in de moderne wetenschap.

Johan Huizinga (1938) Homo Ludens.

4. Zowel de mathematisch-economische speltheorie als het onderzoek naar spelen binnen
de kunstmatige intelligentie zullen baat hebben bij een nauwe samenwerking.

5. Het onderzoeken van spelen verdient eerder de titel “de Formule I van de kunstmatige
intelligentie” dan “de Drosophila melanogaster van de kunstmatige intelligentie”.

6. Twee belangrijke taken van het wetenschappelijk onderzoek naar spelen binnen de
kunstmatige intelligentie zijn het reconstrueren van reeds uitgestorven spelen en het
behoud van spelen die door de opkomst van de mondiale consumptiemaatschappij
dreigen uit te sterven.

7. Het is een groot goed dat universiteiten middels derde-geldstroom onderzoek zorg
dragen voor kennisoverdracht naar de maatschappij. Het is een schande dat zij voor
het uitvoeren van hun kerntaak, het onderwijs, deels afhankelijk zijn geworden van
deze derde-geldstroom financiering.

8. Het Internet biedt grote mogelijkheden voor een evenwichtige ontwikkeling van de
wereldeconomie. Het verdient daarom te worden beschermd door een instituut als
de Verenigde Naties tegen de macht van nationale politiek en multinationale handel.

9. Het vaak onstuimig verloop van politieke verwikkelingen in academische bestuurlijke
organen lijkt overeen te stemmen met de aanwijzing dat Homo sapiens een hogere
genetische verwantschap heeft met Pan troglodytes (Chimpansee) dan met Pan pan-
iscus (Bonobo).

http://www.gate.net/∼rwms/primegendist.html.

10. Kunstmatige intelligentie is als het geluk. Men streeft er voortdurend naar, maar op
het moment dat het wordt bereikt wordt het niet meer als zodanig beleefd.

11. Het is terroristen gelukt om het wtc i en ii in New York te vernietigen; dat zal
niemand lukken met het wtc i en ii van J.S. Bach.
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