
Monte-Carlo Tree Search

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit Maastricht,

op gezag van de Rector Magnificus,
Prof. mr. G.P.M.F. Mols,

volgens het besluit van het College van Decanen,
in het openbaar te verdedigen

op donderdag 30 september 2010 om 14:00 uur

door

Guillaume Maurice Jean-Bernard Chaslot

Promotor: Prof. dr. G. Weiss
Copromotor: Dr. M.H.M. Winands

Dr. B. Bouzy (Universit́e Paris Descartes)
Dr. ir. J.W.H.M. Uiterwijk

Leden van de beoordelingscommissie:
Prof. dr. ir. R.L.M. Peeters (voorzitter)
Prof. dr. M. Müller (University of Alberta)
Prof. dr. H.J.M. Peters
Prof. dr. ir. J.A. La Poutŕe (Universiteit Utrecht)
Prof. dr. ir. J.C. Scholtes

The research has been funded by the Netherlands Organisation for Scientific Research (NWO), in the
framework of the project Go for Go, grant number 612.066.409.

Dissertation Series No. 2010-41
The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.

ISBN 978-90-8559-099-6

Printed by Optima Grafische Communicatie, Rotterdam.
Cover design and layout finalization by Steven de Jong, Maastricht.

c© 2010 G.M.J-B. Chaslot.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronically, mechanically, photocopying, recording or
otherwise, without prior permission of the author.

Preface

When I learnt the game of Go, I was intrigued by the contrast between the simplicity of its
rules and the difficulty to build a strong Go program. By contrast, most problems with a
simple mathematic definition are easier to solve for computers than they are for humans.
Fascinated by this characteristic of Go, I was interested indeveloping a method that would
improve the level of Go programs. My first thoughts about using Monte-Carlo were not the
most optimistic. However, after experimenting with it, advised by Bruno Bouzy, I quickly
changed my mind. I was impressed by the results obtained by Monte-Carlo despite its sim-
plicity. This motivated me to spend four years at MaastrichtUniversity to develop Monte-
Carlo methods for games and optimization problems.

Jos Uiterwijk, as the leader of the research project “Go for Go”, funded by the Netherlands
Organisation for Scientific Research (NWO) is the first one tothank. Later, Gerhard Weiss
became supervisor. I thank them for their supervision and help with scientific writing.

My daily advisors, Mark Winands and Bruno Bouzy, deserve my sincerest gratitude, for
the many fruitful meetings we had over the years, and for their renewed encouragements
and enthusiasm to tackle the difficult scientific problems.

I would like to thank Olivier Teytaud for welcoming me warmlyin the MOGO team. His
creativity and dedication makes him one of the researchers with whom I enjoyed working
the most. Later, I also had the pleasure to work on MOGO together with Arpad Rimmel and
Jean-Baptiste Hook. I would also like to thank computer Go competitors with whom I had
interesting research discussions, and in particular Erik van der Werf, Ŕemi Coulom, Sylvain
Gelly, and David Fotland.

In Maastricht there were many opportunities for joint work as well. I greatly enjoyed
working with my colleagues Jahn-Takeshi Saito, Steven de Jong, Maarten Schadd, Istvan
Szita, Marc Ponsen, Sander Bakkes, and Pieter Spronck on research that is reported in the
thesis, and elsewhere in joint articles.

Research sometimes needs excessively optimistic people who believe in revolutions to
appear in the near future, even when there is no evidence yet that these developments would
actually be possible. An example of such a visionary manageris Jaap van den Herik, who
promoted research in computer Go, and was one of the rare persons to predict that computers
could defeat professionals before the year 2010. I am grateful to him, as well as Peter
Michielse in particular and NCF (grant number SH-105-08) ingeneral, for providing use of
supercomputer time.

A pleasant research environment is not only facilitated by numerous opportunities for
cooperation, but also by a friendly, constructive and comforting atmosphere. The supportive

vi

staff of DKE helped me in many respects; an explicit thank-you is given to Peter Geurtz,
Joke Hellemons, and Marijke Verheij. My roommates over the years, Andra Waagmeester,
Nyree Lemmens, and Philippe Uyttendaele, made our room a place that I enjoyed being
in. My family deserves many thanks for their constant support and communicating their
passion for research. Mais surtout, mille tendresses a mon tendre amour.

Guillaume Chaslot, 2010

Table of Contents

Preface v

Table of Contents vii

List of Figures xi

List of Tables xii

1 Introduction 1
1.1 Tree-Search Problems .1
1.2 Tree-Search Algorithms .. 2
1.3 Problem Statement and Research Questions 3
1.4 Choice of the Test Domain . 4
1.5 Thesis Overview . 5

2 Test Environment: The Game of Go 7
2.1 History of Go . 7
2.2 Rules of Go . 8
2.3 Characteristics of Go .9
2.4 Go Concepts . 10

2.4.1 Life and Death . 10
2.4.2 Territory . 10
2.4.3 Influence . 11
2.4.4 Patterns . 11

2.5 Go and Artificial Intelligence 12
2.6 Go Programs MANGO and MOGO . 13

3 Monte-Carlo Tree Search 15
3.1 Related Work: Monte-Carlo Evaluations 16
3.2 Structure of Monte-Carlo Tree Search 18
3.3 MCTS . 19

3.3.1 Selection . 19
3.3.2 Expansion . 22
3.3.3 Simulation . 22
3.3.4 Backpropagation . 23

viii Table of Contents

3.4 Final Move Selection . 25
3.5 MCTS Applications . 25

3.5.1 Deterministic One-Player Games26
3.5.2 Deterministic Two-Player Games26
3.5.3 Deterministic Multi-Player Games 27
3.5.4 Stochastic One-Player Games . 27
3.5.5 Stochastic Two-Player Games . 27
3.5.6 Stochastic Multi-Player Games 28
3.5.7 General Game Playing . 28

3.6 Chapter Conclusions . 28

4 Enhancing the Simulation Strategy with Knowledge 31
4.1 Simulation Strategies .. 32

4.1.1 Urgency-Based Simulation . 32
4.1.2 Sequence-Like Simulation . 33

4.2 Learning Automatically the Simulation Strategy 34
4.2.1 Learning from Matches between Programs 34
4.2.2 Learning from the Results of Simulated Games 34
4.2.3 Learning from Move Evaluations 35
4.2.4 Learning from the Mean-Squared Errors on a Set of Positions . . . 36
4.2.5 Learning from Imbalance . 37

4.3 Related Research: General Game Playing 37
4.4 Chapter Conclusions and Future Research 38

5 Enhancing the Selection Strategy with Knowledge 41
5.1 Progressive Strategies .. . 42

5.1.1 Progressive Bias . 42
5.1.2 Progressive Widening . 43

5.2 Experiments in MANGO . 43
5.2.1 Experimental Details . 44
5.2.2 MANGO vs. GNU GO . 45
5.2.3 Self-Play Experiment . 47
5.2.4 Tournaments . 47

5.3 Progressive Strategies in Other Game Programs 48
5.3.1 Progressive Strategies in CRAZY STONE 48
5.3.2 Progressive Strategies in MOGO 48
5.3.3 Progressive Strategies in MC-LOA49

5.4 Related Research . 50
5.4.1 Prior Knowledge . 50
5.4.2 Rapid Action-Value Estimation51

5.5 Chapter Conclusions and Future Research 51

6 Optimizing Search Parameters using the Cross-Entropy Method 53
6.1 Parameter Optimization .. 53
6.2 MCTS Parameters in Mango . 54

6.2.1 Selection Parameters . 54

Table of Contents ix

6.2.2 Simulation Parameters . 55
6.2.3 Progressive Parameters . 55

6.3 The Cross-Entropy Method .56
6.3.1 Informal Description of the Cross-Entropy Method 56
6.3.2 Formal Description of the Cross-Entropy Method 57
6.3.3 Normalizing Parameters . 59

6.4 Experiments . 60
6.4.1 Overview of MCTS Parameters 60
6.4.2 Fixed Batch Size . 60
6.4.3 Variable Batch Size . 61
6.4.4 Comparison of Default and CEM Parameters 62
6.4.5 Self-Play Experiment . 63

6.5 Chapter Conclusions and Future Research 64

7 Parallelizing Monte-Carlo Tree Search 65
7.1 Parallelization of Monte-Carlo Tree Search 66

7.1.1 Leaf Parallelization . 66
7.1.2 Root Parallelization . 67

7.2 Tree Parallelization .. 67
7.2.1 Mutex Location . 68
7.2.2 Virtual Loss . 68

7.3 Experiments . 68
7.3.1 Experimental Set-up . 69
7.3.2 Leaf Parallelization . 69
7.3.3 Root Parallelization . 71
7.3.4 Tree Parallelization . 72
7.3.5 Overview . 73
7.3.6 Root Parallelization vs. Tree Parallelization Revisited 73

7.4 Chapter Conclusions and Future Research 73

8 Generating Opening Books using Meta Monte-Carlo Tree Search 77
8.1 Automatic Opening Book Generation 78
8.2 Meta Monte-Carlo Tree Search .. 79

8.2.1 General Idea . 79
8.2.2 Quasi Best-First . 79
8.2.3 Beta-Distribution Sampling .80

8.3 Experiments . 82
8.3.1 QBF Experiments . 82
8.3.2 Experiments Comparing QBF and BDS 83

8.4 Chapter Conclusions and Future Research 86

9 Conclusions and Future Research 87
9.1 Answers to the Problem Statement and Research Questions. 87
9.2 Future Research . 90

References 93

x Table of Contents

Appendices

A Production Management Problems 105
A.1 Overview . 105
A.2 Formalization . 106

B Milestones of Go Programs against Professionals 109

Summary 113

Samenvatting 119

Curriculum Vitae 125

SIKS Dissertation Series 127

Table of Contents xi

List of Figures

2.1 Rules of Go. 9
2.2 Life and death. 11
2.3 Territory. 11
2.4 Influence and territory. .. 12
2.5 Two Go patterns. 12

3.1 Outline of Monte-Carlo Tree Search. 18

4.1 Examples of learnt pattern weights. 36

5.1 Progressive widening. .. 44
5.2 Number of calls to the domain knowledge relative to the number of simu-

lated moves, as a function of the thresholdT 46
5.3 Number of nodes with a given visit count. 46

6.1 Learning curves for different fixed batch sizes. 61
6.2 Learning curves for different fixed and variable batch sizes. 62

7.1 (a) Leaf parallelization (b) Root parallelization (c) Tree parallelization with
global mutex and (d) with local mutexes. 67

7.2 Scalability of the strength of MANGO with time. 70
7.3 Scalability of the rating of MANGO vs. GNU GO with time. 70
7.4 Performance of the different parallelization algorithms. 74

8.1 Number of book moves when playing against FUEGO with the opening book. 84
8.2 Number of book moves when playing against GNU GO with the opening

book. 85

A.1 Example of a PMP that adheres to the formalism and constraints presented
in this chapter. 107

xii Table of Contents

List of Tables

1.1 Different types of problems. .. . 2

2.1 First player scores onm× n boards. 10

5.1 Results of MANGO against GNU GO. 47
5.2 Results by MANGO in 2007 tournaments. 48
5.3 Tournament results. 50

6.1 Parameters with their ranges. 61
6.2 Comparison of Default and CEM parameters. 63
6.3 Self-play experiments: CEM vs. Default. 64

7.1 Leaf parallelization. .. . 71
7.2 Root parallelization. .. . 71
7.3 Tree parallelization with global mutex. 72
7.4 Tree parallelization with local mutexes. 72
7.5 Using virtual loss for tree parallelization with local mutexes. 73
7.6 9× 9 results for root and tree parallelization using 4 threads. 74

8.1 Performance of the QBF algorithm with 10 seconds per moveandK = 0.5. 82
8.2 Success rate of the QBF book and expert book against the default MOGO

using 6 hours for each side. 83
8.3 Results on the computer Go server CGOS. 86

B.1 Milestones against human players for different handicaps on the19 × 19
board. 110

Chapter 1

Introduction

In this thesis, we study the use of Monte-Carlo simulations for tree-search problems. Monte-
Carlo simulations consist of sequences of randomized actions. They were first applied in the
computers of Los Alamos (Metropolis, 1985). Nowadays, Monte-Carlo simulations have
applications in numerous fields, as for instance chemistry,biology, economics, and finance
(cf. Liu, 2002). Tree-search problems are problems that canbe handled by progressively
expanding a tree structure, for instance in pathfinding and chess.

The Monte-Carlo technique we investigate is Monte-Carlo Tree Search (MCTS). In
2006, it appeared in three different variants (Coulom, 2006; Kocsis and Szepesvári, 2006;
Chaslotet al., 2006a). Coulom used his variant to create the first competitive MCTS pro-
gram, CRAZY STONE. This program immediately won the9×9 Go tournament at the 2006
Computer Olympiad. The variant introduced by Kocsis and Szepesv́ari (2006), called UCT,
was based on the Upper Confidence Bounds (UCB) algorithm (Auer, Cesa-Bianchi, and
Fischer, 2002). Chaslotet al. (2006a) proposed the variant Objective Monte-Carlo (OMC),
which was evaluated for Go positions.

In contrast to classic algorithms for tree search, such asA? andαβ search, MCTS does
not rely on apositional evaluation function, but on Monte-Carlo simulations. MCTS is a
general algorithm and can be applied to many problems. The most promising results so
far have been obtained in the game of Go, in which it outperformed all classic techniques.
Hence, we use Go as our main test bed.

In this chapter we provide a description of the search problems that we aim to address
(Section 1.1) and the classic search techniques which are used so far to solve them (Section
1.2). Subsequently, we formulate the problem statement together with five research ques-
tions (Section 1.3). Next, we justify the choice of Go as testdomain in Section 1.4. Finally,
Section 1.5 provides a thesis overview.

1.1 Tree-Search Problems

A tree-search problem is a problem in which the states can be represented as nodes of a
tree, and the actions can be represented by edges between thenodes. A tree is defined as an
acyclic connected graph where each node has a set of zero or more child nodes, and at most
one parent node (cf. Russell and Norvig, 1995).

2 Introduction

Table 1.1: Different types of problems.

One player Two players Multi players
Deterministic TSP, PMP Go, chess Chinese Checkers

Stochastic Sailing Problem Backgammon Simplified Catan

We distinguish three categories of problems: (1) problems without opponents (called
optimization problems, one-player games, or puzzles), (2)problems with one opponent
(two-player games), and (3) problems with multiple opponents (multi-player games). In
two-player games, players may oppose or cooperate with eachother. In multi-player games,
players may create coalitions. Moreover, we distinguish between deterministic and stochas-
tic problems. A schematic overview with examples of these problems is given in Table
1.1. Most of the experiments of this thesis are performed in Go, which is a non-cooperative
two-player deterministic game.

We chose to use the terminology that is commonly used for thisdomain in the remainder
of the thesis. Hence, we usemoveas a synonym for action,positionas a synonym for state,
andgameas a synonym for problem.

1.2 Tree-Search Algorithms

A search algorithmtakes a problem (i.e., a game) as input and returns a solutionin the
form of an action sequence (i.e., a move sequence) (cf. Russell and Norvig, 1995). Many
tree-search algorithms were developed in the last century.For tree-search based optimiza-
tion problems, theA? algorithm (Hart, Nielson, and Raphael, 1968) is one of the standard
algorithms. For two-player games, the foundation of most algorithms is minimax (von Neu-
mann 1928). Minimax has been improved into a more powerful algorithm: αβ (Knuth
and Moore, 1975). There are many variants of theαβ algorithm. Amongst them, one of
the most successful is the iterative deepening principal variation search (PVS) (Marsland,
1983), which is nearly identical to nega-scout (Reinefeld,1983). They form the basis of the
best programs in many two-player games, such as chess (Marsland and Bj̈ornsson, 2001).
Otherαβ variants are MTD(f) (Plaat, 1996) and Realization-Probability Search (Tsuruoka,
Yokoyama, and Chikayama, 2002).

Several other algorithms exist for tree-search, as for instance Proof-Number (PN) search
and its variants (Allis, Van der Meulen, and Van den Herik, 1994; Van den Herik and
Winands, 2008),B? (Berliner, 1979),SSS? (Stockman, 1979), andλ-search (Thomsen,
2000).

Most of these algorithms rely on apositional evaluation function. This function com-
putes a heuristic value for a board position at leaf nodes. The resulting value can be inter-
preted in three different ways (Donkers, 2003): (1) as apredictionof the game-theoretic
value, (2) as an estimate of theprobability to win, or (3) as a measure of theprofitability of
the position.

One family of algorithms presented above does not require a positional evaluation func-
tion: PN search and its variants. This family of algorithms has been used to solve games,
for instance Qubic (Alliset al., 1994), Checkers (Schaefferet al., 2007), and Fanorona

1.3 —Problem Statement and Research Questions 3

(Schaddet al., 2008b). However, PN is not useful for real-time game play because most of
the time it is not able to prove the game-theoretic value of the position.

1.3 Problem Statement and Research Questions

In the previous sections, we discussed the scientific context of our investigation. This sec-
tion introduces the problem statement which guides our research.

Problem statement: How can we enhance Monte-Carlo Tree Search in such a
way that programs improve their performance in a given domain?

For decades,αβ has been the standard for tree search in two-player games. The αβ
algorithm requires a quite good evaluation function in order to give satisfactory results.
However, no such evaluation function is available for Go. Asa consequence, the best Go
programs in 2005 were a heterogeneous combination ofαβ search, expert systems, heuris-
tics, and patterns. The methodology used was quite domain-dependent. An alternative,
which emerged around that time, was to use Monte-Carlo simulations as an alternative for
a positional evaluation function (Brügmann, 1993; Bouzy and Helmstetter, 2003). Soon
it was developed into a complete Monte-Carlo technique, called Monte-Carlo Tree Search
(MCTS). It is a best-first search method guided by the resultsof Monte-Carlo simulations.
MCTS appeared in three different variants in 2006 (Coulom, 2006; Kocsis and Szepesvári,
2006; Chaslotet al., 2006a). Coulom used his variant to create the first competitive MCTS
program, CRAZY STONE, which immediately won the9 × 9 Go tournament at the 11th

Computer Olympiad. The variant introduced by Kocsis and Szepesv́ari (2006), called UCT,
was based on the Upper Confidence Bounds (UCB) algorithm (Auer et al., 2002). The vari-
ant of Chaslotet al. (2006a) was based on their Objective Monte-Carlo (OMC) algorithm.
In this thesis we are going to investigate how to enhance MCTS.

Our problem statement raises five research questions. They deal with Monte-Carlo sim-
ulations, the balance between exploration and exploitation, parameter optimization, paral-
lelization, and opening-book generation.

Research question 1: How can we use knowledge to improve the Monte-Carlo
simulations in MCTS?

The most basic Monte-Carlo simulations consist of playing random moves.Knowledge
transforms the plain random simulations into more sophisticatedpseudo-randomsimula-
tions (Bouzy, 2005; Gellyet al., 2006; Chen and Zhang, 2008). The knowledge can be de-
signed by a human expert or created (semi)-automatically bymachine learning. We consider
two different simulation strategies that apply knowledge:urgency-basedandsequence-like
simulation. Methods are investigated to learn automatically the knowledge of the simulation
strategy.

Research question 2: How can we use knowledge to arrive at a proper balance
between exploration and exploitation in the selection stepof MCTS?

In each node of the MCTS tree, a balance between exploration and exploitation has to be
found. On the one hand, the search should favour the most promising move (exploitation).

4 Introduction

On the other hand, less promising moves should still be investigated sufficiently (explo-
ration), because their low scores might be due to unlucky simulations. This move-selection
task can be facilitated by applying knowledge. We introducethe concept of “progressive
strategy” that causes the knowledge to be dominant when the number of simulations is
small in a node, and causes the knowledge to lose progressively influence when the number
of simulations increases. The two progressive strategies we propose areprogressive bias
andprogressive widening. Progressive bias directs the search according to knowledge. Pro-
gressive widening first reduces the branching factor, and then increases it gradually. This
scheme is also dependent on knowledge.

Research question 3: How can we optimize the parameters of an MCTS pro-
gram?

MCTS is controlled by several parameters, which define the behaviour of the search.
These parameters have to be adjusted in order to get the best performance out of an MCTS
program. We propose to optimize the search parameters of MCTS by using an evolutionary
strategy: the Cross-Entropy Method (CEM) (Rubinstein, 1999). The method is related to
Estimation-of-Distribution Algorithms (EDAs) (Muehlenbein, 1997), a new area of evolu-
tionary computation.

Research question 4: How can we parallelize MCTS?

In the past, research in parallelizing search has been mainly performed in the area of
αβ-based programs running on super-computers. DEEPBLUE (Campbell, Hoane, and Hsu,
2002) and BRUTUS/HYDRA (Donninger, Kure, and Lorenz, 2004) are famous examples
of highly parallelized chess programs. The recent evolution of hardware has gone into the
direction that nowadays personal computers contain several cores. To get the most out of
the available hardware one has to parallelize MCTS as well. In order to formulate an answer
to the fourth research question, we will investigate three parallelization methods for MCTS:
leaf parallelization, root parallelization, and tree parallelization.

Research question 5: How can we automatically generate opening books by
using MCTS?

Modern game-playing programs use opening books in the beginning of the game to save
time and to play stronger. Generating opening books in combination with anαβ program
has been well studied in the past (Buro, 1999; Lincke, 2001; Karapetyan and Lorentz, 2006).
A challenge is to generate automatically an opening book forMCTS programs. We propose
a method, called Meta Monte-Carlo Tree Search (Meta-MCTS),that combines two levels
of MCTS. Instead of using a relatively simple simulation strategy, it uses an entire MCTS
program to play a simulated game.

1.4 Choice of the Test Domain

As test domain to answer the research questions, we have chosen the game of Go. This
game has been recognized as a challenge for Artificial Intelligence (Bouzy and Cazenave,
2001; Müller, 2002). We give below four reasons for choosing Go as a test domain.

1.5 —Thesis Overview 5

• Simple implementation.The rules of Go are simple (see Chapter 2).

• Well-known. Go is played by 25 to 50 millions of people over the world, and counts
around one thousand professional players.

• Difficult to master. No Go program has reached a level close to the best humans on
the 19×19 board.

• Well-established research field.Several Ph.D. theses and hundreds of peer-reviewed
publications are dedicated to computer Go.

1.5 Thesis Overview

The contents of this thesis are as follows. Chapter 1 contains an introduction, a classification
of tree-search problems, a brief overview of tree-search algorithms, the problem statement
and five research questions, the choice of the test domain, and an overview of the thesis.

Chapter 2 introduces the test environment. It explains the game of Go, which will be
used as the test domain in this thesis. We provide the historyof Go, the rules of the game,
a variety of game characteristics, basic concepts used by humans to understand the game
of Go, and a review of the role of Go in the AI domain. The Go programs MANGO and
MOGO, used as test vehicles for the experiments in the thesis, arebriefly described.

In Chapter 3, we start with discussing earlier research about using Monte-Carlo evalu-
ations as an alternative for a positional evaluation function. This approach is hardly used
anymore, but it established an important step towards Monte-Carlo Tree Search (MCTS).
Next, we describe the structure of MCTS. MCTS consists of four main steps: selection,
expansion, simulation, and backpropagation. The chapter presents different strategies for
each MCTS step. Finally, we give the application of MCTS for other domains than Go.

Chapter 4 answers the first research question. We explain twodifferent simulation strate-
gies that apply knowledge:urgency-basedandsequence-likesimulations and give experi-
mental results. Moreover, methods are investigated for learning automatically the simula-
tion strategy and the associated experiments are presented. Related research in the domain
of general game playing is discussed in the remainder of the chapter.

Chapter 5 answers the second research question by proposingtwo methods that integrate
knowledge into the selection part of MCTS:progressive biasand progressive widening.
Progressive bias uses knowledge to direct the search. Progressive widening first reduces
the branching factor, and then increases it gradually. We refer to them as “progressive
strategies” because the knowledge is dominant when the number of simulations is small in
a node, but loses influence progressively when the number of simulations increases. We give
details on the implementation and the experimental resultsof these progressive strategies in
MANGO. Subsequently, the performance of the progressive strategies for the Go programs
CRAZY STONE and MOGO, and in the LOA program MC-LOA is presented. Finally, more
recent related research on enhancing the selection strategy is described.

Chapter 6 answers the third research question by proposing to optimize the search pa-
rameters of MCTS by using an evolutionary strategy: the Cross-Entropy Method (CEM).
CEM is related to Estimation-of-Distribution Algorithms (EDAs), which constitute a new
area of evolutionary computation. The fitness function for CEM measures the winning rate

6 Introduction

for a batch of games. The performance of CEM with a fixed and variable batch size is tested
by optimizing the search parameters in the MCTS program MANGO.

Chapter 7 answers the fourth research question by investigating three methods for par-
allelizing MCTS: leaf parallelization, root parallelization and tree parallelization. We com-
pare them by using theGames-Per-Second (GPS)-speedup measureandstrength-speedup
measure. The first measure corresponds to the improvement in speed, and the second mea-
sure corresponds to the improvement in playing strength. The three parallelization methods
are implemented and tested in MANGO, running on a 16-core processor node.

Chapter 8 answers the fifth research question by combining two levels of MCTS. The
method is called Meta Monte-Carlo Tree Search (Meta-MCTS).Instead of using a rela-
tively simple simulation strategy, it uses an entire MCTS program (MOGO) to play a simu-
lated game. We present two Meta-MCTS algorithms: the first one, Quasi Best-First (QBF),
favours exploitation; the second one, Beta-Distribution Sampling (BDS), favours explo-
ration. In order to evaluate the performance of both algorithms, we test the generated9× 9
Go opening books against computer programs and humans.

The research conclusions and recommendations for future investigations are given in
Chapter 9.

Appendix A discusses Production Management Problems as an auxiliary test domain.
Appendix B presents the historic results of the best programs against professional Go play-
ers.

Chapter 2

Test Environment: The Game of
Go

The chapter describes the test environment used to answer the problem statement and the
five research questions formulated in Chapter 1. A test environment consists of a problem
(also called agame) and one or more programs. The game under consideration is Go. We
use the following two Go programs: MANGO and MOGO.

The chapter is structured in the following way. Section 2.1 provides the history of Go.
Next, Section 2.2 presents the rules. Subsequently, Section 2.3 presents the characteristics
of the game of Go. Section 2.4 discusses basic concepts used by humans to understand the
game of Go. Then, in Section 2.5, a short review of the role of Go in the AI domain is
given. Finally, Section 2.6 introduces our two Go programs,MANGO and MOGO, used as
test vehicles for the experiments in the thesis.

2.1 History of Go

Go is one of the oldest games in the world, originating from ancient China. According to the
legend, the Chinese emperor Yao (2337-2258 BCE) asked his counsellor to design a game
to teach his son discipline, concentration, and balance (Lasker, 1934; Masayoshi, 2005).
The earliest written reference of the game is given in the historical annals of Tso Chuan (4th

century BCE), referring to a historical event in 548 BCE (Watson, 1989). Go was originally
played on a 17×17 line grid, but a 19×19 grid became standard by the Tang Dynasty (618-
907 CE). It was introduced in Japan and Korea between the5th and7th century. In Japan,
the game became popular at the imperial court in the8th century. Among the common
people it gained popularity in the13th century. In the17th century, several Go schools were
founded with the support of the Japanese government. This official recognition led to a
major improvement of the playing level.

Despite its widespread popularity in East Asia, Go did only spread slowly to the rest
of the world, unlike other games of Asian origin, such as chess. Although the game is
mentioned in Western literature from the16th century onward, Go did not become popular
in the West until the end of the19th century, when the German scientist Korschelt (1880)

8 Test Environment: The Game of Go

wrote a treatise on the game. By the early20th century, Go had spread throughout the
German and Austro-Hungarian empires. It was only in the second part of the20th century
that Go became recognized in the rest of the Western World.

Nowadays, the International Go Federation has at least 71 member countries. It has
been claimed that across the world 1 person out of every 222 plays Go (Fairbairn, 2000). It
is estimated that there are around 1,000 Go professionals inthe world, mostly from Japan,
China, and Korea.

2.2 Rules of Go

Several rule sets exist for the game of Go (e.g., Chinese, Japanese, American, or New
Zealand). Although all major rule sets agree on the same general idea of how the game is to
be played, there exist several subtle differences. The primary difference between rule sets is
the scoring method, although it is rare to observe more than aone-point difference between
scoring methods. The two-most popular rule sets are the Japanese and the Chinese sets. Due
to the scoring method, the Japanese rules are regarded by some to be slightly more inter-
esting than Chinese rules. However, it is well known that Japanese rules are quite difficult
(and by some even considered impossible) to implement in a program due to ambiguities
and inconsistencies in the official texts. Chinese rules also suffer from some ambiguity, but
to a much lesser extent. Therefore, it is the natural choice for Go programmers to prefer
Chinese rules (Van der Werf and Winands, 2009) and use them atcomputer Go tournaments
(e.g., Computer Olympiad). It is beyond the scope of the thesis to explain all rules in detail.
For a more elaborate introduction we refer to Van der Werf (2004). A basic set of rules,
adapted from Davies (1977), is given below.

1. The square grid board is empty at the outset of the game. Usually the grid contains
19× 19 intersections, though9× 9 is used as well.

2. There are two players, called Black and White.

3. Black makes the first move, alternating with White (see Figure 2.1(a)).

4. A move consists of placing one stone of one’s own colour on an empty intersection
on the board.

5. A player may pass his turn at any time.

6. A stone or through grid lines orthogonally connected set of stones of one colour is
captured and removed from the board when all the intersections directly adjacent to
it are occupied by the opponent (see Figure 2.1(b)).

7. No stone may be played to repeat a former board position.

8. Two consecutive passes end the game.

9. A player’s territory consists of all the board points he has either occupied or sur-
rounded.

10. The player with more territory wins.

2.3 —Characteristics of Go 9

1

2 3

4

5

(a) From the empty board, Black and White play al-
ternately on the intersections.

(b) Stones that are surrounded are captured. Black
can capture white stones by playing on the marked
intersections.

Figure 2.1: Rules of Go.

2.3 Characteristics of Go

Formally, Go can be defined as aturn-based, two-person, zero-sum, deterministic, partisan
game withperfect information.1 Lichtenstein and Sipser (1980) proved that Go is PSPACE-
hard. The state-space complexity is estimated to be10171 (Tromp and Farneb̈ack, 2007) and
the game-tree complexity10360 (Allis, 1994).2 The average branching factor of Go is much
higher than in chess: 250 against 35 (Allis, 1994). Due to these characteristics, Go is consid-
ered by many experts as one of the most complex board games (Müller, 2002). Considering
the current state-of-the-art computer techniques, it appears that Go19× 19 or even9× 9 is
not solvable in reasonable time by brute-force methods. Up to now, the largestsquareboard
for which a computer proof has been published is5×5 by Van der Werf, Van den Herik, and
Uiterwijk (2003). It is a full-board win for the first player (Black). Recently, Van der Werf
and Winands (2009) solvedrectangularGo boards up to 30 intersections. An overview of
the game-theoretic results is given in Table 2.1. For Go, thegame-theoretic results provide
the number of points by which a game is won (or lost).

1A turn-basedor sequentialgame is a game where players move following a predefined order.
A game iszero-sumwhen the gain or loss of one player is exactly balanced by the gains or losses of the other
player(s). For two-player games, it implies that if one playerwins, the other loses.
A game isdeterministicif the outcome of every move is deterministic, i.e., it does not involve chance.
A game ispartisanwhen the possible moves are not the same for all players. We remark that in Go, possible moves
are often the same for both players, but may differ in rare situations.
A game has perfect information when all the players share the same piece of information.

2The state-space complexity of a game is defined as the number of legal game positions reachable from the
initial position of the game (Allis, 1994).
The game-tree complexity of a game is the number of leaf nodes in the solution search tree of the initial position(s)

10 Test Environment: The Game of Go

Table 2.1: First player scores onm × n boards (Van der Werf and Winands, 2009).

m\n 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 3 4 0 1 2 3 0 1 2 2
2 0 0 8 10 12 14 16 18 4 6
3 9 4 15 18 21 24 5
4 2 20 8 28
5 25 4

2.4 Go Concepts

Humans are using several concepts to understand the game of Go. It is interesting to mention
these concepts to understand how humans deal with the complexity of the game. We explain
below the concepts oflife and death(Subsection 2.4.1),territory (Subsection 2.4.2),influ-
ence(Subsection 2.4.3), andpatterns(Subsection 2.4.4). We also discuss how computer
programs dealt with these concepts in the past.

2.4.1 Life and Death

In the thesis, an orthogonally connected set of stones is called ablock. A group is defined
as a (loosely) connected set of blocks of one colour that usually controls3 one connected
area at the end of the game (Van der Werf, 2004). By definition,every block is also a
group. A group is said to bealive if it cannot be captured by the opponent. A group is said
to beunconditionally aliveif it cannot be captured by the opponent even if the defending
player always passes. A group that cannot escape of being captured is considereddead. An
example of life and death is given in Figure 2.2. It is relatively straightforward to make
a procedure that tests if a group is unconditionally alive ornot. However, during actual
games, groups are rarely unconditionally alive, but only alive if defended. Classic search
algorithms such asαβ (Knuth and Moore, 1975) or proof-number search (Alliset al., 1994)
may help, in some cases, to find out whether a given group is alive. Predicting life and
death in Go has been the aim of specific research (see Wolf, 1994; Kishimoto and M̈uller,
2003; Van der Werfet al., 2005). The resulting programs are able to outperform strong
amateurs for specific life-and-death problems.

2.4.2 Territory

Territory is defined as the intersections surrounded and controlled byone player at the end of
the game. An example is given in Figure 2.3. The notion of territory is dependent on the life
and death of groups forming that territory. Therefore, computing territory is more difficult
than computing life and death. Several approaches are reasonably effective at evaluating
territory. For example, M̈uller (1997) used a combination of search and static rules, whereas
Bouzy (2003) chose to apply mathematical morphology. Van der Werf, Van den Herik, and
Uiterwijk (2006) trained a multi-layered perceptron to predict potential territory.

of the game (Allis, 1994).
3To control is defined as to get all points for that area at the end of the game.

2.4 —Go Concepts 11

Figure 2.2: Life and death: The white group can never be captured; therefore it is said to be (uncondi-
tionally) alive. Black cannot prevent that his group is being captured; therefore Black’s group is said
to be dead.

Figure 2.3: Territory: Black has territory that is marked with triangles.

2.4.3 Influence

A player hasinfluencein a region if it is most likely that he is able to create territory in this
region. This notion is more difficult to evaluate accuratelywith a computer than territory,
because the amount of influence depends on the specific board situation. In Go, there is
often a trade-off between influence and territory. When a player tries to create a territory,
the opponent may force him to close it by playing on the outside of that territory. This often
creates influence for that opponent. An example of such a trade-off can be seen in Figure
2.4. Several researchers have proposed a model for influence(e.g., Zobrist, 1969; Chen,
2002).

2.4.4 Patterns

A pattern is a (local) configuration of stones, which may or may not be dependent of its
location on the board. Patterns are important both for humans and computers. Humans
typically try to maximize the number of efficient patterns, and minimize the number of
inefficient patterns. Examples of efficient and inefficient patterns are depicted in Figure 2.5.
There has been quite an effort to include patterns in a Go engine, as for instance by Zobrist
(1970), Cazenave (2001), and Ralaivola, Wu, and Baldi (2005).

12 Test Environment: The Game of Go

Figure 2.4: Influence and territory: White made a territory in the corner,whereas Black hasinfluence
on the outside.

Figure 2.5: Two Go patterns. Left: a pattern of three stones that is considered as inefficient by human
experts. Right: A pattern of three stones considered as efficient by human experts.

2.5 Go and Artificial Intelligence

Since the beginning of AI, mind games have been studied as relevant application fields. For
instance, some of the first algorithms able to search and learn have been developed for chess
(Shannon, 1950; Turing, 1953) and Checkers (Samuel, 1959),respectively.

The first scientific article describing a computer Go programwas published by Remus
(1962), who developed an automatic algorithm for learning Go. The program was imple-
mented on an IBM 704, but was not able to defeat any human player. The first program
to be able to defeat an absolute beginner was designed by Zobrist, who also wrote the first
Ph.D. thesis on computer Go (Zobrist, 1970). Just one year later, the second Ph.D. on Go
was defended by Ryder (1971). These researchers created thefirst Go programs, which
were based on heuristic evaluation functions. The main partwas an influence feature: each
stone was considered to radiate influence on its surroundingintersections. These programs
were not able to perform deep searches, due to the lack of computer power.

During the seventies, the best program, INTERIM.2, was built by Reitman and Wilcox
(cf. Wilcox, 1988). This program used an expert system whichtook decisions based on an

2.6 —Go ProgramsMANGO andMOGO 13

abstract representation of the game. It was programmed in LISP. Further use of abstraction
was also studied by Friedenbach (1980). The combination of search, heuristics, and expert
systems led to the best programs in the eighties.

At the end of the eighties a new type of Go programs emerged. These programs made an
intensive use of pattern recognition. This approach was discussed in detail by Boon (1990).

In the following years, different AI techniques, such as Reinforcement Learning (Schrau-
dolph, Dayan, and Sejnowski, 1993), Monte Carlo (Brügmann, 1993), and Neural Networks
(Richards, Moriarty, and Miikkulainen, 1998), were testedin Go. However, programs ap-
plying these techniques were not able to surpass the level ofthe best programs. The combi-
nation of search, heuristics, expert systems, and pattern recognition remained the winning
methodology.

Brügmann (1993) proposed to use Monte-Carlo evaluations as analternative technique
for Computer Go. His idea did not got many followers in the 1990s. In the following decade,
Bouzy and Helmstetter (2003) and Bouzy (2006) combined Monte-Carlo evaluations and
search in Indigo. The program won three bronze medals at the Olympiads of 2004, 2005,
and 2006. Their pioneering research inspired the development of Monte-Carlo Tree Search
(MCTS) (Coulom, 2006; Kocsis and Szepesvári, 2006; Chaslotet al., 2006a). Since 2007,
MCTS programs are dominating the Computer Go field. MCTS willbe explained in the
next chapter.

2.6 Go Programs MANGO and MOGO

In this subsection, we briefly describe the Go programs MANGO and MOGO that we use
for the experiments in the thesis. Their performance in various tournaments is discussed as
well.4

M ANGO

We developed MANGO at Maastricht University since 2006. It is programmed in C++, and
was most of the time running on a 2.6 GHz quad-core computer. MANGO participated in 10
international computer tournaments in 2006 and 2007, including the Computer Olympiad
2007. MANGO finished in the top half of all tournaments that it participated in.

M OGO

MOGO was developed by the University Paris-Orsay as the master project of Yzao Wang,
supervised by Ŕemi Munos with advice from Ŕemi Coulom. A few months later, Sylvain
Gelly and Olivier Teytaud joined the project. We joined the MOGO team in beginning of
2008. MOGO is also programmed in C++.

MOGO participated in more than 30 internet tournaments (of whichmore than half of
them were won), and three Computer Olympiads: Amsterdam 2007, Beijing 2008, and
Pamplona 2009 (in which it finished first, second and third, respectively). The program’s

4The overview of the online computer tournaments in which MANGO and MOGO participated can be found at:
http://www.weddslist.com/kgs/past/index.html. The Go results of the Computer Olympiads in which MANGO and
MOGO participated can be found at: http://www.grappa.univ-lille3.fr/icga/game.php?id=12.

14 Test Environment: The Game of Go

most famous results were in achieving several milestones indefeating human Go profes-
sionals in official matches, in particular with 9, 7, and 6 stones handicap. The history of
the best performance of programs against professional players can be found in Appendix B.
More information on the tournament results of MOGO can be found on its webpage.5

5See http://www.lri.fr/ teytaud/mogo.html.

Chapter 3

Monte-Carlo Tree Search

This chapter is based on the following publications:

G.M.J-B. Chaslot, J-T., Saito, B. Bouzy, J.W.H.M. Uiterwijk and H.J.van den
Herik (2006a). Monte-Carlo Strategies for Computer Go.Proceedings of the
18th BeNeLux Conference on Artificial Intelligence(eds. P-Y. Schobbens, W.
Vanhoof, and G. Schwanen), pp. 83–90.

G.M.J-B. Chaslot, S. de Jong, J-T. Saito and J.W.H.M. Uiterwijk (2006b). Monte-
Carlo Tree Search in Production Management Problems.Proceedings of the 18th
BeNeLux Conference on Artificial Intelligence(eds. P-Y. Schobbens, W. Van-
hoof, and G. Schwanen), pp. 91–98.

G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van denHerik,
and B. Bouzy (2008c). Progressive Strategies for Monte-Carlo Tree Search.New
Mathematics and Natural Computation, Vol. 4, No. 3, pp. 343–357.

G.M.J-B. Chaslot, S. Bakkes, I. Szita and P.H.M. Spronck (2008d). Monte-Carlo
Tree Search: A New Framework for Game AI.Proceedings of the Fourth Ar-
tificial Intelligence and Interactive Digital Entertainment Conference(eds. M.
Mateas and C. Darken), pp. 216–217.

I. Szita, G.M.J-B. Chaslot and P.H.M. Spronck (2010). Monte-Carlo Tree Search
in Settlers of Catan.Advances in Computer Games Conference (ACG 2009)(eds.
H.J. van den Herik and P.H.M. Spronck), Vol. 6048 ofLecture Notes in Computer
Science (LNCS), pp. 21–32, Springer-Verlag, Heidelberg, Germany.

In this chapter we discuss Monte-Carlo Tree Search (MCTS), which is used to answer
our problem statement and research questions. MCTS appeared in three different variants in
2006 (Coulom, 2006; Kocsis and Szepesvári, 2006; Chaslotet al., 2006a). Coulom used his
variant to create the first competitive MCTS program, CRAZY STONE, which immediately
won the9 × 9 Go tournament at the 11th Computer Olympiad. The variant introduced by
Kocsis and Szepesvári (2006), called UCT, was based on the Upper Confidence Bounds

16 Monte-Carlo Tree Search

(UCB) algorithm (Aueret al., 2002). The variant we proposed was called Objective Monte-
Carlo (OMC) (Chaslotet al., 2006a). This chapter introduces a general framework for
MCTS that is able to incorporate these variants.

MCTS is a best-first search method guided by Monte-Carlo simulations. In contrast
to classic tree-search algorithms such asαβ (Knuth and Moore, 1975) andA? (Hart et al.,
1968), MCTS does not require any heuristic positional evaluation function. MCTS is partic-
ularly interesting for domains where building a positionalevaluation function is a difficult
time-consuming issue, such as the game of Go.

MCTS consists of two strongly coupled parts: a relatively shallow tree structureand
deepsimulated games. The tree structure determines the first moves of the simulated games.
The results of these simulated games shape the tree. MCTS uses four main steps. (1) In the
selection stepthe tree is traversed from the root node until the end of the tree. (2) Next,
in theexpansion stepa node is added to the tree. (3) Subsequently, during thesimulation
stepmoves are played in self-play until the end of the game is reached. (4) Finally, in the
backpropagation step, the result of a simulated game is propagated backwards, through the
previously traversed nodes.

This chapter is organized as follows. In Section 3.1, we discuss earlier research about
using Monte-Carlo evaluations as an alternative for a heuristic positional evaluation func-
tion. This approach is hardly used anymore, but it established an important step towards
MCTS. Section 3.2 presents the structure of MCTS. In Section3.3 we present different
strategies proposed for each MCTS step. Subsequently, we discuss how to select the move
to be played in the actual game in Section 3.4. Then, we give applications of MCTS to
different domains in Section 3.5. Finally, we present the chapter conclusions in Section 3.6.

3.1 Related Work: Monte-Carlo Evaluations

Monte-Carlo Evaluations (MCEs) were originally introduced for Othello, Tic-Tac-Toe, and
Chess by Abramson (1990). Brügmann (1993) was the first to use them for Go as well, but
his results were not convincing. During the nineties, MCEs were used in several stochas-
tic games such as Backgammon (Tesauro and Galperin, 1997), Bridge (Smith, Nau, and
Throop, 1998; Ginsberg, 1999), Poker (Billingset al., 1999), and Scrabble (Sheppard,
2002). After 2000, a further development by Bouzy and Helmstetter (2003) led to the first
competitive Monte-Carlo Go program, called INDIGO, at the Olympiads of 2003 and 2004
(cf. Chen, 2003; Fotland, 2004). Moreover, Helmstetter (2007) successfully applied MCEs
in the one-player game Morpion Solitaire.

The most basic version of MCEs works in the following way: they evaluate a game
positionP by performingsimulationsfrom P . In a simulation (also called aplayout or
a rollout) moves are (pseudo-)randomly selected in self-play until the end of the game is
reached.1 Each simulationi gives as output a payoff vectorRi containing the payoffs for
each player. The evaluationEn(P) of the positionP aftern simulations is the average of
the results, i.e.,En(P) = 1

n

∑

Ri.
A property of MCEs is that, if the values of the payoffs are bounded,En(P) converges

to a fixed value whenn goes to∞. We denote the limit ofEn(P) whenn approaches

1This requires the condition that the number of moves per game is limited. For instance, in the game of Go,
this is done by introducing an extra rule which forbids to play in its own eyes.

3.1 —Related Work: Monte-Carlo Evaluations 17

infinity by E∞(P), andσ to be the standard deviation of the payoff. Moreover, the Central
Limit Theorem states that the random variableEn(P) converges to a normal distribution
with mean valueE∞(P) and standard deviationσ√

n
. For sufficiently largen, we have the

following approximation:

En(P) = E∞(P) + X (3.1)

where X is a normally distributed random variable with mean value0 and standard deviation
σ√
n

.

The use of MCEs raises two questions. The first question concerns the quality of MCEs.
Is the evaluationE∞(P) qualitatively comparable to a positional evaluation? (Given suffi-
cient resources, would anαβ program based on MCEs perform as well as a program based
on a positional evaluation function?) The second question concerns the practical and quanti-
tative feasibility of MCEs. IfE∞(P) would theoretically provide a satisfactory evaluation,
then, how many games would be required for a useful evaluation? (Would the required
number of simulations be reachable in practice?)

To answer the first question, we observe that MCEs have been shown to be quite ac-
curate for several games such as Backgammon (Tesauro and Galperin, 1997), Go (Bouzy
and Helmstetter, 2003), and Othello (Abramson, 1990). To answer the second question, we
observe that the number of simulations that have to be performed in order to have a mean-
ingful evaluation appears to be in the order of a few thousands (cf. Bouzy and Helmstetter,
2003). The requirement of such a relatively large number of simulated games makes MCEs
impractical in a classicαβ tree search for most domains. For instance, to evaluate 1,000,000
nodes in chess, which takes approximately one second in a typical chess program, a runtime
of approximately 28 hours would be required with MCE, assuming 100,000 simulations
per second and 10,000 simulations per evaluation. Under tournament conditions, an MCE-
based program would evaluate even a fewer number of nodes, and would have therefore a
shallower search depth.

Despite the time-consuming property, there are programs that combine MCEs andαβ
search.2 To reach a reasonable search depth, the programs uselazy evaluations(Persson,
2006): instead of evaluating the position completely, the MCE is stopped prematurely when
there is a certain probability (say 95%) that the value is always lower than theα value, or
always higher than theβ value, respectively (Persson, 2006).

Another way of combining search and MCEs was proposed by Bouzy (2006). He sug-
gested to grow a search tree by iterative deepening and pruning unpromising nodes while
keeping only promising nodes. All leaf nodes are evaluated by MCEs. A problem with
this approach is that actually good branches are pruned entirely because of the variance
underlying MCEs.

By contrast, the Monte-Carlo Tree Search approach does not use MCEs as described
above, but rather improves the quality of MCEs by focusing the search in the most promising
regions of the search space. This mechanism is explained in detail in the next section.

2V IKING 5, the Go program developed by Magnus Persson, was most probably the strongest in using this
method.

18 Monte-Carlo Tree Search

Selection
 Expension
 Simulation
 Backpropagation

The selection strategy is applied

recursively until a

position not part of the tree

is reached
 One node is added

to the tree

The result of this game is

backpropagated in the tree

One simulated

game is played

Selection
 Expansion
 Simulation
 Backpropagation

The selection strategy is

applied recursively until an

unknown position is reached

One node is added

to the tree

The result of this game is

backpropagated in the tree

One simulated

game is played

 Repeated X times

Figure 3.1: Outline of Monte-Carlo Tree Search.

3.2 Structure of Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) (Coulom, 2006; Kocsis and Szepesv́ari, 2006; Chaslotet al.,
2006a) is a best-first search method that does not require a positional evaluation function.
It is based on a randomized exploration of the search space. Using the results of previous
explorations, the algorithm gradually builds up a game treein memory, and successively
becomes better at accurately estimating the values of the most-promising moves. MCTS is
applicable if at least the following three conditions are satisfied: (1) the payoffs are bounded
(the game scores are bounded), (2) the rules are known (complete information), and (3) sim-
ulations terminate relatively fast (game length is limited).

The basic structure of MCTS is as follows. In MCTS, each nodei represents a given
position (also called a state) of the game. A node contains atleast the following two pieces
of information: (1) the current valuevi of the position (usually the average of the results
of the simulated games that visited this node), and (2) the visit countni of this position.
MCTS usually starts with a tree containing only the root node.

MCTS consists of four main steps, repeated as long as there istime left. The steps are
as follows. (1) In theselection stepthe tree is traversed from the root node until we reach
a nodeE, where we select a child that is not part of the tree yet. (2) Next, in theexpansion
stepthis child ofE is added to the tree.3 (3) Subsequently, during thesimulation stepmoves
are played in self-play until the end of the game is reached. The resultR of this “simulated”
game is+1 in case of a win for Black (the first player in Go),0 in case of a draw, and−1
in case of a win for White. (4) In thebackpropagation step, R is propagated backwards,
through the previously traversed nodes. Finally, the move played by the program is the child
of the root with the highest visit count. An outline of the four step of MCTS are depicted in
Figure 3.1.

The pseudo-code for MCTS is given in Algorithm 3.1. In the pseudo-code,T is the set
of all nodes (the search tree),Select(Node N)is the procedure, which returns one child of
the nodeN . Expand(Node N)is the procedure that adds one node to the tree, and returns

3Of course more children can be stored at once. For a discussionof this topic see Subsection 3.3.2.

3.3 —MCTS 19

this node.Play simulatedgame(Node N)is the procedure that plays a simulated game from
the newly added node, and returns the resultR ∈ {−1, 0, 1} of this game. Backpropa-
gate(Integer R)is the procedure that updates the value of the node dependingon the result
R of the last simulated game.Nc(node N)is the set of the children of nodeN .

Data: root node
Result: bestmove
while (has time)do

current node← root node

/* The tree is traversed */
while (current node ∈ T) do

last node← current node
current node← Select(current node)

end
/* A node is added */
last node← Expand(last node)

/* A simulated game is played */
R← Play simulated game(last node)

/* The result is backpropagated */
current node← last node
while (current node ∈ T) do

Backpropagation(current node,R)
current node← current node.parent

end
end
return best move = argmaxN∈Nc

(root node)

Algorithm 3.1: Pseudo-code for Monte-Carlo Tree Search.

3.3 MCTS

In this section, we discuss strategies to realize the four basic steps of MCTS: selection
(Subsection 3.3.1), expansion (Subsection 3.3.2), simulation (Subsection 3.3.3), and back-
propagation (Subsection 3.3.4).

3.3.1 Selection

The selection step works in the following way. From the root node, aselection strategyis
applied recursively until a position is reached that is not apart of the tree yet. The selection
strategy controls the balance between exploitation and exploration. On the one hand, the
task often consists of selecting the move that leads to the best results so far (exploitation).

20 Monte-Carlo Tree Search

On the other hand, the less promising moves still must be tried, due to the uncertainty
of the evaluation (exploration). A similar balancing of exploitation and exploration has
been studied in the literature, in particular with respect to the Multi-Armed Bandit (MAB)
problem (Robbins, 1952). The MAB problem considers a gambling device and a player,
whose objective is to maximize the reward from the device. Ateach time step, the player
can select one ofN arms of the device, which gives a reward. In most settings, the reward
obeys a stochastic distribution. The selection problem of MCTS can be viewed as a MAB
problem for a given node: the problem is to select the next move to play, which will give an
unpredictable reward (the outcome of a single random game).Knowing the past results, the
problem is to find the optimal move. However, the main difference with the MAB problem is
that MCTS works by using recursively several selections: the selection at the root node, the
selection at depth one, the selection at depth two, etc. Several selection strategies have been
designed for MCTS such as OMC (Chaslotet al., 2006a) and PBBM (Coulom, 2006). Some
MCTS selection strategies have been derived from MAB algorithms such as UCT (Kocsis
and Szepesv́ari, 2006) and UCB1-TUNED (Gelly and Wang, 2006). Below, we will discuss
the following four selection strategies: OMC, PPBM, UCT, and UCB1-TUNED.

• OMC. In Chaslotet al. (2006a), we proposed OMC (Objective Monte-Carlo). It
consists of two parts.4 First, anurgency functiondetermines the urgencyU(i) for
each possible movei. Second, afairness functiondecides which move to play, with
the aim to play each move proportionally to its urgency. The urgency function in
OMC is as follows:

U(i) = erfc(
v0 − vi√

2σi

) (3.2)

whereerfc(·) is the complementary error function,v0 is the value of the best move,
andvi andσi are respectively the value and the standard deviation of themove under
consideration. The idea behind this formula is to haveU(i) proportional to the prob-
ability of a move to be better than the current best move. Next, the child is chosen
according to the following rule: select the nodei that maximizes the fairness function
fi:

fi =
np × U(i)

ni ×
∑

j∈Si
U(j)

(3.3)

whereni is the visit count ofi, andnp is the visit count ofp, andSi is the set
containing the sibling nodes ofi.

• PBBM. In 2006, Coulom (2006) proposed PBBM (Probability to be Better than Best
Move). Just like OMC, it consists of an urgency function and afairness function. Its
urgency functionU(i) is again proportional to the probability of the move to be better
than the current best move. The difference with OMC is that the standard deviation
of the best move is taken into account. The urgency function in PBBM is as follows:

4We thank Ŕemi Coulom for the idea of splitting this algorithm into two parts.

3.3 —MCTS 21

U(i) = exp(−2.4× v0 − vi
√

2(σ2
0 + σ2

i)
) (3.4)

wherev0 andσ0 are the value and standard deviation of the best move, respectively.
Similarly, vi andσi are the value and the standard deviation of the move under con-
sideration.

• UCT. Kocsis and Szepesvári (2006) proposed the UCT (Upper Confidence bounds
applied to Trees) strategy. This strategy is easy to implement, and used in many
programs (see Section 3.5). It is nowadays used in MANGO as well. UCT adapts the
UCB (Upper Confidence Bounds) method initially developed for MAB (Auer et al.,
2002). UCT works as follows. LetI be the set of nodes reachable from the current
nodep. UCT selects a childk of the nodep that satisfies Formula 3.5:

k ∈ argmaxi∈I

(

vi + C ×
√

lnnp

ni

)

(3.5)

wherevi is the value of the nodei, ni is the visit count ofi, andnp is the visit count
of p. C is a coefficient, which has to be tuned experimentally.

• UCB1-TUNED. Gelly and Wang (2006) proposed to use the UCT variant UCB1-
TUNED, originally described by Aueret al. (2002). UCB1-TUNED selects a childk
of the nodep that satisfies Formula 3.6:

k ∈ argmaxi∈I

(

vi + C ×
√

lnnp

ni

×min{1
4
, Vi(ni)}

)

(3.6)

where

Vi(ni) = (
1

ni

ni
∑

t=1

R2
i,t,j − v2

i +

√

2 ln np

ni

) (3.7)

is an estimate upper bound for the variance ofvi. Ri,t,j is thetth payoff, obtained in
nodei for playerj.

Recently, Audibert and Bubeck (2009) proposed MOSS (Minimax Optimal Strategy in
the Stochastic case) that minimizes the regret depending onthe number of moves. This se-
lection strategy is a refinement of UCB/UCT. Other selectionstrategies have been designed
that assume smoothness between the different moves, such asBAST (Bandit Algorithm
for Smooth Trees) by Coquelin and Munos (2007) and HOO (Hierarchical Optimistic Op-
timization) by Bubecket al. (2008). Additionally, for generating an opening book with

22 Monte-Carlo Tree Search

MCTS, we introduce QBF (Quasi Best-First) and BDS (Beta-Distribution Sampling) in
Chapter 8.

We note that all these selection strategies presented here are game-independent and do
not use any domain knowledge. Selection strategies that useknowledge will be discussed in
Chapter 5. Finally, we remark that in some programs (e.g., CRAZY STONE and MANGO) a
selection strategy is only applied in nodes with a visit count higher than a certain threshold
T (Coulom, 2006). If the node has been visited fewer times thanthis threshold, the next
move is selected according to thesimulation strategy(see Subsection 3.3.3).

3.3.2 Expansion

The expansion step adds nodes to the MCTS tree. Because for most domains the whole
game tree cannot be stored in memory, an expansion strategy decides that, for a given node
L, whether this node will be expanded by storing one or more of its children in memory. A
popular expansion strategy is the following:

• One node is added per simulated game. This node corresponds to the first position
encountered during the traversal that was not already stored (Coulom, 2006).

This strategy is simple, efficient, easy to implement, and does not consume too much
memory in general. Other strategies are possible as well. For instance, it is possible to ex-
pand the tree to a certain depth (e.g., 2 or 3 ply) before starting the search. It is also possible
to add all the children of a node to the tree as soon as a certainnumberT of simulations
have been made through this node. This strategy is only possible when a large amount of
memory is available. In contrast to this strategy, one may forbid any node expansion before
a certain numberT of simulations have been made through this node. This allowsto save
memory, and reduces only slightly the level of play (Dailey,2006). In general, the effect
of these strategies on the playing strength is small. The strategy of creating one node per
simulation is therefore sufficient in most cases.

3.3.3 Simulation

Simulation (also calledplayout) is the step that selects moves in self-play until the end of the
game. This task might consist of playing plain random moves or – better – pseudo-random
moves chosen according to asimulation strategy. The use of an adequate simulation strategy
has been shown to improve the level of play significantly (Bouzy, 2005; Gellyet al., 2006).
The main idea is to play interesting moves according to heuristic knowledge (e.g., for Go:
patterns, capture considerations, and proximity to the last move).

A simulation strategy is subject to two trade-offs. The firstone is the trade-off between
search and knowledge. Adding knowledge to the simulation strategy increases the playing
strength. Simulated games become more accurate and their results more reliable. However,
if the heuristic knowledge is too computationally expensive, the number of simulations per
second will decrease too much. The MCTS search tree is shallow and the playing strength
will drop. The second trade-off deals with exploration vs. exploitation. If the strategy is
too stochastic (e.g., too much randomness), too much exploration takes place. The moves
played in the simulated games are often weak, causing the simulations to be unrealistic,
and the level of the Monte-Carlo program decreases. In contrast, if the strategy is too

3.3 —MCTS 23

deterministic (e.g., if the selected move for a given position is almost always the same), too
much exploitation takes place. The exploration of the search space becomes too selective,
causing the simulations to be biased, and the level of the Monte-Carlo program decreases
as well.

Due to these two trade-offs, elaborating an efficient simulation strategy is a difficult
issue. There are two ways to assess the quality of a simulation strategy. We define a sim-
ulation strategy A to bebetter than a simulation strategy B, if A wins more games against
B when playing against each other (i.e., without using MCTS). We define that a simulation
strategy A isMCTS-betterthan a simulation strategy B, if an MCTS program using A wins
more games against the same MCTS program using B. The goal of designing a simulation
strategy is to make it MCTS-better. Bouzy and Chaslot (2006)showed that it is possible
to have a simulation strategy which is better than another one, without being MCTS-better.
This phenomena has been a reported by Gelly and Silver (2007)as well.

In Chapter 4 we will discuss the simulation strategies used in Go programs, especially
for our programs MANGO and MOGO. Moreover, in Section 3.5 the simulation strategies
for a few other domains are briefly described.

3.3.4 Backpropagation

Backpropagation is the step that propagates theresult of a simulated gamek backwards
from leaf nodeL to the nodes it had to traverse to reach this leaf node. For instance, for
a two-player zero-sum game (e.g., Go), this result is counted positively(Rk = +1) if the
game is won, and negatively(Rk = −1) if the game is lost. Draws lead to a resultRk = 0.
A backpropagation strategyis applied to compute thevaluevL of a node. The most popular
and most effective strategy is Average, which takes the plain average of the results of all
simulated games made through this node (Coulom, 2006), i.e., vL = (

∑

k Rk)/nL. It
was first used by Kocsis and Szepesvári (2006), and since 2007 by the vast majority of the
programs. Finding a better backpropagation than Average isa challenge for MCTS. Below,
we present several other backpropagation strategies proposed in the literature. They are
called Max, Informed Average, Mix, and MCTS-Solver.

• Max. The Max strategy backpropagates the value in a negamax way (Knuth and
Moore, 1975). The value of a nodep is the maximum value of its children. Using
Max backpropagation in MCTS does not give good results (Coulom, 2006). When the
number of children of a node is high, and the number of simulations is low, the values
of the children are noisy. So, instead of being really the best child, it is likely that
the child with the best value is simply the most lucky one. Backing up the maximum
value overestimates the best child and generates a great amount of search instability
(Coulom, 2006; Chaslotet al., 2006a).

The noise of the value of a node can be modelled with the help ofthe Central Limit
Theorem. LetRi ∈ {−1, 0,+1} be the result of the simulated gamei, let σ be the
standard deviation of the random variableRi and letn be the number of simulated
games played. The Central Limit Theorem states that the standard deviation of the
meanmn =

∑n
i=1 Ri

n
approachesσ√

n
whenn approaches∞.

Therefore, we can deduce a statistical relation between thereal value of this node,

24 Monte-Carlo Tree Search

denoted byv∞, and the observed valuevn of the node:

vn = v∞ + x,

wherex is a random variable with mean value0 and standard deviationσ√
n

. Based
on this statistical relation, we distinguish three situations:

– If σ is large (in practiceσ > 0.3), vn is likely to be different from the real value.
Therefore, the Max value is most likely to be an overestimated value, because it
is the Max of (more or less) random values. Thus, ifσ is large, it is not possible
to use Max. In this case, the average of the children gives better results.

– If σ is close to0 (in practiceσ < 0.01), then Max can be applied.

– For moderate values ofσ, a compromise between Average and Max would give
a better evaluation than Average or Max, such as Mixed or Informed Average
(see below).

• Informed Average. As an alternative for Max, we proposed Informed Average
(Chaslotet al., 2006a). The strategy aims to converge faster to the value ofthe best
move than Average by assigning a larger weight to the best moves. It is computed
with the following formula:

vp =

∑

i (vi · ni · Ui)
∑

i (ni · Ui)
(3.8)

whereUi represents the urgency of the move, calculated by Formula 3.2. We showed
that MCTS using Informed Average estimates a position better than MCTS using Max
(Chaslotet al., 2006a). However, an MCTS program using Informed Average played
not as well as an MCTS program using Average.

• Mix. As an alternative for Max, Coulom (2006) proposed Mix. It computes the value
of the parent nodep with the following formula:

vp =
vmean · wmean + vr · nr

wmean + nr

(3.9)

wherevr is the value of the move which has the highest number of simulations, and
nr the number of times it has been played.vmean is the average of the values of the
child nodes andwmean the weight of this average.5 This backpropagation was used
in CRAZY STONE when it won the9× 9 Go tournament of the Computer Olympiad
2006. However, the new version of CRAZY STONE uses Average, which gives better
results.

5In CRAZY STONE, this weight has a constant value (i.e., 162, see Coulom, 2006) until a certain number of
simulated games (i.e., 1296, see Coulom, 2006) has been played.From that point on,wmean is the number of
simulated games played divided by 8.

3.4 —Final Move Selection 25

• MCTS-Solver. To play narrow tactical lines better in sudden-death games such as
LOA, Winands, Bj̈ornsson, and Saito (2008) proposed MCTS-solver. In addition
to backpropagating the values by using Average, it propagates the game-theoretical
values∞ or−∞. The search assigns∞ or−∞ to a won or lost terminal position for
the player to move in the tree, respectively. Propagating the values back in the tree is
performed similar to negamax. If the selected move (child) of a node returns∞, the
node is a win. To prove that a node is a win, it suffices to prove that one child of that
node is a win. Because of negamax, the value of the node will beset to−∞. In the
case that the selected child of a node returns−∞, all its siblings have to be checked.
If their values are also−∞, the node is a loss. To prove that a node is a loss, we
must prove that all its children lead to a loss. Because of negamax, the node’s value
will be set to∞. In the case that one or more siblings of the node have a different
value, we cannot prove the loss. Therefore,−1 is propagated, the result for a lost
game, instead of−∞, the game-theoretical value of a lost position. The node will
be updated then according to the backpropagation strategy Average. Winandset al.
(2008) showed that a LOA program using MCTS-Solver defeats aprogram using
Average backpropogation by a winning score of 65%.

3.4 Final Move Selection

After the simulations, the move finally played by the programin the actual game is the one
corresponding to the “best child” of the root. There are different ways to define which child
is the best.

1. Max child.The max child is the child that has the highest value.

2. Robust child.The robust child is the child with the highest visit count.

3. Robust-max child.The robust-max child is the child with both the highest visitcount
and the highest value. If there is no robust-max child at the moment, more simulations
are played until a robust-max child is obtained (Coulom, 2006).

4. Secure child.The secure child is the child that maximizes a lower confidence bound,
i.e., which maximizes the quantityv + A√

n
, whereA is a parameter (set to 4 in our

experiments),v is the node’s value, andn is the node’s visit count.

In the experiments performed in MANGO we did not measure a significant difference
between the methods discussed above, when a sufficient number of simulations per move
was played. However, when only a short thinking time per movewas used (e.g., below 1
second), choosing the max child turned out to be significantly weaker than other methods.

3.5 MCTS Applications

In this section, we discuss the implementations of MCTS for different application domains.
We only consider domains with perfect information. We make adistinction between games
with one, two or multiple (more than two) players. Another distinction is made between
deterministic and stochastic games.

26 Monte-Carlo Tree Search

3.5.1 Deterministic One-Player Games

The first application of MCTS to a deterministic one-player game – also known as puzzles
or scheduling problems– was for Production Management Problems (PMP) (Chaslotet al.,
2006b), which are found in manufacturing and airline scheduling. For PMP, we used OMC
as a selection strategy and a plain random simulation strategy. Because OMC was originally
designed for deterministic two-player games, it had to be adapted. An essential difference
between deterministic one-player and two-player games is that there is nouncertainty on
the opponent’s play. This has two consequences. First, the best line and its score found by
MCTS should be kept in memory. Second, it is possible to be more greedy than in other
domains, since we do not have to consider any unknown decision made by an opponent. For
the latter, we modified the OMC formula (3.2) to increase the greediness as follows:

U(i) = erfc(G× v0 − vi√
2σi

)

whereG is the greediness coefficient. We obtained the best result with a coefficient with
a value between 50 to 100. The disadvantage of this setting isthat MCTS does not give a
second chance to moves that had a bad evaluation in the beginning. The advantage of this
setting is that the MCTS tree manages to reach the end of the game. For the best line of
play, decisions based on the selection strategy OMC are madeat any depth.

Another deterministic one-player game where MCTS was applied was SameGame.
Schaddet al. (2008a) obtained with their MCTS variant SP-MCTS the world record in
this game. Cazenave (2009) broke this record with his own MCTS variant, called Nested
Monte-Carlo search. It uses nested levels of simulations inorder to guide the search. His
method surpassed the best human score in Morpion Solitaire as well.

Finally, we note that some optimization problems can be regarded as one-player games.
For instance, Mesmayet al. (2009) proposed the MCTS variant TAG (Threshold Ascent
applied to Graph) for optimizing libraries for different platforms.

3.5.2 Deterministic Two-Player Games

For deterministic two-player games such as chess and checkers usingαβ with a strong eval-
uation function was the framework for building a strong AI player. However, this framework
achieved hardly any success in Go. In 2006 MCTS started a revolution in the field of Com-
puter Go. MCTS-based programs have won every9× 9 and19× 19 Go tournament at the
Computer Olympiads since 2006 and 2007, respectively. It was the MCTS program MOGO

TITAN 6 that achieved the milestone of defeating a human Go professional in an official
match with a 9-stones handicap. To underline the significance of this result, only a decade
ago a computer Go expert even managed to defeat a top program with a handicap of 29
stones (M̈uller, 2002). Besides MOGO (Gelly et al., 2006; Gelly, 2007; Leeet al., 2009),
top MCTS Go program are CRAZY STONE (Coulom, 2006), STEENVRETER(Van der Werf,
2007), MANY FACES OFGO (Fotland, 2009), FUEGO (Enzenberger and M̈uller, 2009), and
ZEN written by Sai Fujiwara.

Besides Go, MCTS is also used in other deterministic two-player games, such as Ama-
zons (Lorentz, 2008; Kloetzer, Iida, and Bouzy, 2009; Kloetzer, 2010) and LOA (Winandset al.,

6MOGO TITAN is a version of MOGO running on the Dutch national supercomputer Huygens.

3.5 —MCTS Applications 27

2008; Winands and Björnsson, 2010). Lorentz (2008) was able to create a hybrid MCTS
program using UCT and a strong positional evaluation function. After a fixed length, the
simulation is terminated and subsequently scored based on the value of the evaluation func-
tion. The MCTS program INVADERMC beat INVADER, the originalαβ program, over
80% of the time under tournament conditions. Moreover, INVADERMC won the Computer
Olympiads of 2008 and 2009. Winands and Björnsson (2010) investigated several simula-
tion strategies for using a positional evaluation functionin a MCTS program for the game
of LOA. Experimental results reveal that the Mixed strategyis the best among them. This
strategy draws the moves randomly based on their weights in the first part of a simulation,
but selects them based on their evaluation scores in the second part of a simulation. The
simulation can be stopped any time when heuristic knowledgeindicates that the game is
probably over. Using this simulation strategy the MCTS program plays at the same level as
theαβ program MIA, the best LOA playing entity in the world.

3.5.3 Deterministic Multi-Player Games

Sturtevant (2008) applied MCTS in the multi-player games Chinese Checkers, Spades, and
Hearts. For the game of Chinese Checkers, he showed that MCTSwas able to outperform
the standard multi-player search methods maxn (Luckhardt and Irani, 1986) and paranoid
(Sturtevant and Korf, 2000) equipped with a strong evaluation function. For the perfect-
information versions of Spades and Hearts, MCTS was on par with the state-of-the-art.
Moreover, Sturtevant (2008) showed that MCTS using UCT computes a mixed-strategy
equilibrium as opposed to maxn, which computes a pure-strategy equilibrium. Cazenave
(2008) addressed the application of MCTS to multi-player Go. He proposed three UCT
variants for multi-player games: Paranoid UCT, UCT with Alliances, and Confident UCT.

3.5.4 Stochastic One-Player Games

The first application of MCTS in a stochastic one-player gamewas in the Sailing Domain.
The Sailing Domain is a stochastic shortest-path problem (SSP), where a sail boat has to find
the shortest path between two points of a grid under variablewind conditions. Kocsis and
Szepesv́ari (2006) tackled this domain by using UCT. The sail boat position was represented
as a pair of coordinates on a grid of finite size. The controller had 7 actions available in
each state, giving the directions to the neighbouring grid positions. The action of which the
direction is just the opposite of the direction of the wind was forbidden. Each action had a
cost in the range between [1, 8.6], depending on the direction of the action and the wind.
UCT was compared to two planning algorithms: ARTDP (Barto, Bradtke, and Singh, 1995)
and PG-ID (Peret and Garcia, 2004). The conclusion was that UCT requires significantly
less simulations to achieve the same performance as ARTDP and PG-ID.

3.5.5 Stochastic Two-Player Games

Van Lishout, Chaslot, and Uiterwijk (2007) were the first to apply MCTS to the stochastic
two-player game Backgammon. UCT was used as a selection strategy, with a plain random
simulation strategy. The MCTS program was able to find an expert opening in one third of

28 Monte-Carlo Tree Search

the dice rolls, but the program was significantly weaker thanthe state-of-the-art programs
based on Expectimax (cf. Berger, 2007).

3.5.6 Stochastic Multi-Player Games

Modern strategic board games are increasing in popularity since their (re)birth in the 1990’s.
Strategic board games are of particular interest to AI researchers because they provide a
bridge between classic (two-player, deterministic) boardgames and video games. Modern
strategic board games have the property that they are stochastic multi-player games. We
applied MCTS – augmented with a limited amount of domain knowledge – to the stochastic
multi-player game Settlers of Catan (Szita, Chaslot, and Spronck, 2010). For the experi-
ments, the rules were changed in such a way that it became a stochasticperfect-information
game. The MCTS program SMARTSETTLERS defeated convincingly the strongest open
source AI available, JSETTLERS, and is a reasonably strong opponent for humans.

3.5.7 General Game Playing

The aim of General Game Playing is to create intelligent agents that automatically learn how
to play many different games at an expert level without any human intervention. The most
successful GGP agents in the past have used traditional game-tree search combined with
automatically learnt heuristic functions for evaluating game states. However, since 2007,
the MCTS program CADIA PLAYER, written by Finnsson and Björnsson (2008), has won
the GGP tournament two times in a row. This program uses UCT, with an online learning
algorithm for the simulations.

3.6 Chapter Conclusions

In this chapter we have presented a general framework for Monte-Carlo Tree Search (MCTS).
It is a best-first search method that does not require a positional evaluation function in con-
trast toαβ search. It is based on a randomized exploration of the searchspace. Using the
results of previous explorations, MCTS gradually builds a game tree in memory, and suc-
cessively becomes better at accurately estimating the values of the most promising moves.
MCTS has led to the best programs in several domains. We mention Production Manage-
ment Problems, Library Performance Tuning, SameGame, Morpion Solitaire, Sailing Do-
main, Amazons, LOA, Chinese Checkers, Settlers of Catan, General Game Playing, and in
particular Go. In the larger picture, MCTS is also attractive for many other application do-
mains, because MCTS promises to overcome the “knowledge-acquisition bottleneck” and
to make intelligent applications easier to engineer in manyfields.

We discussed the four main steps of MCTS:selection, expansion, simulation, andback-
propagation. Each step has a strategy associated that implements a specific policy. Regard-
ing selection, the UCT strategy is used in many programs as a specific selection strategy
because it is simple to implement and effective. A standard selection strategy such as UCT
does not take domain knowledge into account, which could improve an MCTS program
even further. Next, a simple and efficient strategy to expandthe tree is creating one node
per simulation. Subsequently, we pointed out that buildinga simulation strategy is probably

3.6 —Chapter Conclusions 29

the most difficult part of MCTS. For a simulation strategy, two balances have to be found: (i)
between search and knowledge, and (ii) between explorationand exploitation. Furthermore,
evaluating the quality of a simulation strategy requires itto be assessed together with the
MCTS program using it. The best simulation strategy withoutMCTS is not always the best
one when using MCTS. Finally, the backpropagation strategythat is the most successful is
taking the average of the results of all simulated games madethrough a node.

The two strategies that, if enhanced, we expect to give the biggest performance gain in
a MCTS program are the simulation strategy and the selectionstrategy. In Chapters 4 and
5, we investigate how to enhance the simulation strategy andselective strategy of an MCTS
program, respectively.

30 Monte-Carlo Tree Search

Chapter 4

Enhancing the Simulation
Strategy with Knowledge

This chapter is partially based on the publications:

B. Bouzy and G.M.J-B. Chaslot (2006). Monte-Carlo Go Reinforcement Learn-
ing Experiments.IEEE 2006 Symposium on Computational Intelligence in Games
(eds. G. Kendall and S. Louis), pp. 187-194.

G.M.J-B. Chaslot, C. Fiter, J-B. Hoock, A. Rimmel, and O. Teytaud (2010).
Adding Expert Knowledge and Exploration in Monte-Carlo Tree Search.Ad-
vances in Computer Games Conference (ACG 2009)(eds. H.J. van den Herik and
P.H.M. Spronck), Vol. 6048 ofLecture Notes in Computer Science (LNCS), pp.
1–13, Springer-Verlag, Heidelberg, Germany.

In Chapter 3, we introduced the fundamental MCTS strategies. The two strategies that
if enhanced lead to the biggest performance gain in an MCTS program are the simulation
strategy and the selection strategy. In this chapter, we answer the first research question by
investigating how to enhance the simulation strategy of an MCTS program with knowledge.

Theknowledgetransforms the plain random simulations into more sophisticatedpseudo-
randomsimulations (Bouzy, 2005; Gellyet al., 2006; Chen and Zhang, 2008). The knowl-
edge for the simulation strategy can be designed by a human expert (cf. Rimmel, 2009)
or created (semi)-automatically by machine learning. We discuss two different simulation
strategies that apply knowledge:urgency-basedandsequence-likesimulation. Moreover,
methods are investigated to learn the knowledge of the simulation strategy.

The chapter is organized as follows. In Section 4.1, we explain the two simulation strate-
gies, urgency-based and sequence-like simulations, and give main experimental results. In
Section 4.2, we discuss how to learn the knowledge of the simulation strategy and give some
experimental results. In Section 4.3, we present related research in the domain of General
Game Playing. Section 4.4 gives the chapter conclusions.

32 Enhancing the Simulation Strategy with Knowledge

4.1 Simulation Strategies

In this section, we discuss two successful simulation strategies. They were first proposed
in Go, and are also applicable in other domains. In Subsection 4.1.1, we present urgency-
based simulation that was proposed for INDIGO and used in several other programs such as
MANGO and CRAZY STONE. In Subsection 4.1.2, we discuss sequence-like simulationthat
has been proposed for MOGO.

4.1.1 Urgency-Based Simulation

Bouzy (2005) proposedurgency-based simulation. It is basically a 2-step method. In the
first step, an urgency value,Uj , is computed for each movej. In the second step, taking
the urgencies into account a move is randomly drawn. The probability of each move to be
selected is calculated by Formula 4.1.

pj =
Uj

∑

k∈M Uk

(4.1)

whereM is the set of all possible moves for a given position.
If the urgency-based simulation strategy is too random (e.g., all urgencies have similar

values), the level of play of the MCTS program will be close tothe level of a program that
draws plain randomly (i.e., without using any knowledge). If the urgency-based simulation
strategy is too deterministic, the simulations will be too similar, which will lead to a lack of
exploration and hence to meaningless Monte-Carlo simulations.

Urgency-based simulation is used in several Go programs, and in particular in the top
Go programs INDIGO (Bouzy, 2005), MANGO (Chaslotet al., 2007), and CRAZY STONE

(Coulom, 2007).

Computing Urgencies in the Game of Go

In order to compute the urgency value of each move, Bouzy (2005) computed for his pro-
gram INDIGO the urgency as the sum of two values: (1) the capture-escape valueVce and
(2) the pattern valueVp.

1. The capture-escape valueVce depends on (1) the number of stones that could be
captured, and on (2) the number of stones that could escape a capture by playing the
move. This feature is important for Go and easy to implement.In general, it is a
good thing to capture opponent’s pieces and not a good thing to have your own pieces
captured. Furthermore, it is also easy to create a procedurechecking whether stones
might be immediately captured. As a consequence, moves thatcapture opponent’s
pieces are given a high weight, and moves that prevent piecesto be captured are also
given a quite high weight. These weights are set in such a way to avoid as many
mistakes as possible; not capturing a large group has a high probability of being a
mistake, and letting a large group be captured has also a highprobability of being a
mistake.

4.1 —Simulation Strategies 33

2. The pattern valueVp uses3 × 3 patterns. Each pattern is empty in its centre, where
the move to be considered has to be played.3 × 3 patterns have been chosen by
Bouzy (2005) for two reasons: (1)3 × 3 patterns are fast to match and (2) they
represent relatively well the important concepts of connection and cut. Each pattern
was given a weight depending on how good the move seemed to be for its surrounding
3 × 3 pattern. So the pattern value of a movei is computed as follows:Vp(i) =
∑

j wj ×mi,j wherewj is the weight of patternj, andmi,j is 1 if movei matches
patternj and is 0 otherwise.

Because of the3×3 patterns, programs using this specific urgency-based simulation are
significantly slower and consequently the number of simulations is decreased. Despite this
reduction in the number of simulations, INDIGO with urgency-based simulations wins68%
of the game against INDIGO with plain random simulations on the9× 9 board, and97% on
the19× 19 board (Bouzy, 2005).

4.1.2 Sequence-Like Simulation

In this section, we discuss the so-called “sequence-like simulation” introduced by Gellyet al.
(2006) in the Go program MOGO. This simulation strategy consists of selecting each move
in the proximity of the last move played. This leads to moves being played next to each
other, creating a sequence of adjacent moves. To select which move to play in the neigh-
bourhood of the last move,3×3 patterns similar to the ones proposed by Bouzy (2005) were
used. After each move, the program scans for3 × 3 patterns at a Manhattan distance of 1
from the last move. If several patterns are found, one is chosen randomly. The move is then
played in the centre of the chosen pattern. If no pattern is found, a move is chosen randomly
on the board. These patterns were hand-made by Yzao Wang. It is also possible to learn
these patterns automatically, for instance by using a genetic algorithm. Gelly implemented
such an algorithm, but the results were not significantly better than the expert sequence-like
simulation (cf. Subsection 4.2.4).

Sequence-like strategy increased the level of play againstGNU GO1 from winning
8.88 ± 0.42% of the games to winning48.62 ± 1.1% of the games (with 5,000 simula-
tions per move, GNU GO version 3.7.10 level 0, cf. Gelly and Silver, 2007). Based onour
experience with the sequence-like-simulation strategy inMOGO, we believe that it is par-
ticularly efficient because it simplifies the position. In particular, sequence-like play creates
a border which divides the territory between the two players.

Adding diversity in the Sequence-Like Simulation

A possible way of adding diversity in sequence-like simulation is to play in the middle of an
empty area. Playing in an empty area, the simulation may go inany direction. The following
procedure is used. If the sequence-like simulation cannot find a pattern, we look randomly
for an intersection with 8 empty neighbouring intersections. If such an intersection cannot
be found aftern trials, a random move is played. This enhancement was proposed by
Rimmel (2009). It led to a wining rate of78.4±2.9% against the version of MOGO without
this enhancement (Chaslotet al., 2010).

1GNU GO is the Go program developed by the Free Software Foundation.This program is not MCTS-based.
See http://www.gnu.org/software/gnugo/gnugotoc.html for more details.

34 Enhancing the Simulation Strategy with Knowledge

4.2 Learning Automatically the Simulation Strategy

In this subsection we discuss how to learn automatically theparameters (weights) of a sim-
ulation strategy. We discuss five alternative fitness functions, in order to be able to use faster
learning algorithms than evolutionary algorithms. These five functions use (1) the matches
between programs (Subsection 4.2.1) (2) the results of simulated games (Subsection 4.2.2),
(3) move evaluations (Subsection 4.2.3), (4) mean-squarederrors on a set of positions (Sub-
section 4.2.4), or (5) the difference between the errors made by the first player and the errors
made by the second player (Subsection 4.2.5).

4.2.1 Learning from Matches between Programs

As discussed in Chapter 3, the simulation strategy should improve the level of the MCTS
program using it. So the obvious fitness function is the number of victories of an MCTS pro-
gram against a state-of-the-art program. However, this fitness function has two problems.
First, the number of parameters can be quite huge. For instance, in the case of urgency-based
simulation Bouzy (2005), quite a number of patterns have to be matched in the simulations
during game-play. Second, and most important, it is difficult to evaluate how each pattern
contributed to the victory: is it possible to create a feature that reveals which pattern con-
tributed the most amongst the patterns played by the winningplayer? For such difficult
problems, evolutionary algorithms are usually employed. However, using them to tune the
patterns of Bouzy’s urgency-based simulation would take too much time. In Chapter 6,
we propose an algorithm, called the Cross-Entropy Method (CEM), to learn from matches
between programs. CEM is related to Estimation-of-Distribution Algorithms (EDAs) (see
Muehlenbein, 1997) and is able to tune parameters in every part of the MCTS tree.

4.2.2 Learning from the Results of Simulated Games

Learning from the results of simulated games consists of playing games between two sim-
ulation strategies (letS1 andS2 be these strategies), and observe the resultsr1, r2, ..., rn of
these games. The learning algorithm is then applied after each game, based on the decisions
that have been made byS1 andS2 for the gamei, and the resultri.

The first experiments for this method were done in the Go program INDIGO by Bouzy
and Chaslot (2006). The learning algorithm, inspired by reinforcement learning, was learn-
ing either starting from a plain random simulation strategy(Sr) or from expert patterns
(Sep) (see Section 4.1.1). However, the program using the learntpatterns performed worse
than the one using the original simulation strategy. In addition, we observed that making the
strategy moredeterministic(e.g., by taking the square of the weight values) does generally
increase the strength of a simulation strategy against another simulation strategy. However,
it diminished the strength of the program employing the moredeterministic strategy. When
learning the resulting pattern values, we observed that using the result of simulated games
increased continuously the urgencies of the moves which arethe best on average. This
caused a deterministic strategy, which harmed the performance of the program INDIGO.

Learning from the results of simulated games was also testedby Gelly and Silver (2007).
They used a linear-value-function approximation and the TD(λ) algorithm (Sutton, 1988).
The results were similar to the ones obtained by us (cf. Subsection 5.A of Bouzy and

4.2 —Learning Automatically the Simulation Strategy 35

Chaslot, 2006): the new (learnt) simulation strategy outperformed the old simulation strat-
egy, but not the performance of the MCTS program using it.

4.2.3 Learning from Move Evaluations

We propose that learning the weights of the urgency-based simulation should not be based
on the results of simulated games in which the patterns matched, but rather on the differ-
ences of move evaluations (Bouzy and Chaslot, 2006). There are three issues: (1) how each
move should be evaluated, (2) how the weights should be related to the move evaluations,
and (3) how this relation should be learnt.

To tackle issue (1), we chose as a move evaluation, denotedvi for a movei, to use fast
Monte-Carlo Evaluations (MCEs, see Section 3.1). We found that the learning algorithm
gave good results with as little as 20 simulations per move. To tackle issue (2), we first
defined a matching between moves and patterns. For each possible movei, there is exactly
one3 × 3 pattern matching for this move. We denotewi as the weight of the pattern that
matches for the movei. Second, we chose to associate the move evaluationv with the
weight w such that for every pair of legal moves(a, b) in a board position, we have the
following target function:

eC×(va−vb) =
wa

wb

whereC is the exploration-exploitation constant. This formula cannot be satisfied for ev-
ery pair of moves in a board position, so the weights are learnt to minimize the quantity
eC×(va−vb) − wa

wb
on average.

To tackle issue (3), we chose a learning algorithm adapted from thetracking algorithm
proposed by Sutton and Barto (1998). The details of this algorithm are as follows. For each
movei, we defineQi = log(wi).

The differenceδ between the target function and the data is defined by:

δ = Qa −Qb − C × (va − vb)

for each pair of moves(a, b) The updates are done by:

Qa ← Qa − α× δ

Qb ← Qb + α× δ

The learning coefficientα is proportional to 1√
nk

, wherenk is the number of times that
the patternk was matched.

The weights were initialized to 10 (i.e., this corresponds to a random simulation strat-
egy). The learning algorithm stopped when the weights of thepatterns stabilized. These
learnt weights were first used in the Monte-Carlo Go program INDIGO. On the9× 9 board,
INDIGO using the learnt patterns scored on average3 points more for a Go game than the
program using expert patterns. However, on the19 × 19 board, INDIGO using the learnt
patterns scored on average30 points less than the program using expert patterns. We may
explain this finding by the fact that the patterns were learnton 9 × 9 boards. To give an
indication of the values of the patterns, we have depicted inFigure 4.1 a few patterns with
their values.

Coulom (2007) improved our method further with two ideas:

36 Enhancing the Simulation Strategy with Knowledge

2 7 16 28 54 71 113 166 329

Figure 4.1: Examples of learnt pattern weights. For each move markedwith a cross, the weight is
given below.

• Instead of using patterns and capture value as the only features for the urgency of
a move, Coulom (2007) combined additional features, such asdistance to previous
moves, distance to the border, statistics from the simulated games, etc.

• Evaluating the moves according to professional games. The training positions are
extracted from professional games, and the evaluation of a move is 0 if the profes-
sional did not play this move, and 1 if the professional did play this move. The binary
values of moves enable to compute the weight using algorithms from the literature
developed to compute ELO ratings, such as the minorization-maximization method
and the general Bradley-Terry model (Hunter, 2004).

The application of these patterns increased the level of Coulom’s program CRAZY

STONE on the9 × 9 board from a winning rate of38% against GNU GO 3.6 up to a
winning rate of68%. The thinking time was set to 1 minute and 30 seconds for a complete
game.

We may conclude that learning from move evaluations gives results that are at least com-
parable with expert values. Furthermore, it gives significantly better results than learning
from the results of simulated games.

4.2.4 Learning from the Mean-Squared Errors on a Set of Positions

Gelly2 developed a genetic algorithm that was learning to minimizethe mean-squared er-
rors of simulations on a set of 200 Go positions. Each Go position was labelled to have
a value of 1 if it was a win for Black, and 0 if it was a win for White. In order to assign
automatically the label for a position, an extensive MCTS search was performed. In case
MCTS indicated that one of the players was clearly winning, the label was assigned to that
player. Otherwise, the game was continued by playing the move advised by MCTS. Several
thousands of simulations were run on each of the 200 positions, and the fitness of the genetic
algorithm was the mean-squared error between the results ofthe simulations and the labels.
The genotype of the algorithm was a set of heuristic rules depending on the surrounding
stones. The set of heuristic rules were similar to the patterns described in Subsection 4.1.2.
The learnt simulation strategy was as good as using expert patterns, but decreased the num-
ber of simulations. Hence, MOGO still plays with expert patterns.

2Private communication.

4.3 —Related Research: General Game Playing 37

4.2.5 Learning from Imbalance

Silver and Tesauro (2009) proposed a fitness function calledimbalance. The imbalance is
the difference between the errors made by the first player andthe errors made by the second
player. The underlining idea is that it is fine to make mistakes in the simulation if the other
player makes mistakes as well. The simulation strategy is trained in such a way that the
mistake of one player balances out the mistake of the other player. The simulation strategy,
calledsimulation balancing, plays some apparently bad moves, but improves the level of
the MCTS program. Huang, Coulom, and Lin (2010) showed that learning from imbalance
gave better results in the9 × 9 Go program ERICA than learning from move evaluations.
However, their article concludes that learning the19× 19 board seems out of the reach for
simulation balancing. Learning from move evaluations using the method of Coulom (2007)
is still better in19× 19 Go.

4.3 Related Research: General Game Playing

In this section we describe two learning algorithms aimed atlearning to improve the level
of the simulations without making assumptions about the game. The simulation strategy is
improved during game play (online learning).

The first learning algorithm, Gibbs sampling, was proposed by Finnsson and Björnsson
(2008). It selects the moves to be played in the simulated games according to a Gibbs dis-
tribution of their history. LetQhj be the percentage of victories for the movej independent
of the position. In the simulated games, a movej is selected with probability:

pj =
e

Qhj
τ

∑

k∈M e
Qhk

τ

(4.2)

whereM is the set of all possible moves for a given position. One can stretch or flatten
Formula 4.2 by using theτ parameter (τ → 0 stretches the distribution, whereas higher val-
ues make it more uniform). We remark that the probabilities are adapted during the game,
which is a kind of online learning. Moreover, theQh value is set to the maximum winning
score (i.e., 100%) to bias towards similar exploration as isdefault in the UCT algorithm or
in learning the weights of the urgency-based simulation (cf. Subsection 4.2.3). The win-
ning rate against the old version of their General-Game Playing program CADIA PLAYER

varied between54.2% in Connect-4,54.4% in Checkers,65% in Othello, and90% in Break-
through. The learning algorithm was not only applied to improve the simulation strategy but
also the selection strategy. Hence, it is difficult to assesswhich part of the improvement is
due to the enhanced simulation strategy and which part is dueto the selection strategy.

The second learning algorithm, state-space knowledge, wasproposed by Sharma, Kobti,
and Goodwin (2008) to learn a simulation strategy in the domain of General Game Playing.
It consists of computing a value for each possible feature ofthe game. For instance, in
Tic-Tac-Toe, the position is represented with features such as “mark(1,1,X)”. Thereafter,
the value of a state is computed as a combination of the value of all its features, which
is subsequently squashed by using a sigmoid function. This knowledge was used in the
selection and simulation step. The results of this approachagainst the standard MCTS

38 Enhancing the Simulation Strategy with Knowledge

are the following:58 wins out of100 games in Connect-4,72 wins out of100 games in
Breakthrough, and56 wins out of100 games in Checkers. These results are interesting,
even if it might be argued that more games are necessary to be statistically significant, and
that the method might work better for games with a small state-space complexity.

4.4 Chapter Conclusions and Future Research

In this chapter, we focussed on enhancing the simulation strategy by introducingknowledge
in the Monte-Carlo simulations. The knowledge transforms the plain random simulations
into more sophisticatedpseudo-randomsimulations.

We discussed two different simulation strategies that apply knowledge: urgency-based
and sequence-like simulation. Strong-expert knowledge chunks for these two strategies have
been designed by Bouzy (2005) for his Go program INDIGO, and by Gelly, Wang, Teytaud,
Rimmel, and Hoock for their Go program MOGO (Gelly et al., 2006; Chaslotet al., 2010).
From their results, we may recommend that several issues areimportant.

1. Avoiding big mistakes is more important than playing good moves.If a move has
a high probability to be a bad move, it should be avoided with ahigh probability. We
achieved more improvement by trying to avoid the moves whichwere bad most of
the time, than playing the best move in a specific situation. For instance, in Go not
capturing a large group has a high probability of being a big mistake, and letting a
large group be captured has also a high probability of being abig mistake.

2. Simplifying the position. Some simulation strategies are efficient because they sim-
plify the situation, such as patterns developed by Bouzy (2005) or the sequence-like
simulations developed by Gellyet al. (2006).

3. Balancing exploration and exploitation.The simulation strategy should not become
too stochastic, nor too deterministic.

When learning the knowledge of the simulation strategy, we showed that choosing a
fitness function is a major issue. The five fitness functions (together with their learning
algorithms) that were proposed are the following:

1. Learning from matches between programs.The drawback of this method is that it
is relatively slow, since learning can only be done in low dimensions. The advantage
of this method is that it is able to learn simultaneously the simulation strategy together
with other parts of MCTS.

2. Learning from the results of simulated games.This method did not lead to im-
provements with the learning algorithms proposed by Bouzy and Chaslot (2006) and
Gelly and Silver (2007).

3. Learning from move evaluations. This method, which we proposed in Bouzy and
Chaslot (2006), performed better than learning from the results of simulated games.
Coulom (2007) enhanced our method in different ways, such that his program CRAZY

STONE was improved considerably.

4.4 —Chapter Conclusions and Future Research 39

4. Learning from the mean-squared errors on a set of positions.This method, pro-
posed by Gelly, was able to achieve the same level as a programusing patterns made
by a human expert.

5. Learning from imbalance. This method, originally proposed by Silver and Tesauro
(2009), improved the program ERICA in 9× 9 Go.

The main contribution of this chapter is therefore that we developed the first efficient
method for learning automatically the simulation strategyby taking the move evaluations
into account. Recently, it was shown that learning from imbalance was better for9× 9 Go,
but that learning from move evaluations is still better for19× 19 Go (Huanget al., 2010).

Finally, we remark that Finnsson and Björnsson (2008) proposed a simple and efficient
algorithm, using Gibbs sampling, to learn the simulations during game play (online). It
seems that the improvements are less than when using expert knowledge or offline learning.
However, the simplicity of Gibbs sampling and its general applicability make it, in our
opinion, an interesting algorithm for future research.

40 Enhancing the Simulation Strategy with Knowledge

Chapter 5

Enhancing the Selection Strategy
with Knowledge

This chapter is based on the following publications:

G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van denHerik,
and B. Bouzy (2007). Progressive Strategies for Monte-Carlo TreeSearch.Pro-
ceedings of the 10th Joint Conference on Information Sciences (JCIS2007)(eds.
P. Wang et al.), pp. 655–661.

G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van denHerik,
and B. Bouzy (2008c). Progressive Strategies for Monte-Carlo Tree Search.New
Mathematics and Natural Computation, Vol. 4, No. 3, pp. 343–357.

G.M.J-B. Chaslot, C. Fiter, J-B. Hoock, A. Rimmel, and O. Teytaud (2010).
Adding expert knowledge and exploration in Monte-Carlo Tree Search.Ad-
vances in Computer Games Conference (ACG 2009)(eds. H.J. van den Herik and
P.H.M. Spronck), Vol. 6048 ofLecture Notes in Computer Science (LNCS), pp.
1–13, Springer-Verlag, Heidelberg, Germany.

In Chapter 3, we introduced the basic MCTS strategies. The two strategies which can
be improved the most are the simulation strategy and the selection strategy. In Chapter 4,
we discussed methods to enhance the simulation strategy. Inthis chapter we focus on the
selection strategy. Chapter 3 discussed that a selection strategy controls the balance between
exploitation and exploration. To arrive at a proper balance, this chapter answers the second
research question by introducing knowledge in the selection strategy.

Whereas the selection strategies presented in Chapter 3 solely used the winning percent-
age of the nodes, the algorithms presented in this chapter also use a different kind of infor-
mation that is introduced by an expert or learnt automatically. We refer to this information
asknowledge. We propose two methods to integrate (possibly time-consuming) knowledge
into the selection strategy:progressive biasandprogressive widening. Progressive bias di-
rects the search according to knowledge. Progressive widening first reduces the branching

42 Enhancing the Selection Strategy with Knowledge

factor, and then increases it gradually. We refer to them as “progressive strategies” because
the knowledge is dominant when the number of simulations is small in a node, but loses
influence progressively when the number of simulations increases.

The structure of this chapter is as follows. Section 5.1 introduces progressive bias and
progressive widening. In Section 5.2 we give details on the implementation and the exper-
imental results of these progressive strategies in our Go-playing program MANGO. Sub-
sequently, Section 5.3 presents the performance of the progressive strategies for the Go
programs CRAZY STONE and MOGO, and in the LOA program MC-LOA. Section 5.4 dis-
cusses more recent related research on enhancing the selection strategy. Finally, Section 5.5
summarizes our contributions, formulates the chapter conclusions, and gives an outlook on
future research.

5.1 Progressive Strategies

When the number of simulations is high, the selection strategies presented in Chapter 3 are
quite accurate (Chaslotet al., 2006a; Coquelin and Munos, 2007; Coulom, 2006; Kocsis
and Szepesv́ari, 2006). However, they are inaccurate when the number of simulations is
low and when the branching factor is high.

We propose “progressive strategies” that perform a soft transition between applying
knowledge and using the selection strategy. Such strategies use (1) knowledge and (2) the
information available for the selection strategy. A progressive strategy chooses moves ac-
cording to knowledge when a few simulations have been played, and converges to a standard
selection strategy with more simulations.

In the following two subsections we describe the two progressive strategies developed:
progressive bias(Subsection 5.1.1) andprogressive widening(Subsection 5.1.2).

5.1.1 Progressive Bias

The aim of theprogressive biasstrategy is to direct the search according to – possibly
time-expensive – heuristic knowledge. For that purpose, the selection strategy is modified
according to that knowledge. The influence of this modification is important when a few
games have been played, but decreases fast (when more games have been played) to ensure
that the strategy converges to a pure selection strategy. Wemodified the UCT selection in
the following way. Instead of selecting the move which satisfies Formula 3.5 (see Chapter
3), we propose to select a nodek according to Formula 5.1.

k ∈ argmaxi∈I

(

vi + C ×
√

lnnp

ni

+ f(ni)

)

(5.1)

We chosef(ni) = Hi

ni+1 , whereHi represents heuristic knowledge, which depends
only on the board configuration represented by the nodei. The variablesvi, ni, np, and
coefficientC are the same as in Subsection 3.3.1. More details on the construction ofHi

are given in Subsection 5.2.1. The selection strategy has the following five properties.

1. When the number of gamesnp made through a nodep is lower than the thresholdT ,
the simulation strategy is applied instead of Formula 5.1.

5.2 —Experiments inMANGO 43

2. Whennp = T , the selection strategy starts selecting every unexploredchild once. The
order in which these children are selected is given byf(ni), i.e., the children with the
highest heuristic scores,Hi, are selected first. If every child has been selected at least
once, Formula 5.1 is applied.

3. If only a few simulations have been made through the node (e.g., from around30
to 100 in MANGO), and if the heuristic scoreHi is sufficiently high, the term Hi

ni+1
is dominant. Hence, the number of simulations made depends more on the domain
knowledgeHi than on the results of the simulated games. It is an advantageto use
mainly the domain knowledge at this stage, because the results of only a few sim-
ulated games are affected by a large uncertainty. The behaviour of the algorithm is
therefore close to the behaviour of a simulation strategy.

4. When the number of simulations increases (e.g., from around 100 to 500 in MANGO),
both the results of the simulated games and the domain knowledge have a balanced
effect on the selection.

5. When the number of simulations is high (e.g.,> 500 in MANGO), the influence of
the domain knowledge is low compared to the influence of the previous simulations,
because the domain knowledge decreases byO(1/ni), and the term corresponding
to the simulation decreases byO(

√

lnnp/ni). The behaviour of the algorithm is, at
this point, close to the behaviour of the standard selectionstrategy (i.e., UCT). The
only difference with plain UCT occurs if two positionsi andj have the same value
vi = vj , but different heuristic scoresHi andHj . Then, the position with the highest
heuristic score will be selected more often.

5.1.2 Progressive Widening

We have seen in MANGO that when there is not much time available and simultaneously
the branching factor is high, MCTS performs poorly. Our solution, progressive widening,1

consists of (1) reducing the branching factor artificially when the selection strategy is ap-
plied, and (2) increasing it progressively as more time becomes available. When the number
of gamesnp in a nodep equals the thresholdT , progressive widening “prunes”2 most of
the children. The children, which are not pruned from the beginning, are thekinit children
with the highest heuristic scoresHi. Next, the children of the nodei are progressively “un-
pruned” according to their heuristic scoreHi. An outline of progressive widening is given
in Figure 5.1.

5.2 Experiments in MANGO

In this section we present the experimental details and results of the progressive strategies
in the Go-playing program MANGO. In Section 5.2.1 we discuss the heuristic knowledge,
the time efficiency and the progressive widening parameters. Next, three different series of

1We proposed “progressive widening” under the name “progressive unpruning” (Chaslotet al., 2007). This
method was proposed simultaneously by Coulom (2007) under thename “progressive widening”. It was agreed
later that this name was more suitable.

2A node is pruned if it cannot be accessed in the simulated games.

44 Enhancing the Selection Strategy with Knowledge

Figure 5.1: Progressive widening.

experiments were conducted in MANGO. Subsection 5.2.2 gives the effect of each progres-
sive strategy against GNU GO. Subsection 5.2.3 shows that these methods also improve
the level of the program in self-play. Subsection 5.2.4 assesses the strength of MANGO in
computer tournaments.

5.2.1 Experimental Details

In this subsection we give details of the implementation of the progressive strategies in
MANGO. First, we describe the heuristic knowledge used. Next, we discuss the time effi-
ciency of using this knowledge. Finally, we explain the application of progressive widening
in MANGO.

Knowledge used in MANGO

The two previous progressive strategies require computinga heuristic scoreHi for a given
board configuration representing the nodei. In this subsection we describe the heuristic,
which is based on the same idea of urgency-based simulations(see Subsection 4.1.1). How-
ever, the heuristic knowledge forHi is much more elaborate than the one used for the
urgency valueUi. In the Go program MANGO, Hi is composed of three elements: (i) a
capture-escape value, (ii) a pattern value, and (iii) the proximity to the last moves.

Thecapture-escape valueof each move depends on (1) the number of stones that could
be captured by playing the move, and on (2) the number of stones that could escape a capture
by playing the move. It is calculated the same way as for the simulation strategy.

The pattern valueis learnt offline by using the pattern matching described by Bouzy
and Chaslot (2005). This pattern matching was also implemented in the Go program IN-
DIGO, and improved its level significantly.3 In this research, each pattern assigns a value
to the move that is in its centre. The value of each pattern is the probability that the move
is played in a professional game. The learning phase has beenperformed on 2,000 profes-
sional games; 89,119 patterns were learnt. Each pattern contained between0 stones (e.g.,
corner pattern) and15 stones (e.g., joseki pattern). In contrast to the3 × 3 patterns used
in the simulation strategy (see Subsection 4.1.1), the sizeof the patterns for the progressive
strategies is not bounded. Some patterns cover nearly the whole board, and some cover only

3INDIGO was third out of 17 participants in the World Computer Go Championship 2006, see http://
computer-go.softopia.or.jp/gifu2006/English/index.html.

5.2 —Experiments inMANGO 45

a few intersections. Computing these unbounded patterns takes on average 100 times more
CPU time than for the3× 3 patterns.

Theproximity coefficientsare computed as the Euclidean distances to all moves previ-
ously played, as shown in Formula 5.2.

These elements are combined in the following formula to computeHi:

Hi = (Vce(i) + Vp(i))×
∑

k

1

(2dk,i)αk
(5.2)

whereVce(i) is the capture-escape value,Vp(i) is the pattern value,dk,i is the (Euclidean)
distance to thekth last move, andαk = 1.25 + k

2 . This formula has been tuned experimen-
tally.

The knowledge utilized in MANGO has a prediction rate of23%, i.e.,23% of the time
the move with the highestHi score is also the move played by a professional player. This
result is of the same order as the prediction rate (i.e.,25%) obtained by Van der Werfet al.
(2006), but lower than the one later obtained (i.e.,35%) by Coulom (2007).

Time Available for Knowledge

The time consumed to computeHi is in the order of one millisecond, which is around 1,000
times slower than playing a move in a simulated game. To avoida speed reduction in the
program’s performance, we computeHi only once per node, when a certain threshold of
games has been played through this node. The threshold was set to T = 30 in MANGO.
With this setting, the speed of the program was only reduced by 4%. The speed reduction is
low because the number of nodes that have been visited more than30 times is low compared
to the number of moves played in the simulated games. It can beseen in Figure 5.2 that
the number of calls to the domain knowledge is reduced quickly asT increases. Even for
T = 9, the number of calls to the domain knowledge is quite low compared to the number
of simulated moves. The number of nodes having a certain visit count is plotted in Figure
5.3. The data has been obtained from a19× 19 initial position by performing a 30-seconds
MCTS. We have also plotted a trend line that shows that this data can be approximated by a
power law.

Progressive Widening in Mango

In MANGO, the number of children that were not pruned in the beginning, kinit, was5.
Next,k nodes were unpruned when the number of simulations in the parent surpassedA×
Bk−kinit simulated games.A was set experimentally to50 andB to 1.3.

5.2.2 MANGO vs. GNU GO

In the first series of experiments we tested the two progressive strategies in games against
GNU GO version 3.6. The experiments were performed on the9× 9, 13× 13, and19× 19
boards. Our program used20, 000 simulations per move. It takes on average less than one
second on a9 × 9 board, two seconds on a13 × 13 board, and five seconds on a19 × 19
board. The level of GNU GO has been set to10 on the9× 9 and13× 13 boards, and to0

46 Enhancing the Selection Strategy with Knowledge

 1e-05

 1e-04

 0.001

 0.01

 5 10 15 20 25 30 35 40

C
al

ls
 to

 th
e

do
m

ai
n

kn
ow

le
dg

e
/ N

um
be

r
of

 s
im

ul
at

ed
 m

ov
es

Threshold T

Number of calls to domain knowledge

Figure 5.2: Number of calls to the domain knowledge relative to the numberof simulated moves, as a
function of the thresholdT .

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

N
um

be
r

of
 n

od
es

Visit count

Number of nodes as a function of the visit count
Linear approximation with correlation coefficient R=0.9981

Figure 5.3: Number of nodes with a given visit count.

5.2 —Experiments inMANGO 47

on the19×19 board. The results are reported in Table 5.1, where PB standsfor progressive
bias and PW for progressive widening.

From these experiments, the results, and our observation, we may arrive at three con-
clusions. First, the plain MCTS framework does not scale well to the13 × 13 board and
the19 × 19 board, even by using GNU GO at level0. Second, the progressive strategies
increase MANGO’s level of play on every board size. Third, on the19 × 19 board size the
combination of both strategies is much stronger than each strategy applied separately.

Table 5.1: Results of MANGO against GNU GO.

Board Simulations GNU GO’s PB PW Wins Games 95 percent
size per move level conf. int.
9 20,000 10 33.2% 1000 3.0%
9 20,000 10 X 37.2% 1000 3.0%
9 20,000 10 X 58.3% 1000 3.1%
9 20,000 10 X X 61.7% 2000 2.2%
13 20,000 10 8.5% 500 2.5%
13 20,000 10 X 15.6% 500 3.2%
13 20,000 10 X 30.0% 500 4.1%
13 20,000 10 X X 35.1% 500 4.2%
19 20,000 0 0% 200 1.0%
19 20,000 0 X 3.1% 200 2.5%
19 20,000 0 X 4.8% 200 3.0%
19 20,000 0 X X 48.2% 500 4.4%

5.2.3 Self-Play Experiment

We also performed self-play experiments on the different board sizes. The time setting
of these experiments was10 seconds per move. On the9 × 9 board, MANGO using both
progressive strategies won88% of 200 games played against MANGO without progressive
strategies. Next, on the13 × 13 board, MANGO using both progressive strategies won
81% of 500 games played against MANGO without progressive strategies. Finally, on the
19 × 19 board, MANGO using both progressive strategies won all the300 games played
against MANGO without progressive strategies. These self-play experiments show that the
effect of progressive strategies is larger on the19× 19 board than on the13× 13 and9× 9
boards. This conclusion is consistent with the results of the experiments of the previous
subsection.

5.2.4 Tournaments

In the last series of experiments we tested MANGO’s strength by competing in computer
tournaments. Table 5.2 presents the results by MANGO in the tournaments entered in 2007.
In all these tournaments, MANGO used both progressive strategies. In this table, KGS stands
for “KGS Go Server”. This server is the most popular one for computer programmers, and

48 Enhancing the Selection Strategy with Knowledge

most of the well-known programs have participated in one or more editions (e.g., MOGO,
CRAZY STONE, GO++, THE MANY FACES OF GO, GNU GO, INDIGO, AYA , DARIUSH,
etc...).

As shown in the previous experiments, the progressive strategies are the main strength
of MANGO. We remark that MANGO was always in the best half of the participants.

Table 5.2: Results by MANGO in 2007 tournaments.

Tournament Board Size Participants MANGO’s rank
KGS January 2007 13× 13 10 2nd

KGS March 2007 19× 19 12 4th

KGS April 2007 13× 13 10 3rd

KGS May 2007 13× 13 7 2nd

12th Computer Olympiad 9× 9 10 5th

12th Computer Olympiad 19× 19 8 4th

KGS July 2007 13× 13 10 4th

5.3 Progressive Strategies in Other Game Programs

In the previous section we tested the progressive strategies in the Go program MANGO. In
this section we show that they are program- and game-independent. First, we discuss the
application of progressive strategies in CRAZY STONE and MOGO in Subsections 5.3.1 and
5.3.2. Next, in Subsection 5.3.3 we test progressive bias inthe game of Lines of Action.

5.3.1 Progressive Strategies in CRAZY STONE

Progressive widening was independently invented by Coulom(2007) and applied in his
program CRAZY STONE. The heuristic knowledge used for progressive widening consists
mainly of pattern features, similar to those developed for INDIGO and MANGO (Bouzy
and Chaslot, 2005). In Coulom’s implementation thenth move is unpruned whentn−1

simulations have been run, witht0 = 0 andtn+1 = tn+40×1.4n. Results against GNU GO
indicate that progressive widening brings a significant improvement to the playing strength
on the9 × 9 board (i.e., winning 90.6% of the games instead of 68.2%). Onthe19 × 19
board the contribution of progressive widening to the playing strength is impressive (i.e.,
winning 37.5% of the games against GNU GO instead of 0%) .

The main difference with our implementation is that the speed of unpruning as imple-
mented in his program is slower than the one used in MANGO. This implies that the quality
of the heuristic domain knowledge in his program is higher. Therefore it can afford to be
more selective without pruning important moves.

5.3.2 Progressive Strategies in MOGO

In MOGO, progressive widening was not implemented because anotherenhancement al-
ready played a similar role: Rapid Action-Value Estimation(RAVE) (cf. Subsection 5.4.2).

5.3 —Progressive Strategies in Other Game Programs 49

Progressive bias has been implemented in MOGO, but was adapted. Instead of having a bias
of Hi

ni+1 , the progressive bias that gave the best results wasHi

ln(ni+2) (Chaslotet al., 2010).
Self-play experiments were performed by using MOGO on the19 × 19 Go board with

a thinking time of 1 second per move. The version of MOGO using progressive bias won
61.7%± 3.1% of the games against MOGO without progressive bias.

5.3.3 Progressive Strategies in MC-LOA

In the previous subsections, the progressive strategies were implemented and tested in Go
programs. However, progressive strategies can be used in other game domains as well. The
MCTS Lines-of-Action (LOA) program MC-LOA uses progressive bias to embed domain-
knowledge bias into the UCT formula (Winandset al., 2008; Winands and Björnsson, 2010).
The UCT formula is modified as follows. LetI be the set of nodes immediately reachable
from the current nodep. The selection strategy selects a childk of the nodep that satisfies
Formula 5.3:

k ∈ argmaxi∈I

(

vi +

√

C × lnnp

ni

+
W × Pmc

ni + 1

)

, (5.3)

wherevi is the value of the nodei, ni is the visit count ofi, andnp is the visit count of
p. C is a coefficient, which must be tuned experimentally (hereC = 0.6). W×Pmc

ni+1 is the
progressive-bias part of the formula.W is a constant, which must be set manually (here
W = 50). Pmc is thetransition probabilityof a move categorymc(Tsuruokaet al., 2002).

For each move category (e.g., capture, blocking) the probability that a move belonging
to that category will be played is determined. The probability is called thetransition prob-
ability. This statistic is obtained off-line from game records of matches played by expert
players. The transition probability for a move categorymc is calculated as follows:

Pmc =
nplayed(mc)

navailable(mc)
, (5.4)

wherenplayed(mc) is the number of game positions in which a move belonging to category
mc was played, andnavailable(mc) is the number of positions in which moves belonging to
categorymc were available.

The move categories of MC-LOA (Winandset al., 2008; Winands and Björnsson, 2010)
are similar to the ones used in the Realization-ProbabilitySearch of the program MIA
(Winands and Bj̈ornsson, 2008). They are applied in the following way. First, we clas-
sify moves as captures or non-captures. Next, moves are further sub-classified based on the
origin and destination squares. The board is divided into five different regions: the corners,
the8× 8 outer rim (except corners), the6× 6 inner rim, the4× 4 inner rim, and the central
2 × 2 board. Finally, moves are further classified based on the number of squares travelled
away from or towards the centre-of-mass.

In the following series of experiments we quantified the performance of progressive
bias in a round-robin tournament. The progressive-bias variant of the MCTS program (MC-
LOA + PB) played against the default MCTS program (MC-LOA). Moreover, MC-LOA and

50 Enhancing the Selection Strategy with Knowledge

MC-LOA + PB were matched against MIA. The latter performs anαβ depth-first iterative-
deepening search in the Enhanced-Realization-Probability-Search framework (Winands and
Björnsson, 2008). The program uses state-of-the-artαβ enhancements (Winands, 2004).
The thinking time was limited to 5 seconds per move. Each match data point represents
the result of 20,000 games, with both colours played equally. A standardized set of 100
three-ply starting positions (Billings and Björnsson, 2003) was used, with a small random
factor in the evaluation function preventing games from being repeated. All experiments
were performed on an AMD Opteron 2.2 GHz computer. The results are given in Table 5.3.

Table 5.3: Tournament results.

Strategy MC-LOA MC-LOA+PB MIA

MC-LOA - 25.8% 28.8%
MC-LOA+PB 74.2% - 46.6%
MIA 71.2% 53.4 % -

Table 5.3 reveals that MC-LOA using progressive bias outplayed the default MC-LOA
with a winning score of almost 75% of the available points. Moreover, MC-LOA with pro-
gressive bias played much better against MIA than MC-LOA did(i.e., winning 46.6% of
the games instead of 28.8%). This result shows that the progressive bias improves the play-
ing strength of the Monte-Carlo LOA program. Finally, we remark that adding progressive
widening did not improve the program. This is not surprising. The results of Table 5.1 indi-
cate that payoff of adding progressive widening on top of progressive bias increases when
the board size / branching factor increases. For9×9 Go the additional payoff of progressive
widening was small. The fact that that LOA has a smaller branching factor than9 × 9 Go
(i.e., 30 vs. 40), explains why progressive widening did notwork.

5.4 Related Research

In this section we present two methods, prior knowledge and Rapid Action-Value Estima-
tion (RAVE). They were proposed simultaneously with the progressive strategies discussed
above, and have a similar purpose. In Subsection 5.4.1 we explain prior knowledge. Next,
we discuss RAVE in Subsection 5.4.2.

5.4.1 Prior Knowledge

An alternative enhancement to progressive bias has been proposed by Gelly and Silver
(2007). It consists of introducing prior knowledge. The selected nodek is the one, which
satisfies Formula 5.5:

k ∈ argmaxi∈I

(

vi · ni + nprior ·Qi

ni + nprior

+ C ×
√

lnnp

ni + nprior

)

(5.5)

whereQi is the prior estimation of the position. Gelly and Silver (2007) use a reinforcement-
learning algorithm (Silver, Sutton, and M̈uller, 2007), which learnt the values from self-play

5.5 —Chapter Conclusions and Future Research 51

on the9× 9 board.nprior is a coefficient that has to be tuned experimentally.
On the9× 9 board, this technique successfully increased MOGO’s winning percentage

against GNU GO from 60% to 69%. However, learning the prior valueQi was only done
for the 9 × 9 board. So, the scalability of this approach to larger board sizes is an open
question.

5.4.2 Rapid Action-Value Estimation

Brügmann (1993) proposed to acquire results from simulationsquicker by the “all-move-as-
first heuristic” (AMAF). AMAF, for a given positionp, assigns each movem with a value
AMAFp,m. This value is computed in the following way, which considers each move of the
simulated game as important as the first move. For every simulated gameSi played starting
from p, in which the movem has been played, we noteSi(p,m) = 1 if the player who
playedm won the simulated game, andSi(p,m) = 0 if the player who playedm lost the
simulated game. The AMAF value is then the average overi of theSi(p,m) values. The
AMAF values can be computed incrementally.

Gelly and Silver (2007) proposed to use the AMAF value in combination with MCTS.
It replaces UCT (see Subsection 3.3.1) by Rapid Action-Value Estimator (RAVE). The se-
lected nodek has to satisfy Formula 5.6:

k ∈ argmaxi∈I

(

(1− β(np))× (vi + C ×
√

lnnp

ni

) + β(np)×AMAFp,i

)

(5.6)

In Formula 5.6,p is the position associated with the current node, andβ is a coefficient.

Gelly and Silver (2007) proposedβ(N) =
√

k
3N+k

. This formula led to good results for all

values ofk from 3 to 10,000, with the best results obtained withk = 1000.
Silver (2008) proposed an enhancement of the RAVE formula inorder to estimate bias

and variance to calculate the best combination of UCT and RAVE values. This version
usesβ(mi, ni) = mi

mi+ni+D×mi×ni
, wheremi is the number of simulations on which the

AMAF value of the movei is based, andD is a constant to be tuned.
A disadvantage of RAVE is that in principle it has to keep track of the AMAF values

in a separate table for every node. Keeping track of the AMAF values globally instead of
locally at every node could solve the memory problem, but hasthe risk that it diminishes
the benefit of RAVE.

5.5 Chapter Conclusions and Future Research

In this chapter we introduced two progressive strategies. These strategies use (1) the infor-
mation available for the selection strategy, and (2) some (possibly time-expensive) domain
knowledge that is introduced by an expert, or learnt automatically. The two progressive
strategies we developed areprogressive biasandprogressive widening. Progressive bias
uses knowledge to direct the search. Progressive widening first reduces the branching fac-
tor, and then increases it gradually. This scheme is also dependent on knowledge.

Based on the results of the experiments performed with our program MANGO, we may
offer four conclusions. (1) The plain MCTS method does not scale well to13× 13 Go, and

52 Enhancing the Selection Strategy with Knowledge

performs even worse in19× 19 Go. MCTS is weak at handling large branching factors. (2)
Progressive strategies, which focus initially on a small number of moves, correct this prob-
lem. They increased the level of play of the program MANGO significantly, for every board
size. (3) On the19×19 board, the combination of both strategies is much stronger than each
strategy applied separately. The fact that progressive bias and progressive widening work
better in combination with each other shows that they have complementary roles in MCTS.
This is especially the case when the board size and thereforebranching factor grows. (4)
Progressive strategies can use relatively expensive domain knowledge with hardly any speed
reduction.

The progressive strategies were successfully implementedin other game programs or
domains. Progressive bias increased the playing strength of M OGO and MC-LOA, while
progressive widening did the same for CRAZY STONE. These results give rise to a fifth
conclusion that the proposed progressive strategies are essential enhancements for an MCTS
program.

A direction for future research is to modify during game play(online) the progressive
strategy according to the results of the Monte-Carlo simulations. For instance, in a situation
where the initialk moves are losing, increasing the speed of widening to find thebest move
seems promising. As another example, if a move that receivesalways a high heuristic score
Hi is rarely the best move in numerous nodes, then the heuristicscore of this move could
be adjusted online.

Chapter 6

Optimizing Search Parameters
using the Cross-Entropy Method

This chapter is based on the publication:

G.M.J-B. Chaslot, M.H.M. Winands, I. Szita, and H.J. van den Herik (2008b).
Cross-Entropy for Monte-Carlo Tree Search.ICGA Journal, Vol. 31, No. 3., pp.
145-156.

We have seen in Chapters 3, 4, and 5 that MCTS is controlled by several parameters,
which define the behaviour of the search. Especially the selection and simulation strategies
contain several important parameters. These parameters have to be optimized in order to get
the best performance out of an MCTS program. In this chapter we answer the third research
question how to optimize the parameters of an MCTS program. We propose to optimize the
search parameters of MCTS by using an evolutionary strategy: the Cross-Entropy Method
(CEM) (Rubinstein, 1999). The method is related to Estimation-of-Distribution Algorithms
(EDAs) (Muehlenbein, 1997), a new area of evolutionary computation. We test CEM by
tuning the main parameters in the Go program MANGO.

The chapter is organized as follows. We briefly discuss parameter optimization in Sec-
tion 6.1. Next, in Section 6.2 we present the MCTS parametersused in MANGO. In Section
6.3 we explain CEM. We empirically evaluate CEM in combination with MCTS in Section
6.4. Finally, Section 6.5 provides the chapter conclusionsand describes future research.

6.1 Parameter Optimization

Most game engines have a large number of parameters that are crucial for their performance.
Optimizing these parameters by hand may be a hard and time-consuming task. Although it
is possible to make educated guesses for some parameters, for other parameters it is beyond
imagination. Here, a learning method can be used to find the best values for these parameters
(Sutton and Barto, 1998; Beal and Smith, 2000).

54 Optimizing Search Parameters using the Cross-Entropy Method

Using learning methods for optimizing the parameters in order to increase the play-
ing strength of a game program is difficult. The problem is that the fitness function1 is
rarely available analytically. Therefore, learning methods that rely on the availability of
an analytic expression for the gradient cannot be used. However, there are several ways to
optimize parameters despite the lack of an analytic gradient. An important class of such
algorithms is represented by temporal-difference (TD) methods that have been used suc-
cessfully in tuning evaluation-function parameters in Backgammon, Chess, Checkers, and
LOA (Tesauro, 1995; Baxter, Tridgell, and Weaver, 1998; Schaeffer, Hlynka, and Jussila,
2001; Winandset al., 2002). Obviously, any general-purpose gradient-free learning method
can be used for parameter tuning in games. Just to mention twoother examples, Björns-
son and Marsland (2003) successfully applied an algorithm similar to Finite-Difference
Stochastic Approximations (FDSA) to tune the search-extension parameters of CRAFTY.
Kocsis, Szepesv́ari, and Winands (2006) investigated the use of RSPSA (Resilient Simulta-
neous Perturbation Stochastic Approximation), a stochastic hill-climbing algorithm, for the
games of Poker and LOA.

In this chapter we investigate the use of theCross-Entropy Method(CEM) (Rubin-
stein, 1999) for optimizing the parameters in MCTS. CEM is related to the Estimation-
of-Distribution Algorithms (EDAs) (see Muehlenbein, 1997), which constitute a new area
of evolutionary computation. Similar to EDA, CEM maintainsa probability distribution
over possible solutions. From this distribution, solutioncandidates are drawn. By using
the idea ofDistribution Focusing, CEM is turned into a highly effective learning method
(Rubinstein, 1999).

MCTS is a relatively new method and when compared to the traditional αβ (Knuth
and Moore, 1975), it is less understood. Parameter optimization for MCTS is therefore a
challenging task, making it an appropriate test domain for CEM. In the next section we
discuss the search parameters used in the MCTS program MANGO.

6.2 MCTS Parameters in Mango

We noticed that the parameters that have the most effect on the level of play of the program
are the ones of the selection and the simulation strategies.These parameters were explained
in detail in Chapters 3, 4, and 5. In order to make this chapterreadable independently, we
describe the parameters of MANGO for selection (Subsection 6.2.1), simulation (Subsection
6.2.2), and progressive strategies (Subsection 6.2.3).

6.2.1 Selection Parameters

MANGO uses the selection strategy UCT (Kocsis and Szepesvári, 2006), as described in
Chapter 3. UCT works as follows. LetI be the set of nodes reachable from the current node
p. UCT selects a childk of nodep that satisfies Formula 6.1:

k ∈ arg max
i∈I

(

vi + C ×
√

lnnp

ni

)

(6.1)

1The fitness function is associated to a learning task and determines how good a solution is; for instance, in
games it may be the percentage of won games.

6.2 —MCTS Parameters in Mango 55

wherevi is the value of the nodei, ni is the visit count of nodei, andnp is the visit count
of nodep. C is the exploration coefficient, which will be tuned using theCross-Entropy
Method (CEM). Finally, we note that in MANGO the selection strategy is only applied when
a certain numberT of simulations have been performed. This coefficientT will also be
optimized using CEM.

6.2.2 Simulation Parameters

The simulation strategy of MANGO uses (1) a capture-escape value, (2) a pattern value, and
(3) a proximity factor. We discuss them below. LetM be the set of all possible moves
for a given position. Each movej ∈ M is given an urgencyUj . The simulation strategy
selects one move fromM. The probability of each move to be selected ispj =

Uj
∑

k∈M
Uk

.

The urgencyU is the sum of two values: the capture-escape value and the pattern value,
which is multiplied by the proximity factorPmd based on the Manhattan distance. So,
Uj = (Vce + Vp)× Pmd. We explain the three concepts below.

1. Capture-escape value.The valueVce is given to moves capturing stones and/or es-
caping captures. It equals a coefficientPc × the number of captured stones plus a
coefficientPe × the number of stones escaping to be captured. Using a capture-
escape value was first proposed by Bouzy (2005), and later improved successively by
Coulom (2006) and Cazenave (2007a).

2. Pattern value.For each possible3× 3 pattern, the value of the central move has been
learnt by a dedicated algorithm described in Bouzy and Chaslot (2006). The weight
of a pattern is raised to the power of a certain exponentPp. WhenPp is set to a small
value, all patterns will be selected with a nearly-uniform probability. WhenPp is set
to a large value, only the best patterns will be played in the simulation phase.

3. Proximity. Moves within a Manhattan distance of1 from the previous move have
their urgency multiplied by a proximity factorPmd. This idea is adapted from the
sequence-like simulation strategy developed by Gellyet al. (2006).

Summarizing, CEM will optimize the parametersPc, Pe, Pp, andPmd.

6.2.3 Progressive Parameters

In MANGO we use two enhancements,progressive biasandprogressive widening(Chaslotet al.,
2008c; Coulom, 2007), which were discussed in Chapter 5. Both enhancements signifi-
cantly increase MANGO’s playing strength. This happened after tuning the parameters by
trial and error.

Progressive Bias

Progressive bias modifies the UCT formula in such a way that itfavours moves that are
regarded as “good” by some heuristic knowledge. In MANGO, the heuristic knowledge
takes into account capturing, escaping captures, and largepatterns. More details can be
found in Chapter 5. Instead of selecting the node that satisfies Formula 6.1, we select the
nodek that satisfies Formula 6.2.

56 Optimizing Search Parameters using the Cross-Entropy Method

k ∈ arg max
i∈I

(

vi + C ×
√

lnnp

ni

+
PBf ×HPBe

i

ni + 1

)

(6.2)

HereHi represents the heuristic knowledge. The coefficientsPBf and thePBe will again
be optimized using CEM.PBf stands for theprogressive-bias factorand PBe for the
progressive-bias exponent(see Chapter 5).

Progressive Widening

Progressive widening consists of (1) reducing the branching factor artificially when the se-
lection function is applied, and (2) increasing it progressively as more time becomes avail-
able. When the number of games that visit a nodep (np) equals a thresholdT , progressive
widening “prunes” most of the children. Initially, only thekinit children with the highest
heuristic values in the sequence are not pruned. Next, the children of a nodei are progres-
sively added. In MANGO, it happens as follows. Thekth child node is unpruned when the
number of simulations ini surpassesA × Bk−kinit simulations. A, B, andkinit will be
optimized by using CEM.

6.3 The Cross-Entropy Method

In this section we explain the Cross-Entropy Method. First,we give an informal descrip-
tion (Subsection 6.3.1). Subsequently, we clarify the method in detail (Subsection 6.3.2).
Finally, we discuss the normalization of parameters in Subsection 6.3.3.

6.3.1 Informal Description of the Cross-Entropy Method

The Cross-Entropy Method(CEM) (Rubinstein, 1999) is a population-based learning al-
gorithm, where members of the population are sampled from a parameterized probability
distribution. In each generation, the parameters of the distribution are updated so that its
cross-entropy distancefrom a desired distribution is minimized.

CEM aims to find the (approximate) optimal solutionx∗ for a learning task described in
the following form

x
∗ ← arg max

x

f(x). (6.3)

We remark thatx∗ is a vector containing all parameters to be optimized. Moreover, f is
a fitness function (which determines how good a solution is; for instance in games, it is
the percentage of won games), andx ∈ X whereX is some (possibly high-dimensional)
parameter space. Most traditional learning algorithms maintain a single candidate solution
x(t) in each time step. In contrast, CEM maintains adistribution over possible solutions
(similar to evolutionary methods). From that distribution, solution candidates are drawn at
random. This is essentiallyrandom guessing, but by the idea ofDistribution Focusingit is
turned into a highly effective learning method. We explain both concepts below.

6.3 —The Cross-Entropy Method 57

Random Guessing

Random guessing is a quite simple ‘learning’ method: we drawmany samples from a distri-
butiong belonging to a family of parameterized distributionsG (e.g., Gaussian, Binomial,
Bernoulli, etc.), then select the best sample as an estimation of the optimum. In the extreme
case of drawing infinitely many samples, random guessing finds the global optimum.

The efficiency of random guessing depends largely on the distributiong from which the
samples are drawn. For example, ifg is sharply peaked in the neighbourhood of the optimal
solutionx

∗, then a few samples may be sufficient to obtain a good estimate. In contrast,
if the distribution is sharply peaked around a vectorx, which is far away from the optimal
solutionx

∗, a large number of samples is needed to obtain a good estimateof the global
optimum.

Distribution Focusing

We can improve the efficiency of random guessing by the idea ofDistribution Focusing.
After drawing a moderate number of samples from distribution g, we may not be able to give
an acceptable approximation ofx

∗, but we may still obtain abetter sampling distribution.
The basic idea of CEM is that it selects the best samples, and modifiesg so that it becomes
more peaked around the best samples. Distribution Focusingis the central idea of CEM
(Rubinstein, 1999).

Let us consider an example, wherex is anm-dimensional vector andg is a Gaussian
distribution for each coordinate. Assume that we have drawn1000 samples and selected
the 10 best. If theith coordinate of the best-scoring samples has an average ofµi, then we
may hope that theith coordinate ofx∗ is also close toµi, so we may shift the distribution’s
centre towardsµi. In the next subsection, we describe the update rule of CEM ina more
formal way.

6.3.2 Formal Description of the Cross-Entropy Method

In this subsection we will chooseg from a family of parameterized distributions (e.g., Gaus-
sian, Binomial, Bernoulli, etc.), denoted byG, and describe an algorithm that iteratively
improves the parameters of this distributiong.

Let N be the number of samples to be drawn, and let the samplesx
(1), . . . ,x(N) be

drawn independently from distributiong. For eachγ ∈ R, the set of high-valued samples,

L̂γ ← {x(i) | f(x(i)) ≥ γ, 1 ≤ i ≤ N}, (6.4)

provides an approximation to the level set

Lγ ← {x | f(x) ≥ γ}. (6.5)

Let Uγ be the uniform distribution over the level setLγ . For large values ofγ, this distribu-
tion will peak aroundx∗, so it would be suitable for random sampling. This approximation
procedure raises two potential problems, which are discussed below. The first problem is
solved byelite samplesand the second problem by thecross-entropy distance.

58 Optimizing Search Parameters using the Cross-Entropy Method

Elite Samples

The first problem is that for (too) largeγ valuesL̂γ will only contain a few samples (possibly
none), making learning impossible. This problem could be easily solved by choosing lower
values forγ. However, settingγ too low causes a slow convergence to a (sub)optimal
solution. Therefore, the following alternative is used: CEM chooses a ratioρ ∈ [0, 1]
and adjustŝLγ to be the set of the bestρ · N samples. This corresponds to settingγ ←
f(x(ρ·N)), provided that the samples are arranged in decreasing orderof their values. The
bestρ · N samples are called theelite samples. In practice,ρ is typically chosen from the
range[0.01, 0.1].

Cross-Entropy Distance

The second problem is that the distribution of the level setLγ is not a member of any kind
of parameterized distribution family and therefore it cannot be modelled accordingly. This
problem is solved by changing the approximation goal: CEM chooses the distributiong from
the distribution familyG that approximates the empirical distribution overL̂γ best. The best
g is found by minimizing the distance betweenG and the uniform distribution over the
elite samples. The distance measure is thecross-entropy distance(also called the Kullback-
Leibler divergence (Kullback, 1959)). The cross-entropy distance of two distributionsg and
h is defined as

DCE(g||h) =

∫

g(x) ln
g(x)

h(x)
dx. (6.6)

It is known that under mild regularity conditions, CEM converges with probability 1
(Costa, Jones, and Kroese, 2007). Furthermore, for a sufficiently large population, the
global optimum is found with a high probability.

For many parameterized distribution families, the parameters of the minimum cross-
entropy member can be computed easily from simple statistics of the elite samples. Below
we sketch the special case whenx is sampled from a Gaussian distribution. This distribution
is used in the remainder of this chapter.

Let the domain of learning beD = R
m, and each component be drawn from indepen-

dent Gaussian distributions with parametersµj , σ
2
j , 1 ≤ j ≤ m, that is, a distributiong ∈ G

is parameterized with2m parameters.
After drawingN samplesx(1), . . .x(N) and having a threshold valueγ, let E denote

the set of elite samples, i.e.,

E ← {x(i) | f(x(i)) ≥ γ}. (6.7)

With this notation, the distributiong′ with minimum CE-distance from the uniform distri-
bution over the elite set has parameters

µ
′ ← (µ′

1, . . . , µ
′
m), where

µ′
j ←

∑

x(i)∈E x
(i)
j

∑

x(i)∈E 1
=

∑

x(i)∈E x
(i)
j

ρ ·N (6.8)

6.3 —The Cross-Entropy Method 59

and

σ
2′ ← (σ2′

1, . . . , σ
2′
m), where

σ2′
j ←

∑

x(i)∈E(x
(i)
j − µ′

j)
T (x

(i)
j − µ′

j)
∑

x(i)∈E 1

=

∑

x(i)∈E(x
(i)
j − µ′

j)
T (x

(i)
j − µ′

j)

ρ ·N . (6.9)

In other words, the parameters ofg′ are simply the componentwise empirical means
and variances of the elite set. For the derivation of this rule, we refer to De Boeret al.
(2005). Changing the distribution parameters from(µ,σ2) to (µ′,σ2′) may be a too large
step, so moving only a smaller step towards the new values (using step-size parameterα) is
preferable. The resulting algorithm is summarized in Algorithm 6.1.

input: µ0 = (µ0,1, . . . , µ0,m) andσ
2
0 = (σ2

0,1, . . . , σ
2
0,m)

% initial distribution parameters
input: N % population size
input: ρ % selection ratio
input: T % number of iterations
for t from 0 toT − 1, % CE iteration main loop

for i from 1 toN ,
drawx

(i) from Gaussm(µt,σ
2
t) % drawN samples

computefi := f(x(i)) % evaluate them
sortfi-values in descending order
γt+1 := fρ·N % level set threshold
Et+1 := {x(i) | f(x(i)) ≥ γt+1} % get elite samples

µ′
j :=

(
∑

x(i)∈E x
(i)
j

)

/(ρ ·N) % get parameters of nearest distribution

σ2′
j :=

(
∑

x(i)∈E(x
(i)
j − µ′

j)
T (x

(i)
j − µ′

j)
)

/(ρ ·N)

µt+1,j := α · µ′
j + (1− α) · µt,j % update with step sizeα

σ2
t+1,j := α · σ2′

j + (1− α) · σt,j

end loop

Algorithm 6.1: Pseudo-code of the Cross-Entropy Method for Gaussian distributions.

6.3.3 Normalizing Parameters

The value of each parameterxi has to be selected from a range[ai; bi]. Due to the fact that
the domain of a Gaussian distribution is unbounded, we sometimes have to throw away sam-
ples, which have one or more out-of-bound values. Theoretically, this does not cause any
complications: we may assume that samples having out-of-bound values are not discarded,
they are only given a large negative score. With this assumption, we are able to apply the
above algorithm without changes.

Furthermore, we apply two transformations to the parameters. First, the parameters are
transformed to a logarithmic scale. We illustrate the reason by mentioning the progressive

60 Optimizing Search Parameters using the Cross-Entropy Method

bias coefficient as an example. The progressive bias coefficient in MANGO has the following
range[0.1; 100]. Without using a logarithmic scale, half of the values wouldbe chosen in
[0.1; 50] and the other half in[50; 100]. Small values (say between 0.1 and 1), which could
belong to the optimal solution, would be hardly drawn. Usinga logarithmic scale, half of
the values are picked in[0.1; 3.16] and the other half in[3.16; 100]. Second, parameters
that are only allowed to have integer values, are rounded offto the closest integer. Both
transformations are part of the fitness functionf .

6.4 Experiments

In this section we are going to apply CEM to optimize the MCTS parameters of MANGO.
This is done by playing against GNU GO 3.7.10, level0, on a9 × 9 Go board. In each
generation CEM draws100 samples selecting the best10 (the elite) samples.2 A sample
consists of playing a certain number of games for a CEM-generated parameter setting. So,
the fitness function straightforwardly measures the winning rate for a batch of games. To
obtain results rather quickly, MANGO only performs 3,000 simulations per move.

The section is organized as follows. An overview of the parameters together with their
range is given in Subsection 6.4.1. Subsection 6.4.2 and 6.4.3 test the performance of a
fixed and variable batch size, respectively. The best parameter setting against GNU GO is
discussed in Subsection 6.4.4. The setting of MANGO (plus CEM) is compared against the
old MANGO in four self-play experiments in Subsection 6.4.5.

6.4.1 Overview of MCTS Parameters

In total 11 parameters are optimized by CEM, 2 parameters forthe selection, 4 parame-
ters for the simulation, 2 parameters for progressive bias,and 3 parameters for progressive
widening. The parameters under consideration together with their ranges are given in Table
6.1. The table shows that for most parameters the value rangeis quite wide. This is done to
assure that the optimal parameter value can be found. Regarding the initial distribution for
each parameter, the mean is computed as the average of the lower and upper bound. The
standard deviation is computed as half of the difference between the lower and upper bound.
We remark that they are computed in a logarithmic way, since the logarithmic values of the
parameters are used by CEM.

6.4.2 Fixed Batch Size

In the following series of experiments we tested the learning performance of three batch
sizes: 10, 50, and500. The learning curves for the different batch sizes are depicted in
Figure 6.1. The x-axis represents thetotal number of games played by the samples. The
y-axis represents the average winning percentage against GNU GO of all the (100) samples
in a generation.

A batch size of10 games leads to an increase from a winning score of30% to a winning
score of more than50% against GNU GO, after playing a total of 10,000 games. However,
the performance increase stops after 20,000 games, due to uncertainty caused by the small

2The values have been chosen based on previous results (De Boer et al., 2005).

6.4 —Experiments 61

Table 6.1: Parameters with their ranges.

Parameter type Parameter name Range

Selection
UCT exploration coefficientC [0.2; 2]
ThresholdT [2; 20]

Simulation
Capture valuePc [100;20,000]
Escape valuePe [50;2,000]
Pattern exponentPp [0.25; 4]
Proximity factorPmd [10; 500]

Progressive Bias
PB factorPBf [0.1; 100]
PB exponentPBe [0.25; 4]

Progressive Widening
PW initial # nodeskinit [2; 10]
PW factorA [20; 100]
PW baseB [1.01; 1.5]

batch size. Subsequently, a batch size of50 takes more than three times longer to achieve
a score of50%, but converges to a score of a little more than60%. Finally, a batch size
of 500 games is even slower, but the performance increase is steadier and the final score
is therefore even better:63.9%. With these settings, the results were obtained by using a
cluster of 10 quad-core computers running for 3 days.

� �
� �
� �
� �
� �
� �
� �
� �
� �

� � 	 � � � 	 � � � 	 � �

 �

�

��
�
�� �� �
�

�� ��
��� �
��

��
�
� �

� � � � � � � � ! " # $ % & ' (�) � ! % ' * + " ! , ' - .

/ 0 1 2 3 4 5 6 7 8 �
/ 0 1 2 3 4 5 6 7 � �
9 : ; < = > ? @ A � B B

Figure 6.1: Learning curves for different fixed batch sizes.

6.4.3 Variable Batch Size

In the previous subsection we saw that learning with a small batch size quickly leads to a
performance increase, but convergence is to a suboptimal score only. In contrast, learning
with a large batch size is slower but it converges to a higher score. In order to benefit from

62 Optimizing Search Parameters using the Cross-Entropy Method

C D

E F

G D

H I

J K

D I

D D

L F

M D

G G N D H H N D D D N D M

O P
QRS
TQ
UV WV W
TR
SX QS
TSV W
YXZ[

\Z]

^ _ ` a b c d _ e f g h i j k l m _ n ` f j l o p g f q l r s

t u v w x y z { | } I
t u v w x y z { | D I
t u v w x y z { | D I I

~ u � z u � � | t u v w x y z { |

Figure 6.2: Learning curves for different fixed and variable batch sizes.

both approaches (quick increase, higher convergence), we propose to increase progressively
the batch size after each generation. The scheme that we use is the following. At the first
generation, the algorithm uses a batch size of10. Next, at generationn, the algorithm
uses a batch size of10 × 1.15n−1. The value of1.15 has been chosen to ensure that, after
20 generations, the total number of games performed is the sameas the number of games
performed when using a batch size of50. In the next series of experiments we compared the
variable batch-size scheme with the three fixed batch sizes of the previous subsection. The
results are depicted in Figure 6.2. The figure shows that a variable batch size performs a little
bit worse than a fixed batch size of 50 or 500. However, the variable batch size converges
faster than a fixed batch size of 50 or 500. These results suggest that a (sufficiently) large
fixed batch size may be better than a variable batch size.

6.4.4 Comparison of Default and CEM Parameters

As we have seen in Subsection 6.4.2, after20 generations the best parameter score was
obtained by using a fixed batch size of 500. The achieved scoreof 63.9% is an underes-
timation because it represents theaveragescore ofall the samples at the 20th generation.
When updating the parameters by using the parameter means of the elite samples, the score
may improve. This was tested in the following series of experiments. We compared the
manual (default) parameter setting to the CEM parameter setting by playing twice (Default
and CEM) 10,000 games against GNU GO. The parameter settings are reported in Table
6.2 together with their score against GNU GO.

We see that MANGO using the CEM parameters plays better against GNU GO than
the default one (65.0% against61.8%). We would like to remark that the parameters for

6.4 —Experiments 63

Table 6.2: Comparison of Default and CEM parameters.

Parameter Default CEM
UCT exploration coefficientC 0.7 0.43
Expansion thresholdT 10 3
Capture valuePc 5,000 7,509
Escape valuePe 500 911
Pattern exponentPp 1 0.7
Proximity factorPmd 150 85
PB factorPBf 8 5.3
PB exponentPBe 1 1.1
PW initial # nodeskinit 5 3
PW factorA 40 58
PW baseB 1.2 1.12
Winning rate against GNU GO 61.8% 65.0%
Number of games 10,000 10,000
Standard deviation 0.5% 0.5%

the default version were already intensively optimized (but independently of each other).
In Table 6.2, it can be seen that the values obtained by CEM arequite different from the
default ones. However, most parameter modifications do not affect the level of the program
much. We observed that the fitness landscape is quite flat around the optimum. For instance,
modifying the capture value from 5,000 to 7,509 has almost noinfluence on the playing
strength of the program.

6.4.5 Self-Play Experiment

As we saw in the previous subsection, the parameters were optimized by playing with a short
time setting (3,000 simulations per move) against GNU GO. To check whether the param-
eters were not overfitted for a specific opponent or a specific time setting, four self-play
experiments between MANGO with the CEM parameters and MANGO without the CEM
parameters were executed. In the first experiment a short time setting of 3,000 simulations
per move was used. MANGO with the CEM parameters won55.4% of the 10,000 games
played against the default version. In the second experiment a longer time setting of 200,000
simulations per move was used. The CEM version won57.4% of the 1,000 games played.
The third and fourth experiment were performed on two different board sizes, a13×13 and
a19× 19 Go board, respectively. The short time setting of 3,000 simulations per move was
used. The CEM version won61.3% of the games for13 × 13 and66.3% of the games for
19×19. The results suggest that the fine-tuning of parameters by CEM genuinely increased
the playing strength of MANGO (see Table 6.3).

64 Optimizing Search Parameters using the Cross-Entropy Method

Table 6.3: Self-play experiments: CEM vs. Default.

Board size Simulations Winning rate Number Standard
per move of CEM of games deviation

9× 9 200,000 57.4% 1,000 1.6%
9× 9 3,000 55.4% 10,000 0.5%

13× 13 3,000 61.3% 10,000 0.5%
19× 19 3,000 66.3% 10,000 0.5%

6.5 Chapter Conclusions and Future Research

In this chapter we proposed to optimize the search parameters of MCTS by using an evo-
lutionary strategy: the Cross-Entropy Method (CEM). We tested CEM by optimizing 11
parameters of the MCTS program MANGO. Experiments revealed that using a batch size of
500 games gave the best results, although the convergence was slow. To be more precise,
these results were obtained by using a cluster of 10 quad-core computers running for 3 days.
Interestingly, a small (and fast) batch size of 10 still gavereasonable results when compared
to the best one. A variable batch size performed a little bit worse than a fixed batch size of
50 or 500. However, the variable batch size converged fasterthan a fixed batch size of 50
or 500. Subsequently, we showed that MANGO with the CEM parameters performed better
against GNU GO than the MANGO version without. Moreover, in four self-play experi-
ments with different time settings and board sizes, the CEM version of MANGO defeated
each time the default version convincingly. Based on these results, we may conclude that
parameter optimization by CEM genuinely improved the playing strength of MANGO, for
various time settings and board sizes. The nature of our research allows the following gen-
eralization: a hand-tuned MCTS-using game engine may improve its playing strength when
re-tuning the parameters with CEM.

The idea of applying a gradient interpretation of the cross entropy in CEM (Hu and
Hu, 2009) and the more general applicable idea ofadaptive noisy optimization(Rolet and
Teytaud, 2010) may improve the convergence speed for optimizing the parameters of an
MCTS program. A direction of future research would be to testthem in MANGO.

Chapter 7

Parallelizing Monte-Carlo Tree
Search

This chapter is based on the publication:

G.M.J-B. Chaslot, M.H.M. Winands, and H.J. van den Herik (2008a). Paral-
lel Monte-Carlo Tree Search.Proceedings of the Conference on Computers and
Games 2008 (CG 2008)(eds. H.J. van den Herik, X. Xu, Z. Ma, and M.H.M.
Winands.), Vol. 5131 ofLecture Notes in Computer Science (LNCS), pp. 60–71,
Springer-Verlag, Heidelberg, Germany.

In the previous chapters we discussed Monte-Carlo Tree Search (MCTS) in detail. This
chapter answers the fourth research question by investigating how we can parallelize MCTS.
In the past, research in parallelizing search has been mainly performed in the area ofαβ-
based programs running on super-computers. DEEP BLUE (Campbellet al., 2002) and
BRUTUS/HYDRA (Donningeret al., 2004) are famous examples of highly parallelized
chess programs. The recent evolution of hardware has gone into the direction that nowadays
even personal computers contain several cores. To get the most out of the available hard-
ware one has to parallelize AI techniques. Parallelizationhas therefore become an important
topic not only for MCTS, but for any kind of search technique.

Just as forαβ search, it holds for MCTS that the more time is spent for selecting a move,
the better the game play is. Moreover, the law of diminishingreturns,1 which nowadays has
come into effect for manyαβ chess programs, appears to be less of an issue for MCTS Go
programs. Hence, parallelizing MCTS seems to be a promisingway to increase the strength
of a Go program. Pioneering work has been done by Cazenave andJouandeau (2007)
who introduced two parallelization methods: leaf parallelization and root parallelization
(originally called single-run parallelization).

In this chapter we compare them to a third method, that we calltree parallelization. We
compare the three parallelization methods (leaf, root, andtree) by using theGames-Per-

1Experimental studies have demonstrated diminishing return with additional search depth (Junghanns and Scha-
effer, 1997; Heinz, 2001).

66 Parallelizing Monte-Carlo Tree Search

Second (GPS)-speedup measureandstrength-speedup measure. The first measure corre-
sponds to the improvement in speed, and the second measure corresponds to the improve-
ment in playing strength. The three parallelization methods are implemented and tested in
the Go program MANGO, running on a multi-core machine containing 16 cores.

The chapter is organized as follows. In Section 7.1 we explain leaf parallelization and
root parallelization. Next, we introduce tree parallelization in Section 7.2. We empirically
evaluate the three parallelization algorithms in Section 7.3. Finally, Section 7.4 provides the
chapter conclusions and describes future research.

7.1 Parallelization of Monte-Carlo Tree Search

In Chapter 3 we explained that MCTS consists of four main steps: (1) selection, (2) expan-
sion, (3) simulation, and (4) backpropagation. The different parallelization methods can be
distinguished for the MCTS step being parallelized.

In this chapter, we consider the parallelization of MCTS fora symmetric multiprocessor
(SMP) computer. We always use one processor thread for each processor core. One of the
properties of an SMP computer is that any thread can access the central (shared) memory
with the same (generally low) latency. As a consequence, parallel threads should use a mu-
tual exclusion (mutex) mechanism in order to prevent any data corruption, due to simultane-
ous memory access. This could happen when several threads are accessing the MCTS tree
(i.e., in step 1, 2, or 4). However, the simulation step (i.e., step 3) does not require any infor-
mation from the tree. There, simulated games can be played completely independently from
each other. This specific property of MCTS is particularly interesting for the parallelization
process. For instance, it implies that long simulated gamesmake the parallelization easier.
We distinguish three main types of parallelization, depending on which step of the MCTS is
parallelized:leaf parallelization(Subsection 7.1.1),root parallelization(Subsection 7.1.2),
andtree parallelization(elaborated in Section 7.2).

7.1.1 Leaf Parallelization

Leaf parallelization introduced by Cazenave and Jouandeau(2007) is one of the easiest
ways to parallelize MCTS. To formulate it in machine-dependent terms, only one thread
traverses the tree and adds one or more nodes to the tree when aleaf node is reached (step 1
and 2). Next, starting from the leaf node, independent simulated games are played for each
available thread (step 3). When all games are finished, the result of all these simulated games
is propagated backwards through the tree by one single thread (step 4). Leaf parallelization
is depicted in Figure 7.1a.

Leaf parallelization seems interesting because its implementation is easy and does not
require any mutexes. However, two problems appear. First, playing n games usingn dif-
ferent threads takes more time on average than playing one single game using one thread,
since the program needs to wait for the longest simulated game. Second, information is
not shared. For instance, if16 threads are available, and8 (faster) finished games are all
losses; it will be highly probable that most games will lead to a loss. Therefore, playing8
more games is a waste of computational power. To decrease thewaiting time, the program
might stop the simulations that are still running when the results of the finished simula-

7.2 —Tree Parallelization 67

Figure 7.1: (a) Leaf parallelization (b) Root parallelization (c) Tree parallelization with global mutex
and (d) with local mutexes.

tions become available. This strategy would enable the program to traverse the tree more
often, but some threads would be idle. Leaf parallelizationcan be performed inside an SMP
environment, or even on a cluster using MPI (Message PassingInterface) communication.

7.1.2 Root Parallelization

Cazenave and Jouandeau (2007) proposed a second parallelization under the name “single-
run” parallelization. In this chapter we call itroot parallelizationto stress the part of the tree
for which it applies. The method works as follows. It consists of building multiple MCTS
trees in parallel, with one thread per tree. Similar to leaf parallelization, the threads do not
share information with each other. When the available time isspent, all the root children
of the separate MCTS trees are merged with their corresponding clones. For each group of
clones, the scores of all games played are added. The best move is selected based on this
grand total. This parallelization method only requires a minimal amount of communication
between threads, so the parallelization is easy, even on a cluster. Root parallelization is
depicted in Figure 7.1b.

7.2 Tree Parallelization

In this section we introduce a new parallelization method called tree parallelization. This
method uses one shared tree from which several simultaneousgames are played. Each
thread can modify the information contained in the tree; therefore mutexes are used to lock
from time to time certain parts of the tree to prevent data corruption. There are two methods
to improve the performance of tree parallelization: (1) mutex location (Subsection 7.2.1)
and (2) “virtual loss” (Subsection 7.2.1).

68 Parallelizing Monte-Carlo Tree Search

7.2.1 Mutex Location

Based on the location of the mutexes in the tree, we distinguish two mutex location methods:
(1) using aglobal mutexand (2) using severallocal mutexes.

The global-mutex method locks the whole tree in such a way that only onethread can
access the search tree at a time (step 1, 2, and 4). In the meantime several other processes
can play simulated games (step 3) starting fromdifferent leaf nodes. This is a major dif-
ference with leaf parallelization where all simulated games start from thesameleaf node.
The global-mutex method is depicted in Figure 7.1c. The potential speedup given by the
parallelization is bounded by the time that has to be spent inthe tree. Letx be the average
percentage of time spent in the tree by one single thread. Themaximum speedup in terms
of games per second is100/x. In most MCTS programsx is relatively high (say between
25 to 50%), limiting the maximum speedup substantially. This is the main disadvantage of
this method.

The local-mutexes method makes it possible thatseveralthreads can access the search
tree simultaneously. To prevent data corruption because two (or more) threads access the
same node, we lock a node by using a local mutex when it is visited by a thread. At the
moment a thread departs the node, it is unlocked. Thus, this solution requires to frequently
lock and unlock parts of the tree. Hence, fast-access mutexes such as spinlocks have to be
used to increase the maximum speedup. The local-mutexes method is depicted in Figure
7.1d.

7.2.2 Virtual Loss

If several threads start from the root at the same time, it is possible that they traverse the tree
for a large part in the same way. Simulated games might start from leaf nodes, which are in
the neighbourhood of each other. It can even happen that simulated games begin from the
same leaf node. Because a search tree typically has millionsof nodes, it may be redundant
to explore a rather small part of the tree several times. Coulom2 suggests to assign a “virtual
loss” when a node is visited by a thread (i.e., in step 1). Hence, the value of this node will
be decreased. The next thread will only select the same node if its value remains better
than its siblings’ values. The virtual loss is removed when the thread that gave the virtual
loss starts propagating the result of the finished simulatedgame (i.e., in step 4). Owing
to this mechanism, nodes that are clearly better than otherswill still be explored by all
threads, while nodes for which the value is uncertain will not be explored by more than one
thread. Hence, this method keeps a certain balance between exploration and exploitation in
a parallelized MCTS program.

7.3 Experiments

In this section we compare the different parallelization algorithms with each other. Sub-
section 7.3.1 discusses the experimental set-up. We show the performance of leaf paral-
lelization, root parallelization, and tree parallelization in Subsection 7.3.2, 7.3.3, and 7.3.4,

2Personal Communication.

7.3 —Experiments 69

respectively. An overview of the results is given in Subsection 7.3.5. Root parallelization
and tree parallelization are compared under different conditions in Subsection 7.3.6.

7.3.1 Experimental Set-up

The aim of the experiments is to measure the quality of the parallelization process. We use
two measures to evaluate the speedup given by the different parallelization methods. The
first measure is called theGames-Per-Second (GPS) speedup. It is computed by dividing
the number of simulated games per second performed by the multithreaded program, by
the number of games per second played by a single-threaded program. However, the GPS-
speedup measure might be misleading, since it is not always the case that a faster program is
stronger. Therefore, we propose a second measure: calledstrength speedup. It corresponds
to the increase of time needed to achieve the same strength. For instance, a multithreaded
program with a strength speedup of8.5 has the same strength as a single-threaded program,
which consumes8.5 times more time.

In order to design the strength-speedup measurement, we proceed in three steps. First,
we measure the strength of the Go program MANGO on the13 × 13 board against GNU
GO 3.7.10, level 0, for 1 second,2 seconds,4 seconds,8 seconds, and16 seconds. For
each time setting, 2,000 games are played. Figure 7.2 reports the strength of MANGO in
terms of percentage of victory. In Figure 7.3, the increase in strength in term of rating
points as a function of the logarithmic time is shown. This function can be approximated
accurately by linear regression, using a correlation coefficientR2 = 0.9922. Second, the
linear approximation is used to give a theoretical Go ratingfor any amount of time. Let
us assume thatEt is the level of the program in rating points,T is the time in seconds per
move. Linear regression gives usEt(T) = A · log2T +B with A = 56.7 andB = −175.2.
Third, the level of play of the multithreaded program is measured against the same version
of GNU GO, with one second per move. LetEm be the rating of this program against GNU
GO. The strength speedupS is defined by:S ∈ R|Et(S) = Em.

The experiments were performed on the supercomputer Huygens, which has120 nodes,
each with16 cores POWER5 running at1.9 GHz and having64 Gigabytes of memory per
node. Using this hardware the single-threaded version of MANGO was able to perform
3,400 games per second in the initial board position of13 × 13 Go. The time setting used
for the multithreaded program was1 second per move.

7.3.2 Leaf Parallelization

In the first series of experiments we tested the performance of plain leaf parallelization. We
did not use any kind of enhancement to improve this parallelization method as discussed
in Subsection 7.1.1. The results regarding winning percentage, GPS speedup, and strength
speedup for 1, 2, 4, and 16 threads are given in Table 7.1. We observed that the GPS
speedup is quite low. For instance, when running4 simulated games in parallel, finishing
all of them took1.15 times longer than finishing just1 simulated game. For16 threads, it
took two times longer to finish all games compared to finishingjust one. The results show
that the strength speedup obtained is rather low as well (2.4for 16 processors). So, we may
conclude that plain leaf parallelization is not a good way for parallelizing MCTS.

70 Parallelizing Monte-Carlo Tree Search

Figure 7.2: Scalability of the strength of MANGO with time.

Figure 7.3: Scalability of the rating of MANGO vs. GNU GO with time. The curve represents the data
points, and the line is a trend-line for this data.

7.3 —Experiments 71

Table 7.1: Leaf parallelization.

Number of Winning Number Confidence GPS Strength
threads percentage of games interval Speedup speedup

1 26.7% 2000 2.0% 1.0 1.0
2 26.8% 2000 2.0% 1.8 1.2
4 32.0% 1000 2.9% 3.3 1.7

16 36.5% 500 4.3% 7.6 2.4

7.3.3 Root Parallelization

In the second series of experiments we tested the performance of root parallelization. The
results regarding winning percentage, GPS speedup, and strength speedup for 1, 2, 4, and
16 threads are given in Table 7.2.

Table 7.2: Root parallelization.

Number of Winning Number Confidence GPS Strength
threads Percentage of games interval speedup speedup

1 26.7% 2000 2.0% 1 1.0
2 38.0% 2000 2.2% 2 3.0
4 46.8% 2000 2.2% 4 6.5

16 56.5% 2000 2.2% 16 14.9

Table 7.2 indicates that root parallelization is a quite effective way of parallelizing
MCTS. One particularly interesting result is that, for 2 an 4processor threads, the strength
speedup is significantly higher than the number of threads used (i.e., 3.0 and 6.5, respec-
tively). This result implies that, in the program MANGO, it is more efficient to run four
independent MCTS searches of one second than to run one largeMCTS search of four sec-
onds. It might be that the algorithm stays for quite a long time in local optima. This effect
is caused by the UCT coefficient setting. For small UCT coefficients, the UCT algorithm
is able to search more deeply in the tree, but also stays a longer time in local optima. For
high coefficients, the algorithm escapes more easily from the local optima, but the result-
ing search is shallower. The optimal coefficient for a specific position can only be deter-
mined experimentally. The time setting also influences the scalability of the results. For
a short time setting, the algorithm is more likely to spend too much time in local optima.
Hence, we believe that with higher time settings, root parallelization will be less efficient.
In any case, we may conclude that root parallelization is a simple and effective way to par-
allelize MCTS. Experiments executed by Cazenave and Jouandeau (2007), and Winands
and Bj̈ornsson (2010) confirm that root parallelization performs remarkably well for a small
number of threads.

72 Parallelizing Monte-Carlo Tree Search

7.3.4 Tree Parallelization

In the third series of experiments we tested the performanceof tree parallelization. Below,
we have a closer look at themutexes locationandvirtual loss.

Mutexes Location

First, the global-mutex method was tested. The results are given in Table 7.3. These results
show that the strength speedup obtained up to4 threads is satisfactory (i.e., strength speedup
is 3). However, for16 threads, this method is clearly insufficient. The strength speedup
drops from 3 for 4 threads to 2.6 for 16 threads. So, we may conclude that the global-mutex
method should not be used in tree parallelization.

Table 7.3: Tree parallelization with global mutex.

Number of Percentage Number Confidence GPS strength
threads of victory of games interval speedup speedup

1 26.7% 2000 2.0% 1.0 1.0
2 31.3% 2000 2.1% 1.8 1.6
4 37.9% 2000 2.2% 3.2 3.0

16 36.5% 500 4.3% 4.0 2.6

Next, we tested the performance for the local-mutexes method. The results are given
in Table 7.4. Table 7.4 shows that for each number of threads the local-mutexes method
has a better strength speedup than the global-mutex method.Moreover, by using local
mutexes instead of a global mutex the number of games played per second is doubled when
using 16 processor threads. However, the strength speedup for 16 processors threads is just
3.3. Compared to the result of root parallelization (14.9 for 16 threads), this result is quite
disappointing.

Table 7.4: Tree parallelization with local mutexes.

Number of Percentage Number Confidence GPS Strength
threads of victory of games interval speedup speedup

1 26.7% 2000 2.0% 1.0 1.0
2 32.9% 2000 2.1% 1.9 1.9
4 38.4% 2000 2.2% 3.6 3.0

16 39.9% 500 4.3% 8.0 3.3

Using Virtual Loss

Based on the previous results we extended the local-mutexestree parallelization with the
virtual-loss enhancement. The results of using virtual loss are given in Table 7.5.

Table 7.5 shows that the effect of the virtual loss when using4 processor threads is
moderate. If we compare the strength speedup of Table 7.4 we see an increase from 3.0 to

7.4 —Chapter Conclusions and Future Research 73

Table 7.5: Using virtual loss for tree parallelization with local mutexes.

Number of Winning Number Confidence GPS Strength
threads percentage of games interval speedup speedup

1 26.7% 2000 2.0% 1.0 1.0
2 33.8% 2000 2.1% 1.9 2.0
4 40.2% 2000 2.2% 3.6 3.6

16 49.9% 2000 2.2% 9.1 8.5

3.6. But when using16 processor threads, the result is more impressive. Tree parallelization
with virtual loss is able to win49.9% of the games instead of39.9% when it is not used.
The strength speedup of tree parallelization increases from 3.3 (see Table 7.4) to 8.5. Thus,
we may conclude that virtual loss is important for the performance of tree parallelization
when the number of processor threads is high.

7.3.5 Overview

Figure 7.4 depicts the performance of leaf parallelization, root parallelization, and tree par-
allelization with global mutex or with local mutexes. The x-axis represents the logarith-
mic number of threads used. The y-axis represents the winning percentage against GNU
GO. For comparison reasons, we have plotted the performance ofthe default (sequential)
program when given more time instead of more processing power. We see that root paral-
lelization is superior to all other parallelization methods, performing even better than the
sequential program.

7.3.6 Root Parallelization vs. Tree Parallelization Revisited

In the previous subsection we saw that on the13 × 13 board root parallelization outper-
formed all other parallelization algorithms, including tree parallelization. It appears that the
strength of root parallelization lies not only in a more effective way of parallelizing MCTS,
but also in preventing that MCTS stays too long in local optima. The results may be dif-
ferent for other board sizes, time settings, and parameter settings. Therefore, we switched
to a different board size (9× 9) and three different time settings (0.25, 2.5, and 10 seconds
per move). Using 4 processor threads, root and tree parallelization played both 250 games
against the same version of GNU GO for each time setting. The results are given in Table
7.6. For 4 threads, we see that root parallelization and treeparallelization perform equally
well now. Nevertheless, the number of games played and the number of threads used is not
sufficient to give a definite answer which method is better.

7.4 Chapter Conclusions and Future Research

In this chapter we discussed the use of leaf parallelizationand root parallelization for par-
allelizing MCTS. We introduced a new parallelization method, called tree parallelization.

74 Parallelizing Monte-Carlo Tree Search

Figure 7.4: Performance of the different parallelization algorithms.

Table 7.6:9 × 9 results for root and tree parallelization using 4 threads.

Time (s) Winning percentage
Root parallelization Tree parallelization

0.25 60.2% 63.9%
2.50 78.7% 79.3%
10.0 87.2% 89.2%

This method uses one shared tree from which games simultaneously are played. Experi-
ments were performed to assess the performance of the parallelization methods in the Go
program MANGO on the13× 13 board. In order to evaluate the experiments, we proposed
the strength-speedup measure, which corresponds to the time needed to achieve the same
strength. Experimental results indicated that leaf parallelization was the weakest paralleliza-
tion method. The method led to a strength speedup of2.4 for 16 processor threads. The sim-
ple root parallelization turned out to be the best way for parallelizing MCTS. The method
led to a strength speedup of14.9 for 16 processor threads. We saw that tree parallelization
requires two techniques to be effective. First, using localmutexes instead of a global mutex
doubles the number of games played per second. Second, the virtual-loss enhancement in-

7.4 —Chapter Conclusions and Future Research 75

creases both the games-per-second and the strength of the program significantly. By using
these two techniques, we obtained a strength speedup of8.5 for 16 processor threads.

Despite the fact that tree parallelization is still behind root parallelization, it is too early
to conclude that root parallelization is the best way of parallelization. It transpires that
the strength of root parallelization lies not only in a more effective way of parallelizing
MCTS, but also in preventing that MCTS stays too long in localoptima. Root parallelization
repairs (partially) a problem in the UCT formula used by the selection mechanism, namely
handling the issue of balancing exploitation and exploration. For now, we may conclude
that root parallelization leads to excellent results for a specific time setting and specific
program parameters. However, as soon as the selection mechanism is able to handle more
adequately the balance of exploitation and exploration, webelieve that tree parallelization
could become the best choice for parallelizing MCTS.

There are three directions for future research. (1) In this chapter, we limited the tree
parallelization to one SMP-node. For subsequent research,we will focus on tree paral-
lelization and determine under which circumstances tree parallelization outperforms root
parallelization. We believe that the selection strategy, the time setting, and the board size
are important factors. Subsequently, we will test tree parallelization for a cluster with sev-
eral SMP-nodes. Pioneering work on this topic has been performed by Gellyet al. (2008).
(2) The question remains whether it is necessary to use mutexes at all for tree parallelization.
Enzenberger and M̈uller (2010) showed that a mutex-free tree parallelizationoutperformed
a global-mutex tree parallelization for the Go program FUEGO. It would be interesting to
compare mutex-free tree parallelization with local-mutexes tree parallelization. (3) Most of
the experiments in MANGO were performed in13 × 13 Go. More experiments should be
conducted for9× 9 and19× 19 Go.

76 Parallelizing Monte-Carlo Tree Search

Chapter 8

Generating Opening Books using
Meta Monte-Carlo Tree Search

This chapter is based on the publications:

P. Audouard, G.M.J-B. Chaslot, J-B. Hoock, J. Perez, A. Rimmel, and O. Teytaud
(2009). Grid Coevolution for Adaptive Simulations; Application to the Building
of Opening Books in the Game of Go.Applications of Evolutionary Computing,
Vol. 5484 ofLecture Notes in Computer Science (LNCS), pp. 323–332, Springer-
Verlag, Heidelberg, Germany.

G.M.J-B. Chaslot, J-B. Hoock, J. Perez, A. Rimmel, O. Teytaud, andM.H.M.
Winands (2009). Meta Monte-Carlo Tree Search for Automatic Opening Book
Generation. Proceedings of the IJCAI’09 Workshop on General Intelligence in
Game Playing Agents, pp. 7–12, Pasadena, CA, USA.

This chapter answers the fifth research question by investigating how we can generate
automatically an opening book for an MCTS program. MCTS programs need, just likeαβ
programs, an opening book to perform better. An opening bookis a precalculated database
of positions with their values that are likely to occur at thebeginning of a tournament game
(Lincke, 2001). Instead of performing a search, the openingbook decides which move to
be played. Besides saving time, an opening book may select stronger moves, assuming the
time for precalculation is greater than the one used during play.

There have been a number of successful attempts to create opening books forαβ-based
programs (Buro, 1999; Lincke, 2001; Karapetyan and Lorentz, 2006). Because the pro-
posed methods so far are designed for programs based on a positional evaluation function,
it is a challenge to generate an opening book for an MCTS program. In this chapter we
propose to tackle this issue by combining two levels of MCTS.The method is called Meta
Monte-Carlo Tree Search (Meta-MCTS). Instead of using a weak simulation strategy, it uses
an entire MCTS program (MOGO) to play a simulated game. Cazenave (2007b) applied an
online Meta-MCTS composed of two UCT algorithms (Kocsis andSzepesv́ari, 2006) to get
the world record in the one-player game “Morpion Solitaire”. However, his approach has

78 Generating Opening Books using Meta Monte-Carlo Tree Search

only been designed for one-player games. In this chapter we show that Meta-MCTS can be
used for generating an opening book for Go. For this task, we present two Meta-MCTS al-
gorithms: the first one, Quasi Best-First (QBF), favours exploitation; the second one, Beta-
Distribution Sampling (BDS), favours exploration. QBF is an adaptation of greedy selection
algorithms that are used for the regular MCTS. The idea of BDSis that the probability that
a move is selected is proportional to the likelihood that it is the best move (according to its
number of wins and losses). In contrast to UCT, selecting themoves is not deterministic in
BDS. The selection strategy of BDS did not perform well in theMCTS program MANGO

because it was too explorative. In order to evaluate the performance of QBF and BDS, we
test the generated9× 9 Go opening books against computer programs and humans.

Section 8.1 presents previous research on creating openingbooks. Next, in Section 8.2
we discuss Meta-MCTS and propose two algorithms, Quasi Best-First and Beta-Distribution
Sampling. Subsequently, Section 8.3 presents the experimental results. Finally, Section 8.4
concludes this chapter and gives suggestions for future research.

8.1 Automatic Opening Book Generation

An opening book can conceptually be viewed as a tree (Karapetyan and Lorentz, 2006). The
root is the initial game position. Nodes in general correspond to positions that occur later
in the game and record the heuristic evaluation of the position (e.g., win ratio or negamax
score). Edges represent legal moves from one position to thenext. During game play, if the
position is in the book, the selected move is the one with the highest heuristic score.

Lincke (2001) distinguishes betweenpassiveandactive book construction. Passive book
construction involves adding moves to the opening book based on information gathered
from experts, either from their games or from their knowledge of the game. Active con-
struction means constructing the book automatically. For programs usingαβ search, there
are quite a few methods for generating opening books automatically. The most popular one
is based on the concept of the drop-out mechanism (Lincke, 2001; Karapetyan and Lorentz,
2006). It is a best-first search method that applies for a fixedamount of time anαβ search
at a leaf node. Next, it backpropagates the (heuristic) score found at the leaf node in a nega-
max way. For selecting the most-proving node to expand next,the procedure is as follows.
At each internal node, the move is chosen that maximizes the negamax score minus a cer-
tain depth penalty. This depth penalty is proportional to the distance to the leaf node that
backpropagated the negamax score. It enables that a player drops out the book quickly only
when the position is quite advantageous for him.

The application of this mechanism to Go raises a problem: there is no fast and efficient
evaluation function available in Go in order to use anαβ search at the leaf node. It would
be possible to replace theαβ search by MCTS. However, the score of an MCTS search
is quite instable, in contrast to the stable minimax score ofan αβ search equipped with
a sophisticated evaluation function. The unstable nature of the MCTS score could have a
negative effect when constructing the opening book. Using an MCTS variant to generate
an opening book appears to be more natural and elegant. We will discuss this further in
the next section. Finally, we remark that in some games, programs evolve so fast that a
good opening book may become out-dated quickly. Some programs have therefore shifted
to online verification of the book moves (Donninger and Lorenz, 2006).

8.2 —Meta Monte-Carlo Tree Search 79

8.2 Meta Monte-Carlo Tree Search

In this section, we first give the general structure of Meta Monte-Carlo Tree Search (Meta-
MCTS) in Subsection 8.2.1. Next, in Subsection 8.2.2, we describe the Quasi Best-First
algorithm. Finally, we introduce the Beta-Distribution Sampling algorithm in Subsection
8.2.3.

8.2.1 General Idea

An MCTS program uses a weak simulation strategy in order to find the best move. The
idea of Meta-MCTS consists of replacing the weak simulationstrategy at the lower part
of the search by an entire MCTS program (e.g., the Go program MOGO). This program
is thelower levelof the Meta-MCTS. As MCTS programs are computationally expensive,
applying a second level of MCTS is quite time consuming, and cannot be performed in real
time. However, using this strategy off-line for generatingan opening book is possible.

We call the part of the search where the selection strategy decides which move will be
explored further, theupper level. This selection strategy has to be adapted as well. The
standard UCT formula (Kocsis and Szepesvári, 2006) requires an exploration constantC
to be tuned. Tuning this constantC for a two-level MCTS would take quite an amount of
time. Therefore, we propose two alternatives: Quasi Best-First (QBF) and Beta-Distribution
Sampling (BDS). QBF and BDS are described in Subsections 8.2.2 and 8.2.3.

8.2.2 Quasi Best-First

MCTS is often emphasized as a compromise between exploration and exploitation. Nev-
ertheless, many programmers have seen that in the case of deterministic games, the explo-
ration constantC of the UCT formula, when optimized, has to be set close to zero. A small
exploration value is given to every move when using a specificstrategy such as RAVE (Gelly
and Silver, 2007) or Progressive Bias (Chaslotet al., 2008c). In both cases the exploration
term will converge fast to zero. The consequence of using such a small exploration value is
that, after a few games, a move is further analyzed as long as it is the move with the highest
winning rate. Therefore, most MCTS programs can be qualifiedas being greedy. This sub-
section introduces the Quasi Best-First (QBF) algorithm,1 which was originally proposed by
Olivier Teytaud and Arpad Rimmel. QBF usually selects the child with the highest winning
rate. However, if a move’s winning rate drops below a certainthresholdK, QBF will ask
the MCTS program (here MOGO) to choose a move. The pseudo code is given in Algorithm
8.1. Because of executing an entire MCTS program, the (opening-book) tree grows quite
slowly. Instead of adding only the first position encountered that was not already stored (see
Subsection 3.3.2), all the positions are added that are visited visit when playing a simulated
game. Backpropagating, though, stays the same by taking theplain average of the results
(see Subsection 3.3.4).

1QBF was previously called MVBM (see Audouardet al., 2009).

80 Generating Opening Books using Meta Monte-Carlo Tree Search

QBF(K, λ)
while Truedo

for l = 1..λ, do
p = initial position;g = {p}.
while p is not a terminal positiondo

bestScore = K
bestMove = Null
for m in the set of possible moves inp do

score = winRatio(p,m)
if score > bestScore then

bestScore = score
bestMove = m

end if
end for
if bestMove = Null then

bestMove = MoGoChoice(p) // lower level MCTS
end if
p = playMove(p, bestMove)
g = concat(g, p)

end while
addToBook(g, g.result)

end for
end while

Algorithm 8.1: The “Quasi Best-First” (QBF) algorithm.λ is the number of machines available.K is
a constant.g is a game, defined as a sequence of game positions. The function “MoGoChoice” asks
MOGO to choose a move.

8.2.3 Beta-Distribution Sampling

Each node in a game tree has a game-theoretic value. In Go thisvalue is either0 in case
it corresponds to a won position for White, or1 in case it corresponds to a won position
for Black. For MCTS, the convergence to the game-theoretic value is in practice slow. We
observed that the value of a node may get stuck in a local optimum for a long time. From
this observation, we propose a hypothesis of stabilityHs: each positionP has a stationary
average valueµs,P that only depends onP and on the simulation strategys that is used.
For instance, the standard version of MOGO usesµfastPattern,P , wherefastPattern is a
fast simulation strategy that uses3× 3 patterns to make its decision. The upper level of the
Meta-MCTS usesµMoGoGames,P , whereMoGoGames is a simulation strategy that uses
MOGO to make its decision.

Let ws,P be the number of wins of the games made by the simulation strategys, which
went through the positionP . Let ls,P be the number of losses of the games made by
the simulation strategys, which went through the positionP . Under the hypothesisHs,
the probability that the game is a win for the player to move inpositionP , is µs,P . The
number of wins and losses obeys a Bernoulli distribution. The probability distribution of
µs,P knowing ws,P and ls,P is given by the conjugate prior of the Bernoulli distribution
which is a beta distribution. The formula of this distribution is given below.

8.2 —Meta Monte-Carlo Tree Search 81

BDS(λ)
while Truedo

for l = 1..λ, do
p = initial position;g = {p}.
while p is not a terminal positiondo

bestScore = −∞
bestMove = Null
for m in the set of possible moves inp do

score =draw from distribution:
x→ xwMoGoGames,m · (1− x)lMoGoGames,m

if score > bestScore then
bestScore = score
bestMove = m

end if
end for
if bestMove = Null then

bestMove = MoGoChoice(p) // lower level MCTS
end if
if random int modulop.visit count = 0 then

bestMove = MoGoChoice(p) // lower level MCTS
end if
p = playMove(p, bestMove)
g = concat(g, p)

end while
addToBook(g, g.result)

end for
end while

Algorithm 8.2: The “Beta-Distribution Sampling” (BDS) algorithm.λ is the number of machines
available.g is a game, defined as a sequence of game positions. The function “MoGoChoice” asks
MOGO to choose a move.

p(µs,P = x|ws,P , ls,P) = xws,P · (1− x)ls,P (8.1)

We propose the following selection strategy, called Beta-Distribution Sampling (BDS),
which consists of sampling a random numberri from each beta distribution for each child
i.2 The child selected is the one with the bestri. The pseudo code is provided in Algorithm
8.2. According to this selection strategy, each node is selected with the probability that it
is the best node, assuming the hypothesisHs. This concept is similar to the idea of the
selection strategy developed by Chaslotet al. (2006a) and Coulom (2006). The benefit of
BDS is that there are fewer approximations.

2We used the scientific library Blitz++ to draw random numbers according to a beta distribution. Webpage:
http://www.oonumerics.org/blitz/

82 Generating Opening Books using Meta Monte-Carlo Tree Search

8.3 Experiments

In this section, we generate several9 × 9 Go opening books using QBF and BDS. We
evaluate their performances and provide statistics that help understanding the structure of
these books. All these opening books were generated on a grid.3 For all experiments the
symmetry of the board positions was taken into account.

Subsection 8.3.1 tests QBF, and Subsection 8.3.2 reports onexperiments comparing
QBF and BDS.

8.3.1 QBF Experiments

In this subsection we show the performance of QBF for9× 9 Go. First, we perform experi-
ments withK = 0.5 in QBF. Next, we present tests in self-play and with an expertopening
book.

Experiments with K = 0.5

In the first series of experiments we tested the quality of theQBF generated opening book
with a constantK of 0.5. When generating the book the program MOGO used 10 seconds
for choosing a move at the lower level. The generated QBF bookcontained 6,000 games.
For evaluating the quality of the QBF book we matched two versions of MOGO against
each other. One was using the QBF book and the other one did notuse a book at all. Both
programs received 10 seconds thinking time per move and played on an 8-core machine.
Moreover, we also matched the program using the QBF book against one using an “ex-
pert book”. This expert opening book has been specially designed for MOGO by Pierre
Audouard.4 The results are given in Table 8.1.

Table 8.1: Performance of the QBF algorithm with 10 seconds per move andK = 0.5. The confidence
interval is± 1.9%.

No book QBF book QBF vs.
vs. no book vs. no book expert book

White 51.5% 64.3% 64.1%
Black 48.5% 48.0% 46.1%

Average 50.0% 56.2% 55.1%

The first column gives an average success rate of50%, since it is self-play. The second
column shows the results for White (respectively Black) withthe QBF book against no
book. We see that the one using an opening book performs significantly better. In the third
column we see that the QBF book also outperforms the expert book. However, in both cases
we observe that Black does not improve when using the QBF book. This can be explained
as follows: as long as Black has not found a move with success rate> 50%, it always
asks MOGO for a move to play. Therefore, White improves its results by choosing moves
with a high success rate, but not Black. This is why in the remainder of the chapter, we

3The grid was Grid5000, well-suited for large-scale scientific experiments.
4Pierre Audouard was the French Champion in19 × 19 Go and is the current World Champion in9 × 9 Go

for people with a physical handicap.

8.3 —Experiments 83

Table 8.2: Success rate of the QBF book and expert book against the default MOGO using 6 hours for
each side.

QBF Expert
opening book opening book

White 74.5%± 2.3% 62.9%± 3.8%
Black 64.6%± 2.4% 49.7%± 3.8%

Average 69.6%± 2.4% 56.3%± 3.8%

useK = 0.1 for Black. (Table 8.2 QBF shows that this setting also improves the level as
Black).

QBF in Self-Play and against Expert Opening Book

In the following series of experiments we generate a QBF bookby using more time at the
lower level. Instead of using 10 seconds a move we used 12 hours for the complete game
(six hours for each side) on a quad-core machine. The final book contained 3,000 games.

We tested the quality of the QBF book by matching two versionsof MOGO against each
other. One version was using the book, the other was not. The time setting was six hours for
each side. The results are presented in Table 8.2. For comparison reasons we also tested in
a similar way the quality of the expert book. We observe that MOGO performs better when
using the QBF book than when using the expert book. Finally, we see that the QBF book
improves the performance of both colours.

8.3.2 Experiments Comparing QBF and BDS

One could consider to compare QBF and BDS by self-play experiments. However, it should
be remarked that self-play experiments favour the greedy strategies (Lincke, 2001). Hence,
a comparison of QBF and BDS on this basis would be biased. We propose a different way
of comparison. First, we measure the length of staying in thebook against other opponents.
Next, we compare QBF and BDS on the computer Go server CGOS.

Comparing the Length of Staying in the Book against Other Opponents

In the following series of experiments, we compare the QBF book to the BDS book. Figure
8.1 shows the distribution of the length of staying in the opening book when playing 500
games as Black and 500 games as White against the MCTS program FUEGO (Enzenberger
and Müller, 2009). This program is quite similar to MOGO. In the figure we see that as
Black QBF has an average length of 9.6 and BDS has an average length of 9.8. As White,
QBF has an average length of 14.6 whereas BDS has only a lengthof 9.0. As FUEGO is
quite close to MOGO, the opening book generated by QBF is a good predictor; yet itmissed
some moves for Black. We may conclude that QBF builds a book that is asymmetrical in
considering Black and White. Because Black has the disadvantage, its best move value will
go belowK more often than it would be for White.

In the following series of experiments, we played against GNU GO. This program is
not MCTS-based and therefore much more different from MOGO than FUEGO. Figure 8.2

84 Generating Opening Books using Meta Monte-Carlo Tree Search

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25

Expert (black): 6.07585

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25

Expert (black): 6.07585

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25

QBF (black): 9.58199

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25

QBF (white): 9.58199

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25

BDS (black): 9.82934

 0
 0.1
 0.2

 0.3
 0.4
 0.5
 0.6

 0.7
 0.8
 0.9

 0 5 10 15 20 25

BDS (white): 9.82934

 0
 0.1
 0.2

 0.3
 0.4
 0.5
 0.6

 0.7
 0.8
 0.9

 0 5 10 15 20 25

Expert (white): 4.5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25

Expert (white): 4.5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25

QBF (white): 14.6443

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25

QBF (white): 14.6443

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25

BDS (white): 8.95908

Figure 8.1: Number of book moves when playing against FUEGO with the opening book. The x-axis
is the depth and y-axis is the density of probability. First row: playing as Black. Second row: playing
as White. First column: expert opening book. Second column: QBF opening book of 12,000 games.
Third column: BDS opening book of 12,000 games. Each label containsthe average length of the
book. All histograms are estimated on500 games.

shows the distribution of the length of staying in the opening book when playing 500 games
as Black and 500 games as White. It is clear that as White BDS stayed longer in the opening
book than QBF, 4.7 and 3.7 moves, respectively. However, as Black BDS stayed shorter in
the opening book than QBF,5.3 and7.8, respectively.

Next, we compared the number of moves staying in the opening book against human
experts. All the responses that are found in the classic9× 9 Go book5 are also found in the
QBF book.

An in-depth analysis showed unfortunately that when QBF wasgenerating the book it
soon selected alwayse5 as the first move. All other opening moves in the initial position
were only explored a small number of times. This was a clear drawback of the QBF ap-
proach when playing against human players. This happened inthe games played against
Prof. Tsai (6 Dan).

Another example of the performance of QBF can be found in the official match against
Motoki Noguchi (7 Dan) (Teytaud, 2008). The result of the match was 2–2. This was the
first time that a computer program was able to draw against a player of that calibre. These
games were played with the QBF and expert book, containing 6,000 games. In the games

5See http://senseis.xmp.net/?9x9Openings

8.3 —Experiments 85

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14

Expert (black): 4.83034

 0
 0.05

 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0 2 4 6 8 10 12 14

Expert (black): 4.83034

 0
 0.05

 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0 2 4 6 8 10 12 14

QBF (black): 7.77046

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14

QBF (black): 7.77046

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14

BDS (black): 5.27287

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12 14

BDS (black): 5.27287

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12 14

Expert (white): 2.94311

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14

Expert (white): 2.94311

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14

QBF (white): 3.72355

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14

QBF (white): 3.72355

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14

BDS (white): 4.70588

Figure 8.2: Number of book moves when playing against GNU GO with the opening book. The
x-axis is the depth and y-axis is the density of probability. First row: playingas Black. Second row:
playing as White. First column: expert opening book. Second column: QBF opening book of 12,000
games. Third column: BDS opening book of 12,000 games. Each labelcontains the average length of
the book. All histograms are estimated on500 games.

won by MOGO, the opening book gave an advantage to MOGO and continuously increased
its advantage. In both lost games, Motoki Noguchi went out ofthe opening book quite
fast. However, the book later developed by BDS would have contained more moves. The
sequencee5-c4-g3-e3-e4-d4was explored only22 times by the QBF opening book, but424
times by the BDS. In the other game lost by MOGO, the sequencee5-e7-g6-f3has been
explored13 times by QBF and18 times by BDS.

This shows that, despite the quite long sequence in the opening book against computers,
QBF does not explore enough promising moves for playing against humans. BDS may
appear to be a better alternative against human play.

Comparison on the Go Server CGOS

In the final series of experiments, we used the Go server CGOS in order to assess QBF and
BDS. In order to perform a fair comparison between the algorithms, we created two dedi-
cated opening books. The first was created by QBF and the second by BDS. Each opening
book was created by using32 cores in parallel, 1 second per move, with a total of 5,120
games. We launched four versions of MOGO on CGOS: (1) without a book, (2) with a QBF
book, (3) with a BDS book, and (4) with a combined book (QBF+BDS). Subsequently, we

86 Generating Opening Books using Meta Monte-Carlo Tree Search

compared the ELO rating that they obtained by playing against a pool of different oppo-
nents. In order to make the comparison as fair as possible, welaunched the four versions
simultaneously on the server. Moreover, to avoid that the different MOGO versions played
too many games against each other, we only launched them whenthere were enough other
programs available. The different versions of MoGo played around70% of their games
against non-MOGO versions. The results can be found in Table 8.3. This experiment shows
that QBF and BDS give a significant improvement on the versionwithout opening book,
and that merging directly the two opening books is counter-productive. The two books were
not built to be combined with each other, so negative side effects may appear.

Table 8.3: Results on the computer Go server CGOS.

QBF BDS CGOS rating Games
No No 2216 371
Yes No 2256 374
No Yes 2268 375
Yes Yes 2237 373

8.4 Chapter Conclusions and Future Research

In this chapter we proposed Meta Monte-Carlo Tree Search (Meta-MCTS) for generating an
opening book. Meta-MCTS is similar to MCTS, but the weak simulation strategy is replaced
by a standard MCTS program. We described two algorithms for Meta-MCTS: Quasi Best-
First (QBF) and Beta-Distribution Sampling (BDS). The firstalgorithm, called QBF, is an
adaptation of greedy algorithms that are used for the regular MCTS. QBF favours therefore
exploitation. During actual game play we noticed that despite the good performance of the
opening book, some branches were not explored sufficiently.The second algorithm, called
BDS, favours exploration. In contrast to UCT, BDS does not need an exploration coefficient
to be tuned. This approach created an opening book which is shallower and wider. The
BDS book had the drawback to be less deep against computers, but the advantage was that
it stayed longer in the book in official games against humans.Experiments on the Go server
CGOS revealed that both QBF and BDS were able to improve MOGO. In both cases the
improvement was more or less similar. Based on the results, we may conclude that QBF and
BDS are able to generate an opening book which improves the performance of an MCTS
program.

As future research, we want to test other ways for generatingan opening book. In
particular, transferring classic techniques derived fromαβ search to MCTS constitutes an
interesting challenge.

Chapter 9

Conclusions and Future Research

In this chapter, we present the conclusions of the thesis. InSection 9.1 we answer the
five research questions and provide an answer to the problem statement. In Section 9.2 we
provide promising directions for future research.

9.1 Answers to the Problem Statement and Research Ques-
tions

In this thesis we investigated a Monte-Carlo technique called Monte-Carlo Tree Search
(MCTS). It is a best-first search method guided by the resultsof Monte-Carlo simulations.
MCTS, described in Chapter 3, can be divided in four major steps: selection, expansion,
simulation, andbackpropagation. The following problem statement guided our research.

Problem statement: How can we enhance Monte-Carlo Tree Search in such a
way that programs improve their performance in a given domain?

Enhancing the strategies for each MCTS step improves the playing strength of the pro-
gram. We discussed that the two most crucial steps were simulation and selection (Chapter
3). This led to the first and second research question, which deal with improving the sim-
ulation strategy by using knowledge (Chapter 4), and improving the selection strategy with
knowledge (Chapter 5), respectively. For the third research question we investigated how we
can optimize the parameters in MCTS (Chapter 6). The fourth research question aimed at
investigating how well MCTS can be parallelized on modern multi-core computers (Chapter
7). Finally, the fifth research question addressed the application of MCTS to build an open-
ing book automatically (Chapter 8). The answers to the five research questions are given
below.

Research question 1: How can we use knowledge to improve the Monte-Carlo
simulations in MCTS?

We focused on enhancing the simulation strategy by introducingknowledgein the Monte-
Carlo simulations. The knowledge transforms the plain random simulations into more so-
phisticatedpseudo-randomsimulations.

88 Conclusions and Future Research

We discussed two different simulation strategies that apply knowledge: urgency-based
and sequence-like simulation. Based on the experience gathered from implementing them
in INDIGO and MOGO, respectively, we make the following three recommendations. (1)
Avoiding big mistakes is more important than playing good moves. (2) Simulation strate-
gies using sequence-like simulations or patterns in urgency-based simulations are efficient
because they simplify the situation. (3) The simulation strategy should not become too
stochastic, nor too deterministic, thus balancing exploration and exploitation.

Moreover, we developed the first efficient method for learning automatically the knowl-
edge of the simulation strategy. We proposed to usemove evaluationsas a fitness function
instead of learning from the results of simulated games. A coefficient was introduced that
enables to balance the amount of exploration and exploitation. The algorithm was adapted
from the tracking algorithm of Sutton and Barto (1998). Learning was performed for9× 9
Go, where we showed that the Go program INDIGO with the learnt patterns performed better
than the program with expert patterns.

Research question 2: How can we use knowledge to arrive at a proper balance
between exploration and exploitation in the selection stepof MCTS?

A selection strategy such as UCT controls the balance between exploitation and explo-
ration. On the one hand, the task often consists of selectingthe move that leads to the
best results so far (exploitation). On the other hand, the less promising moves still must
be tried, due to the uncertainty of the evaluation (exploration). We saw that the MCTS
program MANGO equipped with UCT increasingly performed worse for larger board sizes
when playing against GNU GO.

We introduced therefore two progressive strategies. Thesestrategies use (1) the infor-
mation available for the selection strategy, and (2) some (possibly time-expensive) domain
knowledge that is introduced by an expert, or learnt automatically. The two progressive
strategies we developed areprogressive biasandprogressive widening. Progressive bias
uses knowledge to direct the search. Progressive widening first reduces the branching fac-
tor, and then increases it gradually. This scheme is also dependent on knowledge.

The progressive strategies were first tested in MANGO. The incorporated knowledge was
based on urgency-based simulation. From the experiments with MANGO, we observed the
following. (1) Progressive strategies, which focus initially on a small number of moves, are
better in handling large branching factors. They increasedthe level of play of the program
MANGO significantly, for every board size. (2) On the19 × 19 board, the combination of
both strategies is much stronger than each strategy appliedseparately. The fact that progres-
sive bias and progressive widening work better in combination with each other shows that
they have complementary roles in MCTS. This is especially the case when the board size
and therefore branching factor grows. (3) Progressive strategies can use relatively expensive
domain knowledge with hardly any speed reduction.

The progressive strategies were successfully implementedin other game programs and
domains. Progressive bias increased the playing strength of M OGO and MC-LOA, while
progressive widening did the same for CRAZY STONE. Moreover, in the case of MOGO,
progressive bias was successfully combined with RAVE (Gelly and Silver, 2007), a similar
technique for improving the balance between exploitation and exploration. These results
give rise to the main conclusion that the proposed progressive strategies are essential en-
hancements for an MCTS program.

9.1 —Answers to the Problem Statement and Research Questions 89

Research question 3: How can we optimize the parameters of an MCTS pro-
gram?

In our attempt to answer this research question, we proposedto optimize the search pa-
rameters of MCTS by using an evolutionary strategy: the Cross-Entropy Method (CEM).
The fitness function for CEM measures the winning rate for a batch of games. The perfor-
mance of CEM with a fixed and variable batch size was tested by tuning 11 parameters in
MANGO. Experiments revealed that using a batch size of 500 games gave the best results,
although the convergence was slow. To be more precise, theseresults were obtained by us-
ing a cluster of 10 quad-core computers running for 3 days. Interestingly, a small (and fast)
batch size of 10 still gave a reasonable result when comparedto the best one. A variable
batch size performed a little bit worse than a fixed batch sizeof 50 or 500. However, the
variable batch size converged faster than a fixed batch size of 50 or 500. Subsequently, we
showed that MANGO with the CEM parameters performed better against GNU GO than
the MANGO version without. Moreover, in four self-play experiments with different time
settings and board sizes, the CEM version of MANGO defeated the default version convinc-
ingly each time. Based on these results, we may conclude thata hand-tuned MCTS-using
game engine may improve its playing strength when re-tuningthe parameters with CEM.

Research question 4: How can we parallelize MCTS?

We first showed that MANGO’s playing strength (measured in ELO points) increased
nearly linearly as a function of the logarithmic time. Each doubling of time increased the
strength by 50 ELO points against GNU GO. We aimed at obtaining similar results by in-
creasing the number of cores, for a fixed time setting. We tested three different paralleliza-
tion methods: (1) leaf parallelization, (2) root parallelization, and (3) tree parallelization.

Experimental results indicated that leaf parallelizationwas the weakest parallelization
method. Root parallelization led to surprisingly good results, with a nearly linear speed-up
for 16 cores. These unexpected results have been confirmed inother programs.We saw that
tree parallelization requires two techniques to be effective. First, using local mutexes instead
of a global mutex doubled the number of games played per second. Second, the virtual-loss
enhancement increased both the speed and the strength of theprogram significantly. The
two conclusions are as follows: (1) Root parallelization and tree parallelization perform sig-
nificantly better than leaf parallelization. (2) For a multi-core machine, parallelized MCTS
has almost a linear speed-up up to 16 cores and scales therefore quite well.

Research question 5: How can we automatically generate opening books by
using MCTS?

We proposed to use Meta Monte-Carlo Tree Search (Meta-MCTS)for generating an
opening book. Meta-MCTS is similar to MCTS, but the simulation strategy is replaced by
a standard MCTS program. We described two algorithms for Meta-MCTS: Quasi Best-
First (QBF) and Beta-Distribution Sampling (BDS). The firstalgorithm, QBF (proposed
by Teytaud and Rimmel), is an adaptation of greedy algorithms that are used for the reg-
ular MCTS. During actual game play we noticed that despite the good performance of the
opening book, some branches were not explored sufficiently.QBF therefore favours ex-
ploitation. We developed the second algorithm, that we called Beta-Distribution Sampling

90 Conclusions and Future Research

(BDS), which favours exploration. The algorithm draws a move according to its likelihood
of being the best move (considering the number of wins and losses). This approach created
an opening book which is shallower but wider. Experiments onthe9× 9 Go server CGOS
revealed that both QBF and BDS were able to improve the Go program MOGO. In both
cases the improvement in playing strength was approximately 50 ELO points. Based on the
results, we may conclude that QBF and BDS are able to generatean opening book which
improves the performance of an MCTS program.

After answering all five research questions, we are now able to provide an answer to the
problem statement, which is repeated here for convenience.

Problem statement: How can we enhance Monte-Carlo Tree Search in such a
way that programs improve their performance in a given domain?

The thesis proposed an answer to the problem statement, which may essentially be sum-
marized in five points. First, we improved the knowledge in the simulation strategy by
learning from move evaluations. Second, we enhanced the selection strategy by proposing
progressive strategies for incorporating knowledge. Third, we applied CEM to optimize
the search parameters of an MCTS program in such a way that itsplaying strength was
increased. Fourth, we showed that MCTS benefits substantially from parallelization. Fifth,
we designed Meta-MCTS to generate an opening book that improves the performance of an
MCTS program.

9.2 Future Research

From our observations, we believe that there are several research directions for the following
topics.

Simulation

In the thesis we developed offline simulation strategies. Promising work for construct-
ing online a simulation strategy include the ideas of Finnsson and Bj̈ornsson (2008) and
Sharmaet al. (2008). An interesting direction for future research is to combine offline and
online strategies with each other.

Selection

An idea is to modify during game play (online) the progressive strategy according to the
results of the Monte-Carlo simulations. For instance, in a situation where the initialk moves
are losing, increasing the speed of widening to find the best move seems promising. As
another example, if a move that receives always a high heuristic scoreHi is rarely the best
move in numerous nodes, then the heuristic score of this movecould be adjusted online.

9.2 —Future Research 91

Parallelization

A research direction is to combine root parallelization with tree parallelization. Several
n×m configurations exist, wheren is the number of independent trees (root parallelization)
andm the number of threads running on each tree (tree parallelization). Furthermore, the
independent MCTS trees can be synchronized regularly. It isan open question to find the
optimal setup for a certain number of processor threads.

Opening-Book Construction

We observed that the automatically generated opening book sometimes plays weak moves,
due to the fact that for specific situations, MCTS evaluates aposition incorrectly (e.g., scor-
ing a position too high). Even if these positions are rare, the generated opening book often
tries to reach these positions. A solution to this problem isto let human experts detect the
errors and correct the value of a position. Hence, we believethat the best opening book will
not be only computer-generated, neither human-generated,but will come from the interac-
tion of humans and computers.

Other Domains

In this thesis, the analysis of MCTS was restricted to games with perfect information.
Adapting MCTS to games with imperfect information is an interesting challenge. Only
a small amount of research has been performed so far (e.g., the game of Kriegspiel; Cian-
carini and Favini, 2009). Different choices have to be made to model imperfect information.

Understanding the Nature of MCTS

Noteworthy results were achieved of enhancing MCTS in Go andother games. Yet, the
underlying principles of MCTS are not fully understood. In his seminal work Beal (1999)
investigated the nature of minimax. Minimax algorithms andenhancements have benefitted
greatly from this fundamental analysis. We expect that a similar phenomenon will hold for
MCTS algorithms as well. Therefore, we propose to investigate the nature of MCTS in
order to understand better its fundamentals.

92 Conclusions and Future Research

References

Abramson, B. (1990). Expected-Outcome: A General Model of Static Evaluation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 2, pp. 182–
193. [16, 17]

Allis, L.V. (1994). Searching for Solutions in Games and Artificial Intelligence. Ph.D.
thesis, Rijksuniversiteit Limburg, Maastricht, The Netherlands. [9, 10]

Allis, L.V., Meulen, M. van der, and Herik, H.J. van den (1994). Proof-Number Search.
Artificial Intelligence, Vol. 66, No. 1, pp. 91–123. [2, 10]

Audibert, J.Y. and Bubeck, S. (2009). Minimax Policies for Adversarial and Stochastic
Bandits. Proceedings of the 22nd Annual Conference on Learning Theory (COLT
2009), Omnipress. [21]

Audouard, P., Chaslot, G.M.J-B., Hoock, J-B., Perez, J., Rimmel, A., and Teytaud, O.
(2009). Grid Coevolution for Adaptive Simulations: Application to the Building of
Opening Books in the Game of Go.Applications of Evolutionary Computing, Vol.
5484 ofLNCS, pp. 323–332, Springer-Verlag, Berlin Heidelberg, Germany. [77, 79]

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-Time Analysis of the Multi-Armed
Bandit Problem.Machine Learning, Vol. 47, Nos. 2–3, pp. 235–256. [1, 3, 16, 21]

Barto, A.G., Bradtke, S.J., and Singh, S.P. (1995). Learning to Act using Real-Time Dy-
namic Programming.Artificial Intelligence, Vol. 72, Nos. 1–2, pp. 81–138. [27]

Baxter, J., Tridgell, A., and Weaver, L. (1998). Experiments in Parameter Learning Using
Temporal Differences.ICCA Journal, Vol. 21, No. 2, pp. 84–99. [54]

Beal, D.F. (1999).The Nature of Minimax Search. Ph.D. thesis, Universiteit Maastricht,
Maastricht, The Netherlands. [91]

Beal, D.F. and Smith, M.C. (2000). Temporal Difference Learning for Heuristic Search and
Game Playing.Information Sciences, Vol. 122, No. 1, pp. 3–21. [53]

Berger, F. (2007). BGBlitz Wins Backgammon Tournament.ICGA Journal, Vol. 30, No. 2,
p. 114. [28]

Berliner, H.J. (1979). The B*-Tree Search Algorithm: A Best-First Proof Procedure.Arti-
ficial Intelligence, Vol. 12, No. 1, pp. 23–40. [2]

94 References

Billings, D. and Bj̈ornsson, Y. (2003). Search and Knowledge in Lines of Action.Advances
in Computer Games 10: Many Games, Many Challenges(eds. H.J. van den Herik, H.
Iida, and E.A. Heinz), pp. 231–248. Kluwer Academic Publishers, Boston, MA, USA.
[50]

Billings, D., Pẽna, L., Schaeffer, J., and Szafron, D. (1999). Using Probabilistic Knowledge
and Simulation to Play Poker.AAAI/IAAI , pp. 697–703. [16]

Björnsson, Y. and Marsland, T.A. (2003). Learning Extension Parameters in Game-Tree
Search.Information Sciences, Vol. 154, No. 3, pp. 95–118. [54]

Boer, P-T. de, Kroese, D.P., Mannor, S., and Rubinstein, R.Y. (2005). A Tutorial on the
Cross-Entropy Method.Annals of Operations Research, Vol. 134, No. 1, pp. 19–67.
[59, 60]

Boon, M. (1990). A Pattern Matcher for Goliath.Computer Go, Vol. 13, pp. 13–23. [13]

Bouzy, B. (2003). Mathematical Morphology Applied to Computer Go. International Jour-
nal of Pattern Recognition and Artificial Intelligence, Vol. 17, No. 2, pp. 257–268.
[10]

Bouzy, B. (2005). Associating Domain-Dependent Knowledgeand Monte Carlo Ap-
proaches within a Go Program.Information Sciences, Heuristic Search and Computer
Game Playing IV, Vol. 175, No. 4, pp. 247–257. [3, 22, 31, 32, 33, 34, 38, 55]

Bouzy, B. (2006). Associating Shallow and Selective GlobalTree Search with Monte Carlo
for 9×9 Go. Computers and Games (CG 2004)(eds. H.J. van den Herik, Y. Björnsson,
and N. Netanyahu), Vol. 3846 ofLNCS, pp. 67–80, Springer-Verlag, Berlin Heidel-
berg, Germany. [13, 17]

Bouzy, B. and Cazenave, T. (2001). Computer Go: An AI Oriented Survey. Artificial
Intelligence, Vol. 132, No. 1, pp. 39–103. [4]

Bouzy, B. and Chaslot, G.M.J-B. (2005). Bayesian Generation and Integration of K-
Nearest-Neighbor Patterns for 19×19 Go. IEEE 2005 Symposium on Computational
Intelligence in Games(eds. G. Kendall and S. Lucas), pp. 176–181, Essex, UK. [44,
48]

Bouzy, B. and Chaslot, G. (2006). Monte-Carlo Go Reinforcement Learning Experiments.
IEEE 2006 Symposium on Computational Intelligence in Games, pp. 187–194, Reno,
USA.[23, 31, 34, 35, 38, 55]

Bouzy, B. and Helmstetter, B. (2003). Monte-Carlo Go Developments.Advances in Com-
puter Games 10: Many Games, Many Challenges(eds. H.J. van den Herik, H. Iida,
and E.A. Heinz), pp. 159–174, Kluwer Academic Publishers, Boston, MA, USA. [3,
13, 16, 17]

Brügmann, B. (1993). Monte Carlo Go. Technical report, Physics Department, Syracuse
University, Syracuse, NY, USA.[3, 13, 16, 51]

References 95

Bubeck, S., Munos, R., Stoltz, G., and Szepesvári, C. (2008). Online Optimization in
X-Armed Bandits. Advances in Neural Information Processing Systems 21 (NIPS
2008)(eds. D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou), pp. 201–208. [21]

Buro, M. (1999). Toward Opening Book Learning.ICCA Journal, Vol. 22, No. 2, pp.
98–102. [4, 77]

Campbell, M., Hoane, A.J., and Hsu, F-H. (2002). Deep Blue.Artificial Intelligence,
Vol. 134, Nos. 1–2, pp. 57–83. [4, 65]

Cazenave, T. (2001). Generation of Patterns with External Conditions for the Game of
Go. Advances in Computer Games 9(eds. H.J. van den Herik and B. Monien), pp.
275–293, Universiteit Maastricht, Maastricht, The Netherlands. [11]

Cazenave, T. (2007a). Playing the Right Atari.ICGA Journal, Vol. 30, No. 1, pp. 35–42.
[55]

Cazenave, T. (2007b). Reflexive Monte-Carlo Search.Proceedings of the Computer Games
Workshop 2007 (CGW 2007)(eds. H.J. van den Herik, J.W.H.M. Uiterwijk, M.H.M.
Winands, and M.P.D. Schadd), pp. 165–173, Universiteit Maastricht, Maastricht, The
Netherlands. [77]

Cazenave, T. (2008). Multi-Player Go.Computers and Games (CG 2008)(eds. H.J. van den
Herik, X. Xu, Z. Ma, and M.H.M. Winands), Vol. 5131 ofLNCS, pp. 50–51, Springer-
Verlag, Berlin Heidelberg, Germany. [27]

Cazenave, T. (2009). Nested Monte-Carlo Search.International Joint Conference On Arti-
ficial Intelligence (IJCAI 2009), pp. 456–461. [26]

Cazenave, T. and Jouandeau, N. (2007). On the Parallelization of UCT. Proceedings of the
Computer Games Workshop 2007 (CGW 2007)(eds. H.J. van den Herik, J.W.H.M.
Uiterwijk, M.H.M. Winands, and M.P.D. Schadd), pp. 93–101,Universiteit Maastricht,
Maastricht, The Netherlands. [65, 66, 67, 71]

Chaslot, G.M.J-B., Saito, J-T., Bouzy, B., Uiterwijk, J.W.H.M., and Herik, H.J. van den
(2006a). Monte-Carlo Strategies for Computer Go.Proceedings of the 18th BeNeLux
Conference on Artificial Intelligence(eds. P.-Y. Schobbens, W. Vanhoof, and G.
Schwanen), pp. 83–90. [1, 3, 13, 15, 16, 18, 20, 23, 24, 42, 81]

Chaslot, G., Jong, S. de, Saito, J-T., and Uiterwijk, J.W.H.M. (2006b). Monte-Carlo Tree
Search in Production Management Problems.Proceedings of the 18th BeNeLux Con-
ference on Artificial Intelligence(eds. P.-Y. Schobbens, W. Vanhoof, and G. Schwa-
nen), pp. 91–98. [15, 26, 105]

Chaslot, G.M.J-B., Winands, M.H.M., Uiterwijk, J.W.H.M.,Herik, H.J. van den, and
Bouzy, B. (2007). Progressive Strategies for Monte-Carlo Tree Search.Proceedings
of the 10th Joint Conference on Information Sciences (JCIS 2007)(ed. P. Wang et al.),
pp. 655–661, World Scientific Publishing Co. Pte. Ltd. [32, 41, 43]

96 References

Chaslot, G.M.J-B., Winands, M.H.M., and Herik, H.J. van den (2008a). Parallel Monte-
Carlo Tree Search.Computers and Games (CG 2008)(eds. H.J. van den Herik, X. Xu,
Z. Ma, and M.H.M. Winands), Vol. 5131 ofLNCS, pp. 60–71, Springer-Verlag, Berlin
Heidelberg, Germany. [65]

Chaslot, G.M.J-B., Winands, M.H.M, Szita, I., and Herik, H.J. van den (2008b). Cross-
Entropy for Monte-Carlo Tree Search.ICGA Journal, Vol. 31, No. 3, pp. 145–156.
[53]

Chaslot, G.M.J-B., Winands, M.H.M., Uiterwijk, J.W.H.M., Herik, H.J. van den, and
Bouzy, B. (2008c). Progressive Strategies for Monte-CarloTree Search.New Mathe-
matics and Natural Computation, Vol. 4, No. 3, pp. 343–357. [15, 41, 55, 79]

Chaslot, G., Bakkes, S., Szita, I., and Spronck, P. (2008d).Monte-Carlo Tree Search:
A New Framework for Game AI.Proceedings of the Fourth Artificial Intelligence
and Interactive Digital Entertainment Conference(eds. M. Mateas and C. Darken), pp.
216–217, AAAI Press, Menlo Park, CA, USA.[15]

Chaslot, G.M.J-B., Hoock, J-B., Perez, J., Rimmel, A., Teytaud, O., and Winands, M.H.M.
(2009). Meta Monte-Carlo Tree Search for Automatic OpeningBook Generation.Pro-
ceedings of the IJCAI’09 Workshop on General Intelligence in Game Playing Agents,
pp. 7–12, Pasadena, CA, USA.[77]

Chaslot, G.M.J-B., Fiter, C., Hoock, J-B., Rimmel, A., and Teytaud, O. (2010). Adding
Expert Knowledge and Exploration in Monte-Carlo Tree Search. Advances in Com-
puter Games (ACG 2009)(eds. H.J. van den Herik and P.H.M. Spronck), Vol. 6048 of
LNCS, pp. 1–13, Springer-Verlag, Berlin Heidelberg, Germany. [31, 33, 38, 41, 49]

Chen, Z. (2002). Semi-Empirical Quantitative Theory of Go Part I: Estimation of the Influ-
ence of a Wall.ICGA Journal, Vol. 25, No. 4, pp. 211–218. [11]

Chen, K-H. (2003). GNU Go Wins19× 19 Go Tournament.ICGA Journal, Vol. 26, No. 4,
pp. 261–262. [16]

Chen, K-H. and Zhang, P. (2008). Monte-Carlo Go with Knowledge-Guided Simulations.
ICGA Journal, Vol. 31, No. 2, pp. 67–76. [3, 31]

Ciancarini, P. and Favini, G.P. (2009). Monte Carlo Tree Search Techniques in the Game of
Kriegspiel.International Joint Conference On Artificial Intelligence(IJCAI 2009), pp.
474–479. [91]

Coquelin, P-A. and Munos, R. (2007). Bandit Algorithms for Tree Search.23rd Conference
on Uncertainty in Artificial Intelligence (UAI 2007), Vancouver, Canada. [21, 42]

Costa, A., Jones, O.D., and Kroese, D.P. (2007). Convergence Properties of the Cross-
Entropy Method for Discrete Optimization.Operations Research Letters, Vol. 35,
No. 5, pp. 573–580. [58]

Coulom, R. (2006). Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. Computers and Games (CG 2006)(eds. H.J. van den Herik, P. Ciancarini,
and H.H.L.M. Donkers), Vol. 4630 ofLNCS, pp. 72–83, Springer-Verlag, Heidelberg,
Germany. [1, 3, 13, 15, 18, 20, 22, 23, 24, 25, 26, 42, 55, 81]

References 97

Coulom, R. (2007). Computing “Elo Ratings” of Move Patternsin the Game of Go.ICGA
Journal, Vol. 30, No. 4, pp. 199–208. [32, 35, 36, 37, 38, 43, 45, 48, 55]

Dailey, Don (2006). Computer Go Mailing List. http://computer-go.org/pipermail/
computer-go/. [22]

Davies, J. (1977).The Rules and Elements of Go. Ishi Press, Tokyo, Japan. [8]

Donkers, H.H.L.M. (2003).Nosce Hostem: Searching with Opponent Models. Ph.D. thesis,
Universiteit Maastricht, Maastricht, The Netherlands. [2]

Donninger, C. and Lorenz, U. (2006). Innovative Opening-Book Handling. Advances in
Computer Games Conference (ACG 2005)(eds. H.J. van den Herik, S-C. Hsu, T-S.
Hsu, and H.H.M.L. Donkers), Vol. 4250 ofLNCS, pp. 1–10, Springer-Verlag, Berlin
Heidelberg, Germany. [78]

Donninger, C., Kure, A., and Lorenz, U. (2004). Parallel Brutus: The First Distributed,
FPGA Accelerated Chess Program.18th International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2004), IEEE Computer Society. [4, 65]

Enzenberger, M. and M̈uller, M. (2009). Fuego - An Open-Source Framework for Board
Games and Go Engine Based on Monte-Carlo Tree Search. Technical Report TR 09,
No. 08, Department of Computing Science, University of Alberta, Edmonton, Alberta,
Canada. [26, 83]

Enzenberger, M. and M̈uller, M. (2010). A Lock-free Multithreaded Monte-Carlo Tree
Search Algorithm. Advances in Computer Games (ACG 2009)(eds. H.J. van den
Herik and P.H.M. Spronck), Vol. 6048 ofLNCS, pp. 14–20, Springer-Verlag, Berlin
Heidelberg, Germany. [75]

Fairbairn, J. (2000). Go Census.Mind Sports Zine. http://www.msoworld.com/mindzine/
news/orient/go/special/census.html. [8]

Finnsson, H. and Björnsson, Y. (2008). Simulation-Based Approach to General Game Play-
ing. Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
AAAI 2008 (eds. D. Fox and C.P. Gomes), pp. 259–264, AAAI Press. [28, 37, 39, 90]

Fotland, D. (2004). Go Intellect Wins19 × 19 Go Tournament.ICGA Journal, Vol. 27,
No. 3, pp. 169–170. [16]

Fotland, D. (2009). The Many Faces of Go, Version 12. http://www.smart-games.com/
manyfaces.html. [26]

Friedenbach, K.J. (1980).Abstraction Hierarchies: A Model of Perception and Cognition
in the Game of Go. Ph.D. thesis, University of California, Santa Cruz, CA, USA.[13]

Gelly, S. (2007). Une Contributionà l’Apprentissage par Renforcement; Application au
Computer-Go. Ph.D. thesis, Université Paris-Sud, Paris, France. [26]

98 References

Gelly, S. and Silver, D. (2007). Combining Online and OfflineKnowledge in UCT.ICML
’07: Proceedings of the 24th International Conference on Machine Learning(ed. Z.
Ghahramani), pp. 273–280, ACM Press, New York, NY, USA. [23,33, 34, 38, 50, 51,
79, 88]

Gelly, S. and Wang, Y. (2006). Exploration Exploitation in Go: UCT for Monte-Carlo Go.
Neural Information Processing Systems Conference On-lineTrading of Exploration
and Exploitation Workshop. [20, 21]

Gelly, S. and Wang, Y. (2007). MoGo Wins19×19 Go Tournament.ICGA Journal, Vol. 30,
No. 2, pp. 111–112. [109]

Gelly, S., Wang, Y., Munos, R., and Teytaud, O. (2006). Modifications of UCT with Patterns
in Monte-Carlo Go. Technical Report 6062, INRIA. [3, 22, 26,31, 33, 38, 55]

Gelly, S., Hoock, J-B., Rimmel, A., Teytaud, O., and Kalemkarian, Y. (2008). The
Parallelization of Monte-Carlo Planning - Parallelization of MC-Planning. Proceed-
ings of the Fifth International Conference on Informatics in Control, Automation and
Robotics, Intelligent Control Systems and Optimization (ICINCO 2008)(eds. J. Filipe,
J. Andrade-Cetto, and J-L. Ferrier), pp. 244–249, INSTICC Press. [75]

Ginsberg, M.L. (1999). GIB: Steps Toward an Expert-Level Bridge-Playing Program.Pro-
ceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJ-
CAI 99 (ed. T. Dean), pp. 584–593, Morgan Kaufmann. [16]

Hart, P.E., Nielson, N.J., and Raphael, B. (1968). A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths.IEEE Transactions on Systems Science and Cyber-
natics, Vol. SSC-4, No. 2, pp. 100–107. [2, 16]

Heinz, E.A. (2001). Self-play, Deep Search and DiminishingReturns. ICGA Journal,
Vol. 24, No. 2, pp. 75–79. [65]

Helmstetter, B. (2007).Analyses de D́ependances et Ḿethodes de Monte-Carlo dans les
Jeux de Ŕeflexion. Ph.D. thesis, Université de Paris 8, Paris, France. In French. [16]

Herik, H.J. van den and Winands, M.H.M. (2008). Proof-Number Search and Its Variants.
Oppositional Concepts in Computational Intelligence(eds. H.R. Tizhoosh and M. Ven-
tresca), Vol. 155 ofStudies in Computational Intelligence, pp. 91–118. Springer. [2]

Huang, S-C., Coulom, R., and Lin, S-S. (2010). Monte-Carlo Simulation Balancing in
Practice.Computers and Games (CG 2010). To appear. [37, 39]

Hunter, D.R. (2004). MM Algorithms for Generalized Bradley-Terry Models.The Annals
of Statistics, Vol. 32, No. 1, pp. 384–406. [36]

Hu, J. and Hu, P. (2009). On the Performance of the Cross-Entropy Method.Proceedings
of the 2009 Winter Simulation Conference, pp. 459–468. [64]

Jong, S. de, Roos, N., and Sprinkhuizen-Kuyper, I. (2005). Evolutionary Planning Heuris-
tics in Production Management.Proceedings of the Seventeenth Belgium-Netherlands
Conference on Artificial Intelligence (BNAIC 2005)(eds. K. Verbeeck, K. Tuyls, A.
Nowé, B. Manderick, and B. Kuijpers), pp. 96–103. [105, 106]

References 99

Junghanns, A. and Schaeffer, J. (1997). Search versus Knowledge in Game-Playing Pro-
grams Revisited.IJCAI-97, pp. 692–697. [65]

Karapetyan, A. and Lorentz, R.J. (2006). Generating an Opening Book for Amazons.
Computers and Games (CG 2004)(eds. H.J. van den Herik, Y. Björnsson, and N.
Netanyahu), Vol. 3846 ofLNCS, pp. 13–24, Springer-Verlag, Berlin Heidelberg, Ger-
many. [4, 77, 78]

Kishimoto, A. and M̈uller, M. (2003). DF-PN in Go: An Application to the One-Eye
Problem.Advances in Computer Games 10: Many Games, Many Challenges(eds. H.J.
van den Herik, H. Iida, and E.A. Heinz), pp. 125–141, Kluwer Academic Publishers,
Boston, MA, USA.[10]

Kloetzer, J. (2010).Monte-Carlo Techniques: Applications to the Game of the Amazons.
Ph.D. thesis, Japan Advanced Institute of Science and Technology, Kanazawa, Japan.
[26]

Kloetzer, J., Iida, H., and Bouzy, B. (2009). Playing Amazons Endgames.ICGA Journal,
Vol. 32, No. 3, pp. 140–148. [26]

Knuth, D.E. and Moore, R.W. (1975). An Analysis of Alpha-Beta Pruning. Artificial
Intelligence, Vol. 6, No. 4, pp. 293–326. [2, 10, 16, 23, 54]

Kocsis, L. and Szepesvári, C. (2006). Bandit Based Monte-Carlo Planning.Machine Learn-
ing: ECML 2006(eds. J. F̈urnkranz, T. Scheffer, and M. Spiliopoulou), Vol. 4212 of
Lecture Notes in Artificial Intelligence, pp. 282–293. [1, 3, 13, 15, 18, 20, 21, 23, 27,
42, 54, 77, 79]

Kocsis, L., Szepesv́ari, C., and Winands, M.H.M. (2006). RSPSA: Enhanced Parameter
Optimisation in Games.Advances in Computer Games Conference (ACG 2005)(eds.
H.J. van den Herik, S-C. Hsu, T-S. Hsu, and H.H.M.L. Donkers), Vol. 4250 ofLNCS,
pp. 39–56, Springer-Verlag, Berlin Heidelberg, Germany. [54]

Korschelt, O. (1880). Das Japanisch-Chinesische Spiel Go,ein Konkurrent des Schach.
Mitteilungen der Deutschen Gesellschaft für Natur und V̈olkerkunde, Vol. 3. In Ger-
man. [7]

Kullback, S. (1959).Information Theory and Statistics. John Wiley and Sons, NY, USA.
[58]

Lasker, E. (1934).Go and Go-Moku: Oriental Board Games. Dover Publications, Inc., New
York, NY, USA.[7]

Lee, C-S., Wang, M-H., Chaslot, G.M.J-B., Hoock, J-B., Rimmel, A., Teytaud, O., Tsai,
S-R., Hsu, S-C., and Hong, T-P. (2009). The Computational Intelligence of MoGo Re-
vealed in Taiwan’s Computer Go Tournaments.IEEE Transactions on Computational
Intelligence and AI in Games, Vol. 1, No. 1, pp. 73–89. [26]

Lichtenstein, D. and Sipser, M. (1980). Go is Polynomial-Space Hard.Journal of the ACM,
Vol. 27, No. 2, pp. 393–401. [9]

100 References

Lincke, T. (2001). Strategies for the Automatic Construction of Opening Books.Computers
and Games (CG 2000)(eds. T.A. Marsland and I. Frank), Vol. 2063 ofLNCS, pp. 74–
86, Springer Verlag, Berlin Heidelberg, Germany. [4, 77, 78, 83]

Lishout, F. van, Chaslot, G.M.J-B., and Uiterwijk, J.W.H.M. (2007). Monte-Carlo Tree
Search in Backgammon.Proceedings of the Computer Games Workshop 2007 (CGW
2007) (eds. H.J. van den Herik, J.W.H.M. Uiterwijk, M.H.M. Winands, and M.P.D.
Schadd), pp. 175–184, Universiteit Maastricht, Maastricht, The Netherlands. [27]

Liu, J.S. (2002).Monte Carlo Strategies in Scientific Computing. Springer, New York, NY,
USA.[1]

Lorentz, R.J. (2008). Amazons Discover Monte-Carlo.Computers and Games (CG
2008) (eds. H.J. van den Herik, X. Xu, Z. Ma, and M.H.M. Winands), Vol. 5131 of
LNCS, pp. 13–24, Springer-Verlag, Berlin Heidelberg, Germany.[26, 27]

Luckhardt, C. and Irani, K. (1986). An Algorithmic Solutionof N-Person Games.Proceed-
ings AAAI-86, pp. 158–162. [27]

Marsland, T.A. (1983). Relative Efficiency of Alpha-Beta Implementations.Proceedings of
the 8th International Joint Conference on Artificial Intelligence(IJCAI-83), pp. 763–
766, Karlsruhe, Germany. [2]

Marsland, T.A. and Bj̈ornsson, Y. (2001). Variable-Depth Search.Advances in Computer
Games 9(eds. H.J. van den Herik and B. Monien), pp. 9–24. Universiteit Maastricht,
Maastricht, The Netherlands. [2]

Masayoshi, S. (2005).A Journey in Search of the Origins of Go. Yutopian Enterprises. [7]

Mesmay, F., Rimmel, A., Voronenko, Y., and Püschel, M. (2009). Bandit-Based Optimiza-
tion on Graphs with Application to Library Performance Tuning. Proceedings of the
26th Annual International Conference on Machine Learning, pp. 729–736, ACM, New
York, NY, USA.[26]

Metropolis, N. (1985). Monte Carlo: In the Beginning and Some Great Expectations.Pro-
ceedings of Joint Los Alamos National Laboratory-Commissariat à l’Energie Atom-
ique Meeting, Vol. 240 ofLecture Notes in Physics, pp. 62–70. Springer, New York,
NY, USA.[1]

Muehlenbein, H. (1997). The Equation for Response to Selection and its Use for Prediction.
Evolutionary Computation, Vol. 5, No. 3, pp. 303–346. [4, 34, 53, 54]

Müller, M. (1997). Playing it Safe: Recognizing Secure Territories in Computer Go by
Using Static Rules and Search.Game Programming Workshop in Japan, Vol. 97, pp.
80–86. [10]

Müller, M. (2002). Computer Go.Artificial Intelligence, Vol. 134, Nos. 1–2, pp. 145–179.
[4, 9, 26]

Neumann, J. von (1928). Zur Theorie der Gesellschaftsspiele. Mathematische Annalen,
Vol. 100, No. 1, pp. 295–320. [2]

References 101

Peret, L. and Garcia, F. (2004). On-line Search for Solving Markov Decision Processes via
Heuristic Sampling.ECAI 2004 (eds. R.L. de Mantaras and L. Saitta), Vol. 16, pp.
530–534, IOS Press. [27]

Persson, M. (2006). Lazy Evaluation in Monte Carlo/Alpha Beta Search for Viking4.
Computer Go mailing list. http://computer-go.org/pipermail/computer-go/2006-July/
005709.html. [17]

Plaat, A. (1996). Research Re: Search & Re-search. Ph.D. thesis, Tinbergen Institute
and Department of Computer Science, Erasmus University Rotterdam, Rotterdam, The
Netherlands. [2]

Ralaivola, L., Wu, L., and Baldi, P. (2005). SVM and Pattern-Enriched Common Fate
Graphs for the Game of Go.ESANN 2005, pp. 485–490. [11]

Reinefeld, A. (1983). An Improvement to the Scout Search Tree Algorithm. ICCA Journal,
Vol. 6, No. 4, pp. 4–14. [2]

Remus, H. (1962). Simulation of a Learning Machine for Playing Go.Proceedings of IFIP
Congress 1962, pp. 428–432, North-Holland Publishing Company. [12]

Richards, N., Moriarty, D.E., and Miikkulainen, R. (1998).Evolving Neural Networks to
Play Go.Applied Intelligence, Vol. 8, No. 1, pp. 85–96. [13]

Rimmel, A. (2009). Improvements and Evaluation of the Monte-Carlo Tree SearchAlgo-
rithm. Ph.D. thesis, Université Paris-Sud, Paris, France. [31, 33]

Robbins, H. (1952). Some Aspects of the Sequential Design ofExperiments.Bulletin of
the American Mathematical Society, Vol. 58, No. 5, pp. 527–535. [20]

Rolet, P. and Teytaud, O. (2010). Adaptive Noisy Optimization. Applications of Evolution-
ary Computation, Vol. 6024 ofLNCS, pp. 592–601, Springer-Verlag, Berlin Heidel-
berg, Germany. [64]

Rubinstein, R.Y. (1999). The Cross-Entropy Method for Combinatorial and Continuous
Optimization.Methodology and Computing in Applied Probability, Vol. 1, No. 2, pp.
127–190. [4, 53, 54, 56, 57]

Russell, S.J. and Norvig, P. (1995).Artificial Intelligence: A Modern Approach. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.[1, 2]

Ryder, J. (1971).Heuristic Analysis of Large Trees as Generated in the Game ofGo. Ph.D.
thesis, Department of Computer Science, Stanford University, Stanford, CA, USA.
[12]

Samuel, A.L. (1959). Some Studies in Machine Learning Usingthe Game of Checkers.
IBM Journal of Research and Development, Vol. 3, No. 3, pp. 211–229. [12]

Schadd, M.P.D., Winands, M.H.M., Herik, H.J. van den, Chaslot, G.M.J-B., and Uiterwijk,
J.W.H.M. (2008a). Single-Player Monte-Carlo Tree Search.Computers and Games
(CG 2008)(eds. H.J. van den Herik, X. Xu, Z. Ma, and M.H.M. Winands), Vol. 5131
of LNCS, pp. 1–12, Springer-Verlag, Berlin Heidelberg, Germany. [26]

102 References

Schadd, M.P.D., Winands, M.H.M., Uiterwijk, J.W.H.M., Herik, H.J. van den, and Bergsma,
M.H.J. (2008b). Best Play in Fanorona Leads to Draw.New Mathematics and Natural
Computation, Vol. 4, No. 3, pp. 369–384. [3]

Schaeffer, J., Hlynka, M., and Jussila, V. (2001). TemporalDifference Learning Applied to a
High-Performance Game-Playing Program.International Joint Conference on Artifical
Intelligence (IJCAI), pp. 529–534. [54]

Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., M̈uller, M., Lake, R., Lu, P., and
Sutphen, S. (2007). Checkers is Solved.Science, Vol. 317, No. 5844, pp. 1518–1522.
[2]

Schraudolph, N.N., Dayan, P., and Sejnowski, T.J. (1993). Temporal Difference Learning
of Position Evaluation in the Game of Go.Advances in Neural Information Processing
Systems, Vol. 6, pp. 8–17. [13]

Shannon, C.E. (1950). Programming a Computer for Playing Chess.Philosophical Maga-
zine, Vol. 41, No. 7, pp. 256–275. [12]

Sharma, S., Kobti, Z., and Goodwin, S. (2008). Knowledge Generation for Improving
Simulations in UCT for General Game Playing.AI 2008: Advances in Artificial Intel-
ligence, Vol. 5360 ofLNCS, pp. 49–55, Springer-Verlag, Berlin Heidelberg, Germany.
[37, 90]

Sheppard, B. (2002).Towards Perfect Play of Scrabble. Ph.D. thesis, Universiteit Maas-
tricht, Maastricht, The Netherlands. [16]

Silver, D. (2008). Re: Computer-Go Digest, Vol 43, Issue 8. http://computer-go.org/
pipermail/computer-go/2008-February/014093.html. [51]

Silver, D. and Tesauro, G. (2009). Monte-Carlo Simulation Balancing.Proceedings of the
26th Annual International Conference on Machine Learning, pp. 945–952, ACM. [37,
39]

Silver, D., Sutton, R.S., and M̈uller, M. (2007). Reinforcement Learning of Local Shape in
the Game of Go.20th International Joint Conference on Artificial Intelligence (IJCAI
2007), pp. 1053–1058. [50]

Smith, S.J.J., Nau, D.S., and Throop, T.A. (1998). ComputerBridge - A Big Win for AI
Planning.AI Magazine, Vol. 19, No. 2, pp. 93–106. [16]

Stockman, G.C. (1979). A Minimax Algorithm better than Alpha-Beta? Artificial Intelli-
gence, Vol. 12, No. 2, pp. 179–196. [2]

Sturtevant, N.R. (2008). An Analysis of UCT in Multi-PlayerGames. ICGA Journal,
Vol. 31, No. 4, pp. 195–208. [27]

Sturtevant, N.R. and Korf, R.E. (2000). On Pruning Techniques for Multi-Player Games.
Proceedings of the Seventeenth National Conference on Artificial Intelligence and
Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 201–208,
AAAI Press / The MIT Press. [27]

References 103

Sutton, R.S. (1988). Learning to Predict by the Methods of Temporal Differences.Machine
learning, Vol. 3, No. 1, pp. 9–44. [34]

Sutton, R.S. and Barto, A.G. (1998).Reinforcement Learning: An Introduction. MIT Press
Cambridge, MA, USA.[35, 53, 88]

Szita, I., Chaslot, G.M.J-B., and Spronck, P. (2010). Monte-Carlo Tree Search in Settlers
of Catan. Advances in Computer Games (ACG 2009)(eds. H.J. van den Herik and
P.H.M. Spronck), Vol. 6048 ofLNCS, pp. 21–32, Springer-Verlag, Berlin Heidelberg,
Germany. [15, 28]

Tesauro, G. (1995). Temporal Difference Learning and TD-Gammon. Communications of
the ACM, Vol. 38, No. 3, pp. 58–68. [54]

Tesauro, G. and Galperin, G.R. (1997). On-line Policy Improvement using Monte-Carlo
Search.Advances in Neural Information Processing Systems, Vol. 9, pp. 1068–1074.
[16, 17]

Teytaud, O. (2008). Computers vs Humans in Games: MoGo vs. Motoki Noguchi in9× 9
Go. http://www.lri.fr/∼teytaud/crClermont/cr.pdf. [84]

Thomsen, T. (2000). Lambda-Search in Game Trees with Application to Go.ICGA Journal,
Vol. 23, No. 4, pp. 203–217. [2]

Tromp, J. and Farnebäck, G. (2007). Combinatorics of Go.Proceedings of the 5th Inter-
national Conference on Computer and Games(eds. H.J. van den Herik, P. Ciancarini,
and H.H.L.M. Donkers), Vol. 4630 ofLNCS, pp. 72–83, Springer-Verlag, Heidelberg,
Germany. [9]

Tsuruoka, Y., Yokoyama, D., and Chikayama, T. (2002). Game-Tree Search Algorithm
Based on Realization Probability.ICGA Journal, Vol. 25, No. 3, pp. 132–144. [2, 49]

Turing, A.M. (1953). Digital Computers Applied to Games.Faster Than Thought(ed. B.V.
Bowden), pp. 286–297, Pitman Publishing, London, England.[12]

Watson, B. (1989).The Tso Chuan: Selections from China’s Oldest Narrative History.
Columbia University Press, New York, NY, USA.[7]

Wedd, N. (2010). Human-Computer Go Challenges. http://www.computer-go.info/h-c/
index.html. [109]

Werf, E.C.D. van der (2004).AI Techniques for the Game of Go. Ph.D. thesis, Maastricht
University, Maastricht, The Netherlands. [8, 10]

Werf, E. van der (2007). Steenvreter Wins9 × 9 Go Tournament.ICGA Journal, Vol. 30,
No. 2, pp. 109–110. [26]

Werf, E.C.D. van der and Winands, M.H.M. (2009). Solving Go for Rectangular Boards.
ICGA Journal, Vol. 32, No. 2, pp. 77–88. [8, 9]

Werf, E.C.D. van der, Herik, H.J. van den, and Uiterwijk, J.W.H.M. (2003). Solving Go on
Small Boards.ICGA Journal, Vol. 26, No. 2, pp. 92–107. [9]

104 References

Werf, E.C.D. van der, Winands, M.H.M., Herik, H.J. van den, and Uiterwijk, J.W.H.M.
(2005). Learning to Predict Life and Death from Go Game Records. Information
Sciences, Vol. 175, No. 4, pp. 258–272. [10]

Werf, E.C.D. van der, Herik, H.J. van den, and Uiterwijk, J.W.H.M. (2006). Learning to
Estimate Potential Territory in the Game of Go.Computers and Games (CG 2004)(eds.
H.J. van den Herik, Y. Bj̈ornsson, and N. Netanyahu), Vol. 3846 ofLNCS, pp. 81–96.
Springer-Verlag, Berlin Heidelberg, Germany. [10, 45]

Wilcox, B. (1988). Computer Go.Computer Games(ed. D.N.L. Levy), Vol. 2, pp. 94–135.
Springer, New York, NY, USA.[12]

Winands, M.H.M. (2004).Informed Search in Complex Games. Ph.D. thesis, Universiteit
Maastricht, Maastricht, The Netherlands. [50]

Winands, M.H.M. and Bj̈ornsson, Y. (2008). Enhanced Realization Probability Search.New
Mathematics and Natural Computation, Vol. 4, No. 3, pp. 329–342. [49, 50]

Winands, M.H.M. and Bj̈ornsson, Y. (2010). Evaluation Function Based Monte-Carlo
LOA. Advances in Computer Games (ACG 2009)(eds. H.J. van den Herik and P.H.M.
Spronck), Vol. 6048 ofLNCS, pp. 33–44, Springer-Verlag, Berlin Heidelberg, Ger-
many. [27, 49, 71]

Winands, M.H.M., Kocsis, L., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2002). Tem-
poral Difference Learning and the Neural MoveMap Heuristicin the Game of Lines of
Action. GAME-ON 2002, pp. 99–103, SCS Europe Bvba, Ghent, Belgium.[54]

Winands, M.H.M., Bj̈ornsson, Y., and Saito, J-T. (2008). Monte-Carlo Tree Search Solver.
Computers and Games (CG 2008)(eds. H.J. van den Herik, X. Xu, Z. Ma, and M.H.M.
Winands), Vol. 5131 ofLNCS, pp. 25–36, Springer-Verlag, Berlin Heidelberg, Ger-
many. [25, 26, 49]

Wolf, T. (1994). The Program GoTools and its Computer-Generated Tsume Go Database.
Proceedings of the Game Programming Workshop in Japan’94, pp. 84–96, Hakone,
Japan. [10]

Zobrist, A.L. (1969). A Model of Visual Organization for theGame of Go.Proceedings
of the May 14-16, 1969, Spring Joint Computer Conference, pp. 103–112, ACM, New
York, NY, USA.[11]

Zobrist, A.L. (1970). Feature Extraction and Representation for Pattern Recognition and
the Game of Go. Ph.D. thesis, University of Wisconsin, Madison, WI, USA. [11, 12]

Appendix A

Production Management
Problems

This appendix is based on the following publication:

G.M.J-B. Chaslot, S. de Jong, J-T. Saito, and J.W.H.M. Uiterwijk (2006b). Monte-
Carlo Tree Search in Production Management Problems.Proceedings of the 18th
BeNeLux Conference on Artificial Intelligence(eds. P-Y. Schobbens, W. Van-
hoof, and G. Schwanen), pp. 91–98.

In this appendix, we present Production Management Problems (PMPs) as an auxiliary
test environment for MCTS. We give a brief overview of PMPs inSection A.1. Next, a
formal description is given in Section A.2. We focus on a simplified version of PMPs as
proposed by De Jong, Roos, and Sprinkhuizen-Kuyper (2005).It ignores non-determinism
and earning additional money that can be utilized to cover the costs of actions.

A.1 Overview

Production Management Problems (PMPs) can be defined as planning problems which re-
quire parameter optimization over time and can be addressedby the selection of actions with
side effects. They contain the following four elements. First, there is a fixed set ofproducts
– thesizeof the problem is equivalent to the size of this set. Second, there is a fixed set
of production actions, which are used to convert certain products into other products or to
obtain one or more products. These actions may require time and money. Some actions may
also produce money (selling actions). Third, there areconstraintssuch as a limited amount
of time or money available. Fourth, the goal for a problem solver is to produce certain prod-
ucts, denoted as thegoal products, as much as possible. This can be achieved by developing
an optimal sequence (or plan) of actions, given the available products, actions, constraints
and money.

106 Appendix A: Production Management Problems

A.2 Formalization

PMPs can be described in a formal way as follows:

• The set of productsP = {p1, . . . , pn}. Thesizeof the problem,|P |, is denoted byn.

• The possibly infinite set of possible problem states is denoted byS. The problem
statest ∈ S at a certain moment in time (starting withs0) is a tuple(mst

, qst
(p)).

Here,mst
is the money available in this state, and the functionqst

: P → N defines
the quantity available for each product in the statest.

• G ⊂ P is the set of goal products. The reward per goal product,r : P → R
+, is

specified byp 6∈ G → r(p) = 0 andp ∈ G → r(p) > 0. The total reward in a state
st can be calculated using the functionR(st) =

∑

p∈G r(p) · qst
(p). The goal of the

problem is to reach a statest in whichR(st) is optimal.

• A denotes the set of actions that enable the transition from one state to another. Here,
c : A → N

+ denotes the cost of actiona. Due to this cost, we will have less money
to spend in every subsequent state, and thus we ensure that any problem will have
a finite number of possible actions.t : A → N denotes the time actiona takes to
complete, assuming discrete time steps. The functionin : A→ P(P × N

+) denotes
the number of products required to executea; out : A → P(P × N

+) denotes the
number of products produced bya if it is executed.

Additional constraints. De Jonget al. (2005) introduced five constraints in addition to
this formalism. These PMPs possess some convenient properties such as a strict ordering
of actions and guaranteed solvability. However, PMPs that adhere to these additional con-
straints are not essentially easier than PMPs that do not adhere to them. The five additional
constraints are given below.

1. Every action requires at most two products and produces one or two products. Every
product is produced by exactly two actions.

2. Costs and durations of actions can be selected from a limited domain for alla ∈ A:
c(a) ∈ {1, 2, 3, 4} and t(a) = 1. We limit the domain for the coefficientsx for
required and produced productsp by implying the condition(p, x) ∈ in(a)∨(p, x) ∈
out(a)→ x ∈ {1, 2, 3, 4}.

3. Cycles in the product chain are prevented: An action cannot produce products with a
lower index than the highest index of its required products,plus one.

4. We defineG = {pn} andr(pn) = 1.

5. The problem solver starts with an initial amount of money equal to20n and none
of the products present. The number20n is intentionally rather small to keep the
problem complexity manageable. Thus,s0 = (ms0

, q0) with ms0
= 20 · n and

p ∈ P → q0(p) = 0.

A.2 — Formalization 107

�

�
�

�
�

�
�

�
�

�

�

	

Figure A.1: Example of a PMP that adheres to the formalism and constraints presented in this chapter.

A small example PMP that adheres to the formalism and constraints presented here, is
shown in Figure A.1. For legibility, all coefficients have been omitted. Circles represent
actions and squares represent products. For instance, action A requires productsp2 and
p3 and produces the productp4. The goal product isp4, which can be produced by using
various product chains, e.g., by using actionC to produce productsp1 andp2, and then
using actionB to producep3 andp4. Some other product chains are also possible.

Complexity. Using a mathematical formalization of PMPs, it is possible to reduce the NP-
Hard 3-SAT problem to a PMP, proving that PMPs are also NP-Hard.

108 Appendix A: Production Management Problems

Appendix B

Milestones of Go Programs
against Professionals

This appendix briefly presents the milestones achieved by Goprograms against profession-
als on the19× 19 board (cf. Wedd, 2010). Table B.1 shows for a certain handicap the first
victory by a Go program. The level of the Go player is indicated as well. We notice that
in the 1990s matches were played againstinseis, i.e., players that are candidate to become
professional. The games were played with handicaps of 11 stones and more. Between hu-
mans, games are usually played with handicaps up to 9 stones,which is considered as a
strong handicap. However, traditional Go programs did not manage to reach this level, even
11 years after defeating a strong Go player with an 11-stoneshandicap. Moreover, the re-
sults of these non-MCTS programs against human players werequite variable. Human Go
players experienced in exploiting the weaknesses of computers programs performed much
better. For instance, in 1998 Jean-Loup Gailly, an amateur 5-kyu player, was able to give
HANDTALK 20 stones and defeat it.

In the table we see that MOGO was the first program to defeat a Go professional with a
handicap of 9 and 6 stones in 2008 and 2009, respectively. CRAZY STONE was the first to
defeat a professional 4-dan player with an 8-stones handicap and then a 7-stones handicap
in 2008. MOGO defeated a professional 9-dan player with a 7-stones handicap.

Finally, we would like to remark that MOGO defeated the professional 5-dan player Guo
Juan on the9 × 9 board in the 2007 Computer Olympiad (Gelly and Wang, 2007). It was
the first9× 9 game won by a program against a professional without any handicap.

110 Appendix B: Milestones of Go Programs against Professionals

Table B.1: Milestones against human players for different handicapson the19 × 19 board.

Year Handicap Human Level Program MCTS
1991 17 Insei GOLIATH No
1993 15 Insei HANDTALK No
1995 13 Insei HANDTALK No
1997 11 Insei HANDTALK No
2008 9 Professional 8 dan MOGO Yes
2008 8 Professional 4 dan CRAZY STONE Yes
2008 7 Professional 4 dan CRAZY STONE Yes
2009 7 Professional 9 dan MOGO Yes
2009 6 Professional 1 dan MOGO Yes

Index

Amazons, 26

Backgammon, 27
backpropagation, 23–25
BDS, 81

capture-escape value, 32, 44, 55
Chinese Checkers, 27
CRAZY STONE, 32, 36, 48
cross-entropy distance, 58
Cross-Entropy Method, 56

Distribution Focusing, 57

elite samples, 58
expansion, 22

fixed batch size, 60
FUEGO, 75, 83

General Game Playing, 28, 37
Gibbs sampling, 37
global mutex, 68
GNU GO, 33, 44, 60, 69, 83
Go, 7–14, 26, 109–110

INDIGO, 32, 34

leaf parallelization, 66
LOA, 26, 27, 49
local mutexes, 68

MANGO, 13, 32, 43, 54, 60, 69
MC-LOA, 49
Meta-MCTS, 79
MIA, 27, 49
MOGO, 13, 33, 36, 48, 51, 79
Morpion Solitaire, 26, 77

OMC, 20, 26
opening book generation, 77–86

parallelization, 65–75
parameter optimization, 53–64
pattern value, 32, 44, 55
PBBM, 20
prior knowledge, 50
Production Management Problems, 26, 105–

107
progressive bias, 42, 55
progressive strategies, 42
progressive widening, 43, 56
proximity, 45, 55

QBF, 79

random guessing, 57
RAVE, 48, 51
root parallelization, 67

Sailing Domain, 27
SameGame, 26
selection, 19–22
selection strategy, 41–52
sequence-like simulation, 33
Settlers of Catan, 28
simulation, 22–23
simulation balancing, 37
simulation strategy, 31–39

tree parallelization, 67

UCB1-TUNED, 21
UCT, 21, 42, 54
urgency-based simulation, 32–33

variable batch size, 61
virtual loss, 68

112 INDEX

Summary

This thesis studies the use of Monte-Carlo simulations for tree-search problems. The Monte-
Carlo technique we investigate is Monte-Carlo Tree Search (MCTS). It is a best-first search
method that does not require a positional evaluation function in contrast toαβ search.
MCTS is based on a randomized exploration of the search space. Using the results of previ-
ous explorations, MCTS gradually builds a game tree in memory, and successively becomes
better at accurately estimating the values of the most promising moves. MCTS is a general
algorithm and can be applied to many problems. The most promising results so far have
been obtained in the game of Go, in which it outperformed all classic techniques. Therefore
Go is used as the main test domain.

Chapter 1 provides a description of the search problems thatwe aim to address and
the classic search techniques which are used so far to solve them. The following problem
statement guides our research.

Problem statement: How can we enhance Monte-Carlo Tree Search in such a
way that programs improve their performance in a given domain?

To answer the problem statement we have formulated five research questions. They deal
with (1) Monte-Carlo simulations, (2) the balance between exploration and exploitation, (3)
parameter optimization, (4) parallelization, and (5) opening-book generation.

Chapter 2 describes the test environment to answer the problem statement and the five
research questions. It explains the game of Go, which is usedas the test domain in this
thesis. The chapter provides the history of Go, the rules of the game, a variety of game
characteristics, basic concepts used by humans to understand the game of Go, and a review
of the role of Go in the AI domain. The Go programs MANGO and MOGO, used for the
experiments in the thesis, are briefly described.

Chapter 3 starts with discussing earlier research about using Monte-Carlo evaluations as
an alternative for a positional evaluation function. This approach is hardly used anymore,
but it established an important step towards MCTS. Subsequently, a general framework for
MCTS is presented in the chapter. MCTS consists of four main steps: (1) In theselection
stepthe tree is traversed from the root node until we reach a node,where we select a child
that is not part of the tree yet. (2) Next, in theexpansion stepa node is added to the tree. (3)
Subsequently, during thesimulation stepmoves are played in self-play until the end of the

114 Summary

game is reached. (4) Finally, in thebackpropagation step, the result of a simulated game is
propagated backwards, through the previously traversed nodes.

Each step has a strategy associated that implements a specific policy. Regarding selec-
tion, the UCT strategy is used in many programs as a specific selection strategy because it
is simple to implement and effective. A standard selection strategy such as UCT does not
take domain knowledge into account, which could improve an MCTS program even further.
Next, a simple and efficient strategy to expand the tree is creating one node per simulation.
Subsequently, we point out that building a simulation strategy is probably the most difficult
part of MCTS. For a simulation strategy, two balances have tobe found: (1) between search
and knowledge, and (2) between exploration and exploitation. Furthermore, evaluating the
quality of a simulation strategy has to be assessed togetherwith the MCTS program using it.
The best simulation strategy without MCTS is not always the best one when using MCTS.
The backpropagation strategy that is the most successful istaking the average of the results
of all simulated games made through a node.

Finally, we give applications of MCTS to different domains such as Production Man-
agement Problems, Library Performance Tuning, SameGame, Morpion Solitaire, Sailing
Domain, Amazons, Lines of Action, Chinese Checkers, Settlers of Catan, General Game
Playing, and in particular Go.

The most basic Monte-Carlo simulations consist of playing random moves.Knowledge
transforms the plain random simulations into more sophisticatedpseudo-randomsimula-
tions. This has led us to the first research question.

Research question 1: How can we use knowledge to improve the Monte-Carlo
simulations in MCTS?

Chapter 4 answers the first research question. We explain twodifferent simulation
strategies that apply knowledge: urgency-based and sequence-like simulation. Based on
the experience gathered from implementing them in INDIGO and MOGO, respectively, we
make the following three recommendations. (1) Avoiding bigmistakes is more important
than playing good moves. (2) Simulation strategies using sequence-like simulations or pat-
terns in urgency-based simulations are efficient because they simplify the situation. (3) The
simulation strategy should not become too stochastic, nor too deterministic, thus balancing
exploration and exploitation.

Moreover, we develop the first efficient method for learning automatically the knowl-
edge of the simulation strategy. We proposed to usemove evaluationsas a fitness function
instead of learning from the results of simulated games. A coefficient is introduced that
enables to balance the amount of exploration and exploitation. The algorithm is adapted
from the tracking algorithm of Sutton and Barto. Learning isperformed for9×9 Go, where
we showed that the Go program INDIGO with the learnt patterns performed better than the
program with expert patterns.

In MCTS, the selection strategy controls the balance between exploration and exploita-
tion. The selection strategy should favour the most promising moves (exploitation). How-
ever, less promising moves should still be investigated sufficiently (exploration), because
their low scores might be due to unlucky simulations. This move-selection task can be
facilitated by applying knowledge. This idea has guided us to the second research question.

Summary 115

Research question 2: How can we use knowledge to arrive at a proper balance
between exploration and exploitation in the selection stepof MCTS?

Chapter 5 answers the second research question by proposingtwo methods that integrate
knowledge into the selection step of MCTS: progressive biasand progressive widening.
Progressive bias uses knowledge to direct the search. Progressive widening first reduces
the branching factor, and then increases it gradually. We refer to them as “progressive
strategies” because the knowledge is dominant when the number of simulations is small in
a node, but loses influence progressively when the number of simulations increases.

First, the progressive strategies are tested in MANGO. The incorporated knowledge is
based on urgency-based simulation. From the experiments with MANGO, we observe the
following. (1) Progressive strategies, which focus initially on a small number of moves, are
better in handling large branching factors. They increase the level of play of the program
MANGO significantly, for every board size. (2) On the19 × 19 board, the combination of
both strategies is much stronger than each strategy appliedseparately. The fact that progres-
sive bias and progressive widening work better in combination with each other shows that
they have complementary roles in MCTS. This is especially the case when the board size
and therefore branching factor grows. (3) Progressive strategies can use relatively expensive
domain knowledge with hardly any speed reduction.

Next, the performance of the progressive strategies in other game programs and domains
is presented. Progressive bias increases the playing strength of MOGO and of the Lines-of-
Action program MC-LOA, while progressive widening did the same for the Go program
CRAZY STONE. In the case of MOGO, progressive bias is successfully combined with
RAVE, a similar technique for improving the balance betweenexploitation and exploration.
These results give rise to the main conclusion that the proposed progressive strategies are
essential enhancements for an MCTS program.

MCTS is controlled by several parameters, which define the behaviour of the search. Es-
pecially the selection and simulation strategies contain several important parameters. These
parameters have to be optimized in order to get the best performance out of an MCTS pro-
gram. This challenge has led us to the third research question.

Research question 3: How can we optimize the parameters of an MCTS pro-
gram?

Chapter 6 answers the third research question by proposing to optimize the search pa-
rameters of MCTS by using an evolutionary strategy: the Cross-Entropy Method (CEM).
CEM is related to Estimation-of-Distribution Algorithms (EDAs), a new area of evolution-
ary computation. The fitness function for CEM measures the winning rate for a batch of
games. The performance of CEM with a fixed and variable batch size is tested by tuning 11
parameters in MANGO. Experiments reveal that using a batch size of 500 games gives the
best results, although the convergence is slow. A small (andfast) batch size of 10 still gives
a reasonable result when compared to the best one. A variablebatch size performs a little
bit worse than a fixed batch size of 50 or 500. However, the variable batch size converges
faster than a fixed batch size of 50 or 500.

Subsequently, we show that MANGO with the CEM parameters performs better against
GNU GO than the MANGO version without. In four self-play experiments with differ-
ent time settings and board sizes, the CEM version of MANGO defeats the default version

116 Summary

convincingly each time. Based on these results, we may conclude that a hand-tuned MCTS-
using game engine may improve its playing strength when re-tuning the parameters with
CEM.

The recent evolution of hardware has gone into the directionthat nowadays personal
computers contain several cores. To get the most out of the available hardware one has to
parallelize MCTS as well. This has led us to the fourth research question.

Research question 4: How can we parallelize MCTS?

Chapter 7 answers the fourth research question by investigating three methods for par-
allelizing MCTS: leaf parallelization, root parallelization and tree parallelization. Leaf par-
allelization plays for each available thread a simulated game starting from the leaf node.
Root parallelization consists of building multiple MCTS trees in parallel, with one thread
per tree. Tree parallelization uses one shared tree from which games simultaneously are
played.

Experiments are performed to assess the performance of the parallelization methods in
the Go program MANGO on the13 × 13 board. In order to evaluate the experiments, we
propose the strength-speedup measure, which corresponds to the time needed to achieve the
same strength. Experimental results indicate that leaf parallelization is the weakest paral-
lelization method. The method leads to a strength speedup of2.4 for 16 processor threads.
The simple root parallelization turns out to be the best way for parallelizing MCTS. The
method leads to a strength speedup of14.9 for 16 processor threads. Tree parallelization
requires two techniques to be effective. First, using localmutexes instead of a global mutex
doubles the number of games played per second. Second, the virtual-loss enhancement in-
creases both the games-per-second and the strength of the program significantly. By using
these two techniques, we obtain a strength speedup of8.5 for 16 processor threads.

Modern game-playing programs use opening books in the beginning of the game to save
time and to play stronger. Generating opening books in combination with anαβ program
has been well studied in the past. The challenge of generating automatically an opening
book for MCTS programs has led to the fifth research question.

Research question 5: How can we automatically generate opening books by
using MCTS?

Chapter 8 answers the fifth research question by combining two levels of MCTS. The
method is called Meta Monte-Carlo Tree Search (Meta-MCTS).Instead of using a rela-
tively simple simulation strategy, it uses an entire MCTS program (MOGO) to play a sim-
ulated game. We describe two algorithms for Meta-MCTS: Quasi Best-First (QBF) and
Beta-Distribution Sampling (BDS). The first algorithm, QBF, is an adaptation of greedy al-
gorithms that are used for the regular MCTS. QBF favours therefore exploitation. During
actual game play we observe that despite the good performance of the opening book, some
branches are not explored sufficiently. The second algorithm, BDS, favours exploration. In
contrast to UCT, BDS does not need an exploration coefficientto be tuned. The algorithm
draws a move according to its likelihood of being the best move (considering the number
of wins and losses). This approach created an opening book which is shallower and wider.
The BDS book has the drawback to be less deep against computers, but the advantage is

Summary 117

that it stayed longer in the book in official games against humans. Experiments on the Go
server CGOS reveal that both QBF and BDS were able to improve MOGO. In both cases the
improvement is more or less similar. Based on the results, wemay conclude that QBF and
BDS are able to generate an opening book which improves the performance of an MCTS
program.

The last chapter of the thesis returns to the five research questions and the problem state-
ment as formulated in Chapter 1. Taking the answers to the research questions above into
account we see that there are five successful ways to improve MCTS. First, learning from
move evaluations improves the knowledge of the simulation strategy. Second, progressive
strategies enhance the selection strategy by incorporating knowledge. Third, CEM opti-
mizes the search parameters of an MCTS program in such a way that its playing strength
is increased. Fourth, MCTS benefits substantially from parallelization. Fifth, Meta-MCTS
generates an opening book that improves the performance of an MCTS program. Yet, we
are able to provide additional promising directions for future research. Finally, the question
of understanding the nature of MCTS is still open.

118 Summary

Samenvatting

Dit proefschrift bestudeert het gebruik van Monte-Carlo simulaties voor zoekproblemen.
De Monte-Carlo techniek die wij onderzoeken is Monte-CarloTree Search (MCTS). Het
is eenbest-firstzoekmethode die in tegenstelling tot hetαβ zoekalgoritme geen positio-
nele evaluatiefunctie vereist. MCTS is gebaseerd op een willekeurige verkenning van de
zoekruimte. Met behulp van de resultaten van eerdere verkenningen, bouwt MCTS geleide-
lijk een spelboom op in het computergeheugen en gaat dan de waarden van de veelbelovende
zetten steeds beter schatten. MCTS is een generiek algoritme en kan worden toegepast op
veel problemen. De meest veelbelovende resultaten zijn totdusver verkregen in het spel
Go, waarin MCTS beter presteert dan de klassieke technieken. Go wordt daarom gebruikt
als testdomein in dit proefschrift.

Hoofdstuk 1 geeft een beschrijving van de zoekproblemen diewe beogen aan te pakken
en de klassieke zoektechnieken die tot dusver zijn gebruiktom ze op te lossen. De volgende
probleemstelling is geformuleerd.

Probleemstelling: Hoe kunnen we Monte-Carlo Tree Search op zo’n manier
verder ontwikkelen dat programma’s hun prestaties in een gegeven domein ver-
beteren?

Voor de beantwoording van de probleemstelling hebben we vijf onderzoeksvragen ge-
formuleerd. Ze gaan over (1) Monte-Carlo simulaties, (2) debalans tussen exploratie en
exploitatie, (3) parameter optimalisatie, (4) parallellisatie, en (5) openingsboek generatie.

Hoofdstuk 2 beschrijft de testomgeving die gebruikt wordt om de probleemstelling en
de vijf onderzoeksvragen te beantwoorden. Het geeft een uitleg van het spel Go, dat als test-
domein in dit proefschrift wordt gebruikt. Het hoofdstuk geeft de geschiedenis van Go, de
regels, verscheidene spelkarakteristieken, enkele basisprincipes, en een beschouwing over
de rol van Go in het AI-domein. De Go programma’s MANGO en MOGO, die worden ge-
bruikt voor de experimenten, worden kort beschreven.

Hoofdstuk 3 begint met een bespreking van eerder onderzoek over het gebruik van
Monte-Carlo evaluaties als een alternatief voor een positionele evaluatiefunctie. Deze aan-
pak wordt nauwelijks meer gebruikt, maar is een belangrijkestap geweest op weg naar
MCTS. Hierna wordt in het hoofdstuk een algemeen raamwerk voor MCTS gepresenteerd.
MCTS bestaat uit vier hoofdstappen: (1) In deselectie stapwordt de boom vanaf de wortel
doorkruist totdat we arriveren in een knoop waar een kind geselecteerd wordt dat nog geen

120 Samenvatting

onderdeel is van de zoekboom. (2) Daarna wordt er in deexpansie stapeen knoop toege-
voegd aan de boom. (3) Vervolgens, wordt er gedurende desimulatie stapeen gesimuleerde
partij gespeeld. (4) In deterugpropagatie stapwordt dan het resultaat van die gesimuleerde
partij verwerkt in de knopen langs het afgelegde pad.

Aan elke MCTS stap is een strategie verbonden dat een specifiek beleid uitvoert. Voor
selectie wordt in veel programma’s de UCT-strategie gebruikt omdat ze eenvoudig uit te
voeren en effectief is. Een standaard selectie strategie, zoals UCT, gebruikt geen domein-
kennis. Een eenvoudige en efficiënte strategie voor het expanderen van de boom is om de
eerste positie die we tegenkomen in de gesimuleerde partij toe te voegen. Vervolgens wijzen
wij erop dat het creëeren van een simulatie strategie waarschijnlijk het moeilijkste onderdeel
is in MCTS. Voor een simulatie strategie moeten er twee balansen worden gevonden: (1)
tussen zoeken en kennis, en (2) tussen exploratie en exploitatie. Bovendien moet de kwali-
teit van een simulatie strategie altijd samen worden geëvalueerd met het MCTS programma
waarin het wordt gebruikt. De beste simulatie strategie zonder MCTS is niet altijd de bes-
te met MCTS. De terugpropagatie strategie, die het meest succesvol is, neemt gewoon het
gemiddelde over de resultaten van alle gesimuleerde partijen in de desbetreffende knoop.

Tenslotte geven we enige toepassingen van MCTS in verschillende domeinen zoals Pro-
ductie Management Problemen, Libary Performance Tuning, SameGame, Morpion Solitai-
re, Sailing Domain, Amazons, Lines of Action, Chinese Checkers, Kolonisten van Catan,
General Game Playing, en in het bijzonder Go.

De meest basale Monte-Carlo simulaties bestaan uit het willekeurig spelen van zetten.
Het gebruik van kennis kan deze simulaties in meer verfijnd spel transformeren. Dit heeft
ons tot de eerste onderzoeksvraag gebracht.

Onderzoeksvraag 1: Hoe kunnen we kennis gebruiken om Monte-Carlo simu-
laties in MCTS te verbeteren?

Hoofdstuk 4 geeft antwoord op de eerste onderzoeksvraag. Weleggen twee verschil-
lende simulatie strategieën uit die kennis toepassen: urgentie-gebaseerde en sequentie-
gebaseerde simulaties. Op basis van de opgedane ervaringenin INDIGO en MOGO, doen
we de volgende drie aanbevelingen. (1) Het vermijden van grote fouten is belangrijker dan
het doen van goede zetten. (2) Simulatie strategieën zijn efficïent als ze de situatie vereen-
voudigen zoals in urgentie-gebaseerde of sequentie-gebaseerde simulaties. (3) De simulatie
strategie moet niet te stochastisch noch te deterministisch zijn; dus de strategie moet balan-
ceren tussen exploratie en exploitatie.

Verder ontwikkelen we de eerste efficiënte methode voor het automatisch leren van de
kennis gebruikt in de simulatie strategie. Wij hebben voorgesteld om zetevaluaties te gebrui-
ken als een fitheidsfunctie in plaats van leren op basis van deresultaten van gesimuleerde
spelen. Een cöefficiënt wordt gëıntroduceerd die het mogelijk maakt exploratie en exploita-
tie te balanceren. Het leeralgoritme is een aanpassing van het trackingalgoritme van Sutton
en Barto. De experimenten zijn uitgevoerd voor9 × 9 Go, waar we laten zien dat het Go
programma INDIGO met de geleerde patronen beter presteert dan het programma gebaseerd
op expert patronen.

In MCTS regelt de selectie strategie de balans tussen exploratie en exploitatie. Aan de
ene kant moet de selectie strategie zich richten op de veelbelovende zetten (exploitatie).

Samenvatting 121

Aan de andere kant moeten de minder rooskleurige zetten nog steeds voldoende worden
onderzocht (exploratie). Deze taak kan worden gefaciliteerd door kennis. Dit idee heeft ons
tot de tweede onderzoeksvraag gebracht.

Onderzoeksvraag 2: Hoe kunnen we gebruik maken van kennis om te komen
tot een goede balans tussen exploratie en exploitatie in de selectie stap van
MCTS?

Hoofdstuk 5 geeft antwoord op de tweede onderzoeksvraag door twee technieken voor
te stellen die kennis integreren in de selectie stap:progressive biasenprogressive widening.
Progressive bias gebruikt kennis om het zoekproces bij te sturen. Op basis van kennis
reduceert progressive widening eerst de vertakkingsgraad, om deze vervolgens geleidelijk
weer te vergroten. We verwijzen naar deze twee technieken als “progressieve strategieën”,
omdat de kennis dominant is als het aantal simulaties klein is in een knoop, maar geleidelijk
aan invloed verliest als het aantal simulaties toeneemt.

Eerst worden de progressieve strategieën getest in MANGO. De ingebouwde kennis is
gebaseerd op de urgentie-gebaseerde simulatie. Op grond van de experimenten met MAN-
GO observeren we het volgende. (1) Progressieve strategieën, die in zich in eerste instantie
richten op een klein aantal zetten, zijn beter in het verwerken van een grote vertakkings-
graad. Ze vergroten het spelniveau van het programma MANGO aanzienlijk, voor elke bord
grootte. (2) Op het19×19 bord is de combinatie van beide strategieën veel sterker dan elke
strategie afzonderlijk. Het feit dat progressive bias en progressive widening beter werken
in combinatie met elkaar laat zien dat ze elkaar aanvullen inMCTS. Dit is vooral het geval
wanneer de bord grootte en derhalve de vertakkingsgraad groeit. (3) Progressieve strate-
gieën kunnen gebruik maken van relatief dure domeinkennis bijna zonder de snelheid te
verlagen.

Vervolgens worden de prestaties van de progressieve strategieën in andere spelprogram-
ma’s en domeinen gepresenteerd. Progressive bias verhoogtde speelsterkte van MOGO en
van het Lines-of-Action programma MC-LOA, terwijl progressive widening het Go pro-
gramma CRAZY STONE verbetert. In het geval van MOGO is progressive bias succesvol
gecombineerd met RAVE, een vergelijkbare techniek voor de verbetering van de balans tus-
sen exploitatie en exploratie. Deze resultaten geven aanleiding tot de belangrijkste conclusie
dat de voorgestelde progressieve strategieën essentiële verbeteringen zijn voor een MCTS
programma.

MCTS wordt gecontroleerd door een aantal parameters, die het zoekgedrag bepalen.
Vooral de selectie en simulatie strategieën bevatten een aantal belangrijke parameters. De-
ze parameters moeten worden geoptimaliseerd om de beste prestaties te krijgen voor een
MCTS programma. Deze uitdaging heeft ons gebracht tot de derde onderzoeksvraag.

Onderzoeksvraag 3: Hoe kunnen we de parameters van een MCTS program-
ma optimaliseren?

Hoofdstuk 6 geeft antwoord op de derde onderzoeksvraag doorvoor te stellen om de
MCTS zoekparameters te optimaliseren met behulp van een evolutionaire strategie: de
Cross-Entropy Method(CEM). CEM is gerelateerd aanEstimation-of-Distribution Algo-
rithms (EDAs). De fitheidsfunctie voor CEM meet het winspercentagevoor een bepaald

122 Samenvatting

aantal (batch) partijen. De prestaties van CEM met een vaste batch en een variabele batch
worden getest door 11 parameters af te stellen in MANGO. Experimenten tonen aan dat het
gebruik van een batch grootte van 500 partijen de beste resultaten geeft, hoewel de conver-
gentie traag is. Een kleine (en snelle) batch grootte van 10 partijen geeft nog steeds een
redelijk resultaat in vergelijking met de beste batch grootte. Een variabele grootte pres-
teert iets minder dan een vaste grootte van 50 of 500 partijen. Echter, de variabele batch
convergeert sneller dan een vaste batch grootte van 50 of 500partijen.

Vervolgens laten we zien dat MANGO met CEM parameters beter presteert tegen GNU
GO dan de MANGO versie met de oude parameters. In vier zelfspel experimenten met ver-
schillende tijdsinstellingen en bord groottes verslaat deCEM versie van MANGO de stan-
daardversie elke keer overtuigend. Gebaseerd op deze resultaten kunnen we concluderen
dat een met de hand afgesteld MCTS programma zijn spelsterkte kan verbeteren door CEM
toe te passen.

De recente evolutie van hardware is gegaan in de richting dattegenwoordig PC’s meer-
dere processorkernen bevatten. Om het maximale uit de beschikbare hardware te halen moet
men MCTS parallelliseren. Dit heeft geleid tot de vierde onderzoeksvraag.

Onderzoeksvraag 4: Hoe kunnen we MCTS parallelliseren?

Hoofdstuk 7 geeft antwoord op de vierde onderzoeksvraag door het onderzoeken van
drie methoden voor de parallellisatie van MCTS: blad-, wortel-, en boomparallellisatie.
Bladparallellisatie simuleert voor elke beschikbare processorkern een partij, startend in
hetzelfde blad. Wortelparallellisatie bestaat uit het construeren van meerdere MCTS bo-
men, waarvoor geldt dat elke zoekboom zijn eigen processorkern heeft. Boomparallellisatie
maakt gebruik van een gedeelde zoekboom waarin gelijktijdig meerdere simulaties worden
gespeeld.

Experimenten worden uitgevoerd om de prestaties van de parallellisatie methoden te
beoordelen voor het Go programma MANGO op het13 × 13 bord. Om de experimenten
te evalueren, introduceren wij desterkte-versnellingmaat, die overeenkomt met de hoe-
veelheid denktijd die nodig is om dezelfde sterkte te bereiken. De experimentele resultaten
wijzen erop dat bladparallellisatie de zwakste parallellisatie methode is. De methode leidt
tot een sterkte-versnelling van 2,4 voor 16 processorkernen. De eenvoudige wortelparallel-
lisatie blijkt de beste manier om MCTS te parallelliseren. De methode leidt tot een sterkte-
versnelling van 14,9 voor 16 processorkernen. Boomparallellisatie vereist twee technieken
om effectief te zijn. Ten eerste, het gebruik van lokalemutexenin plaats vańeén globale mu-
tex verdubbelt het aantal gespeelde simulaties per seconde. Ten tweede, devirtueel-verlies
techniek verhoogt zowel het aantal simulaties als de krachtvan het programma aanzienlijk.
Door het gebruik van deze twee technieken krijgen we een sterkte-versnelling van 8,5 voor
16 processorkernen.

Moderne spelprogramma’s gebruiken een openingsboek om in het begin van het spel
tijd uit te sparen en sterker te spelen. Het genereren van eenopeningsboek voor eenαβ pro-
gramma is goed bestudeerd. De uitdaging om een openingsboekautomatisch te genereren
voor een MCTS programma heeft geleid tot de vijfde onderzoeksvraag.

Onderzoeksvraag 5: Hoe kunnen we automatisch een openingsboek genereren
door gebruik te maken van MCTS?

Samenvatting 123

Hoofdstuk 8 beantwoordt de vijfde onderzoeksvraag door twee niveaus van MCTS te
combineren. De methode heet Meta Monte-Carlo Tree Search (Meta-MCTS). In plaats van
een relatief eenvoudige simulatie strategie te gebruiken,wordt een volledig MCTS pro-
gramma (MOGO) gebruikt om een simulatie uit te voeren. We beschrijven twee algoritmen
voor Meta-MCTS:Quasi Best-First(QBF) enBeta-Distribution Sampling(BDS). Het eer-
ste algoritme, QBF, is een aanpassing vangreedyalgoritmen die worden gebruikt voor de
reguliere MCTS. QBF bevordert exploitatie. Voor toernooipartijen constateren we dat on-
danks de goede prestaties van het openingsboek, sommige openingen niet voldoende zijn
onderzocht. Het tweede algoritme, BDS, bevordert exploratie. In tegenstelling tot de se-
lectie strategie UCT, heeft BDS geen exploratie constante die moet worden afgesteld. Het
algoritme trekt een zet op basis van de waarschijnlijkheid dat het de beste zet is (rekening
houdend met het aantal overwinningen en nederlagen). Deze benadering maakt het ope-
ningsboek minder diep maar breder. Het BDS boek heeft als nadeel dat men niet zo lang
in het boek blijft tegen computer programma’s, maar het voordeel dat men langer in het
boek blijk in officiële wedstrijden tegen mensen. Experimenten op de Go server CGOS ont-
hullen dat zowel QBF als BDS het programma MOGO verbeteren. In beide gevallen is de
verbetering min of meer vergelijkbaar. Gebaseerd op de resultaten kunnen we concluderen
dat QBF en BDS in staat zijn om een openingsboek te genereren dat de prestaties van een
MCTS programma verbetert.

In het laatste hoofdstuk keren we terug naar de vijf onderzoeksvragen en de probleem-
stelling zoals die in hoofdstuk 1 zijn geformuleerd. Rekening houdend met de hierboven
gegeven antwoorden op de onderzoeksvragen zien we dat er vijf succesvolle manieren zijn
om de prestaties van een MCTS programma te verbeteren. (1) Het leren door middel van
zetevaluaties verbetert de kennis van de simulatie strategie. (2) Progressieve strategieën
versterken de selectie strategie door kennis te integreren. (3) CEM optimaliseert de zoek-
parameters van een MCTS programma op een zodanige wijze dat de speelsterkte toeneemt.
(4) MCTS profiteert aanzienlijk van parallellisatie. (5) Meta-MCTS genereert een openings-
boek dat de prestaties van een MCTS programma verbetert. Hierna geven we veelbelovende
richtingen van vervolgonderzoek aan. Tenslotte, de vraag van het begrijpen van de aard van
MCTS is nog open.

124 Samenvatting

Curriculum Vitae

Guillaume Chaslot was born in Saint-Etienne, France, on February 7th, 1981. He attended
high school, Lyćee du Parc, in Lyon and received the diploma Baccalauréat in1999. Then,
he started Classes Préparatoires in the same place, from 1999 to 2002. Thereafter, he was
accepted at the graduate engineering schoolÉcole Centrale de Lille for obtaining a Master in
Engineering. In his second year, he did an internship at Paris Descartes University on Com-
puter Go. In the third and last year of the Master Engineering, he studied simultaneously at
the Lille University of Science and Technology, for a Masterin Artificial Intelligence and
Data Mining. After receiving both Master’s degrees, he worked as a Ph.D. student (AIO)
at the Department of Knowledge Engineering (DKE) at Maastricht University, The Nether-
lands, since August 2005. In September 2008 he worked as a visiting researcher at the
Laboratoire de Recherche en Informatique (LRI) of the Paris-Sud 11 University. The Ph.D.
research resulted in several publications and this thesis.

SIKS Dissertation Series

1998

1 Johan van den Akker (CWI)DEGAS - An Active,
Temporal Database of Autonomous Objects

2 Floris Wiesman (UM) Information Retrieval by
Graphically Browsing Meta-Information

3 Ans Steuten (TUD)A Contribution to the Linguistic
Analysis of Business Conversations within the Lan-
guage/Action Perspective

4 Dennis Breuker (UM)Memory versus Search in
Games

5 Eduard W. Oskamp (RUL)Computerondersteuning
bij Straftoemeting

1999

1 Mark Sloof (VU) Physiology of Quality Change
Modelling; Automated Modelling of Quality Change
of Agricultural Products

2 Rob Potharst (EUR)Classification using Decision
Trees and Neural Nets

3 Don Beal (UM)The Nature of Minimax Search

4 Jacques Penders (UM)The Practical Art of Moving
Physical Objects

5 Aldo de Moor (KUB)Empowering Communities: A
Method for the Legitimate User-Driven Specification
of Network Information Systems

6 Niek J.E. Wijngaards (VU)Re-Design of Composi-
tional Systems

7 David Spelt (UT)Verification Support for Object
Database Design

8 Jacques H.J. Lenting (UM)Informed Gambling:
Conception and Analysis of a Multi-Agent Mecha-
nism for Discrete Reallocation

2000

1 Frank Niessink (VU)Perspectives on Improving
Software Maintenance

2 Koen Holtman (TU/e)Prototyping of CMS Storage
Management

3 Carolien M.T. Metselaar (UvA) Sociaal-
organisatorische Gevolgen van Kennistechnologie;
een Procesbenadering en Actorperspectief

4 Geert de Haan (VU)ETAG, A Formal Model of Com-
petence Knowledge for User Interface Design

5 Ruud van der Pol (UM)Knowledge-Based Query
Formulation in Information Retrieval

6 Rogier van Eijk (UU)Programming Languages for
Agent Communication

7 Niels Peek (UU)Decision-Theoretic Planning of
Clinical Patient Management

8 Veerle Couṕe (EUR)Sensitivity Analyis of Decision-
Theoretic Networks

9 Florian Waas (CWI)Principles of Probabilistic
Query Optimization

10 Niels Nes (CWI)Image Database Management Sys-
tem Design Considerations, Algorithms and Archi-
tecture

11 Jonas Karlsson (CWI)Scalable Distributed Data
Structures for Database Management

2001

1 Silja Renooij (UU)Qualitative Approaches to Quan-
tifying Probabilistic Networks

2 Koen Hindriks (UU) Agent Programming Lan-
guages: Programming with Mental Models

Abbreviations. SIKS – Dutch Research School for Information and Knowledge Systems; CWI – Centrum
voor Wiskunde en Informatica, Amsterdam; EUR – Erasmus Universiteit, Rotterdam; KUB – Katholieke Uni-
versiteit Brabant, Tilburg; KUN – Katholieke UniversiteitNijmegen; OU – Open Universiteit Nederland; RUG
– Rijksuniversiteit Groningen; RUL – Rijksuniversiteit Leiden; RUN – Radboud Universiteit Nijmegen; TUD –
Technische Universiteit Delft; TU/e – Technische Universiteit Eindhoven; UL – Universiteit Leiden; UM – Uni-
versiteit Maastricht; UT – Universiteit Twente; UU – Universiteit Utrecht; UvA – Universiteit van Amsterdam;
UvT – Universiteit van Tilburg; VU – Vrije Universiteit, Amsterdam.

128 SIKS Dissertation Series

3 Maarten van Someren (UvA)Learning as Problem
Solving

4 Evgueni Smirnov (UM)Conjunctive and Disjunctive
Version Spaces with Instance-Based Boundary Sets

5 Jacco van Ossenbruggen (VU)Processing Struc-
tured Hypermedia: A Matter of Style

6 Martijn van Welie (VU)Task-Based User Interface
Design

7 Bastiaan Schonhage (VU)Diva: Architectural Per-
spectives on Information Visualization

8 Pascal van Eck (VU)A Compositional Semantic
Structure for Multi-Agent Systems Dynamics

9 Pieter Jan ’t Hoen (RUL)Towards Distributed De-
velopment of Large Object-Oriented Models, Views
of Packages as Classes

10 Maarten Sierhuis (UvA)Modeling and Simulating
Work Practice BRAHMS: a Multiagent Modeling
and Simulation Language for Work Practice Anal-
ysis and Design

11 Tom M. van Engers (VU)Knowledge Management:
The Role of Mental Models in Business Systems De-
sign

2002

1 Nico Lassing (VU)Architecture-Level Modifiability
Analysis

2 Roelof van Zwol (UT)Modelling and Searching
Web-based Document Collections

3 Henk Ernst Blok (UT)Database Optimization As-
pects for Information Retrieval

4 Juan Roberto Castelo Valdueza (UU)The Discrete
Acyclic Digraph Markov Model in Data Mining

5 Radu Serban (VU)The Private Cyberspace Model-
ing Electronic Environments Inhabited by Privacy-
Concerned Agents

6 Laurens Mommers (UL)Applied Legal Epistemol-
ogy; Building a Knowledge-based Ontology of the
Legal Domain

7 Peter Boncz (CWI)Monet: A Next-Generation
DBMS Kernel For Query-Intensive Applications

8 Jaap Gordijn (VU)Value Based Requirements Engi-
neering: Exploring Innovative E-Commerce Ideas

9 Willem-Jan van den Heuvel (KUB)Integrating
Modern Business Applications with Objectified
Legacy Systems

10 Brian Sheppard (UM)Towards Perfect Play of
Scrabble

11 Wouter C.A. Wijngaards (VU)Agent Based Mod-
elling of Dynamics: Biological and Organisational
Applications

12 Albrecht Schmidt (UvA) Processing XML in
Database Systems

13 Hongjing Wu (TU/e)A Reference Architecture for
Adaptive Hypermedia Applications

14 Wieke de Vries (UU)Agent Interaction: Abstract
Approaches to Modelling, Programming and Verify-
ing Multi-Agent Systems

15 Rik Eshuis (UT)Semantics and Verification of UML
Activity Diagrams for Workflow Modelling

16 Pieter van Langen (VU)The Anatomy of Design:
Foundations, Models and Applications

17 Stefan Manegold (UvA)Understanding, Model-
ing, and Improving Main-Memory Database Perfor-
mance

2003

1 Heiner Stuckenschmidt (VU)Ontology-Based Infor-
mation Sharing in Weakly Structured Environments

2 Jan Broersen (VU)Modal Action Logics for Reason-
ing About Reactive Systems

3 Martijn Schuemie (TUD)Human-Computer Inter-
action and Presence in Virtual Reality Exposure
Therapy

4 Milan Petkovic (UT)Content-Based Video Retrieval
Supported by Database Technology

5 Jos Lehmann (UvA)Causation in Artificial Intelli-
gence and Law – A Modelling Approach

6 Boris van Schooten (UT)Development and Specifi-
cation of Virtual Environments

7 Machiel Jansen (UvA)Formal Explorations of
Knowledge Intensive Tasks

8 Yong-Ping Ran (UM)Repair-Based Scheduling

9 Rens Kortmann (UM)The Resolution of Visually
Guided Behaviour

10 Andreas Lincke (UT)Electronic Business Negotia-
tion: Some Experimental Studies on the Interaction
between Medium, Innovation Context and Cult

11 Simon Keizer (UT)Reasoning under Uncertainty
in Natural Language Dialogue using Bayesian Net-
works

12 Roeland Ordelman (UT)Dutch Speech Recognition
in Multimedia Information Retrieval

13 Jeroen Donkers (UM)Nosce Hostem – Searching
with Opponent Models

14 Stijn Hoppenbrouwers (KUN)Freezing Language:
Conceptualisation Processes across ICT-Supported
Organisations

15 Mathijs de Weerdt (TUD)Plan Merging in Multi-
Agent Systems

SIKS Dissertation Series 129

16 Menzo Windhouwer (CWI)Feature Grammar Sys-
tems - Incremental Maintenance of Indexes to Digi-
tal Media Warehouse

17 David Jansen (UT)Extensions of Statecharts with
Probability, Time, and Stochastic Timing

18 Levente Kocsis (UM)Learning Search Decisions

2004

1 Virginia Dignum (UU)A Model for Organizational
Interaction: Based on Agents, Founded in Logic

2 Lai Xu (UvT) Monitoring Multi-party Contracts for
E-business

3 Perry Groot (VU)A Theoretical and Empirical Anal-
ysis of Approximation in Symbolic Problem Solving

4 Chris van Aart (UvA)Organizational Principles for
Multi-Agent Architectures

5 Viara Popova (EUR)Knowledge Discovery and
Monotonicity

6 Bart-Jan Hommes (TUD)The Evaluation of Busi-
ness Process Modeling Techniques

7 Elise Boltjes (UM)VoorbeeldIG Onderwijs; Voor-
beeldgestuurd Onderwijs, een Opstap naar Abstract
Denken, vooral voor Meisjes

8 Joop Verbeek (UM)Politie en de Nieuwe Inter-
nationale Informatiemarkt, Grensregionale Politiële
Gegevensuitwisseling en Digitale Expertise

9 Martin Caminada (VU)For the Sake of the Argu-
ment; Explorations into Argument-based Reasoning

10 Suzanne Kabel (UvA)Knowledge-rich Indexing of
Learning-objects

11 Michel Klein (VU) Change Management for Dis-
tributed Ontologies

12 The Duy Bui (UT)Creating Emotions and Facial
Expressions for Embodied Agents

13 Wojciech Jamroga (UT)Using Multiple Models of
Reality: On Agents who Know how to Play

14 Paul Harrenstein (UU)Logic in Conflict. Logical Ex-
plorations in Strategic Equilibrium

15 Arno Knobbe (UU)Multi-Relational Data Mining

16 Federico Divina (VU)Hybrid Genetic Relational
Search for Inductive Learning

17 Mark Winands (UM)Informed Search in Complex
Games

18 Vania Bessa Machado (UvA)Supporting the Con-
struction of Qualitative Knowledge Models

19 Thijs Westerveld (UT)Using generative probabilis-
tic models for multimedia retrieval

20 Madelon Evers (Nyenrode)Learning from Design:
facilitating multidisciplinary design teams

2005

1 Floor Verdenius (UvA)Methodological Aspects of
Designing Induction-Based Applications

2 Erik van der Werf (UM)AI techniques for the game
of Go

3 Franc Grootjen (RUN)A Pragmatic Approach to the
Conceptualisation of Language

4 Nirvana Meratnia (UT)Towards Database Support
for Moving Object data

5 Gabriel Infante-Lopez (UvA)Two-Level Probabilis-
tic Grammars for Natural Language Parsing

6 Pieter Spronck (UM)Adaptive Game AI

7 Flavius Frasincar (TU/e)Hypermedia Presentation
Generation for Semantic Web Information Systems

8 Richard Vdovjak (TU/e)A Model-driven Approach
for Building Distributed Ontology-based Web Appli-
cations

9 Jeen Broekstra (VU)Storage, Querying and Infer-
encing for Semantic Web Languages

10 Anders Bouwer (UvA)Explaining Behaviour: Us-
ing Qualitative Simulation in Interactive Learning
Environments

11 Elth Ogston (VU)Agent Based Matchmaking and
Clustering - A Decentralized Approach to Search

12 Csaba Boer (EUR)Distributed Simulation in Indus-
try

13 Fred Hamburg (UL)Een Computermodel voor het
Ondersteunen van Euthanasiebeslissingen

14 Borys Omelayenko (VU)Web-Service configuration
on the Semantic Web; Exploring how semantics
meets pragmatics

15 Tibor Bosse (VU)Analysis of the Dynamics of Cog-
nitive Processes

16 Joris Graaumans (UU)Usability of XML Query Lan-
guages

17 Boris Shishkov (TUD)Software Specification Based
on Re-usable Business Components

18 Danielle Sent (UU)Test-selection strategies for
probabilistic networks

19 Michel van Dartel (UM)Situated Representation

20 Cristina Coteanu (UL)Cyber Consumer Law, State
of the Art and Perspectives

21 Wijnand Derks (UT)Improving Concurrency and
Recovery in Database Systems by Exploiting Appli-
cation Semantics

2006

1 Samuil Angelov (TU/e)Foundations of B2B Elec-
tronic Contracting

130 SIKS Dissertation Series

2 Cristina Chisalita (VU)Contextual issues in the de-
sign and use of information technology in organiza-
tions

3 Noor Christoph (UvA)The role of metacognitive
skills in learning to solve problems

4 Marta Sabou (VU)Building Web Service Ontologies

5 Cees Pierik (UU)Validation Techniques for Object-
Oriented Proof Outlines

6 Ziv Baida (VU) Software-aided Service Bundling -
Intelligent Methods & Tools for Graphical Service
Modeling

7 Marko Smiljanic (UT)XML schema matching – bal-
ancing efficiency and effectiveness by means of clus-
tering

8 Eelco Herder (UT)Forward, Back and Home Again
- Analyzing User Behavior on the Web

9 Mohamed Wahdan (UM)Automatic Formulation of
the Auditor’s Opinion

10 Ronny Siebes (VU)Semantic Routing in Peer-to-
Peer Systems

11 Joeri van Ruth (UT)Flattening Queries over Nested
Data Types

12 Bert Bongers (VU)Interactivation - Towards an e-
cology of people, our technological environment,
and the arts

13 Henk-Jan Lebbink (UU)Dialogue and Decision
Games for Information Exchanging Agents

14 Johan Hoorn (VU)Software Requirements: Update,
Upgrade, Redesign - towards a Theory of Require-
ments Change

15 Rainer Malik (UU) CONAN: Text Mining in the
Biomedical Domain

16 Carsten Riggelsen (UU)Approximation Methods for
Efficient Learning of Bayesian Networks

17 Stacey Nagata (UU)User Assistance for Multitask-
ing with Interruptions on a Mobile Device

18 Valentin Zhizhkun (UvA)Graph transformation for
Natural Language Processing

19 Birna van Riemsdijk (UU)Cognitive Agent Pro-
gramming: A Semantic Approach

20 Marina Velikova (UvT)Monotone models for pre-
diction in data mining

21 Bas van Gils (RUN)Aptness on the Web

22 Paul de Vrieze (RUN)Fundaments of Adaptive Per-
sonalisation

23 Ion Juvina (UU)Development of Cognitive Model
for Navigating on the Web

24 Laura Hollink (VU) Semantic Annotation for Re-
trieval of Visual Resources

25 Madalina Drugan (UU)Conditional log-likelihood
MDL and Evolutionary MCMC

26 Vojkan Mihajlovic (UT) Score Region Algebra: A
Flexible Framework for Structured Information Re-
trieval

27 Stefano Bocconi (CWI)Vox Populi: generating
video documentaries from semantically annotated
media repositories

28 Borkur Sigurbjornsson (UvA)Focused Information
Access using XML Element Retrieval

2007

1 Kees Leune (UvT)Access Control and Service-
Oriented Architectures

2 Wouter Teepe (RUG)Reconciling Information Ex-
change and Confidentiality: A Formal Approach

3 Peter Mika (VU)Social Networks and the Semantic
Web

4 Jurriaan van Diggelen (UU)Achieving Semantic In-
teroperability in Multi-agent Systems: a dialogue-
based approach

5 Bart Schermer (UL)Software Agents, Surveillance,
and the Right to Privacy: a Legislative Framework
for Agent-enabled Surveillance

6 Gilad Mishne (UvA) Applied Text Analytics for
Blogs

7 Natasa Jovanovic’ (UT)To Whom It May Concern -
Addressee Identification in Face-to-Face Meetings

8 Mark Hoogendoorn (VU)Modeling of Change in
Multi-Agent Organizations

9 David Mobach (VU)Agent-Based Mediated Service
Negotiation

10 Huib Aldewereld (UU)Autonomy vs. Conformity:
an Institutional Perspective on Norms and Protocols

11 Natalia Stash (TU/e) Incorporating Cogni-
tive/Learning Styles in a General-Purpose Adaptive
Hypermedia System

12 Marcel van Gerven (RUN)Bayesian Networks for
Clinical Decision Support: A Rational Approach to
Dynamic Decision-Making under Uncertainty

13 Rutger Rienks (UT)Meetings in Smart Environ-
ments; Implications of Progressing Technology

14 Niek Bergboer (UM)Context-Based Image Analysis

15 Joyca Lacroix (UM)NIM: a Situated Computational
Memory Model

16 Davide Grossi (UU)Designing Invisible Handcuffs.
Formal investigations in Institutions and Organiza-
tions for Multi-agent Systems

17 Theodore Charitos (UU)Reasoning with Dynamic
Networks in Practice

SIKS Dissertation Series 131

18 Bart Orriens (UvT)On the development and man-
agement of adaptive business collaborations

19 David Levy (UM)Intimate relationships with artifi-
cial partners

20 Slinger Jansen (UU)Customer Configuration Up-
dating in a Software Supply Network

21 Karianne Vermaas (UU)Fast diffusion and broad-
ening use: A research on residential adoption and
usage of broadband internet in the Netherlands be-
tween 2001 and 2005

22 Zlatko Zlatev (UT)Goal-oriented design of value
and process models from patterns

23 Peter Barna (TU/e)Specification of Application
Logic in Web Information Systems

24 Georgina Raḿırez Camps (CWI)Structural Fea-
tures in XML Retrieval

25 Joost Schalken (VU)Empirical Investigations in
Software Process Improvement

2008

1 Katalin Boer-Sorb́an (EUR) Agent-Based Simula-
tion of Financial Markets: A modular, continuous-
time approach

2 Alexei Sharpanskykh (VU)On Computer-Aided
Methods for Modeling and Analysis of Organiza-
tions

3 Vera Hollink (UvA)Optimizing hierarchical menus:
a usage-based approach

4 Ander de Keijzer (UT)Management of Uncertain
Data - towards unattended integration

5 Bela Mutschler (UT) Modeling and simulating
causal dependencies on process-aware information
systems from a cost perspective

6 Arjen Hommersom (RUN)On the Application of
Formal Methods to Clinical Guidelines, an Artificial
Intelligence Perspective

7 Peter van Rosmalen (OU)Supporting the tutor in the
design and support of adaptive e-learning

8 Janneke Bolt (UU)Bayesian Networks: Aspects of
Approximate Inference

9 Christof van Nimwegen (UU)The paradox of the
guided user: assistance can be counter-effective

10 Wauter Bosma (UT)Discourse oriented Summariza-
tion

11 Vera Kartseva (VU)Designing Controls for Network
Organizations: a Value-Based Approach

12 Jozsef Farkas (RUN)A Semiotically Oriented Cog-
nitive Model of Knowledge Representation

13 Caterina Carraciolo (UvA)Topic Driven Access to
Scientific Handbooks

14 Arthur van Bunningen (UT)Context-Aware Query-
ing; Better Answers with Less Effort

15 Martijn van Otterlo (UT)The Logic of Adaptive Be-
havior: Knowledge Representation and Algorithms
for the Markov Decision Process Framework in
First-Order Domains

16 Henriette van Vugt (VU)Embodied Agents from a
User’s Perspective

17 Martin Op’t Land (TUD)Applying Architecture and
Ontology to the Splitting and Allying of Enterprises

18 Guido de Croon (UM)Adaptive Active Vision

19 Henning Rode (UT)From document to entity re-
trieval: improving precision and performance of fo-
cused text search

20 Rex Arendsen (UvA)Geen bericht, goed bericht.
Een onderzoek naar de effecten van de introductie
van elektronisch berichtenverkeer met de overheid
op de administratieve lasten van bedrijven

21 Krisztian Balog (UvA)People search in the enter-
prise

22 Henk Koning (UU) Communication of IT-
architecture

23 Stefan Visscher (UU)Bayesian network models for
the management of ventilator-associated pneumonia

24 Zharko Aleksovski (VU)Using background knowl-
edge in ontology matching

25 Geert Jonker (UU)Efficient and Equitable exchange
in air traffic management plan repair using spender-
signed currency

26 Marijn Huijbregts (UT)Segmentation, diarization
and speech transcription: surprise data unraveled

27 Hubert Vogten (OU)Design and implementation
strategies for IMS learning design

28 Ildiko Flesh (RUN)On the use of independence re-
lations in Bayesian networks

29 Dennis Reidsma (UT)Annotations and subjective
machines- Of annotators, embodied agents, users,
and other humans

30 Wouter van Atteveldt (VU)Semantic network anal-
ysis: techniques for extracting, representing and
querying media content

31 Loes Braun (UM)Pro-active medical information
retrieval

32 Trung B. Hui (UT)Toward affective dialogue man-
agement using partially observable markov decision
processes

33 Frank Terpstra (UvA)Scientific workflow design;
theoretical and practical issues

34 Jeroen de Knijf (UU)Studies in Frequent Tree Min-
ing

132 SIKS Dissertation Series

35 Benjamin Torben-Nielsen (UvT)Dendritic mor-
phology: function shapes structure

2009

1 Rasa Jurgelenaite (RUN)Symmetric Causal Inde-
pendence Models

2 Willem Robert van Hage (VU) Evaluating
Ontology-Alignment Techniques

3 Hans Stol (UvT)A Framework for Evidence-based
Policy Making Using IT

4 Josephine Nabukenya (RUN)Improving the Quality
of Organisational Policy Making using Collabora-
tion Engineering

5 Sietse Overbeek (RUN)Bridging Supply and De-
mand for Knowledge Intensive Tasks - Based on
Knowledge, Cognition, and Quality

6 Muhammad Subianto (UU)Understanding Classifi-
cation

7 Ronald Poppe (UT)Discriminative Vision-Based
Recovery and Recognition of Human Motion

8 Volker Nannen (VU)Evolutionary Agent-Based Pol-
icy Analysis in Dynamic Environments

9 Benjamin Kanagwa (RUN)Design, Discovery and
Construction of Service-oriented Systems

10 Jan Wielemaker (UvA)Logic programming for
knowledge-intensive interactive applications

11 Alexander Boer (UvA)Legal Theory, Sources of
Law & the Semantic Web

12 Peter Massuthe (TU/e, Humboldt-Universtät zu Ber-
lin) Operating Guidelines for Services

13 Steven de Jong (UM)Fairness in Multi-Agent Sys-
tems

14 Maksym Korotkiy (VU)From ontology-enabled ser-
vices to service-enabled ontologies (making ontolo-
gies work in e-science with ONTO-SOA)

15 Rinke Hoekstra (UvA)Ontology Representation -
Design Patterns and Ontologies that Make Sense

16 Fritz Reul (UvT)New Architectures in Computer
Chess

17 Laurens van der Maaten (UvT)Feature Extraction
from Visual Data

18 Fabian Groffen (CWI) Armada, An Evolving
Database System

19 Valentin Robu (CWI)Modeling Preferences, Strate-
gic Reasoning and Collaboration in Agent-Mediated
Electronic Markets

20 Bob van der Vecht (UU)Adjustable Autonomy: Con-
troling Influences on Decision Making

21 Stijn Vanderlooy (UM)Ranking and Reliable Clas-
sification

22 Pavel Serdyukov (UT)Search For Expertise: Going
beyond direct evidence

23 Peter Hofgesang (VU)Modelling Web Usage in a
Changing Environment

24 Annerieke Heuvelink (VU)Cognitive Models for
Training Simulations

25 Alex van Ballegooij (CWI)RAM: Array Database
Management through Relational Mapping

26 Fernando Koch (UU)An Agent-Based Model for the
Development of Intelligent Mobile Services

27 Christian Glahn (OU)Contextual Support of social
Engagement and Reflection on the Web

28 Sander Evers (UT)Sensor Data Management with
Probabilistic Models

29 Stanislav Pokraev (UT)Model-Driven Semantic In-
tegration of Service-Oriented Applications

30 Marcin Zukowski (CWI) Balancing vectorized
query execution with bandwidth-optimized storage

31 Sofiya Katrenko (UvA)A Closer Look at Learning
Relations from Text

32 Rik Farenhorst and Remco de Boer (VU)Architec-
tural Knowledge Management: Supporting Archi-
tects and Auditors

33 Khiet Truong (UT)How Does Real Affect Affect Af-
fect Recognition In Speech?

34 Inge van de Weerd (UU)Advancing in Software
Product Management: An Incremental Method En-
gineering Approach

35 Wouter Koelewijn (UL)Privacy en Politiegegevens;
Over geautomatiseerde normatieve informatie-
uitwisseling

36 Marco Kalz (OU)Placement Support for Learners
in Learning Networks

37 Hendrik Drachsler (OU)Navigation Support for
Learners in Informal Learning Networks

38 Riina Vuorikari (OU)Tags and Self-Organisation: A
Metadata Ecology for Learning Resources in a Mul-
tilingual Context

39 Christian Stahl (TU/e, Humboldt-Universtät zu Ber-
lin) Service Substitution – A Behavioral Approach
Based on Petri Nets

40 Stephan Raaijmakers (UvT)Multinomial Language
Learning: Investigations into the Geometry of Lan-
guage

41 Igor Berezhnyy (UvT)Digital Analysis of Paintings

42 Toine Bogers (UvT)Recommender Systems for So-
cial Bookmarking

SIKS Dissertation Series 133

43 Virginia Nunes Leal Franqueira (UT)Finding Multi-
step Attacks in Computer Networks using Heuristic
Search and Mobile Ambients

44 Roberto Santana Tapia (UT)Assessing Business-IT
Alignment in Networked Organizations

45 Jilles Vreeken (UU)Making Pattern Mining Useful

46 Loredana Afanasiev (UvA)Querying XML: Bench-
marks and Recursion

2010

1 Matthijs van Leeuwen (UU)Patterns that Matter

2 Ingo Wassink (UT)Work flows in Life Science

3 Joost Geurts (CWI)A Document Engineering Model
and Processing Framework for Multimedia docu-
ments

4 Olga Kulyk (UT)Do You Know What I Know? Situ-
ational Awareness of Co-located Teams in Multidis-
play Environments

5 Claudia Hauff (UT)Predicting the Effectiveness of
Queries and Retrieval Systems

6 Sander Bakkes (UvT)Rapid Adaptation of Video
Game AI

7 Wim Fikkert (UT)Gesture interaction at a Distance

8 Krzysztof Siewicz (UL)Towards an Improved Regu-
latory Framework of Free Software. Protecting user
freedoms in a world of software communities and
eGovernments

9 Hugo Kielman (UL)Politiële gegevensverwerking
en Privacy, Naar een effectieve waarborging

10 Rebecca Ong (UL)Mobile Communication and Pro-
tection of Children

11 Adriaan Ter Mors (TUD)The world according to
MARP: Multi-Agent Route Planning

12 Susan van den Braak (UU)Sensemaking software for
crime analysis

13 Gianluigi Folino (RUN)High Performance Data
Mining using Bio-inspired techniques

14 Sander van Splunter (VU)Automated Web Service
Reconfiguration

15 Lianne Bodenstaff (UT)Managing Dependency Re-
lations in Inter-Organizational Models

16 Sicco Verwer (TUD)Efficient Identification of Timed
Automata, theory and practice

17 Spyros Kotoulas (VU)Scalable Discovery of Net-
worked Resources: Algorithms, Infrastructure, Ap-
plications

18 Charlotte Gerritsen (VU)Caught in the Act: Investi-
gating Crime by Agent-Based Simulation

19 Henriette Cramer (UvA)People’s Responses to Au-
tonomous and Adaptive Systems

20 Ivo Swartjes (UT)Whose Story Is It Anyway? How
Improv Informs Agency and Authorship of Emergent
Narrative

21 Harold van Heerde (UT)Privacy-aware data man-
agement by means of data degradation

22 Michiel Hildebrand (CWI)End-user Support for Ac-
cess to Heterogeneous Linked Data

23 Bas Steunebrink (UU)The Logical Structure of
Emotions

24 Dmytro Tykhonov (TUD)Designing Generic and
Efficient Negotiation Strategies

25 Zulfiqar Ali Memon (VU) Modelling Human-
Awareness for Ambient Agents: A Human Mindread-
ing Perspective

26 Ying Zhang (CWI) XRPC: Efficient Distributed
Query Processing on Heterogeneous XQuery En-
gines

27 Marten Voulon (UL)Automatisch contracteren

28 Arne Koopman (UU)Characteristic Relational Pat-
terns

29 Stratos Idreos (CWI)Database Cracking: Towards
Auto-tuning Database Kernels

30 Marieke van Erp (UvT)Accessing Natural History
- Discoveries in data cleaning, structuring, and re-
trieval

31 Victor de Boer (UvA)Ontology Enrichment from
Heterogeneous Sources on the Web

32 Marcel Hiel (UvT) An Adaptive Service Oriented
Architecture: Automatically solving Interoperability
Problems

33 Robin Aly (UT) Modeling Representation Uncer-
tainty in Concept-Based Multimedia Retrieval

34 Teduh Dirgahayu (UT)Interaction Design in Service
Compositions

35 Dolf Trieschnigg (UT)Proof of Concept: Concept-
based Biomedical Information Retrieval

36 Jose Janssen (OU)Paving the Way for Lifelong
Learning; Facilitating competence development
through a learning path specification

37 Niels Lohmann (TU/e)Correctness of services and
their composition

38 Dirk Fahland (TU/e)From Scenarios to components

39 Ghazanfar Farooq Siddiqui (VU)Integrative model-
ing of emotions in virtual agents

40 Mark van Assem (VU)Converting and Integrating
Vocabularies for the Semantic Web

41 Guillaume Chaslot (UM)Monte-Carlo Tree Search

