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Preface

When | learnt the game of Go, | was intrigued by the contrast/een the simplicity of its
rules and the difficulty to build a strong Go program. By castr most problems with a
simple mathematic definition are easier to solve for comgutean they are for humans.
Fascinated by this characteristic of Go, | was interestatireloping a method that would
improve the level of Go programs. My first thoughts about gditonte-Carlo were not the
most optimistic. However, after experimenting with it, &hd by Bruno Bouzy, | quickly
changed my mind. | was impressed by the results obtained bytéAGarlo despite its sim-
plicity. This motivated me to spend four years at Maastrighiversity to develop Monte-
Carlo methods for games and optimization problems.

Jos Uiterwijk, as the leader of the research project “Go fot,&nded by the Netherlands
Organisation for Scientific Research (NWO) is the first onthemk. Later, Gerhard Weiss
became supervisor. | thank them for their supervision atgl\with scientific writing.

My daily advisors, Mark Winands and Bruno Bouzy, deserve mgeyest gratitude, for
the many fruitful meetings we had over the years, and for tlegiewed encouragements
and enthusiasm to tackle the difficult scientific problems.

I would like to thank Olivier Teytaud for welcoming me warniythe MoGo team. His
creativity and dedication makes him one of the researchéhswhom | enjoyed working
the most. Later, | also had the pleasure to work co®b together with Arpad Rimmel and
Jean-Baptiste Hook. | would also like to thank computer Gmpetitors with whom | had
interesting research discussions, and in particular Enkder Werf, Rmi Coulom, Sylvain
Gelly, and David Fotland.

In Maastricht there were many opportunities for joint woskveell. | greatly enjoyed
working with my colleagues Jahn-Takeshi Saito, Steven dg,Jelaarten Schadd, Istvan
Szita, Marc Ponsen, Sander Bakkes, and Pieter Spronck earobsthat is reported in the
thesis, and elsewhere in joint articles.

Research sometimes needs excessively optimistic peoplebelieve in revolutions to
appear in the near future, even when there is no evidenchatatiese developments would
actually be possible. An example of such a visionary maneg#sap van den Herik, who
promoted research in computer Go, and was one of the rarersaispredict that computers
could defeat professionals before the year 2010. | am ghatefhim, as well as Peter
Michielse in particular and NCF (grant number SH-105-08)éneral, for providing use of
supercomputer time.

A pleasant research environment is not only facilitated byerous opportunities for
cooperation, but also by a friendly, constructive and catitfg atmosphere. The supportive
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staff of DKE helped me in many respects; an explicit thank-iggiven to Peter Geurtz,

Joke Hellemons, and Marijke Verheij. My roommates over tharg, Andra Waagmeester,
Nyree Lemmens, and Philippe Uyttendaele, made our roomece plaat | enjoyed being

in. My family deserves many thanks for their constant suppaod communicating their

passion for research. Mais surtout, mille tendresses a emmiré amour.

Guillaume Chaslot, 2010
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Chapter 1

Introduction

In this thesis, we study the use of Monte-Carlo simulati@nsrke-search problems. Monte-
Carlo simulations consist of sequences of randomizedratibhey were first applied in the
computers of Los Alamos (Metropolis, 1985). Nowadays, Me@Garlo simulations have
applications in numerous fields, as for instance chemisiojpgy, economics, and finance
(cf. Liu, 2002). Tree-search problems are problems thatbeahandled by progressively
expanding a tree structure, for instance in pathfinding fred<

The Monte-Carlo technique we investigate is Monte-CarleeT6earch (MCTS). In
2006, it appeared in three different variants (Coulom, 20@&sis and Szepeévi, 2006;
Chaslotet al, 2006a). Coulom used his variant to create the first conietllCTS pro-
gram, (RAzY STONE. This program immediately won titex 9 Go tournament at the 2006
Computer Olympiad. The variant introduced by Kocsis and8geri (2006), called UCT,
was based on the Upper Confidence Bounds (UCB) algorithmr(ATesa-Bianchi, and
Fischer, 2002). Chaslet al. (2006a) proposed the variant Objective Monte-Carlo (OMC),
which was evaluated for Go positions.

In contrast to classic algorithms for tree search, such*aandag search, MCTS does
not rely on apositional evaluation functigrbut on Monte-Carlo simulations. MCTS is a
general algorithm and can be applied to many problems. Th& promising results so
far have been obtained in the game of Go, in which it outperéat all classic techniques.
Hence, we use Go as our main test bed.

In this chapter we provide a description of the search problthat we aim to address
(Section 1.1) and the classic search techniques which atkagsfar to solve them (Section
1.2). Subsequently, we formulate the problem statemertieg with five research ques-
tions (Section 1.3). Next, we justify the choice of Go as tleshain in Section 1.4. Finally,
Section 1.5 provides a thesis overview.

1.1 Tree-Search Problems

A tree-search problem is a problem in which the states carepesented as nodes of a
tree, and the actions can be represented by edges betwesrdi®e A tree is defined as an
acyclic connected graph where each node has a set of zerarercinitd nodes, and at most
one parent node (cf. Russell and Norvig, 1995).
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Table 1.1: Different types of problems.

One player Two players Multi players
Deterministic TSP, PMP Go, chess | Chinese Checkers
Stochastic | Sailing Problem| Backgammon| Simplified Catan

We distinguish three categories of problems: (1) problentBout opponents (called
optimization problems, one-player games, or puzzles)p(@plems with one opponent
(two-player games), and (3) problems with multiple oppdasdmulti-player games). In
two-player games, players may oppose or cooperate withaheh In multi-player games,
players may create coalitions. Moreover, we distinguidtvben deterministic and stochas-
tic problems. A schematic overview with examples of thesgblgms is given in Table
1.1. Most of the experiments of this thesis are performedanv@ich is a non-cooperative
two-player deterministic game.

We chose to use the terminology that is commonly used fodibrsain in the remainder
of the thesis. Hence, we usgoveas a synonym for actiopositionas a synonym for state,
andgameas a synonym for problem.

1.2 Tree-Search Algorithms

A search algorithntakes a problem (i.e., a game) as input and returns a solirtitime
form of an action sequence (i.e., a move sequence) (cf. RasgENorvig, 1995). Many
tree-search algorithms were developed in the last cenkawtree-search based optimiza-
tion problems, thed* algorithm (Hart, Nielson, and Raphael, 1968) is one of thadard
algorithms. For two-player games, the foundation of magbaihms is minimax (von Neu-
mann 1928). Minimax has been improved into a more powerfybrithm: o5 (Knuth
and Moore, 1975). There are many variants of ditealgorithm. Amongst them, one of
the most successful is the iterative deepening principaatian search (PVS) (Marsland,
1983), which is nearly identical to nega-scout (Reinef@883). They form the basis of the
best programs in many two-player games, such as chess é@vidrahd Bjrnsson, 2001).
Othera variants are MTDK) (Plaat, 1996) and Realization-Probability Search (Teldal)
Yokoyama, and Chikayama, 2002).

Several other algorithms exist for tree-search, as foairest Proof-Number (PN) search
and its variants (Allis, Van der Meulen, and Van den Herik94:9Van den Herik and
Winands, 2008)B* (Berliner, 1979),555* (Stockman, 1979), angd-search (Thomsen,
2000).

Most of these algorithms rely onpositional evaluation functianThis function com-
putes a heuristic value for a board position at leaf node. rékulting value can be inter-
preted in three different ways (Donkers, 2003): (1) geedictionof the game-theoretic
value, (2) as an estimate of theobability to win, or (3) as a measure of tipeofitability of
the position.

One family of algorithms presented above does not requies#ipnal evaluation func-
tion: PN search and its variants. This family of algorithnas fbeen used to solve games,
for instance Qubic (Alliset al, 1994), Checkers (Schaeffet al, 2007), and Fanorona
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(Schadcet al,, 2008b). However, PN is not useful for real-time game plagalise most of
the time it is not able to prove the game-theoretic value efptbsition.

1.3 Problem Statement and Research Questions

In the previous sections, we discussed the scientific confeour investigation. This sec-
tion introduces the problem statement which guides ouiarese

Problem statement How can we enhance Monte-Carlo Tree Search in such a
way that programs improve their performance in a given dordai

For decadesq3 has been the standard for tree search in two-player gamesadh
algorithm requires a quite good evaluation function in orttegive satisfactory results.
However, no such evaluation function is available for Go.aAsonsequence, the best Go
programs in 2005 were a heterogeneous combinatiernsafearch, expert systems, heuris-
tics, and patterns. The methodology used was quite doneperitlent. An alternative,
which emerged around that time, was to use Monte-Carlo sitioms as an alternative for
a positional evaluation function (Bgmann, 1993; Bouzy and Helmstetter, 2003). Soon
it was developed into a complete Monte-Carlo techniquédeddonte-Carlo Tree Search
(MCTS). It is a best-first search method guided by the residlMonte-Carlo simulations.
MCTS appeared in three different variants in 2006 (Coulod®62 Kocsis and Szepean,
2006; Chasloet al,, 2006a). Coulom used his variant to create the first connpetCTS
program, GRAzY STONE, which immediately won th® x 9 Go tournament at the i1
Computer Olympiad. The variant introduced by Kocsis and8geri (2006), called UCT,
was based on the Upper Confidence Bounds (UCB) algorithmr(&tued., 2002). The vari-
ant of Chasloet al. (2006a) was based on their Objective Monte-Carlo (OMC) ratigm.

In this thesis we are going to investigate how to enhance MCTS

Our problem statement raises five research questions. dayith Monte-Carlo sim-
ulations, the balance between exploration and exploitafl@arameter optimization, paral-
lelization, and opening-book generation.

Research question 1How can we use knowledge to improve the Monte-Carlo
simulations in MCTS?

The most basic Monte-Carlo simulations consist of playamdom movesKnowledge
transforms the plain random simulations into more soptastdpseudo-randonsimula-
tions (Bouzy, 2005; Gellgt al., 2006; Chen and Zhang, 2008). The knowledge can be de-
signed by a human expert or created (semi)-automaticaligdghine learning. We consider
two different simulation strategies that apply knowledgegency-base@ndsequence-like
simulation. Methods are investigated to learn automayitiaé knowledge of the simulation
strategy.

Research question 2How can we use knowledge to arrive at a proper balance
between exploration and exploitation in the selection sfeddCTS?

In each node of the MCTS tree, a balance between exploratexploitation has to be
found. On the one hand, the search should favour the mostigirgmmove (exploitation).
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On the other hand, less promising moves should still be tigeted sufficiently (explo-
ration), because their low scores might be due to unluckyksitions. This move-selection
task can be facilitated by applying knowledge. We introdteeconcept of “progressive
strategy” that causes the knowledge to be dominant when uh@ber of simulations is
small in a node, and causes the knowledge to lose progrgssifltaence when the number
of simulations increases. The two progressive strategepnopose ar@rogressive bias
andprogressive wideningProgressive bias directs the search according to know|e®ig-
gressive widening first reduces the branching factor, aed thcreases it gradually. This
scheme is also dependent on knowledge.

Research question 3How can we optimize the parameters of an MCTS pro-
gram?

MCTS is controlled by several parameters, which define theweur of the search.
These parameters have to be adjusted in order to get thedyéstrpance out of an MCTS
program. We propose to optimize the search parameters of3§yTusing an evolutionary
strategy: the Cross-Entropy Method (CEM) (Rubinstein, 999 he method is related to
Estimation-of-Distribution Algorithms (EDAs) (Muehlealm, 1997), a new area of evolu-
tionary computation.

Research question 4How can we parallelize MCTS?

In the past, research in parallelizing search has been ynpérformed in the area of
af-based programs running on super-computeise EBLUE (Campbell, Hoane, and Hsu,
2002) and BRuTUS/HYDRA (Donninger, Kure, and Lorenz, 2004) are famous examples
of highly parallelized chess programs. The recent evatutibhardware has gone into the
direction that nowadays personal computers contain skeeeras. To get the most out of
the available hardware one has to parallelize MCTS as wetirder to formulate an answer
to the fourth research question, we will investigate thramlelization methods for MCTS:
leaf parallelization, root parallelization, and tree platezation.

Research question 5How can we automatically generate opening books by
using MCTS?

Modern game-playing programs use opening books in the begjrof the game to save
time and to play stronger. Generating opening books in coatlain with ana3 program
has been well studied in the past (Buro, 1999; Lincke, 20@tafetyan and Lorentz, 2006).
A challenge is to generate automatically an opening booliGT'S programs. We propose
a method, called Meta Monte-Carlo Tree Search (Meta-MCHa)}, combines two levels
of MCTS. Instead of using a relatively simple simulatioragtgy, it uses an entire MCTS
program to play a simulated game.

1.4 Choice of the Test Domain

As test domain to answer the research questions, we haverctios game of Go. This
game has been recognized as a challenge for Atrtificial igégite (Bouzy and Cazenave,
2001; Muller, 2002). We give below four reasons for choosing Go &sadomain.
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e Simple implementation. The rules of Go are simple (see Chapter 2).

o Well-known. Go is played by 25 to 50 millions of people over the world, andnds
around one thousand professional players.

o Difficult to master. No Go program has reached a level close to the best humans on
the 19< 19 board.

o Well-established research fieldSeveral Ph.D. theses and hundreds of peer-reviewed
publications are dedicated to computer Go.

1.5 Thesis Overview

The contents of this thesis are as follows. Chapter 1 comtainntroduction, a classification
of tree-search problems, a brief overview of tree-seargbriahms, the problem statement
and five research questions, the choice of the test domairgranverview of the thesis.

Chapter 2 introduces the test environment. It explains #maegof Go, which will be
used as the test domain in this thesis. We provide the histoBo, the rules of the game,
a variety of game characteristics, basic concepts used imahsi to understand the game
of Go, and a review of the role of Go in the Al domain. The Go paogs MANGO and
MoGo, used as test vehicles for the experiments in the thesisrifty described.

In Chapter 3, we start with discussing earlier research talbging Monte-Carlo evalu-
ations as an alternative for a positional evaluation fuarctiThis approach is hardly used
anymore, but it established an important step towards MGaido Tree Search (MCTS).
Next, we describe the structure of MCTS. MCTS consists of foain steps: selection,
expansion, simulation, and backpropagation. The chapesepts different strategies for
each MCTS step. Finally, we give the application of MCTS ftivew domains than Go.

Chapter 4 answers the first research question. We explaidiffgoent simulation strate-
gies that apply knowledgairgency-base@nd sequence-liksimulations and give experi-
mental results. Moreover, methods are investigated fanieg automatically the simula-
tion strategy and the associated experiments are presdtdated research in the domain
of general game playing is discussed in the remainder ofttapter.

Chapter 5 answers the second research question by propasingethods that integrate
knowledge into the selection part of MCTBrogressive biasnd progressive widening
Progressive bias uses knowledge to direct the search. dasige widening first reduces
the branching factor, and then increases it gradually. Vier te them as “progressive
strategies” because the knowledge is dominant when the euaflsimulations is small in
anode, but loses influence progressively when the numbénafations increases. We give
details on the implementation and the experimental resfittsese progressive strategies in
MANGO. Subsequently, the performance of the progressive steatégr the Go programs
CRrAzY STONE and MoGo, and in the LOA program MC-LOA is presented. Finally, more
recent related research on enhancing the selection striatdgscribed.

Chapter 6 answers the third research question by proposiogtimize the search pa-
rameters of MCTS by using an evolutionary strategy: the &&stropy Method (CEM).
CEM is related to Estimation-of-Distribution AlgorithmgEDAs), which constitute a new
area of evolutionary computation. The fitness function feEMCmeasures the winning rate
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for a batch of games. The performance of CEM with a fixed anidlbr batch size is tested
by optimizing the search parameters in the MCTS programniio.

Chapter 7 answers the fourth research question by invéistgéiree methods for par-
allelizing MCTS: leaf parallelization, root parallelizah and tree parallelization. We com-
pare them by using th&ames-Per-Second (GPS)-speedup meamsdestrength-speedup
measure The first measure corresponds to the improvement in spaddha second mea-
sure corresponds to the improvement in playing strengtb.tfitee parallelization methods
are implemented and tested inAMGO, running on a 16-core processor node.

Chapter 8 answers the fifth research question by combinindewels of MCTS. The
method is called Meta Monte-Carlo Tree Search (Meta-MCTi$tead of using a rela-
tively simple simulation strategy, it uses an entire MCT8gram (MoGo) to play a simu-
lated game. We present two Meta-MCTS algorithms: the first Quasi Best-First (QBF),
favours exploitation; the second one, Beta-Distributi@mling (BDS), favours explo-
ration. In order to evaluate the performance of both alpor#, we test the generat@dc 9
Go opening books against computer programs and humans.

The research conclusions and recommendations for futuestigations are given in
Chapter 9.

Appendix A discusses Production Management Problems asxliaay test domain.
Appendix B presents the historic results of the best progragainst professional Go play-
ers.



Chapter 2

Test Environment: The Game of
Go

The chapter describes the test environment used to ansev@rablem statement and the
five research questions formulated in Chapter 1. A test enmient consists of a problem
(also called gam@ and one or more programs. The game under consideration. i$\@o
use the following two Go programs: MiGo and MoGo.

The chapter is structured in the following way. Section 2dvjues the history of Go.
Next, Section 2.2 presents the rules. Subsequently, $eZtBopresents the characteristics
of the game of Go. Section 2.4 discusses basic concepts ydatians to understand the
game of Go. Then, in Section 2.5, a short review of the role ofilsthe Al domain is
given. Finally, Section 2.6 introduces our two Go prograMaNGO and MoGo, used as
test vehicles for the experiments in the thesis.

2.1 History of Go

Go is one of the oldest games in the world, originating fromiemt China. According to the
legend, the Chinese emperor Yao (2337-2258 BCE) asked hissetior to design a game
to teach his son discipline, concentration, and balancskigra 1934; Masayoshi, 2005).
The earliest written reference of the game is given in thiotital annals of Tso Chuam‘(1
century BCE), referring to a historical event in 548 BCE (¥¢at, 1989). Go was originally
played on a 1%17 line grid, but a 1% 19 grid became standard by the Tang Dynasty (618-
907 CE). It was introduced in Japan and Korea betweenthand 7t century. In Japan,
the game became popular at the imperial court in&Wecentury. Among the common
people it gained popularity in thesth century. In thet 7th century, several Go schools were
founded with the support of the Japanese government. Tfigabfrecognition led to a
major improvement of the playing level.

Despite its widespread popularity in East Asia, Go did omlsead slowly to the rest
of the world, unlike other games of Asian origin, such as shealthough the game is
mentioned in Western literature from theth century onward, Go did not become popular
in the West until the end of thegth century, when the German scientist Korschelt (1880)
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wrote a treatise on the game. By the eam}h century, Go had spread throughout the
German and Austro-Hungarian empires. It was only in the e @art of the2oth century
that Go became recognized in the rest of the Western World.

Nowadays, the International Go Federation has at least fhb@mecountries. It has
been claimed that across the world 1 person out of every 2860 (Fairbairn, 2000). It
is estimated that there are around 1,000 Go profession#te iworld, mostly from Japan,
China, and Korea.

2.2 Rules of Go

Several rule sets exist for the game of Go (e.g., Chinesanése, American, or New
Zealand). Although all major rule sets agree on the samergkidea of how the game is to
be played, there exist several subtle differences. Thegpyimifference between rule sets is
the scoring method, although it is rare to observe more traregpoint difference between
scoring methods. The two-most popular rule sets are thendapand the Chinese sets. Due
to the scoring method, the Japanese rules are regarded leytedme slightly more inter-
esting than Chinese rules. However, it is well known thatdage rules are quite difficult
(and by some even considered impossible) to implement irogram due to ambiguities
and inconsistencies in the official texts. Chinese rules sidfer from some ambiguity, but
to a much lesser extent. Therefore, it is the natural chac&sb programmers to prefer
Chinese rules (Van der Werf and Winands, 2009) and use theamgiuter Go tournaments
(e.g., Computer Olympiad). It is beyond the scope of theisttesexplain all rules in detail.
For a more elaborate introduction we refer to Van der WerD@0 A basic set of rules,
adapted from Davies (1977), is given below.

1. The square grid board is empty at the outset of the gameallyshe grid contains
19 x 19 intersections, though x 9 is used as well.

2. There are two players, called Black and White.
3. Black makes the first move, alternating with White (see Feguil(a)).

4. A move consists of placing one stone of one’s own colourrorrapty intersection
on the board.

5. A player may pass his turn at any time.

6. A stone or through grid lines orthogonally connected $atanes of one colour is
captured and removed from the board when all the intersectiirectly adjacent to
it are occupied by the opponent (see Figure 2.1(b)).

7. No stone may be played to repeat a former board position.
8. Two consecutive passes end the game.

9. A player’s territory consists of all the board points hes ledther occupied or sur-
rounded.

10. The player with more territory wins.
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(a) From the empty board, Black and White play @} Stones that are surrounded are captured. Black
ternately on the intersections. can capture white stones by playing on the marked
intersections.

Figure 2.1: Rules of Go.

2.3 Characteristics of Go

Formally, Go can be defined adwn-basedtwo-personzero-sumdeterministi¢ partisan
game withperfect informatiort Lichtenstein and Sipser (1980) proved that Go is PSPACE-
hard. The state-space complexity is estimated tb0b&" (Tromp and Farneick, 2007) and
the game-tree complexity3° (Allis, 1994)2? The average branching factor of Go is much
higher than in chess: 250 against 35 (Allis, 1994). Due teglaharacteristics, Go is consid-
ered by many experts as one of the most complex board ganmete(M002). Considering
the current state-of-the-art computer techniques, itarghat Gal9 x 19 or even9 x 9 is
not solvable in reasonable time by brute-force methods.oUwty, the largestquareboard
for which a computer proof has been publishedis5 by Van der Werf, Van den Herik, and
Uiterwijk (2003). It is a full-board win for the first playeB(ack). Recently, Van der Werf
and Winands (2009) solvedctangularGo boards up to 30 intersections. An overview of
the game-theoretic results is given in Table 2.1. For GogHrae-theoretic results provide
the number of points by which a game is won (or lost).

1A turn-basedor sequentiajame is a game where players move following a predefined order.
A game iszero-sumwhen the gain or loss of one player is exactly balanced by #wesgor losses of the other
player(s). For two-player games, it implies that if one playars, the other loses.
A game isdeterministidf the outcome of every move is deterministic, i.e., it does nebive chance.
A game ispartisanwhen the possible moves are not the same for all players. Wekehatin Go, possible moves
are often the same for both players, but may differ in rare sttos.
A game has perfect information when all the players share tine ggece of information.

2The state-space complexity of a game is defined as the numbegadfgame positions reachable from the
initial position of the game (Allis, 1994).
The game-tree complexity of a game is the number of leaf nodes satlation search tree of the initial position(s)
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Table 2.1: First player scores an x n boards (Van der Werf and Winands, 2009).

m\n|1l 2 3 4 5 6 7 8 9 10 11 12
1 0O 0 3 4 O 1 2 3 0 1 2 2
0O 0 8 10 12 14 16 18 4 6

4

2

9 15 18 21 24 5
20 8 28
25 4

2
3
4
5

2.4 Go Concepts

Humans are using several concepts to understand the ganae tifiSinteresting to mention
these concepts to understand how humans deal with the cxitgéthe game. We explain
below the concepts dife and death(Subsection 2.4.1}erritory (Subsection 2.4.2)nflu-
ence(Subsection 2.4.3), anglatterns(Subsection 2.4.4). We also discuss how computer
programs dealt with these concepts in the past.

2.4.1 Life and Death

In the thesis, an orthogonally connected set of stones lisccablock A groupis defined

as a (loosely) connected set of blocks of one colour thatllysc@ntrols® one connected
area at the end of the game (Van der Werf, 2004). By definitiwery block is also a
group. A group is said to baliveif it cannot be captured by the opponent. A group is said
to beunconditionally aliveif it cannot be captured by the opponent even if the defending
player always passes. A group that cannot escape of beimgredps consideredead An
example of life and death is given in Figure 2.2. It is relalyvstraightforward to make

a procedure that tests if a group is unconditionally alivenor. However, during actual
games, groups are rarely unconditionally alive, but oniyeaif defended. Classic search
algorithms such as 3 (Knuth and Moore, 1975) or proof-number search (Adlisl, 1994)
may help, in some cases, to find out whether a given groupvs.akredicting life and
death in Go has been the aim of specific research (see WoH, ¥9éhimoto and Miller,
2003; Van der Werkt al, 2005). The resulting programs are able to outperform gtron
amateurs for specific life-and-death problems.

2.4.2 Territory

Territory is defined as the intersections surrounded and controlledéylayer at the end of
the game. An example is given in Figure 2.3. The notion ofttawris dependent on the life
and death of groups forming that territory. Therefore, catimy territory is more difficult
than computing life and death. Several approaches arenablyoeffective at evaluating
territory. For example, Nller (1997) used a combination of search and static rulbereas
Bouzy (2003) chose to apply mathematical morphology. Van/idef, Van den Herik, and
Uiterwijk (2006) trained a multi-layered perceptron togict potential territory.

of the game (Allis, 1994).
3To control is defined as to get all points for that area at thiagthe game.
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Figure 2.2: Life and death: The white group can never be capturegftine it is said to be (uncondi-
tionally) alive. Black cannot prevent that his group is being capturestetbre Black’s group is said
to be dead.

Figure 2.3: Territory: Black has territory that is marked with triangles.

2.4.3 Influence

A player hasnfluencein a region if it is most likely that he is able to create temjtin this
region. This notion is more difficult to evaluate accurateith a computer than territory,
because the amount of influence depends on the specific bit@aton. In Go, there is
often a trade-off between influence and territory. When aqlaiges to create a territory,
the opponent may force him to close it by playing on the oetsitthat territory. This often
creates influence for that opponent. An example of such &offdcan be seen in Figure
2.4. Several researchers have proposed a model for infl{erge Zobrist, 1969; Chen,
2002).

2.4.4 Patterns

A patternis a (local) configuration of stones, which may or may not bgetelent of its
location on the board. Patterns are important both for hsnzard computers. Humans
typically try to maximize the number of efficient patterngidaminimize the number of
inefficient patterns. Examples of efficient and inefficieattprns are depicted in Figure 2.5.
There has been quite an effort to include patterns in a Gaengs for instance by Zobrist
(1970), Cazenave (2001), and Ralaivola, Wu, and Baldi (R005
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Figure 2.4: Influence and territory: White made a territory in the comkeereas Black hasfluence
on the outside.

: +OTOTOT

Figure 2.5: Two Go patterns. Left: a pattern of three stones that is @esids inefficient by human
experts. Right: A pattern of three stones considered as efficient bgmerperts.

2.5 Go and Artificial Intelligence

Since the beginning of Al, mind games have been studied egaat application fields. For
instance, some of the first algorithms able to search and leare been developed for chess
(Shannon, 1950; Turing, 1953) and Checkers (Samuel, 18&§)ectively.

The first scientific article describing a computer Go prograas published by Remus
(1962), who developed an automatic algorithm for learnig Ghe program was imple-
mented on an IBM 704, but was not able to defeat any human playe first program
to be able to defeat an absolute beginner was designed bysEatino also wrote the first
Ph.D. thesis on computer Go (Zobrist, 1970). Just one yéar; ke second Ph.D. on Go
was defended by Ryder (1971). These researchers creatdidsth®@o programs, which
were based on heuristic evaluation functions. The mainvgastan influence feature: each
stone was considered to radiate influence on its surroundiagsections. These programs
were not able to perform deep searches, due to the lack of wempower.

During the seventies, the best programTERIM.2, was built by Reitman and Wilcox
(cf. Wilcox, 1988). This program used an expert system wioctk decisions based on an
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abstract representation of the game. It was programmed3R.lHurther use of abstraction
was also studied by Friedenbach (1980). The combinatiorartc, heuristics, and expert
systems led to the best programs in the eighties.

At the end of the eighties a new type of Go programs emergegsdprograms made an
intensive use of pattern recognition. This approach wasidied in detail by Boon (1990).

In the following years, different Al techniques, such asriR@icement Learning (Schrau-
dolph, Dayan, and Sejnowski, 1993), Monte Carloi(@nann, 1993), and Neural Networks
(Richards, Moriarty, and Miikkulainen, 1998), were testeds0. However, programs ap-
plying these techniques were not able to surpass the leteedfest programs. The combi-
nation of search, heuristics, expert systems, and paeognition remained the winning
methodology.

Briigmann (1993) proposed to use Monte-Carlo evaluations akemative technique
for Computer Go. His idea did not got many followers in thedf9n the following decade,
Bouzy and Helmstetter (2003) and Bouzy (2006) combined &t@drlo evaluations and
search in Indigo. The program won three bronze medals at yrafgads of 2004, 2005,
and 2006. Their pioneering research inspired the develnopofévionte-Carlo Tree Search
(MCTS) (Coulom, 2006; Kocsis and Szepagy 2006; Chasloét al, 2006a). Since 2007,
MCTS programs are dominating the Computer Go field. MCTS beéllexplained in the
next chapter.

2.6 Go Programs MANGO and MoGo

In this subsection, we briefly describe the Go programsnio and MoGo that we use
for the experiments in the thesis. Their performance inoesritournaments is discussed as
well4

MANGO

We developed MNGO at Maastricht University since 2006. It is programmed in Cand
was most of the time running on a 2.6 GHz quad-core computen &b participated in 10
international computer tournaments in 2006 and 2007, dhietuthe Computer Olympiad
2007. MaNGoO finished in the top half of all tournaments that it particgzhtn.

MoGo

MoGo was developed by the University Paris-Orsay as the mastgqtrof Yzao Wang,
supervised by Bmi Munos with advice from ni Coulom. A few months later, Sylvain
Gelly and Olivier Teytaud joined the project. We joined th@®lo team in beginning of
2008. MoGo is also programmed in C++.

MoGo patrticipated in more than 30 internet tournaments (of wiidre than half of
them were won), and three Computer Olympiads: Amsterdan?,2B@ijing 2008, and
Pamplona 2009 (in which it finished first, second and thirdpeetively). The program’s

4The overview of the online computer tournaments in whickNd o and MoGo participated can be found at:
http://www.weddslist.com/kgs/past/index.html. The Gaitessof the Computer Olympiads in whichAiGo and
MoGo participated can be found at: http://www.grappa.unile8lfr/icga/game.php?id=12.
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most famous results were in achieving several milestonefeating human Go profes-
sionals in official matches, in particular with 9, 7, and 6n&t® handicap. The history of
the best performance of programs against professionaépaan be found in Appendix B.
More information on the tournament results obK8o can be found on its webpade.

5See http://www.lri.fr/ teytaud/mogo.html.



Chapter 3

Monte-Carlo Tree Search

This chapter is based on the following publications:

G.M.J-B. Chaslot, J-T., Saito, B. Bouzy, J.W.H.M. Uiterwijk and H:dn den
Herik (2006a). Monte-Carlo Strategies for Computer GBroceedings of the
18th BeNeLux Conference on Atrtificial Intelligen¢eds. P-Y. Schobbens, W.
Vanhoof, and G. Schwanen), pp. 83—90.

G.M.J-B. Chaslot, S. de Jong, J-T. Saito and J.W.H.M. Uiterwijk (B)0Blonte-
Carlo Tree Search in Production Management ProbléPnsceedings of the 18th
BeNeLux Conference on Atrtificial Intelligendeds. P-Y. Schobbens, W. Van-
hoof, and G. Schwanen), pp. 91-98.

G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van dderik,
and B. Bouzy (2008c). Progressive Strategies for Monte-Carle $earch New
Mathematics and Natural Computatjdfol. 4, No. 3, pp. 343-357.

G.M.J-B. Chaslot, S. Bakkes, I. Szita and P.H.M. Spronck (2Q0Btnte-Carlo
Tree Search: A New Framework for Game ARroceedings of the Fourth Ar-
tificial Intelligence and Interactive Digital Entertainment Confere(eds. M.
Mateas and C. Darken), pp. 216-217.

I. Szita, G.M.J-B. Chaslot and P.H.M. Spronck (2010). Montel&Caree Search
in Settlers of CatanAdvances in Computer Games Conference (ACG 20885.
H.J. van den Herik and P.H.M. Spronck), Vol. 6048 etture Notes in Computer
Science (LNCSpp. 21-32, Springer-Verlag, Heidelberg, Germany.

In this chapter we discuss Monte-Carlo Tree Search (MCT8ichnis used to answer
our problem statement and research questions. MCTS apfiedleee different variants in
2006 (Coulom, 2006; Kocsis and Szep@sy2006; Chaslogt al., 2006a). Coulom used his
variant to create the first competitive MCTS progranRA2Y STONE, which immediately
won the9 x 9 Go tournament at the .Computer Olympiad. The variant introduced by
Kocsis and Szepeév (2006), called UCT, was based on the Upper Confidence @oun
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(UCB) algorithm (Aueret al,, 2002). The variant we proposed was called Objective Monte-
Carlo (OMC) (Chaslokt al., 2006a). This chapter introduces a general framework for
MCTS that is able to incorporate these variants.

MCTS is a best-first search method guided by Monte-Carlo lsitioms. In contrast
to classic tree-search algorithms suchn@s(Knuth and Moore, 1975) and* (Hartet al,,
1968), MCTS does not require any heuristic positional eatabm function. MCTS is partic-
ularly interesting for domains where building a positiogahluation function is a difficult
time-consuming issue, such as the game of Go.

MCTS consists of two strongly coupled parts: a relativelgliiw tree structureand
deepsimulated gamesThe tree structure determines the first moves of the siediigames.
The results of these simulated games shape the tree. MCE3ausamain steps. (1) In the
selection stephe tree is traversed from the root node until the end of tee. t(2) Next,
in the expansion step node is added to the tree. (3) Subsequently, duringithalation
stepmoves are played in self-play until the end of the game ishegc (4) Finally, in the
backpropagation steghe result of a simulated game is propagated backwardsjghrthe
previously traversed nodes.

This chapter is organized as follows. In Section 3.1, weudisearlier research about
using Monte-Carlo evaluations as an alternative for a k&anpositional evaluation func-
tion. This approach is hardly used anymore, but it estabtisin important step towards
MCTS. Section 3.2 presents the structure of MCTS. In Se@i@nwe present different
strategies proposed for each MCTS step. Subsequently,ssasdi how to select the move
to be played in the actual game in Section 3.4. Then, we gipiicaions of MCTS to
different domains in Section 3.5. Finally, we present theptar conclusions in Section 3.6.

3.1 Related Work: Monte-Carlo Evaluations

Monte-Carlo Evaluations (MCESs) were originally introddder Othello, Tic-Tac-Toe, and
Chess by Abramson (1990). Bymann (1993) was the first to use them for Go as well, but
his results were not convincing. During the nineties, MCEsewsed in several stochas-
tic games such as Backgammon (Tesauro and Galperin, 19€idyeB(Smith, Nau, and
Throop, 1998; Ginsberg, 1999), Poker (Billings al, 1999), and Scrabble (Sheppard,
2002). After 2000, a further development by Bouzy and Hedttst (2003) led to the first
competitive Monte-Carlo Go program, calleddiGo, at the Olympiads of 2003 and 2004
(cf. Chen, 2003; Fotland, 2004). Moreover, HelmstetteD@G&uccessfully applied MCEs
in the one-player game Morpion Solitaire.

The most basic version of MCEs works in the following way: ytlevaluate a game
position P by performingsimulationsfrom P. In a simulation (also called playoutor
arollout) moves are (pseudo-)randomly selected in self-play um¢ilend of the game is
reached. Each simulation gives as output a payoff vectdt; containing the payoffs for
each player. The evaluatidn, (P) of the positionP aftern simulations is the average of
the results, i.e.E,(P) = 1 Y R;.

A property of MCEs is that, if the values of the payoffs are tabed,F,, (P) converges
to a fixed value whem goes toco. We denote the limit ofF,, (P) whenn approaches

1This requires the condition that the number of moves per ganimied. For instance, in the game of Go,
this is done by introducing an extra rule which forbids toyplaits own eyes.
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infinity by E(P), ando to be the standard deviation of the payoff. Moreover, thet@én
Limit Theorem states that the random varialilg(P) converges to a normal distribution
with mean valueF, (P) and standard deviatioﬁ’ﬁ. For sufficiently largen, we have the
following approximation:

E.(P) = Ex(P)+ X (3.1)

where Xis a normally distributed random variable with mealug0 and standard deviation

g

T

The use of MCEs raises two questions. The first question coatlee quality of MCEs.
Is the evaluatior, (P) qualitatively comparable to a positional evaluation? @aisuffi-
cient resources, would a3 program based on MCEs perform as well as a program based
on a positional evaluation function?) The second questimeerns the practical and quanti-
tative feasibility of MCEs. IfE (P) would theoretically provide a satisfactory evaluation,
then, how many games would be required for a useful evaltiNould the required
number of simulations be reachable in practice?)

To answer the first question, we observe that MCEs have bemmnsto be quite ac-
curate for several games such as Backgammon (Tesauro apdri@all997), Go (Bouzy
and Helmstetter, 2003), and Othello (Abramson, 1990). Bwanthe second question, we
observe that the number of simulations that have to be pegdiin order to have a mean-
ingful evaluation appears to be in the order of a few thousdofl Bouzy and Helmstetter,
2003). The requirement of such a relatively large numbeirofigted games makes MCEs
impractical in a classia tree search for most domains. For instance, to evaluat®,000
nodes in chess, which takes approximately one second inaatyhess program, a runtime
of approximately 28 hours would be required with MCE, assigri00,000 simulations
per second and 10,000 simulations per evaluation. Undenaouent conditions, an MCE-
based program would evaluate even a fewer number of nodésyaud have therefore a
shallower search depth.

Despite the time-consuming property, there are prograatscttmbine MCEs and,3
searcl? To reach a reasonable search depth, the programmngevaluationgPersson,
2006): instead of evaluating the position completely, theéBs stopped prematurely when
there is a certain probability (say 95%) that the value isagbMower than thex value, or
always higher than thg value, respectively (Persson, 2006).

Another way of combining search and MCEs was proposed by ¥B(R006). He sug-
gested to grow a search tree by iterative deepening andngrumipromising nodes while
keeping only promising nodes. All leaf nodes are evaluatetiCEs. A problem with
this approach is that actually good branches are prunetebnhiecause of the variance
underlying MCEs.

By contrast, the Monte-Carlo Tree Search approach doessgoMCESs as described
above, but rather improves the quality of MCEs by focusirggstsarch in the most promising
regions of the search space. This mechanism is explainestdil th the next section.

2VIKING5, the Go program developed by Magnus Persson, was most fydbabstrongest in using this
method.
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Repeated X times

Selectlon Expansion H Simulation H Backpropagatlon

The selection strategy is
applied recursively until an
unknown position is reached

One simulated The result of this game is
game is played backpropagated in the tree

One node is added
to the tree

Figure 3.1: Outline of Monte-Carlo Tree Search.

3.2 Structure of Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) (Coulom, 2006; Kocsis arep8gari, 2006; Chaslatt al,
2006a) is a best-first search method that does not requirsitgmal evaluation function.
It is based on a randomized exploration of the search spasiaglthe results of previous
explorations, the algorithm gradually builds up a game inememory, and successively
becomes better at accurately estimating the values of tls-promising moves. MCTS is
applicable if at least the following three conditions args$izd: (1) the payoffs are bounded
(the game scores are bounded), (2) the rules are known (etampformation), and (3) sim-
ulations terminate relatively fast (game length is limjted

The basic structure of MCTS is as follows. In MCTS, each nodepresents a given
position (also called a state) of the game. A node contailesat the following two pieces
of information: (1) the current value; of the position (usually the average of the results
of the simulated games that visited this node), and (2) thi¢ @0untn, of this position.
MCTS usually starts with a tree containing only the root node

MCTS consists of four main steps, repeated as long as théraddeft. The steps are
as follows. (1) In theselection stephe tree is traversed from the root node until we reach
a nodeE, where we select a child that is not part of the tree yet. (XtNe theexpansion
stepthis child of £ is added to the tre&(3) Subsequently, during tismulation stepnoves
are played in self-play until the end of the game is reachée.r&sultr of this “simulated”
game is+1 in case of a win for Black (the first player in Gd),in case of a draw, and 1
in case of a win for White. (4) In thbackpropagation stepR is propagated backwards,
through the previously traversed nodes. Finally, the mdagaal by the program is the child
of the root with the highest visit count. An outline of the faep of MCTS are depicted in
Figure 3.1.

The pseudo-code for MCTS is given in Algorithm 3.1. In theyzkecode7 is the set
of all nodes (the search tre€elect(Node Nis the procedure, which returns one child of
the nodeN. Expand(Node Nis the procedure that adds one node to the tree, and returns

30f course more children can be stored at once. For a discuséthis topic see Subsection 3.3.2.
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this node Play_simulatedgame(Node Nis the procedure that plays a simulated game from
the newly added node, and returns the regule {—1,0,1} of this game. Backpropa-
gate(Integer R)s the procedure that updates the value of the node depeaditite result

R of the last simulated gamg/.(node N)is the set of the children of nodg.

Data: root.node
Result bestmove

while (hastime)do
current_node «— root_node

/* The tree is traversed * [

while (current_node € T) do
last_node «+— current_node

current_node «— Select(current_node)

end
/* A node is added */
last_node — Expand(last_node)

[+ A simulated gane is played */
R — Play_simulated_game(last_node)

[+ The result is backpropagated */
current_node «— last_node
while (current_node € T) do

Backpropagation(current_node, R)

current_node < current_node.parent

end
end
return best_move = argmaz yen, (root_node)

Algorithm 3.1: Pseudo-code for Monte-Carlo Tree Search.

3.3 MCTS

In this section, we discuss strategies to realize the fosicbsteps of MCTS: selection
(Subsection 3.3.1), expansion (Subsection 3.3.2), stiouléSubsection 3.3.3), and back-
propagation (Subsection 3.3.4).

3.3.1 Selection

The selection step works in the following way. From the roode, aselection strategis

applied recursively until a position is reached that is npag of the tree yet. The selection
strategy controls the balance between exploitation antbeagion. On the one hand, the
task often consists of selecting the move that leads to therbsults so far (exploitation).
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On the other hand, the less promising moves still must be,tdee to the uncertainty
of the evaluation (exploration). A similar balancing of &itation and exploration has
been studied in the literature, in particular with respedhe Multi-Armed Bandit (MAB)
problem (Robbins, 1952). The MAB problem considers a gamgbilevice and a player,
whose obijective is to maximize the reward from the deviceedth time step, the player
can select one aV arms of the device, which gives a reward. In most settingsraivard
obeys a stochastic distribution. The selection problem GfM@ can be viewed as a MAB
problem for a given node: the problem is to select the nextatoyplay, which will give an
unpredictable reward (the outcome of a single random gakmewing the past results, the
problem is to find the optimal move. However, the main diffeewith the MAB problem is
that MCTS works by using recursively several selections:siection at the root node, the
selection at depth one, the selection at depth two, etc.r8lesedection strategies have been
designed for MCTS such as OMC (Chagoal, 2006a) and PBBM (Coulom, 2006). Some
MCTS selection strategies have been derived from MAB allgor$ such as UCT (Kocsis
and Szepesri, 2006) and UCB1-TUNED (Gelly and Wang, 2006). Below, wik @iscuss
the following four selection strategies: OMC, PPBM, UCTdasCB1-TUNED.

e OMC. In Chaslotet al. (2006a), we proposed OMC (Objective Monte-Carlo). It
consists of two partd. First, anurgency functiordetermines the urgendy (i) for
each possible move Second, dairness functiordecides which move to play, with
the aim to play each move proportionally to its urgency. Thgenocy function in
OMC is as follows:

U(i) = erfq( ”Of;fi) 3.2)

whereer f¢(-) is the complementary error functiowy is the value of the best move,
andv; ando; are respectively the value and the standard deviation ohthe under
consideration. The idea behind this formula is to h&i{¢) proportional to the prob-
ability of a move to be better than the current best move. Néxtchild is chosen
according to the following rule: select the nadhat maximizes the fairness function

fi:

o ny x U(i) 3.3
= S UG (2:3)

wheren; is the visit count ofi, andn, is the visit count ofp, and S; is the set
containing the sibling nodes of

e PBBM. In 2006, Coulom (2006) proposed PBBM (Probability to be 8etthan Best
Move). Just like OMC, it consists of an urgency function arfdieness function. Its
urgency functiorl/ (i) is again proportional to the probability of the move to badret
than the current best move. The difference with OMC is thatstfandard deviation
of the best move is taken into account. The urgency functia?BBM is as follows:

4We thank Remi Coulom for the idea of splitting this algorithm into twortsa
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Vo — U4

2(08 +0?) (3.4)

U(i) = exp(—2.4 x

wherevy andoy are the value and standard deviation of the best move, réaggc
Similarly, v; ando; are the value and the standard deviation of the move under con
sideration.

e UCT. Kocsis and Szepeévi (2006) proposed the UCT (Upper Confidence bounds
applied to Trees) strategy. This strategy is easy to imphepend used in many
programs (see Section 3.5). It is nowadays used anBlo as well. UCT adapts the
UCB (Upper Confidence Bounds) method initially developedMi&\B (Auer et al.,
2002). UCT works as follows. Let be the set of nodes reachable from the current
nodep. UCT selects a child of the nodep that satisfies Formula 3.5:

Inn,
k € argmax;cr (Ui +C x nnp> (3.5)

Uz

whereuv; is the value of the nodg n; is the visit count of,, andn,, is the visit count
of p. C is a coefficient, which has to be tuned experimentally.

e UCB1-TUNED. Gelly and Wang (2006) proposed to use the UCT variant UCB1-
TUNED, originally described by Auest al. (2002). UCB1-TUNED selects a child
of the nodep that satisfies Formula 3.6:

1 1
k € argmax;cr <vi +C x \/ U mm{4,VZ(nl)}> (3.6)
n;
where
1 & 2lnn
Vi(ni) = (g SR, —vl Tp) (3.7
1 t:1 1

is an estimate upper bound for the variance,ofR; , ; is thet!" payoff, obtained in
node: for playerj.

Recently, Audibert and Bubeck (2009) proposed MOSS (Mimi@atimal Strategy in
the Stochastic case) that minimizes the regret dependinigeonumber of moves. This se-
lection strategy is a refinement of UCB/UCT. Other selecsivategies have been designed
that assume smoothness between the different moves, sUBASE (Bandit Algorithm
for Smooth Trees) by Coquelin and Munos (2007) and HOO (idibieal Optimistic Op-
timization) by Bubecket al. (2008). Additionally, for generating an opening book with
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MCTS, we introduce QBF (Quasi Best-First) and BDS (Betatiihigtion Sampling) in
Chapter 8.

We note that all these selection strategies presented fegame-independent and do
not use any domain knowledge. Selection strategies thanmseledge will be discussed in
Chapter 5. Finally, we remark that in some programs (e.8AZ¥ STONE and MANGO) a
selection strategy is only applied in nodes with a visit adugher than a certain threshold
T (Coulom, 2006). If the node has been visited fewer times thanthreshold, the next
move is selected according to thienulation strategysee Subsection 3.3.3).

3.3.2 Expansion

The expansion step adds nodes to the MCTS tree. Because $rdmmains the whole
game tree cannot be stored in memory, an expansion strageipged that, for a given node
L, whether this node will be expanded by storing one or morgsathildren in memory. A
popular expansion strategy is the following:

e One node is added per simulated game. This node correspmiigis first position
encountered during the traversal that was not alreadyds{@eulom, 2006).

This strategy is simple, efficient, easy to implement, anelsdoot consume too much
memory in general. Other strategies are possible as wallinBtance, it is possible to ex-
pand the tree to a certain depth (e.g., 2 or 3 ply) beforesteitte search. It is also possible
to add all the children of a node to the tree as soon as a centanier? of simulations
have been made through this node. This strategy is onlylesshen a large amount of
memory is available. In contrast to this strategy, one mayidcany node expansion before
a certain numbef’ of simulations have been made through this node. This altovgsive
memory, and reduces only slightly the level of play (Dail2906). In general, the effect
of these strategies on the playing strength is small. Tleegly of creating one node per
simulation is therefore sufficient in most cases.

3.3.3 Simulation

Simulation (also calleglayou) is the step that selects moves in self-play until the endef t
game. This task might consist of playing plain random moveslgetter — pseudo-random
moves chosen according taimulation strategyThe use of an adequate simulation strategy
has been shown to improve the level of play significantly (Bo2005; Gellyet al., 2006).
The main idea is to play interesting moves according to B&arknowledge (e.g., for Go:
patterns, capture considerations, and proximity to thientexwe).

A simulation strategy is subject to two trade-offs. The finse is the trade-off between
search and knowledge. Adding knowledge to the simulaticategy increases the playing
strength. Simulated games become more accurate and thaltsrmore reliable. However,
if the heuristic knowledge is too computationally expeasihe number of simulations per
second will decrease too much. The MCTS search tree is ghaftd the playing strength
will drop. The second trade-off deals with exploration vgpleitation. If the strategy is
too stochastic (e.g., too much randomness), too much extplartakes place. The moves
played in the simulated games are often weak, causing thalaions to be unrealistic,
and the level of the Monte-Carlo program decreases. In asntif the strategy is too
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deterministic (e.g., if the selected move for a given posits almost always the same), too
much exploitation takes place. The exploration of the seapace becomes too selective,
causing the simulations to be biased, and the level of thetd4@arlo program decreases
as well.

Due to these two trade-offs, elaborating an efficient sithutastrategy is a difficult
issue. There are two ways to assess the quality of a simnlatiategy. We define a sim-
ulation strategy A to béetterthan a simulation strategy B, if A wins more games against
B when playing against each other (i.e., without using MCV#) define that a simulation
strategy A iSMCTS-bettethan a simulation strategy B, if an MCTS program using A wins
more games against the same MCTS program using B. The goabiring a simulation
strategy is to make it MCTS-better. Bouzy and Chaslot (2@b@®wed that it is possible
to have a simulation strategy which is better than another without being MCTS-better.
This phenomena has been a reported by Gelly and Silver (2G0xgII.

In Chapter 4 we will discuss the simulation strategies usg@a programs, especially
for our programs MNGO and MoGo. Moreover, in Section 3.5 the simulation strategies
for a few other domains are briefly described.

3.3.4 Backpropagation

Backpropagation is the step that propagatesréiselt of a simulated gamé backwards
from leaf nodeL to the nodes it had to traverse to reach this leaf node. Ftarins, for
a two-player zero-sum game (e.g., Go), this result is calptsitively (R, = +1) if the
game is won, and negative(yf?;, = —1) if the game is lost. Draws lead to a resilf = 0.

A backpropagation strategg applied to compute thealuev;, of a node. The most popular
and most effective strategy is Average, which takes then@serage of the results of all
simulated games made through this node (Coulom, 2006),vire= (3, Ri)/nr. It
was first used by Kocsis and Szep&s\{2006), and since 2007 by the vast majority of the
programs. Finding a better backpropagation than Averagelisllenge for MCTS. Below,
we present several other backpropagation strategies gedpio the literature. They are
called Max, Informed Average, Mix, and MCTS-Solver.

e Max. The Max strategy backpropagates the value in a negamax waytlikand
Moore, 1975). The value of a nogleis the maximum value of its children. Using
Max backpropagation in MCTS does not give good results (@auR006). When the
number of children of a node is high, and the number of sinaratis low, the values
of the children are noisy. So, instead of being really the bb#d, it is likely that
the child with the best value is simply the most lucky one. iBag up the maximum
value overestimates the best child and generates a greanawfosearch instability
(Coulom, 2006; Chaslatt al,, 2006a).

The noise of the value of a node can be modelled with the hefbeo€entral Limit
Theorem. LetR; € {—1,0,+1} be the result of the simulated gamdet o be the
standard deviation of the random varialfte and letn be the number of simulated
games played;L The Central Limit Theorem states that thelatdrdeviation of the

meanm,, = Z:Tlp” approaches\%ﬁ whenn approachesoc.

Therefore, we can deduce a statistical relation betweemethlevalue of this node,
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denoted by, and the observed valug of the node:
Up = Voo + 7,

wherez is a random variable with mean valQeand standard deviatio%. Based
on this statistical relation, we distinguish three sitoas:

— If ois large (in practicer > 0.3), v, is likely to be different from the real value.
Therefore, the Max value is most likely to be an overestich&sue, because it
is the Max of (more or less) random values. Thus; i§ large, it is not possible
to use Max. In this case, the average of the children givaeetsults.

— If o is close ta) (in practices < 0.01), then Max can be applied.

— For moderate values of, a compromise between Average and Max would give
a better evaluation than Average or Max, such as Mixed orrinéal Average
(see below).

e Informed Average. As an alternative for Max, we proposed Informed Average
(Chaslotet al,, 2006a). The strategy aims to converge faster to the valtizedbest
move than Average by assigning a larger weight to the besemolt is computed
with the following formula:

Zi (vi - ni - Uy)

> (ng - Uy) (3.8)

’Up:

whereU; represents the urgency of the move, calculated by Formila/@ showed
that MCTS using Informed Average estimates a position biteen MCTS using Max
(Chaslotet al,, 2006a). However, an MCTS program using Informed Averaggead

not as well as an MCTS program using Average.

e Mix. As an alternative for Max, Coulom (2006) proposed Mix. It gartes the value
of the parent nodg with the following formula:

Umean * Wmean + Ur = Ny
vp = (3.9

wmean + nT

whereuw,. is the value of the move which has the highest number of sitionls, and
n, the number of times it has been played,..,, is the average of the values of the
child nodes andv,,..,, the weight of this average This backpropagation was used
in CRAzZY STONE when it won thed x 9 Go tournament of the Computer Olympiad
2006. However, the new version oRBzY STONE uses Average, which gives better
results.

5In CrAZY STONE, this weight has a constant value (i.e., 162, see Coulom,)20 a certain number of
simulated games (i.e., 1296, see Coulom, 2006) has been pl&yeuh. that point onw.m,eqr is the number of
simulated games played divided by 8.
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e MCTS-Solver. To play narrow tactical lines better in sudden-death garneb as
LOA, Winands, Bprnsson, and Saito (2008) proposed MCTS-solver. In additio
to backpropagating the values by using Average, it progsgdite game-theoretical
valuesoo or —oo. The search assigne or —oo to a won or lost terminal position for
the player to move in the tree, respectively. Propagatieg/étiues back in the tree is
performed similar to negamax. If the selected move (chifd node returnso, the
node is a win. To prove that a node is a win, it suffices to prbe¢ one child of that
node is a win. Because of negamayx, the value of the node wikb&—oc. In the
case that the selected child of a node retutns, all its siblings have to be checked.
If their values are alse-oo, the node is a loss. To prove that a node is a loss, we
must prove that all its children lead to a loss. Because chmeg, the node’s value
will be set tooco. In the case that one or more siblings of the node have a eliffer
value, we cannot prove the loss. Thereford, is propagated, the result for a lost
game, instead of oo, the game-theoretical value of a lost position. The nodé wil
be updated then according to the backpropagation strategsage. Winandst al.
(2008) showed that a LOA program using MCTS-Solver defegtsogram using
Average backpropogation by a winning score of 65%.

3.4 Final Move Selection

After the simulations, the move finally played by the progiarthe actual game is the one
corresponding to the “best child” of the root. There areallédht ways to define which child
is the best.

1. Max child. The max child is the child that has the highest value.
2. Robust child.The robust child is the child with the highest visit count.

3. Robust-max childThe robust-max child is the child with both the highest visitint
and the highest value. If there is no robust-max child at thenent, more simulations
are played until a robust-max child is obtained (Coulom,8)00

4. Secure childThe secure child is the child that maximizes a lower confiddyamund,
i.e., which maximizes the quantity+ %, where A is a parameter (set to 4 in our
experiments)y is the node’s value, andis the node’s visit count.

In the experiments performed in AlGO we did not measure a significant difference
between the methods discussed above, when a sufficient nuhbienulations per move
was played. However, when only a short thinking time per meas used (e.g., below 1
second), choosing the max child turned out to be signifigamtlaker than other methods.

3.5 MCTS Applications

In this section, we discuss the implementations of MCTS fffeiint application domains.
We only consider domains with perfect information. We makkstinction between games
with one, two or multiple (more than two) players. Anothestitiction is made between
deterministic and stochastic games.
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3.5.1 Deterministic One-Player Games

The first application of MCTS to a deterministic one-playang — also known as puzzles
or scheduling problems— was for Production Managementl®mb(PMP) (Chaslatt al.,
2006b), which are found in manufacturing and airline sctiaduFor PMP, we used OMC
as a selection strategy and a plain random simulation giraBecause OMC was originally
designed for deterministic two-player games, it had to apteti. An essential difference
between deterministic one-player and two-player gamelsaisthere is naincertainty on
the opponent’s playThis has two consequences. First, the best line and ite $oond by
MCTS should be kept in memory. Second, it is possible to beergoeedy than in other
domains, since we do not have to consider any unknown decisémle by an opponent. For
the latter, we modified the OMC formula (3.2) to increase tteediness as follows:

Vo — V;

\/501

whereG is the greediness coefficient. We obtained the best restiitavcoefficient with
a value between 50 to 100. The disadvantage of this settitigisMCTS does not give a
second chance to moves that had a bad evaluation in the logginfhe advantage of this
setting is that the MCTS tree manages to reach the end of the.g&or the best line of
play, decisions based on the selection strategy OMC are ataatey depth.

Another deterministic one-player game where MCTS was agplias SameGame.
Schaddet al. (2008a) obtained with their MCTS variant SP-MCTS the woedard in
this game. Cazenave (2009) broke this record with his own Bl@driant, called Nested
Monte-Carlo search. It uses nested levels of simulatiomsder to guide the search. His
method surpassed the best human score in Morpion Solitineh

Finally, we note that some optimization problems can berdsghas one-player games.
For instance, Mesmagt al. (2009) proposed the MCTS variant TAG (Threshold Ascent
applied to Graph) for optimizing libraries for differentgplorms.

U (i) = erfc(G x )

3.5.2 Deterministic Two-Player Games

For deterministic two-player games such as chess and asacsi@ge S with a strong eval-
uation function was the framework for building a strong Adyér. However, this framework
achieved hardly any success in Go. In 2006 MCTS started dutemoin the field of Com-
puter Go. MCTS-based programs have won e¥ery9 and19 x 19 Go tournament at the
Computer Olympiads since 2006 and 2007, respectively. dttha MCTS program MGO
TiTaN® that achieved the milestone of defeating a human Go prafeskin an official
match with a 9-stones handicap. To underline the signifieari¢his result, only a decade
ago a computer Go expert even managed to defeat a top progitana Wwandicap of 29
stones (Miller, 2002). Besides MGo (Gelly et al,, 2006; Gelly, 2007; Leet al., 2009),
top MCTS Go program are@azy STONE (Coulom, 2006), $3EENVRETER(Van der Werf,
2007), MaNY FACEs oFGo (Fotland, 2009), BEGO (Enzenberger and Mler, 2009), and
ZEN written by Sai Fujiwara.

Besides Go, MCTS is also used in other deterministic twggrlgames, such as Ama-
zons (Lorentz, 2008; Kloetzer, lida, and Bouzy, 2009; Kiteet2010) and LOA (Winand= al,,

8MoGo TITAN is a version of MbGo running on the Dutch national supercomputer Huygens.
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2008; Winands and Bynsson, 2010). Lorentz (2008) was able to create a hybrid C
program using UCT and a strong positional evaluation fumctiAfter a fixed length, the
simulation is terminated and subsequently scored basedtkoratue of the evaluation func-
tion. The MCTS programNVADERMC beat NVADER, the originala program, over
80% of the time under tournament conditions. MoreoveVADERMC won the Computer
Olympiads of 2008 and 2009. Winands an@ijsson (2010) investigated several simula-
tion strategies for using a positional evaluation funciioa MCTS program for the game
of LOA. Experimental results reveal that the Mixed strateggthe best among them. This
strategy draws the moves randomly based on their weighteeifirst part of a simulation,
but selects them based on their evaluation scores in thexdgmat of a simulation. The
simulation can be stopped any time when heuristic knowleddieates that the game is
probably over. Using this simulation strategy the MCTS paog plays at the same level as
thea program MIA, the best LOA playing entity in the world.

3.5.3 Deterministic Multi-Player Games

Sturtevant (2008) applied MCTS in the multi-player games€ée Checkers, Spades, and
Hearts. For the game of Chinese Checkers, he showed that M@3$ able to outperform
the standard multi-player search methods fnébuckhardt and Irani, 1986) and paranoid
(Sturtevant and Korf, 2000) equipped with a strong evatuatunction. For the perfect-
information versions of Spades and Hearts, MCTS was on ptr the state-of-the-art.
Moreover, Sturtevant (2008) showed that MCTS using UCT adeg a mixed-strategy
equilibrium as opposed to maxwhich computes a pure-strategy equilibrium. Cazenave
(2008) addressed the application of MCTS to multi-playet Gte proposed three UCT
variants for multi-player games: Paranoid UCT, UCT withi&tices, and Confident UCT.

3.5.4 Stochastic One-Player Games

The first application of MCTS in a stochastic one-player gavas in the Sailing Domain.
The Sailing Domain is a stochastic shortest-path probled®jSvhere a sail boat has to find
the shortest path between two points of a grid under variabid conditions. Kocsis and
Szepeséri (2006) tackled this domain by using UCT. The sail boattmswas represented
as a pair of coordinates on a grid of finite size. The contrdikd 7 actions available in
each state, giving the directions to the neighbouring gositipns. The action of which the
direction is just the opposite of the direction of the windswWarbidden. Each action had a
cost in the range between [1, 8.6], depending on the directfdhe action and the wind.
UCT was compared to two planning algorithms: ARTDP (Bart@dke, and Singh, 1995)
and PG-ID (Peret and Garcia, 2004). The conclusion was t@at kequires significantly
less simulations to achieve the same performance as ARTBP@GRD.

3.5.5 Stochastic Two-Player Games

Van Lishout, Chaslot, and Uiterwijk (2007) were the first fiply MCTS to the stochastic
two-player game Backgammon. UCT was used as a selectigagtravith a plain random
simulation strategy. The MCTS program was able to find anmxeening in one third of
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the dice rolls, but the program was significantly weaker ttiemnstate-of-the-art programs
based on Expectimax (cf. Berger, 2007).

3.5.6 Stochastic Multi-Player Games

Modern strategic board games are increasing in populanitgsheir (re)birth in the 1990's.
Strategic board games are of particular interest to Al meseas because they provide a
bridge between classic (two-player, deterministic) bagathes and video games. Modern
strategic board games have the property that they are sticmaulti-player games. We
applied MCTS — augmented with a limited amount of domain Kedge — to the stochastic
multi-player game Settlers of Catan (Szita, Chaslot, a8k, 2010). For the experi-
ments, the rules were changed in such a way that it becameteastiperfect-information
game. The MCTS programM3?RTSETTLERS defeated convincingly the strongest open
source Al available, JSTTLERS, and is a reasonably strong opponent for humans.

3.5.7 General Game Playing

The aim of General Game Playing is to create intelligent et automatically learn how
to play many different games at an expert level without anyduu intervention. The most
successful GGP agents in the past have used traditional-zameearch combined with
automatically learnt heuristic functions for evaluatirenge states. However, since 2007,
the MCTS program @DIA PLAYER, written by Finnsson and Bfnsson (2008), has won
the GGP tournament two times in a row. This program uses U@f,am online learning
algorithm for the simulations.

3.6 Chapter Conclusions

In this chapter we have presented a general framework fotd4Garlo Tree Search (MCTS).
It is a best-first search method that does not require a poaitevaluation function in con-
trast toa3 search. It is based on a randomized exploration of the sepate. Using the
results of previous explorations, MCTS gradually buildsaag tree in memory, and suc-
cessively becomes better at accurately estimating thevalfithe most promising moves.
MCTS has led to the best programs in several domains. We ameRtioduction Manage-
ment Problems, Library Performance Tuning, SameGame, iglorgolitaire, Sailing Do-
main, Amazons, LOA, Chinese Checkers, Settlers of CatanefaéGame Playing, and in
particular Go. In the larger picture, MCTS is also attrafior many other application do-
mains, because MCTS promises to overcome the “knowledgeisiton bottleneck” and
to make intelligent applications easier to engineer in nfaigs.

We discussed the four main steps of MCE8tection expansionsimulation andback-
propagation Each step has a strategy associated that implements éicpeticy. Regard-
ing selection, the UCT strategy is used in many programs geef& selection strategy
because it is simple to implement and effective. A standalettion strategy such as UCT
does not take domain knowledge into account, which coulddvgman MCTS program
even further. Next, a simple and efficient strategy to expghedree is creating one node
per simulation. Subsequently, we pointed out that buildisgmulation strategy is probably
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the most difficult part of MCTS. For a simulation strategyotalances have to be found: (i)
between search and knowledge, and (ii) between exploratidrexploitation. Furthermore,
evaluating the quality of a simulation strategy require® ibe assessed together with the
MCTS program using it. The best simulation strategy withd@TS is not always the best
one when using MCTS. Finally, the backpropagation strathgyis the most successful is
taking the average of the results of all simulated games rtradagh a node.

The two strategies that, if enhanced, we expect to give thgdsit performance gain in
a MCTS program are the simulation strategy and the selestiategy. In Chapters 4 and
5, we investigate how to enhance the simulation strategyalattive strategy of an MCTS
program, respectively.
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Chapter 4

Enhancing the Simulation
Strategy with Knowledge

This chapter is partially based on the publications:

B. Bouzy and G.M.J-B. Chaslot (2006). Monte-Carlo Go Reinforeentearn-
ing ExperimentsIEEE 2006 Symposium on Computational Intelligence in Games
(eds. G. Kendall and S. Louis), pp. 187-194.

G.M.J-B. Chaslot, C. Fiter, J-B. Hoock, A. Rimmel, and O. Teytaudl(@0
Adding Expert Knowledge and Exploration in Monte-Carlo Tree Searétd-
vances in Computer Games Conference (ACG 20898. H.J. van den Herik and
P.H.M. Spronck), Vol. 6048 ofecture Notes in Computer Science (LNO%®).
1-13, Springer-Verlag, Heidelberg, Germany.

In Chapter 3, we introduced the fundamental MCTS stratedibe two strategies that
if enhanced lead to the biggest performance gain in an MC®8ram are the simulation
strategy and the selection strategy. In this chapter, weemthe first research question by
investigating how to enhance the simulation strategy of &1 program with knowledge.

Theknowledgdransforms the plain random simulations into more soptastidoseudo-
randomsimulations (Bouzy, 2005; Gellgt al., 2006; Chen and Zhang, 2008). The knowl-
edge for the simulation strategy can be designed by a humaertefcf. Rimmel, 2009)
or created (semi)-automatically by machine learning. Véeulis two different simulation
strategies that apply knowledgargency-base@nd sequence-liksimulation. Moreover,
methods are investigated to learn the knowledge of the sitioul strategy.

The chapter is organized as follows. In Section 4.1, we @xphe two simulation strate-
gies, urgency-based and sequence-like simulations, &ecain experimental results. In
Section 4.2, we discuss how to learn the knowledge of thelatioa strategy and give some
experimental results. In Section 4.3, we present relateelreh in the domain of General
Game Playing. Section 4.4 gives the chapter conclusions.
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4.1 Simulation Strategies

In this section, we discuss two successful simulationeggias. They were first proposed
in Go, and are also applicable in other domains. In Subsedtib.1, we present urgency-
based simulation that was proposed feplGco and used in several other programs such as
MANGO and QRAZY STONE. In Subsection 4.1.2, we discuss sequence-like simulétetn
has been proposed for dGo.

4.1.1 Urgency-Based Simulation

Bouzy (2005) proposedrgency-based simulatiorit is basically a 2-step method. In the
first step, an urgency valuéj;, is computed for each movge In the second step, taking
the urgencies into account a move is randomly drawn. Theghibty of each move to be

selected is calculated by Formula 4.1.

P = 7Uj
! ZkeM Uk

whereM is the set of all possible moves for a given position.

If the urgency-based simulation strategy is too random,(aelburgencies have similar
values), the level of play of the MCTS program will be closétte level of a program that
draws plain randomly (i.e., without using any knowledgé}hé urgency-based simulation
strategy is too deterministic, the simulations will be tomitar, which will lead to a lack of
exploration and hence to meaningless Monte-Carlo sinuiati

Urgency-based simulation is used in several Go prograntsjraparticular in the top
Go programs NDIGO (Bouzy, 2005), M\NGO (Chaslotet al., 2007), and ®AzY STONE
(Coulom, 2007).

(4.1)

Computing Urgencies in the Game of Go

In order to compute the urgency value of each move, Bouzy5R60mputed for his pro-
gram INDIGO the urgency as the sum of two values: (1) the capture-esapeW,.. and
(2) the pattern valu&,.

1. The capture-escape vallig. depends on (1) the number of stones that could be
captured, and on (2) the number of stones that could escametare by playing the
move. This feature is important for Go and easy to implemémtgeneral, it is a
good thing to capture opponent’s pieces and not a good thihgute your own pieces
captured. Furthermore, it is also easy to create a procetheeking whether stones
might be immediately captured. As a consequence, movesdmpatire opponent’s
pieces are given a high weight, and moves that prevent piedes captured are also
given a quite high weight. These weights are set in such a wayoid as many
mistakes as possible; not capturing a large group has a haliapility of being a
mistake, and letting a large group be captured has also apnadtability of being a
mistake.
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2. The pattern valu&, uses3 x 3 patterns. Each pattern is empty in its centre, where
the move to be considered has to be play8dx 3 patterns have been chosen by
Bouzy (2005) for two reasons: (B) x 3 patterns are fast to match and (2) they
represent relatively well the important concepts of cotinacand cut. Each pattern
was given a weight depending on how good the move seemed ¢to ibe $urrounding
3 x 3 pattern. So the pattern value of a mavis computed as followsV,, (i) =
> wj x m;; wherew; is the weight of patterri, andm; ; is 1 if movei matches
patternj and is O otherwise.

Because of th8 x 3 patterns, programs using this specific urgency-based atonlare
significantly slower and consequently the number of sintetis decreased. Despite this
reduction in the number of simulationsy1Go with urgency-based simulations wi8%
of the game againstb1G o with plain random simulations on tiex 9 board, and7% on
the19 x 19 board (Bouzy, 2005).

4.1.2 Sequence-Like Simulation

In this section, we discuss the so-called “sequence-likelsition” introduced by Gellgt al.
(2006) in the Go program EGo. This simulation strategy consists of selecting each move
in the proximity of the last move played. This leads to movemd played next to each
other, creating a sequence of adjacent moves. To selechwidge to play in the neigh-
bourhood of the last mov8,x 3 patterns similar to the ones proposed by Bouzy (2005) were
used. After each move, the program scans3for 3 patterns at a Manhattan distance of 1
from the last move. If several patterns are found, one isethosndomly. The move is then
played in the centre of the chosen pattern. If no patternisdpa move is chosen randomly
on the board. These patterns were hand-made by Yzao Wargjalka possible to learn
these patterns automatically, for instance by using a gealgtorithm. Gelly implemented
such an algorithm, but the results were not significantlygoe¢han the expert sequence-like
simulation (cf. Subsection 4.2.4).

Sequence-like strategy increased the level of play ag&mét) Go® from winning
8.88 £+ 0.42% of the games to winning8.62 + 1.1% of the games (with 5,000 simula-
tions per move, GNU @ version 3.7.10 level O, cf. Gelly and Silver, 2007). Baseaon
experience with the sequence-like-simulation strategyl mGo, we believe that it is par-
ticularly efficient because it simplifies the position. Irrigaular, sequence-like play creates
a border which divides the territory between the two players

Adding diversity in the Sequence-Like Simulation

A possible way of adding diversity in sequence-like simolats to play in the middle of an
empty area. Playing in an empty area, the simulation may goyrdirection. The following
procedure is used. If the sequence-like simulation canndtdipattern, we look randomly
for an intersection with 8 empty neighbouring intersedioli such an intersection cannot
be found aftem trials, a random move is played. This enhancement was pedpbg
Rimmel (2009). It led to a wining rate 8.4 4-2.9% against the version of G0 without
this enhancement (Chasketal., 2010).

1GNU Go is the Go program developed by the Free Software Foundafiais.program is not MCTS-based.
See http://www.gnu.org/software/gnugo/gnitge.html for more details.
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4.2 Learning Automatically the Simulation Strategy

In this subsection we discuss how to learn automaticallyptrameters (weights) of a sim-

ulation strategy. We discuss five alternative fitness fmstiin order to be able to use faster
learning algorithms than evolutionary algorithms. Thege finctions use (1) the matches
between programs (Subsection 4.2.1) (2) the results oflatedigames (Subsection 4.2.2),
(3) move evaluations (Subsection 4.2.3), (4) mean-squareds on a set of positions (Sub-

section 4.2.4), or (5) the difference between the errorsahgdhe first player and the errors

made by the second player (Subsection 4.2.5).

4.2.1 Learning from Matches between Programs

As discussed in Chapter 3, the simulation strategy shoupdlawe the level of the MCTS
program using it. So the obvious fitness function is the nurobeictories of an MCTS pro-
gram against a state-of-the-art program. However, thisdgrfunction has two problems.
First, the number of parameters can be quite huge. For icestamthe case of urgency-based
simulation Bouzy (2005), quite a number of patterns haveetmbtched in the simulations
during game-play. Second, and most important, it is diffitmlevaluate how each pattern
contributed to the victory: is it possible to create a featilrat reveals which pattern con-
tributed the most amongst the patterns played by the winpiager? For such difficult
problems, evolutionary algorithms are usually employedweler, using them to tune the
patterns of Bouzy’s urgency-based simulation would takernch time. In Chapter 6,
we propose an algorithm, called the Cross-Entropy MethdeM}; to learn from matches
between programs. CEM is related to Estimation-of-Disititn Algorithms (EDAS) (see
Muehlenbein, 1997) and is able to tune parameters in evetypthe MCTS tree.

4.2.2 Learning from the Results of Simulated Games

Learning from the results of simulated games consists ¢fipjegames between two sim-
ulation strategies (lef; andS; be these strategies), and observe the resylts, ..., r,, of
these games. The learning algorithm is then applied aftdr game, based on the decisions
that have been made I8 and.S; for the game, and the result;.

The first experiments for this method were done in the Go amgNDIGO by Bouzy
and Chaslot (2006). The learning algorithm, inspired bgfeecement learning, was learn-
ing either starting from a plain random simulation straté§y) or from expert patterns
(Sep) (see Section 4.1.1). However, the program using the |gettérns performed worse
than the one using the original simulation strategy. In@aoidj we observed that making the
strategy moraleterministiq(e.g., by taking the square of the weight values) does ghyera
increase the strength of a simulation strategy againshanstmulation strategy. However,
it diminished the strength of the program employing the naeterministic strategy. When
learning the resulting pattern values, we observed thagusie result of simulated games
increased continuously the urgencies of the moves whichirerdest on average. This
caused a deterministic strategy, which harmed the perfocemaf the programNDIGO.

Learning from the results of simulated games was also tést&elly and Silver (2007).
They used a linear-value-function approximation and thé \Jlgorithm (Sutton, 1988).
The results were similar to the ones obtained by us (cf. Suiose5.A of Bouzy and
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Chaslot, 2006): the new (learnt) simulation strategy adi¢pmed the old simulation strat-
egy, but not the performance of the MCTS program using it.

4.2.3 Learning from Move Evaluations

We propose that learning the weights of the urgency-basedlaiion should not be based
on the results of simulated games in which the patterns radtdbut rather on the differ-
ences of move evaluations (Bouzy and Chaslot, 2006). Thertneee issues: (1) how each
move should be evaluated, (2) how the weights should beecktatthe move evaluations,
and (3) how this relation should be learnt.

To tackle issue (1), we chose as a move evaluation, dengtied a movei, to use fast
Monte-Carlo Evaluations (MCEs, see Section 3.1). We foulnad the learning algorithm
gave good results with as little as 20 simulations per mowe ta€kle issue (2), we first
defined a matching between moves and patterns. For eaclbleassive:, there is exactly
one3 x 3 pattern matching for this move. We denaetg as the weight of the pattern that
matches for the mové Second, we chose to associate the move evaluatioith the
weight w such that for every pair of legal movés, b) in a board position, we have the
following target function:

eC’X(vafvb) _ &
Wy
whereC' is the exploration-exploitation constant. This formula@met be satisfied for ev-
ery pair of moves in a board position, so the weights are tedarminimize the quantity
eC@x(va=we) — %o on average.

To tackle issue (3), we chose a learning algorithm adapted thetracking algorithm
proposed by Sutton and Barto (1998). The details of thisrdhgo are as follows. For each
movesi, we define); = log(w;).

The difference) between the target function and the data is defined by:

5:Qu_Qb_CX(Ua_Ub)
for each pair of movetu, b) The updates are done by:
Qo — Qo —ax§

Qp— Qp+axi

The learning coefficient is proportional toﬁ, whereny, is the number of times that
the patterrk was matched.

The weights were initialized to 10 (i.e., this corresporma random simulation strat-
egy). The learning algorithm stopped when the weights ofpidiiterns stabilized. These
learnt weights were first used in the Monte-Carlo Go program¢o. On the9 x 9 board,
INDIGO using the learnt patterns scored on averag®ints more for a Go game than the
program using expert patterns. However, on thex 19 board, NDIGO using the learnt
patterns scored on averae points less than the program using expert patterns. We may
explain this finding by the fact that the patterns were leam$ x 9 boards. To give an
indication of the values of the patterns, we have depictdelgnre 4.1 a few patterns with
their values.

Coulom (2007) improved our method further with two ideas:
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Figure 4.1: Examples of learnt pattern weights. For each move mavithda cross, the weight is
given below.

e Instead of using patterns and capture value as the onlyré=afar the urgency of
a move, Coulom (2007) combined additional features, sudfistance to previous
moves, distance to the border, statistics from the simdiigéenes, etc.

e Evaluating the moves according to professional games. rHieirig positions are
extracted from professional games, and the evaluation obweris O if the profes-
sional did not play this move, and 1 if the professional daghis move. The binary
values of moves enable to compute the weight using algositfiom the literature
developed to compute ELO ratings, such as the minorizatiarimization method
and the general Bradley-Terry model (Hunter, 2004).

The application of these patterns increased the level ofid@d@s program ®&Azy
STONE on the9 x 9 board from a winning rate 038% against GNU ® 3.6 up to a
winning rate of68%. The thinking time was set to 1 minute and 30 seconds for a tEmp
game.

We may conclude that learning from move evaluations givesltethat are at least com-
parable with expert values. Furthermore, it gives signifilyabetter results than learning
from the results of simulated games.

4.2.4 Learning from the Mean-Squared Errors on a Set of Positioa

Gelly? developed a genetic algorithm that was learning to minirttieemean-squared er-
rors of simulations on a set of 200 Go positions. Each Go jposivas labelled to have
a value of 1 if it was a win for Black, and O if it was a win for Whitén order to assign
automatically the label for a position, an extensive MCT&rek was performed. In case
MCTS indicated that one of the players was clearly winnihg,label was assigned to that
player. Otherwise, the game was continued by playing theeradvised by MCTS. Several
thousands of simulations were run on each of the 200 positard the fitness of the genetic
algorithm was the mean-squared error between the restuthe simulations and the labels.
The genotype of the algorithm was a set of heuristic ruleseddimg on the surrounding
stones. The set of heuristic rules were similar to the padtdescribed in Subsection 4.1.2.
The learnt simulation strategy was as good as using expeerps, but decreased the num-
ber of simulations. Hence, BGo still plays with expert patterns.

2Private communication.
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4.2.5 Learning from Imbalance

Silver and Tesauro (2009) proposed a fitness function catidlance The imbalance is
the difference between the errors made by the first playettendrrors made by the second
player. The underlining idea is that it is fine to make missaikethe simulation if the other
player makes mistakes as well. The simulation strategyaised in such a way that the
mistake of one player balances out the mistake of the otlagrepl The simulation strategy,
calledsimulation balancingplays some apparently bad moves, but improves the level of
the MCTS program. Huang, Coulom, and Lin (2010) showed #ehing from imbalance
gave better results in tHex 9 Go program RICA than learning from move evaluations.
However, their article concludes that learning 1#9ex 19 board seems out of the reach for
simulation balancing. Learning from move evaluations gs$ire method of Coulom (2007)
is still better in19 x 19 Go.

4.3 Related Research: General Game Playing

In this section we describe two learning algorithms aimel@ating to improve the level
of the simulations without making assumptions about theegahine simulation strategy is
improved during game play (online learning).

The first learning algorithm, Gibbs sampling, was propose#fiihnsson and Bjrnsson
(2008). It selects the moves to be played in the simulatedegaancording to a Gibbs dis-
tribution of their history. LeQQh; be the percentage of victories for the mgviedependent
of the position. In the simulated games, a mgvs selected with probability:

th
e T

- (4.2)
Dkem € d

where M is the set of all possible moves for a given position. One d¢eetch or flatten
Formula 4.2 by using the parameter{ — 0 stretches the distribution, whereas higher val-
ues make it more uniform). We remark that the probabilitiesaalapted during the game,
which is a kind of online learning. Moreover, tiig value is set to the maximum winning
score (i.e., 100%) to bias towards similar exploration atefault in the UCT algorithm or
in learning the weights of the urgency-based simulation iibsection 4.2.3). The win-
ning rate against the old version of their General-Gameifiggrogram @DIA PLAYER
varied betweefi4.2% in Connect-454.4% in Checkers§5% in Othello, and)0% in Break-
through. The learning algorithm was not only applied to ioyerthe simulation strategy but
also the selection strategy. Hence, it is difficult to assesish part of the improvement is
due to the enhanced simulation strategy and which part isadilee selection strategy.

The second learning algorithm, state-space knowledgepmgp®sed by Sharma, Kobti,
and Goodwin (2008) to learn a simulation strategy in the doroBGeneral Game Playing.
It consists of computing a value for each possible featurthefgame. For instance, in
Tic-Tac-Toe, the position is represented with featuredhsag “mark(1,1,X)". Thereafter,
the value of a state is computed as a combination of the vdladl ds features, which
is subsequently squashed by using a sigmoid function. Tinsvledge was used in the
selection and simulation step. The results of this appreaadinst the standard MCTS

pj
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are the following: 58 wins out of 100 games in Connect-42 wins out of 100 games in
Breakthrough, and6 wins out of 100 games in Checkers. These results are interesting,
even if it might be argued that more games are necessary tatigisally significant, and
that the method might work better for games with a small stpece complexity.

4.4 Chapter Conclusions and Future Research

In this chapter, we focussed on enhancing the simulatiategjy by introducingsnowledge
in the Monte-Carlo simulations. The knowledge transforhes plain random simulations
into more sophisticatepseudo-randomsimulations.

We discussed two different simulation strategies thatyagpbwledge: urgency-based
and sequence-like simulation. Strong-expert knowledgek$for these two strategies have
been designed by Bouzy (2005) for his Go programilzo, and by Gelly, Wang, Teytaud,
Rimmel, and Hoock for their Go program®Go (Gelly et al., 2006; Chasloét al, 2010).
From their results, we may recommend that several issuespoetant.

1. Avoiding big mistakes is more important than playing good maes. If a move has
a high probability to be a bad move, it should be avoided witigh probability. We
achieved more improvement by trying to avoid the moves winehe bad most of
the time, than playing the best move in a specific situatiaor. ifkstance, in Go not
capturing a large group has a high probability of being a bistake, and letting a
large group be captured has also a high probability of beipig anistake.

2. Simplifying the position. Some simulation strategies are efficient because they sim-
plify the situation, such as patterns developed by Bouz@%20r the sequence-like
simulations developed by Gelst al. (2006).

3. Balancing exploration and exploitation. The simulation strategy should not become
too stochastic, nor too deterministic.

When learning the knowledge of the simulation strategy, wawstd that choosing a
fitness function is a major issue. The five fitness functionggther with their learning
algorithms) that were proposed are the following:

1. Learning from matches between programs.The drawback of this method is that it
is relatively slow, since learning can only be done in low éitsions. The advantage
of this method is that it is able to learn simultaneously theuation strategy together
with other parts of MCTS.

2. Learning from the results of simulated games. This method did not lead to im-
provements with the learning algorithms proposed by Bouyy@haslot (2006) and
Gelly and Silver (2007).

3. Learning from move evaluations. This method, which we proposed in Bouzy and
Chaslot (2006), performed better than learning from thalte®f simulated games.
Coulom (2007) enhanced our method in different ways, suattils program @Azy
STONE was improved considerably.
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4. Learning from the mean-squared errors on a set of positionsThis method, pro-
posed by Gelly, was able to achieve the same level as a praggag patterns made
by a human expert.

5. Learning from imbalance. This method, originally proposed by Silver and Tesauro
(2009), improved the programrECcA in 9 x 9 Go.

The main contribution of this chapter is therefore that weettgped the first efficient
method for learning automatically the simulation stratbgytaking the move evaluations
into account. Recently, it was shown that learning from ifabee was better fd¥ x 9 Go,
but that learning from move evaluations is still betterfér< 19 Go (Huanget al, 2010).

Finally, we remark that Finnsson anddBjsson (2008) proposed a simple and efficient
algorithm, using Gibbs sampling, to learn the simulationsrdy game play (online). It
seems that the improvements are less than when using exjpsvtddge or offline learning.
However, the simplicity of Gibbs sampling and its genergbliegability make it, in our
opinion, an interesting algorithm for future research.
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Chapter 5

Enhancing the Selection Strategy
with Knowledge

This chapter is based on the following publications:

G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van dederik,
and B. Bouzy (2007). Progressive Strategies for Monte-Carlo Sezech. Pro-
ceedings of the 10th Joint Conference on Information Sciences EDIB)(eds.
P. Wang et al.), pp. 655-661.

G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van deerik,
and B. Bouzy (2008c). Progressive Strategies for Monte-Carle $emarchNew
Mathematics and Natural Computatjdfol. 4, No. 3, pp. 343-357.

G.M.J-B. Chaslot, C. Fiter, J-B. Hoock, A. Rimmel, and O. Teytaudl(@0
Adding expert knowledge and exploration in Monte-Carlo Tree Searcd-
vances in Computer Games Conference (ACG 20899. H.J. van den Herik and
P.H.M. Spronck), Vol. 6048 ofecture Notes in Computer Science (LNG%®).
1-13, Springer-Verlag, Heidelberg, Germany.

In Chapter 3, we introduced the basic MCTS strategies. Tlestvategies which can
be improved the most are the simulation strategy and thetsmtestrategy. In Chapter 4,
we discussed methods to enhance the simulation stratedkislohapter we focus on the
selection strategy. Chapter 3 discussed that a selectatrgy controls the balance between
exploitation and exploration. To arrive at a proper balatitis chapter answers the second
research question by introducing knowledge in the seledimategy.

Whereas the selection strategies presented in Chapteny sséel the winning percent-
age of the nodes, the algorithms presented in this chageuak a different kind of infor-
mation that is introduced by an expert or learnt automadgicsVe refer to this information
asknowledge We propose two methods to integrate (possibly time-commsgnknowledge
into the selection strategyrrogressive biaandprogressive wideningProgressive bias di-
rects the search according to knowledge. Progressive wigéinst reduces the branching
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factor, and then increases it gradually. We refer to thenpesgtessive strategies” because
the knowledge is dominant when the number of simulationsnallsin a node, but loses
influence progressively when the number of simulationssases.

The structure of this chapter is as follows. Section 5.louhlices progressive bias and
progressive widening. In Section 5.2 we give details on tmglémentation and the exper-
imental results of these progressive strategies in our I@gfm program M\NGO. Sub-
sequently, Section 5.3 presents the performance of thegssige strategies for the Go
programs ®@Azy STONE and MoGo, and in the LOA program MC-LOA. Section 5.4 dis-
cusses more recent related research on enhancing themeitrategy. Finally, Section 5.5
summarizes our contributions, formulates the chapterlasiuns, and gives an outlook on
future research.

5.1 Progressive Strategies

When the number of simulations is high, the selection strasggresented in Chapter 3 are
quite accurate (Chaslet al., 2006a; Coquelin and Munos, 2007; Coulom, 2006; Kocsis
and Szepesari, 2006). However, they are inaccurate when the numbemuidlations is
low and when the branching factor is high.

We propose “progressive strategies” that perform a softsttisn between applying
knowledge and using the selection strategy. Such strategee (1) knowledge and (2) the
information available for the selection strategy. A pragiee strategy chooses moves ac-
cording to knowledge when a few simulations have been plegmdiconverges to a standard
selection strategy with more simulations.

In the following two subsections we describe the two progjkesstrategies developed:
progressive biagSubsection 5.1.1) artogressive wideninéSubsection 5.1.2).

5.1.1 Progressive Bias

The aim of theprogressive biastrategy is to direct the search according to — possibly
time-expensive — heuristic knowledge. For that purpose stiection strategy is modified
according to that knowledge. The influence of this modifarais important when a few
games have been played, but decreases fast (when more gavedselen played) to ensure
that the strategy converges to a pure selection strategynddified the UCT selection in
the following way. Instead of selecting the move which segisFormula 3.5 (see Chapter
3), we propose to select a nod@ccording to Formula 5.1.

1
k € argmazx;cr (vi +C x n—% + f(nl)> (5.1)

We chosef(n;) = nLH where H; represents heuristic knowledge, which depends
only on the board configuration represented by the nodehe variables;, n;, n,, and

coefficientC' are the same as in Subsection 3.3.1. More details on theraotieh of H;
are given in Subsection 5.2.1. The selection strategy leftlowing five properties.

1. When the number of gameg made through a nodeis lower than the threshold,
the simulation strategy is applied instead of Formula 5.1.
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2. Whenn,, = T', the selection strategy starts selecting every unexpldiiédonce. The
order in which these children are selected is giverf by;), i.e., the children with the
highest heuristic scoresl;, are selected first. If every child has been selected at least
once, Formula 5.1 is applied.

3. If only a few simulations have been made through the nodg, (Bom around30
to 100 in MANGO), and if the heuristic scoré; is sufficiently high, the ter%
is dominant. Hence, the number of simulations made depeids on the domam
knowledgeH; than on the results of the simulated games. It is an advamntagse
mainly the domain knowledge at this stage, because thetsesubnly a few sim-
ulated games are affected by a large uncertainty. The balnaef the algorithm is
therefore close to the behaviour of a simulation strategy.

4. When the number of simulations increases (e.g., from abdMto 500 in MANGO),
both the results of the simulated games and the domain kdgelbave a balanced
effect on the selection.

5. When the number of simulations is high (ex.,500 in MANGO), the influence of
the domain knowledge is low compared to the influence of tegipus simulations,
because the domain knowledge decrease®fiy/n;), and the term corresponding
to the simulation decreases by /Inn,/n;). The behaviour of the algorithm is, at
this point, close to the behaviour of the standard seledimategy (i.e., UCT). The
only difference with plain UCT occurs if two positiorisand j have the same value
v; = vj, but different heuristic score; andH;. Then, the position with the highest
heuristic score will be selected more often.

5.1.2 Progressive Widening

We have seen in MNGO that when there is not much time available and simultangousl
the branching factor is high, MCTS performs poorly. Our sioly progressive widening
consists of (1) reducing the branching factor artificiallpesm the selection strategy is ap-
plied, and (2) increasing it progressively as more time bexavailable. When the number
of gamesn,, in a nodep equals the threshol@, progressive widening “prunesmost of
the children. The children, which are not pruned from ther@gg, are thek;,,;; children
with the highest heuristic scorés;. Next, the children of the nodeare progressively “un-
pruned” according to their heuristic scakg. An outline of progressive widening is given
in Figure 5.1.

5.2 Experiments in MANGO

In this section we present the experimental details andtsesfithe progressive strategies
in the Go-playing program MNGO. In Section 5.2.1 we discuss the heuristic knowledge,
the time efficiency and the progressive widening paramebdéest, three different series of

1We proposed “progressive widening” under the name “progressipruning” (Chasloet al, 2007). This
method was proposed simultaneously by Coulom (2007) underahe “progressive widening”. It was agreed
later that this name was more suitable.

2A node is pruned if it cannot be accessed in the simulated games.
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np<T np=T np>T ne>>T

Moves are played according to the Moves are played according to the
The domain knowledge is called Selection strategy amongst the Selection strategy amongst the

Most of the moves are pruned unpruned moves unpruned moves
Moves are progressively unpruned Moves are progressively unpruned

Moves are played according to the
simulation strategy
All moves can be played

Figure 5.1: Progressive widening.

experiments were conducted inANGO. Subsection 5.2.2 gives the effect of each progres-
sive strategy against GNU @ Subsection 5.2.3 shows that these methods also improve
the level of the program in self-play. Subsection 5.2.4 sssethe strength of MiGO in
computer tournaments.

HENG

5.2.1 Experimental Details

In this subsection we give details of the implementationhaf progressive strategies in
MANGoO. First, we describe the heuristic knowledge used. Next, iweuds the time effi-
ciency of using this knowledge. Finally, we explain the agation of progressive widening
in MANGO.

Knowledge used in MANGO

The two previous progressive strategies require compuatihguristic scordi; for a given
board configuration representing the naddn this subsection we describe the heuristic,
which is based on the same idea of urgency-based simulgdieassubsection 4.1.1). How-
ever, the heuristic knowledge fdif; is much more elaborate than the one used for the
urgency valugU;. In the Go program MNGO, H; is composed of three elements: (i) a
capture-escape value, (ii) a pattern value, and (iii) thoipnity to the last moves.

The capture-escape valugf each move depends on (1) the number of stones that could
be captured by playing the move, and on (2) the number of stitraé¢ could escape a capture
by playing the move. Itis calculated the same way as for timeilsition strategy.

The pattern valueis learnt offline by using the pattern matching described by
and Chaslot (2005). This pattern matching was also implésdeim the Go programn-
DIGO, and improved its level significanty.In this research, each pattern assigns a value
to the move that is in its centre. The value of each patternegtobability that the move
is played in a professional game. The learning phase haspgestarmed on 2,000 profes-
sional games; 89,119 patterns were learnt. Each pattetained betwee stones (e.g.,
corner pattern) and5 stones (e.g., joseki pattern). In contrast to 3he 3 patterns used
in the simulation strategy (see Subsection 4.1.1), thedSittee patterns for the progressive
strategies is not bounded. Some patterns cover nearly thkewbard, and some cover only

3INDIGO was third out of 17 participants in the World Computer Go Chamghip 2006, see http:/
computer-go.softopia.or.jp/gifu2006/English/indermht
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a few intersections. Computing these unbounded pattekes tan average 100 times more
CPU time than for th@ x 3 patterns.

The proximity coefficientsire computed as the Euclidean distances to all moves previ-
ously played, as shown in Formula 5.2.

These elements are combined in the following formula to asenf;:

1

(2dj, ;) (2)

Hi = (Vee(i) + V(3)) x 3

k

whereV, () is the capture-escape valug,(7) is the pattern valueiy ; is the (Euclidean)
distance to th&!" last move, andy, = 1.25 + g This formula has been tuned experimen-
tally.

The knowledge utilized in MNGO has a prediction rate &%, i.e., 23% of the time
the move with the highedt; score is also the move played by a professional player. This
result is of the same order as the prediction rate @&%) obtained by Van der Wekt al.
(2006), but lower than the one later obtained (86%) by Coulom (2007).

Time Available for Knowledge

The time consumed to computg is in the order of one millisecond, which is around 1,000
times slower than playing a move in a simulated game. To aaageed reduction in the
program’s performance, we computg only once per node, when a certain threshold of
games has been played through this node. The threshold wiasBe= 30 in MANGO.
With this setting, the speed of the program was only redugety The speed reduction is
low because the number of nodes that have been visited mam8@himes is low compared
to the number of moves played in the simulated games. It caseber in Figure 5.2 that
the number of calls to the domain knowledge is reduced quiagIl" increases. Even for
T =9, the number of calls to the domain knowledge is quite low careg to the number
of simulated moves. The number of nodes having a certaihagsint is plotted in Figure
5.3. The data has been obtained frofifax 19 initial position by performing a 30-seconds
MCTS. We have also plotted a trend line that shows that the ctn be approximated by a
power law.

Progressive Widening in Mango

In MANGO, the number of children that were not pruned in the beginnipg;,, wasbs.
Next, k£ nodes were unpruned when the number of simulations in thenpaurpassed x
BF—Fkinit simulated games4 was set experimentally 80 and B to 1.3.

5.2.2 MaNGoO vs. GNU Go

In the first series of experiments we tested the two progresirategies in games against
GNU Go version 3.6. The experiments were performed ordthe), 13 x 13, and19 x 19
boards. Our program used, 000 simulations per move. It takes on average less than one
second on @ x 9 board, two seconds onla& x 13 board, and five seconds onlf x 19
board. The level of GNU @ has been set tt) on the9 x 9 and13 x 13 boards, and t0
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on thel9 x 19 board. The results are reported in Table 5.1, where PB stangsogressive
bias and PW for progressive widening.

From these experiments, the results, and our observatiermay arrive at three con-
clusions. First, the plain MCTS framework does not scald weethe 13 x 13 board and
the 19 x 19 board, even by using GNU Gat level0. Second, the progressive strategies
increase MINGO’s level of play on every board size. Third, on th& x 19 board size the
combination of both strategies is much stronger than eaategly applied separately.

Table 5.1: Results of MNGO against GNU @.
Board Simulations GNUGs PB PW Wins Games 95 percent

size per move level conf. int.
9 20,000 10 33.2% 1000 3.0%
9 20,000 10 X 37.2% 1000 3.0%
9 20,000 10 X 58.3% 1000 3.1%
9 20,000 10 X X 61.7% 2000 2.2%
13 20,000 10 8.5% 500 2.5%
13 20,000 10 X 15.6% 500 3.2%
13 20,000 10 X 30.0% 500 4.1%
13 20,000 10 X X 351% 500 4.2%
19 20,000 0 0% 200 1.0%
19 20,000 0 X  31% 200 2.5%
19 20,000 0 X 4.8% 200 3.0%
19 20,000 0 X X 482% 500 4.4%

5.2.3 Self-Play Experiment

We also performed self-play experiments on the differerardsizes. The time setting
of these experiments wd$ seconds per move. On tex 9 board, MANGO using both
progressive strategies w@8% of 200 games played against MiGO without progressive
strategies. Next, on th&3 x 13 board, MANGO using both progressive strategies won
81% of 500 games played against MiGO without progressive strategies. Finally, on the
19 x 19 board, MaNGO using both progressive strategies won all 806 games played
against MANGO without progressive strategies. These self-play experisghow that the
effect of progressive strategies is larger onthex 19 board than on thé3 x 13 and9 x 9
boards. This conclusion is consistent with the results efdkperiments of the previous
subsection.

5.2.4 Tournaments

In the last series of experiments we testedM&0O’s strength by competing in computer
tournaments. Table 5.2 presents the results byBlo in the tournaments entered in 2007.
In all these tournaments, MiGO used both progressive strategies. In this table, KGS stands
for “KGS Go Server”. This server is the most popular one fanpater programmers, and
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most of the well-known programs have participated in one orexeditions (e.g., MGoO,
CRAZY STONE, Go++, THE MANY FACES OF Go, GNU Go, INDIGO, AYA, DARIUSH,
etc...).

As shown in the previous experiments, the progressiveesfieg are the main strength
of MANGO. We remark that MNGO was always in the best half of the participants.

Table 5.2: Results by MNGO in 2007 tournaments.

Tournament Board Size Participants AMGO's rank
KGS January 2007 13 x 13 10 ond
KGS March 2007 19 x 19 12 4th
KGS April 2007 13 x 13 10 3rd
KGS May 2007 13 x 13 7 ond
12t" Computer Olympiad 9 x 9 10 5th
12" Computer Olympiad 19 x 19 8 4th
KGS July 2007 13 x 13 10 4th

5.3 Progressive Strategies in Other Game Programs

In the previous section we tested the progressive stratagitne Go program MNGO. In
this section we show that they are program- and game-indiemén First, we discuss the
application of progressive strategies iR&Y STONE and MoGo in Subsections 5.3.1 and
5.3.2. Next, in Subsection 5.3.3 we test progressive bitlseiigame of Lines of Action.

5.3.1 Progressive Strategies in RAzZY STONE

Progressive widening was independently invented by Cou@®7) and applied in his
program RAzY STONE. The heuristic knowledge used for progressive wideningisis
mainly of pattern features, similar to those developed fapiGo and MANGO (Bouzy
and Chaslot, 2005). In Coulom’s implementation #f& move is unpruned whety,_;
simulations have been run, with = 0 andt,,; = t,,+40x1.4™. Results against GNU &
indicate that progressive widening brings a significantrimepment to the playing strength
on the9 x 9 board (i.e., winning 90.6% of the games instead of 68.2%).tH@r19 x 19
board the contribution of progressive widening to the pigy$trength is impressive (i.e.,
winning 37.5% of the games against GNlb@&stead of 0%) .

The main difference with our implementation is that the spbeleunpruning as imple-
mented in his program is slower than the one used inElo. This implies that the quality
of the heuristic domain knowledge in his program is highdrerEfore it can afford to be
more selective without pruning important moves.

5.3.2 Progressive Strategies in MGO

In MoGo, progressive widening was not implemented because anettr@mcement al-
ready played a similar role: Rapid Action-Value Estimat{®RAVE) (cf. Subsection 5.4.2).
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Progressive bias has been implemented m®ob, but was adapted. Instead of having a bias

of nfﬁl, the progressive bias that gave the best results#t\fé% (Chaslotet al., 2010).
Self-play experiments were performed by usin@Gl on thel9 x 19 Go board with

a thinking time of 1 second per move. The version ocbGb using progressive bias won

61.7% + 3.1% of the games against &G0 without progressive bias.

5.3.3 Progressive Strategies in MC-LOA

In the previous subsections, the progressive strategies wglemented and tested in Go
programs. However, progressive strategies can be usedengame domains as well. The
MCTS Lines-of-Action (LOA) program MC-LOA uses progressiias to embed domain-
knowledge bias into the UCT formula (Winanetsal, 2008; Winands and Bynsson, 2010).
The UCT formula is modified as follows. Létbe the set of nodes immediately reachable
from the current nodg. The selection strategy selects a ctiildf the nodep that satisfies
Formula 5.3:

[C %1 W X Ppe
k € argmax;cy (vi + X iy + X ) , (5.3)
n; n;+1

wherev; is the value of the nodg n; is the visit count ofi, andn,, is the visit count of
p. C is a coefficient, which must be tuned experimentally (h€re 0.6). % is the
progressive-bias part of the formul&V is a constant, which must be set manually (here
W = 50). P,,. is thetransition probabilityof a move categorync (Tsuruokaet al,, 2002).

For each move category (e.g., capture, blocking) the pibtyathat a move belonging
to that category will be played is determined. The probghisi called thetransition prob-
ability. This statistic is obtained off-line from game records oftchas played by expert
players. The transition probability for a move categoryis calculated as follows:

P,.= _Mplayed(me) : (5.4)

Navailable(mc)

wherenqyeq(me) 1S the number of game positions in which a move belonging tegray
mc was played, and,qiiabie(me) 1S the number of positions in which moves belonging to
categorymc were available.

The move categories of MC-LOA (Winandsal., 2008; Winands and Bynsson, 2010)
are similar to the ones used in the Realization-Probab8igyarch of the program MIA
(Winands and Bjrnsson, 2008). They are applied in the following way. Fivet clas-
sify moves as captures or non-captures. Next, moves atefistib-classified based on the
origin and destination squares. The board is divided indifferent regions: the corners,
the8 x 8 outer rim (except corners), tlex 6 inner rim, the4 x 4 inner rim, and the central
2 x 2 board. Finally, moves are further classified based on thebeuwf squares travelled
away from or towards the centre-of-mass.

In the following series of experiments we quantified the gerfance of progressive
bias in a round-robin tournament. The progressive-bidganbof the MCTS program (MC-
LOA + PB) played against the default MCTS program (MC-LOAYiover, MC-LOA and
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MC-LOA + PB were matched against MIA. The latter performsighdepth-first iterative-
deepening search in the Enhanced-Realization-ProlyaBiéiarch framework (Winands and
Bjornsson, 2008). The program uses state-of-thex&renhancements (Winands, 2004).
The thinking time was limited to 5 seconds per move. Each md#ta point represents
the result of 20,000 games, with both colours played equalltandardized set of 100
three-ply starting positions (Billings and @psson, 2003) was used, with a small random
factor in the evaluation function preventing games frormbeiepeated. All experiments
were performed on an AMD Opteron 2.2 GHz computer. The resut given in Table 5.3.

Table 5.3: Tournament results.

Strategy MC-LOA  MC-LOA+PB __ MIA
MC-LOA - 25.8% 28.8%
MC-LOA+PB  74.2% - 46.6%
MIA 71.2% 53.4 % -

Table 5.3 reveals that MC-LOA using progressive bias oygalahe default MC-LOA
with a winning score of almost 75% of the available points.réwer, MC-LOA with pro-
gressive bias played much better against MIA than MC-LOA (dil, winning 46.6% of
the games instead of 28.8%). This result shows that the ggeiye bias improves the play-
ing strength of the Monte-Carlo LOA program. Finally, we manthat adding progressive
widening did not improve the program. This is not surprisiige results of Table 5.1 indi-
cate that payoff of adding progressive widening on top ofjpessive bias increases when
the board size / branching factor increases.®o6 Go the additional payoff of progressive
widening was small. The fact that that LOA has a smaller Wramgefactor thard x 9 Go
(i.e., 30 vs. 40), explains why progressive widening didwioik.

5.4 Related Research

In this section we present two methods, prior knowledge aampidRAction-Value Estima-
tion (RAVE). They were proposed simultaneously with thegoessive strategies discussed
above, and have a similar purpose. In Subsection 5.4.1 waiexpior knowledge. Next,
we discuss RAVE in Subsection 5.4.2.

5.4.1 Prior Knowledge

An alternative enhancement to progressive bias has begroged by Gelly and Silver
(2007). It consists of introducing prior knowledge. Theestdéd node is the one, which
satisfies Formula 5.5:

o L 0; 1
k € argmax;cr Vit i F Mprior - Qs +C x Ll 2 (5.5)
N + Nprior N + Nprior

whereQ); is the prior estimation of the position. Gelly and Silver@ZQuse a reinforcement-
learning algorithm (Silver, Sutton, andiMer, 2007), which learnt the values from self-play
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on the9 x 9 board.n,;, is a coefficient that has to be tuned experimentally.

On the9 x 9 board, this technique successfully increased®®d’s winning percentage
against GNU ® from 60% to 69%. However, learning the prior valu@; was only done
for the9 x 9 board. So, the scalability of this approach to larger bo#&essis an open
guestion.

5.4.2 Rapid Action-Value Estimation

Brigmann (1993) proposed to acquire results from simulatioicker by the “all-move-as-
first heuristic” (AMAF). AMAF, for a given positiorp, assigns each move with a value
AMAF,, ... This value is computed in the following way, which consgleach move of the
simulated game as important as the first move. For every atetibames; played starting
from p, in which the moven has been played, we nof(p, m) = 1 if the player who
playedm won the simulated game, arttj(p, m) = 0 if the player who playedn lost the
simulated game. The AMAF value is then the average owdrthe S;(p, m) values. The
AMAF values can be computed incrementally.

Gelly and Silver (2007) proposed to use the AMAF value in coration with MCTS.
It replaces UCT (see Subsection 3.3.1) by Rapid Action-&/&stimator (RAVE). The se-
lected nodé: has to satisfy Formula 5.6:

Inn

(2

k € argmaz;cr ((1 — B(ny)) x (v; +C x 2) + B(ny) x AMAFW-> (5.6)

In Formula 5.6p is the position associated with the current node, @igla coefficient.

Gelly and Silver (2007) proposet( V) = ,/ﬁ. This formula led to good results for all

values ofk from 3 to 10,000, with the best results obtained with= 1000.

Silver (2008) proposed an enhancement of the RAVE formutarder to estimate bias
and variance to calculate the best combination of UCT and R&&lues. This version
usesB(m;,n;) = W”w wherem; is the number of simulations on which the
AMAF value of the move is based, and is a constant to be tuned.

A disadvantage of RAVE is that in principle it has to keep rat the AMAF values
in a separate table for every node. Keeping track of the AMAle&s globally instead of
locally at every node could solve the memory problem, butthagisk that it diminishes

the benefit of RAVE.

5.5 Chapter Conclusions and Future Research

In this chapter we introduced two progressive strategibese strategies use (1) the infor-
mation available for the selection strategy, and (2) sorosgjbly time-expensive) domain
knowledge that is introduced by an expert, or learnt autmally. The two progressive
strategies we developed gpeogressive biasind progressive widening Progressive bias
uses knowledge to direct the search. Progressive widenstgdiduces the branching fac-
tor, and then increases it gradually. This scheme is alseragmt on knowledge.

Based on the results of the experiments performed with agram MANGO, we may
offer four conclusions. (1) The plain MCTS method does natesevell to13 x 13 Go, and
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performs even worse it9 x 19 Go. MCTS is weak at handling large branching factors. (2)
Progressive strategies, which focus initially on a smathbar of moves, correct this prob-
lem. They increased the level of play of the programm\ o significantly, for every board
size. (3) Onthd9 x 19 board, the combination of both strategies is much strorgar éach
strategy applied separately. The fact that progressive dnd progressive widening work
better in combination with each other shows that they haveptementary roles in MCTS.
This is especially the case when the board size and therbfarehing factor grows. (4)
Progressive strategies can use relatively expensive ddmaivledge with hardly any speed
reduction.

The progressive strategies were successfully implemeantether game programs or
domains. Progressive bias increased the playing strerigithatso and MC-LOA, while
progressive widening did the same for&zY STONE. These results give rise to a fifth
conclusion that the proposed progressive strategies seatts enhancements foran MCTS
program.

A direction for future research is to modify during game p{apline) the progressive
strategy according to the results of the Monte-Carlo sitiria. For instance, in a situation
where the initiak moves are losing, increasing the speed of widening to finthéise move
seems promising. As another example, if a move that recalvesys a high heuristic score
H, is rarely the best move in numerous nodes, then the heusisti@ of this move could
be adjusted online.



Chapter 6

Optimizing Search Parameters
using the Cross-Entropy Method

This chapter is based on the publication:

G.M.J-B. Chaslot, M.H.M. Winands, |. Szita, and H.J. van den He2BOBb).
Cross-Entropy for Monte-Carlo Tree Seardl@GA Journa/Vol. 31, No. 3., pp.
145-156.

We have seen in Chapters 3, 4, and 5 that MCTS is controllectbsral parameters,
which define the behaviour of the search. Especially thee8eteand simulation strategies
contain several important parameters. These parameterddibe optimized in order to get
the best performance out of an MCTS program. In this chapteanvgwer the third research
guestion how to optimize the parameters of an MCTS programphl&jpose to optimize the
search parameters of MCTS by using an evolutionary stratigyCross-Entropy Method
(CEM) (Rubinstein, 1999). The method is related to Estioratf-Distribution Algorithms
(EDAS) (Muehlenbein, 1997), a new area of evolutionary cotation. We test CEM by
tuning the main parameters in the Go programio.

The chapter is organized as follows. We briefly discuss patanoptimization in Sec-
tion 6.1. Next, in Section 6.2 we present the MCTS parameisad in MANGO. In Section
6.3 we explain CEM. We empirically evaluate CEM in combioativith MCTS in Section
6.4. Finally, Section 6.5 provides the chapter conclusamsdescribes future research.

6.1 Parameter Optimization

Most game engines have a large number of parameters thatiaral ¢or their performance.
Optimizing these parameters by hand may be a hard and tim&snung task. Although it
is possible to make educated guesses for some parametetdoparameters it is beyond
imagination. Here, a learning method can be used to find this/aies for these parameters
(Sutton and Barto, 1998; Beal and Smith, 2000).
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Using learning methods for optimizing the parameters ireptd increase the play-
ing strength of a game program is difficult. The problem ig the fitness functichis
rarely available analytically. Therefore, learning methdhat rely on the availability of
an analytic expression for the gradient cannot be used. HAawthere are several ways to
optimize parameters despite the lack of an analytic gradi&n important class of such
algorithms is represented by temporal-difference (TD)hoés$ that have been used suc-
cessfully in tuning evaluation-function parameters in Bgammon, Chess, Checkers, and
LOA (Tesauro, 1995; Baxter, Tridgell, and Weaver, 1998;d&&¢ter, Hlynka, and Jussila,
2001; Winand®t al, 2002). Obviously, any general-purpose gradient-freelag method
can be used for parameter tuning in games. Just to mentiotives examples, Brns-
son and Marsland (2003) successfully applied an algoritimilas to Finite-Difference
Stochastic Approximations (FDSA) to tune the search-esitenparameters of RAFTY.
Kocsis, Szepesri, and Winands (2006) investigated the use of RSPSA (iBesbimulta-
neous Perturbation Stochastic Approximation), a stoahh#kclimbing algorithm, for the
games of Poker and LOA.

In this chapter we investigate the use of Bmss-Entropy MethodCEM) (Rubin-
stein, 1999) for optimizing the parameters in MCTS. CEM imted to the Estimation-
of-Distribution Algorithms (EDAS) (see Muehlenbein, 199Which constitute a new area
of evolutionary computation. Similar to EDA, CEM maintaiagprobability distribution
over possible solutions. From this distribution, solut@andidates are drawn. By using
the idea ofDistribution Focusing CEM is turned into a highly effective learning method
(Rubinstein, 1999).

MCTS is a relatively new method and when compared to thettomdil 5 (Knuth
and Moore, 1975), it is less understood. Parameter optiioizéor MCTS is therefore a
challenging task, making it an appropriate test domain fBMCIn the next section we
discuss the search parameters used in the MCTS prograrncid.

6.2 MCTS Parameters in Mango

We noticed that the parameters that have the most effectedievbl of play of the program
are the ones of the selection and the simulation stratefiesse parameters were explained
in detail in Chapters 3, 4, and 5. In order to make this chagtdable independently, we
describe the parameters ofAMGo for selection (Subsection 6.2.1), simulation (Subsection
6.2.2), and progressive strategies (Subsection 6.2.3).

6.2.1 Selection Parameters

MANGO uses the selection strategy UCT (Kocsis and Szepes®006), as described in
Chapter 3. UCT works as follows. Létbe the set of nodes reachable from the current node
p. UCT selects a child& of nodep that satisfies Formula 6.1:

1
k € arg max <Ui +C x nnp> (6.1)
1€

g

1The fitness function is associated to a learning task andrdigtes how good a solution is; for instance, in
games it may be the percentage of won games.
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wherew; is the value of the nodg n; is the visit count of node, andn,, is the visit count
of nodep. C is the exploration coefficient, which will be tuned using @ess-Entropy
Method (CEM). Finally, we note that in MNGO the selection strategy is only applied when
a certain numbef’ of simulations have been performed. This coeffici€ntill also be
optimized using CEM.

6.2.2 Simulation Parameters

The simulation strategy of MNGO uses (1) a capture-escape value, (2) a pattern value, and
(3) a proximity factor. We discuss them below. L&t be the set of all possible moves
for a given position. Each movg € M is given an urgency/;. The simulation strategy
selects one move from1. The probability of each move to be selecteg is= %

The urgencyU is the sum of two values: the capture-escape value and tkerpaglue,
which is multiplied by the proximity facto,,; based on the Manhattan distance. So,

Uj = (Vee + V) X Ppq. We explain the three concepts below.

1. Capture-escape valuelhe valueV,. is given to moves capturing stones and/or es-
caping captures. It equals a coefficignt x the number of captured stones plus a
coefficient P, x the number of stones escaping to be captured. Using a capture
escape value was first proposed by Bouzy (2005), and latepired successively by
Coulom (2006) and Cazenave (2007a).

2. Pattern valueFor each possiblg x 3 pattern, the value of the central move has been
learnt by a dedicated algorithm described in Bouzy and ©h#2006). The weight
of a pattern is raised to the power of a certain expo#gniWhenp, is set to a small
value, all patterns will be selected with a nearly-uniforralgability. WhenpP, is set
to a large value, only the best patterns will be played in threiation phase.

3. Proximity. Moves within a Manhattan distance offrom the previous move have
their urgency multiplied by a proximity factaP,,4. This idea is adapted from the
sequence-like simulation strategy developed by Gatligl. (2006).

Summarizing, CEM will optimize the parametd?s, P., P, andP,, .

6.2.3 Progressive Parameters

In MANGO we use two enhancemengspgressive biaandprogressive wideninfChaslotet al.,
2008c; Coulom, 2007), which were discussed in Chapter 5h Bahancements signifi-
cantly increase MNGO's playing strength. This happened after tuning the pararadty
trial and error.

Progressive Bias

Progressive bias modifies the UCT formula in such a way thfvidurs moves that are
regarded as “good” by some heuristic knowledge. IaN&O, the heuristic knowledge
takes into account capturing, escaping captures, and f@atierns. More details can be
found in Chapter 5. Instead of selecting the node that ssgi§formula 6.1, we select the
nodek that satisfies Formula 6.2.
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(6.2)

1 PBj x HPe
kEargmaIX <U¢—|—C>< el / t )
1€

Here H; represents the heuristic knowledge. The coefficiétis; and theP B, will again
be optimized using CEMPB; stands for theprogressive-bias factoand PB, for the
progressive-bias exponefgee Chapter 5).

Progressive Widening

Progressive widening consists of (1) reducing the bramcfantor artificially when the se-
lection function is applied, and (2) increasing it progiesly as more time becomes avail-
able. When the number of games that visit a npde,) equals a threshold, progressive
widening “prunes” most of the children. Initially, only the,;; children with the highest
heuristic values in the sequence are not pruned. Next, tldr@h of a node are progres-
sively added. In MNGO, it happens as follows. The" child node is unpruned when the
number of simulations in surpassest x B*~*iit simulations. A, B, andk;,;; will be
optimized by using CEM.

6.3 The Cross-Entropy Method

In this section we explain the Cross-Entropy Method. Fingt,give an informal descrip-
tion (Subsection 6.3.1). Subsequently, we clarify the metim detail (Subsection 6.3.2).
Finally, we discuss the normalization of parameters in Sotisn 6.3.3.

6.3.1 Informal Description of the Cross-Entropy Method

The Cross-Entropy MethodCEM) (Rubinstein, 1999) is a population-based learning al
gorithm, where members of the population are sampled fromranpeterized probability
distribution. In each generation, the parameters of theiligion are updated so that its
cross-entropy distandeom a desired distribution is minimized.

CEM aims to find the (approximate) optimal solutighfor a learning task described in
the following form

x* « arg max f(x). (6.3)

We remark thak* is a vector containing all parameters to be optimized. Mezeqf is

a fitness function (which determines how good a solutionas;ifistance in games, it is
the percentage of won games), and X whereX is some (possibly high-dimensional)
parameter space. Most traditional learning algorithmsaai a single candidate solution
x(t) in each time step. In contrast, CEM maintaindistribution over possible solutions
(similar to evolutionary methods). From that distributisolution candidates are drawn at
random. This is essentiallandom guessingut by the idea oDistribution Focusingt is
turned into a highly effective learning method. We explaithbconcepts below.
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Random Guessing

Random guessing is a quite simple ‘learning’ method: we dreany samples from a distri-
bution g belonging to a family of parameterized distributiahge.g., Gaussian, Binomial,
Bernoulli, etc.), then select the best sample as an estimatithe optimum. In the extreme
case of drawing infinitely many samples, random guessing tinel global optimum.

The efficiency of random guessing depends largely on thalaisibn g from which the
samples are drawn. For exampley i sharply peaked in the neighbourhood of the optimal
solutionx*, then a few samples may be sufficient to obtain a good estintateontrast,
if the distribution is sharply peaked around a vectowhich is far away from the optimal
solutionx*, a large number of samples is needed to obtain a good estoh#tte global
optimum.

Distribution Focusing

We can improve the efficiency of random guessing by the ide@istfibution Focusing
After drawing a moderate number of samples from distribugiove may not be able to give
an acceptable approximation ®f, but we may still obtain &etter sampling distributian
The basic idea of CEM is that it selects the best samples, alifiesg so that it becomes
more peaked around the best samples. Distribution Focusitige central idea of CEM
(Rubinstein, 1999).

Let us consider an example, whetds anm-dimensional vector ang is a Gaussian
distribution for each coordinate. Assume that we have dra@®0 samples and selected
the 10 best. If theé'” coordinate of the best-scoring samples has an averagg tifen we
may hope that thé” coordinate of* is also close tq:;, so we may shift the distribution’s
centre towards:;. In the next subsection, we describe the update rule of CEMrimore
formal way.

6.3.2 Formal Description of the Cross-Entropy Method

In this subsection we will choosggfrom a family of parameterized distributions (e.g., Gaus-
sian, Binomial, Bernoulli, etc.), denoted I8} and describe an algorithm that iteratively
improves the parameters of this distributign

Let N be the number of samples to be drawn, and let the samxplés. .., x(V) be
drawn independently from distributign For eachy € R, the set of high-valued samples,

Ly — {x | f(xP) >~,1<i< N}, (6.4)

provides an approximation to the level set

Ly —{x ] f(x) =27} (6.5)

Let U, be the uniform distribution over the level se{. For large values of, this distribu-
tion will peak aroundk*, so it would be suitable for random sampling. This approxioma
procedure raises two potential problems, which are digtlbglow. The first problem is
solved byelite samplesnd the second problem by thess-entropy distance
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Elite Samples

The first problem is that for (too) Iarg;evvaluesi7 will only contain a few samples (possibly
none), making learning impossible. This problem could ts#yaolved by choosing lower
values fory. However, settingy too low causes a slow convergence to a (sub)optimal
solution. Therefore, the following alternative is used: NCEEhooses a ratip € [0, 1]

and adjusti,y to be the set of the begt- N samples. This corresponds to setting—
f(x(»"N)), provided that the samples are arranged in decreasing oftleeir values. The
bestp - N samples are called thdite samplesIn practice,p is typically chosen from the
range[0.01,0.1].

Cross-Entropy Distance

The second problem is that the distribution of the levellsets not a member of any kind
of parameterized distribution family and therefore it cainibe modelled accordingly. This
problem is solved by changing the approximation goal: CEbbsles the distributionfrom
the distribution familyg that approximates the empirical distribution oxie;best. The best
g is found by minimizing the distance betwegnand the uniform distribution over the
elite samples. The distance measure istiegs-entropy distandglso called the Kullback-
Leibler divergence (Kullback, 1959)). The cross-entropyahce of two distributiong and

h is defined as

Destallt) = [ gt 25 ax. 6.:6)

It is known that under mild regularity conditions, CEM coryes with probability 1
(Costa, Jones, and Kroese, 2007). Furthermore, for a suffigilarge population, the
global optimum is found with a high probability.

For many parameterized distribution families, the paramsebf the minimum cross-
entropy member can be computed easily from simple statisfithe elite samples. Below
we sketch the special case wheis sampled from a Gaussian distribution. This distribution
is used in the remainder of this chapter.

Let the domain of learning b® = R™, and each component be drawn from indepen-
dent Gaussian distributions with paramete;saj?, 1 < j < m,thatis, adistributioy € G
is parameterized withm parameters.

After drawing N samplesx™), ... x™) and having a threshold valug let E denote
the set of elite samples, i.e.,

E—{xD| f(x") >} (6.7)

With this notation, the distributiop’ with minimum CE-distance from the uniform distri-
bution over the elite set has parameters

Koo (s iy,),  Where
(2) (%)
' D ox(eE Ly D x(er Ly

Wi = = (6.8)
/ Zx(i)EE 1 P N
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and
o~ (02/1, ... ,02;n), where
2 o qu)eE(xg.” — M})T(xg-l) — )
j Y oxerl
S enen(@y) — )T @ — )
) : (6.9)
p-N

In other words, the parameters gf are simply the componentwise empirical means
and variances of the elite set. For the derivation of thig,rule refer to De Boeet al.
(2005). Changing the distribution parameters frgmo2) to (1/, 2) may be a too large
step, so moving only a smaller step towards the new valu@sgstep-size paramete)) is
preferable. The resulting algorithm is summarized in Aitdpon 6.1.

input: po = (to,15 - - - » po,m) AN = (05 1, - -, 0 )

% initial distribution parameters
input: N % population size
input: p % selection ratio
input: T % number of iterations
fortfromOtoT — 1, % CE iteration main loop

for: from 1 to N,
drawx(® from Gaus§'(u,, o?) % drawN samples

computef; := f(x(*) % evaluate them
sort f;-values in descending order
Vet1 = fon % level set threshold
Eipy = {xW | f(z) > y1} % get elite samples
W= (Cxower :cg-i))/(p -N) % get parameters of nearest distributjon

/ % i
0’2j = (Ex(i)eE(Jf§) — /J;)T(xg) - M;))/(p ) N)
Pty = M}/Jr (1—a)- % update with step size
om0+ (1—a) o
end loop

Algorithm 6.1: Pseudo-code of the Cross-Entropy Method for Ganshgributions.

6.3.3 Normalizing Parameters

The value of each parametey has to be selected from a rangg; b;]. Due to the fact that
the domain of a Gaussian distribution is unbounded, we domasthave to throw away sam-
ples, which have one or more out-of-bound values. The@igtichis does not cause any
complications: we may assume that samples having out-efidbealues are not discarded,
they are only given a large negative score. With this assiampive are able to apply the
above algorithm without changes.

Furthermore, we apply two transformations to the parametérst, the parameters are
transformed to a logarithmic scale. We illustrate the radspmentioning the progressive
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bias coefficient as an example. The progressive bias cagftici MANGO has the following
range[0.1; 100]. Without using a logarithmic scale, half of the values wolbédchosen in
[0.1; 50] and the other half if50; 100]. Small values (say between 0.1 and 1), which could
belong to the optimal solution, would be hardly drawn. Usiniggarithmic scale, half of
the values are picked iff).1;3.16] and the other half if3.16; 100]. Second, parameters
that are only allowed to have integer values, are roundetbdtffie closest integer. Both
transformations are part of the fitness functjon

6.4 Experiments

In this section we are going to apply CEM to optimize the MCTE8gmeters of MNGO.
This is done by playing against GNUd33.7.10, leveld, on a9 x 9 Go board. In each
generation CEM draw$00 samples selecting the beii (the elitd sampleg. A sample
consists of playing a certain number of games for a CEM-gaadrparameter setting. So,
the fitness function straightforwardly measures the wignate for a batch of games. To
obtain results rather quickly, MNGo only performs 3,000 simulations per move.

The section is organized as follows. An overview of the paatams together with their
range is given in Subsection 6.4.1. Subsection 6.4.2 an8 &4t the performance of a
fixed and variable batch size, respectively. The best pamrsetting against GNU Gis
discussed in Subsection 6.4.4. The setting @fiN@o (plus CEM) is compared against the
old MANGoO in four self-play experiments in Subsection 6.4.5.

6.4.1 Overview of MCTS Parameters

In total 11 parameters are optimized by CEM, 2 parametershidiselection, 4 parame-
ters for the simulation, 2 parameters for progressive laiad,3 parameters for progressive
widening. The parameters under consideration togethértiviir ranges are given in Table
6.1. The table shows that for most parameters the value iangéte wide. This is done to
assure that the optimal parameter value can be found. Regdta initial distribution for
each parameter, the mean is computed as the average of thedod upper bound. The
standard deviation is computed as half of the differenceden the lower and upper bound.
We remark that they are computed in a logarithmic way, siheddgarithmic values of the
parameters are used by CEM.

6.4.2 Fixed Batch Size

In the following series of experiments we tested the legmarformance of three batch
sizes: 10, 50, and500. The learning curves for the different batch sizes are degin
Figure 6.1. The x-axis represents tioéal number of games played by the samples. The
y-axis represents the average winning percentage agahst Go of all the (100) samples
in a generation.

A batch size ofi0 games leads to an increase from a winning sco8®%f to a winning
score of more thafi0% against GNU ®, after playing a total of 10,000 games. However,
the performance increase stops after 20,000 games, dueéctainty caused by the small

2The values have been chosen based on previous results (DetBoe2005).
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Table 6.1: Parameters with their ranges.

| Parameter type | Parameter name | Range |
Selection UCT exploration coefficient’ [0.2;2]
Thresholdl’ [2; 20]
Capture valueP, [100;20,000]
Simulation Escape valué’, [50;2,000]
Pattern exponen, [0.25; 4]
Proximity factorP,,,4 [10; 500]
Progressive Bias PB factorP By [0.1; 100]
PB exponent®’ B, [0.25; 4]
PW initial # nodes;,.;; [2;10]
Progressive Widening PW factorA [20; 100]
PW baseB [1.01;1.5]

batch size. Subsequently, a batch sizé®fakes more than three times longer to achieve
a score 050%, but converges to a score of a little more th#¥. Finally, a batch size

of 500 games is even slower, but the performance increase is stemuli the final score

is therefore even bettei3.9%. With these settings, the results were obtained by using a
cluster of 10 quad-core computers running for 3 days.
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Figure 6.1: Learning curves for different fixed batch sizes.

6.4.3 Variable Batch Size

In the previous subsection we saw that learning with a snatithsize quickly leads to a
performance increase, but convergence is to a suboptiroeg saly. In contrast, learning
with a large batch size is slower but it converges to a higberes In order to benefit from
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Figure 6.2: Learning curves for different fixed and variable baizéss

both approaches (quick increase, higher convergence)iapege to increase progressively
the batch size after each generation. The scheme that ws thee following. At the first
generation, the algorithm uses a batch sizd @f Next, at generatiom, the algorithm
uses a batch size af) x 1.15"~1. The value ofl.15 has been chosen to ensure that, after
20 generations, the total number of games performed is the sartiee number of games
performed when using a batch size50f In the next series of experiments we compared the
variable batch-size scheme with the three fixed batch siizé @revious subsection. The
results are depicted in Figure 6.2. The figure shows thatiahlarbatch size performs a little
bit worse than a fixed batch size of 50 or 500. However, theabéibatch size converges
faster than a fixed batch size of 50 or 500. These results stutigs a (sufficiently) large
fixed batch size may be better than a variable batch size.

6.4.4 Comparison of Default and CEM Parameters

As we have seen in Subsection 6.4.2, aftérgenerations the best parameter score was
obtained by using a fixed batch size of 500. The achieved s©c$8.9% is an underes-
timation because it represents #neeragescore ofall the samples at the 20generation.
When updating the parameters by using the parameter medms @lfte samples, the score
may improve. This was tested in the following series of ekxpents. We compared the
manual (default) parameter setting to the CEM parameténgddy playing twice (Default
and CEM) 10,000 games against GNWbGThe parameter settings are reported in Table
6.2 together with their score against GNWG

We see that MNGO using the CEM parameters plays better against GN&Jtan
the default one5.0% against61.8%). We would like to remark that the parameters for
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Table 6.2: Comparison of Default and CEM parameters.

Parameter Default | CEM
UCT exploration coefficient” 0.7 0.43
Expansion threshol@ 10 3
Capture valueP, 5,000 | 7,509
Escape valué’, 500 911
Pattern exponeng, 1 0.7
Proximity factorP,, 4 150 85
PB factorP By 8 5.3
PB exponen B, 1 1.1
PW initial # nodes;,,;; 5 3
PW factorA 40 58
PW baseB 1.2 1.12
Winning rate against GNU 6 | 61.8% | 65.0%
Number of games 10,000 | 10,000
Standard deviation 0.5% 0.5%

the default version were already intensively optimizedt fhdependently of each other).
In Table 6.2, it can be seen that the values obtained by CEMjate different from the

default ones. However, most parameter modifications doffexttahe level of the program
much. We observed that the fithess landscape is quite flabdtbe optimum. For instance,
modifying the capture value from 5,000 to 7,509 has almosinflaence on the playing
strength of the program.

6.4.5 Self-Play Experiment

As we saw in the previous subsection, the parameters wereinptl by playing with a short
time setting (3,000 simulations per move) against GN&. Go check whether the param-
eters were not overfitted for a specific opponent or a spedifie setting, four self-play
experiments between MiGo with the CEM parameters and Aico without the CEM
parameters were executed. In the first experiment a shaetdetting of 3,000 simulations
per move was used. MVGO with the CEM parameters wosb.4% of the 10,000 games
played against the default version. In the second expetian@mger time setting of 200,000
simulations per move was used. The CEM version wWor % of the 1,000 games played.
The third and fourth experiment were performed on two diffeboard sizes, B3 x 13 and
al9 x 19 Go board, respectively. The short time setting of 3,000 kitrans per move was
used. The CEM version wofil.3% of the games fott3 x 13 and66.3% of the games for
19 x 19. The results suggest that the fine-tuning of parameters by @&huinely increased
the playing strength of MNGO (see Table 6.3).
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Table 6.3: Self-play experiments: CEM vs. Default.

Board size| Simulations| Winning rate| Number | Standard
per move of CEM of games| deviation
9%x9 200,000 57.4% 1,000 1.6%
9%x9 3,000 55.4% 10,000 0.5%
13x 13 3,000 61.3% 10,000 0.5%
19 x 19 3,000 66.3% 10,000 0.5%

6.5 Chapter Conclusions and Future Research

In this chapter we proposed to optimize the search parameteviCTS by using an evo-
lutionary strategy: the Cross-Entropy Method (CEM). Waded<CEM by optimizing 11
parameters of the MCTS programAMGO. Experiments revealed that using a batch size of
500 games gave the best results, although the convergercslova To be more precise,
these results were obtained by using a cluster of 10 quaglemonputers running for 3 days.
Interestingly, a small (and fast) batch size of 10 still gea@sonable results when compared
to the best one. A variable batch size performed a little loitse than a fixed batch size of
50 or 500. However, the variable batch size converged féster a fixed batch size of 50
or 500. Subsequently, we showed thatMz 0 with the CEM parameters performed better
against GNU @ than the MANGO version without. Moreover, in four self-play experi-
ments with different time settings and board sizes, the CERion of MANGO defeated
each time the default version convincingly. Based on thesalts, we may conclude that
parameter optimization by CEM genuinely improved the pigystrength of MNGO, for
various time settings and board sizes. The nature of ouaresallows the following gen-
eralization: a hand-tuned MCTS-using game engine may iwapite playing strength when
re-tuning the parameters with CEM.

The idea of applying a gradient interpretation of the crassopy in CEM (Hu and
Hu, 2009) and the more general applicable ideaddptive noisy optimizatiofRolet and
Teytaud, 2010) may improve the convergence speed for aptigithe parameters of an
MCTS program. A direction of future research would be to teetm in MANGO.



Chapter 7

Parallelizing Monte-Carlo Tree
Search

This chapter is based on the publication:

G.M.J-B. Chaslot, M.H.M. Winands, and H.J. van den Herik (20032aral-

lel Monte-Carlo Tree SearchProceedings of the Conference on Computers and
Games 2008 (CG 2008gds. H.J. van den Herik, X. Xu, Z. Ma, and M.H.M.
Winands.), Vol. 5131 ot ecture Notes in Computer Science (LNCp. 60-71,
Springer-Verlag, Heidelberg, Germany.

In the previous chapters we discussed Monte-Carlo TreecB€RICTS) in detail. This
chapter answers the fourth research question by invesiigiabw we can parallelize MCTS.
In the past, research in parallelizing search has been ynaémformed in the area af3-
based programs running on super-computer&€E®BLUE (Campbellet al., 2002) and
BrRUTUsS/HYDRA (Donningeret al, 2004) are famous examples of highly parallelized
chess programs. The recent evolution of hardware has gtmehandirection that nowadays
even personal computers contain several cores. To get teeaubof the available hard-
ware one has to parallelize Al techniques. Parallelizat@smtherefore become an important
topic not only for MCTS, but for any kind of search technique.

Just as fory3 search, it holds for MCTS that the more time is spent for $glg@ move,
the better the game play is. Moreover, the law of diminishigtgrns! which nowadays has
come into effect for many/3 chess programs, appears to be less of an issue for MCTS Go
programs. Hence, parallelizing MCTS seems to be a promigaygto increase the strength
of a Go program. Pioneering work has been done by Cazenavdarahdeau (2007)
who introduced two parallelization methods: leaf parahtion and root parallelization
(originally called single-run parallelization).

In this chapter we compare them to a third method, that wetreaiparallelization. We
compare the three parallelization methods (leaf, root, teee) by using the&sames-Per-

1Experimental studies have demonstrated diminishing retutnagdditional search depth (Junghanns and Scha-
effer, 1997; Heinz, 2001).
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Second (GPS)-speedup measanel strength-speedup measur&he first measure corre-
sponds to the improvement in speed, and the second meastgspmnds to the improve-
ment in playing strength. The three parallelization methae implemented and tested in
the Go program MNGO, running on a multi-core machine containing 16 cores.

The chapter is organized as follows. In Section 7.1 we erpé&af parallelization and
root parallelization. Next, we introduce tree paralldii@a in Section 7.2. We empirically
evaluate the three parallelization algorithms in Secti@n Finally, Section 7.4 provides the
chapter conclusions and describes future research.

7.1 Parallelization of Monte-Carlo Tree Search

In Chapter 3 we explained that MCTS consists of four mainssté€p) selection, (2) expan-
sion, (3) simulation, and (4) backpropagation. The diffiéygarallelization methods can be
distinguished for the MCTS step being parallelized.

In this chapter, we consider the parallelization of MCT Sd@ymmetric multiprocessor
(SMP) computer. We always use one processor thread for eachgsor core. One of the
properties of an SMP computer is that any thread can accessetiiral (shared) memory
with the same (generally low) latency. As a consequencea]lphthreads should use a mu-
tual exclusion (mutex) mechanism in order to prevent ang datruption, due to simultane-
ous memory access. This could happen when several threads@essing the MCTS tree
(i.e.,instep 1, 2, or 4). However, the simulation step,(§&p 3) does not require any infor-
mation from the tree. There, simulated games can be playagletely independently from
each other. This specific property of MCTS is particulargiesting for the parallelization
process. For instance, it implies that long simulated gamedee the parallelization easier.
We distinguish three main types of parallelization, defegadn which step of the MCTS is
parallelized:leaf parallelization(Subsection 7.1.1)pot parallelization(Subsection 7.1.2),
andtree parallelization(elaborated in Section 7.2).

7.1.1 Leaf Parallelization

Leaf parallelization introduced by Cazenave and Jouan@@@i7) is one of the easiest
ways to parallelize MCTS. To formulate it in machine-depamderms, only one thread
traverses the tree and adds one or more nodes to the tree Wdadmade is reached (step 1
and 2). Next, starting from the leaf node, independent sitedl games are played for each
available thread (step 3). When all games are finished, th# oésll these simulated games
is propagated backwards through the tree by one singledlistéep 4). Leaf parallelization
is depicted in Figure 7.1a.

Leaf parallelization seems interesting because its implgation is easy and does not
require any mutexes. However, two problems appear. Filagjmy n games using: dif-
ferent threads takes more time on average than playing agegjame using one thread,
since the program needs to wait for the longest simulatedega®econd, information is
not shared. For instance, i threads are available, agd(faster) finished games are all
losses; it will be highly probable that most games will leactloss. Therefore, playing
more games is a waste of computational power. To decreasesiting time, the program
might stop the simulations that are still running when theuhs of the finished simula-
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Figure 7.1: (a) Leaf parallelization (b) Root parallelization (c) Trealbalization with global mutex
and (d) with local mutexes.

tions become available. This strategy would enable therprodo traverse the tree more
often, but some threads would be idle. Leaf parallelizatimm be performed inside an SMP
environment, or even on a cluster using MPI (Message Pab#ieijace) communication.

7.1.2 Root Parallelization

Cazenave and Jouandeau (2007) proposed a second paatitializnder the name “single-
run” parallelization. In this chapter we calldot parallelizationto stress the part of the tree
for which it applies. The method works as follows. It corsist building multiple MCTS
trees in parallel, with one thread per tree. Similar to leabfielization, the threads do not
share information with each other. When the available timspent, all the root children
of the separate MCTS trees are merged with their correspgradibnes. For each group of
clones, the scores of all games played are added. The bestimsglected based on this
grand total. This parallelization method only requires aimal amount of communication
between threads, so the parallelization is easy, even onséecl Root parallelization is
depicted in Figure 7.1b.

7.2 Tree Parallelization

In this section we introduce a new parallelization methdtedaree parallelization This
method uses one shared tree from which several simultargauss are played. Each
thread can modify the information contained in the treerdfoee mutexes are used to lock
from time to time certain parts of the tree to prevent datauggion. There are two methods
to improve the performance of tree parallelization: (1) exubcation (Subsection 7.2.1)
and (2) “virtual loss” (Subsection 7.2.1).
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7.2.1 Mutex Location

Based on the location of the mutexes in the tree, we distitgwio mutex location methods:
(1) using aglobal mutexand (2) using severdbcal mutexes

The global-mutex method locks the whole tree in such a walyahly onethread can
access the search tree at a time (step 1, 2, and 4). In theimea®veral other processes
can play simulated games (step 3) starting frdifferentleaf nodes. This is a major dif-
ference with leaf parallelization where all simulated garstart from thesameleaf node.
The global-mutex method is depicted in Figure 7.1c. Them@kspeedup given by the
parallelization is bounded by the time that has to be spetftariree. Letr be the average
percentage of time spent in the tree by one single thread meb@émum speedup in terms
of games per second 190/x. In most MCTS programs is relatively high (say between
25 to 50%), limiting the maximum speedup substantially.sTikithe main disadvantage of
this method.

The local-mutexes method makes it possible tateralthreads can access the search
tree simultaneously. To prevent data corruption becausgdwmore) threads access the
same node, we lock a node by using a local mutex when it isedidiy a thread. At the
moment a thread departs the node, it is unlocked. Thus,dhitign requires to frequently
lock and unlock parts of the tree. Hence, fast-access maixeh as spinlocks have to be
used to increase the maximum speedup. The local-mutexdwdet depicted in Figure
7.1d.

7.2.2 \Virtual Loss

If several threads start from the root at the same time, ibésible that they traverse the tree
for a large part in the same way. Simulated games might start fleaf nodes, which are in
the neighbourhood of each other. It can even happen thatatiedugames begin from the
same leaf node. Because a search tree typically has mithiiomsdes, it may be redundant
to explore a rather small part of the tree several times. @otiuggests to assign a “virtual
loss” when a node is visited by a thread (i.e., in step 1). ldetie value of this node will
be decreased. The next thread will only select the same riotdevialue remains better
than its siblings’ values. The virtual loss is removed whem thread that gave the virtual
loss starts propagating the result of the finished simulgtede (i.e., in step 4). Owing
to this mechanism, nodes that are clearly better than othirstill be explored by all
threads, while nodes for which the value is uncertain witllm®explored by more than one
thread. Hence, this method keeps a certain balance betwpkmation and exploitation in
a parallelized MCTS program.

7.3 Experiments

In this section we compare the different parallelizatiogosithms with each other. Sub-
section 7.3.1 discusses the experimental set-up. We showeatiormance of leaf paral-
lelization, root parallelization, and tree parallelipatin Subsection 7.3.2, 7.3.3, and 7.3.4,

2personal Communication.
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respectively. An overview of the results is given in Subigec?.3.5. Root parallelization
and tree parallelization are compared under different itimmd in Subsection 7.3.6.

7.3.1 Experimental Set-up

The aim of the experiments is to measure the quality of thallgdization process. We use
two measures to evaluate the speedup given by the diffeezatig@lization methods. The
first measure is called th@ames-Per-Second (GPS) speediigs computed by dividing
the number of simulated games per second performed by thithmedded program, by
the number of games per second played by a single-threadgdapn. However, the GPS-
speedup measure might be misleading, since it is not aMa@ysase that a faster program is
stronger. Therefore, we propose a second measure: chliadyth speedupt corresponds
to theincrease of time needed to achieve the same strergthinstance, a multithreaded
program with a strength speedup®% has the same strength as a single-threaded program,
which consumes.5 times more time.

In order to design the strength-speedup measurement, weeqaon three steps. First,
we measure the strength of the Go programNédo on thel3 x 13 board against GNU
Go 3.7.10, level 0, for 1 second,2 seconds4 secondsg seconds, and6 seconds. For
each time setting, 2,000 games are played. Figure 7.2 sefiwtstrength of MNGO in
terms of percentage of victory. In Figure 7.3, the increasstiength in term of rating
points as a function of the logarithmic time is shown. Thisdiion can be approximated
accurately by linear regression, using a correlation auefit R> = 0.9922. Second, the
linear approximation is used to give a theoretical Go raforgany amount of time. Let
us assume that; is the level of the program in rating pointg,is the time in seconds per
move. Linear regression gives B%(T') = A-log2T + B with A = 56.7andB = —175.2.
Third, the level of play of the multithreaded program is mead against the same version
of GNU Go, with one second per move. L&}, be the rating of this program against GNU
Go. The strength speedupis defined by:S € R|E;(S) = E,,.

The experiments were performed on the supercomputer Hgygdrich had 20 nodes,
each with16 cores POWERS running at9 GHz and having4 Gigabytes of memory per
node. Using this hardware the single-threaded version a&b was able to perform
3,400 games per second in the initial board positioh3ok 13 Go. The time setting used
for the multithreaded program wassecond per move.

7.3.2 Leaf Parallelization

In the first series of experiments we tested the performahpkaim leaf parallelization. We
did not use any kind of enhancement to improve this paraiiébn method as discussed
in Subsection 7.1.1. The results regarding winning peeg@tGPS speedup, and strength
speedup for 1, 2, 4, and 16 threads are given in Table 7.1. Weredd that the GPS
speedup is quite low. For instance, when runnirgimulated games in parallel, finishing
all of them tookl1.15 times longer than finishing jusdtsimulated game. Fal6 threads, it
took two times longer to finish all games compared to finishirsg one. The results show
that the strength speedup obtained is rather low as welf¢2 46 processors). So, we may
conclude that plain leaf parallelization is not a good wayparallelizing MCTS.
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Table 7.1: Leaf parallelization.
Number of Winning Number Confidence GPS Strength

threads  percentage  of games interval Speedup speedup
1 26.7% 2000 2.0% 1.0 1.0
2 26.8% 2000 2.0% 1.8 1.2
4 32.0% 1000 2.9% 3.3 1.7
16 36.5% 500 4.3% 7.6 2.4

7.3.3 Root Parallelization

In the second series of experiments we tested the perfoeramoot parallelization. The
results regarding winning percentage, GPS speedup, amgstrspeedup for 1, 2, 4, and
16 threads are given in Table 7.2.

Table 7.2: Root parallelization.
Number of Winning Number Confidence GPS Strength

threads  Percentage  of games interval speedup  speedup
1 26.7% 2000 2.0% 1 1.0
2 38.0% 2000 2.2% 2 3.0
4 46.8% 2000 2.2% 4 6.5
16 56.5% 2000 2.2% 16 14.9

Table 7.2 indicates that root parallelization is a quiteeetiize way of parallelizing
MCTS. One patrticularly interesting result is that, for 2 aprdcessor threads, the strength
speedup is significantly higher than the number of threadd (@ise., 3.0 and 6.5, respec-
tively). This result implies that, in the programAWGo, it is more efficient to run four
independent MCTS searches of one second than to run oneM&g& search of four sec-
onds. It might be that the algorithm stays for quite a longetimlocal optima. This effect
is caused by the UCT coefficient setting. For small UCT coieffits, the UCT algorithm
is able to search more deeply in the tree, but also stays &idimge in local optima. For
high coefficients, the algorithm escapes more easily frogndbal optima, but the result-
ing search is shallower. The optimal coefficient for a spegfsition can only be deter-
mined experimentally. The time setting also influences tiaability of the results. For
a short time setting, the algorithm is more likely to spenal nauch time in local optima.
Hence, we believe that with higher time settings, root paliaition will be less efficient.
In any case, we may conclude that root parallelization isrgoks and effective way to par-
allelize MCTS. Experiments executed by Cazenave and Jeaan(007), and Winands
and Bprnsson (2010) confirm that root parallelization perforevaarkably well for a small
number of threads.
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7.3.4 Tree Parallelization

In the third series of experiments we tested the performahtee parallelization. Below,
we have a closer look at threutexes locatioandvirtual loss

Mutexes Location

First, the global-mutex method was tested. The resultsigea égn Table 7.3. These results
show that the strength speedup obtained upttweads is satisfactory (i.e., strength speedup
is 3). However, forl6 threads, this method is clearly insufficient. The strengibeslup
drops from 3 for 4 threads to 2.6 for 16 threads. So, we mayludechat the global-mutex
method should not be used in tree parallelization.

Table 7.3: Tree parallelization with global mutex.

Number of  Percentage Number Confidence GPS strength
threads of victory of games interval speedup  speedup

1 26.7% 2000 2.0% 1.0 1.0

2 31.3% 2000 2.1% 1.8 1.6

4 37.9% 2000 2.2% 3.2 3.0

16 36.5% 500 4.3% 4.0 2.6

Next, we tested the performance for the local-mutexes ndetfidie results are given
in Table 7.4. Table 7.4 shows that for each number of threlaeldocal-mutexes method
has a better strength speedup than the global-mutex methtadeover, by using local
mutexes instead of a global mutex the number of games plagresepond is doubled when
using 16 processor threads. However, the strength speediif processors threads is just
3.3. Compared to the result of root parallelization (141916 threads), this result is quite
disappointing.

Table 7.4: Tree parallelization with local mutexes.

Number of  Percentage Number Confidence GPS Strength
threads of victory of games interval speedup  speedup

1 26.7% 2000 2.0% 1.0 1.0

2 32.9% 2000 2.1% 1.9 1.9

4 38.4% 2000 2.2% 3.6 3.0

16 39.9% 500 4.3% 8.0 3.3

Using Virtual Loss

Based on the previous results we extended the local-muteeegparallelization with the
virtual-loss enhancement. The results of using virtuad kx® given in Table 7.5.

Table 7.5 shows that the effect of the virtual loss when udinggocessor threads is
moderate. If we compare the strength speedup of Table 7.4&arsincrease from 3.0 to
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Table 7.5: Using virtual loss for tree parallelization with local mutexes.
Number of Winning Number Confidence GPS Strength

threads  percentage  of games interval speedup speedup
1 26.7% 2000 2.0% 1.0 1.0
2 33.8% 2000 2.1% 1.9 2.0
4 40.2% 2000 2.2% 3.6 3.6
16 49.9% 2000 2.2% 9.1 8.5

3.6. But when usind6 processor threads, the result is more impressive. Tredeglaation
with virtual loss is able to wint9.9% of the games instead 80.9% when it is not used.
The strength speedup of tree parallelization increases &8 (see Table 7.4) to 8.5. Thus,
we may conclude that virtual loss is important for the perfance of tree parallelization
when the number of processor threads is high.

7.3.5 Overview

Figure 7.4 depicts the performance of leaf parallelizationt parallelization, and tree par-
allelization with global mutex or with local mutexes. Theaxis represents the logarith-
mic number of threads used. The y-axis represents the vgrpencentage against GNU
Go. For comparison reasons, we have plotted the performanteafefault (sequential)

program when given more time instead of more processing pdWe see that root paral-

lelization is superior to all other parallelization metlpgerforming even better than the
sequential program.

7.3.6 Root Parallelization vs. Tree Parallelization Revised

In the previous subsection we saw that on tBex 13 board root parallelization outper-
formed all other parallelization algorithms, includingérparallelization. It appears that the
strength of root parallelization lies not only in a more efiee way of parallelizing MCTS,
but also in preventing that MCTS stays too long in local optinThe results may be dif-
ferent for other board sizes, time settings, and parameténgs. Therefore, we switched
to a different board size9(x 9) and three different time settings (0.25, 2.5, and 10 sezond
per move). Using 4 processor threads, root and tree pazalieh played both 250 games
against the same version of GNUoGor each time setting. The results are given in Table
7.6. For 4 threads, we see that root parallelization andpaeallelization perform equally
well now. Nevertheless, the number of games played and thdeuof threads used is not
sufficient to give a definite answer which method is better.

7.4 Chapter Conclusions and Future Research

In this chapter we discussed the use of leaf parallelizatimhroot parallelization for par-
allelizing MCTS. We introduced a new parallelization methoalled tree parallelization.
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Figure 7.4: Performance of the different parallelization algorithms.

Table 7.6:9 x 9 results for root and tree parallelization using 4 threads.

Time (s) Winning percentage
Root parallelization ~ Tree parallelization
0.25 60.2% 63.9%
2.50 78.7% 79.3%
10.0 87.2% 89.2%

This method uses one shared tree from which games simuitalyeare played. Experi-
ments were performed to assess the performance of thegliaatibn methods in the Go
program MANGO on thel3 x 13 board. In order to evaluate the experiments, we proposed
the strength-speedup measure, which corresponds to teengeded to achieve the same
strength. Experimental results indicated that leaf paliaition was the weakest paralleliza-
tion method. The method led to a strength speed@dir 16 processor threads. The sim-
ple root parallelization turned out to be the best way foapalizing MCTS. The method

led to a strength speedup b£.9 for 16 processor threads. We saw that tree parallelization
requires two techniques to be effective. First, using lovalexes instead of a global mutex
doubles the number of games played per second. Second tine¥bss enhancement in-
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creases both the games-per-second and the strength obiraupr significantly. By using
these two techniques, we obtained a strength speedtip @dr 16 processor threads.

Despite the fact that tree parallelization is still behiodtrparallelization, it is too early
to conclude that root parallelization is the best way of peliaation. It transpires that
the strength of root parallelization lies not only in a moffeetive way of parallelizing
MCTS, but also in preventing that MCTS stays too long in laggima. Root parallelization
repairs (partially) a problem in the UCT formula used by tbkestion mechanism, namely
handling the issue of balancing exploitation and exploratiFor now, we may conclude
that root parallelization leads to excellent results forpacific time setting and specific
program parameters. However, as soon as the selection mgchs able to handle more
adequately the balance of exploitation and explorationbel@ve that tree parallelization
could become the best choice for parallelizing MCTS.

There are three directions for future research. (1) In thiapter, we limited the tree
parallelization to one SMP-node. For subsequent researehyill focus on tree paral-
lelization and determine under which circumstances treallpfization outperforms root
parallelization. We believe that the selection stratelyg, ttme setting, and the board size
are important factors. Subsequently, we will test tree lfgdization for a cluster with sev-
eral SMP-nodes. Pioneering work on this topic has been pedo by Gellyet al. (2008).
(2) The question remains whether it is necessary to use esitball for tree parallelization.
Enzenberger and Mler (2010) showed that a mutex-free tree parallelizatiotperformed
a global-mutex tree parallelization for the Go prograneEo. It would be interesting to
compare mutex-free tree parallelization with local-metettee parallelization. (3) Most of
the experiments in MNGO were performed in3 x 13 Go. More experiments should be
conducted foB x 9 and19 x 19 Go.
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Chapter 8

Generating Opening Books using
Meta Monte-Carlo Tree Search

This chapter is based on the publications:

P. Audouard, G.M.J-B. Chaslot, J-B. Hoock, J. Perez, A. Rimnmel @. Teytaud
(2009). Grid Coevolution for Adaptive Simulations; Application to the Building
of Opening Books in the Game of G@pplications of Evolutionary Computing
Vol. 5484 ofLecture Notes in Computer Science (LNG#). 323—-332, Springer-
Verlag, Heidelberg, Germany.

G.M.J-B. Chaslot, J-B. Hoock, J. Perez, A. Rimmel, O. Teytaud, Mrid.M.
Winands (2009). Meta Monte-Carlo Tree Search for Automatic OpenoakB
Generation. Proceedings of the IJCAI'09 Workshop on General Intelligence in
Game Playing Agentpp. 7-12, Pasadena, CA, USA.

This chapter answers the fifth research question by inasig how we can generate
automatically an opening book for an MCTS program. MCTS paiots need, just like,s
programs, an opening book to perform better. An opening limakprecalculated database
of positions with their values that are likely to occur at Beginning of a tournament game
(Lincke, 2001). Instead of performing a search, the opebimak decides which move to
be played. Besides saving time, an opening book may sefeciggr moves, assuming the
time for precalculation is greater than the one used duriag p

There have been a number of successful attempts to creatmgpmoks fora5-based
programs (Buro, 1999; Lincke, 2001; Karapetyan and LoreX@06). Because the pro-
posed methods so far are designed for programs based ontiaqaisévaluation function,
it is a challenge to generate an opening book for an MCTS progrin this chapter we
propose to tackle this issue by combining two levels of MCTi® method is called Meta
Monte-Carlo Tree Search (Meta-MCTS). Instead of using &weaulation strategy, it uses
an entire MCTS program (KIGO) to play a simulated game. Cazenave (2007b) applied an
online Meta-MCTS composed of two UCT algorithms (Kocsis 8zdpeséri, 2006) to get
the world record in the one-player game “Morpion Solitairéfowever, his approach has
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only been designed for one-player games. In this chaptehaw that Meta-MCTS can be
used for generating an opening book for Go. For this task, semt two Meta-MCTS al-
gorithms: the first one, Quasi Best-First (QBF), favourslexation; the second one, Beta-
Distribution Sampling (BDS), favours exploration. QBF isadaptation of greedy selection
algorithms that are used for the regular MCTS. The idea of BXBat the probability that
a move is selected is proportional to the likelihood thas ithie best move (according to its
number of wins and losses). In contrast to UCT, selectingrtbees is not deterministic in
BDS. The selection strategy of BDS did not perform well in HETS program M\NGO
because it was too explorative. In order to evaluate theopeence of QBF and BDS, we
test the generate®l x 9 Go opening books against computer programs and humans.

Section 8.1 presents previous research on creating opbowigs. Next, in Section 8.2
we discuss Meta-MCTS and propose two algorithms, QuastBestand Beta-Distribution
Sampling. Subsequently, Section 8.3 presents the expetaiesults. Finally, Section 8.4
concludes this chapter and gives suggestions for futueares.

8.1 Automatic Opening Book Generation

An opening book can conceptually be viewed as a tree (Kayapeind Lorentz, 2006). The
root is the initial game position. Nodes in general corresbtm positions that occur later
in the game and record the heuristic evaluation of the ws(i.g., win ratio or negamax
score). Edges represent legal moves from one position teekie During game play, if the
position is in the book, the selected move is the one with tpledst heuristic score.

Lincke (2001) distinguishes betwepassiveandactive book constructiarPassive book
construction involves adding moves to the opening book daseinformation gathered
from experts, either from their games or from their knowlkedd the game. Active con-
struction means constructing the book automatically. Fogams usingv3 search, there
are quite a few methods for generating opening books autcatigt The most popular one
is based on the concept of the drop-out mechanism (Linckl,;20arapetyan and Lorentz,
2006). It is a best-first search method that applies for a fatadunt of time a5 search
at a leaf node. Next, it backpropagates the (heuristicesimamd at the leaf node in a nega-
max way. For selecting the most-proving node to expand tlextprocedure is as follows.
At each internal node, the move is chosen that maximizesaéhamax score minus a cer-
tain depth penalty. This depth penalty is proportional ® distance to the leaf node that
backpropagated the negamax score. It enables that a playesr aut the book quickly only
when the position is quite advantageous for him.

The application of this mechanism to Go raises a problemetiseno fast and efficient
evaluation function available in Go in order to useshsearch at the leaf node. It would
be possible to replace thes search by MCTS. However, the score of an MCTS search
is quite instable, in contrast to the stable minimax scorarofi5 search equipped with
a sophisticated evaluation function. The unstable natfitkeoMCTS score could have a
negative effect when constructing the opening book. Usm$§I&TS variant to generate
an opening book appears to be more natural and elegant. Wdisgdglss this further in
the next section. Finally, we remark that in some games,rprog evolve so fast that a
good opening book may become out-dated quickly. Some pmogjteave therefore shifted
to online verification of the book moves (Donninger and Lare2006).
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8.2 Meta Monte-Carlo Tree Search

In this section, we first give the general structure of MetankdeCarlo Tree Search (Meta-
MCTS) in Subsection 8.2.1. Next, in Subsection 8.2.2, wesriles the Quasi Best-First
algorithm. Finally, we introduce the Beta-Distributionraling algorithm in Subsection
8.2.3.

8.2.1 General Idea

An MCTS program uses a weak simulation strategy in order @ thre best move. The
idea of Meta-MCTS consists of replacing the weak simulastategy at the lower part
of the search by an entire MCTS program (e.g., the Go program&®). This program
is thelower levelof the Meta-MCTS. As MCTS programs are computationally espes,
applying a second level of MCTS is quite time consuming, athot be performed in real
time. However, using this strategy off-line for generatimgopening book is possible.

We call the part of the search where the selection strategyele which move will be
explored further, theipper level This selection strategy has to be adapted as well. The
standard UCT formula (Kocsis and Szepa$v2006) requires an exploration constént
to be tuned. Tuning this consta@tfor a two-level MCTS would take quite an amount of
time. Therefore, we propose two alternatives: Quasi Bast-fQQBF) and Beta-Distribution
Sampling (BDS). QBF and BDS are described in Subsectiong 8rid 8.2.3.

8.2.2 Quasi Best-First

MCTS is often emphasized as a compromise between exploratid exploitation. Nev-
ertheless, many programmers have seen that in the casesahit@stic games, the explo-
ration constan€ of the UCT formula, when optimized, has to be set close to.z&msmall
exploration value is given to every move when using a spestifategy such as RAVE (Gelly
and Silver, 2007) or Progressive Bias (Chasloal., 2008c¢). In both cases the exploration
term will converge fast to zero. The consequence of using awmall exploration value is
that, after a few games, a move is further analyzed as lortgsathe move with the highest
winning rate. Therefore, most MCTS programs can be qualifgebeing greedy. This sub-
section introduces the Quasi Best-First (QBF) algorithahich was originally proposed by
Olivier Teytaud and Arpad Rimmel. QBF usually selects thikdahith the highest winning
rate. However, if a move’s winning rate drops below a certhmsholdK, QBF will ask
the MCTS program (here BIGO) to choose a move. The pseudo code is given in Algorithm
8.1. Because of executing an entire MCTS program, the (agemdok) tree grows quite
slowly. Instead of adding only the first position encountdieat was not already stored (see
Subsection 3.3.2), all the positions are added that aredisisit when playing a simulated
game. Backpropagating, though, stays the same by takingldire average of the results
(see Subsection 3.3.4).

1QBF was previously called MVBM (see Audouagtial., 2009).
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QBF(K, \)
while Truedo
for I =1..\,do
p = initial position; g = {p}.
while p is not a terminal positiodo
bestScore = K
bestMove = Null
for m in the set of possible moves indo
score = winRatio(p, m)
if score > bestScore then
bestScore = score
bestMove =m
end if
end for
if bestM ove = Null then
bestMove = MoGoChoice(p) Il lower level MCTS
end if
p = playM ove(p, best M ove)
g = concat(g, p)
end while
addToBook(g, g.result)
end for
end while

Algorithm 8.1: The “Quasi Best-First” (QBF) algorithm.is the number of machines availablg.is
a constantyg is a game, defined as a sequence of game positions. The function ‘ChmB®” asks
MoGo to choose a move.

8.2.3 Beta-Distribution Sampling

Each node in a game tree has a game-theoretic value. In Geatlis is eithel) in case

it corresponds to a won position for White, biin case it corresponds to a won position
for Black. For MCTS, the convergence to the game-theoretigevis in practice slow. We
observed that the value of a node may get stuck in a local optifior a long time. From
this observation, we propose a hypothesis of stabflity each positionP has a stationary
average valug:; p that only depends o and on the simulation strategythat is used.
For instance, the standard version 0bMO Uses/tfqst Pattern, p, Wherefast Pattern is a
fast simulation strategy that usgs< 3 patterns to make its decision. The upper level of the
Meta-MCTS useS$irroGoGames, P, WhereMoGoGames is a simulation strategy that uses
MoGo to make its decision.

Let ws p be the number of wins of the games made by the simulatioregyat which
went through the positiod®. Let [/, » be the number of losses of the games made by
the simulation strategy, which went through the positioff. Under the hypothesi#l,
the probability that the game is a win for the player to mov@asition P, is us p. The
number of wins and losses obeys a Bernoulli distributione Ptobability distribution of
s, p KNowingw, p andl, p is given by the conjugate prior of the Bernoulli distributio
which is a beta distribution. The formula of this distrikmrtiis given below.
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BDS()\)
while Truedo
forl =1..)\, do

p = initial position; g = {p}.
while p is not a terminal positiodo
bestScore = —o0
bestMove = Null
for m in the set of possible moves indo
score =draw from distribution:
T — pWMoGoGames,m . (1 _ x)lAIGGoGa,m,es,m,
if score > bestScore then
bestScore = score
bestMove =m
end if
end for
if bestMove = Null then
bestMove = MoGoChoice(p) Il lower level MCTS
end if
if random __int modulop.visit_count = 0 then
bestMove = MoGoChoice(p) Il lower level MCTS
end if
p = playM ove(p, best M ove)
g = concat(g, p)
end while
addToBook(g, g.result)
end for
end while

Algorithm 8.2: The “Beta-Distribution Sampling” (BDS) algorithm\ is the number of machines
available. g is a game, defined as a sequence of game positions. The function ‘ChaB®” asks
MoGo to choose a move.

pps,p = z|ws p, s p) = 27 - (1 —z)'P (8.1)

We propose the following selection strategy, called Beistribution Sampling (BDS),
which consists of sampling a random numbgfrom each beta distribution for each child
i.2 The child selected is the one with the bestThe pseudo code is provided in Algorithm
8.2. According to this selection strategy, each node iscsadewith the probability that it
is the best node, assuming the hypothdsis This concept is similar to the idea of the
selection strategy developed by Chagbal. (2006a) and Coulom (2006). The benefit of
BDS is that there are fewer approximations.

2We used the scientific library Blitz++ to draw random numbersoading to a beta distribution. Webpage:
http://www.oonumerics.org/blitz/
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8.3 Experiments

In this section, we generate sevefak 9 Go opening books using QBF and BDS. We
evaluate their performances and provide statistics that Unederstanding the structure of
these books. All these opening books were generated on & gt all experiments the
symmetry of the board positions was taken into account.

Subsection 8.3.1 tests QBF, and Subsection 8.3.2 reporexmeriments comparing
QBF and BDS.

8.3.1 QBF Experiments

In this subsection we show the performance of QBPfar9 Go. First, we perform experi-
ments withK = 0.5 in QBF. Next, we present tests in self-play and with an expeening
book.

Experiments with K = 0.5

In the first series of experiments we tested the quality oQB& generated opening book
with a constanK of 0.5. When generating the book the prograno®o used 10 seconds
for choosing a move at the lower level. The generated QBF loookained 6,000 games.
For evaluating the quality of the QBF book we matched two iees of MOGO against
each other. One was using the QBF book and the other one digsaa book at all. Both
programs received 10 seconds thinking time per move andcglayn an 8-core machine.
Moreover, we also matched the program using the QBF boolksigahe using an “ex-
pert book”. This expert opening book has been speciallygthesi for MoGo by Pierre
Audouard? The results are given in Table 8.1.

Table 8.1: Performance of the QBF algorithm with 10 seconds per ma/& a= 0.5. The confidence
interval is+ 1.9%.

No book QBF book QBF vs.

vs. no book | vs. no book | expert book
White 51.5% 64.3% 64.1%
Black 48.5% 48.0% 46.1%
Average 50.0% 56.2% 55.1%

The first column gives an average success raf@f, since it is self-play. The second
column shows the results for White (respectively Black) vilie QBF book against no
book. We see that the one using an opening book performdisaymly better. In the third
column we see that the QBF book also outperforms the expekt idowever, in both cases
we observe that Black does not improve when using the QBF.bblis can be explained
as follows: as long as Black has not found a move with sucaass>r 50%, it always
asks MoGo for a move to play. Therefore, White improves its results byading moves
with a high success rate, but not Black. This is why in the iied®r of the chapter, we

3The grid was Grid5000, well-suited for large-scale scienéixperiments.
“Pierre Audouard was the French Champioriénx 19 Go and is the current World Championdnx 9 Go
for people with a physical handicap.
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Table 8.2: Success rate of the QBF book and expert book againstfdndtdMoGo using 6 hours for
each side.

QBF Expert
opening book | opening book
White | 74.5%=+ 2.3% | 62.9%=+ 3.8%
Black | 64.6%+ 2.4% | 49.7%+ 3.8%
Average | 69.6%+ 2.4% | 56.3%+ 3.8%

useK = 0.1 for Black. (Table 8.2 QBF shows that this setting also impsothe level as
Black).

QBF in Self-Play and against Expert Opening Book

In the following series of experiments we generate a QBF Hnolsing more time at the
lower level. Instead of using 10 seconds a move we used 1&liouthe complete game
(six hours for each side) on a quad-core machine. The findd bootained 3,000 games.

We tested the quality of the QBF book by matching two versifrid 0Go against each
other. One version was using the book, the other was not.iffieesetting was six hours for
each side. The results are presented in Table 8.2. For cisopaeasons we also tested in
a similar way the quality of the expert book. We observe thaiQ® performs better when
using the QBF book than when using the expert book. Finakysee that the QBF book
improves the performance of both colours.

8.3.2 Experiments Comparing QBF and BDS

One could consider to compare QBF and BDS by self-play ewparis. However, it should
be remarked that self-play experiments favour the greedyesfies (Lincke, 2001). Hence,
a comparison of QBF and BDS on this basis would be biased. dfsope a different way
of comparison. First, we measure the length of staying irbthek against other opponents.
Next, we compare QBF and BDS on the computer Go server CGOS.

Comparing the Length of Staying in the Book against Other Oppnents

In the following series of experiments, we compare the QB&kldo the BDS book. Figure
8.1 shows the distribution of the length of staying in therapg book when playing 500
games as Black and 500 games as White against the MCTS prograGOREnzenberger
and Miller, 2009). This program is quite similar to&Go. In the figure we see that as
Black QBF has an average length of 9.6 and BDS has an avenaggh lef 9.8. As White,
QBF has an average length of 14.6 whereas BDS has only a leh@tB. As FUEGO s
quite close to MGO, the opening book generated by QBF is a good predictor; yaisged
some moves for Black. We may conclude that QBF builds a boakithasymmetrical in
considering Black and White. Because Black has the disadgenits best move value will
go belowK more often than it would be for White.

In the following series of experiments, we played againstUs@o. This program is
not MCTS-based and therefore much more different from®b than FUEGO. Figure 8.2
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Figure 8.1: Number of book moves when playing against &0 with the opening book. The x-axis
is the depth and y-axis is the density of probability. First row: playing askBl&econd row: playing

as White. First column: expert opening book. Second column: QBRingdook of 12,000 games.
Third column: BDS opening book of 12,000 games. Each label contagaverage length of the
book. All histograms are estimated 660 games.

shows the distribution of the length of staying in the opgriinok when playing 500 games
as Black and 500 games as White. It is clear that as White BD8dtaypger in the opening
book than QBF, 4.7 and 3.7 moves, respectively. However|askBDS stayed shorter in
the opening book than QBF,3 and7.8, respectively.

Next, we compared the number of moves staying in the opendog bgainst human
experts. All the responses that are found in the classi® Go book are also found in the
QBF book.

An in-depth analysis showed unfortunately that when QBF geserating the book it
soon selected alwayeb as the first move. All other opening moves in the initial posit
were only explored a small number of times. This was a cleawback of the QBF ap-
proach when playing against human players. This happen#dtigames played against
Prof. Tsai (6 Dan).

Another example of the performance of QBF can be found in ffigial match against
Motoki Noguchi (7 Dan) (Teytaud, 2008). The result of the chatvas 2—2. This was the
first time that a computer program was able to draw againshyeplof that calibre. These
games were played with the QBF and expert book, containid@légames. In the games

5See http://senseis.xmp.net/?9x90penings
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Figure 8.2: Number of book moves when playing against GN&J v@th the opening book. The
x-axis is the depth and y-axis is the density of probability. First row: plagmélack. Second row:
playing as White. First column: expert opening book. Second colur@f 6pening book of 12,000
games. Third column: BDS opening book of 12,000 games. Eachdah#dins the average length of
the book. All histograms are estimated 500 games.

won by MoGo, the opening book gave an advantage to®b and continuously increased
its advantage. In both lost games, Motoki Noguchi went outhef opening book quite
fast. However, the book later developed by BDS would haveaained more moves. The
sequence5-c4-g3-e3-e4-dwas explored onl2 times by the QBF opening book, bi4
times by the BDS. In the other game lost byokao, the sequence5-e7-g6-f3has been
explored13 times by QBF andS8 times by BDS.

This shows that, despite the quite long sequence in the ngd&oiok against computers,
QBF does not explore enough promising moves for playingregdiumans. BDS may
appear to be a better alternative against human play.

Comparison on the Go Server CGOS

In the final series of experiments, we used the Go server C@O®B8Ier to assess QBF and
BDS. In order to perform a fair comparison between the algors, we created two dedi-
cated opening books. The first was created by QBF and the d&ayoBDS. Each opening
book was created by usir cores in parallel, 1 second per move, with a total of 5,120
games. We launched four versions obko on CGOS: (1) without a book, (2) with a QBF
book, (3) with a BDS book, and (4) with a combined book (QBF-&D5ubsequently, we
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compared the ELO rating that they obtained by playing againsool of different oppo-
nents. In order to make the comparison as fair as possiblégumehed the four versions
simultaneously on the server. Moreover, to avoid that tfferéint MoGo versions played
too many games against each other, we only launched them twbenwere enough other
programs available. The different versions of MoGo playesliad 70% of their games
against non-MGo versions. The results can be found in Table 8.3. This exparishows
that QBF and BDS give a significant improvement on the versithout opening book,
and that merging directly the two opening books is countedpctive. The two books were
not built to be combined with each other, so negative sideceffmay appeatr.

Table 8.3: Results on the computer Go server CGOS.

QBF | BDS | CGOS rating| Games
No No 2216 371
Yes No 2256 374
No Yes 2268 375
Yes | Yes 2237 373

8.4 Chapter Conclusions and Future Research

In this chapter we proposed Meta Monte-Carlo Tree SearchaECTS) for generating an
opening book. Meta-MCTS is similar to MCTS, but the weak datian strategy is replaced
by a standard MCTS program. We described two algorithms fetaMMCTS: Quasi Best-
First (QBF) and Beta-Distribution Sampling (BDS). The fiadgorithm, called QBF, is an
adaptation of greedy algorithms that are used for the re§dGTS. QBF favours therefore
exploitation. During actual game play we noticed that desthie good performance of the
opening book, some branches were not explored sufficiehllg. second algorithm, called
BDS, favours exploration. In contrast to UCT, BDS does neithen exploration coefficient
to be tuned. This approach created an opening book whichaifosler and wider. The
BDS book had the drawback to be less deep against computeithebadvantage was that
it stayed longer in the book in official games against humamsperiments on the Go server
CGOS revealed that both QBF and BDS were able to improgsid. In both cases the
improvement was more or less similar. Based on the resudtsnay conclude that QBF and
BDS are able to generate an opening book which improves tierpeance of an MCTS
program.

As future research, we want to test other ways for generamg@pening book. In
particular, transferring classic techniques derived fiafhsearch to MCTS constitutes an
interesting challenge.



Chapter 9

Conclusions and Future Research

In this chapter, we present the conclusions of the thesisSelction 9.1 we answer the
five research questions and provide an answer to the proltégemsent. In Section 9.2 we
provide promising directions for future research.

9.1 Answerstothe Problem Statement and Research Ques-
tions

In this thesis we investigated a Monte-Carlo techniqueedaMonte-Carlo Tree Search
(MCTS). It is a best-first search method guided by the residlMonte-Carlo simulations.
MCTS, described in Chapter 3, can be divided in four majopssteelection expansion
simulation andbackpropagationThe following problem statement guided our research.

Problem statement How can we enhance Monte-Carlo Tree Search in such a
way that programs improve their performance in a given dordai

Enhancing the strategies for each MCTS step improves tlyinglatrength of the pro-
gram. We discussed that the two most crucial steps were &fionland selection (Chapter
3). This led to the first and second research question, wreehwlith improving the sim-
ulation strategy by using knowledge (Chapter 4), and imipgpthe selection strategy with
knowledge (Chapter 5), respectively. For the third redequestion we investigated how we
can optimize the parameters in MCTS (Chapter 6). The fowskarch question aimed at
investigating how well MCTS can be parallelized on moderittisnore computers (Chapter
7). Finally, the fifth research question addressed the egapdin of MCTS to build an open-
ing book automatically (Chapter 8). The answers to the figeaech questions are given
below.

Research question 1How can we use knowledge to improve the Monte-Carlo
simulations in MCTS?

We focused on enhancing the simulation strategy by intrioguaowledgen the Monte-
Carlo simulations. The knowledge transforms the plain eamdimulations into more so-
phisticatedoseudo-randomimulations.
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We discussed two different simulation strategies thatyagpbwledge: urgency-based
and sequence-like simulation. Based on the experiencergattirom implementing them
in INDIGO and MoGo, respectively, we make the following three recommendatiai)
Avoiding big mistakes is more important than playing goodve® (2) Simulation strate-
gies using sequence-like simulations or patterns in urgbased simulations are efficient
because they simplify the situation. (3) The simulatiormatsigy should not become too
stochastic, nor too deterministic, thus balancing expioneand exploitation.

Moreover, we developed the first efficient method for leagrantomatically the knowl-
edge of the simulation strategy. We proposed torasge evaluationas a fithess function
instead of learning from the results of simulated games. &ffment was introduced that
enables to balance the amount of exploration and exploitafihe algorithm was adapted
from the tracking algorithm of Sutton and Barto (1998). lrélag was performed fod x 9
Go, where we showed that the Go prograxmiG o with the learnt patterns performed better
than the program with expert patterns.

Research question 2How can we use knowledge to arrive at a proper balance
between exploration and exploitation in the selection stedCTS?

A selection strategy such as UCT controls the balance betexgloitation and explo-
ration. On the one hand, the task often consists of seletfiagnove that leads to the
best results so far (exploitation). On the other hand, the fromising moves still must
be tried, due to the uncertainty of the evaluation (expiorat We saw that the MCTS
program MANGO equipped with UCT increasingly performed worse for largeaid sizes
when playing against GNU G

We introduced therefore two progressive strategies. Theategies use (1) the infor-
mation available for the selection strategy, and (2) sormedibly time-expensive) domain
knowledge that is introduced by an expert, or learnt autaralit. The two progressive
strategies we developed gpeogressive biasnd progressive widening Progressive bias
uses knowledge to direct the search. Progressive widenstgdduces the branching fac-
tor, and then increases it gradually. This scheme is alserd#mt on knowledge.

The progressive strategies were first tested aN@d0. The incorporated knowledge was
based on urgency-based simulation. From the experimettisMiNGO, we observed the
following. (1) Progressive strategies, which focus itifian a small number of moves, are
better in handling large branching factors. They incredbedevel of play of the program
MANGO significantly, for every board size. (2) On the x 19 board, the combination of
both strategies is much stronger than each strategy apg@jgtately. The fact that progres-
sive bias and progressive widening work better in combamawvith each other shows that
they have complementary roles in MCTS. This is especiaklydiise when the board size
and therefore branching factor grows. (3) Progressivésgfies can use relatively expensive
domain knowledge with hardly any speed reduction.

The progressive strategies were successfully implementether game programs and
domains. Progressive bias increased the playing strerigthasso and MC-LOA, while
progressive widening did the same for&Y STONE. Moreover, in the case of BIGO,
progressive bias was successfully combined with RAVE {Gafid Silver, 2007), a similar
technique for improving the balance between exploitatiod exploration. These results
give rise to the main conclusion that the proposed progresgtrategies are essential en-
hancements for an MCTS program.
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Research question 3How can we optimize the parameters of an MCTS pro-
gram?

In our attempt to answer this research question, we proposagtimize the search pa-
rameters of MCTS by using an evolutionary strategy: the €irstropy Method (CEM).
The fitness function for CEM measures the winning rate fortatbaf games. The perfor-
mance of CEM with a fixed and variable batch size was testedifing 11 parameters in
MANGO. Experiments revealed that using a batch size of 500 ganvestiya best results,
although the convergence was slow. To be more precise, thegks were obtained by us-
ing a cluster of 10 quad-core computers running for 3 dayerdstingly, a small (and fast)
batch size of 10 still gave a reasonable result when compartte best one. A variable
batch size performed a little bit worse than a fixed batch sfZe0 or 500. However, the
variable batch size converged faster than a fixed batch §&@ or 500. Subsequently, we
showed that MNGO with the CEM parameters performed better against GNWJ tan
the MANGO version without. Moreover, in four self-play experimentghadifferent time
settings and board sizes, the CEM version ot 0 defeated the default version convinc-
ingly each time. Based on these results, we may concludeathahd-tuned MCTS-using
game engine may improve its playing strength when re-tutiiegparameters with CEM.

Research question 4How can we parallelize MCTS?

We first showed that MNGO's playing strength (measured in ELO points) increased
nearly linearly as a function of the logarithmic time. Eadulling of time increased the
strength by 50 ELO points against GNUoGWe aimed at obtaining similar results by in-
creasing the number of cores, for a fixed time setting. Wedettree different paralleliza-
tion methods: (1) leaf parallelization, (2) root paraltakion, and (3) tree parallelization.

Experimental results indicated that leaf parallelizatioas the weakest parallelization
method. Root parallelization led to surprisingly good teswvith a nearly linear speed-up
for 16 cores. These unexpected results have been confirnmtdenprograms.We saw that
tree parallelization requires two techniques to be effectfrirst, using local mutexes instead
of a global mutex doubled the number of games played per se&wstond, the virtual-loss
enhancement increased both the speed and the strength mfotiram significantly. The
two conclusions are as follows: (1) Root parallelizatiod &nree parallelization perform sig-
nificantly better than leaf parallelization. (2) For a muatire machine, parallelized MCTS
has almost a linear speed-up up to 16 cores and scales tteegeite well.

Research question 5How can we automatically generate opening books by
using MCTS?

We proposed to use Meta Monte-Carlo Tree Search (Meta-M@drSjenerating an
opening book. Meta-MCTS is similar to MCTS, but the simuatstrategy is replaced by
a standard MCTS program. We described two algorithms foraM@CTS: Quasi Best-
First (QBF) and Beta-Distribution Sampling (BDS). The fiedgjorithm, QBF (proposed
by Teytaud and Rimmel), is an adaptation of greedy algouthimat are used for the reg-
ular MCTS. During actual game play we noticed that despigegiod performance of the
opening book, some branches were not explored sufficie@BF therefore favours ex-
ploitation. We developed the second algorithm, that weedallieta-Distribution Sampling
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(BDS), which favours exploration. The algorithm draws a maecording to its likelihood
of being the best move (considering the number of wins argkl)s This approach created
an opening book which is shallower but wider. Experimentsha® x 9 Go server CGOS
revealed that both QBF and BDS were able to improve the GoranogMoGo. In both
cases the improvement in playing strength was approximat@ELO points. Based on the
results, we may conclude that QBF and BDS are able to genanad@ening book which
improves the performance of an MCTS program.

After answering all five research questions, we are now ahpedvide an answer to the
problem statement, which is repeated here for convenience.

Problem statement How can we enhance Monte-Carlo Tree Search in such a
way that programs improve their performance in a given dorai

The thesis proposed an answer to the problem statement) wiaig essentially be sum-
marized in five points. First, we improved the knowledge ia Himulation strategy by
learning from move evaluations. Second, we enhanced tketg®i strategy by proposing
progressive strategies for incorporating knowledge. dhive applied CEM to optimize
the search parameters of an MCTS program in such a way thplaiging strength was
increased. Fourth, we showed that MCTS benefits substgrftiain parallelization. Fifth,
we designed Meta-MCTS to generate an opening book that iraprthe performance of an
MCTS program.

9.2 Future Research

From our observations, we believe that there are seversrels directions for the following
topics.

Simulation

In the thesis we developed offline simulation strategiesomf#sing work for construct-
ing online a simulation strategy include the ideas of Fionsand Bprnsson (2008) and
Sharmeet al. (2008). An interesting direction for future research is ¢onbine offline and
online strategies with each other.

Selection

An idea is to modify during game play (online) the progressstrategy according to the
results of the Monte-Carlo simulations. For instance, iitimtion where the initiak moves
are losing, increasing the speed of widening to find the bestenseems promising. As
another example, if a move that receives always a high heusisoreH; is rarely the best
move in numerous nodes, then the heuristic score of this mawiel be adjusted online.
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Parallelization

A research direction is to combine root parallelizationhwiitee parallelization. Several
n x m configurations exist, wheireis the number of independent trees (root parallelization)
andm the number of threads running on each tree (tree parallieliva Furthermore, the
independent MCTS trees can be synchronized regularly.at ispen question to find the
optimal setup for a certain number of processor threads.

Opening-Book Construction

We observed that the automatically generated opening bmoktmes plays weak moves,
due to the fact that for specific situations, MCTS evaluatessition incorrectly (e.g., scor-
ing a position too high). Even if these positions are rare,gbnerated opening book often
tries to reach these positions. A solution to this problemo ket human experts detect the
errors and correct the value of a position. Hence, we betlesthe best opening book will
not be only computer-generated, neither human-genetatayill come from the interac-
tion of humans and computers.

Other Domains

In this thesis, the analysis of MCTS was restricted to gamitls perfect information.
Adapting MCTS to games with imperfect information is an iesting challenge. Only
a small amount of research has been performed so far (eeggatihe of Kriegspiel; Cian-
carini and Favini, 2009). Different choices have to be madaadel imperfect information.

Understanding the Nature of MCTS

Noteworthy results were achieved of enhancing MCTS in Go @thdr games. Yet, the
underlying principles of MCTS are not fully understood. lis keminal work Beal (1999)
investigated the nature of minimax. Minimax algorithms antiancements have benefitted
greatly from this fundamental analysis. We expect that alairphenomenon will hold for
MCTS algorithms as well. Therefore, we propose to investighe nature of MCTS in
order to understand better its fundamentals.
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Appendix A

Production Management
Problems

This appendix is based on the following publication:

G.M.J-B. Chaslot, S. de Jong, J-T. Saito, and J.W.H.M. Uiterwijk 6&)OMonte-
Carlo Tree Search in Production Management ProbléPnsceedings of the 18th
BeNeLux Conference on Atrtificial Intelligendeds. P-Y. Schobbens, W. Van-
hoof, and G. Schwanen), pp. 91-98.

In this appendix, we present Production Management Prab{@hPs) as an auxiliary
test environment for MCTS. We give a brief overview of PMPsSection A.1. Next, a
formal description is given in Section A.2. We focus on a difigal version of PMPs as
proposed by De Jong, Roos, and Sprinkhuizen-Kuyper (200gnores non-determinism
and earning additional money that can be utilized to cowerctsts of actions.

A.1 Overview

Production Management Problems (PMPs) can be defined asimdaproblems which re-
quire parameter optimization over time and can be addrésstite selection of actions with
side effects. They contain the following four elementsst;ithere is a fixed set @roducts

— the sizeof the problem is equivalent to the size of this set. Secdmetetis a fixed set
of production actionswhich are used to convert certain products into other prtedor to
obtain one or more products. These actions may require tht@®ney. Some actions may
also produce money (selling actions). Third, therecanestraintssuch as a limited amount
of time or money available. Fourth, the goal for a problenvaiis to produce certain prod-
ucts, denoted as thgoal productsas much as possible. This can be achieved by developing
an optimal sequence (or plan) of actions, given the avalpbbducts, actions, constraints
and money.
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A.2 Formalization

PMPs can be described in a formal way as follows:

The set of product® = {p4,...,p,}. Thesizeof the problem|P|, is denoted by..

The possibly infinite set of possible problem states is dmhbty S. The problem
states; € S at a certain moment in time (starting with) is a tuple(ms,, gs, (p))-
Here,m;, is the money available in this state, and the functign: P — N defines
the quantity available for each product in the state

G C P is the set of goal products. The reward per goal product? — RT, is
specified byp ¢ G — r(p) = 0 andp € G — r(p) > 0. The total reward in a state
s¢ can be calculated using the functis,) = > . r(p) - ¢s, (p). The goal of the
problem is to reach a statg in which R(s;) is optimal.

A denotes the set of actions that enable the transition frastate to another. Here,
¢ : A — NT denotes the cost of actian Due to this cost, we will have less money
to spend in every subsequent state, and thus we ensure thatabiem will have

a finite number of possible actions.: A — N denotes the time actiom takes to
complete, assuming discrete time steps. The fundgtionA — P(P x NT) denotes
the number of products required to execateut : A — P(P x NT) denotes the
number of products produced hyif it is executed.

Additional constraints. De Jonget al. (2005) introduced five constraints in addition to
this formalism. These PMPs possess some convenient piesgpsuch as a strict ordering

of actions and guaranteed solvability. However, PMPs ttheee to these additional con-
straints are not essentially easier than PMPs that do netradb them. The five additional

constraints are given below.

1.

Every action requires at most two products and produce®ptwo products. Every
product is produced by exactly two actions.

. Costs and durations of actions can be selected from alindibmain for alb € A:

cla) € {1,2,3,4} andt(a) = 1. We limit the domain for the coefficients for
required and produced produgitby implying the conditior(p, z) € in(a)V (p,x) €
out(a) — z € {1,2,3,4}.

. Cycles in the product chain are prevented: An action caoroaluce products with a

lower index than the highest index of its required prodygliss one.

. We defined = {p,, } andr(p,) = 1.

. The problem solver starts with an initial amount of mongya to 20n and none

of the products present. The numi®8n is intentionally rather small to keep the
problem complexity manageable. Thus, = (ms,,q) with m,, = 20 - n and

pe P — q(p)=0.
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Figure A.1: Example of a PMP that adheres to the formalism and cortstpaisented in this chapter.

A small example PMP that adheres to the formalism and cdntdrpresented here, is
shown in Figure A.1. For legibility, all coefficients havedseomitted. Circles represent
actions and squares represent products. For instancenattiequires productg, and
p3 and produces the produgt. The goal product i, which can be produced by using
various product chains, e.g., by using acti@rto produce productg; andps, and then
using actionB to produceps andps. Some other product chains are also possible.

Complexity. Using a mathematical formalization of PMPs, it is possiblegduce the NP-
Hard 3-SAT problem to a PMP, proving that PMPs are also NR#Har
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Appendix B

Milestones of Go Programs
against Professionals

This appendix briefly presents the milestones achieved bgr@grams against profession-
als on thel9 x 19 board (cf. Wedd, 2010). Table B.1 shows for a certain hamdica first
victory by a Go program. The level of the Go player is indidads well. We notice that
in the 1990s matches were played againseis i.e., players that are candidate to become
professional. The games were played with handicaps of Hestand more. Between hu-
mans, games are usually played with handicaps up to 9 staigsh is considered as a
strong handicap. However, traditional Go programs did ranage to reach this level, even
11 years after defeating a strong Go player with an 11-stbaedicap. Moreover, the re-
sults of these non-MCTS programs against human players quéte variable. Human Go
players experienced in exploiting the weaknesses of coenpprograms performed much
better. For instance, in 1998 Jean-Loup Galilly, an amatewusplayer, was able to give
HANDTALK 20 stones and defeat it.

In the table we see that 850 was the first program to defeat a Go professional with a
handicap of 9 and 6 stones in 2008 and 2009, respectivelyxz€ STONE was the first to
defeat a professional 4-dan player with an 8-stones han@icd then a 7-stones handicap
in 2008. MoGo defeated a professional 9-dan player with a 7-stones hapdic

Finally, we would like to remark that Go defeated the professional 5-dan player Guo
Juan on the x 9 board in the 2007 Computer Olympiad (Gelly and Wang, 200ANak
the first9 x 9 game won by a program against a professional without anyitamnd
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Table B.1: Milestones against human players for different handicapise19 x 19 board.

Year | Handicap Human Level Program MCTS
1991 17 Insei GOLIATH No
1993 15 Insei HANDTALK No
1995 13 Insei HANDTALK No
1997 11 Insei HANDTALK No
2008 9 Professional 8 dar MoGo Yes
2008 8 Professional 4 dan CRAZzY STONE Yes
2008 7 Professional 4 dan CRAzZY STONE Yes
2009 7 Professional 9 dar MoGo Yes
2009 6 Professional 1 dar MoGo Yes
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Summary

This thesis studies the use of Monte-Carlo simulationgém-search problems. The Monte-
Carlo technique we investigate is Monte-Carlo Tree Sedvi®1(S). It is a best-first search
method that does not require a positional evaluation foncin contrast toxG search.
MCTS is based on a randomized exploration of the search spieg the results of previ-
ous explorations, MCTS gradually builds a game tree in mgnaord successively becomes
better at accurately estimating the values of the most miagnimoves. MCTS is a general
algorithm and can be applied to many problems. The most giomresults so far have
been obtained in the game of Go, in which it outperformedla#isic techniques. Therefore
Go is used as the main test domain.

Chapter 1 provides a description of the search problemswhahim to address and
the classic search techniques which are used so far to dwwe tThe following problem
statement guides our research.

Problem statement How can we enhance Monte-Carlo Tree Search in such a
way that programs improve their performance in a given dorfai

To answer the problem statement we have formulated fivenesgaestions. They deal
with (1) Monte-Carlo simulations, (2) the balance betwegpi@ation and exploitation, (3)
parameter optimization, (4) parallelization, and (5) dpgrbook generation.

Chapter 2 describes the test environment to answer thegmmostiatement and the five
research questions. It explains the game of Go, which is asdtie test domain in this
thesis. The chapter provides the history of Go, the rulehefgame, a variety of game
characteristics, basic concepts used by humans to undertsta game of Go, and a review
of the role of Go in the Al domain. The Go programsaNico and MoGo, used for the
experiments in the thesis, are briefly described.

Chapter 3 starts with discussing earlier research aboug ddonte-Carlo evaluations as
an alternative for a positional evaluation function. Thig@ach is hardly used anymore,
but it established an important step towards MCTS. Subsetyia general framework for
MCTS is presented in the chapter. MCTS consists of four mipss (1) In theselection
stepthe tree is traversed from the root node until we reach a ngblere we select a child
that is not part of the tree yet. (2) Next, in teepansion step node is added to the tree. (3)
Subsequently, during th@mulation stepnoves are played in self-play until the end of the
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game is reached. (4) Finally, in theckpropagation stephe result of a simulated game is
propagated backwards, through the previously traversddsio

Each step has a strategy associated that implements a spetify. Regarding selec-
tion, the UCT strategy is used in many programs as a specléctimn strategy because it
is simple to implement and effective. A standard selectioatsgy such as UCT does not
take domain knowledge into account, which could improve &in@ program even further.
Next, a simple and efficient strategy to expand the tree egticrg one node per simulation.
Subsequently, we point out that building a simulation sggtis probably the most difficult
part of MCTS. For a simulation strategy, two balances haveetfound: (1) between search
and knowledge, and (2) between exploration and exploitatfurthermore, evaluating the
quality of a simulation strategy has to be assessed togettiethe MCTS program using it.
The best simulation strategy without MCTS is not always testlone when using MCTS.
The backpropagation strategy that is the most succesghltiigy the average of the results
of all simulated games made through a node.

Finally, we give applications of MCTS to different domainghk as Production Man-
agement Problems, Library Performance Tuning, SameGaroepibh Solitaire, Sailing
Domain, Amazons, Lines of Action, Chinese Checkers, 3sttdé Catan, General Game
Playing, and in particular Go.

The most basic Monte-Carlo simulations consist of playsrgdom moveskKnowledge
transforms the plain random simulations into more soptastidpseudo-randonsimula-
tions. This has led us to the first research question.

Research question 1How can we use knowledge to improve the Monte-Carlo
simulations in MCTS?

Chapter 4 answers the first research question. We explairdiffigrent simulation
strategies that apply knowledge: urgency-based and seegtliée simulation. Based on
the experience gathered from implementing thenNbiGo and MoGo, respectively, we
make the following three recommendations. (1) Avoiding tigtakes is more important
than playing good moves. (2) Simulation strategies usingeece-like simulations or pat-
terns in urgency-based simulations are efficient becaesesimplify the situation. (3) The
simulation strategy should not become too stochastic,amdéterministic, thus balancing
exploration and exploitation.

Moreover, we develop the first efficient method for learningoanatically the knowl-
edge of the simulation strategy. We proposed torasge evaluationas a fithess function
instead of learning from the results of simulated games. éffiment is introduced that
enables to balance the amount of exploration and explaitatThe algorithm is adapted
from the tracking algorithm of Sutton and Barto. Learningesformed fo9 x 9 Go, where
we showed that the Go programoiGo with the learnt patterns performed better than the
program with expert patterns.

In MCTS, the selection strategy controls the balance baetweploration and exploita-
tion. The selection strategy should favour the most pramgisnoves (exploitation). How-
ever, less promising moves should still be investigateficserfitly (exploration), because
their low scores might be due to unlucky simulations. Thisveaselection task can be
facilitated by applying knowledge. This idea has guidedoubie second research question.
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Research question 2How can we use knowledge to arrive at a proper balance
between exploration and exploitation in the selection sfedCTS?

Chapter 5 answers the second research question by propesingethods that integrate
knowledge into the selection step of MCTS: progressive hiad progressive widening.
Progressive bias uses knowledge to direct the search. d3gige widening first reduces
the branching factor, and then increases it gradually. \i&r te them as “progressive
strategies” because the knowledge is dominant when the euaflsimulations is small in
a node, but loses influence progressively when the numbémofations increases.

First, the progressive strategies are tested ikNiEo. The incorporated knowledge is
based on urgency-based simulation. From the experimethsMANGO, we observe the
following. (1) Progressive strategies, which focus ifigian a small number of moves, are
better in handling large branching factors. They increasdeavel of play of the program
MANGO significantly, for every board size. (2) On tihe x 19 board, the combination of
both strategies is much stronger than each strategy apg@petately. The fact that progres-
sive bias and progressive widening work better in combamatvith each other shows that
they have complementary roles in MCTS. This is especiaklydise when the board size
and therefore branching factor grows. (3) Progressivéesiigs can use relatively expensive
domain knowledge with hardly any speed reduction.

Next, the performance of the progressive strategies irr gdme programs and domains
is presented. Progressive bias increases the playingygtrehMoGo and of the Lines-of-
Action program MC-LOA, while progressive widening did thenge for the Go program
CRAzY STONE. In the case of MGO, progressive bias is successfully combined with
RAVE, a similar technique for improving the balance betwegploitation and exploration.
These results give rise to the main conclusion that the meg@rogressive strategies are
essential enhancements for an MCTS program.

MCTS is controlled by several parameters, which define thedeur of the search. Es-
pecially the selection and simulation strategies contewmeal important parameters. These
parameters have to be optimized in order to get the bestrpaaface out of an MCTS pro-
gram. This challenge has led us to the third research guestio

Research question 3How can we optimize the parameters of an MCTS pro-
gram?

Chapter 6 answers the third research question by proposiogtimize the search pa-
rameters of MCTS by using an evolutionary strategy: the S€&stropy Method (CEM).
CEM is related to Estimation-of-Distribution AlgorithmEDAS), a new area of evolution-
ary computation. The fitness function for CEM measures theing rate for a batch of
games. The performance of CEM with a fixed and variable batehistested by tuning 11
parameters in MNGO. Experiments reveal that using a batch size of 500 games fiee
best results, although the convergence is slow. A small {@st)i batch size of 10 still gives
a reasonable result when compared to the best one. A vabahih size performs a little
bit worse than a fixed batch size of 50 or 500. However, theabéibatch size converges
faster than a fixed batch size of 50 or 500.

Subsequently, we show thatAWGo with the CEM parameters performs better against
GNU Go than the MaNGO version without. In four self-play experiments with differ
ent time settings and board sizes, the CEM version afNlo defeats the default version
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convincingly each time. Based on these results, we may sdachat a hand-tuned MCTS-
using game engine may improve its playing strength whemmay the parameters with
CEM.

The recent evolution of hardware has gone into the diredtiah nowadays personal
computers contain several cores. To get the most out of thigahle hardware one has to
parallelize MCTS as well. This has led us to the fourth redeguestion.

Research question 4How can we parallelize MCTS?

Chapter 7 answers the fourth research question by invéstigdaree methods for par-
allelizing MCTS: leaf parallelization, root parallelizan and tree parallelization. Leaf par-
allelization plays for each available thread a simulatesi@atarting from the leaf node.
Root parallelization consists of building multiple MCT®és in parallel, with one thread
per tree. Tree parallelization uses one shared tree frormhaddmes simultaneously are
played.

Experiments are performed to assess the performance o&théigization methods in
the Go program MNGO on thel3 x 13 board. In order to evaluate the experiments, we
propose the strength-speedup measure, which correspotiasttime needed to achieve the
same strength. Experimental results indicate that leatligdization is the weakest paral-
lelization method. The method leads to a strength speedp ébr 16 processor threads.
The simple root parallelization turns out to be the best waypfarallelizing MCTS. The
method leads to a strength speedup 4P for 16 processor threads. Tree parallelization
requires two techniques to be effective. First, using lovatexes instead of a global mutex
doubles the number of games played per second. Second tiie¥bss enhancement in-
creases both the games-per-second and the strength obtraupr significantly. By using
these two techniques, we obtain a strength speed8 dbr 16 processor threads.

Modern game-playing programs use opening books in the begjrof the game to save
time and to play stronger. Generating opening books in coatlnin with ana8 program
has been well studied in the past. The challenge of gengratitomatically an opening
book for MCTS programs has led to the fifth research question.

Research question 5How can we automatically generate opening books by
using MCTS?

Chapter 8 answers the fifth research question by combinindevels of MCTS. The
method is called Meta Monte-Carlo Tree Search (Meta-MCTigtead of using a rela-
tively simple simulation strategy, it uses an entire MCT8gpam (MoGoO) to play a sim-
ulated game. We describe two algorithms for Meta-MCTS: @Bast-First (QBF) and
Beta-Distribution Sampling (BDS). The first algorithm, QB$-an adaptation of greedy al-
gorithms that are used for the regular MCTS. QBF favoursetioee exploitation. During
actual game play we observe that despite the good perfoeraribe opening book, some
branches are not explored sufficiently. The second algariBDS, favours exploration. In
contrast to UCT, BDS does not need an exploration coeffie¢@®be tuned. The algorithm
draws a move according to its likelihood of being the best en@onsidering the number
of wins and losses). This approach created an opening boudhwghshallower and wider.
The BDS book has the drawback to be less deep against comphiterthe advantage is
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that it stayed longer in the book in official games against &isn Experiments on the Go
server CGOS reveal that both QBF and BDS were able to imprav&®1 In both cases the
improvement is more or less similar. Based on the resultsnase conclude that QBF and
BDS are able to generate an opening book which improves tHerpgnce of an MCTS

program.

The last chapter of the thesis returns to the five researdtiqne and the problem state-
ment as formulated in Chapter 1. Taking the answers to thearels questions above into
account we see that there are five successful ways to impr@eMFirst, learning from
move evaluations improves the knowledge of the simulaticategy. Second, progressive
strategies enhance the selection strategy by incorpgrétiowledge. Third, CEM opti-
mizes the search parameters of an MCTS program in such a &aitdtplaying strength
is increased. Fourth, MCTS benefits substantially from lfgization. Fifth, Meta-MCTS
generates an opening book that improves the performance BIGTS program. Yet, we
are able to provide additional promising directions foufetresearch. Finally, the question
of understanding the nature of MCTS is still open.
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Samenvatting

Dit proefschrift bestudeert het gebruik van Monte-Carlmdaties voor zoekproblemen.

De Monte-Carlo techniek die wij onderzoeken is Monte-Camnee Search (MCTS). Het

is eenbest-firstzoekmethode die in tegenstelling tot ket zoekalgoritme geen positio-

nele evaluatiefunctie vereist. MCTS is gebaseerd op edelwilrige verkenning van de

zoekruimte. Met behulp van de resultaten van eerdere vaihgen, bouwt MCTS geleide-

lijk een spelboom op in het computergeheugen en gaat danatel@ravan de veelbelovende
zetten steeds beter schatten. MCTS is een generiek algogitnkan worden toegepast op
veel problemen. De meest veelbelovende resultaten zijduster verkregen in het spel
Go, waarin MCTS beter presteert dan de klassieke technigkerwordt daarom gebruikt

als testdomein in dit proefschrift.

Hoofdstuk 1 geeft een beschrijving van de zoekproblemewdibeogen aan te pakken
en de klassieke zoektechnieken die tot dusver zijn gebounikze op te lossen. De volgende
probleemstelling is geformuleerd.

Probleemstelling: Hoe kunnen we Monte-Carlo Tree Search op zo’n manier
verder ontwikkelen dat programma’s hun prestaties in egegen domein ver-
beteren?

Voor de beantwoording van de probleemstelling hebben Wenierzoeksvragen ge-
formuleerd. Ze gaan over (1) Monte-Carlo simulaties, (2pdkns tussen exploratie en
exploitatie, (3) parameter optimalisatie, (4) paraltgltie, en (5) openingsboek generatie.

Hoofdstuk 2 beschrijft de testomgeving die gebruikt wondt de probleemstelling en
de vijf onderzoeksvragen te beantwoorden. Het geeft elguiain het spel Go, dat als test-
domein in dit proefschrift wordt gebruikt. Het hoofdstukeffiede geschiedenis van Go, de
regels, verscheidene spelkarakteristieken, enkelerasigpes, en een beschouwing over
de rol van Go in het Al-domein. De Go programma’'aaMz0 en MoGo, die worden ge-
bruikt voor de experimenten, worden kort beschreven.

Hoofdstuk 3 begint met een bespreking van eerder onderzeek et gebruik van
Monte-Carlo evaluaties als een alternatief voor een poste evaluatiefunctie. Deze aan-
pak wordt nauwelijks meer gebruikt, maar is een belangijlea geweest op weg naar
MCTS. Hierna wordt in het hoofdstuk een algemeen raamweok MCTS gepresenteerd.
MCTS bestaat uit vier hoofdstappen: (1) Ingidectie stapvordt de boom vanaf de wortel
doorkruist totdat we arriveren in een knoop waar een kinelgeteerd wordt dat nog geen
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onderdeel is van de zoekboom. (2) Daarna wordt er iexgmnsie stagen knoop toege-
voegd aan de boom. (3) Vervolgens, wordt er gedurencknaiglatie stapeen gesimuleerde
partij gespeeld. (4) In derugpropagatie staprordt dan het resultaat van die gesimuleerde
partij verwerkt in de knopen langs het afgelegde pad.

Aan elke MCTS stap is een strategie verbonden dat een speodieid uitvoert. Voor
selectie wordt in veel programma’s de UCT-strategie gébmindat ze eenvoudig uit te
voeren en effectief is. Een standaard selectie strategés XJCT, gebruikt geen domein-
kennis. Een eenvoudige en eféioie strategie voor het expanderen van de boom is om de
eerste positie die we tegenkomen in de gesimuleerde patigtvoegen. Vervolgens wijzen
wij erop dat het creg&ren van een simulatie strategie waarschijnlijk het migste onderdeel
is in MCTS. Voor een simulatie strategie moeten er twee Isglanworden gevonden: (1)
tussen zoeken en kennis, en (2) tussen exploratie en extfgoiBovendien moet de kwali-
teit van een simulatie strategie altijd samen wordesvgkieerd met het MCTS programma
waarin het wordt gebruikt. De beste simulatie strategielzoMCTS is niet altijd de bes-
te met MCTS. De terugpropagatie strategie, die het meestsual is, neemt gewoon het
gemiddelde over de resultaten van alle gesimuleerde graitijde desbetreffende knoop.

Tenslotte geven we enige toepassingen van MCTS in versot#l domeinen zoals Pro-
ductie Management Problemen, Libary Performance Tuniage®same, Morpion Solitai-
re, Sailing Domain, Amazons, Lines of Action, Chinese CleeskKolonisten van Catan,
General Game Playing, en in het bijzonder Go.

De meest basale Monte-Carlo simulaties bestaan uit hetkgilirig spelen van zetten.
Het gebruik van kennis kan deze simulaties in meer verfijred spnsformeren. Dit heeft
ons tot de eerste onderzoeksvraag gebracht.

Onderzoeksvraag 1 Hoe kunnen we kennis gebruiken om Monte-Carlo simu-
laties in MCTS te verbeteren?

Hoofdstuk 4 geeft antwoord op de eerste onderzoeksvraagle§en twee verschil-
lende simulatie strategi@ uit die kennis toepassen: urgentie-gebaseerde en siequen
gebaseerde simulaties. Op basis van de opgedane ervaiimbeniGo en MoGo, doen
we de volgende drie aanbevelingen. (1) Het vermijden vatedouten is belangrijker dan
het doen van goede zetten. (2) Simulatie stratagiajn efficént als ze de situatie vereen-
voudigen zoals in urgentie-gebaseerde of sequentie-getmssimulaties. (3) De simulatie
strategie moet niet te stochastisch noch te determirtistigic; dus de strategie moet balan-
ceren tussen exploratie en exploitatie.

Verder ontwikkelen we de eerste effiate methode voor het automatisch leren van de
kennis gebruikt in de simulatie strategie. Wij hebben vestgld om zetevaluaties te gebrui-
ken als een fitheidsfunctie in plaats van leren op basis vaesidtaten van gesimuleerde
spelen. Een difficient wordt géntroduceerd die het mogelijk maakt exploratie en exploita
tie te balanceren. Het leeralgoritme is een aanpassingatdrabkingalgoritme van Sutton
en Barto. De experimenten zijn uitgevoerd v8ox 9 Go, waar we laten zien dat het Go
programmamlDIGO met de geleerde patronen beter presteert dan het prograsbaaagrd
op expert patronen.

In MCTS regelt de selectie strategie de balans tussen exti@an exploitatie. Aan de
ene kant moet de selectie strategie zich richten op de Jeethwle zetten (exploitatie).
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Aan de andere kant moeten de minder rooskleurige zettenteedssvoldoende worden
onderzocht (exploratie). Deze taak kan worden gefadititdeor kennis. Dit idee heeft ons
tot de tweede onderzoeksvraag gebracht.

Onderzoeksvraag 2 Hoe kunnen we gebruik maken van kennis om te komen
tot een goede balans tussen exploratie en exploitatie inetextie stap van
MCTS?

Hoofdstuk 5 geeft antwoord op de tweede onderzoeksvraagtdee technieken voor
te stellen die kennis integreren in de selectie spapgressive biagnprogressive widening
Progressive bias gebruikt kennis om het zoekproces bijuierst Op basis van kennis
reduceert progressive widening eerst de vertakkingsgaadieze vervolgens geleidelijk
weer te vergroten. We verwijzen naar deze twee technielepadgressieve strategin”,
omdat de kennis dominant is als het aantal simulaties kééméen knoop, maar geleidelijk
aan invloed verliest als het aantal simulaties toeneemt.

Eerst worden de progressieve stratégigetest in MNGO. De ingebouwde kennis is
gebaseerd op de urgentie-gebaseerde simulatie. Op grardbvexperimenten met M-
GO observeren we het volgende. (1) Progressieve strétegite in zich in eerste instantie
richten op een klein aantal zetten, zijn beter in het vereerkan een grote vertakkings-
graad. Ze vergroten het spelniveau van het programmadb aanzienlijk, voor elke bord
grootte. (2) Op het9 x 19 bord is de combinatie van beide stratégiereel sterker dan elke
strategie afzonderlijk. Het feit dat progressive bias ergpessive widening beter werken
in combinatie met elkaar laat zien dat ze elkaar aanvulléi@TS. Dit is vooral het geval
wanneer de bord grootte en derhalve de vertakkingsgraaaitgi@) Progressieve strate-
gieén kunnen gebruik maken van relatief dure domeinkennisldpnder de snelheid te
verlagen.

Vervolgens worden de prestaties van de progressievegg@énan andere spelprogram-
ma’s en domeinen gepresenteerd. Progressive bias vertieageelsterkte van M50 en
van het Lines-of-Action programma MC-LOA, terwijl progsdge widening het Go pro-
gramma ®RAzY STONE verbetert. In het geval van &G0 is progressive bias succesvol
gecombineerd met RAVE, een vergelijkbare techniek vooratbatering van de balans tus-
sen exploitatie en exploratie. Deze resultaten geven igamietot de belangrijkste conclusie
dat de voorgestelde progressieve stratagiessengile verbeteringen zijn voor een MCTS
programma.

MCTS wordt gecontroleerd door een aantal parameters, diedekgedrag bepalen.
Vooral de selectie en simulatie stratégiebevatten een aantal belangrijke parameters. De-
ze parameters moeten worden geoptimaliseerd om de bestatpe te krijgen voor een
MCTS programma. Deze uitdaging heeft ons gebracht tot diedmrderzoeksvraag.

Onderzoeksvraag 3 Hoe kunnen we de parameters van een MCTS program-
ma optimaliseren?

Hoofdstuk 6 geeft antwoord op de derde onderzoeksvraag\dmorte stellen om de
MCTS zoekparameters te optimaliseren met behulp van edntevaire strategie: de
Cross-Entropy MethodCEM). CEM is gerelateerd aaastimation-of-Distribution Algo-
rithms (EDASs). De fitheidsfunctie voor CEM meet het winspercentager een bepaald
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aantal batch partijen. De prestaties van CEM met een vaste batch en esbeke batch
worden getest door 11 parameters af te stellen ANEIO. Experimenten tonen aan dat het
gebruik van een batch grootte van 500 partijen de bestetag=nigeeft, hoewel de conver-
gentie traag is. Een kleine (en snelle) batch grootte vanaltflign geeft nog steeds een
redelijk resultaat in vergelijking met de beste batch gmotEen variabele grootte pres-
teert iets minder dan een vaste grootte van 50 of 500 parti®hter, de variabele batch
convergeert sneller dan een vaste batch grootte van 50 gi&fifen.

Vervolgens laten we zien dat MiGO met CEM parameters beter presteert tegen GNU
Go dan de MANGO versie met de oude parameters. In vier zelfspel experimengt ver-
schillende tijdsinstellingen en bord groottes verslaaC&#M versie van MANGO de stan-
daardversie elke keer overtuigend. Gebaseerd op deze¢atesukunnen we concluderen
dat een met de hand afgesteld MCTS programma zijn spelsteaktverbeteren door CEM
toe te passen.

De recente evolutie van hardware is gegaan in de richtingedahwoordig PC’s meer-
dere processorkernen bevatten. Om het maximale uit deikbach hardware te halen moet
men MCTS parallelliseren. Dit heeft geleid tot de vierdeemadeksvraag.

Onderzoeksvraag 4 Hoe kunnen we MCTS parallelliseren?

Hoofdstuk 7 geeft antwoord op de vierde onderzoeksvraag lietoonderzoeken van
drie methoden voor de parallellisatie van MCTS: blad-, elerten boomparallellisatie.
Bladparallellisatie simuleert voor elke beschikbare pesorkern een partij, startend in
hetzelfde blad. Wortelparallellisatie bestaat uit hetstnreren van meerdere MCTS bo-
men, waarvoor geldt dat elke zoekboom zijn eigen processoitieeft. Boomparallellisatie
maakt gebruik van een gedeelde zoekboom waarin gelijgtijiterdere simulaties worden
gespeeld.

Experimenten worden uitgevoerd om de prestaties van dédlgibsatie methoden te
beoordelen voor het Go programmaaMGO op het13 x 13 bord. Om de experimenten
te evalueren, introduceren wij dgerkte-versnellingnaat, die overeenkomt met de hoe-
veelheid denktijd die nodig is om dezelfde sterkte te berilDe experimentele resultaten
wijzen erop dat bladparallellisatie de zwakste paraiatie methode is. De methode leidt
tot een sterkte-versnelling van 2,4 voor 16 processorkerbe eenvoudige wortelparallel-
lisatie blijkt de beste manier om MCTS te parallelliseree. rbethode leidt tot een sterkte-
versnelling van 14,9 voor 16 processorkernen. Boompélisdige vereist twee technieken
om effectief te zijn. Ten eerste, het gebruik van lokal&exenn plaats varéén globale mu-
tex verdubbelt het aantal gespeelde simulaties per secdrdaweede, deirtueel-verlies
techniek verhoogt zowel het aantal simulaties als de knearihet programma aanzienlijk.
Door het gebruik van deze twee technieken krijgen we eehtstgersnelling van 8,5 voor
16 processorkernen.

Moderne spelprogramma’s gebruiken een openingsboek oratibdgin van het spel
tijd uit te sparen en sterker te spelen. Het genereren vaap@ringsboek voor eens pro-
gramma is goed bestudeerd. De uitdaging om een openingsiobetatisch te genereren
voor een MCTS programma heeft geleid tot de vijfde ondergoelag.

Onderzoeksvraag 5 Hoe kunnen we automatisch een openingsboek genereren
door gebruik te maken van MCTS?
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Hoofdstuk 8 beantwoordt de vijfde onderzoeksvraag dooetnigeaus van MCTS te
combineren. De methode heet Meta Monte-Carlo Tree Seareta(MCTS). In plaats van
een relatief eenvoudige simulatie strategie te gebruilkerdt een volledig MCTS pro-
gramma (MbGo) gebruikt om een simulatie uit te voeren. We beschrijveretalgoritmen
voor Meta-MCTS:Quasi Best-Firs{QBF) enBeta-Distribution SamplingBDS). Het eer-
ste algoritme, QBF, is een aanpassing gegedyalgoritmen die worden gebruikt voor de
reguliere MCTS. QBF bevordert exploitatie. Voor toern@otjjen constateren we dat on-
danks de goede prestaties van het openingsboek, sommigagee niet voldoende zijn
onderzocht. Het tweede algoritme, BDS, bevordert expglardh tegenstelling tot de se-
lectie strategie UCT, heeft BDS geen exploratie constaietentdet worden afgesteld. Het
algoritme trekt een zet op basis van de waarschijnlijkheidhet de beste zet is (rekening
houdend met het aantal overwinningen en nederlagen). Dexzadering maakt het ope-
ningsboek minder diep maar breder. Het BDS boek heeft alsatatht men niet zo lang
in het boek blijft tegen computer programma’s, maar het gdeel dat men langer in het
boek blijk in officiéle wedstrijden tegen mensen. Experimenten op de Go se@G®SDnt-
hullen dat zowel QBF als BDS het programmabMo verbeteren. In beide gevallen is de
verbetering min of meer vergelijkbaar. Gebaseerd op ddtadsn kunnen we concluderen
dat QBF en BDS in staat zijn om een openingsboek te generataedorestaties van een
MCTS programma verbetert.

In het laatste hoofdstuk keren we terug naar de vijf ondéssaragen en de probleem-
stelling zoals die in hoofdstuk 1 zijn geformuleerd. Rekgnhoudend met de hierboven
gegeven antwoorden op de onderzoeksvragen zien we daf sucgiesvolle manieren zijn
om de prestaties van een MCTS programma te verbeteren. ¢lgtda door middel van
zetevaluaties verbetert de kennis van de simulatie steatg@) Progressieve strategie
versterken de selectie strategie door kennis te integréBJrCEM optimaliseert de zoek-
parameters van een MCTS programma op een zodanige wijze daeglsterkte toeneemt.
(4) MCTS profiteert aanzienlijk van parallellisatie. (5) tdeMCTS genereert een openings-
boek dat de prestaties van een MCTS programma verbeterhaHieven we veelbelovende
richtingen van vervolgonderzoek aan. Tenslotte, de vraadhet begrijpen van de aard van
MCTS is nog open.
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