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intervention of Professor Jaap van den Herik. Many years ago, I had been
appointed to my London University lectureship with just a Masters degree. At
that time, only a minority of the computer science lecturers had a doctoral title.
For many years, I had been content to fulfil my lectureship role of teaching
and research without much concern for titles. Over the years however,
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knowledge in KPK, reported in Chapter eight.

The typing of this thesis was enormously assisted by Sabine Vanhouwe,
whose rapid and efficient help I am pleased to acknowledge.
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friends for their forbearance throughout all the times when I have spent so
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London/Maastricht 1998/9



- • • ! ' • - » ' • . ' • • . . i j » ' , - .;.•< T .

»•»•..? :

' " • ( • ; ;

- ' " " • • " • " . l ! * . f j « •

" • " = : . - . " I

• • ; ) • ! •



1.1 Problem Statement ^fijt»?".: if ' i».

Chapter 1

Introduction
Minimax, as presented by von Neumann in 1928, is a theoretical cornerstone
for solving two-sided, zero-sum, perfect-information competitive problems.
Minimax search is an essential component of almost all of today's programs
that play games at the performance level of expert humans (although
alternatives have been tried: Junghanns (1998) contains a survey). It remains
an essential component even for programs that also incorporate large amounts
of knowledge derived from a human-like approach to understanding game
states and move choices (Winkler and Fiirnkranz (1998) give examples of
such programs). However, the computation time required for minimax search
is a limiting factor for the performance of all game-playing programs,
including IBM's DEEP BLUE, which resorted to hundreds of special-purpose
silicon chips to scan the gargantuan search trees required to play chess at
World Championship level (Seirawan, 1997).

In one sense, minimax search is well understood today. All programmers use it
and there is a large literature, surveyed in, among others. Van den Herik
(1983), Marsland (1986, 1993), and Scheucher and Kaindl (1998). Yet in
another sense, as commented in Scheucher and Kaindl (1998), we still do not
fully understand the underlying principles. It can be observed that, even with
all the refinements embedded in the literature, the best game-playing programs
require enormous searches to play complex games well. It is not known
whether such large searches are essential to match the performance of human
brains on these tasks, or whether better algorithms might require only modest
computers.

1.1 Problem Statement . . . ; . . ,

This thesis is concerned with the principles underlying minimax search. The
motivation is the belief that despite all the published refinements to algorithms
incorporating minimax search, a careful understanding of the fundamentals of
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minimax will yield even better algorithms. The problem statement of this
thesis is "can we increase our understanding of minimax search and use it to
improve search algorithms?" This problem statement leads to two inter-
related research questions: (1) can we formulate models of minimax search
that increase our understanding of how minimax search works, and (2) can we
use the minimax models to create effective search algorithms?

1.2 Some Early History ^ s = ?> * v *

The theory of minimax is commonly referenced as going back to 1944 . In that
year a well-known publication by von Neumann and Morgenstern described
how the process called minimax could be used to identify the final outcome,
and a best move, for all positions in a perfect-information game. However,
that minimax process requires starting at positions where the game ends (and
hence where the outcome is known exactly). The process visits all game-
terminal positions that could be reached, in order to work backwards,
assigning values to all intermediate positions, towards the starting position,
eventually assigning an evaluation there. This is infeasible for complex games.
Van den Herik (1997) estimates that, even under extremely favourable
assumptions about the size of the search tree needed, the chess starting
position would take 100 centuries to evaluate using a computer evaluating 10 "
positions per second.

The same method of working backward from distant positions to assign a
heuristic evaluation (and a heuristically-best move choice) to a position under
investigation was suggested as a practical method of choosing moves by
Norbert Wiener (1948). It was found to work quite well, even when the
'terminal" positions were only few moves away, and the 'outcome' was not an
exact value, but a crude, error-prone, erratic guess at the true value.
'Terminal' and 'outcome' are given here in quotes because the original
minimax as defined by Von Neumann is based on exact values from game-
terminal positions, whereas the m/m'ma* sea/r/z suggested by Wiener is based
on heuristic evaluations from positions a few moves distant, and far from the

The question of the correct historical attribution of the first published
exposition of the minimax concept is a complex one. Jaap van den Herik's Ph.D. thesis
(1983) contains a detailed account of the known publications on this topic. It concludes
that although von Neumann's name is usually associated with the concept (von
Neumann, 1928), primacy probably belongs to Borel (1921). although there is a
conceivable claim that the first credit should go to Charles Babbage (Morrison and
Morrison, 1961)!
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end of the game. This important idea was the starting point for five decades of
research into game-playing algorithms, including that presented in this thesis.

1 , . . . . . ' . . - . ' ••• • „ • • < . • • • • • .-'••;, I Ü '• : - i f l f ' * » ; ; ^ s ; * > » >

1.3 La te r Developments ^ vv ^Mtr , ^ -^

Minimax search seemed to be effective at improving any imperfect evaluation
function at the price of the computation time required to look ahead to all the
'terminal' positions and propagate appropriate resultant 'outcomes'
backwards to the position being investigated.

• j - . - j " ' . * * v ' ; . "-"; I - " . : ' * . ' K - 4 ' '•. ••'!-"

Curiously though, when some people (myself included) first tried to analyse
the expected gains from minimax search, using simple assumptions about the
frequency or extent of errors, the analysis showed no gains (Beal, 1980; Nau,
1980, 1981, 1982). Worse, the analyses even indicated that minimax search
should degrade the evaluation. Only a procedure that combined all the
evaluations using the theory of combining probabilities in the standard
multiplicative way could be expected to preserve the quality of the raw
evaluations (Pearl, 1980). Yet minimax search was successful in practice
almost universally. Surprisingly, it can still improve evaluations even when
the 'evaluations' are completely random and bear no relationship to the true
values (Beal and Smith, 1994). ...

Clearly the first attempts to understand the nature of minimax search had
missed some essential aspect, rectified later (Beal, 1982; Bratko and Gams,
1982). It is highly desirable to understand minimax thoroughly, because the
computation times for deep search are a limiting factor in performance. If the
search process could be improved, it should lead to immediate performance
improvements. Moreover, it seemed there might be general (i.e., domain
independent) algorithm improvements to be found if there was a better
understanding of the principles. Over the years, many programmers had found
heuristic pruning (or extension) methods to improve the performance of their
programs - e.g., N-best-moves-only (Greenblatt e/ a/. 1967), forward pruning
(Slagle, 1971), razoring (Birmingham and Kent, 1977), capture search (Slate
and Atkin, 1983). These methods were to some extent anticipated by
Shannon's (1950) idea of a Type-B strategy. A quantification of some popular
methods appeared in Beal and Smith (1995). All of the methods modify the set
of positions examined so that the search becomes selective, or in other words,
goes to more distant positions in some parts of the tree, and stops earlier in
others. Perhaps there is a theoretical basis for the success of these methods?
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This thesis is the story of a number of visits to questions about minimax. The
motivation was that a better understanding of the minimax process might
assist the goal of pushing the boundaries of computer performance towards the
best levels achieved by humans, or even higher. It is a story that spans a long
time. It began over twenty years ago when I became interested in improving a
computer chess program by using game independent, theoretically sound
methods (in addition to as many practical tricks and heuristic concepts as I
was able to program). The accumulation of those occasional visits to minimax
models and theory is now presented here, together with some practical issues.
Most of the chapters have their origins in previous publications, which are
identified by footnotes where appropriate. .35 ,1; -.--,•.•

1.4 Thesis Structure ' • > "

The thesis structure is as follows. Chapters 2 and 3 describe models of tree
structures and the values processed by minimax search. Chapter 2 shows how
a simple but plausible model predicts worsening performance with search
depth. A solution to the mystery is offered by Chapter 3, which extends the
model to reflect an important additional property of real game trees. The
essential addition to the model is the clustering of values. Instead of uniformly
distributed values, the model assumes that sibling nodes are more likely to
have the same value than unrelated nodes. With the extended model, although
it is still very simple, the analysis shows that we can now expect minimax
search to improve evaluations, and that the advantage will increase with depth
of search. This model captures an essential characteristic of typical game
trees. Chapters 2 and 3 also contain some fruits of theoretical analysis in the
form of game-independent algorithms (consistency search and locked-value
search) derived from a theoretical perspective. These chapters address both
research question one (improved models) and research question two (better
algorithms) of this thesis.

Chapters 4-8 address research question two. Chapters 4 and 5 discuss some
technical details of minimax search procedures that are appropriate when the
search handles bounds and value ranges instead of single values. If superior-
quality evaluations are available in a restricted subset of states, minimax can
still propagate all possible knowledge about the scores from terminal positions
towards the tree root, but it requires backing up three values instead of one. A
study of the way minimax handles and compares the values produced by the
search process reveals that, if desired, bounds can be unified with exact scores
into a single number for coding convenience.



1.4 Thesis Structure

Chapter 6 amplifies the reasons why evaluations might vary in quality due to
known reasons, and considers the technical administration of more than two
levels of evaluation quality. Chapter 7 moves from analysis to exploitation by
introducing a simple technique of selectivity, and discusses results from
applying it to the specialised task of mating attacks in chess.

Chapter 8 arises from an investigation into solving the smaller problems
within chess. Minimax is still required, but when the domain is small,
complete cataloguing and exact pattern processing become feasible (c/ , Van
den Herik and Herschberg, 1986 - Omniscience the Rule-giver?).
Unfortunately no way has yet been found to scale up this approach to assist
with solving the main part of chess, or other large games (c/, FUrnkranz,
1996).

Chapter 9 returns to research question one and discusses the concept of search
envelope. This concept is introduced to separate the rules for terminating the
search from the alpha-beta rule. Alpha-beta prunes branches from the tree, but
does not change the backed-up value. This contrasts with changes to the
search envelope, which may change the backed-up minimax value. Search
algorithms implicitly define a horizon (the set of 'terminal' nodes) detennined
by depth or other criteria. Every horizon node that the search visits (or would
visit if it were not for alpha-beta) lies on the envelope for that search. The key
question "how cost-effective is a search algorithm?" is intimately linked to the
question "what is the search envelope?" Consistency search and locked-value
search are examples of algorithms with search envelopes determined by values
the search finds rather than determined by depth.

Chapter 10 addresses research question two, and plays a major role in this
thesis. As a consequence of finding a reason why minimax search is useful for
choosing moves, the minimax model of Chapter 3 also gives an explanation of
why not all portions of the search tree are of equal value. The model embodies
a hierarchic clustering of values. Below the root node of a cluster, there is only
a low probability that changes to node values below the cluster root will
propagate above the cluster root. In the absence of clusters, changes to node
values propagate upwards with relatively high probability. Could this
characteristic be used to reduce the search depth below cluster roots, while
extending the search depth in 'unstable' parts of the tree? There are several
answers to this question. Some of them lead to different search algorithms that
have been found successful to a greater or lesser extent. Chapter 10 discusses
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the general concept of quiescence which arises from such considerations and
focuses on the most successful algorithms - those based on the null move.
Null-move quiescence, as discussed in Chapter 10, is a general algorithm
applicable to any minimax search. It is based on the insight that null moves
establish bounds which have a greater reliability than the evaluations which
give rise to the bounds. The bounds (which should not be confused with alpha-
beta bounds - they are different), enable the search to terminate earlier down
some lines than others. Null-move quiescence is therefore a domain-
independent selective search.

Chapter 11 draws some conclusions from this work, surveys current work and
sets some goals for the future.

, t . V . ... " ' V . i - . - . . ; • -»• . ; , . ; . - V , : ^ - . . • ' ; . , i i r . - ; • . ; } • . . , . • • . . , • .V.-.p J : > : " V ^ > " •( <äi / •

. ' . . : ; . ' , : • • • • / ' • - • " f > • " • 3 . ; . " .• ' - L ' : - : , -J i .• . v • ; • • .--. • , , , - - j - .... - ^ . ^ i i . .
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Chapter 2

A Preliminary Analysis of
Minimax* 1
Minimax search using a heuristic evaluation function is known to be an
effective technique for game playing. This chapter presents an analysis of a
very simple minimax model which yields the surprising and unsatisfactory
conclusion that fixed-depth backed-up values are slightly /e.w trustworthy than
heuristic values themselves. Six possible reasons are offered. - :> >• •

This chapter also presents a general algorithm arising from the ideas of error
probability used in the minimax model. It is based on simple assumptions
about the probabilities of error in terminal and backed-up values. It searches
without depth or width limits until it achieves a backed-up value of increased
reliability. Two well-known and apparently different specific algorithms used
successfully in practical chess-playing programs correspond to this general
algorithm.

2.1 A Simplified Minimax Model

The model is constructed to be sufficiently simple to analyse so that the
following question can be answered: By how much are backed-up values from
a fixed-depth minimax search more reliable than the heuristic values
themselves?

' This Chapter is an edited version of Beal (1980) titled An Analysis of Minimax,
in /it/vaMces in Computer C/iess 2. Thanks are due to Edinburgh University Press for
permitting its use here.
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Our assumptions are: .. ,

1. The tree structure has a uniform branching factor 6.
2. The node values are either: a win for player A C • •-» ' ^
' • : . . . . . . or: a win for player B ' *
3. True values conform to the minimax relationship.
4. Values are distributed so that at each level, the proportion of wins of the

player to move is the same. (This enables the effect of «-ply search to be
deduced directly from the effect of 1 -ply search.)

5. Heuristic values are usually identical to true values, the proportion of
erroneous values being small compared to 1/6.

6. Heuristic values have a probability of error />, independent of the
distribution of true values. ... ... ,

Values are denoted here by + and - , but note that + denotes a win for the player
to move, rather than for either player A or player B and that - denotes a loss for
the player to move.

Assumptions 1, 2 and 3 establish a simple tree with minimax values.
Assumptions 4. 5 and 6 characterise this particular model. We achieve (4) by
defining the ratio of wins and losses as follows. Let terminal nodes have a
probability £ of being unfavourable for the player to move. That is, the
proportion of - nodes is A-, and therefore the proportion of + nodes is I — Ar.
These ratios will be the same for all levels in the tree if £ is the solution of:

This definition of win/loss ratios ensures that the proportion of wins for either
player is the same at depth J + 2 as at depth J, and the inverse of the proportion
at depth </ + 1.



2.1 A Simplified Minimax Model

2.1.1 Analysis
• • . I S « ;

What are the probabilities of error in 1-ply backed-up values? In order to
answer this question conveniently, we split the possible occurrences of true
values into three cases (see Figure 2.1). chosen because there exists a simple
formula for each case, as given in Table 2.1. The table also gives an
appropriate simplification derived from assumption 5, that error rates are low.
This assumption enables us to ignore the possibility that two descendants of a
node are simultaneously in error.

All +

One - , the rest +

More than one -

Figure 2.1: The three error cases.

Probability of occurrence

1. ( 1 - * ) * = *

2. A.* . ( l -*?- '=*•*•*

0-*)

Probabilitv of error in backed-up value

I-(I-P)"
approximately/', since the assumption of low
error rates means that more than one
descendent node in error is second order

0, by assumption of low error rates

Table 2.1: Error probabilities.

Case 1 gives rise to the only - nodes at the 1 -ply level. Case 2 gives rise to only
+ nodes at the 1 -ply level that have significant probability of error. The
probability of error is approximately/?, since an error in the single - descendant
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will propagate, and an error in any other descendant will not. Case 3 yields no
significant error. In the left-hand column of Table 2.1, rows 1 and 2 give first
the formula as constructed by examining the tree structure, then an equivalent
formula derived by using the equation for k. Column 1, row 3 is obtained as:
one minus the probabilities of cases 1 and 2.

Now we are ready to calculate the average probability of error over all nodes.

Let /?' denote the probability of error in 1 -ply backed-up values. e

I T L A. iL

l - (l - p Y + , ' ' . . p
(l—ifci

Again using the assumption of a low error rate, an approximation to

is/>./>.

Hence o «
cJ./v.rv

I+

This approximate formula for p' characterises the error propagation in the
model. It tells us the error probability for I-ply search, given an error
probability for terminal evaluations. Raised to the power n, it tells us the error
probability for n-ply search, given an error probability for tenninal evaluations.

are given inSome

Table

approximate

2.2.

numerical values for -

b
2
5

10
20
40

p'/p
1.24
1.62
1.97
2.37
2.82

p'

/>

yt

L 0-*)J

• *

Table 2.2: Example values forp'/p.
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One might notice that a further (but crude) approximation, if £ is small, may be

made by taking £ = y r , which makes
(6 + 1)

approximation, there would be no increase in the probability of error with
increasing search depth. However, this approximation would be an invalid
simplification, because k is determined by the branching factor, unlike the error
probability which can be arbitrarily low.

, . . , . ! _ ; : . . ; . - . . : . . ' • '.•.•• = • : . : . ' . • ' • ' •' • • • - L - ' ; ; ' ; > ' . • ' • ( ( ; [ • ; • • : • • • • • - ' • r J c . - ' - c - • •'•'

A realistic approximation of — for large Z> may be made using the fact that £

asymptotically approaches for large 6. Hence / / approaches

( l o g f t ) p . • ' • • - • ' • • • • ' . ' " ' ' ••'_• ' " • ' • • •

2.1.2 Discussion ' ' •

The analysis of the minimax model above shows that for large branching
factors, the probability of error is /«cream/ by the logarithm of the branching
factor for every ply of search. This result is disappointing. It was hoped that the
analysis would show that the probability of error reduced with backing-up.
Clearly this model does not capture some essential property of minimax search
in typical game trees. It is not so clear, however, why this is so.

The analysis is of fixed-depth search and there are both empirical and intuitive
grounds for believing that a suitable selective search will be far more effective
than a similar-size fixed-depth search. Nevertheless, even fixed-depth search is
well known to yield substantial benefits in practice and so the fixed depth
cannot be singled out as a satisfactory reason for the negative result.

The following might be thought possible explanations:
1. Errors in heuristic values may not be distributed independently of the true

values: they may be related in such a way as to render minimax search
more useful.

2. The notion of probability of error as a measure of the usefulness of
minimax values may be inappropriate. (Game-playing requires the choice
of a move, not a judgement about the absolute value of positions.)

3. The distribution of true values in typical game trees may differ from the
model in such a way as to render minimax search more useful.
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4. The restriction to two values may be too extreme. Perhaps a range of
values is needed so that errors in the heuristic value might be graduated,
with large errors being less likely than small errors.

5. It may be necessary to assume different ranges of values for heuristic
values and true values. For instance, true values of +1 and -1 but also .
heuristic values drawn from the real numbers in between.

6. The assumption of very low probabilities of error may be inappropriate. .

The problem is intriguing: minimax search is so well-known to be useful that
one expects a simple convincing explanation of why.

There have been investigations into specific anomalies of minimax search. Nau
(1980) proved that there is an infinite class of game trees for which deeper
searching produces worse evaluations. Nau (1981) describes a game, based on
a randomly chosen initial configuration, for which an undoubtedly reasonable
evaluation function gives worse play with deeper search. These are potentially
illuminating, but do not explain why minimax search on typical game trees is
successful.

2.2 Consistency Search V. . V

Fixed-depth search, despite the analysis above, is known in practice to be
beneficial, and can be assumed to decrease the probability of error.

What I have termed consistency search is a method of decreasing the
probability of error by selective searching. It is based on the following four
assumptions.
1. The true values of the tree have a minimax relationship.
2. Each node has a heuristic value equal to the true value plus an error value.
3. The error rate is low.
4. All error values have a probability p of being non-zero, independently of

values at any other nodes.

We define a node to be co/w/.yfen/ if its heuristic value is the same as the
backed-up value from a 1 -ply search over its descendants.

Assumption (4) implies that a 1 -ply backed-up value and the heuristic value
applied directly are independent estimates of the node's value. Taking the
apparently conservative assumption that 1 -ply backed-up values have the same
probability of error as heuristic values themselves (ignoring the disturbing
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result of Subsection 2.1.1), the probability of error if they agree is / A Hence
consistent values are much more reliable than direct heuristic values. . ••

A consistency search returns a value derived from consistent values. Its
simplest implementation is a depth-first search terminating only at consistent
nodes, as illustrated by the pseudo-program in Figure 2.2:

HV = heuristic value for the current node
(assumed to use the 'negamax' convention under which numerically-
greater values are better for the current side to move, rather than
for a fixed side) .

CV1O ... ,. . .., ;-.
{ v < I N F ' ' • ' ' - •••• • ' '• '""•'':"'•-••

foreach branch b do : '• ./ri *i ;.•
( traverse (b) ; v «- max(v, -HV) ; retrace (b) ) , .. ;;
if (v = HV) return(v) ''
v < - - I N F -f •:
foreach branch b do . ,
( traverse (b); v <- max(v, -CV1); retrace (b) }
return(v)

Figure 2.2: Simple consistency search.

Figure 2.3 shows a version taking advantage of alpha-beta cut-offs:

HV2(a,
CV2 (a,
(

1

P) = heuristic value bounded

P)
v <- a
foreach branch
( traverse(b) ;
if (HV2(cc, ß) =
v <- a
foreach branch
( traverse(b);

if (v = P)

return(v)

b do
v <— max(v,

by a and

-HV2(-P,
v) return(v)

b do
v <— max(v

return(v);
-CV2(-P,

P

-v)); retrace(b) )

-v)); retrace(b);

Figure 2.3: Consistency search using alpha-beta.

2.2.1 Consistency Cut-offs

In addition to alpha-beta cut-offs it is possible to exploit consistency cut-offs.
These can occur at inconsistent nodes after one or more descendants have been
searched. If the reliable value(s) thereby found render the node consistent when
used in place of the direct heuristic values for those descendants, there is no
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need to search the remaining descendants. An example of inconsistency is
given in Figure 2.4.

(maximising)

Figure 2.4: An example of an inconsistent node.

Suppose that, after searching below the left-hand descendant, a consistent value
of 0 is backed up for it. This consistent value is much more reliable than the
direct value of 1. If it overrides the direct value, the inconsistency of the
original node disappears. The right-hand node can be cut off.

These consistency cut-offs do not reduce the expected reliability of the result
(although, unlike alpha-beta, they may change it).

To incorporate consistency cut-offs into the search requires storing the heuristic
values of all the descendant nodes if repeated evaluations are to be avoided.
The stored values can be used to order the branches. This has the important
effect of ensuring that only the errant node is searched at single-deviant nodes.
A single-deviant node is defined as an inconsistent node that has only one
high-valued descendant. Such nodes occur frequently.
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The pseudo-program in Figure 2.4 illustrates a consistency search taking
advantage of consistency cut-offs.

CV3O
( array B

function maxB =

foreach branch
( traverse(b);
hv <- HV
if (maxB = hv)
sort B and the
v «- -INF
foreach branch
( traverse(b);

= largest value

b do
B[b] < HV;

return(hv)
branches into

b do
B[b] < CV3 0

if (maxB = hv) return(hv)

1
return(maxB)

)

i n B • . - • • < - * , . » , • ; • • • • -

retrace(b) ) • • '' • "' = "'

descending order

• v <- max(v, B[b]); retrace(b)

Figure 2.4: Consistency search with consistency cut-offs.

A version using alpha-beta is given in Figure 2.5.

CV4(a, ß)
f array B . . . .

function maxB = largest value in B

foreach branch b do . :<• •
( traverse (b); B[b] < HV2(-ß,-a); retrace(b) ) ,. .
hv = HV2 (a, ß)
if (maxB = hv) return(hv)
sort B and the branches into descending order ' •
v <— a
foreach branch b do
( traverse(b) ; B[b) <- -CV4 (-ß, -v) ; v < - m a x ( v , B[b]); retrace(b)

if (v = ß) return(v)
if (maxB = hv) return (hv) . . .

)
return (maxB) • • • ' •-•

1
Figure 2.5: Consistency search with consistency cut-offs and alpha-beta.

All these versions of consistency search are intended to show clearly the basic
algorithm. They need some revision before they become efficient. In particular,
in the case of capture tree search in chess described below, obtaining the values
of the heuristic function down each branch by traversing the branch, applying
the heuristic function, and retracing the branch is unnecessary. The change in
material balance is readily obtainable as a by-product of generating the capture
moves. : . .. , ....
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2.2.2 Practical Algorithms * H; t ^R ,i i»^«i.« - 1

This Subsection illustrates consistency search by interpreting two well-known
practical algorithms, viz. Capture Tree search in chess and Forward Pruning as
consistency searches.

Capture Tree Search in Chess.

The usual way to perform a complete capture tree search, as implemented in
several chess programs, embodies the following rules.
(a) All captures are searched.
(b) A position where the side to play has no captures is terminal, and the

static material balance value is taken.
(c) At any node, if all the captures for the side to play prove unsuccessful.

the static material balance value is taken.

Of course, plausible assumptions 3 and 4 of Section 2.2 might not be true for
capture tree search in chess.

Nevertheless, capture tree search corresponds to consistency search using
material balance as the heuristic evaluation. Rule (b) halts at consistent nodes,
and rule (c) corresponds exactly to consistency cut-off.

Forward Pruning

The basic principle of forward pruning is to cut off descendant nodes with a
static evaluation lower than the current best backed-up value. The static
evaluation is typically complex and there are many variants of the pruning rule.
Optimistic and pessimistic versions bias the comparison to encourage or
discourage cut-offs. Often the bias varies with depth. The authors of the early
chess program MASTER called their version razoring (Birmingham and Kent,
1977).

The basic principle can be interpreted as the consistency cut-off rule within a
consistency search.

However, forward pruning only becomes equivalent to consistency search if
the pruning rule obeys one other constraint, viz. that it should not be applied if
the static value at the current node is greater than the current best backed-up
value. If this is not so, the node is still inconsistent.
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2.3 Summary

This chapter has done two things. (1) It has analysed a simple model of
minimax and found that the model is too simple to reflect the benefits of
minimax search observed empirically. (2) It has used the idea of probability of
error to define a search algorithm (consistency search) that seeks values having
reduced error probability. It therefore addresses both research questions
identified in section 1.1. Consistency search closely corresponds to two search
algorithms known to be successful in practical chess programs.

Chapter 3 presents a slightly extended, and more realistic, minimax model. In
this model, search yields increasing benefit with increasing search depth.
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Chapter 3

A More Realistic Analysis of
Minimax*
The mathematical mode! of Chapter 2 failed to explain the well-established
success of minimax search using a heuristic evaluation function. This
Chapter presents a model for which lookahead is shown to be beneficial if
the game tree conforms to a simple condition. The KPK chess endgame is
used for illustration. Finally, /ocfo?c/-ra/z«? A'crarcA is introduced as a method
of increasing confidence in evaluations for a given heuristic function.

3.1 The Aim of the Model

In Chapter 2, the mathematical model led to the surprising result that lookahead
search would give less reliable backed-up values than heuristic evaluations
alone. The six assumptions of the model seem reasonable, despite its
simplicity. It was not clear why it was in such drastic conflict with empirical
experience.

This Chapter presents a slightly extended model, for which lookahead is
beneficial. When the parameters of the model are chosen to match the KPK
endgame, lookahead is shown to be beneficial within the model. The
motivation for this work was partly to find a basis for mathematical analysis
and modelling. The other part of the motivation was to obtain understanding
relevant to developing practical algorithms, if possible general ones applicable
to any problem formulated as a minimax search.

' This Chapter is an edited version of Beal (1982) titled Benefits of Minimax
Search, in /frfvances ;n Computer C/IMS 3. Thanks are due to Pergamon Press for
permitting its use here.
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Consistency search is a general algorithm applicable to any minimax search
that meets the assumptions, and two particular cases, already well-known as
effective practical heuristics, were pointed out: (1) capture tree search in chess;
(2) forward pruning against static evaluations.

This chapter introduces the theoretical idea of locked-value search which is an
alternative to consistency search derived from slightly different assumptions.

Both consistency search and locked-value search decide which areas of the tree
to search according to the evaluations found, without width or depth limits
unless these are imposed in addition. They define, in effect, a .vtwcA ewvWope
(c/ Chapter 9), very different in shape from the full-width, fixed-depth one,
within which a conventional alpha-beta search can take place.

3.2 An Improved Minimax Model

The improved model adds the following assumption (assumption 7) to the
assumptions of the preliminary model given in Section 2.1.

7) The values across each level are randomly distributed but with a
tendency to form clusters of identical values (The previous model
assumed that values were randomly distributed in a uniform way).

As before node values are denoted by + and - , with + meaning favourable
for the side to move, rather than for either player A or player B, and -
meaning unfavourable for the side to move.

Let £ denote the proportion of - nodes. Assumption 4 is that £ is constant over
all levels in the tree.

The clustering effect of assumption 7 is induced by assuming that a fraction /
of the nodes at any level are grouped into families where all members have the
same value, ('family' is used here to mean all the descendants of a single
node.) A proportion £ of the cluster families have - values. The remainder of
the nodes at that level receive their values randomly according to the /:
proportion.

Since - nodes only arise if all descendants are + nodes, and + nodes arise
whenever at least one descendant is a - node, it is possible to calculate the
proportions of - nodes one ply higher in the tree, given the specification
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above. Figure 3.1 illustrates the mutually exclusive cases that occur. To
achieve assumption four, the fraction of - nodes at the higher level must be £.
Therefore, * and/must be related as follows:

where (1 - £ ) • / ' is the fraction of - nodes at the next higher level which are
ancestors of the clustered part of the distribution at this level. (1 - A-)̂  • (1 - / ) is
the fraction of - nodes at the next level which are ancestors of the randomly
distributed pan. The right-hand section of Figure 3.1 corresponds to the
randomly distributed part, with the lower nodes occurring randomly in the
proportion of £ - nodes to 1-A- + nodes.

I-A

clustered

A - nodes to 1-A + nodes

1-/" randomly distributed

Figure 3.1: Cluster structures.

The model is parameterised by ft and / Once the branching factor and
clustering factor are chosen, £ is fixed.

3.3 Analysis of the Improved Model

This analysis of error propagations derives a formula for the benefit of
lookahead. The analysis will treat error rates at - nodes separately from +
nodes. (In the preliminary model this separation was unnecessary.)

Let /7 denote the error probability at - nodes, </ at + nodes. To find the
probability of error in 1 -ply backed-up values we split the possible occurrences
of family values into the same three cases as used in the preliminary model (see
Figure 2.1).
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Probability of occurrence

1. ( l - * ) / + ( l - * ) * • ( ! - . / )

2. ft-it-(l -* )*- ! • ( ! - / )
3. * • • / + [ ! - ( 1 - * ) * - £ • * • ( ! - A - ) ^ - l ] - ( l - / )

Probability of error
in backed-up value

A-?

/>
0

Table 3.1: Error probabilities. " '

The formulae of Table 3.1 for the probability of error in the backed-up values
are approximate, based on assumption 5 (of Section 2.1) that error rates are
low, which means that more than one descendant node in error is of second
order.

Let/?' denote the probability of error in 1 -ply backed-up - values, and g ' the
probability of error in the backed-up + values. Then from the formulae in
Table 3.1 above we derive that

and - / )

Let/?" denote the probability of error in 2-ply - values and <y" the probability
of error in the analogous + values. Then we derive that

and similarly, that

Thus, for 2-ply lookahead, the effect on probability of error in - values is the
same as the effect on probability of error in + values. Although one ply of
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backing-up has an asymmetric effect on probabilities of error at - and +
values, the next ply has the opposite asymmetry. So a 2-ply lookahead affects
error probabilities without disturbing the relative probabilities of errors in -
and + values.

Let t?2 denote the major expression in the derivation above

so that / ?" = c2. p and 9 " = e^ • </. Then
probabilities produced by 2-ply lookahead.

Simplifying the formula for e^ leads to

.*.(*-/ + *.

is the change in the error

We may compute (by taking the square root) a fictional expression, c, for the
effect of 1 -ply lookahead, which is convenient for computing the effect of «-
ply lookahead.

The fictitional 1 -ply lookahead error formula is

When/= 0 (no clustering) the formula reduces to

L(i-*)J
This is equivalent to the expression derived for the preliminary model.
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It is convenient to regard the formula for e as the error reduction factor for a 1-
ply lookahead. (Error reduction assumes that e is less than one: if it is greater
than one, then lookahead increases the errors instead of reducing them.)

The error reduction factor of «-ply search is e".

Figure 3.2 presents a graph of e for /> = 16, showing how it varies with the
clustering factor.

l -e

0 0.1 0.2 0.3 0.4 0 5 0.6 0.7 0.8 0.9 1 . <i

clustering f -->

• ,; Figure 3.2: Variation of error against clustering factor. .

With clustering factors above about 0.3, the lookahead produces a reduction in
the error probability. The greater the clustering factor is, the greater the error
reduction.

More graphs showing the I-ply effect on error probability against clustering
factor for other branching factors are given in Figure 3.3, which shows

, r .[/:.(/: - / + AT. / )j2 plotted against/for other values of 6.
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-b = 2
-b = 4
-b = 8
-b = 16
-b = 32
-b = 64

0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1

Figure 3.3: Error against clustering factor for different branching factors.

3.4 The Model compared with KPK ... , . f, . .,

The King + Pawn versus King (KPK) ending is a two-valued game. Since
complete data on this ending is available, it is examined here to see how much
clustering of values occurs.

Positions with the Pawn on different files effectively form separate sub-endings
as the Pawn can never change file. So the rook-file positions and knight-file
positions are examined separately. The bishop-file and the central-file positions
are treated together as they are essentially the same.

Table 3.2 shows the numbers of positions in each of two categories for the
pawn on each of the different files. Each position is categorised according to
the set of its descendants (its family). The categories are: descendants all the
same (cluster family), and descendants mixed (mixed family).

. ' . • • • • / • < • > . * < • • - • - .
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ROOK FILE

expected
observed

KNIGHT FILE

expected
observed

BISHOP/CENTRAL FILES

expected
observed

Al l -o r all +

5000
17773

5000
16525

5000
15685

Mixed

15000
2870

15000
3804

15000
4661

Cluster factor

0
0.8

0
0.75

0
0.7

Table 3.2: Expected and observed clustering factors.

The cxpec/«/ entries show the approximate numbers of cluster and mixed
families that would be expected if the distribution were random but uniform.
Only approximate numbers are given because without a uniform branching
factor an exact calculation is complicated. The cluster factors given are those
that would be required by the model to produce the ofoerverf proportions of
cluster and mixed families.

From the formula for <? and the graphs of Figure 3.3, it can be seen that with a
clustering factor of 0.7, lookahead is beneficial at all branching factors. This
may be compared with the cluster factors in Table 3.2 which show 0.7 or
greater. - . . - . . , • . ...^,<y. .«...,. .•«,<.. -...-. -. ,;,

No claim is made that the model of this Chapter is a fully realistic model for
KPK, but Table 3.2 shows that the extent of clustering in KPK is sufficient to
render lookahead worthwhile given the assumptions of the model.

Note also that in the model, families which are not clusters are assumed to have
unbiased distributions of values, whereas, in reality, partial clustering can be
expected, biasing the proportions of the different cases of mixed families. A
more sophisticated model that took account of this would show greater benefit
of lookahead for the same proportion of full-cluster families. • '

3.5 Locked-Value Search

Consistency search (c/; Section 2.2) is based on the idea that (i) static
evaluation at a node, and (ii) 1 -ply minimax search are independent estimates
of the value of that node. This idea ignores the obvious similarity of all the
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positions involved, yet there is some truth in it. Here 'independent' really
means is "not totally dependent". The reasoning is that if the two values agree,
we have greater confidence in the value than in either value if they disagree.

Locked-value search is based on a different concept of circumstances where
we might have more confidence in evaluations. This time we reason that if, at a
given node in the tree, there is more than one branch that yields the best value,
then we have greater confidence that the true value is at least as great as the
observed best value. In this circumstance, the heuristic value of any one
descendant can be in error, concealing an inferior true value, and the best value
still holds. If more than two descendants possess the best value, our
confidence increases further. However, we only have a one-sided conclusion
because any descendant might have a true value superior to the backed-up
value which would cause the backed-up value to be incorrect.

If we consider two plies of search it is possible that a tree containing the
subtree of Figure 3.4 might arise.

Figure 3.4: The simplest locked-value subtree.

The square nodes contain static heuristic evaluations, the round nodes contain
backed-up values.

The top node's value is >1 with 'high' confidence because two descendants
have the value 1. Analogously the left intermediate node's value is <1 with
'high' confidence by the complementary argument for min nodes. The same
holds for the right intermediate node's value. Hence for all immediate
descendants of the top node, v < 1 with high confidence. Therefore for the top
node itself also v < I with high confidence. So we have simultaneously high
confidence that the value is <1 and >1. It is locked above and below and we
have high confidence it is equal to 1.

Another way to look at the tree of Figure 3.4 is to establish that no szwg/e error
in the terminal values can change the top value.; j ü - : .
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Figure 3.5 provides a more complex example.

mm

ii , ; Figure 3.5: Another locked-value subtree. • . ,

Either by reasoning about "high-conf idence" bounds or by observing that no
single change in the terminal evaluations can alter the top value, we conclude
that this top node is also locked equal to I.

A straightforward procedure for detecting that a node has a locked value is as
follows: . . : . ... .,.

D o a 2-ply search.
Let the value backed-up to the starting node be v.
At ply one (intermediate level) at least 2 nodes must have backed-up
value v, and for all intermediate level nodes, at least 2 descendants
must have value < v.

The procedure may be generalised to demand w rather than 2 nodes with best
value, thus setting a higher standard before placing confidence in the value.

A locked-value search returns a min imax value derived only from locked
values. Its simplest implementat ion is a depth-first search terminating only at
locked values. It may, o f course, m a k e use of alpha-beta within the search
envelope delimited by the locked values. . • ••••,<;•;>•.•.-.:

3.6 A Conclusion on Clustering

The improved minimax model is still straightforward and the modelling of
clustering is a special case amongst a range of more complex models that
might be constructed.

However, it is plausible that clustering is a major feature of all practical games
because game trees are derived from structures, such as the array of squares in
chess, of which only a small part changes as a move is made. The true values
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for the game are defined in terms of the game structures and not assigned
randomly. This means that positions in which a single move reverses the value
of a position are rare, and that positions in which all moves lead to wins (or
loss) are common. We remark that 'common' here refers to averages computed
over the entire game tree, and /;o^ to positions that are typically reached in
human play, or those which typically engage the attention of humans.

Cluster families which are themselves clustered at the next higher level of the
tree form a subtree which is overwhelmingly in favour of one player. Such
subtrees have low probability of error in backed-up values, and also have
locked values.

Locked-value search has a strong tendency to stop early in 'clearly'
advantageous to one side or the other side, and explore more deeply those
subtrees where advantage is more balanced.

Bratko and Gams (1982) provide an additional analysis of the preliminary
model and also conclude that clustering is the reason for the effectiveness of
minimax search.

This Chapter has addressed both research questions given in Section 1.1. It has
presented a model of minimax which is more realistic than the preliminary
model of Chapter two and established that the more realistic model predicts
benefits from minimax lookahead in the KPK endgame. It has also presented a
search algorithm that reacts to clustering encountered in the search, which is a
potential contribution to practical search algorithms.
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Chapter 4

Nested Minimax Search*
The original classic form of minimax search is based on perfect values, the
usual one on heuristic values. When perfect evaluations are infeasible, a tree
search is made, i.e., the backing up of heuristic values from deeper nodes to
produce a heuristic evaluation for the root which is more reliable than a raw
evaluation. Alpha-beta is used to reduce the effort. - ••-

4.1 Perfect Values ' ^ . v.

The question addressed here is: "How should the heuristic minimax search
algorithm be extended to cope with perfect values being obtained at some
nodes in the tree?" Naturally, chess programs detect a perfect value for
checkmate or stalemate. Since complete tables or pattern knowledge have
become available for many endings (Thompson, 1997), perfect values could be
encountered frequently in some endgame searches. Next to chess, this also
happens in other games, e.g., checkers (Schaeffer, 1997) and awari (Allis, Van
der Meulen,and Van den Herik, 1992). In the examples of this chapter, perfect
is taken to mean a perfect indication of win, loss, or draw, without any depth-
to-win information. Depth-to-win information could be included without
affecting the argument.

There would seem to be no problem with introducing the perfect values into
the backing-up process. Nodes before terminal depth may now have to be
examined to see if a perfect value is available, but otherwise the search can
proceed as before with an expectation of more reliable values or an earlier
result, or both.

' This Chapter is an edited version of Beal (1984) published under the title
Mixing Heuristic and Perfect Evaluations: Nested Minimax. Thanks are due to the
Editorial Board of the /CC4 7our«a/ for permitting its use here.
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However, extracting maximum advantage from the perfect values requires the
search algorithm to back up three values at every node instead of one. This
chapter explains why, and suggests the term «e.svec/ m/n/mav for the general
case of a search using two evaluation functions, one much more reliable than
the other, the more reliable one being not always available.

4.2 A Problem with Perfect Values.

If perfect values and heuristic values are treated uniformly in the backing-up
process, information is lost. A backed-up value is obtained, but no conclusion
about whether the value is perfect or heuristic can be drawn. This loss of
distinction can be unacceptable.

Most minimax searches are performed iteratively, i.e., a 1 -ply search is
followed by a 2-ply search, a 3-ply one, e/c, all from the same root node.
(Iterative searches order the moves within an «-ply search according to those
found best within the /?-] ply search. This is found to result in alpha-beta cut-
offs approaching the theoretical optimum (c/. Knuth and Moore, 1975).)

If a search to 3-ply, say, happens to produce a perfect value, there is no need to
perform the 4-ply, 5-ply, e/c. searches at all. Thus iterative searching requires
an indication at the root, whether the value is perfect or heuristic. In general,
any search scheme which uses small searches to guide or contribute to a bigger
searcli will also have a requirement for a perfect/heuristic indication.

4.3 A Partial Solution

A first thought might be to append a perfect/heuristic flag to values, so that if
the value backed up happens to be perfect, this information is retained.
However, this method could still lose much of the information about perfect
values. Consider the tree fragments of Figures 4.1 and 4.2.

maximise
Op

Op Op -lp -lp Op

Figure 4.1: A 1-ply tree with perfect values.
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Oh
maximise

/ /
Op Op

\ \
Oh -lp Op

Figure 4.2: A 1-ply tree with mixed values.

In Figure 4.1 the root has a backed-up value of 0. It is perfect (indicated by p)
because all the descendant values are perfect. In Figure 4.2 the root has a
backed-up value of 0. However, because the middle descendant has only a
heuristic value, and therefore might have a true value of anything, the backed-
up value must be marked as merely heuristic (indicated by h).

There is however, more information available. The root in Figure 4.2 must
have a true value greater or equal to 0, because of its perfect descendants. Now
consider the tree fragment of Figure 4.3.

Oh

minimise

maximise

Op -lp Oh Op

Figure 4.3: A 2-ply tree with mixed values.

In Figure 4.3, the right-hand node at the middle level receives a heuristic
backed-up value. If all that gets passed up from this node is 'O/heuristic', then
the top node also gets marked as merely heuristic. However, if we use the
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additional 'true value >0' information about that right-hand middle node, then
we can deduce that the top-level node has a true value of 0, not depending on
the heuristic value at the bottom.

This illustrates that two separate pieces of information may be generated at a
node:
1. the backed-up value (heuristic) is X;
2. a lower bound on the true value is Y. '"

A single value plus a one-bit flag is inadequate to convey both. Upper as well
as lower bounds may be acquired if there are at least two plies of search,
resulting in three pieces of information. The tree of Figure 4.4 returns a
heuristic value of 0, with a lower bound of -1 and a upper bound of 1 on the
true value:

Oh

maximise

minimise

Oh IP

Figure 4.4: A strictly-nested heuristic value.

4.4 A Full Solution

An algorithm that preserves all possible information about whether values are
perfect or heuristic is given below. It backs up three values from every node:
1. the backed-up value (heuristic);
2. a lower bound on the true value;
3. an upper bound on the true value.

There is no explicit flagging of a backed-up value being perfect: this is implicit
in all three values coinciding. We exhibit the algorithm in pseudo-code (P is a
position, and d is a depth limit in the search).

S ( P , d )
{ i f ( p e r f e c t ( P ) ) v = v a l u e ( P ) ; r e t u r n ! v , v , v ) ,• }
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if (d=0) ( v=evaluate(P); return! v,
v= -INF; L= -INF;
foreach move m do
{ Pm= make(P,m);

v= max(v,-vh);
return! v,L,U );

U=

vh

-INF;

vL,vU= S(Pm,d
max(L,-vU);

-INF, INF ) ; }

- 1 ) ; •• . • •

U= max(U,-vL); }

Figure 4.5: A simple nested minimax algorithm.

The procedure S uses the negamax convention which is equivalent to the
alternation of maximizing and minimizing in the Figures 4.1 to 4.4. Negamax
is more elegant for algorithms, as all levels are treated alike. Note that S does
not use alpha-beta: it does a complete minimax scan.

4.5 I n c o r p o r a t i n g A l p h a - B e t a v " ] . , ';' '

When alpha-beta is incorporated into the nested minimax search procedure
there is a choice not in classic minimax. The alpha-beta technique can be
applied to either kind of value: heuristic or perfect. If it is applied to heuristic
values, it will make more cut-offs since heuristic bounds will usually be tighter
than perfect bounds. Alternatively, if it is applied only to perfect values, it
increases the chance of ending up with a perfect value for the root. It would
usually be preferable to cut on heuristic values, although in searches where
perfect values are very common, or much more useful than heuristic ones, cut-
offs on perfect values only might be chosen.

A pseudo-code version of S using alpha-beta on heuristic values is given in
Figure 4.6 below.

S (P,d, l,u) =
{ if (perfect(P)) {
if (d=0) {
V= 1; L= -INF; I
foreach move m do
{ Pm= make(P,m);

v= max(v, -vh) ,-

v=value(P);
v=evaluate(P,1,u);
J= -INF;

vh,vL,vU= S(Pm,
L= max (L, -vU) ;

if (v>=u) break,

if (not all moves
return! v,L,U ) ;

searched) U= INF;

return! v,v,v ) ,- }

return! v,l,u); }

d-1,-u,-v);
U= max(U, -vL) ;

Figure 4.6: A nested minimax algorithm using alpha-beta.



36 Chapter 4 Nested Minimax Search

4.6 Arriving at Nested Minimax ^ ? " • jf » < .• •

A search with mixed heuristic/perfect evaluations can be regarded as a perfect
one which is incomplete and hence returns:

1. a pair of bounds defining a range of possible true values instead of a
' ""•" single value, plus , . . < . :

2. a heuristic value lying within that interval.

This is what suggests the term nested m/m>nax: the outer shell of the minimax
deals in perfect values and returns a range; the inner part deals in heuristic
values and returns a point within that range.

Although the illustration above has used outer values that are perfect, the
concept of nested minimax does not require that outer values be perfect. Nested
minimax also applies to searches which do not encounter perfect values, but
which can encounter evaluations known to be much more reliable. For
example, nested minimax would also apply to a middle-game search that has a
separate 'evaluation' to detect positions in which evaluations are much more
reliable.

This Chapter has presented a search algorithm that retains more information
from the evaluations it encounters than the original minimax algorithm in the
literature. It is therefore a contribution to answering the problem statement of
this thesis "can we increase our understanding of minimax search and use it
to improve search algorithms?"
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5 •"••'•• •;Chapter 5

AN INTEGRATED-BOUNDS-
AND-VALUES (IBV)
NUMERIC SCALE FOR
MINIMAX SEARCH'
Search procedures generally discover bounds as partial results before a final
value is obtained. In particular, game-playing programs typically store such
bounds in a hash table, along with any exact results, for every position
processed. This information saves computing time if the position is
encountered again. For minimax search, upper bounds, lower bounds or
exact values may occur. This chapter shows how upper bounds, lower
bounds and exact values can conveniently be represented using a single
numeric scale, which slightly simplifies existing program code, and avoids
the necessity of a separate data item to distinguish bounds from exact values.

5.1 Bounds and Hash Tables

Game-playing programs typically store position scores in a hash table for use if
the same position is reached again (e.g., via a transposition of moves). Due to
the working of alpha-beta cut-offs, the position's 'score' will often be an upper
bound, or lower bound, on the actual value, rather than an exact value. The
stored values are often described and implemented (e.g., Thompson and
Condon. 1983; Nelson, 1985; Marsland. 1986) as consisting of a position value
(e.g.. as a 16-bit integer) plus a separate flag (e.g., as a 2-bit field) that can take
one of three significant values (exact, upper bound, lower bound) in another
byte or word.

' This Chapter is an edited version of Beal (1995) An Integrated-Bounds-and-
Values (IBV) Numeric Scale for Minimax Search. Thanks are due to the Editorial Board
ot the /CO/ 7o«r/7fl/ for permitting its use here.
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Mathematically, it is possible to map a set of numbers, together with a set of
upper bound values, and a set of lower bound values, into a single number
scale, called here an integrated-bounds-and-values (IBV) system. These single
numbers can then be manipulated conveniently by ordinary operations such as
negation, and comparison (e.g., less than, greater than, or equal), as well as by
specialised operations to examine and set the embedded bound or exact status
o f t h e n u m b e r . . . . ^ . . . . . . . i „ . „ „ • . . . . . . .:•••.

This mapping provides a convenient notation for coding and processing
backed-up values, which can be used both during the search and when storing •••
or retrieving hash-table values. It can even provide slightly simpler and faster *-
program code than handling flag values in a separate data item or byte. Any *
performance improvement may be insignificant in practice, but the IBV ...
method has the advantage of neatness. •

5.2 The IBV Representation ,.,..:. _ ., ._: , ,
; ; • • • • - , ' X ' , . • " - • • - i , . . . •

Exact numbers (/?) are represented as 4/7. ,^ , . , ^.»,

Upperbounds (<«) are represented as 4 / i -1 . • , . . - - t ; . -; •• t , .
Lower bounds (>/?) are represented as 4«+1. . ..,,.,,, . .

This yields the encoded IBV scale, the central part of which is illustrated in

F i g u r e 5 . 1 . .•••,-.••. . •.-. •-•. ; • - « . , • • , • . . . » . . •• ;

n

ibv

ibv meaning

I

-5

< - l

-4

= —1

-3

> - l

0

-1

<0

0

= 0

1

>0

1

3

< 1

4

= I

5

> 1

Figure 5.1: Some sample values of/?, with their possible IBV values
and their meanings.

Using this encoded IBV scale, the following properties hold:
(a) negating a bound produces the corresponding bound from the

opponent's point of view, thus allowing a 'negamax' version of
minimax to transfer bounds in the same way as exact values;

(b) a lower bound at /? (i.e., > «) is greater than an exact«;
(c) an exact value (i.e., /J) is greater than an upper bound at«(i.e., < /?).
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These properties enable a minimax search procedure to treat encoded values in
exactly the same way as exact values (i.e., scanning all moves, and selecting
the highest value found). No explicit testing for lower/upper/exact status is
required. This, in turn, means that when a minimax search is augmented by a
hash table to store and retrieve values, the encoded values can be used
everywhere. It is not necessary to add or remove the upper/exact/lower flag
when storing and retrieving values. By needing no manipulation, they simplify
the program logic. . i • ' . .,•_•.••.••:,;•,'.,;•.;••

5.3 A Program using IBV

A popular version of alpha-beta search has been fail-soft alpha-beta as
described, for example, in Marsland (1986) and Kaindl (1990). The following
C-language code (Figures 5.2 and 5.3) performs fail-soft alpha-beta assisted by
hash-table storage, using the integrated bound-and-value number convention
throughout.

ibvsearch(alpha, beta, d) /* alpha and beta are IBV values *7

{
if( hash_entry_found() andand stored_depth > d )

{ v = s t o r e d _ v a l u e ; • •• , ••>>'. .-?

s w i t c h F L A G ( v ) •..,,,,. .. , • . , . , • • . .

{ case EXACT: return(v);

case LB: if(v > beta) return(v); else alpha= max(alpha,v); break;

case UB: if(v < alpha) return (v) ; else beta= min (beta, v) ,- break;
} • * • • . • . . . . . . • •

if( d==0 ) best= evaluate)),- /• evaluated is EXACT */

else
{ best= -INFINITY;
cut= FORCE_EXACT(beta);
for (m=f irstmove; m; m=nextmove) •' '
{ make (in) ;

v= - ibvsearchl -beta, -max(alpha,best), d-1);
undo(m) ,-

if(v > best) best= v;
if (best >= cut) { if( llastmove ) best= FORCE_LB(best); break; }

/* when a cut-off occurs, the result is a lower bound */

hash_store(best, d ) ; // best may be LB, EXACT or UB, but if best is a

return (best); // LB it will be >beta, and if UB will be <alpha

J
Figure 5.2: IBV-based code to perform fail-soft alpha-beta.
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The function evaluate' can be obtained from an existing evaluation function
by multiplying its result by 4. Alternatively, one may adjust the evaluation
function to use scores 4 times larger throughout. .. . . ..

The function FORCE_EXACT delivers 4« given any of 4A?—1, 4«, or 4«+l.
FORCF.Lß delivers 4M+1 given any of 4«-l , 4« or 4«+l. FLAG delivers UB,
EXACT, or LB given 4M-1, 4M or 4«+1, respectively. They can be efficiently
implemented as shown in Figure 5.3.

#define FLAG(x) (X and 3)
#detlne FORCEEXACT(X) ((x+l)and~3)
#define FORCE_LB(x) (((x+1) and ~3) + 1) . . . : :
#defme EXACT 0 " ' ; . .
#defineUB 3 ' ' ' '
#define LB 1

Figure 5.3: Code to implement some essential functions on IBV-
represented values.

The function definitions in Figure 5.3 assume binary two's-complement
representation of integers. This is effectively universal throughout modern
machines, but a few rare machine types might require some other
implementation.

5.4 Confirming the Correctness of IBV

We note that Figure 5.2 contains some unfamiliar operations. After negating an
encoded value (which may be a lower or upper bound rather than an exact
value), then comparing it with another number which also may be a bound
rather than a value, it is not immediately clear what the comparison is
comparing, and what the possible outcomes are.

In order to be sure that the various operations in Figure 5.2 perform as claimed,
the following analyses are given.

Let c be an encoded value, . , ;
v be a position value, and
/ be-1/0/1, meaning upper/exact/lower.
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Then we define e = <? (v,y), withe(v,/) : :=4v+/(but see footnote ')•

We note that e can always be uniquely decomposed into v and/by division by
4 such that the remainder is - 1 , 0, or 1, a remainder of 2 being excluded.
Henceforth, we denote e(v, /) by (v, /) for brevity.

Let F(tO denote the position value v embedded in e. Properties (1) to (3c)
below can now be listed.

1) Negating the encoded number produces -e = -4v - / = (-v, - / ) .

For e = (v,0) => -e = (-v, 0) , / , . t . . ^ ,.,,.

Thus, negating an encoded value always produces an encoding
of the negated position's value, with reversal of the type of
bound if a bound, and retention of its exact status if exact.

2) The position values are dominant.

Therefore, comparisons of encoded values where the positions' values
are not equal will behave in accordance with the positions' values.

3) Particular cases of comparisons.

(a) The comparison (x > >>), where .v is LB:
if F(.v) > F(y), then (JC > v) is true because the Fs dominate:
if K(.v) = F(y), then (x > j ') is true because the LB flag is largest.

Thus (x >>'), where x is Lß, is identical to

(b) The comparison (x <y), where .v is UB:
similar observations as under (a) hold.

Thus, (A- <>'), where x is UB, is identical to

The use of 4 as a multiplier is convenient for decomposing the encoded numbers
using bit-pattern masks, but any multiplier > 3 will produce a numeric scheme having
essentially the same properties.
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(c) The comparison (* > >•), where y is EXACT:
This will behave as (V(jr) > V(>>)), except when V(.r) = V(y) and x is UB.

The following considers the correctness of the procedure of Figure 5.2

Properties (1) to (3c) above support the following claim:
77?e procedure o /F ig« re 5.2 </e//Vers f/ie same /wu/r, a/k/ ma&es f/ie

cnf-o/fr, as a version »si>jg ord/'/iary po^/Yion va/we.?
bow/la's/7ags.

This may be confirmed by examining the behaviour of the IBV comparison
statements, and the bound information embedded in the IBV-result value. The
following is a proof outline.

It is assumed that V(fl//?/ia) < V(feefa) on the initial call to ibvsearch.

From property 2 above, the statement: i/(v > fees?) 6es? = v will store
in fees/ the largest position value encountered. This matches the
behaviour of programs using ordinary position values.

From (3c) above, and noting that V(cnr) = V(befa), the statement
i/(fc«f > c « 0 ... will activate if V(besr) > V(6ff«), except in the case
when fosf is a U B . However, be-i7 can only be a UB when bes/ <
fl/p/ia (see below), which implies V(Z>e.sO < V(/?e/a), which means
activation is not desired. So the IBV version behaves in the same way
as i/(6esr > fora)... in programs using ordinary position values.

Verifying the activation of i / (foi / > CM/) ... also shows that recursive
calls of ibvsearch preserve the V(a/p/?fl) < V(fofa) property.

• From properties (3a) and (3b) above, the statements i/(v > fo/a) ..

; and i/(v < a/p/ia) ... will behave in the same way as comparisons

using ordinary position values.

For correctness, we also require that the result returned indicates EXACT, LB
or U B as appropriate. In particular, we require that U B is only indicated when
the value is alpha or below, and L B only indicated when the value is beta or
above. This can be verified with an inductive argument as follows.
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At depth c/ = 0, we assume the routine eva/i/ate is correct (base case).
For greater depths, we assume (inductive hypothesis) that the
recursive calls to obey the following rule (given as a comment against
the final return in the code above): "the result may be EXACT, LB or
UB, but if LB, result > beta and if UB, result < alpha".

Hence, /6wea/-cA will be < -beta if UB. Hence, -/ÄvsearcA > beta if
LB. Thus if an LB is assigned to best, best > beta. This establishes the
LB half of the inductive conclusion.

For -/M'.vearc/? to be UB, /Mwa/r/? must be LB, and hence > -
max(alpha,best). If max(alpha,best) = alpha, then /ftustwc/? > -alpha,
-/^usearc/; < alpha and the desired result holds. If max(alpha,best) =
best, then, if /frraearc/; is LB, then /^vsea/r/t must be > -best, -
/frwea/rA < best. So, when UB, -//jv^earcA will not replace 6e.s/.
Hence, no UB greater than alpha can ever be assigned to Z>es7. This
establishes the UB half of the inductive conclusion.

This concludes the proof outline.

5.5 A d v a n t a g e s of IBV

This chapter described a method of using an integrated-bounds-and-values
(IBV) number scale for minimax searches. Although analysis of the
correctness of procedures of the operations on the encoded values is lengthy,
the use of the IBV technique is very simple.

An integrated-bounds-and-values scale offers a convenient notation and
simplified program logic. The advantages are: (1) the use of a single variable
rather than the use of a number and a separate flag, and (2) identical handling
of backed-up values while searching and while storing or retrieving from a
hash table. It can be applied to any simple minimax search, but does not
extend usefully to handling the multiple bounds encountered in nested
minimax. The programming simplifications provided by IBV constitute a
small contribution to answering the problem statement of this thesis.
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Chapter 6

Selective Search Using Nested
Minimax*
It is argued that an important requirement for doing an effective selective
search is distinguishing different levels of reliability of evaluations arising in
the search. The use of nested minimax for administering the information
from multiple levels of reliability is illustrated with examples using three
levels of reliability. Comparisons with other algorithms are given.

6.1 Specialised Knowledge in the Endgame

It is possible to improve the performance of a King-and-Pawns-versus-King-
and-Pawns endgame program (for instance) by adding some specialised
knowledge for evaluating positions with specific properties. The question
being considered here is "how should that knowledge be integrated into the
search process?". It is expected that positions in which the specialised
knowledge is applicable will be much more likely to be evaluated correctly
than other positions. This knowledge can be assumed to improve the
performance, since the search will now have accurate values more often than
before.

However, if the knowledge is simply merged into the existing evaluation
function, there is some loss of potential. Consider the search tree of Figure 6.1.

' This Chapter is an edited version of Beal (1986) titled Selective Search without
Tears. Thanks are due to the Editorial Board of the /CC4 7ourna/ for permitting its use
here.
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0 -1 -1 0 -1 0

Figure 6.1: Example of a search tree. / indicates alpha-beta cut-off;
backed-up values are on the right of the nodes.

It is clear that the minimax result is 0. But what kind of 0? If it happens to be
based entirely on the specialised, and hence reliable, knowledge, there would
probably be little advantage in performing a deeper search.

Also, the possibility of evaluating at the interior nodes should be considered. A
conventional minimax search only evaluates at terminal nodes. The question is:
would one of the middle nodes (or even the root node) have a reliable value if
the evaluation function was applied there? If so, the search could be truncated
at that node. Why perform even a 1 -ply search when a 0-ply search will do?!

The remedy for these problems is clearly to distinguish between reliable
knowledge and unreliable guesses, and treat them differently. For example, we
can readily identify three types of reliability: (1) perfect values (e.g. checkmate,
stalemate, or database values), (2) specialised endgame evaluations, (3) •
heuristic values. Different levels of reliability arise in the middle game too.

6.2 Reliability in the Middle Game '';'"•'"'''' '"''

Consider the position of Diagram 6.1 that could arise in the late middle game.

' • f t ...



6.2 Reliability in the Middle Game <y<-, ^ r>)q»*. * 47

• S i ' . " , - ; u . ; i i . . "

•};•-•'.'• -.ü- .J T.' i- Diagram 6.1: White to play.

In Diagram 6.1, there are several elementary tactical lines which a search has to
investigate. White has a sequence 1. Rxe5 dxe5 2. Rxe5 which generates a
threat to win the Queen. It fails to 2.... b5 of course. The crucial question is:
how large should the search tree be at various nodes?

Consider the position after 1. Rxe5 has been refuted by I. ... dxe5 (assuming
dxe5 was examined first). Would a human consider alternative black moves to
I.... dxe5 at this point? ,,,, ...... .̂  , , ,.

My suggestion is that a human would ignore the alternatives. A human would
have looked at the starting position and seen that the worst Black can do is trap
the Bishop with ... b5, resulting in a approximately level score (Q+P v. R+R).
Hence when, after 1. Rxe5 dxe5, Black is doing better than that, the human
will abandon 1. Rxe5.

However, from Black's point of view in a conventional alpha-beta search, the
search bounds are still unbounded upwards. In human terms: the black player
using conventional alpha-beta will be trying to show exactly how bad I. Rxe5
is, before White tries the next move. The remedy here is not as clear as in
endgame positions.

Assume there were a mechanism that could evaluate the position of Diagram
6.1 and produce the answer "worst score for White is 0". How reliable is that
score of 0?
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Consider the following. The worst-score evaluation is effectively producing a
range as its result. It is saying: "the value lies anywhere between W and
infinity". This contrasts with a direct evaluation or a quiescence search which
both produce point values: "the value is X". In particular, if a quiescence value
and a worst-value would take the same time to compute, and were of equal
reliability, then there would be no case for computing the worst value. It would
always be better to have a point value. -

Now consider the way in which a human might reason in the position of
Diagram 6.1. The lines beginning with 1. Rxe5 are only a few ply deep, since
the move b5 appears in the main line after 1. Rxe5 dxe5 2. Rxe5 as 2. ... b5.
These lines are at least three ply deeper than the 1. ... b5 analysis showing that
White's Bishop can be trapped. The initial worst value is being used to cut off
moves such as 1. ... h6, which need an analysis deeper than the original worst-
case analysis.

My conclusion from the above is that worst-case values should be designed to
be, and treated as being, of much higher reliability than direct evaluations and
also of higher reliability than quiescence scores.

6.3 Reliability in the Endgame
. . * • ; • • < • ' • /

Consider again the tree of Figure 6.1, but now with reliability information
supplied (see Figure 6.2).

Or -lr -lu Or -lu Or

Figure 6.2: A tree with reliable (r) and unreliable (u) values.

Sufficient reliable evaluations have been encountered at the terminal nodes to
determine a reliable value of 0 for the starting node.
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Note that there are two issues here. The first issue is recognising nodes at
which a reliable value has been obtained, so that search below them can be
avoided (at least while there remain uncertainties elsewhere due to unreliable
values). The second issue is making all possible deductions about the possible
range of reliable values for the root node (or any backed-up node). Both kinds
of information need to be correctly handled by the search. In the tree of Figure
6.2, it is not immediately obvious that the top value is a reliable 0, since there
were three unreliable values examined at the bottom level. In Section 6.5 we
treat the relation with nested minimax and perfect values. ;: <••'•

6.4 Other Algorithms « ^ . • , ^ -

This view of worst-case values as being of higher reliability than quiescence
scores is implicit in existing algorithms. Berliner's B* algorithm treats
optimistic and pessimistic scores (assumed to be computable at a// interior
nodes of a search) as bounds. This implies that they are of at least equal weight
to the results of deep minimax searches (if the bound is being generated high in
the tree). Slate (1984) describes some endgame evaluations in NuCHESS that
generate bounds at interior nodes, and suggests that middle-game evaluations
could be handled in the same manner.

6.5 How Nested Minimax Handles the Values

Regardless of how the reliable values come into existence, we now consider
how to handle them in a minimax search. When dealing with perfect values
into a heuristic search, Chapter 4 showed that there is a need to back up three
values instead of a single value at every node, in order to be sure of obtaining,
at the root, the maximum information regarding its perfect value.

If the better values are more reliable, but still not perfect, the same requirement
holds: three values must be backed up. If perfect values can occur as well, it
would be necessary to back up five values at every node! Each additional level
of reliability introduces a requirement for backing up a range (i.e., two
endpoint values) within which the current position has been found to lie.
Henceforth we use the term /a/ ra/we to denote a range.

A position value in a generalized nested-minimax algorithm is a package which
has fat values (i.e., ranges) for the reliable layers. It typically has point values
for the least reliable evaluations (i.e., the conventional heuristic evaluation
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function). For instance, (-999:999 0:999 1.2) could express the information
that nothing is known with absolute reliability (assuming 999 means infinity),
but that a reliable lower bound is 0, and the heuristic value is 1.2. ••••••" •

Fat values can be used to express the idea of bounds. For instance, a fat value
of 4:999 is equivalent to saying the value is >=4. However, fat values are more
general than a single bound. They are equivalent to two bounds.

(N.B. The endpoints of fat values are mrt akin to alpha-beta bounds, since the
alpha-beta bounds express the idea of limitation of interest in what the value is,
and are not bounds on the value itself.)

The pseudo-code algorithm in Figure 6.3 is a minimax skeleton that applies to
any search where: ,.-. .< • ~. , »•• • ,.:
• three levels of evaluation reliability exist,
• interior evaluations can become available at any node (but not necessarily).

S2 (P,d,L,U)
{ if (d=0) return! EV(P,L,U) );

B v <- I V ( P , L , U ) ; ' " ' •'• '""

foreach move m do
{ bv <- innerpoint(Bv); if (bv>=U) breakloop;
Pm «- make(P,m);
Vm <- minus! S2(Pm,d-1,-U,-bv) ) ;
Bv <- backup(Bv,Vm);

}
if (not all moves searched) upperpoints(Bv) «- INF;
return(Bv);

where: '

m i n u s ( L : U l : u v ) = ( - U : - L - l : - u - v ) ; ."..,-.••,••;• :

i n n e r p o i n t ( L : U l:u v ) = v ; ' " • •'•'••'

backup(LI:U1 ll:ul vl, L2:U2 12:u2 v2) =
(max(Ll,L2) :max(Ul,U2) max (11, 12) -.max (ul, u2) max (vl, v2) ) ;

Figure 6.3: A three-layer nested-minimax algorithm.

The evaluation function EV is an evaluator for terminal nodes. It is expected
to return something like (-999:999 -999:999 v), where v is the least reliable
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heuristic value. IV is an interior-node evaluator that returns (sometimes) non-
infinite endpoints in its result package.

The skeleton above can be fleshed out to include iterative deepening, and the
other usual refinements found in conventional chess programs (Heinz, 1997).

6.6 Observations on Nested Minimax

The most reliable layer could be allocated to game-theoretic values. In Figure
6.3 IV would test for game-theoretic values (e.g., checkmate) and if found
return (999:999 999:999 999).

Slate's (1984) algorithm would fit into the scheme by arranging that the
function IV tested for the applicability of a specialised evaluation, and if
available returned (-999:999 v:999 v).

A depth-first version of Berliner's (1979) B* algorithm could also use this
skeleton, although a slightly different routine would be needed for the top
level.

In favour of this complicated backing-up scheme is the ability to represent
different kinds of draw values. The value package (0:0, 0:0, 0) indicates a
game-theoretic draw. The value package (-999:999 0:0 0) indicates that
specialised and reliable knowledge has evaluated the position a draw. The
value package (-999:999 -999:999 0) indicates that the position is level
according to a heuristic evaluation. Simpler schemes may not be able to
distinguish these different cases.

Finally, we remark that this Chapter has discussed two ideas relevant to
selective searching, and therefore to the research questions of this thesis:
1. The importance of a deliberate design of evaluations more reliable than a

quiescence search.
2. The use of nested minimax to administer the values that result.
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This chapter deals with perfect values in quiescence search. In chess perfect
values sometimes occur in the quiescence search. Quiescence searches often
deliberately include checks, and all moves escaping from check, in order to
detect at least some checkmating sequences. Such detection is at lower cost
than a full width search. When dealing with quiescence searches that
deliberately include checks, and moves out of check, the checkmate positions
that result are, of course, perfect values. The search therefore deals with values
of two distinct reliability levels: heuristic values from the evaluation function,
and perfect values from checkmates encountered. This means that nested
minimax is an appropriate algorithm to use.

To illustrate the benefits of handling perfect values in a quiescence search, we
discuss one particular rule for selecting allowable checks within a quiescence
search. . :

Hyatt, Gower and Nelson (1984) gave an example of CRAY BLITZ performance
on a position in which there is a mate in 10 moves (i.e., 19 ply) for White. At
that time, using two Cray-1 processors in parallel, the program was able to
examine nearly 40,000 positions per second and in less than 3 minutes (5.6
million nodes) found the mate in 10.

The same position was given to the contemporary program BCP running on a
Z8000 microcomputer. It did not outperform CRAY BLITZ. However, the
solution time was less than a comparison of processor speeds would lead one to

This Chapter is an edited version of Beal (1984) titled Mating Sequences in the
Quiescence Search. Thanks are due to the Editorial Board of the /CC4 ./ourW for
permitting its use here.
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expect. BCP found the mate in just over 5 minutes (400,000 nodes). The most
important variable affecting BCP's time is a rule governing which moves are
considered in the quiescence search. It is not obvious though, either from this
one example, or from wider experiments, what quiescence rules are best |
overall. This chapter discusses one rule in particular.

7.1 Typical Quiescence Search

Since CHESS 4.5 (Slate and Atkin, 1977), most chess programs perform an
exhaustive search to some fixed depth followed by the application of a variety
of search extensions, after which, the bottom nodes are processed by a
quiescence search. The quiescence search explores all disruptive moves from
its current position, terminating at quiescent positions, defined as those in
which no disruptive moves are available.

Disruptive moves are usually defined to be captures, promotions, checks, etc.
Some programs omit certain moves to reduce the size of the search without
suffering much risk of missing a crucial move. Captures are self-limiting but
checking sequences can go on indefinitely. Allowing checks in the quiescence
is generally more expensive in search time than captures. All moves getting out
of check are defined to be disruptive.

The rules for checks in CRAY BLITZ are:
1. Up to two non-capturing checks can be included in any variation of the

quiescence tree.
2. To be included, non-capturing checks must be part of a consecutive •

sequence of checks in the quiescence variation, and the main search
variation above the quiescence search must include checks. <

3. Checks which are captures are included without limit. •' '="•'• -' -- ••-••

The idea is to find mating attacks, and material gain brought about by king -•
attacks, which go deeper than the main depth, yet to limit the additional search >''
cost to an acceptable proportion of the time spent on more mundane
evaluations. -. .. •

It should be noted that CRAY BLITZ has two other major rules affecting the '
content of the quiescence tree:
1. many captures are eliminated by doing a simple exchange evaluation first,

and
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2. pawn advances to the seventh rank are included and are treated like
checks.

7.2 An Augmented Quiescence Search ; '

The rule singled out for discussing in this Chapter concerns checks: checks are
included if and only if they have exactly one legal reply. The reply could be
moving the King, capturing the attacker, or blockading. There is (almost) no
depth or count limit. This rule increases the proportion of perfect values
encountered in the search. The original intention of this rule was to detect
some (relatively) frequent cases of mate in 2. An example of such a mate in 2 is
a back-rank mate where the victim has a piece that can interpose, but not on a
defended square. It was then observed that there were cases of deeper 'one-
reply' mates in test positions, so the depth limit was removed. The search time
only increased marginally.

Of course, this 'only one reply' rule will miss many mates and combinations. It
is a cost-effectiveness issue. More complex positions will -be resolved by the
main search an iteration or two later. The idea is to pick up some (relatively)
frequent cases at low cost within the quiescence search.

The cost of including additional moves in a quiescence search is twofold:
1. the additional time spent in the move generator (a linear cost);
2. the tree expansion caused by increasing the average branching factor (an

exponential cost). .. ... .. . .. . . , ,,.,,,,

Checks are more expensive than captures to detect. Counting the number of
legal replies to a check increases the expense further. However, one-reply
checks only make a tiny increase in the average number of branches, which are
mainly captures. Since exponential costs are usually dominant, the one-reply
rule is low-cost, compared to rules that have significant exponential cost. The
other rules used in the test program are: all captures are included; pawn
promotions are included; but not advances to the seventh rank.

A-"' \ , ' ;'-
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7.3 A Deep Position with Perfect Values ' * ' ••' '**

In Diagram 7.1 we show the position as given by Hyatt, Gower and Nelson ;
(1994). , . ^

w fi-

' J T . " ••»

w ;; v-

' ' ' ' " ^ ' Diagram 7.1: Mate in 10. . ' . ' * ' . ' ^

They give as the main line: 1. Nxg5+ Qxg5 2. Nxf4+ Ke7 3. Nd5+ Ke6 4.
Nxc7+ Ke7 5. Nd5+ Ke8 6. Qxc8+ Qd8 7. Nc7+ Ke7 8. Bb4+ d6 9. Bxd6+
Qxd6 10. Qe8++. BCP has a parameter, usually set to 'infinity', which ;
determines the maximum length of one-reply check sequences allowed in the *
quiescence search. Table 7.1 shows the effect of progressively adjusting this
parameter.

, - ! • , . • • ! ' • - : . > \ . . . . y - i , • • • • : • - • • • • • • - . • . » • - . ' . ' • . . - -

The times go up as the 'one-reply' length is reduced because the main search
has to reach a deeper iteration before the mate in 10 is seen. The program
used for this experiment, BCP, has a selective, rather than exhaustive, main
search which is why the expansion factor for an extra ply of main search is
somewhat less than the usual 5 or 6.

BCP's execution time
quiescence rule

4 or more checks
3 checks
2 checks

1 check only

time
5 minutes

20 minutes
65 minutes

not tried

nodes
382,664
1,528,152
2,442,758

Table 7.1: The effect of the one-reply extensions.



7.4 ElTect of the One-Reply Heuristic

The main line ends in a 'one-reply' line of 5 checks. However, Black dees BM«
have to enter it. He can choose other mates in 10 that have only 4 one-reply
checks at the end. This is why lengths of 5 or more one-repiy checks do EM>I

shorten BCP's solving time.

It should also be noted, when comparing with CRAY Bl.ITZ, that although BCP
solves the mate problem with fewer nodes, BCP was deliberately engineered to
be efficient at tactical problems. Positional considerations were relegated to
second place. ....... „ = ,...--. >,-,,,_-i.. • ••• . <.- ,, ,- , - , -

7.4 Effect of the One-Reply Heuristic

Of course, it is inevitable that any quiescence rule will have some positions on
which it is advantageous. The important question is: how often are mates in 2,
3, 4, ... 'one-reply' sequences? In order to get some idea of the answer to this
question, the first ten problems achieving mate in Jf/n a/ C7J<?SS by Reinfeld
(1958) were examined. Figure 7.2 shows the time required for BCP solutions
when the 'one-reply' sequences of various length are perceived at the
quiescence depth. This shows that 'one-reply' sequences are at the tail end of
all the mating sequences (therefore justify the rule) in 5 out of the 10 positions.
Since the reductions in search time are massive when they occur, and the
increase is low in the others, this suggests that the rule may be cost effective.

Position
4 (a mate in 2)
5 (a mate in 2)
9 (a mate in 5)
12 (a mate in 2)
14 (a mate in 4)
27 (a mate in 2)
35 (a mate in 4)
50 (a mate in 3)
54 (a mate in 2)
55 (a mate in 4)

fime (in seconds) for BCP solutior
L= 1

2.60
0.22

16.00
0.40

13.00
0.60
7.00
2.80
0.60

10.00

L = 2
2.60
0.06

13.00
0.40

14.00
0.20
8.00
0.60
0.10

10.00

L = 3
-
-

2.00
-

14.00
-

8.00
0.60

-
10.00

1

L = 4
-
-

2.00
-

14.00
-

8.00
• • . -

-

10.00

L=-5
-
-

2.00
-
-
-
-
-
-
-

Figure 7.2: Benefits of one-reply extensions on ten test positions.
(L is the length of one-reply sequences allowed in the quiescence.)
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The experiment and discussion show that the one-reply rule is worth
considering as contribution to search efficiency in chess programs. The
occurrences of perfect values make the use of nested minimax for operating
the search desirable.

This Chapter has an indirect connection with the research questions of this
thesis. It is a case study of an important component of all high-performance
chess programs. Emerging from this case study is an example of the need to
handle perfect values intermixed with heuristic values, which can be
administered effectively by the nested minimax algorithm introduced in
Chapter 4. .,.

.',*;
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Chapter 8
• ' • • • i i f ^ ;

Minimax and Retrograde ^
Minimax using Patterns*
Retrograde minimax embodies the idea that the study of heuristic methods that
often give the wrong answer, is replaced by studying the properties of
algorithms that always return the perfect value.

A good analogy to bear in mind is an example used by Dijkstra (1972) in the
book 5//-;<c/;̂ re^ /Vogram/mwg. A table of prime numbers is not just a table of
arbitrary numbers. There are simple algorithms for computing it, which are
undoubtedly correct because they embody a clear mathematical definition.
There are also heuristic programs that attempt to calculate primes, leaving
unknown which of the numbers output actually are prime. Where exact
algorithms are computationally feasible they are naturally preferred. Even for
heuristic programs some exact guarantee is valuable (e.g., this number may not
be prime but it has no factors of less than eight digits), which may be regarded
as finding an exact algorithm for a clearly defined modification of the problem.
Similarly, we would prefer exact programs for chess functions.

8.1 KPK: Tables and Concepts

For many chess endgames a clear exact algorithm (systematic valuing of every
position) is computationally feasible (Van den Herik and Herschberg 1985;
Thompson 1986,1997; Stiller 1992; Schaeffer, 1997). This Chapter is
concerned with ways of constructing more compact algorithms without
relaxing the requirement of proving them correct. •••-•• -• • -••••

This Chapter is an edited version of Beal (1980). The Construction of
Economical and Correct Algorithms for King and Pawn against King, in /frfvances />J
Computer C/iew 2. Thanks are due to Edinburgh University Press for permitting its use
here.
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King and Pawn against King (KPK) is the simplest ending requiring non-trivial
concepts for its solution: only the best human players are perfect evaluators
over the whole space, which, reflections and redundancies removed, consists of
98304 distinct configurations. The analogue of the table of prime numbers is
the database, Clarke (1977), that labels each of these configurations draw or
win in a specified number of moves, obtained by retrograde minimaxing
(backing-up) from primitive terminal positions. Such a table enables a simple
program to be written to play perfectly, whose time complexity is small but
whose space complexity is correspondingly large (the simple forward minimax
method of evaluation is at the other end of the time/store trade-off axis).
Similar databases have now been constructed for a number of more
complicated endings (see references given above).

: . i i r - w ü f r ^ n w ' i f i u f t r f f o v b u v :.-'•> '; P ! ; , f . i ••? : .-. .••.•; •: • r v j ; •.

These tables are, of course, very large and the method soon becomes as space
bound as simple minimaxing is time bound.

Conventional programs written for the KPK ending in a high-level language
include those of Tan (1972) and Harris (1977), which, using little or no stored
data, are more or less direct attempts to encode knowledge obtained from
books or personal experience. Bramer (1977) and Beal (1977) constructed
programs consisting of simple search routines accessing a position evaluator,
which is based on a hierarchy of functions and predicates developed and
refined by interaction with expert players or stored databases. Michalski and
Negri (1977) described a program that starts with a repertoire of useful-looking
predicates and a sample of positions whose value is known and builds up
descriptions of winning positions in terms of these. It is also possible to
combine pattern-knowledge with search. Van den Herik (1980) describes a
program that does this for KNPK.

The Tan and Harris KPK programs are strong but not completely correct; those
of Bramer and Beal are known to be correct but only as a result of comparison
with the database over the entire set of legal positions. Programs stated to be
nearly correct may nevertheless contain 'pockets' of completely unsound play.
Only the simple search program that directly accesses the database can be said •
in any sense to be "correct by construction', and this of course is at the
extremely bulky end of the time/store trade-off axis.
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8.2 Minimax Lookahead Tables *v.*-*-•"•-s-^ >? .••/-•s-Ci v:-\<*<

In Clarke (1977) a simple diagram was used to illustrate the relationship
between search-based and data-based programs. Figure 8.1 is an elaboration of
that diagram with an extra dimension for program correctness. The slope from
the origin up on to the plateau of fully correct play represents the trade-off as ft
is currently known between economy and correctness for conventionally
written computer programs; programs such as Tan's (1972) lie somewhere on
this slope. The metaphor seems appropriate because standing on such a convex
hill it is hard to know how much further you have to go to get to the top. Will
such programs grow indefinitely to database dimensions as they are finally
made perfectly correct?

•fure search
No data

naive "
programs

. . • ' • • » \ :

TIME

..,••

•• -, -,

time/store trade-off for
standard naive programs

• ' • • - - h .

•:" Figure8.1: Trade-off curves for time, space and correctness.

A rough estimate of where the top of the hill is can be obtained by constructing
a standard "naive' program. Assume for simplicity all positions to be either
won for one side or drawn, so that the game is only two-valued, as in KPK or
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KBNK. Further assume that we require the program to respond correctly to a
request for a value within time T. Let the average branching factor with
randomly ordered alpha-beta search be 6 (= real branching factor raised to the
power 0.75), and let the processing time per node be /.

Then the maximum search depth / is given by T = rf>* approximately, and the
values of positions lying more deeply than this will have to be based on stored
material. We suppose these to be stored explicitly: another search to depth i
would involve storing the values of many terminal nodes.

To make further progress we need an assumption about the shape of the tree.
Assume the number of positions at depth y to be of the form ra/, where a < 1
and « is the total number of possible configurations (and hence the size of a
complete database). This form is neither particularly well nor particularly badly
fitted by KPK. It follows that the number of positions to be stored is 5 = «a',
and so (77/)(5/M)P = 1, where p = - log 6 / log a is a positive constant
characteristic of the ending, providing some justification for the hyperbolic
shape of the trade-off curve in Figure 8.1.

Programs in the correctness = 1 plane to the origin side of this curve are less
naive than the heuristic programs, such as the Bramer and Beal routines. Note
that these have had to get there from the wrong side of the curve by relying on
the database for verification. The aim in this Chapter is to study methods of
constructing correct programs that do not rely on this.

One approach to saving space whilst retaining optimality is to try to map the
complete state space onto a smaller set of functionally equivalent patterns,
backing up from the very simple predicates that describe terminal nodes to
force evaluation of more complex patterns. However, trying to follow this
through in detail led to an unmanageable proliferation of patterns if the goal of
generating a provably correct evaluator was to be retained. More detail and
some examples are given in Section 8.10.

Nevertheless, even if this idea is abandoned, it was of interest to see if a perfect
evaluator could be constructed by relaxing the requirement for deduction as a
method of verification and instead using the database. At the time of this work
I constructed a Fortran function of about 120 statements embodying 48 logical
tests of geometric features, which discriminates perfectly between wins and
draws over the whole space. The method was an iterative process of comparing
the values returned by the function against the database for every position,
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noting features that they had in common and debugging the code in an
essentially #J Aoc though methodical way. Further details are to be found in
Section 8.11, and the complete text of this program is given in Appendix A.
For more complex endgames the database may be too large for this method to
be feasible.

Since quite complicated geometric predicates seem to be necessary for optimal
evaluation, and since these do not agree very well with the way people describe
the winning process (in terms of the Dijkstra example my function for KPK is
equivalent to an obscure formula that just happens to generate the first 5000
primes), I tried a more algorithmic and less data-driven approach.

8.3 KPK: Patterns and Sequences

My algorithmic approach started with the observation that if the side with the
Pawn (assume it to be White) is to win, White must have a method of
repeatedly advancing the Pawn safely until it reaches the 8 ^ rank. Instead of
beginning with static geometric descriptions the set of move sequences was
examined. Central to many winning sequences were repeating occurrences of
patterns (expressed as coordinates relative to the Pawn). Black's replies could
vary the sequences, but White could always force the sequence to go through
one or other of two particular patterns with each advance of the Pawn. An
example is given in Figure 8.2, which shows a sequence of length seven.

Ä

1*l

A

Figure 8.2: A forcing sequence.
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The first pattern is an instance of one of the two key patterns. Black has
alternatives that can be shown to lead only into other sequences in which White
can continue to advance the Pawn safely. The proof that this is so uses a
combination of induction and enumeration, in the sense in which Dijkstra uses
the words when demonstrating that programs do what they are supposed to.
Details are given in Section 8.8. . •; • >• >• ^ ^

Not many positions match the two key patterns, of course, and for positions
that do not, analysis is required to determine whether an /n/7/a/ü/ng sequence
(one forcing a key pattern) is available to White. In many cases one King is
obviously nearer to critical squares, and in Section 8.9 we present some
definitions that make this idea precise. From them are derived, and proved
correct, extensions to the key patterns. The extended patterns match positions
in which White can force the key pattern by an initialising sequence. The
simpler ideas of White running the Pawn and Black capturing it are also
covered by patterns proved correct in the same way. v ' <•.? • .. ,.'.

The algorithm values positions by comparing them with its set of patterns: if
the position matches one of them the value is known, if not a search is
necessary. Ideally, this search should be small for all positions. For a complete
algorithm (see next paragraph) it would be possible to determine precise upper
bounds on the size of the search. Not included in the algorithm are key patterns
for Black to draw (in particular those where the Pawn is on the Rook's file).
The algorithm described so far is given precisely in Sections 8.4 to 8.6; proofs
of correctness are in Sections 8.8 and 8.9.

. ; . -£ . • • • ' . - % . . : . • - . . . * -

Bratko (1978) proved correct a complete KPK algorithm (a considerably less
subtle ending), his formal basis being Michie's (1976) Advice Language ALI.

There are strong similarities between the process of analysing the move
sequences to yield patterns with provable values, and with a structured
approach to many conventional programming tasks. The common feature
seems to be that analysis of the problem suggested a simple re/?<?<3/ ... MMf/7 ...
structure where the relevant predicate could be proved invariant over the loop
by a careful enumeration of cases.

The Chapter started by making an analogy with computations involving prime
numbers. That analogy can be extended by pointing to other papers, e.g., Gries
and Misra (1978), in which substantial improvements to an old algorithm (the
sieve of Eratosthenes) have resulted not from new programming tricks, but
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from new lemmas about primes suggested by the fresh ways of looking at old
problems that programming often requires. Good chess programs should
ideally stimulate similar insights, by being well-structured embodiments of
new theorems about the geometry of the game and more generally about the
effects of certain kinds of tree searches.

8.4 Initialising and Repetitive Move Sequences

The algorithm decides, for a given KPK position with White to play, whether it
is a win or draw. Many other KPK algorithms can be found: for example Beal
(1977), Bramer (1977), Clarke (1977), Harris (1977), Piasetski (1977), and Tan
(1972). Two of these (Beal"s and Bramer's) were found to be perfectly correct
by exhaustive comparison with Clarke's complete catalogue of KPK positions.
This algorithm differs in attempting to be provably correct from its structure,
without using a complete catalogue either during its construction or for testing
its outputs afterwards. Moreover, the aim was to lay the foundations of
automatic construction of the algorithm. ' • t •«;••.--• *•;••» : -.;- •! *,.«: -^.a' -yr.

Central to the organisation of the algorithm is the concept of representing most
of the wins in terms of repetitive move sequences and initialising move
sequences. The repetitive move sequences have to be known before the
initialisation sequences can be fully constructed.

By a repetitive move sequence is meant a forcing sequence where a little bit of
king manoeuvring enables the Pawn to advance safely one square, after which
the original pattern of the pieces is or can be restored and the sequence
repeated. Figure 8.2 was one example, and Figure 8.3 gives another, which is
very similar. - . , . . .

The sequence in Figure 8.3 is not actually self-contained. Black has alternative
moves, but they lead only into other repeatable sequences in which White
advances the Pawn safely.

However, continual advancing of the Pawn is not sufficient for White to win.
Some repeatable patterns allow Black to choose stalemate when the Pawn is on
the 7"i rank. These must be excluded from a set intended to identify wins.
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By an initialising sequence we mean a sequence of moves by the Kings only,
that does not repeat, but which leads into a winning repetitive sequence. An
example is given in Figure 8.4.

; , 3 • . • ( • . > ; , : . - ,

Figure 8.4: An initialising sequence, v ** ^ - ; r

After the initialising sequence of Figure 8.4 White can begin the repetitive
sequence of Figure 8.3. / •

The algorithm is constructed from three parts: (i) a set of fundamental patterns
with known values; (ii) a set of king-distance conditions extending some of the
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basic patterns; (iii) the exhaustive-search procedure. The patterns recognise
simple cases and the starting points of winning repetitive sequences; the king-
distance conditions recognise some positions requiring an initialising sequence;
and the exhaustive search finds values for positions not matched directly. All
patterns assume White to play. At all Black-to-play positions, therefore, one
ply of exhaustive search is required.

Two remarks are needed: (a) 'pattern' is used here to mean some specified
relationship between the pieces, not necessarily easily expressible by means of
a diagram; (b) the Pawn is always assumed to be white, playing up the board,
and on the Queen's side. (The Pawn can never change files, so Q-side positions
can be analysed independently of K-side positions. K-side positions are
equivalent to their mirror images on the Q-side. Positions with a black pawn
are equivalent to positions with colours and player's sides reversed.)

8.5 The Fundamental Patterns with Known Values

In Figure 8.5 we provide the fundamental patterns upon which the algorithm is
based.

The pawn-can-run pattern is a version of the simple "black King outside the
square of the Pawn" rule given in elementary chess books.

Bramer (1977) published an algorithm that recognises every pawn-can-run
position and which was verified to be correct, but it is quite complex and the
intention here was to keep the patterns and program structure as simple as
possible. Most pawn-can-run positions not recognised by the simple rule can
also be won, although requiring more moves, by king manoeuvring leading to
a winning pattern that is included.

The two repeatable patterns are the basis for recognising the bulk of the
remaining wins. The two non-repeatable patterns recognise a few extra
positions where White's win does not pass through the other patterns.

*

The stalemate and pawn-captured patterns are draws by definition. A proof that
the other patterns are wins appears in Section 8.8. Essentially, the method is
simply to examine the move tree from a given pattern establishing that White
can reach some already-known winning pattern no matter what moves Black
plays. However, unlike examining a move tree from an actual position,
consideration must be given to whether each move from a particular pattern
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will be poss ib le and legal in every posi t ion that co r r e sponds to the pat tern, and
the analys is mus t split into separa te cases if not. --. • , < ' , . . ••=> $, ^->j, • ,

V

(Whi te- to-p lay posi t ions only) •: •' . r . . . • . : .
1 ) S t a l e m a t e . w u ^ ; •'..••: • • , . > • • •.•••>. . .:

2) Pawn captured.
3) Pawn-can-run. A position matches this pattern if:

:.i« -d * r a n k < &rank or I * f i l e - & file I > (8 - & rank).
4 ) R e p e a t a b l e p a t t e r n 1: v - ~ « • ••">••••-•" •• - •• •• •

g?| lg? Ä not on rook file; , ;,".•,• /

5) Repeatable pattern 2:

* a n y w h e r e

or

A

Ä not on rook file;
••*»;:•;'-«»•..'.!•'«iv?' f

* anywhere, except*
if A rank<5

6) Non-repeatable pattern 1:

or
Ä not on rook file;

A rank = 6
S Ä A

7) Non-repeatable pattern 2: - .....<.• • ,,:• .?«>..,•.;

& not on rook file;

A rank = 5 ....''.,. ,
Ä Ä

Figure 8.5: Basic patterns.

8.6 The King-Distance Conditions and the Exhaustive Search

The playing algorithm searches the move tree to evaluate a position, with
positions matching a known pattern being terminal. In general, the more
comprehensive the set of known patterns, the smaller such a search will be: yet
it is desirable to keep the patterns few and simple to facilitate proof of
correctness and obtain economy of representation. • ;



8 . 7 A l g o r i t h m P e r f o r m a n c e ; ; . . : . ' , - . ; : ' I . < : . < . r ; : ? , , , / ; t w r p s ^ > 6 9

A good solution is to extend three of the fundamental patterns by king-distance
conditions (given in detail in section 8.9). These recognise many positions
where one King is too far away from important squares to stop the other one
establishing a known pattern by reaching a key square. For example, the
position at the start of the initialising sequence of Figure 8.4 matches
fundamental pattern 2 via distance condition 2 and is therefore directly
recognised as a win. . . . :i ;,.-;.

The first two king-distance conditions are sufficient for White to be sure of
reaching repeatable patterns 1 and 2 respectively, and therefore identify wins.

The third condition is derived from the pawn-captured pattern and identifies
draws.

The king-distance conditions are given in detail, and proved correct, in Section
8.9.

8.7 Algorithm Performance r . , ? ^ .,;-:.»!?{•.*>*.; .4u/^ji; «s^

The playing algorithm is compact to code and the pattern matching can be
executed very quickly. The overall speed of execution is proportional to the
average number of lookahead positions in the exhaustive search. Whilst little or
no search is needed for large classes of positions ranging from trivial to
difficult, excessive search is needed for some others. This is due to three
omissions from the algorithm as it stands: (I) the Pawn was assumed not to be
on the Rook"s file; (2) the double-pawn advance was ignored; (3) too few
patterns recognise draws, leaving most drawn positions to be evaluated by
search. •. . . .. . . ; . .,.

The first two omissions were deliberate, to simplify matters. The third omission
results from an early aim of detecting all wins by patterns, intending the
algorithm to be entirely static with no search. Draws could then have been
identified indirectly by not matching any winning pattern. This aim was not
reached with the patterns created, therefore search is required. In the absence of
sufficient patterns to achieve an entirely static algorithm, performance would
be improved if repeatable draw patterns were included in addition to winning
patterns.
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An additional winning pattern for the Rook's file cases, one or two repeatable
drawing patterns, and associated king-distance conditions are required to
rectify these omissions. In contrast, the two non-repeatable winning patterns
could perhaps be discarded, as they recognise only eleven positions and these
require little search to detect the win. In summary, it is possible to create an
efficient K.PK algorithm that uses only simple, easily defined patterns, and
which can be proved correct from its structure. - -••'•.

The algorithm was not simple to devise. Typical chess books give incomplete
information and the missing information is not only detail, but also concepts
that each human has to learn (by means not understood so far) from the
examples. Worse, humans who have learnt an adequate set of concepts from
examples seem to find it very difficult, if not impossible, to define those
concepts afterwards.

The largest effort is in verifying pattern correctness by analysis of the move
tree in pattern space, and this is apparently well suited to automation. A major
difficulty though, as noted in Section 8.8, is detecting when the analysis must
be split into separate cases because a critical move is legal in some positions
corresponding to the pattern but not in others. Moreover, splitting the analysis
means dividing the original pattern into two separate patterns and there may be
a choice of ways to do it. This choice may involve similar considerations to the
original choice of what kind of pattern to use. Thus, move analysis in pattern
space may not be straightforward. However, the attempt to program it should
illuminate the goal of automatically generating suitable patterns.

8.8 Analysis of the Fundamental Patterns '; » •••••" -.;

The analysis consists of examining a move tree derived from a pattern: nodes
in the tree represent patterns rather than individual positions. Patterns with
already known values are terminal nodes in the tree. •

In the case of repeatable patterns, if a result is established for the pattern with
the Pawn on a particular rank, then, in the analysis of the pattern with the Pawn
on a lesser rank, a recurrence of the pattern with the Pawn further advanced
may be assigned the same value. In the case of two repeatable patterns, each of
which leads into the other, the rank-7 result can be achieved, provided that a
pawn advance is included in every cycle.
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Two patterns are initially assumed to be wins, and therefore terminal nodes of a
tree in pattern space, proving other patterns to be wins:

1. A on rank 7; # not on or adjacent to promotion square; White to
play. (In two positions. White needs to promote to Rook to avoid
stalemate)

2. £ on rank 7: £? adjacent to promotion square; White to play. •

Analysing patterns instead of individual positions introduces additional
complexities, in particular, the analysis must be split into separate cases
whenever it would otherwise contain a node at which the value is not the same
for all positions that correspond to the pattern. This problem occurs when a
critical move (or moves) is (are) legal in some positions corresponding to the
pattern but not in others.

The reasoning necessary to detect these cases and split the pattern appropriately
is only given for the analysis of repeatable pattern 1. It would be the most
difficult part of automating this kind of analysis. Also, the reasoning necessary
to deduce what pattern exists after moves are made is only illustrated in the
analysis of the pawn-can-run pattern. However, in the case of 'diagram-type'
patterns, this reasoning is fairly straightforward.

8.8.1 The Pawn-Can-Run Pattern , . •_....,

The pawn-can-run pattern (pattern 3 in Figure 8.5) is: •

*rank < A rank «/• | *file - & file | > (8 - A rank)

This pattern is analysed by splitting into two cases, each of which is further
divided. - . . K - J , Ü J .

Case (a): White King not in front of the Pawn on the same file

This case is analysed, rather than just assumed to be an elementary win, as it
demonstrates that the verification can be treated as a search in the pattern tree.

Case (a. 7): Pawn on rank 7
= terminal pattern 1 : win
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Case(a2): Pawnrank<6 . ' • . - . . : _ . " .

free Advance a , * any
= pawn-can-run pattern (with & further advanced): win

(a program to search move trees using patterns of this kind needs
to make these deductions): The pawn advance must be legal (in all positions
matching the pattern) since £? is stated to be not in front and * cannot be
while the pawn-can-run pattern is satisfied. After the pawn advance, the pawn
rank is then 1 more, and as any * move can change rank and file by 1 at most,
each inequality in the pawn-can-run pattern will still be true after Black's reply
if it is true before & 's advance. Since one of them is true initially, the new
node is also a pawn-can-run pattern.

Case (6): White King in front of the Pawn on the same file (not rook file) '

Case (6.7): White King immediately in front of the Pawn

Figure 8.6: Case (b.l) of pawn-can-run pattern. * » • ."U

7Ä /ree: ^? plays to A, * any • ' !' • '"' «'• "'"
= repeatable pattern 2 : win . . -i*

(The analysis of repeatable pattern 2 does not depend on case & of the pawn-1
can-run pattern.) -

f/o>7: White's move is legal since * cannot be adjacent to A while the
pawn-can-run pattern is true. Nor can * be adjacent to a in repeatable pattern
2 for the same reason.

Case (6. 2): White King not immediately in front of the Pawn.

/s free: & advance, * any
either pattern (6. 7): win

or pattern (6.2) again with & advanced : win
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8.8.2 Repeatable Pattern 1
- • ' , » > . , >

Case (a):

Cose (6):

or
A not on rook file;

* anywhere
A A'

Figure 8.7: Repeatable pattern 1.

or
A not on rook file;

* anywhere; A rank=6
A A .

Figure 8.8: Case (a) of repeatable pattern 1.

rs free: Advance A , i any ' ~- ^
= terminal pattern 2 : win • •-'-'. • -

A

sq. identification:
a Jb c
d
sr

e
h

£
i

Bold lines indicate edge of board

Figure 8.9: Case (b) of repeatable pattern 1.

//•<?<?: ^ to A, * to A. fi to #, if * to a, advance A , * to Z>
= non-repeatable pattern 1 : win %

if * other, ä to rf, * any
= case (f) of repeatable pattern 1 : win
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c):

•.';»<,"•

Case(cO:

/s free:

Case (e):

or

» Figure 8.10: Case (c) ofrepeatable pattern 1.

;/s free: fi to a, * any, advance &, * any, Ö to A, * any

= repeatable pattern I (with & further advanced): win

*
a

*

c

A

or Jb
*

c

A

*
a

Figure 8.11: Case (d) of repeatable pattern 1.

fi to c, if * to *, & to A, # any, advance Ä , * any

= repeatable pattern 1 (with & further advanced): win

if * other, Ö to a, * any, advance &, * any

= repeatable pattern 1 (with & further advanced) win

or
* *

Ä

Figure 8.12: Case (e) ofrepeatable pattern 1.

Advance Ö , 4 any, advance &, * any

= repeatable pattern 1 (with & advanced): win
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Case (/): Repeatable pattern 1, except cases (a-e)

^no/>sw free: Advance A, 4 any

= repeatable pattern 2 (with a advanced): win U ,. .

./us///rcartbw />r sp//tf/«g /«to f«ose cases (reasoning similar to this must be
performed by a program to search move trees in pattern space): Case (a) is the
highest possible pawn rank. It is examined first so that subsequent analysis can
take advantage of the repeating pattern. Cases (b)-(e) are separated from case
(0 by starting with repeatable pattern I ignoring * . The following analysis
tree can then be obtained:

Advance Ä, ... -' • : •; ,•

= repeatable pattern 2 (with Ä advanced): win •

In general, there are only four ways in which the black King's presence can
invalidate black-king-less analysis: (i) Occupying a square that prevents any
white move by obstruction; (ii) To be able to take the Pawn after a white
move; (iii) To be in stalemate after a white move; (iv) If the final white move
creates repeatable pattern 2, to be able to occupy the square * after it. When
these four possibilities are applied to the analysis tree above, case (b) and cases
(c)-(e) combined are distinguished from the residual case (f).

Splitting of the combined pattern (c)-(e) occurs when the white moves that are
legal in all positions corresponding to the combined pattern (solidly legal) fail
to lead to a win. The other three white moves must then be examined, and the
patterns (c)-(e) result from dividing the combined pattern into pieces, in each of
which one of the three moves is solidly legal.

8.8.3 Repeatable Pattern 2

1 Ä not on rook file;
or

3 : * anywhere, except*
if Arank<5 *' •'Ä A

/ . i.V-l •) . •

Figure 8.13: Repeatable pattern 2.
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Case (a):

Analysis:

(6):

Repeatable pattern 2, as in Figure 8.13, with A rank = 7

= terminal pattern 2: win

Jb " b

A

*«. !• it*' Figure 8.14: Case (b) of repeatable pattern 2.

Analysis: fi to a, * any, Ö to />, * any A
= repeatable pattern 1: win . i:v; -.-:

• • • - • - - j , • .

« :;• or

Analysis:

Figure 8.15: Case (c) of repeatable pattern

Ö to c, if * to *, Ö to A, * any .
= repeatable pattern 1: win

if * other, £? to «, 4 any
= repeatable pattern 1: win

2.

Cose (c():

Figure 8.16: Case (d) of repeatable pattern 2.

Analysis: Advance &, * any, advance £?, * any

= repeatable pattern 2 (with & advanced): win
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Case (e):

Analysis:

Covc(/):

Analysis:

Cose (g):

Analysis:

A or

Figure 8.17: Case (e) of repeatable pattern 2.
* -V

= case (a) of pawn-can-run pattern: win

or

Bold lines indicate edge of board.

Figure 8.18: Case (0 of repeatable pattern 2.

Advance Ä ,

if * to «, £? to A, * any, fi to c, * any
= repeatable pattern 1: win

if * to rf
= non-repeatable pattern 1: win

Repeatable pattern 2, except cases (a)-(f)

Advance £?, * any
= repeatable pattern 1: win
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8.8.4 Non-Repeatable Pattern 1

or

Ä

Ä not on rook file;

Ä rank = 6

Diagram for analysis:
: . ; " > " J s .

orb b
A

Figure 8.19: Non-repeatable pattern 1.

Advance &, * to 6, £? to a, * any
= terminal pattern 2 : win .̂-« .,;,

8.8.5 Non-Repeatable Pattern 2

Case (a):

or
Ä not on rook file;

A rank = 5
A A

Figure 8.20: Non-repeatable pattern 2.

a

A

b

e

c
*
£

d
or

d c
*

Jb

e

a

A

Figure 8.21: Case (a) of non-repeatable pattern 2.

Advance Ä , if 4 to A, £? to e (call this pattern z),

if * to a
= non-repeatable pattern 1: win

if * to c, advance A.
= terminal pattern 1: win

any
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• • « * • ' !

if * to c. & t o / if * to A, ö to ^
pattern z: win

' ' "~ ' i f * to< / . advance A ,
terminal pattern 1: win

i f * other, advance &, * any
terminal pattern 1: win '"'" '

any

(b):

a b c
d

Ä

e or e
c
d

A

Jb a
*

Bold lines indicate board edges.

Figure 8.22: Case (b) of non-repeatable pattern 2.

A d v a n c e a , i f * t o A, ö t o # (ca l l t h i s p a t t e r n y ) c •••••j-v'-.

, if * toe •-! • •'••••

= non-repeatable pattern 1: win - •' • >.; M--

, if * to a, Ö to rf, 4 to original sq, fi to e

, * any, advance a . 4 any
= terminal pattern 2: win

if * to a, fi t o / * to A, fi to g
= pattern y : win

8.9 Initialising King-Move Sequences . ,.

Some classes of KPK positions seem to be simple to value because one King is
clearly too far away to stop the other achieving its goals. The king-distance
conditions derived below make this notion precise enough to define patterns
and prove them correct.

The first step is to derive conditions for one King to reach a particular square
despite interference from the other King. Conditions for reaching a given
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pattern can then be deduced. A decision cannot always be reached on the basis
of distance alone. If the distances are nearly the same and the kings are either
close or might become so, their ability to block each other's squares could
favour either one, depending on the precise position. However, if B -> S (the
distance from one King to a target square) is sufficiently less than W -> S, (the
distance from the other King to the same target square) or sufficiently greater,
an immediate decision is possible.

Exact conditions for such decisions can be established with the aid of two
measures of distance. — •-•-• --

1. 'geometric' distance (gdist) = max(file difference, rank difference)
2. 'king-move' distance (kdist) = the number of king moves needed to

reach the target square taking squares blocked by the Pawn into
account, but not squares blocked or potentially blockable by the other

N.B. gdist always < kdist.

There are two cases: •* ' *" '"
1. A sufficient condition that W (the King on move) can reach square T

despite any move by B (the other King) is: kdist(W,T) > gdist(B,T).
2. A sufficient condition that B (not on move) can reach T, and, as a

corollary, that W cannot, is: gdist(W,T) > kdist(B,T)+l. ..,•

It is possible to convince oneself of the truth of these conditions by informal
reasoning, but a more-formal proof by induction offers greater protection
against oversights:

Cose7:Letkdist(W,T) = n . " ^
a) If n = 0 then true since W on T already.
b) Suppose true for some n. Consider any square R for which kdist(R.T)
= n+1, and any square for B such that gdist(B,T) > n+l. R must be adjacent to
some square S for which kdist(S,T) = ». B cannot be adjacent to S since then
gdist(S,T) < w which would imply gdist(B.T) < ;?+l. Therefore B does not
prevent W moving to S^. After B's reply to W's move to S, gdist(B.T) must

' This reasoning step would not be valid if Black's distance were calculated
taking squares blocked by the Pawn into account, since B might be adjacent to S but have
distance -> I because it was unable to move there, e.g. . . w

. s . . - - . . • •

B . P
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still be at least /?+! which is > kdist(S,T). By the induction hypothesis W can
then reach T. Therefore true for n implies true for M+I.

a) True if kdist(B,T) = 0, since B already on T. • - . ' - • • • --*

b) For kdist(B,T) = w, consider any square for W for which gdist(W.T) >
. , . w+l. After W's first move to any square S, gdist(S,T)>«. i.e.

kdist(B,T) < gdist(S,T). Then by reversal of colours, case I implies
„' ^ that B can reach T.

From these single-square reachability conditions, king-distance conditions

ensuring the reachability of repeatable patterns I and 2 may be deduced:

I. Let T = (either) square W of the white King in repeatable pattern I. If
kdist(W,T) < gdist(B,T) then W can reach its 'key' square in repeatable pattern

1. The only two ways this can fail to actually achieve the pattern are: (a) if
Black can take the Pawn before W reaches its key square, and (b) if Black is
stalemated. Kdist(B,P) > kdist(W,T) guarantees that Black cannot take the
Pawn in the time that W needs to reach T. P rank < 6 guarantees that no
stalemate is possible since all the stalemate positions have P rank = 6 or 7.
Therefore:

kdist(W,T)<gdist(B,T)onof . . - . . . , . .
kdist(B,P) > kdist(W,T) awrf • '-.

'i P rank < 6 . implies White can win.

2. Let T = (either) square W of the white King in repeatable pattern 2. If
kdist(W.T) <gdist(B,T) then W can reach its key square. If kdist(B,*) >
kdist(W,T) then B cannot defend by reaching *. If kdist(B,P) > kdist(W,T>-l
then Black cannot capture the Pawn (it must be done in one move less than
kdist(W.T) since T is adjacent to P). If P rank < 6 no stalemate positions can
occur. Therefore:

kdist(W,T) < gdist(B,T) W . . .
kdis t (B,*)>kdis t (W,T)a«J :-. \ .

kdist(B.P) > kd is t (W,TH am/
P rank < 6 implies W has a win.

II White's distance did no/ take blocked squares into account, W might be adjacent to S.
but unable to go there. This illustrates the reason for having both gd«7 and Wurf as
measures of distance.
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The single-square reachability conditions are only valid while P does not
move. Every time P moves, kdist has to be redefined. This subtlety did not
arise in the above king-distance conditions because they define positions in
which White can reach a known win by king moves alone. The next king-
distance condition defines positions in which B can reach P despite the efforts
of W. Although primarily concerned with king moves, the analysis must also
consider P moves. Rather than attempt to redefine single-square reachability, a
direct proof by induction is given. . . . . . , • , . . ,

3. 'B rank > P rank W gdist(W,P) > kdist(B,P)+l implies draw.'
• ' , • ' = • • : u • > > . • . ' l i . s ..•• • • . ' C ' " " J > / V . . \ ' . - V ; ; J : I ( - \ - * ' ' i ' . : '

Let kdist(B,P) = «. -UHB;>ÜC.>5C ' / V - : > A & ' - • ;.>*...".
a) True if« = 0. B has just taken P. . . - - • •
b) Suppose true for n.. Consider any square for B for which kdist(B,P) = .

M + 1, and any square for W such that gdist(W,P) > « + 2. _ ..-.<&

We now seek to prove that, after any white move, B has a reply that creates the
kdist(B,P) = M case. ,̂- , : . . . . . . ....»,.,

Neither a W or a P move (the double pawn advance is ignored) can reduce
gdist( W,P) by more than 1, and kdist(B,P) = « + 1 implies that B has a move to
a square S such that kdist(S,P) = /;. So it is sufficient to show that W does not
obstruct B to S after any W move and that kdist(B,P) is still < /z + 1 after a P
move. . . . . . . . A ;;:,.; ;

(a)' " A W move to any square R: gdist(W,P) > « + 2 implies
gdist(R,P) > M + 1. R cannot be adjacent to S since as kdjst(S,P) = n,
gdist(S,P) < « and therefore gdist(R,P) would be < « + 1.

(b) A P advance: Consider the geometry of the squares that P blocks from
B. Let kd = kdist(B,P) and gd = gdist(B,P)
i) kd is either gd or gd + 1.

Hence, if kd after the P advance is to be > kd before, kd before
must be gd and kd after must be gd + 1.

ii) If kd = gd + 1, B must be diagonally in front of P.
Hence, by geometry, if kd before = gd and kd after = gd + 1, gd
after = gd before - 1.

iii) The P advance cannot increase gd as B rank > P rank.
Therefore kdist(B.P-before) < kdist(B,P-after). - - - - - ....

Hence true for n implies true for« + 1. ,^'. ; . • • ' :
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8.9.1 Sumtnar)' of King-Distance Conditions

(applicable to white-to-play positions only)

1. Win if: kdist( W, WI) < gdist(B, W1)
kdist(B.P) > kdist(W,W1) am/
Prank<6 ^ - ' • ^

2. Win if: kdist(W,W2)<gdist(B,W2)a«o*
kdist(B,S) > kdist(W,W2) arca* —: v-' y

•" ' kdist(B.P) > kdist(W,W2) - 1 a«a" *,, -*..
P r a n k < 6 "'-~ •

3. Draw if: kdist(B,P) < gdist(W,P) - 1 a«o"
B rank > P rank

•••, r, «A--i»:i • ;-v: . - -1 F i g u r e 8 . 2 3 : K i n g d i s t a n c e c o n d i t i o n s . --.•'•,,-:*•/ •• ;v»i-

W, B and P denote the squares occupied by the white King, black King and
white Pawn in the position under consideration. Wl and W2 are the squares W
in repeatable patterns I and 2, when aligned so that P in the pattern coincides
with P in the position. S is the square * in repeatable pattern 2.

8.10 The Difficulties of Retrograde Minimax with Patterns

This section discusses the difficulties that arise when attempting to perform
retrograde minimax with patterns instead of individual positions. These
difficulties would have to be overcome in order to achieve automation of the
retrograde minimax process.

The first examples are based on the least ambitious description scheme for
KPK (and hence the least difficult to reason about) one might consider. Each
description gives the rank of each piece, but gives the files of the Kings relative
to the Pawn, instead of absolutely. The Pawn is assumed to be on the queen
side of the board (if we succeed in valuing all such positions, the values for
positions with the Pawn on the king side can be obtained by mirroring.) The
file of the Pawn is not specified, thus each description covers up to four
positions. This choice originated from the observation that many patterns of
pieces were consistently wins or losses irrespective of which file the Pawn was
on. These descriptions of positions are referred to as VPF (for Variable Pawn
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File) patterns. The most useful VPF patterns are those for which every
matching position lias the same value (consistent patterns). The following;
discussion shows how retrograde minimax tends to create inconsistent patterns,
even when starting with consistent patterns.

Some VPF patterns have four positions corresponding to them (one for each
possible file for the pawn). These are called here '/«//-patterns". Others have
only one to three. These are called here 'part-patterns'. ..... .,

Example^//-pattern Example part-pattern

Figure 8.24: Exampley«//-pattern and part-pattern.

Patterns adjacent to part-patterns are a problem, because they may have a
move (to the part-pattern) which is legal in some occurrences of the pattern
and not others. If this move is crucial (e.g. the only legal move) then the pattern
may not have a common value over all its occurrences. Here is an example of a
part pattern adjacent to a/«//pattern: • , ..

Black to play White to play
/«//-pattern part-pattern

Bold line indicates edge of board. '. ^

Figure 8.25: Example/«//-pattern adjacent to part-pattern.

We wish to value the left-hand pattern, a /«//-pattern, by retrograde minimax
(also called 'backing-up') from the right-hand pattern (amongst others). The
right-hand pattern is consistent, but it is only a part-position. As a result, the
left-hand pattern is not consistent, even though the pattern from which we are
backing up is consistent. The right-hand pattern is single-valued, but because it
is only apart-pattern, it leads to multiple-values for the pattern it backs up into.
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Furthermore, in the retrograde minimax process, after valuing an inconsistent
pattern, any VPF pattern adjacent to it may in turn be inconsistent. Therefore, it
must be processed position by position instead of as a single pattern. This
means any VPF pattern adjacent to either a /?a/7-pattern or to a multiple-valued
pattern must be processed as individual positions instead of as a pattern'.
Unfortunately, this includes most VPF patterns. Moreover, as a practical
exercise in programming, the slight reduction in computation from the few
VPF patterns that can be processed as single consistent entities is swamped by
the overheads of handling patterns as well as positions. •; -

The following examples illustrate the difficulties of manipulating more
elaborate descriptions. They are based on a description scheme called here
distance-based patterns. Each description consists of a logical combination
(a/W. o/- and /?«/) of predicates. Each predicate expresses a distance relation
(=, > or < ) either between squares, or between ranks and files.

Systematic valuing by backing up requires:
1. Generating descriptions one ply back (i.e. generating a description

matching a set of positions such that each is one ply back from some
position matching the starting description).

2. Generating and examining descriptions one ply forward again from
the one ply back description (this will include the original description
amongst others) to establish a minimax value for the backed up
description if possible.

Unfortunately, this cannot be done by simple cycling through a small set of
well-defined possibilities as it can be for position space.

Unlike position space and VPF-pattern space, descriptions are neither
necessarily unique nor distinct. Also, it is not usually appropriate or feasible to
divide up positions one ply distant into eight descriptions corresponding to the
different directions of king moves.

Moreover, only descriptions with consistent values are useful. (By consistent
is meant that all positions matching the description have the same minimax

This might not be the case if suitable frame axioms about the relationship of
various moves to possible changes in values could be found, but this seems very difficult
indeed.
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value.) Some means has to be found to restrict the generation of descriptions to
consistent ones or detect and divide up inconsistent ones.

These problems can best be illustrated with an example. A description of White
1-ply wins is:

WTP and PR=7 and W-»Q = 1 (White to play, pawn rank = 7 W
dist(white King, queening square) = 1)

or WTP and PR=7 and B Q > 1 and W -> Q > 0

BTP and WTP mean Black to play, and White to play, respectively.

Generating a description of black 2-ply losses might proceed by generating
first a description of losses one ply back from the first component (PR = 7 and
W -> Q = 1) of the white 1 -ply wins and then generating a description of losses
one ply back from the second component.

The first of these is actually feasible with this description and might go as
follows:

Black moves cannot affect this description component except for changing
the side to play and so any position matching BTP and PR = 7 and
W -> Q = 1 is a position one black ply back. Each of these will be a loss if
and only if all WTP positions one black ply forward are white wins. All
black moves lead straight back into the original description and so "BTP
and PR = 7 and W -> Q = 1" positions are indeed 2-ply losses.

However, the second description component is a different matter. One set of
positions one black ply backwards is obtained by changing B -> Q > 1 into
B -> Q > 2. This set can be deduced to be consistent and a 2-ply loss for
Black, since any black forward move still leaves B -> Q > 1. The remainder of
the patterns one black ply back provides all the difficulty.

The troublesome pattern one black ply back from component 2 is (BTP and
PR = 7 and B -> Q = 1 and W -> Q > 0). This set is not consistent and it does
not seem feasible to divide it into consistent subsets by reasoning about
distances, or indeed by any process of reasoning sufficiently well-defined to
program.

The positions may be illustrated by diagrams as follows.
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anywhere except +

Bold line indicates edge of board.

Figure 8.26: An inconsistent pattern.

Of these, by hand examination, the following positions are losses:

Ä *
*

* * Änot
on c file

Figure 8.27 Cases within the inconsistent pattern.

These may be described using distances by:
BTP and PR=7 and W -> Q > 0 and B -> Q = 2 and W - • * = 1 and B -> *

1 and
B -» P > 1 where * = square to right of Pawn

BTP and PR=7 and W - • Q > 0 and B ->• Q = 2 and W -> S = 1 and B -> S
= 1 and B -> P > 1 and B -> A8 > 0 where S = square to left of Pawn, and
A8 = 8™ rank on Rook's file

Further positions one black ply back are obtained with B -> Q = 1, but from
hand examination none are black 2-pIy losses.

The problem is that these descriptions were generated ad Aoc as the need for
them arose. No systematic deductive method of obtaining them is apparent.

Going further back the descriptions required to generate consistent subsets
become more complicated still, essentially for reasons similar to those above.
In general the requirement of consistency appears to lead to an unavoidable
proliferation of predicates.
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8.11 Discriminating Wins from Draws in KPK

A FORTRAN subroutine that determines, for any chess position with just King
and one Pawn versus King, whether it is a win or a draw was developed.
White-to-play positions are evaluated directly, by a series of tests on the ranks
and files of the pieces. Black-to-play positions are evaluated by a 1 -ply
lookahead. The subroutine was tested against a complete table of KPK values j
(Clarke 1977) and is correct in all cases.

The tests applied to white-to-play positions are mostly based on geometric
distances (max(filedist, rankdist)) between various pieces and squares. Some
combinations imply a win for White, others, a draw. No claim is made that the
tests are the most economical possible - on the contrary there probably is a
great deal of room for improvement, as simply achieving any complete set was
the goal.

This work grew out of the research into description generation and deduction
in king and pawn endings. While studying the properties of geometric
distances as a possible basis for position descriptions that might be suitable for
mechanical generation, it was appropriate to see how convenient such
descriptions were for classifying KPK positions, regardless of how the
descriptions might be obtained. It was not necessary to create the subroutine
described here for this purpose but having got part way surprisingly quickly it
seemed worthwhile to finish it. Although KPK information had been
programmed by several researchers (Bramer 1977, Harris 1977, Piasetski 1977,
Tan 1972) and other chess endgame information by Bramer (1975, Huberman
(1968), Michie (1977), Newborn (1977), Tan (1973, 1974, 1977), and
Zuidema (1974), few were correct in all cases. A program known to be correct
in all cases would be useful for comparison and reference. . ?

No attempt was made to keep to 'mechanizable' descriptions when extending
the classification rules to be correct on all KPK positions. The technique used
was to compare systematically the current routine with the complete KPK table >
until several misclassifications had been accumulated, then study them and
devise new or modified rules which resulted in correct classification for the >
wrong ones plus as many other cases as could be intuitively generalised from •'
these examples. The modified routine was then tested, etc. ;
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The feedback from the perfect information in the complete KPK table resulted
in very quick (about two weeks) development of the routine. This is perhaps
the most important point presented in this section. Other workers have spent a
great deal of time and effort transforming this kind of information into a
computer program. It may be that a large portion of this effort lies in a
possibly unsuspected quarter, viz. being their own 'devil's advocate' when
considering the correctness or otherwise of parts or proposed parts of their
algorithm. I found it very much easier to suggest new classification rules
(which might or might not be correct) that to test them for correctness. With a
rapid-response machine to test each rule immediately and print exceptions and
omissions, the task of evolving a complete set became relatively easy.

One noticeable phenomenon was that the number of tests increased
disproportionately as fewer and fewer positions remained unclassified. This
was anticipated as inevitable for such tasks by Zuidema (1974), but it may
have been partly due to spending insufficient time on the tasks. When new
rules were found to be necessary they were added without always looking
examining existing rules to see if they were made redundant by the new rules,
or looking for ways to combine them into more economical.

The Appendix gives a listing of the KPK routines, together with an explanation
of how it can be used. Also in the Appendix is a concise representation of the
decision rules, given as a decision table. There are 48 rules (or tests), which are
applied in sequence 1-48. If one is found to be applicable it yields a value W
or D (win or draw) and immediate exit from the routine. If no applicable rule is
found the default is draw. A rule is applicable if and only if every condition is
met. In other words, it is the logical 'and* of the conditions and there are no
'or'ed conditions. This voluntary restriction facilitated recording the rules as a
decision table during development, which was convenient as it required little
writing, was easy to alter, and compact enough to enable the rules to be viewed
en Woe.

Figure 8.28 lists the number of configurations recognised by each rule but not
by those proceeding it. N.B. The rules are not in chronological order of
generation. New rules and modifications were sometimes accompanied by
shuffling the order - one reason being to put simple and quick tests before more
complex ones, another being to correct rules by testing for exceptions
beforehand.



90 Chapter 8 Minimax and Retrograde Minimax using Patterns

7-w/e

1
2
3
4
5
6
7
8
9
10

2
3
1344

3070
1789

5
54336

7374

8
3

11
12
13
14
15
16
17
18
19
20

1
24
3
237
235
303
27
54
1
5

21
22
23
24
25
26
27
28
29
30

216
315
40
234
150
24
48
4783

1155
387

31
32
33
34
35
36
37
38
39
40

3469

63
2527

36
1531
840
171
63
9
60

r«/e

41
42
43
44
45
46
47
48

448
39
342
117
12
2
12
9

Figure 8.28: Number of configurations detected by each rule. ' '

A subroutine that plays KPK can readily be constructed using KPKWV and
KPKBV to provide the win/draw information. It is not quite enough however
to ensure that the move chosen is a win if one exists. The choice must ensure
progress towards the win, as procrastination can lead to a draw by repetition or
by the 50-move rule. This is easy for KPK, and the following almost suffices
for the K+P side: .

If there is only one winning move, make it.
If advancing the Pawn wins, advance it.
Otherwise, select the king move that leaves the King furthest up the board.
If that still leaves a choice, choose the move that leads to the least
difference between king file and pawn file.
If still a choice, choose the one that leaves the King nearest the edge of the
board.

Similarly, reasonably sensible play for the lone King can be achieved by
aiming to keep as close to the Pawn as possible when faced with a choice.

These heuristics do not produce optimal play in the sense of always taking the
fewest moves to win (or delaying the loss as long as possible), but they are
intended to ensure a win is achieved whenever one is possible and sensible-
looking play. I reserve the word 'correct' for such programs. It seems
computationally feasible to establish whether or not a given program for KPK
is correct by systematically marking all positions that lie on winning sequences
chosen by the algorithm in a manner analogous to the standard retrograde
minimax method, which marks minimax values.
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It should perhaps be mentioned that to achieve correct and good-looking play
for KRK (Bramer 1975, Huberman 1968, Michie 1977, Zuidema 1974)
appears to require more complex heuristics than for KPK.

The difficulty in KPK resides mostly in deciding whether a win is possible,
whereas in KRK almost all positions are wins and all the difficulty lies in
choosing a move that wins rapidly.

This Chapter has been a case study for handling minimax with patterns instead
of individual positions. Sections 8.3 to 8.9 examine in detail a set of patterns
that can be proved correct by forward search in patterns space instead of
position space. The task of handling the patterns is substantial even after the
patterns are invented and made precise. Section 8.10 transfers insights to the
original goal of this work, namely: retrograde minimax with patterns instead of
positions. The prospects for automating this seem poor because at/ Aoc
invention of new patterns with the aid of human intuition seems to play a vital
part. Finally, section 8.11 reported on the successful attempt to produce a
precise pattern set for the KPK endgame, which has been useful for
comparison and reference. The Chapter has addressed the research question of
this thesis by increasing our understanding of minimax search when applied to
pattern space instead of position space.
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Chapter 9

The Choice of Search
Envelopes*
In nearly all chess-playing programs, numerical estimates from heuristic
evaluations are used with minimax lookahead. The lookahead produces a
better value, or better move choice, than the direct evaluations would. Our
investigations into minimax theory have uncovered mechanisms by which
lookahead obtains its benefits: the mechanisms are intimately related to the
structure inherent in the underlying problem. Search algorithms that respond
to this underlying structure can be orders of magnitude more cost-effective
than search algorithms using only alpha-beta. In particular, search pruning
techniques previously described as heuristics, or ad-hoc procedures, can be
re-interpreted as instances of general algorithms conforming to a theoretical
model.

9.1 Heuristics

Most chess programs, and in particular the most successful ones, such as
CHHSS 4.5: (Slate and Atkin, 1977), BlXLL (Condon and Thompson, 1982),
CRAY BLITZ (Hyatt, Gower and Nelson, 1990) and DEEP BLUE (Seirawan,
1997) choose their move on the basis of a large minimax lookahead using an
evaluation function that delivers a numerical score for any position. The
minimax process selects, from the set of evaluations at maximum depth, one
value to be 'backed-up' to the root node. (When move choice is required,
values are obtained for the positions resulting from each of the available
moves.) It is assumed, and well established empirically, that the backed-up
values are better than direct evaluations. However, the theoretical justification

' This Chapter is an edited version of Beal (1984), Using Numerical Heuristics
Kffectively. Thanks are due to M. Somalvico and B. Pernici (lids.) for permission to use
the contents in this thesis.
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particular value from the set of terminal evaluations as the backed-up value:
each of the terminal evaluations is individually unreliable - why does the
minimax process give us any more confidence in the one selected? Figure 9.1
illustrates the fact that the value backed up to the root is one of the terminal
values.

Figure 9.1: The selected node. . " '
Why is the value backed up to the root more reliable than the others?

The chess programs use the alpha-beta pruning rule plus various refinements of
the search procedure in order to get maximum benefit from alpha-beta cut-offs.
It means that only some of the game tree is scanned. However, it does not
affect the value the search obtains, or the move chosen (assuming that the
move search order at every node remains the same^). So we can note that,
although the alpha-beta technique is vital for efficiency, when discussing why
the move was chosen and whether it was a good choice, we can refer to the
complete tree and forget the alpha-beta pruning.

In addition, many chess programs perform some kind of heuristic pruning, e.g.,
a forward pruning of moves that do not appear to have sufficient merit.
Heuristic pruning can always be regarded as defining some nodes to be
terminal even though they are not at maximum depth. The most successful
chess programs (CHESS 4.5, BELLE, CRAY BLITZ and DEEP BLUE) do not use
heuristic pruning: Earlier versions of CHESS 4.5 used it, but then it was
abandoned in favour of full-width search.

' If the move ordering is not the same, tie breaking between moves that obtain
identical best minimax values may differ, but this does not disturb the main conclusions
of the analysis in this section.
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Since most of chess is far beyond complete calculation, choosing a move is a
race to perform as much useful computation as possible within a time limit.
The key question is: "what constitutes good value for money in a minimax
lookahead?" The alpha-beta pruning technique is obviously a gain in value for
money: it reduces the search effort without changing the result. Assessing
heuristic pruning is more complicated. The pruning may change the result of
the search as well as save tree-search time. We might rate it a gain in value for
money if the search saving was sufficient to compensate for occasional
worsening of move choice. In practice, we might not want to save search time:
the time available for choosing moves is more or less fixed. The saving from
prunes at one place in the tree will be used to enable deeper search in other
places. So, in value for money terms: "does the deepening of search in those
places improve the move choice more than occasional unsound prunes worsen
it?"

Our results in minimax search theory, and the results of others (e.g., Bratko and
Gams, 1982; Nau, 1982, 1983) aimed at answering the original question "why
are backed-up values more reliable?" have also given new insight into heuristic
pruning procedures.

9.2 From Minimax Search Theory to Search Envelopes

Chapter 2 analysed a preliminary model of minimax and discovered that,
although the model did not appear unrealistic, any minimax problem
conforming to it would give worse, not better, values with minimax lookahead.
Nau (1981), in independent investigations, gave the name 'pathology' to this
phenomenon of minimax lookahead making matters worse instead of better.
He exhibited a simple game for which an obviously reasonable (and effective)
evaluation function exists, yet minimax lookahead in this game produces worse
values than direct evaluations. . .

Three independent papers in 1982 contributed to resolving this conflict with
practical experience.
(1) Bratko and Gams (1982) published the results of analysing the

preliminary model in more detail. They found that lookahead was still
deleterious in several extensions to the model, but noted that more-
reliable values could be created in local subtrees. They speculated that
such more-reliable values could act as 'stabilising seeds' in large

• searches.
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(2) Nau (1982) presented a modification of his pathological game which •
is created with the aid of values randomly assigned along the move

. "< sequence leading to each position, instead of directly to terminal'
i'> positions. Since nearby positions share much of that move sequence,

they are more likely to have the same value than distant nodes. In thisn
game, there is no pathology. , . . ?

(3) Beal (1982) described an extension to the earlier work, intended to
model, in the simplest possible way, the reason for minimax being
successful in practical game-playing.The model introduces non-v

•' uniformity in the otherwise random distribution of terminal values for
the game tree. It assumes that, at any level, there is a tendency for
values which are the same to cluster. The tendency is parameterised
from 0 (no clustering = original model) to 1 (total clustering). The:?
analysis shows that the greater the clustering, the greater the benefit of •";
lookahead. It is suggested that a tendency to cluster mirrors the
structure of real games, in which (a) terminal values are determined by *
board positions and (b) positions only change slightly with each move, '*
therefore adjacent positions tend to have the same value. ;.

Chapter 3, section 3.1 found that in the king and pawn against king endgame,
for which complete data is available, substantial clustering occurs. If the
branching factor and clustering parameter for the model are set to match KPK,
then lookahead in the model is well into the beneficial range. ' . .

The clustering phenomenon produces its benefit for heuristic search at nodes.
where the side to play can win and has a choice amongst many moves which '
do so. The essence of the situation is that even if one or some of the winning",
moves are incorrectly valued, the chances are that a heuristic tree search will
detect at least one as a win. As the KPK statistics show, such clusters can occur
sufficiently frequently in games to make lookahead have an increasing
probability of finding correct values with increasing depth. Figure 9.2 shows an
example of a fragment of tree in which the backed-up value returned to the root
is reliable (because heuristic errors are unlikely to propagate). The clusters are {
shown as triangles. The other branches are assumed to lead to nodes which are
not clusters (i.e., nodes that have a mixture of successful and unsuccessful
d e s c e n d a n t s ) . ••' * '••••• ' • ••' ' • • . • • • •

- • • . : • ' ! . * . • • . : • . . . • • • • • : . ; • " ' - • ' , ;
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Figure 9.2: A cluster structure. .„;, ,

The minimax models use 'probability of error' as a figure of merit for
evaluations. The benefit of lookahead is assessed in terms of the probability of
error of the backed-up value, compared to the probability of error in direct
evaluations. Thus the average effect of searches to given depths can be
a n a l y s e d , j , . - , « . ; • > - • < • . - • . : - • • • • • • . . - . .

The same technique could, in principle, be used to compare different heuristic
pruning methods. The expected number of nodes in the search, together with
the expected reduction of probability of error in the backed-up value, could be
used to compute the "value for money'. Unfortunately, typical evaluation
functions, and typical heuristic estimators for "whether a move should be
pruned" are elaborate, and assessing their effect is impractical.

However, the minimax models reveal one kind of node at which backed-up
values become more reliable. It is possible to define search algorithms which,
in addition to computing the backed-up value, also detect clusters. Going
further, it is possible to define search algorithms which extend the search a few
nodes at a time, examining the values obtained to see if the search has detected
a reliable value at that point, and if so, stopping. Such an algorithm will search
up to a fringe of more reliable values. Within the fringe is an irregular subtree
of the complete game tree. This subtree need not be completely scanned, as
alpha-beta pruning can be employed so that the usual reduction of branching
factor provided by alpha-beta can be enjoyed within the subtree.
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Chapter 3 on minimax models presented an algorithm called locked-value
search which detects when sufficient clusters have been found to create a
reliable (locked) value. It searches within a subtree delimited by locked values
(although it overshoots the locked value itself by 2 ply in order to detect the
clusters). Although the algorithm only has heuristic values available, when they
indicate a cluster, the probability is high that the true values are clustered. Thus
the algorithm is responsive to the structure of the underlying minimax tree.

Chapter 2 gave a simpler alternative algorithm that searches for a different kind
of structure, namely, nodes at which the heuristic value agrees with the backed-
up value from a 1 -ply lookahead. Where this occurs one may have slightly
more confidence in the joint value than in either of the two distinct values
otherwise. A search up to a fringe of such 'consistent' values can be defined,
and is given the name consistency search.

Both these algorithms respond to structure in the pattern of values obtained as
the search proceeds. They are examples of heuristic pruning in the sense that
nodes not at maximum depth are treated as terminal. However, they do not use
any additional heuristics (i.e. beyond what is in the position evaluator) to do the
pruning. They can be regarded as a conventional alpha-beta search within a
search envelope defined by the consistent (or locked) values.

9.3 Search Envelopes ' - ;

: r;

Figure 9.3: A search envelope. • j ,

Figure 9.3 illustrates that heuristic pruning rules can be regarded as defining a
subtree of the full game tree, rooted at the same position, but narrower and
(usually) irregular in shape. The leaf nodes of this subtree are the 5earc/i
e/ive/ope. The envelopes for consistency search and locked-value search are
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better value for money than a full-width envelope of the same number of
nodes. The envelope determines the move chosen, and the selective envelopes
have a greater chance of returning a reliable value, and hence a good move.
Alpha-beta can be used within any envelope, and the combination of a good
envelope and alpha-beta will be much more cost-effective than alpha-beta
a l o n e . > v - . • • • : . • . . - . • • . . . . , . • : .•••• • . . • •• • • ' > ( . '

' I , .

9.4 Envelopes for Well-Known Algorithms v - , . ,< jiri

A good choice of search envelope is critical to the achievements and the
efficiency of the lookahead search process. Experiments by the author many
years ago found that to achieve approximately the same 'probability of error'
as a capture search in a selection of middle-game positions, required
approximately 4 plies of full-width lookahead on the same evaluation function
(i.e. material count only). Both the full width and the capture-tree searches
were programmed to obtain good move ordering and hence near-optimal
alpha-beta cut-offs. The full-width search required of the order of 50 times as
many nodes to be scanned. Thus, viewing the capture-tree search now as a
technique for choosing a search envelope which is better value-for-money than
the full-width one, the improvement in cost-effectiveness is comparable to
inserting alpha-beta into plain minimax.

Another practical algorithm is 'marginal forward pruning' (Slagle, 1971). This
has been tried in many chess-playing programs, in particular by Kent and
Birmingham (1977). The essence of the technique is to prune nodes which
have a static evaluation less than the current value for alpha. Of course, search
below that node may produce any value, so the technique is risky, and its
intuitive justification is debatable. Nevertheless it seems in practice to be a
useful compromise between full-width search and not searching at all. It turns
out that applying consistency search to a complex evaluation function (i.e.,
much more elaborate than just material count) results in a very similar
algorithm. If the evaluation produces values from a large or continuous range,
it is natural to define values as consistent if they differ only by a small constant:
this is the 'margin' in marginal forward pruning. The difference is: in
consistency search the comparison should be with the static value of the parent,
not the alpha value. In very many positions, the value of the parent will be
limited by the current bound and the algorithms will coincide, but in other
positions the difference will be significant.
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The Kent and Birmingham paper reported that razoring produced an order of
magnitude reduction in the number of nodes in a four-ply search. Most of the
moves stayed the same, and it still found good moves even where they were
different from the full-width choice. . •. . . j . .:..

More recently, Heinz (1998) reported reductions of 10-20% in tree size, while
incurring hardly any loss of tactical strength, for extended futility pruning,
which is similar to razoring but applied only at nodes within 2 plies of the
horizon.

The envelope defined by razoring appears to be a more cost-effective one than
full-width. Modifying it to be a consistency search may well be a further
improvement. In any case, the question "what is the search envelope?" seems
to be the right one to ask. Extensive research on the alpha-beta technique (e.g.,
by Fuller. Gaschnig and Gillogly (1973); Knuth and Moore (1975); Newborn,
(1977); Baudet (1978)) has so far been concerned with fixed-depth full-width
searches. It is known that alpha-beta is asymptotically optimal in that case
(Pearl, 1980), and it is reasonable to guess that the same holds for arbitrary
envelopes. The remaining question of which envelope is optimal has yet to be
answered. . . <. . •

The interesting and perhaps unexpected insight resulting from the effort on
modelling minimax is that definitions of good envelopes might come from
game-independent techniques, and not necessarily from heuristics specific to a
particular game.

The emphasis in AI is on knowledge-rich systems rather than on ones using
extensive search. I do not intend to divert that emphasis. However, where
knowledge is used in conjunction with search, it is important that the search be
cost-effective if the knowledge is to yield its maximum benefit. The research
on minimax models should be seen as establishing the background in which
chess-specific knowledge within evaluation functions can be as effective as
p o s s i b l e . •;, •: • • • : . . . , :• !, :•, ;,;; . •;
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-»-1Chapter 10

A Generalised Quiescence
Search Algorithm*
This Chapter describes how the concept of a null move may be used to
define a generalised quiescence search applicable to any minimax problem.
Experimental results in the domain of chess tactics show major gains in cost
effectiveness over full-width searches, and it is suggested that null-move
quiescence is as widely useful as the alpha-beta mechanism. The essence of
the mechanism is that null moves give rise to bounds on position values
which are more reliable than evaluations. When opposing bounds touch, they
create a single value which is more reliable than ordinary evaluations, and
the search is terminated at that point. These terminations are prior to any
alpha-beta cut-offs, and can lead to self-terminating searches.

10.1 The Idea of the Null Move

The null move means changing who is to move without any other change to
the game state. Some games, such as go, allow the null move as a legal move;
others such as chess, do not. In the overwhelming majority of positions in
either game, the null move would be a poor move, because there would be
moves that did something beneficial for the side to play. This is true even if the
side to play is losing, because even then the losing side is expected to be trying
to minimise the loss, or delay it. Positions where the best possible outcome is
obtained by the null move are really very rare. In chess they occur sometimes
in the late stages of the game and, although they comprise a negligible fraction
of positions encountered in practice, they have a special name, zwgzmwjg. In a
Zugzwang position, every piece is either blocked or 'tied down' by some

' This Chapter is an edited version of Beal (1990), A Generalised Quiescence
Search Algorithm, in ,4r///?c/a/ //jte///gem~e 7o«r/ja/. Vol 43 pp.85-98. Thanks are due to
Elsevier Science for permitting its use here.
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null move is never useful during the main part the game, but as the game
reaches the very end, both players are approaching situations where they would
lose rather than gain by playing another stone. When a player thinks that there
is no further gain for him, that player will 'pass' (= null move) and when both
players pass consecutively, the game is over.

Since the null move is so rarely a good move (and not even legal in chess),
why should it be included in minimax lookahead?

The answer lies in the structural properties of the computation that minimax
lookahead is making, and has little to do with whether the null move is legal or
not. It is also independent of the alpha-beta algorithm used to speed up
minimax. ^..: ; ^

10.2 What Computation is Minimax Making?

Since CHESS 4.5 (Slate and Atkin, 1977). most chess programs, particularly the
top performing ones, have used a search regime roughly characterized by. full-
width search to a fixed depth, followed by a quiescence search. A typical
quiescence search would be: captures and checks at ply 1, captures only after
that.

Although the search is described as full-width, it is taken for granted that alpha-
beta will be used. Essentially, the description above defines a tree to be
searched, within which an alpha-beta search will look at as many moves as
necessary. It is well-known that an alpha-beta search will give the same result
as the vastly less efficient look-at-all-moves minimax. . . ,. •

The com/?Mtar/on performed at each move is that of choosing a best move
based on the tree to be minimaxed (a subset of the complete game tree), and the
evaluation function values at all the tree;s endpoints. The factor being singled
out for attention here is the tree to be searched, i.e., its shape and size.

Clearly, CHESS 4.5-style programs perform a different computation if the depth
changes, or if changes are made in the rules governing which moves comprise
the main searh or quiescence trees. The key questions would be "Is the
computation any better?" and "How long does it take now?". In chess, except
for certain relatively simple endgames, we have never been interested in any
specific computation for move choice, but in getting "value for money", that is,
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quality of move choice for time spent.
The points of the last paragraph are stressed because, unlike alpha-beta which
gives drastically reduced computation times for the «w?e computation, the
null-move algorithms to be described produce a drastic reduction in
computation time, but on a c/(#ere«/ computation. This makes it harder to judge
theresults. > • . . . . j ; r ; ; - : - . ! i ü V * ^ - M i O ^ . ' . Ä ;;,;••; ' T i f ^ i - .*••: '•<•• '••

In any case, we reached the most important question of all: "What shape and
size should the search tree be or, in other words, which moves should be
considered for searching?" , • j ,3 - . • , ' . , , . •

Note that alpha-beta should not be mentioned in the answer. Although alpha-
beta indicates moves not worth searching, the context is different. Here the
question is being asked of the tree vv/7/j/w w/2/cA alpha-beta is to operate.

The question is, of course, very old, perhaps the oldest in the 50-year history of
computer chess. It is the question of selective search. .̂.. . . . . . .

10.3 Attempts at Selective Search •;. '

Shannon's legendary paper of 1950, "Programming a Computer to Play
Chess", described how minimax search should be of variable depth, only
stopping at quiescent positions, and rejecting some moves at interior nodes of
the tree. He called such strategies type-B, and suggested a function similar in
spirit to CHESS 4.5-style quiescence search rules for stopping, but did not
suggest an actual function for rejecting moves at higher nodes.

Almost all the early chess programmers did indeed try to restrict the search to a
subtree of moves that include 'important" moves and exclude 'irrelevant'
moves. The Bernstein program of around 1957, perhaps the most complete and
effective of the very early chess programs, limited the search tree to the "best
7" at every node, using a sequence of plausible move generators to produce the
best 7. Ten years later, the Greenblatt program (Greenblatt, Eastlake and
Crocker, 1967) became the best program of its day using carefully chosen
quiescence rules aming at tactical solidity.

Then, in 1973, CHESS 4.0 (later transmuted into CHESS 4.5 (Slate and Atkin,
1977)) made the successful exchange of speed and efficiency for selection, and
set the pattern for the next fifteen years. There was however, a vitally important
qualification of the new pattern of do-it-all-to-fixed-depth-and-do-it-fast.
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Namely, the quiescence search. The endpoints of the fixed depth search were
not places to apply the evaluation function, but places to start operating s
simple and successful selective search, namely, the capture tree (augmented by
one or two plies of checks if available). There were also, of course, the vital
mechanisms of iterative deepening, transposition tables, alpha-beta by then
taken for granted, and many ingenious programming techniques.) j

Recently, Heinz (1997) has given a good summary of current practice in
modern chess programs with an overview of the mechanisms used in his
program DARKTHOUGHT.

There have been much more radical attampts to find better selective search
mechanisms. Harris (1974) proposed a bandwidth search centered on
promosing lines of play. The authors of the Russian program KAISSAI

(Adelson-Velskiy, Arlazarov and Donskoy, 1975), mention a variety of
heuristics, including allowing the play of a null move when ahead in material. |
Berliner (1979) proposed the B* algorithm which uses separate optimistic and •
pessimistic estimates of position value at each node. Palay (1983) extended and
developed B* to use probability distributions rather than optimistic-pessimistic
ranges. Subsequently, McAllester (1985) presented an elegant method, called
conspiracy numbers, based on counting critical positions.

In addition, there have been many attempts to use extensive domain-specific
knowledge to create effective selective searches. Two major attempts that
focussed on tactical play were Berliner's (1974) CAPS-II and Wilkin's (1979)
PARADISE.

However, none of these methods have proved effective enough to become
widespread.

10.4 Quiescence Search

Quiescence searches are, of course, selective searches. They derive from the
idea of expanding the search just enough, and only just enough, to avoid
evaluating a position where tactical disruption is in progress.

Chess players can identify many types of 'tactical disruption'. The simplest
notion, which leads to the idea of a capture tree, is to say that tactical disruption
is present if an immediate capture is available. More sophisticated definitions
would take account of checks, forks, trapped pieces, and other tactical features,
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leading to more elaborate (and larger!) quiescence searches.

It is tempting, but not quite accurate, to think that a quiescence search could be
defined by giving the rules for selecting the moves that make up the quiescence
search tree, (If the rules produced no moves at a particular position the position
would be terminal node of the tree. Alpha-beta would be used within the tree.)
This description sounds complete if rather condensed, but it is not quite right.
To see what is missing, consider the position of Figure 10.1,

The position in Figure iO.I is not terminal. White has a capture available.
However, it is a disadvantageous capture and White ends up losing two Pawns
worth of material. This value (-2 Pawns) is the value returned by a quiescence
search according to the definition just given.

Capture tree

o

White

to play

Q

Ö

NxP

BxN

Figure 10.1: Position illustrating capture quiescence.

Clearly, this is wrong. White need not enter into the capture. The correct
definition of a quiescence capture tree includes: "at each node, the side to play
is given the option of choosing the best capture or taking the static evaluation."
White has the option to 'stand pat'.

This option to 'stand pat' can equally well be viewed as an option to choose the
evaluation after a null move, rather than the static evaluation now, since the
material does not change with a null move. Although involving the null move
seems an unneccessary complication at first sight, regarding the value as
arising from playing the null move enables capture search to be seen as merely
one special case of a general algorithm.
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10.5 Game Independence

An interesting property of the concept of a capture tree is that definitions can
be given in a game-independent way. By game-independent is meant that all
game-specific knowledge is packaged in an evaluation function (in this case
statically counting the values of pieces on the board), and then game-
independent rules define the search regime. In Chapter 2, we saw that the
game-independent rules for consistency search produce a capture tree from the
material balance evaluation in chess.

However, there is another game-independent search regime, null-move
quiescence search, that also produces a capture tree when given the material
balance evaluation. That other regime is null-move quiescence, and that is the
subject of this Chapter.

Dark circles are terminal nodes of quiescence searches
The second-order search is highlighted by larger nodes '

Figure 10.2: Illustrative shape of search tree for second-order null-move
quiescence.
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Null-move quiescence becomes particularly interesting when it is 'boot-
strapped'. Because it can be applied to a«y evaluation function, it can be
applied as a second-order search to the values obtained by the first-order
quiescence searches. The idea here is that just as 'counting material' can be
packaged in a black box and called an evaluation function, so a result obtained
by a null-move search can be packaged in a black box and called an evaluation
function. Thus, the rules can be applied a second time at a higher level. Figure
10.2 illustrates the effect diagrammatically.

Applying this to material balance in chess, the second-level quiescence search,
although it still contains no chess knowledge beyond counting up material,
selects moves such as checks, moves out of check, attacks on pieces, defences,
blocks, and other types of sharp tactical moves that chess players concentrate
on. Perhaps is only an average of about four (compared to an average of about
35 legal moves), and the success rate in finding combinations is very high
indeed. (It does, however, have some distinctive weaknesses.)

10.6 The Nul l -Move Quiescence Search • -

It is easiest to describe as a program. Figure 10.3 shows a simplified version,
called QlllESCE.

QlJIESCE is a particularly simple version to illustrate the essential mechanism.
/>e.v/v is initialised to a null-move value, rather than to the lower end of the
alpha-beta range. Notice that a// evaluations take place after the null move.
QUIESCE does not have a depth limit. It can however still terminate. Whenever
the null-move value is greater than or equal to the upper end of the alpha-beta
range, the search will stop at that position. Only the null move will have been
explored, and that is evaluated directly. QuiESCE can be, and often is, a self-
limiting, self-terminating search.

Also note that the function eva/«ate could itself be a search. Thus to obtain a
second-order null-move quiescence search, QUIESCE would be defined with
eva/i/ate = material balance, and QUIESCE2 would be defined with
QUIESCEl.
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QUIESCE(lower, upper) integer lower, upper;
{ integer bes tv ;

makenull; bestv <- evaluate(-upper , - lower) ; unmakenull;
foreach move m do
{ i f ( b e s t v >= upper) return(bestv) ;

make(m); v «- -QUIESCE (-upper, - be s tv ) ; unmake (m) ,•
i f (v > bestv) bestv <— v;

} • • • . ' - . - , ' • " • : . • • • . . " . • . . • • -

return(bestv);
)

Figure 10.3: QUIESCE: the simplest version of null-move quiescence search.

The reader may have already noticed that QUIESCE, when using material
balance as the evaluation function, will search all (or potentially all) moves at
nonterminal nodes - not merely capture moves - despite the earlier claim that
this quiescence mechanism would produce a capture tree. What will happen is
that noncaptures will indeed be searched by QUIESCE, but will always
terminate with a cut-off after the null move at the next ply. The single piy of
search-and-reject behaviour for all noncaptures creates a 1 -ply 'fringe' around
a capture tree skeleton. The fringe could be optimised away in an
implementation specialised to a capture search. The essential requirement for
optimising away the fringe for QUIESCE is that an incremental change to the
evaluation function can be computed without actually making the move. Any
evaluation function which meets this requirement could be similarly optimised.

A more practical version of null-move quiescence would use iterative
deepening, transposition tables, and ordering heuristics, as used with full-width
minimax searches. . • . , • • ,

The question of a depth limit raises more subtle issues that it might seem. If the
search is truncated at a depth limit, the result should be not a single value, but a
triple. This is explained later. ..^,,

10.7 Performance of the Generalised Null-Move Quiescence
Search • • V

Null-move quiescence is a general mechanism, capable of operating with any
evaluation function. However, it is particularly effective at solving tactical
problems in chess. First-order quiescence on material scores (capture trees) is
well-known to be cost-effective. The performance of second-order quiescence
on material was tested on the 300 tactical positions in the Reinfeld (1945)
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book, ff/>J a/ C'Aesw. This test set has been used on other chess programs and
algorithms.

One modification was made to the definition of second-order quiescence. That
was to enhace the value returned from the first-order quiescence (i.e., the result
from a capture tree) with the ability to see checkmates. This is an ad hoc
modification, but is a cost-effective compromise between putting the
knowledge about checkmate in with the material balance evaluation (where it
might be thought to belong, but where it is very costly in program time) and
leaving it out altogether.

With this modification, material double-quiescence solved 276 of the 300
positions. Only positions where the right move was found for the right season,
or the program demonstrated a flaw in Reinfeld's published solution, were
counted as correct. This result can be compared with BELLE (Thompson and
Condon, 1982), which was reported by Palay (1983) to only solve 273 within
3-minite per position limit.

The significance of this result is not so much that the score happens to be
highre than 1983 BELLE, but the 'value for money' that it represents. The score
itself ;.v good considering the paucity of knowledge used, but the time taken is
the real result. The result below show that BELLE'S score can be obtained for
approximately one-fifteenth of the effort.

The actual execution times (in Z8000 microcomputer seconds) are given in
Table 10.1. "F" entries indicate that no solution was found because the
material-only evaluation function has insufficient knowledge to solve the
problem. These may be compared with BELLE times by dividing by 100, as
BELLE looks at approximately 100 times as many positions per second (about
160,000 versus about 1500 for the Z8000 program). Of the solved positions,
the longest took 16 seconds of BELLE-equivalent time. 273 positions (BELLE'S

score) can be obtained with a time limit of 12 BELLE-equivalent seconds per
position, thus consuming only a fifteenth of BELLE's effort.

The comparison is on the basis of giving each program the full 180 (or 12)
seconds on every position. Both programs need far less on most positions as
Table 1 shows for the Z8000 program (remember that 1200 Z8000 seconds are
needed for 12 BELLE-equivalent seconds). 235 positions were solved in less
than 1 second of BELLE-equivalent time although, as times to solution are not
given in Palay (1983), this cannot be compared with BELLE. The deepest
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search needed was for position 96 (= number 16 in test set 5), which went to 16
ply plus captures.

Apart from the see-checkmates enhancement, the experimental implementation
differed from QUIESCE only in that special-purpose capture tree code was used
for the first-order search, and that the second-order QUIESCE used iterative
deepening with move ordering and already-calculated values obtained from the
previous iteration. The program was written in assembly language, derived
from a tournament chess program.
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Table 10.1: Times (seconds on Z8000) to solution for the 300 Reinfeld
positions. Positions 92 (= number 12 in test set 5), 157, 210, 249,
264 and 296 showed Reinfeld's solution to be incorrect and were
scored as "correct by demonstrating flaw". Positions 116, 129,
130, 149, 204, and 223 produced Reinfeld's solution move with
lesser gain shown. These were also scored as "correct by
demonstrating flaw".

10.8 Comparisons with Other Programs

As a comparison with knowledge-based programs, PARADISE (Wilkins, 1979)
scored 89 out of the first 100 (compared to 92 for QuiESCE), and took about ten
times as long. This is not really a meaningful comparison though, and Wilkins'
work was actually a tour de force in the difficult research area of creating
programs that use knowledge instead of search.
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From private discussions, it seems that a few other programs have used the null
move as an additional move in ordinary minimax. The idea is that in positions
where the side to play is significantly ahead, the null move, although not the
best, will nevertheless be sufficient to produce a cut-off, and, being a quieter
move, may have a smaller subtree than the best move. This was the use
mentioned in the K.AISSA (Adelson-Velskiy, Arlazarov and Donskoy, 1975).
This technique may have some benefit in full-width searches, but it involves
doing a normal depth search below the null move, rather than direct evaluation
as in QuiESCE. Closer to QUIESCE was the program MERLIN (Kaindl, 1983),
which used the null move to find threats.

The work that is closest in spirit to QUIESCE is the B* algorithm of Berliner
(1979), and the experiments performed by Palay (1983) on probabilistic
modifications of B*. In B*, it is necessary to obtain upper and lower bounds
for all positions in the tree. Berliner's paper on B* suggested that the bounds
would come from evaluation knowledge. Palay experimented with a method
which obtained bounds from a shallow (2-ply) search from the current position.
The 2-ply search made two moves in succession for one side or the other, and
thus provided biased results which were taken as bounds for each side. The
main search would then proceed deeper from the current position, within the
bounds found from the 2-ply search.

Conceptually, this has something in common with QUIESCE although Palay's
algorithm is considerably more complicated. With an effort limit of 4 hours of
VAX 11/780 timer per position Palay's program solved 245 of the Reinfeld
problems. (4 hours of VAX 11/780 time is very roughly equivalent to 3
minutes of BELLE time.)

10.9 Reasons why Null-Move Quiescence is Effective

Null-move quiescence takes a given evaluation function, applies a search
regime to it, and returns a value from the search which is more reliable than the
given evaluation function. As can be seen from an inspection of QUIESCE, the
value returned always originates as a null-move value.

Why should null-move values be more reliable than ordinary values? This is a
key question closely related to the research questions of this thesis.
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The answer is, "They are not." It is their role as />ow/?<fc that is more reliable.
That is, the statement "the value at position /* is «/ /eav/ A"', where Af =
eva/Htf/e(Hw//move(/>)), is much more reliable than the statement "the value at P
is A"', or "the value at f is eva/wa/e(/*)". In general, as the search proceeds,
tighter and tighter bounds can be acquired, until a lower bound meets an upper
bound. At this point, the search closes off with a single n?//aWe value.

Thus the value that QuiESCE returns is not 'just' a null-move value, but is the
result of two 'opposing" null-move values touching. Figure 10.4 illustrates the
smallest possible tree, :nn; , • ••< : •. • .

i ,

Result = 0

>0

0 •'<()

9

Figure 10.4: Smallest possible tree for QUIESCE. Atega/wax co/vve^/zo«:
numbers below node are from the point of view of player making
move below; numbers above are from the point of view of
players making move above. Dashed lines indicate null moves.

More typically, the top-level null-move value will not establish a closing
bound. In this case, the depth-1 searches will not all consist of a single null-
move evaluation, but some will expand to another ply of search.

A simple model of minimax (Beal, 1982) showed that the benefit of minimax
lookeahead in random trees conforming to an overall clustering tendency
increased with the clustering, and that the degree of clustering in a chess
endgame (KPK) was amply sufficient for beneficial (rather than pathological
lookahead behaviour.
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The concepts of that model can be used to consider what the benefits of null-
move quiescence lookahead might be. The result, not presented in detail here,
is that if the null-move value was assumed to take values unrelated to other
local values, then the error propagation properties were very similar to full-
width lookahead. This would mean that the expected reliability of QuiESCE
would be low, since the null-move values are raw evaluations, not deep
searches, and can occur at any depth. . .•.;-,• •

Perhaps it is not surprising though, that null-move quiescence would be useless
if the null-move value was unrelated to other local values. - • • --,•

If instead a positive assumption is made about the properties of the null move,
namely, that it is highly unlikely for a null-move value to be higher than the
best of other moves, then the error-reduction factor changes from
approximately

as derived in Chapter 3, to approximately zero. In other words that, with that
kind of model, a null-move quiescence search removes all first-order error
terms.

Of course, this all depends on the assumption that the null-move value is not
higher than the best of the real moves. This has to be assumed separately both
for true games values and the heuristic values being searched. The assumption
about true values is an assumption that this position is not zugzwang. The
assumption about the heuristic values amounts to an additional assumption that
the evaluation function is really measuring something related to the game.

Both these assumptions seem to be reasonable in practice, and their
thruthfulness could perhaps be measured for evaluation functions in chess,
although this has not been attempted.

10.10 Depth-Limited Versions of QlJlESCE, Fat Values and
Nested Minimax ,. , ^

As the search proceeds, null-move values will narrow the range of possible
values. These values will, of course, be passed around the tree for use by the
alpha-beta mechanism. However, it should be noted than the bounds arising
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from null moves are wo/ alpha-beta 'bounds'. Null-move values produce a
bound on the actual value of the current position. Alpha-beta "bounds" are a
limitation on the range of interest we currently have in the actual value.

This distinction becomes important if the search is terminated prematurely (that
is, by a depth limit). In this case null-move bounds can be returned as part of
the top-level result (whereas it would not make sense to return alpha-beta
'bounds' as results). In general, the result will be a range (more picturesquely
called a 'fat value") which is reliable plus an unreliable value wihtin it. At the
terminal depth, only an unreliable point value is available, but as values are
backed up, they can be combined with null-move values. The result of this
combination is a reliable fat value with un unreliable point value located within
it. The '<reliable range> + unreliable value inside' pattern gives rise to the
concept of "nested evaluations'or'nested minimax'(q/! Chapter 4).

QUIESCE-D (lower, upper, d) integer lower, upper, d;
( integer bestv;
if(d =0) { v <- evaluate(lower, upper); return(-INF, v, INF); }

LOWER <- -INF; UPPER < INF;

makenull; bestv <- -evaluate(-upper, -lower); unmakenull;

if(bestv > lower) LOWER «- bestv;
foreach move m do

{ if (bestv >= upper) return(LOWER, bestv, INF);

make(m); Lm, vm, Um <— QUIESCE-D (-upper, -bestv, d-1) ; unmake(m)

L «— -Urn; <— - vm,- U <— -Lm;

if(L > LOWER) LOWER <- L;

if(v > bestv) bestv «- v; •

if(U > UPPER) UPPER <- U; • - . • ' •

} . . . . . .
return(LOWER, bestv, UPPER); . • .

Figure 10.5: Depth-limited version of null-move quiescence search.

Figure 10.5 shows QUIESCE-D, a depth-limited version of QuiESCE. It handles
two distinct reliability levels and therefore produces evaluations with one level
of nesting. Two applications of QlUFSCE-D, in the manner of Figure 10.2,
would produce three reliability levels, and hence an evaluation with two levels
of nesting. Nested evaluations would also arise from a minimax search that had
recourse to a special-purpose evaluation that only became applicable
occasionally.

Multiple applications of QUIESCE, or a variety of special-purpose evaluation
mechanisms, could in principle produce evaluations with any number of levels
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of nesting. An example of the procedure for minimaxing with double nested
e v a l u a t i o n s i s g i v e n i n C h a p t e r 6 . . ; ..:.•: • • • t . • V S M : , > ^ - „ , ; . t ; « c ; ,

The QUIESCE of Figure 10.3 could, of course, be depth-limited without
attempting to distinguish reliable values which arose from null-move
termination from unreliable values obtained at the depth limit. This amounts to
throwing away the fat value part of the result, and although the resulting
algorithm is simple and more familiar, it loses valuable information. For
example, an iterative search could be stopped when a definite result is
obtained. Also, incomplete searches can yield valuable fat value information.
Figure 10.6(a) shows an example where the final value is not known, but the
move choice is already definite. Another interesting situation arises when the
known values offer a choice between a safe move, [0, 0], and an uncertain
move that may bring gain or loss, (-2,3], as in Figure 10.6(b).

» . ; . - • . : • - . • ; •

1 0 . I ] [ - 9 9 , 0 ] [ - 9 9 , 0 ] [ - 2 , 3 ] [ 0 , 0 ] [ - 1 . 0 ] ;

Figure 10.6: Move choices with fat values.

10.11 Comparison with Other Search Techniques

A good result on tactical problems in chess is relatively easy to achieve. There
may well be positions and domains in which QUIESCE is not very successful.
However, its simplicity and generality, and cost effectiveness in chess tactics
suggest that it may be a better algorithm to start from than full-width searching
(which has its own disadvantages). Its generality means that it could be applied
to any minimax problem, thus making it a technique as widely applicable as
alpha-beta. If it should turn out that material balance in chess was typical,
rather than exceptional, then null-move quiescence would be as important as
alpha-beta to cost-effective searches.
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Improvements and extensions to QUIESCE can include not only iterative
deepening, transposition tables, and move-ordering heustics, which are
currently standard technology in full-width searches, but also additional interior
evaluations to test for zugzwang, additional interior evaluations known to be of
higher reliability in special situations, and mechanisms controlling the effort
spent at different levels of the quiescence hierarchy.

The logic of the null move can be related to two other search algorithms. If the
null move has a particular value, it is probably the case that several moves have
at least that value. If one cares to assume any particular average number, say 6,
then a closed-off null-move search is equivalent to a locked value of degree 6.
Locked-value searches (c/ Chapter 3) are searches which continue until they
strike small local configurations where more than Af (the lock number) have to
change to change the value of the configuration. More flexibly, each null-move
bound can be regarded as preparing one side of an eventual double-sided lock
on a deeper position.

McAllester's conspiracy numbers (1985) have some affinity with the earlier
concept of locked values, but are more general. Conspiracy numbers allow
incremental accumulation of "locks' over the whole tree, and use global
information over the whole tree to decide tree growth. Nevertheless, just as
with the locked values, the null move can be regarded as providing (cheaply)
the equivalent of a conspiracy number of 6 (or whatever is the average number
of branches that obtain at least the value of the null move). This idea may
improve the economics of conspiracy number algorithms.

Finally, this Chapter has covered important ground in addressing the research
questions of this thesis. Sections 10.1 andl0.2 described how the null move can
be used to create a selective search. Sections 10.5 and 10.6 showed that not
only is the selectivity game-independent, but also that it can be used to create
hierarchies of increasing sophistication of search. Section 10.7 provided
experimental evidence for the advantages of null-move quiescence. Section
10.9 provided an intuitive explanation for the benefits, and Section 10.10 made
connection with Chapters 6 and 9 by showing how nested minimax is an
appropriate method to administer the values discovered by null-move
quiescence search. In effect Chapter 10 is the answer to the main research
question of this thesis "does a better understanding of minimax search lead to
improved search algorithms?"
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Chapter 11

Conclusions

11.1 Deriving Effective Search Algorithms from Minimax
Analysis

A major aim of modelling minimax trees and minimax search behaviour is to
discover insights that can be used to construct more effective search
algorithms. The model of Chapter 3 illustrates that game trees have stable
regions and unstable regions. Stability is associated with nodes at which
multiple moves give the best value. The model shows that the presence of
such nodes causes fixed-depth search to improve the reliability of the
backed-up value with each additional ply of search.

It is clear that search will be more efficient if it spends more of its time in
unstable regions that affect the decision (where additional search matters)
and less in stable regions (where additional search delivers unchanged
values).

Thus, the minimax models and analysis lead to a coherent perspective for
various domain-independent search algorithms that could be called A7a6/7/7y-
A'e/7s/>?g. From this perspective we can regard different algorithms as trying to
achieve stability-sensing by different means. The singular extensions
algorithm (Anantharaman, Campbell and Hsu 1990) is based on an attempt
to discover nodes at which stability is absent. If the attempt used full-depth
searching to discover nodes with singular moves, the exponential cost would
render the algorithm ineffective. But with a reduced-depth search to identify
probably-singular nodes, the algorithm was reported to show a benefit. The
concept of locked-value search in Chapter 3 used full evaluations to identify
locked-values, and did not yield a cost-effective algorithm. The conspiracy-
number algorithm (McAllester, 1988) is an elegant way to identify stable
sub-trees, rather than individual stable nodes. However, it also fails to be
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where a version called proof-number search has been found to be effective
(Allis, van der Meulen and van den Herik, 1994).

Null moves have been found to provide the most cost-effective stability-
sensing mechanism in practice. The null move score is a lower bound on the
actual score (except at zugzwang positions which are rare), and it is common
for several real moves to achieve at least the null move score. Hence, null-
move cut-offs are typically cutting off at stable nodes, and thus performing a
shallower search at stable nodes (because the null-move search is conducted
with reduced depth), than at unstable nodes, where the search goes to full
depth.

11.2 Comparison of Null-Move Quiescence with Null-Move
Depth Reductions

Chapter 10 introduced the theoretical idea of null-move quiescence, and
showed that it has close correspondence with at least two successful
algorithms for tactical search in chess. It was noted, however, that in
practice a depth limit would be required, because the search could easily
become too large. Null-move quiescence ceases to be cost-effective if the
average size of the tree q/?er searching below the null move becomes too
large in relation the average size of the tree Wove the null move. (Because
then the chance of an error in the null-move valuation dominates the overall
chance of error, and the search effort in the rest of the tree does very little to
reduce the overall chance of error.) This typically happens if the evaluation
function is fine-grained (in contrast to material evaluations in chess which
are very coarse-grained), or if the average branching factor of the null-move
quiescence tree is a large fraction of the full move tree. In such cases, it is
necessary to place a depth limit on the null-move quiescence search, and this
would be the typical situation for most game-playing programs.

As an alternative to this, there is a simpler null-move algorithm. Goetsch and
Campbell (1991) and Donninger (1993) report results. In this version, the
search below the null move is not a fixed-depth search, but is depth reduced.
Hence, as the overall search is iteratively deepened, the search below the null
move also deepens. This contrasts with null-move quiescence, which would
wait until the (depth-limited) quiescence search is complete before
increasing the search depth below the null move. Depth-limited quiescence'
searches have a minor advantage in that there is less re-computation of the
null move values which slightly increases search efficiency. However, the
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depth reduction algorithm discovers any incorrect null move values at
shallower depths, is simpler to implement, and provides what can be
regarded as a series of smoothly increasing levels of quiescence with
increasing depth of the tree.

11.3 Retrograde Minimax with Patterns • , Vv-

The study of retrograde minimax with patterns for K.PK reveals that although
some patterns are easy to invent, and some of the reasoning steps required to
perform retrograde minimax analysis are easy to perform, others are
surprisingly hard. It is especially difficult to create mathematically rigorous
proofs of pattern correctness, when working with retrograde minimax.
Chapter 8 provides complete detail for an example set of KPK patterns, and
the length of that material is perhaps discouraging for approaches that
require individually crafted proofs for every pattern. .

11.4 Conclusions on the Problem Statement

Chapters 2 and 3 answer research question 1, "can we increase our
understanding of minimax search?" Sections 2.2 and 3.5 offer partial
answers to research question 2 "does a better understanding of minimax
models and minimax search lead to better search algorithms?" Chapters 4
and 5 offer specialised contributions to minimax search, showing how
understanding of the technical details of the search process leads to
algorithms that administer the search effectively. The algorithm presented in
Chapter 4 preserves all the information obtained in searches which utilise
evaluations of differing reliability, and Chapter 5 presents an algorithm that
encodes the information obtained from conventional simple searches in an
economical way. Chapter 6 gives examples of several different ways in
which evaluations of differing reliability can arise. Chapter 7 illustrates
another important way in perfect values intermix with heuristic values in
practice, and reports on experimental results. Chapter 9 contributed to
answering the research questions of this thesis by clarifying the concept of
search envelope as distinct from the set of horizon nodes of the search. This
led to Chapter 10 which discusses a very successful game-independent
selective search technique, namely null move quiescence. Chapter 10
provides a decisively positive answer to research question 2, and makes the
largest research contribution of this thesis.



1 2 0 C h a p t e r I I C o n c l u s i o n s • - ; . • » : v ; ' r . |

11.5 F u t u r e W o r k •>••• :j-n.v...-r- •_ V>-.--- • . . >. • , ; ;.,o

The application of minimax models to practical minimax lookahead searches
provides only a partial explanation for the role of typical quiescence searches
as implemented in many games programs in practice. The main search is
usually conducted with null-move reductions, which partly satisfies the need
of the overall search to go deeper in unstable, or non-quiescent, parts of the
tree. But the last few plies of search are typically performed with a special-
purpose quiescence search involving more than null-move quiescence.
Typically, only moves which change the evaluation by large amounts are
allowed to enter the search. The effect of this is similar to that obtained by
forcing the evaluations to be low-resolution, or coarse-grained. This typically
produces a very low branching factor null-move quiescence tree. Such a
search seems to be highly cost-effective when the available time for search is
so low that only a few nodes can be searched. It would be interesting to try
to model the behaviour of searches with varying evaluation resolution, to
explain, and perhaps ultimately improve, the performance of practical game
algorithms.

It is also highly desirable to take the analysis of the null move algorithms a
stage further, and construct parameterized models that model the error
characteristics of realistic searches to arbitrary depths. Scheucher and Kaindl
(1998) show that the probability of large errors decreases with increasing
depth of search, and that the average size of errors decreases with increasing
depth of search. A model that related such a formula for errors to the
probability of null-move evaluations being incorrect could lead to better null-
move algorithms. The advantage would come from adjusting the depth
reductions in different parts of the tree to reduce the charjce of overall error.

It is hard to see how to advance the state of the art in retrograde minimax
using patterns. Clearly there is a need for better formal systems in which to
perform the analysis. Even without that, it might be appropViate to examine
more-complex endgames. But there is one less obvious aspect that I think is
also worth investigating. That is the extent to which unpredictable (as
opposed to logically deducible) pattern fusions occur during pattern
handling. For example, and leaving out some detail, if a position with king
diagonally in front of Pawn is a win by manoeuvre A, and the position with
the King directly in front is a win by manoeuvre B, then it is possible form a
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compact description which says that if the King is one rank ahead of the
Pawn, the position is a win. Such description fusions arise by serendipity, as
the result of case analysis, and typically are not deducible from the
component patterns by conventional logic. It would be interesting to know if
descriptions that are only accessible by case analysis are essential for
compact pattern sets. With the large amounts of computer power now
cheaply available, it might be possible to explore sufficient pattern sets to
illuminate the role of description fusions.
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Appendix
This appendix gives a FORTRAN subroutine that determines, for any chess
position with just King and one Pawn versus King, whether it is a win or draw.
The routine is known to be correct by exhaustive checking against a database
created by retrograde minimax.

Figure A.I is a listing of the main routine, KPKWV, which yields a result of 1
if the position specified by PF (pawn file), PR (pawn rank), WF (white king
file), WR, BF, BR and with White to play is a win, 0 if it is a draw.

Figure A.2 lists the lookahead routine KPKBV that returns -1 if the
configuration specified with black to play is a loss, 0 if a draw. Both routines
assume the Pawn is white and that it is on the Queen's side of the board.
Values for the other KPK positions can be obtained by symmetry. The Pawn
must not be on the 8™ rank. Figure A.2 also lists the utility routine DIST that
returns the distance betweeen squares.

FUNCTION KPKWV(PF,PR,WF,WR,BF,BR)
INTEGER PF,PR,WF,WR,BF,BR,DIST
INTEGER PPR,BQ,BPP,WPP,BRPU,BRPUU,BRPUUU
INTEGER BLPU,BLPUU,BLPUUU,WRPU,WRPUU,WLPU
INTEGER WLPUU,WBDD,SGF,SGR,WSG,SDR,WSD, BSD, TBF
KPKWV=1
PPR=PR
IF(PR.EQ.2) PPR=3
IF(PF.NE.l) GOTO 2
IF(BF.NE.3) GOTO 1
IF(PR.EQ.7.AND.WF.EQ.1.AND.WR.EQ.8.AND.BR.GT.6) GOTO 98
IF(PR.EQ.6.AND.WF.LT.4.AND.WR.EQ.6.AND.BR.EQ.8) GOTO 99

1 IF(BF.EQ.l.AND.BR.GT.PR) GOTO 98
IF(PR.EQ.7.AND.BF.GT.2) GOTO 99
IF(BF.LE.3.AND.BR-PPR.GT.l) GOTO 98
IF(WF.EQ.1.AND.B F.EQ.3.AND.WR-PR.EQ.1.AND.BR-PR.EQ.1)
1 GOTO 98

2 BQ=DIST(BF,BR,PF,8)
IF(BQ.GT.8-PPR) GOTO 99
MBPF=BF-PF
IF(MBPF.LT.O) MBPF=-MBPF
BPP=DIST(BF,BR,PF,PPR)
WPP=DIST(WF,WR,PF,PPR)
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IF(PF.EQ.1.AND.PR.LE.3.AND.WF.LE.2.AND.WR.EQ.8
1 .AND.BF.EQ.4.AND.BR.GE.7) GOTO 99
IF(PF.NE.2.OR.PR.NE.6.OR.BF.NE.1.OR.BR.NE.8) GOTO 3
IF(WF.LE.3.AND.WR.EQ.6) GOTO 98
IF(WF.EQ.4.AND.WR.EQ.8) GOTO 98 . . . '.: .„ • • : .. , ,-,

3 IF(PR.NE.7) GOTO 4 ' "" ' '' " ' "'"''* '
IF(WR.LT.8.AND.WPP.EQ.2.AND.BQ.EQ.O) GOTO 99
IF(WR.EQ.6.AND.WF.EQ.PF.AND.BQ.EQ.O) GOTO 99 . ,
IF(WR.GE.6.AND.WPP.LE.2.AND.BQ.NE.O) GOTO 99 ' ' '

4 BLPUU=DIST(BF,BR, PF-l,PR+2) .'.•;<;
W B D D = D I S T ( W F , W R , B F , B R - 2 ) V " ' ' - " - ' ••' • • " '"•"•
B R P U U = D I S T ( B F , B R , P F + l , P R + 2 ) *..:,-• •-.,.•.:
IF(PR.NE.6) GOTO 6
IF(DIST(BF,BR,PF+1,PR).GT.l.AND.
1 BRPUU.GT.DIST(WF,WR,PF+1,PR)) GOTO 99 ' ' '•
IF(PF.EQ. 1) GOTO 5 ' ': " ."*'
IF(BLPUU.GT.DIST(WF,WR,PF-1,PR)) GOTO 99 •
IF(BR.EQ.8.AND.MBPF.EQ.1.AND.WBDD.EQ.1) GOTO 99
IF(BR.GT.6.AND.MBPF.EQ.2.AND.DIST(WF,WR,BF, 5) .LE.1)
1 GOTO 99
GOTO 6

5 IF(WF.EQ.1.AND.WR.EQ.8.AND.BF.EQ.2.AND.BR.EQ.6) GCTO 9!
6 MWPF=WF-PF , . . . , ... . , ...

IF(MWPF.LT.O) MWPF=-MWPF ''" '
IF(PR.GE.5.AND.MWPF.EQ.2.AND.WR.EQ.PR.AND.BF.EQ.WF ''
1 .AND.BR-PR.EQ.2) GOTO 99
BRPU=DIST(BF,BR,PF+1,PR+1)
WRPU=DIST(WF,WR,PF+1,PR+1)
BLPU=DIST(BF,BR,PF-1,PR+1) : . •
WLPU=DIST(WF,WR,PF-1,PR+1)
IF(PF.EQ.1.OR.PR.NE.5) GOTO 7
IF(MWPF.LE.l.AND.WR-PR.EQ.l) GOTO 99
IF(WRPU.EQ.l.AND.BRPU.GT.l) GOTO 99
IF(WR.GE.4.AND.BF.EQ.WF.AND.BR-PR.GE.2
1 .AND.MBPF.EQ.3) GOTO 99
IF(WLPU.EQ.l.AND.BLPU.GT.l) GOTO 99

7 IF(PR.EQ.2.AND.BR.EQ.3.AND.MBPF.GT.1.AND.
1 DIST(WF,WR,BF,BR+2).LE.1) GOTO 99
IF(WR-PR.EQ.2.AND.BR.EQ.PR.AND.MBPF.EQ.1.AND.
1 MWPF.GT.l.AND.(WF-PF)*(BF-PF).GT.O) GOTO 98
IF(PF.EQ.1.AND.WF.EQ.1.AND.WR.EQ.BR.AND.BF.GT.3)
1 GOTO 99
SGF=PF-1
IF(WF.GE.PF) SGF=PF+1
SGR=WR-(MWPF-1)
IF(MWPF.EQ.O.AND.WR.GT.BR) SGR=WR-1
WSG=DIST(WF,WR,SGF,SGR)
IF (WR-PR-MWPF. GT.O. AND. WR-BR.GE. -LAND. BPP-(WSG+(SGR-
1 PPR) ) .GE.-LAND.DIST(BF,BR,SGF,SGR) .GT.WSG) GOTO 99
MD=MBPF-MWPF - ... .
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IF(PF.NE.1.0R.BF.LE.3) GOTO 8
SDR=BR+(BF-3) • .
IF(SDR.GT.8) SDR=8
IF(WR.GT.BR+1) SDR=BR
IF(SDR.LE.PPR) GOTO 8
WSD=DIST(WF,WR, 3, SDR)
BSD=DIST(BF,BR,3,SDR) • .
IF(BSD-WSD.LT.-l) GOTO 98
IF(BSD.LE.WSD.AND.MD.LE.O) GOTO 98 . -;/ '

8 BRPUUU=DIST(BF,BR, PF+1, PR+3)
IF(BRPU.GT.WRPU.AND.BRPUUU.GT.WRPU.AND.PR-WR.NE.PF-WF)
1 GOTO 99
IF(BRPUUU.EQ.O.AND.WRPU.EQ.l) GOTO 99
BLPUUU=DIST(BF,BR,PF-1,PR+3)
IF(PF.EQ.l) GOTO 9
IF(BLPU.GT.WLPU.AND.BLPUUU.GT.WLPU.AND.PR-WR.NE.WF-PF)
1 GOTO 99
IF(BLPUUU.EQ.O.AND.WLPU.EQ.l) GOTO 99

9 WRPUU=DIST(WF,WR, PF+1, PR+2)
IF(BRPUU.GT.WRPUU) GOTO 99
WLPUU=DIST(WF,WR,PF-1,PR+2)
IF(PF.GT.l.AND.BLPUU.GT.WLPUU) GOTO 99
IF(BR.NE.PR) GOTO 10
IF(MWPF.LE.2.AND.WR-PR.EQ.-1.AND.MBPF.NE.2) GOTO 99
IF(DIST(WF,WR,BF-l,BR+2).LE.1.AND.BF-PF.GT.1) GOTO 99
IF(DIST(WF,WR,BF+l,BR+2).LE.1.AND.BF-PF.LT.-1) GOTO 99

10 IF(PF.EQ.l) GOTO 11 . •
IF(BR.EQ.PR.AND.MBPF.GT.1.AND.
1 DIST(WF,WR,PF,PR-1).LE.l) GOTO 99
IF(BR-PR.GE.3.AND.WBDD.EQ.l) GOTO 99
IF(WR-PR.GE.2.AND.WR.LT.BR.AND.MD.GE.O) GOTO 99
IF(MWPF.LE.2.AND.WR-PR.GE.3.AND.BF.NE.PF
1 .AND.WR-BR.LE.l) GOTO 99
IF(WR.GE.PR.AND.BR-PR.GE.5.AND.MBPF.GE.3
1 .AND.MD.GE.-1.AND.PPR.EQ.3) GOTO 99
IF(MD.GE.-1.AND.PR.EQ.2.AND.BR.EQ.8) GOTO 99

11 TBF=BF-1
IF(PF.GT.BF) TBF=BF+1
IF(MBPF.GT.l.AND.BR.EQ.PPR.AND.
1 DIST(WF,WR,TBF,BR+2).LE.l) GOTO 99
IF(BR.EQ.PR.AND.BF-PF.EQ.-2.AND.
1 DIST(WF,WR,PF+2,PR-1).LE.l) GOTO 99
IF(PF.GT.2.AND.BR.EQ.PR.AND.BF-PF.EQ.2.AND.
1 DIST(WF,WR,PF-2,PR-1).LE.l) GOTO 99

98 KPKW=O
99 RETURN • •

E N D •• . • . ' • • • : . • > • •

Figure A.I
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FUNCTION KPKBV(PF,PR,WF,WR,BF,BR)
INTEGER PF,PR,WF,WR,BF,BR,INCF(8),INCR(8) , DIST
DATA INCF/O,1,1,1,0,-1,-1,-1/,INCR/1,1,0,-1,-1,-1,0,1/
KPKBV=O
NM=0 •
DO 1 1=1,8
NBF=BF+INCF(I)
IF(NBF.LT.1.OR.NBF.GT.8) GOTO 1
NBR=BR+INCR(I) ;
IF(NBR.LT.1.OR.NBR.GT.8) GOTO 1
IF(DIST(NBF,NBR,WF,WR).LT.2) GOTO 1
IF(NBF.EQ.PF.AND.NBR.EQ.PR) GOTO 2
IF(NBR.EQ.PR+1.AND.(NBF.EQ.PF-1.OR.NBF.EQ.PF+1)) GOTO ]
NM=NM+1
IF(KPKWV(PF,PR,WF,WR,NBF,NBR)-EQ.O) GOTO 2

1 CONTINUE
IF(NM.GT.O) KPKBV=-1

2 RETURN ' •
END

INTEGER FUNCTION DIST(Fl,Rl,F2,R2)
INTEGER F1,R1,F2,R2,FD,RD
FD=F2-F1
IF(FD.LT.O) FD=-FD
RD=R2-R1
IF(RD.LT.O) RD=-RD
DIST=FD
IF(RD.GT.DIST) DIST=RD
RETURN
END

Figure A.2

Figure A.3 is a representation of the logic of the decision rules for KPKWV
which is partly a decision table and partly boolean expressions. There are 48
rules (or tests), which are applied in sequence 1-48. If one is found to be
applicable it yields a value W or D (win or draw) and immediate exit from the
routine. If no applicable rule is found the default is draw. A rule is applicable
if and only if every condition is met. In other words, it is the logical 'and' of
the conditions and there are no 'or'ed conditions. This voluntary restriction
facilitated recording the rules as a decision table during development, which
was convenient as it required little writing, was easy to alter, and compact
enough to enable the rules to be viewed en Woe. The top part of the table gives
some conditions in decision-table form; the lower part contains additional
conditions (as boolean expresions) that are part of some rules.
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Due to width limitations, the top part of the table is split into three sections.
Figure A.4 is the key to the notation used.

Rule No:

PI-
I'R
\VT

WR

HI-
BR

WR-PR
BR-PR
VVR-BR
BF-PF
| WF-I'F |
|BF-PF|
BF-WF

1
D

= 1
=7
= 1

=8

=3
>6

2
W

= 1
=6
<4

=6
=3

=8

3
D

= 1

= 1

>0

4

W

=7

>2

5

D

= 1

<3

6
D

= 1

= 1

=3

= 1

= 1

7
W

8
D

9
W

= 1
<3
<2
=8
=4
>7

10
D
=2
=6

<3
=6
= 1
=8

I I
D
=2
=6
=4

=8
= 1
=8

12
W

=7

<8

13
W

=7

=6

=0

14
W

=7

>6

15
W

=6

16
W

>l

=6

Rule No:

I'F

PR
VVF
WR

BF
BR

WR-PR
BR-PR
WR-BR
BF-PF
| WF-PF|
|BF-PF|
BF-WF

17
W

>1
=6

=8

18
W

>l
=6

>6

19

D

= 1
=6
— 1

=8

=2
=6

20

W

>5

=0

=2

=2

=0

21
W

> l

=5

= 1

<1

22
W

>l
=5

23
W
>l
=5

>4

>2

=3
=0

24
W

>l
=5

25
W

=2

=^

> l

26
D

=2
=0

>l

= 1

27
W

= 1

|

>3

=0

28
W

>-l

29

D

= 1

>3

30
D

= 1

>3

31
W

32
W
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Rule No:

PF
PR
WF
WR
BF
BR
WR-PR
BR-PR
WR-BR
BF-PF
| WF-PF |
|BF-PF|
BI-WI-

33
W
>l

34
W
M

35
W

36
W
>l

37
W

=-1
=0

<2

38
W

=0

>1

39
W

=0

<-l

40
W
>l

=0

>l

41
W
>l

>3

42
W
>l

£2

<0

43
W
>l

>3

<l

<2
*0

44
W
>l

SO
>5

>3

45
W
>1
=2

=8

46
W

>1

47
W

=0

— 2

48
W
>2

=0

=2

Rule
5
7
8
12
13
14
15
16
17
18
22
24
25
26
28

29
30
31
32
33
34
35
36
38
39
40
41
42
44

Additional conditions applying to specific rules

(BR-PPR) > 1
(B-»Q)>(PP-»Q)
(U->PP)-(W->PP)<-1 and (BR-PR)* | BF-PF|
(W->PP) = 2 and (B-»Q) = 0
(B-»Q) = 0
(W->PP)<2 and (B-»Q)*0
(B->[RP++|) > (W->RP) and (B->RP) > 1
(B->[LP++)) > (W->LP)
(W->[B- - | )= 1
(W-»|BF.51)< 1
(W->|RP+]) = 1 andand (B->[RP+]) > 1
(W->[LP+]) = 1 and (B->[LP+J) > 1
(W->|B++|)< 1
Sign(WI-PF) = Sign(BF-PF)
(B->PP)-((W-»SCi)+(SUR-PPR))2-l and (WR-PR) > | WF-PF | and (B->SG)>
(W->SCi)
(B->SD)-(W->SD)<-I and SDR > PPR
(B->SD) < (W->SD) and SDR > PPR and | BF-PF | < | WF-PF |
(B->IRP+]) > (W-^[RP+|) and (B->[RP+++]) > (W^[RP+J) and (PR-WR) * (PF-WF)
(B-»|RP+++)) = 0 and (W->[RP+]) = 1
(B-HLP+1) > (W-^|LP+]) and (B->[LP+++]) > (W->[LP+]) and (PR-WR) * (WF-PF)
(B->|I.P+++]) = 0 and (W-»[LP+])= 1
(B->|RP++|) > (W->[RP++])
(B-^|1.P++])>(W->[LP++J)
(W->|1.B++]) < 1
(W->(RB++|)< 1
(W->(P-|)< 1
(W-»|B - - ] ) = !
| BF-PF | 2 | WF-PF |
PPR = 3 and | BF-PF | - | WF-PF | > -1
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45
46
47
48

| BF-PF | - | Wr-PF | > -1
BR = PPR and (W->[TB++
(W->[RRP-))< 1
(W-+I.LLP-1) < 1

Figure A.3

P Square Pawn is on
W Square white King is on
B Square black King is on
F File. e.g. PP = file Pawn is on
R (as suffix) Rank. e.g. WR = rank of white King
PP = P unless PR=2 when = square in front of Pawn
Q Square on which Pawn will queen, i.e. QF=PF, QR=8
-> Distance between squares.

e.g. W -> P = max( |WF-PF|, |WR-PR|)
L Left side. e.g. LP = square to left of Pawn
R (as prefix) Right side
+ (within [ ]) Up. e.g. [P+] = square in front of Pawn
-(within [ ]) Down
[ ] Square, e.g. [RP+] is the sq. diagonally in front of P
[f, r] Square where f is the file and r the rank
T 1 file towards Pawn.

e.g. TBF = 7/BF > PF /ten BF-1 e/se BF+1
SD A square defined by:

SDF = 3;
SDR = ;/WR < BR+I /ten min(8, BR+BF-3) e/se BR

SG A square defined by:
SGF = ;/WF<PF /ten PF-1 e/.v<? PF +1
SGB = //WF=PF and WR>BR /ten WR-1 <?/«? WR-|WF-PF|+I

Files are numbered 1-8 from the Queen's rook file to the Kings rook file; the Queen's side is the left
side: the ranks are numbered 1-8 from White's side to Black's side; and the Black side is up.

Figure A.4: Key to non-standard notation.
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Adelson-Velskiy, 104, 111, 123
Allis, 31, 118, 123
alpha-beta, 5, 6, 13, 14, 15,20,28,

31,32,35,37,39,40,46.47,50,
62,93,94,95,97,98,99, 100,
101, 102, 103, 104, 105, 107,
113,114,115

Arlazarov, 104. I l l , 123
Atkin,3, 54, 93, 102, 103, 131

B* algorithm, 49, 51, 104, 111, 125
Baudet, 100, 123
Beal, ix, 3,7, 19,31,37,45,53,59,

60.62.65.93.96, 101, 112, 123,
124, 125, 128, 151

Berliner, 49, 51, 104, 111, 125
Bernstein, 103, 125
Birmingham, 3, 16,99, 100, 125
Borel, 2, 125
bounds, v, 4, 6, 28, 34, 35, 36, 37,

38,43,44,47,49,50,64, 101,
111, 112, 113, 114, 131, 145,
146

Bramer, 60, 62, 65, 67, 88, 91, 126
branching factor, 8, 11, 21, 24, 25,

26.55.62.96.97, 118, 120
Bratko, 3, 29, 64, 95, 126

Campbell, 117, 118, 127
capture search, 3, 11, 15, 16, 20,

81,99, 104, 105, 106, 108, 109,
110,145

check moves, 53, 54, 55, 56, 57,
102, 104, 105, 107

Clarke, ix, 60, 61, 65, 88, 123. 124,
125,126,131

clustering, v, 4, 5, 20, 21, 23, 24,
25,26,28,29,96, 112 '

Condon, 37, 93, 109, 126, 131
consistency, v, 4, 5, 12, 13, 14, 15,

16, 17,20,26,87.98,99, 100,
106

conspiracy numbers, 104, 116
Crocker, 103, 127
cut-offs, 13, 14, 15, 16, 32, 35, 37,

43,94,99, 101, 118

DEEP BLUE, 1
depth limit, 34, 54, 55, 95, 107,

108, 109, 111, 114, 115, 118
Dijkstra, 59, 63,64, 126
domain dependence, 6, 117, 146
Donninger, 118, 126

Eastlake, 103, 127
error analysis, 7, 8, 9, 10, 11, 12,

17,21,22,23,24,25,27,29,97,
99. 113, 118, 120, 126, 127

error reduction, 113

fat values, vii, 49, 50, 113, 114, 115
forward pruning, 3, 16, 20, 60, 85,

86,91,94,99
Fuller, 100, 126
Fiimkranz, 1,5, 127, 132

Gams, 3,29, 95, 126
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Summary

This treatise deals with one of the fundamental topics of intelligent
behaviour in competitive environments - minimax. Minimax has a long
history as both a theory of perfect evaluation of perfect-information two-
sided competitive situations, and a foundation for algorithms that play
games. The thesis comprises a collection of published contributions to the
understanding of minimax search over a number of years, now revised and
with modern references included. . ..,.. . , ., .. ,,-. . . . : . . . ,.•.,.,

Chapter 1 provides a brief history of minimax, focussing on attempts to
understand why minimax search is effective in practice, and how that
understanding may be used to increase the efficiency of minimax search.

Chapters 2 and 3 describe models of minimax for game trees that attempt to
capture, in simplified form, the essential characteristics of minimax in
practice. Chapter 2 illustrates that simple but apparently sensible models
predict that minimax search is useless or worse. Chapter 3 shows that more
sophisticated models that only apply to game trees having a certain property
do predict the observed success of minimax search. Typical games do have
the indicated property.

Chapters 4 and 5 discuss technical details of implementing minimax search.
A mechanism for programming simple searches with an elegant unification
of values and bounds on values, mapped onto a single numerical scale is
given. More generally, a separate mechanism is given for keeping essential
information about values and bounds discovered by more elaborate
algorithms that utilise multiple types of evaluation.

Chapters 6 and 7 give examples of how practical instances of useful
evaluation functions for game playing produce evaluations of varying
reliability which benefit from the minimax mechanism for sophisticated
searches presented in Chapter 4.
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Chapter 8 provides a detailed case study of retrograde minimax. When a
game tree becomes small or sufficiently tractable, it becomes conceivable to
build a complete table giving the value of every configuration, by backwards
minimax (as the original theory of minimax envisaged.) This Chapter
investigates the possibility of performing minimax search and retrograde
minimax using patterns instead of individual positions. Although this is
highly attractive in the sense of greatly reducing the number of distinct cases
to be examined, this case study reveals that continual acts of creativity are
required in the processing of patterns.

Chapter 9 discusses the question of envelopes for effective minimax
searches. Techniques for increasing search efficacy introduce selection into
the search process and implicitly define a search boundary called here the
search envelope. The cost-effectiveness of any minimax search is intimately
linked to its search envelope, and the concept of search envelope is helpful in
discussing different algorithms.

Chapter 10 presents a major contribution. A domain-independent technique
for efficient selective search is presented, together with insight into why it is
effective. The technique is called null-move quiescence and has been widely
used in game-playing programs. Special cases of the algorithm are known
under other names. The effect of the null move is to establish (at low cost)
bounds on the values that a larger minimax search would obtain.
Experimental results are given which illustrate the gains attainable from the
technique.

The conclusion of the thesis is that analysis of models of minimax, in terms
of both theory and practical algorithms, has yielded greater understanding of
minimax search, and considerable improvements to practical algorithms.
Finally, it also concludes that further work could yield further benefits.
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Samenvatting

Dit proefschrift behandelt een van de fundamentele onderwerpen in competitieve
omgevingen: het minimax-principe. Minimax heeft een lange geschiedenis
zowel als het gaat om de theorie van de volmaakte waardering van met elkaar
wedijverende toestandsbeschrijvingen van twee partijen die beide over volledige
informatie beschikken, als waar het gaat om het fundamentele raamwerk voor
spelalgoritmen. Het proefschrift bevat een verzameling van gepubliceerde
bijdragen die in de afgelopen jaren het begrip van het minimax-zoekproces
hebben verdiept; de bijdragen zijn volledig herzien en aangevuld met recente
referenties.

Hoofdstuk 1 geeft een kort historisch overzicht van minimax. Het rieht zieh
vooral op de pogingen om te begrijpen waarom het minimax-zoekproces zo
effectief is in de praktijk en hoe het begrijpen ervan kan worden gebruikt om de
efficiency van het minimax-zoekproces te verhogen.

De hoofdstukken 2 en 3 beschrijven modellen van het minimax-zoekproces voor
spelbomen; de modellen proberen in vereenvoudigde vorm de wezenlijke
karakteristieken van het minimax-zoekproces in de praktijk vast te leggen.
Hoofdstuk 2 laat zien dat eenvoudige maar duidelijk gevoelige modellen
voorspellen dat het minimax-zoekproces zinloos is of nog erger. Hoofdstuk 3
toont aan dat meer verfijnde modellen, die alleen worden toegepast op
spelbomen die een bepaalde eigenschap hebben, de waargenomen successen van
minimax inderdaad voorspellen. We merken op dat de gebruikelijke speien de
hierboven bedoelde eigenschap bezitten.

De hoofdstukken 4 en 5 gaan in op de technische details van het implementeren
van het minimax-zoekproces. Er wordt een mechanisme beschreven voor het
programmeren van eenvoudige zoekprocessen met een elegante unificatie van
waarden en grenzen van waarden, die afgebeeld worden op een enkelvoudige
numerieke schaal. Er wordt ook een afzonderlijk mechanisme beschreven dat
meer in het algemeen wezenlijke informatie bijhoudt over waarden en grenzen,
die ontdekt zijn door ingewikkelde algoritmen met behulp van verschillende
manieren van evalueren.

De hoofdstukken 6 en 7 laten met voorbeelden zien hoe een praktische invulling
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van gewone evaluatiefuncties voor spelprogramma's waarderingen opleveren
met een uiteenlopende betrouwbaarheid; de verfijnde mechanismen voor het
minimax-zoekproces zoals beschreven in hoofdstuk 4 toont de voordelen aan
van het gebruik van het begrip betrouwbaarheid.

Hoofdstuk 8 beschrijft een gedetailleerde case sfwcfr' van het retrograde
minimax-zoekproces. Wanneer een speiboom klein of voldoende handelbaar is,
wordt het aanvaardbaar om een volledige tabel te maken die de waarde van elke
configuratie bevat; dit gebeurt door een achterwaarts minimax-zoekproces
(precies zoals dat in de oorspronkelijke minimax-theorie bedoeld was). Het
hoofdstuk onderzoekt de mogelijkheid om het minimax-zoekproces en het
retrograde minimax-zoekproces uit te voeren met gebruikmaking van patronen
in plaats van individuele Stellingen. Hoewel dit idee bijzonder aantrekkelijk is in
de zin dat het aantal verschiliende gevallen aanzienlijk verminderd wordt, toont
de core s/wofy aan dat een voortdurend creatief handelen noodzakelijk is in het
proces om tot een verantwoorde verzameling van patronen te komen.

Hoofdstuk 9 behandelt de vraag of er een omhullend proces bestaat voor een
effectief minimax-zoekproces. De technieken die ontwikkeld zijn om de
effectiviteit van het zoekproces te verhogen introduceren selectief zoeken in het
zoekproces en definieren impliciet een grens voor elk zoekproces; deze grens
noemen we hier de omhullende van een effectief zoekproces (//;e searc/;
ertvtVupe). De kosten-effectiviteit van elk minimax-zoekproces is nauw
verbunden met de jecrrc/i enve/ope Het concept van de reu/r/i e«ve/o/?e is
derhalve nuttig in een vergelijking met verschiliende andere algoritmen.

Hoofdstuk 10 bevat een belangrijke bijdrage. Er wordt een domein-
onafhankelijke techniek voor efficient selectief zoeken beschreven, tesamen met
het inzichtelijk maken waarom deze techniek effectief is. De techniek wordt
HM//-WOV£ <jrM«ttce/7cc? genoemd en wordt hedentendage wijd en zijd toegepast in
spelprogramma's. Bijzondere Varianten van de algoritme zijn bekend onder
andere namen. Het effect van de ««//-wove algoritme is om op goedkope wijze
de grenzen van de waarden die een uitgebreid minimax-zoekproces zou
opleveren, vast te stellen. Er worden experimentele resultaten gegeven die de
opbrengsten illustreren die verkrijgbaar zijn met deze techniek.

De conclusie van het proefschrift is dat een analyse van de minimax-modellen
zowel in termen van de minimax-theorie als in termen van praktische
algoritmen, geleid heeft tot een groter inzicht in het minimax-zoekproces en tot
aanzienlijke verbeteringen in praktische algoritmen. Tenslotte concludeert de
auteur dat het werk voortgezet kan worden omdat meer resultaten bereikbaar zijn
door een verdere analyse van het minimax-zoekproces. .
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