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Abstract

We investigated how to combine game-specific knowledge and known game-tree
search techniques effectively and efficiently in computer TwixT. TwixT belongs
to the family of connection games and is a two-player zero-sum board game with
perfect information. Challenging characteristics of TwixT include that it has a
large branching factor and that the process of estimating a board’s utility value
is known to be complex. Human players use strategic and tactical heuristics
that work under specific conditions, but it is unclear how these heuristics can
be effectively combined and implemented in a TwixT playing program. The
state-space (10140) and game-tree complexity (10159) make TwixT belong to
the highest category in terms of complexity. This means that TwixT is unlikely
to be solved in the near future. If the complexity would have been low, then we
could have sufficed with a pure search-based approach for computer TwixT. It
is evident that an approach to computer TwixT must add game-specific knowl-
edge.

Our approach is to implement combinations of game-specific knowledge and
known game-tree search techniques in AI players. We implemented two types
of AI players. The first AI player is an αβ player. We use network search
algorithms to extract features from network board-representations. Extracted
features from the network include: shortest-path weight, maximum flow, board
dominance, and game termination. Implemented αβ enhancements include it-
erative deepening, history-heuristic move ordering, board-dominance move or-
dering, and the use of a transposition table. The second AI player is a basic
Monte-Carlo player.

A TwixT simulation environment implements TwixT computer rules and
supports automated play between two AI agents. The effectivity of an AI player
is measured by the win statistics from 100 simulated games versus other players.
The effectivity of an AI player is made explicit by looking at the decision-
making process. We tested the gameplay performance of both AI players on
8×8 boards. Experimental results show that the αβ player with history-heuristic
move ordering and with a transposition table is most effective and most efficient.
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Chapter 1

Introduction

This thesis reports the research on how to write a computer program
that plays TwixT as effective and efficient as possible.

Chapter contents: Introduction — Game AI and Computer TwixT, Problem

Statement and Research Questions, Thesis Outline.

1.1 Game AI and Computer TwixT

Traditionally, it is considered to be a major milestone towards computer in-
telligence if a computer can outsmart a person in a intellectually challenging
game. Claude Shannon’s famous article on computer chess [40] laid the foun-
dations for research on automated game playing. Building high-performance
game-playing programs became a major goal of artificial intelligence research.
Chess-playing programs now play at world-champion level, but they do so with
limited intellectual mechanisms compared to those used by a human, substitut-
ing large amounts of computation for understanding. For some games the best
move cannot be obtained by large amounts of computation alone, and different
techniques have to be tried [8, 9, 25].

One of these games is TwixT, which is a two-player connection game that
is invented around 1960 by Alex Randolph. TwixT challenges computer-game
researchers, because the search space is large and the process of evaluating
a board-position’s utility value is known to be complex. Little knowledge is
available on how to make a computer play a strong game of TwixT. Currently
no program for TwixT exists that cannot be easily beaten by an experienced
TwixT player. Johannes Schwagereit’s TwixT program, called T1j [39], is con-
sidered to be the strongest AI player for TwixT in a competitive field of a few
weaker TwixT programs. Schwagereit wrote a challenge for the 7th Computer
Olympiad [29], where he challenged programmers to participate in a TwixT
tournament at a subsequent Computer Olympiad.

1



1.2 — Problem Statement and Research Questions

1.2 Problem Statement and Research Questions

We want to contribute to knowledge acquisition in the domain of computer
TwixT. Our problem statement is formulated as follows:

“How can a computer program be written that plays the game of TwixT as
effective and efficient as possible?”

The problem statement is decomposed into four research questions.

1. What game-specific knowledge, used by human players, is applicable to
computer TwixT?

2. What can we learn from research that is related to TwixT?

3. What is the complexity of TwixT?

4. How can we combine game-specific knowledge and known game-tree search
techniques effectively and efficiently?

The first research question contributes to the acquisition of game-specific
knowledge that needs to be represented in a TwixT playing program. Game-
specific knowledge acquisition is a process that includes:

• the collection of game-specific knowledge that is used by human TwixT
players,

• the assessment what game-specific knowledge is feasible to be modelled in
a suitable format for computer TwixT.

The second research question investigates insights from related research. To
our knowledge, there is no previous research on computer TwixT. We explore
possible approaches in computer TwixT by investigating research on similar
games.

The third research question analyses the complexity of TwixT. The state-
space and game-tree complexity express the complexity of TwixT and define
the position of TwixT in the game-space. We need the position of TwixT in the
game-space as an important indicator on the solvability of TwixT and on the
potential of search-based and knowledge-based approaches [28].

The last research question is concerned with the effectivity and efficiency
of combinations of game-specific knowledge and known game-tree search tech-
niques. Our approach is to implement combinations of game-specific knowl-
edge and known game-tree search techniques in AI players. The insights that
are gained from answering the previous research questions are used to target
what game-specific knowledge and known game-tree search techniques are im-
plemented. A TwixT playing engine, which facilitates automated game-play
between two AI players, is used for testing purposes. The effectivity of an AI
player is expressed by the win statistics of many simulated games versus other
AI players. The efficiency of an AI player can be made explicit by looking at
the decision-making process. The experimental results show which of the AI
players, and thus what combination of techniques, is most effective and most
efficient.

2



Chapter 1— Introduction

1.3 Thesis Outline

Chapter 2 provides an answer to the first research question: “What game-
specific knowledge, used by human players, is applicable to computer TwixT?”.
Section 2.1 describes the official rules, the pen-and-paper version rules, and
a rule set for computer TwixT. We collect strategic and tactical knowledge
that is used by expert TwixT players (Section 2.2). In the concluding section,
we discuss what game-specific knowledge is necessary and look at what game-
specific knowledge is feasible to be modelled in a suitable format for computer
TwixT (Section 2.3).

Chapter 3 provides an answer to the second research question: “What can
we learn from research that is related to TwixT?”. We show what insights are
gained from research on the connection games Hex, Bridg-It and the Shannon
Switching Game (Section 3.1). We show that the Voronoi Game (Section 3.2)
and Go (Section 3.3) share some interesting properties with TwixT. Section
3.4 explains how the strategy-stealing argument is used in TwixT. Section 3.5
shows a proof draft on the ‘Uncrossed Knight Path problem’, which gives an
indication of the difficulties involved in finding connective paths in TwixT. In
the concluding section, we summarize what insights from related research are
adopted and explored further in relation to computer TwixT (Section 3.6).

Chapter 4 provides an answer to the third research question: “What is the
complexity of TwixT?”. The state-space and game-tree complexity of TwixT
are calculated in Section 4.1 and Section 4.2. Both complexities determine the
position of TwixT in the game-space and we compare the position of TwixT to
the position of other games (Section 4.3). In the concluding section, we discuss
the implications of the complexity of TwixT on approaches for computer TwixT
(Section 4.4).

Chapter 5 focuses on how game-specific knowledge and known game-tree
search techniques can be combined in computer TwixT. We give an overview
of well known game-tree search techniques (Section 5.1) and show how game-
specific knowledge can be added (Section 5.2). In the concluding section, we
give an overview on the techniques that are implemented for testing purposes
(Section 5.3).

Chapter 6 provides an in-depth explanation of how networks are used in
computer TwixT. A short introduction to network theory clarifies the termi-
nology and concepts used throughout the rest of the chapter (Section 6.1). We
explain four types of networks that we use in computer TwixT (Section 6.2).
Section 6.3 explains how network topology update rules change the state of the
board’s network representations. Section 6.4 explains how network features are
extracted from network board-representations. We summarize the contents of
Chapter 6 in the concluding section (Section 6.5).

Chapter 7 investigates the effectivity and efficiency of different combina-
tions of game-specific knowledge and known game-tree search techniques. We
show the details of the experimental setup (Section 7.1), discuss the experimen-
tal results (Sections 7.2-7.3), and summarize the experimental results in the
concluding section (Section 7.4).

Chapter 8 is the concluding chapter. We summarize the answers on our
four research questions (Section 8.1) and revisit the problem statement (Section
8.2). Finally, we show the opportunities for future research (Section 8.3).

3
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Chapter 2

The Game of TwixT

In this chapter, we provide an answer to the first research question:
“What game-specific knowledge, used by human players, is applica-
ble to computer TwixT?”.

Chapter contents: The Game of TwixT — The Rules of TwixT, TwixT Strategy

and Tactics, Chapter Conclusions.

2.1 The Rules of TwixT

This section presents three rule sets of TwixT: the first rule set defines how a
normal game of TwixT is played, the second rule set defines how the pencil-and-
paper version of TwixT (TwixT PP) is played, and the third rule set defines
how computer TwixT is played.

2.1.1 Normal TwixT Rules

We show the official rules as printed in an article by David Bush: An Introduc-
tion to TwixT [13].1

The board is a 24× 24 square grid of holes, minus the corner holes.
For this article, one player will be referred to as ‘White’, and the
other as ‘Black.’(Many Twixt sets use different color schemes; in
the USA, for example, most sets use red versus black.) The holes
along the four edges are referred to as ‘border rows’. The ‘top’ and
‘bottom’ rows are White’s border rows, and the ‘left’ and ‘right’
border rows are Black’s. These border rows are delineated from the
rest of the board by borderlines, as shown in [Figure 2.1].
Each player has a collection of pegs and links of his color. Approxi-
mately 50 pegs and 50 links for each side, a total of 200 pieces, is an
ample supply. White moves first, then play alternates. Each move
consists of the following steps:

1David Bush published two other articles on TwixT: TwixT Strategy and Tactics Part 1
[14] and TwixT Strategy and Tactics Part 2 [15].
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2.1 — The Rules of TwixT

Figure 2.1: The initial 24 × 24 TwixT board position.

1. Place a peg of your color in any vacant hole except a hole in
your opponent’s border rows.

2. Place as many legal links as you wish between pairs of pegs
of your color. You may place a link only between pegs which
are at opposite corners of a 2 × 3 rectangle2, like a knight’s
move in Chess. No link may ever cross another link, even one
of the same color. You are allowed to remove as many of your
own links as you wish prior to placing any links. If you do not
have two pegs on the board a knight’s move apart, you may
not place any links on that move.

[. . . ]
After White makes the first move, Black has the option of ei-

ther responding normally, or swapping sides. If sides are swapped,
the player who moved first as White is now Black and makes the
next move. This rule3 makes the game more balanced, as otherwise
White would have a strong first-move advantage. The objective is
to connect your border rows with a continuous chain of linked pegs.
If neither side can complete such a chain, the game is a draw.

Figure 2.2 shows a board position that is won by White and a board position
that is a draw.4

2.1.2 TwixT PP Rules

TwixT started in 1958 as a pencil-and-paper game (TwixT PP). The rules
of TwixT PP are similar to the normal rules of TwixT. However, TwixT PP
disallows link removal and allows crossing own links.

2This should be a 2 × 3 array of pegs, which corresponds to a 1 × 2 rectangle.
3This rule is called the pie rule.
4Some people say that the board position on the right side is not officially a draw, because

a player can remove own links and give the opponent the opportunity to win. We will not
consider such arguments.

6



Chapter 2— The Game of TwixT

Figure 2.2: A TwixT position won by White (left), and a drawn TwixT position
(right).

2.1.3 Computer TwixT Rules

There is no consensus on the rules for computer TwixT. Our rule set for com-
puter TwixT follows the TwixT PP rules and adopts an auto-linking rule as
proposed by Johannes Schwagereit [39]. The auto-linking rule imposes that a
move only consists of a peg placement and that all links that can be added to a
placed peg are automatically added. We exclude the pie rule from our rule set.

2.2 TwixT Strategy and Tactics

The exponential explosion of the number of possible board positions after each
continuation of the game makes it difficult to have a deep understanding of the
implications of a move. We explore what strategic and tactical knowledge is
used be expert players.

2.2.1 Setups

Setups are the most common tactical peg patterns in TwixT. David Bush de-
scribes setups as follows [12]:

A setup is a pattern of two pegs of the same color which can
connect to each other in a single move in two different ways. The
gap between these pegs is generally difficult for the opponent to
attack, since if one connection is blocked then the other is usually
still available. There are five setups, each characterized by a name
and by two numbers which represent the horizontal and vertical
distances between these pegs. The larger value is listed first. [Figure
2.3 shows the five basic setups. The ‘×’ symbols indicate where a
third peg of the same colour would form a double-link connection.]

[...]

7



2.2 — TwixT Strategy and Tactics

Figure 2.3: The five basic setups in TwixT.

There are plenty of other ways to place two pegs of the same
color so that the gap between them is difficult to attack. The next
diagram shows a few of them [see Figure 2.4].

Figure 2.4: Several advanced setups in TwixT.

The 5-2 gap is particularly strong. These two pegs can connect in
two moves in a variety of ways, usually too many for the opponent
to block them all. The 5-0 gap is slightly more vulnerable. For
example, if the O7 peg is unlinked, White might be able to attack at
Q7. Then if Black plays R6 threatening P5 or Q8, White could play
O8, threatening N6 or R5. The 3-0 gap involves some very tricky
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tactics. For example, if Black tries to attack with an unlinked peg
at O15, White could respond with N16 which threatens to double
link at P15. The 4-2 gap is technically not a setup, because there
is only one way to connect these pegs in one move. But without
a nearby peg, it may be difficult for Black to attack this pattern
anyway. If Black plays L20, White could respond at K20 or at M20,
forming a combination of a coign setup and a short setup. Since the
short setup is so difficult to attack, White will probably manage to
connect J21 to N19, albeit in three moves rather than one. White
might also respond to L20 with either K21 or M19, which is much
more complicated.

Knowledge of setup patterns enables players to play pegs that are likely to
connect.

2.2.2 Connective Strength

The connective strength between two pegs is defined by the opportunity to
connect the two pegs. In the smallest setting we discuss the connective strength
of setups, where one move can connect two pegs. In a broader setting we discuss
the connective strength between pegs in general, where an arbitrary number of
moves is required to connect two pegs.

Connective Strength of a Setup

The following aspects are involved when analysing the strength of a setup:

• the width of the connection pattern,

• the support of own pegs and links,

• the threats of opponent pegs and links.

The first aspect considers the width of the connection pattern. A connection
pattern consists of the set of holes and links that can be used to connect the
pegs with one move. The ‘Coign’ setup has the widest setup connection pattern
and is the strongest basic setup (see Figure 2.3). Setups with a wide connection
pattern are harder to attack than setups with a skinny connection pattern.

The second aspect considers the support of own pegs and links. The inter-
action with other pegs is important, because it is of no use to connect a setup
if the setup itself is blocked from reaching the border. Strong support from
surrounding pegs reduces the opportunity of the opponent to block a setup.
Setups can be unanchored, single anchored, or double anchored [20] as shown in
Figure 2.5. Unanchored setups are much easier to break, single anchored setups
are harder to break, while setups anchored at both ends are (usually) nearly
impossible to break.

The third aspect considers threats of opponent pegs and links. Nearby oppo-
nent pegs and links strongly threat to cut off all possible linked paths between
the two setup pegs.

9



2.2 — TwixT Strategy and Tactics

Figure 2.5: Unanchored, single anchored and double anchored setups.

Connective Strength between Pegs

There are many peg patterns where pegs are at an arbitrary distance. The first
aspect that is used to analyse the strength of setups, the connection pattern
width, has to be put in a broader perspective, because usually more than one
move is required to connect two pegs. We use the term manoeuvre space for
the total space on the board that can contain a formation of links and pegs
to connect two pegs. In a strictly defined setting there would be an upper
bound on the number of links in a carrier, but in the broadest setting the
whole board can be used to connect two pegs. A skinny manoeuvre space
between two pegs requires fewer moves of the opponent to drastically reduce
the connective opportunity. Wide manoeuvre spaces prevent that the opponent
can drastically reduce the connective opportunity in just a few moves. The
shape of the manoeuvre space is an important indicator of strength. Not only
the width, but also the distance between the pegs should be taken into account.
Pegs that are nearby are usually connected stronger than pegs that are distant.
Borders limit the manoeuvre space and sometimes cause peg patterns to fail in
getting connected at the border while the same peg pattern would have worked
in the centre of the board.

2.2.3 Strategic Balance

Experienced players play moves that offer a good balance between posing threats
and blocking threats. A block is anything of your colour between an opponent
peg and one of his sides. A block from your perspective is a threat for your
opponent’s perspective and vice versa.

Alan Hensel coined the term potential paths [27], which are connections to
be built in a later stage of the game. Experienced TwixT players try to create
multiple threats by creating multiple potential paths. Figure 2.6 shows a board
position where White’s potential paths are in a Y formation. White threatens
to connect to the top in two ways.

A move is efficient if it serves multiple purposes. Schmittberger describes the
importance of efficiency in connection games [41], and he remarks that keeping
pieces spread out rather than bunched up can help to improve efficiency. Pieces
that are close together tend to have a similar purpose and are not likely to be
efficient. This also applies to TwixT. Experienced players consider the whole
board when they try to determine the best move, and they try to avoid close
battles in the early phase of the game.

10



Chapter 2— The Game of TwixT

Figure 2.6: A TwixT board position with Y-structured potential paths for White.

2.2.4 Ladders

A ladder is a structure of pieces that is created by a forced sequence of moves
towards a border. Not cutting off the opponent towards the border will cause
a breakthrough in the defence. Therefore, the ladder continues until it hits a
border or until an escape move is found. Ladders are intuitive for many people,
because ladders also exist in Go (see Section 3.3).

Cardinal lines are guidelines that are used to predict who is going to win
a ladder fight. Cardinal lines are straight lines on the board that start in one
corner and continue towards the opposite side of the board along a series of
holes that could be connected with links (see Figure 2.7).

Figure 2.7: A TwixT board with cardinal lines.

Blocking on or in front of a cardinal line is favoured in most cases.5 Figure 2.8
shows, on the left side, a ladder where Black blocks behind the B2-E8 cardinal

5Escape moves may exist to pose an exception.
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Figure 2.8: Black blocking behind the cardinal line (left), and Black blocking on the
cardinal line (right).

line. Black loses the ladder fight, because White can connect with the top
border. Figure 2.8 shows, on the right side, a ladder where Black blocks on the
B2-E8 cardinal line. Black wins the ladder fight, because Black can connect
with the left border.

A ladder is called ‘solid’ if the pegs in the ladder pattern are connected by
links (see Figure 2.8). A ladder is called ‘dotted’ if the pegs in the ladder are
not connected by links (see Figure 2.9). Dotted ladders are usually easier to
break than solid ladders.

Figure 2.9: A dotted ladder.

2.3 Chapter Conclusions

This chapter contributed to the acquisition of game-specific knowledge that
needs to be represented in a TwixT playing program. We described the official
rules, the pen and paper version rules, and a rule set for computer TwixT. Our
computer TwixT rule set adopts the TwixT PP rules with an added auto-linking
rule. We examined strategic and tactical TwixT knowledge that is used by ex-
pert players. Human players estimate a board-position’s utility value based
on a complex interaction between many interrelated features that cannot be
easily extracted by a computer. The strategic and tactical heuristics work un-
der specific conditions, but it is unclear how these heuristics can be effectively
combined and implemented in a TwixT playing program. Accurate predictive
evaluation of a board-position’s utility value requires a deep look-ahead capabil-
ity. The look-ahead capability is limited in TwixT, because of the many possible
continuations of a game for each board position.

12



Chapter 3

Related Research

In this chapter, we provide an answer to the second research ques-
tion: “What can we learn from research that is related to TwixT?”.

Chapter contents: Related Research — Connection Games, The Voronoi Game,

Go, TwixT and the Strategy-Stealing Argument, Uncrossed Knight Path, Chapter

Conclusions.

3.1 Connection Games

TwixT belongs to a family of games called connection games, where players have
to build a specific type of connection with their pieces. Cameron Browne did
a comprehensive study on connection games and wrote the book Connection
Games – Variations on a Theme, studying over 200 key games and variants
while exploring common themes, strategies and underlying mechanisms [10].
We discuss the connection games Hex, Bridg-It, and the Shannon Switching
Game.

3.1.1 Hex

Hex is invented in 1942 by Danish mathematician and poet Piet Hein and is
independently reinvented by John Nash in 1948. The game was presented to the
general public in Martin Gardner’s article in Scientific American [22]. Vadim
Anshelevich, who built a strong Hex playing program called Hexy [3], describes
the rules of Hex as follows [5]:

Hex is a two-player game played on a rhombic board with hexag-
onal cells. The classic board is 11 × 11, but it can be any size.
The 10×10, 14×14 and even 19×19 board sizes are also popular.
The players, Red and Blue, or as some prefer, Black and White,
take turns placing pieces of their color on non occupied cells of the
board. Red’s objective is to connect the two opposite red sides of
the board with a chain of red pieces. Blue’s objective is to connect
the two opposite blue sides of the board with a chain of blue pieces.
Red (Black) moves first. Hex can never end in a draw. If all cells of
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the board are occupied, then a winning chain for Red or Blue must
necessarily exist.

Hex is won by a player when the player has achieved an uninterrupted connection
between the corresponding opposing borders. Figure 3.1 shows a Hex position
that is won by White.

Figure 3.1: A Hex position won by White.

The game mechanics for building connections are different for Hex and
TwixT. Hex is played on a hexagonal board, whereas TwixT is played on a
square grid. For Hex, two neighbouring cells with a shared border occupied by
the same colour are connected, whereas for TwixT, two cells at a knight’s move
distance occupied by the same colour are connected.

Hex has nice mathematical properties. Anatole Beck proved that Hex cannot
end in a draw [6]. John Nash proved that the first player has a winning strategy
when no swap is allowed, by using a strategy-stealing argument. His proof is
non-constructive, which means that Hex is only ultra weakly solved [2]. TwixT
can end in a draw, and it is unknown if a player has a winning strategy. Section
3.4 shows how the strategy-stealing argument can be used to prove that for
TwixT there is no winning strategy for the second player when no swapping
is allowed. In Hex and TwixT only one player can win, because the winning
formation of linked pieces cannot be crossed by the opponent.

Highly ranked Hex programs use a theorem-proving approach as published
by Vadim Anshelevich [4, 5]. Anshelevich introduces logical-deduction rules to
decompose a certain class of subgames into sums of simpler subgames. Sub-
games are defined by a starting cell, an ending cell, and the carrier of the
connection, which is a set of cells between. A certain class of subgames can be
decomposed as virtual connections and virtual semi-connections. Virtual con-
nections are strong connections for which a winning strategy is possible even if
the opponent moves first. Virtual semi-connections are weaker connections for
which a winning strategy is only possible when you have the first move. The
logical-deduction rules are based on the rules of the game and use the hier-
archical structure of virtual connections and virtual semi-connections within a
subgame to predict who is winning the subgame.
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Vadim Anshelevich also explains how to incorporate subgame win predictions
into the evaluation function, but this is irrelevant for our purposes.

Anshelevich’s evaluation of a board position is based on an electrical-resistor-
circuit model, and he describes the basic idea as follows [5]:

In this section we introduce a family of evaluation functions based
on an electrical resistor circuit representation of Hex positions. [. . . ]
One can think of an electrical circuit as a graph. Edges of the graph
play the role of electrical links (resistors). The resistance of each
electrical link is equal to the length of the corresponding edge of
the graph. Here, we see that the ‘electrical circuit’ language better
suits our needs. With every Hex position, we associate two electri-
cal circuits. The first one characterizes the position from Black’s
perspective (Black’s circuit), and the second one characterizes the
position from White’s perspective (White’s circuit). To every cell
c of the board we assign a resistance r in the following way. For
Black’s circuit:

rB(c) =

⎧⎨
⎩

1 if c is empty,
0 if c is occupied by a black piece,
+∞ if c is occupied by a white piece.

For White’s circuit:

rW (c) =

⎧⎨
⎩

1 if c is empty,
0 if c is occupied by a white piece,
+∞ if c is occupied by a black piece.

For each pair of neighbouring cells, (c1, c2), we associate an
electrical link with resistance:

rB(c1, c2) = rB(c1) + rB(c2), for Black’s circuit,

rW (c1, c2) = rW (c1) + rW (c2), for White’s circuit.

Let RB and RW be distances between black boundaries in Black’s
circuit and between white boundaries in White’s circuit, correspond-
ingly. Now we define an evaluation function E as

E = log(RB/RW ).

A reasonable distance metric is the length of the shortest path on the
graph connecting boundaries; however, distances can be measured
in different ways. Following Shannon’s idea, we applied an electrical
voltage to the opposite boundaries of the board and measured the
total resistance between them, RB for Black’s circuit and RW for
White’s circuit [see Fig. 3.2].
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Figure 3.2: Black’s and White’s circuits.

This idea was implemented by C.E. Shannon in a robot which
played the game Bird Cage, also known as the game of Gale or Bridg-
it [see [23]]. We prefer this method for measuring distances because
according to the Kirchhoff electrical current laws, the total resistance
takes into account not only the length of the shortest path, but also
all other paths connecting the boundaries, their lengths, and their
intersections.

Anshelevich’s evaluation function takes into account how much closer Black is
to building a winning black chain than White is to building a winning white
chain. Player distances can be measured in different ways. Anshelevich’s Hex
program Hexy uses the total resistance in a electrical-resistor-circuit board
representation to measure player distances. Jack van Rijswijk’s Hex program
Queenbee uses the two-distance in a network board-representation. The two-
distance is the distance of the second shortest path between the borders.

Anshelevich’s idea of having a hierarchical representation of subgames is less
applicable in computer TwixT. Anshelevich’s logical-deduction rules for Hex
use the fact that a carrier-path’s disconnection can only be the result of the
placement of a stone on the carrier path. Hex is played on vertices, but TwixT
is played on vertices and edges, and because of that, TwixT offers a greater
diversity of actions that lead to a carrier-path’s disconnection. Peg placement
on a carrier path leads to disconnection, but peg placement outside a carrier
path can also lead to disconnection when it is followed up by the placement of a
connecting link that crosses and thus disconnects the carrier path. Anshelevich’s
logical-deduction rules for Hex have to be extended to be applicable in TwixT.

3.1.2 Bridg-It

Bridg-It (also known as Gale and Bird-Cage) is a connection game that is in-
vented around 1960 by mathematician and economist David Gale. Bridg-It was
first known as ‘Gale’, because of Martin Gardner’s Mathematical Games article
in Scientific American [23], where the game was called after its inventor. The
game was marketed under the trade name of Bridg-It in the early 1960s. Claude
Shannon built the first automated Bridg-It player in 1951, seven years before
Gardner published about ‘Gale’, but Shannon called the game ‘Bird-Cage’ [23].

A Bridg-It board contains two overlapping grids of white and black dots (see
Figure 3.3). All dots with a white colour belong to the first player, ‘White’, and
all black dots belong to the second player, ‘Black’. Figure 3.3 shows that the
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Figure 3.3: An initial Bridg-It board position.

‘upper’ and ‘lower’ border rows can only be played by White, and that the ‘left’
and ‘right’ border rows can only be played by Black. Players take alternate
turns and place a horizontal or vertical bridge between dots of corresponding
colour on the board. The rules disallow placement of a bridge that crosses an
already placed bridge. The first player to succeed in building an uninterrupted
path between the corresponding borders wins the game. Figure 3.4 shows a
Bridg-It board position that is won by White.

Figure 3.4: A Bridg-It position won by White.

Oliver Gross first discovered an explicit winning strategy (a pairing strat-
egy) in the early 1960s [24]. Martin Gardner described the strategy of Claude
Shannon’s Bridg-It playing robot [23].

A resistor network corresponds to the lines of play open to one of
the players, say player A [see Fig. 3.5]. All resistors are of the same
value. When A draws a line, the resistor corresponding to that line
is short circuited. When B draws a line, the resistor, corresponding
to A’s line that is intersected by B’s move, is open circuited. The
entire network is thus shorted (i.e., resistance drops to zero) when A
wins the game, and the current is cut off completely (i.e., resistance
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becomes infinite) when B wins. The machine’s strategy consists of
shorting or opening the resistor across which the maximum voltage
occurs. If two or more resistors show the same maximum voltage,
one is picked at random.

Figure 3.5: Resistor network for the robot Bridg-It player.

3.1.3 The Shannon Switching Game

The Shannon Switching Game is played on a graph with distinguished source
and target vertices s and t. A graph with these properties is called a network,
and an introduction to networks can be found in Chapter 6.

The edges of the network are initially all ‘unmarked’. The first player, called
Short, has the objective of creating a marked path between source and target.
The second player, called Cut, has the objective of preventing a marked path
between source and target. The players take alternate turns. A move for Short
consists of marking one edge. Marked edges are permanent and cannot be
removed. A move for Cut consists of removing one edge. A removed edge can
no longer be marked. Short wins the game if a marked path is created from
source to target, and Cut wins the game if it is impossible for Short to create
such a path. Draws cannot occur in a Shannon Switching Game.

Alfred Lehman proved that the Shannon Switching Game has a winning
strategy for Short if the network contains two non-overlapping spanning trees
that both connect s and t [32]. A Cut move separates one of the spanning trees
into two parts. Short will win if he makes response moves that mark the edge
in the unseparated spanning tree that reconnects the two parts of the separated
spanning tree.

Bridg-It is a special case of a Shannon Edge Switching Game, where the
game is played by marking and removing edges. Figure 3.6 shows the initial
Bridg-It board position with its overlaid network board-representation. White’s
source vertex is connected with the upper row vertices and the target vertex is
connected to the lower row vertices. Source or target connecting edges are
marked, which is indicated by black coloured edges in the figure. The grey
coloured edges represent possible bridge locations for White. A move of Short
can be seen as the placement of a white bridge between white dots. A move
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of Cut can be seen as the placement of a black bridge, which disables a white
bridge placement.

Figure 3.6: A graph representation of an initial Bridg-It board position.

Hex is a special case of a Shannon Vertex Switching Game, where the game
is played by marking and removing vertices. We refer to an article of Jack van
Rijswijk [36] for more information on how Hex can be played as a Shannon
Vertex Switching Game. Both players have a network representation that suits
their perspective of cell connectedness on the board. Placement of a stone on a
cell will change the topology of both networks.

TwixT is neither a Shannon Edge Switching Game nor a Shannon Edge
Switching Game, because moves are placed on the vertices (peg placement) and
on the edges (link placement) of a network representation. Section 6.2 explains
how network board-representations capture the game state, and Section 6.3
explains how network-topology update rules capture the rules of the game.

3.2 The Voronoi Game

The Voronoi Game is a two-player game that is used as a model for competitive
facility location [1, 17]. Players are occupied with the following question: “Given
a market space, how can I place my facilities such that I have more customers
than my competitor?”. The Voronoi Game models the total available market
space as a continuous 2-dimensional rectangle. Two players alternately place a
vertex in the market space to represent a player’s facility location. The market
area of a facility marks the space on the board in which the customers of the
facility reside. Customers always buy goods at the facility that is nearest to
their location. Thus, the market area of a facility corresponds with the facility’s
Voronoi region. The Voronoi region of a facility f is the set of points in the
space for which f is the closest facility among all the facilities. The player with
the biggest market area on the board after n moves wins the game. Figure 3.7
shows a Voronoi-Game board position that is won by Black.
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Figure 3.7: A Voronoi Game position won by Black.

The Voronoi Game would be closely related to TwixT if players would have
been occupied with the following question: “Given a rectangular market space,
how can I place my facilities such that my market area’s connect from top to
bottom or from side to side?”.

For TwixT, a Voronoi region corresponds to the space that is directly influ-
enced by a peg. Imagine a large TwixT board position (let’s say a million by a
million holes) and imagine that a prediction has to be made on who is winning.
Figure 3.8 shows a large TwixT board position without and with a Voronoi
tessellation of the space. Voronoi-region connectedness shows information on
which gaps are dominant. On a large TwixT board, when two Voronoi regions
of the same colour share a boundary it is more likely that the gap between the
corresponding pegs will be connected than the alternative of the gap getting
crossed by the opponent. The gap between those two pegs is dominant, because
the distance between those pegs is smaller than the distance of any crossing
opponent gaps. A player is dominant on the board if the player can travel be-
tween the corresponding opposing borders via neighbouring Voronoi regions of
his colour. Only one player can be dominant on the board, because a dominant
path by definition cannot be crossed by the opponent. A closer examination
of the Voronoi tessellation in Figure 3.8 shows that Black can travel between
the left and right border rows via black neighbouring Voronoi regions. Black is
dominant on the board and is more likely to win than White.

Deducing board dominance based on Voronoi-region connectedness has draw-
backs when we check for board dominance on TwixT boards with nearby pegs.
We have to be aware that the set of vacant holes in a Voronoi region, the mod-
elled influence area, is only an approximation of the true influence area of a peg.
The true influence area is modelled with the knight’s move distance metric, and
the approximated influence area is modelled with the Euclidian distance metric.
On large boards with large peg distances, there will be no significant differences
between the shapes of the true influence area and the approximated influence
area. On small boards with small peg distances, there will be bigger differences
between the shape of the true and the approximated influence area. The as-
sumption that nearby pegs are more likely to connect than distant pegs will also
not always hold, in particular when distances between pegs get small.
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Figure 3.8: A board position on a large TwixT board (left), and a board position on
a large TwixT board overlaid with the Voronoi tessellation (right).

3.3 Go

We mention Go as similar game to TwixT, because both games have a large
branching factor (see Section 4.2) and because the process of estimating a
board’s utility value is known to be complex for both games. Bouzy and
Helmstetter showed that using Monte Carlo simulations as an evaluation func-
tion works surprisingly well in computer Go [9], which raises the question how
Monte-Carlo simulations would perform in TwixT (see Section 5.2.3). Many
enhancements to basic Monte Carlo have been proposed and successfully ap-
plied [16, 19, 31], but we do not go into detail on enhancements and stick to the
basics.

Another similar game property is the existence of ladder fights. A forced
sequence of moves leads to a ladder pattern that continues until there is an
escape move or a border is hit. Figure 3.9 shows an example of a ladder in Go.
The rectangular symbol marks a forced response move for Black.

Knowledge on ladder development might narrow down the considered lines
of play during board analysis. For TwixT, it is hard to narrow down the number
of possible response moves. Certainly early in a game, many escape moves exist;
therefore, we do not focus on ladders.

3.4 TwixT and the Strategy-Stealing Argument

We give Nash’s sketch of the proof, which shows that the first player has a
winning strategy for Hex when no swap is allowed. We show the sketch proof
as printed in Martin Gardner’s article about Hex [21].1

(i) Either the first or second player must win, therefore there must be a
winning strategy for either the first or second player.

1The third argument is incomplete and omits a statement that says: whenever the first
player, according to the winning strategy, has to place a piece on a cell which is already
occupied, then the first player must play an arbitrary other (legal) move.
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Figure 3.9: A Go ladder example.

(ii) Let us assume that the second player has a winning strategy.

(iii) The first player can now adopt the following defense. He first makes an
arbitrary move. Thereafter he plays the winning second-player strategy
assumed above. In short, he becomes the second player, but with an extra
piece placed somewhere on the board. [This argument is usually referred
to as the ‘strategy-stealing’ argument.]

(iv) This extra piece cannot interfere with the first player’s imitation of the
winning strategy, for an extra piece is always an asset and never a handi-
cap. Therefore the first player can win.

(v) Since we have now contradicted our assumption that there is a winning
strategy for the second player, we are forced to drop this assumption.

(vi) Consequently there must be a winning strategy for the first player.

We examine how the strategy-stealing argument can be used in TwixT. A close
examination on Nash’s proof shows that the strategy-stealing argument itself
(iii) leads to the conclusion that the second player has no winning strategy. For
TwixT, because the existence of a winning strategy for the second player can be
assumed and because the winning strategy can be stolen similarly in TwixT by
the first player, we can conclude by contradiction that the second player has no
winning strategy when no swapping is allowed. The proof of a winning strategy
for the first player requires a proof that TwixT is always won by either the first
or the second player. TwixT does not have this property, because TwixT can
be either a win for the first player, a win for the second player, or a draw. So,
unlike Hex, nothing can be said about the existence of a winning strategy for
the first player.

When swapping is allowed, the second player can prevent the first player
from winning when he adopts the following strategy:

• Swap if the first player’s first move leads to a win,

• Do not swap if the first player’s first move does not lead to a win.
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3.5 Uncrossed Knight Path Problem

Dominic Mazzoni and Kevin Watkins created a TwixT Proof draft [33], which
shows that finding an uncrossed path between two pegs in two-colour TwixT
is NP-complete. The proof of the NP-completeness of finding an uncrossed
path between two pegs in two-colour TwixT is implied from a proof of the
NP-completeness of single-colour TwixT in the following way:

The single-color uncrossed knight path problem is as follows.
Given a set of pegs belonging to a single color, and identifying two
pegs as s and t, we would like to know if there exists an uncrossed
path between them. Note that in the game of TwixT, there is the
added complication of the pegs and bridges belonging to the other
player, which limits the possible locations for bridges to be placed.
Let us call the two-color uncrossed path problem the question of
whether s and t are connected, using only pegs and bridges of the
same color as s and t, in the presence of pegs and bridges of a differ-
ent color. Note that if an algorithm was found for the two-color un-
crossed path problem, it would immediately imply an algorithm for
the single-color variation, though the reverse is not true. Therefore
it will suffice to show that the single-color uncrossed path problem is
NP-complete, and this implies the NP-completeness of the two-color
problem as well.

The proof is non-constructive and shows the existence of an NP-complete
algorithm without giving pointers on how an algorithm is constructed. The
proof unfortunately only gives an indication of the difficulties involved in finding
connection paths in TwixT, because crossing own links is allowed with our
computer TwixT rule set.

3.6 Chapter Conclusions

This chapter investigated research in similar games. Research on the connec-
tion games Hex, Bridg-It and the Shannon Switching Game showed that net-
work board-representations can evaluate the game state. Section 6.2 explains
the network representations that we use in computer TwixT. We have also seen
how network topology update rules can model the underlying game mechanics.
Section 6.3 explains how network topology update rules capture TwixT link-
ing rules. Anshelevich’s Hex evaluation function considers how much closer a
player is to building a winning chain than the opponent is to building a winning
chain. Anshelevich’s Hex program Hexy measures player distances by the to-
tal resistance in a player’s electrical-resistor-circuit board-representation. Jack
van Rijswijk’s Hex playing program Queenbee uses the ‘two-distance’ to mea-
sure player distances in a player’s network board-representation. Our TwixT
evaluation function is inspired by their work (see Section 5.2.2).
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Chapter 4

Complexity Analysis of
TwixT

In this chapter, we analyse the state-space and game-tree complex-
ity of TwixT. We compare the complexity of TwixT to other games
and discuss the implications for an approach to computer TwixT.

Chapter contents: Complexity Analysis of TwixT — State-Space Complexity,

Game-Tree Complexity, Comparison with other Games, Chapter Conclusions.

4.1 State-Space Complexity

Victor Allis defines the state-space complexity as [2]: “the number of legal game
positions reachable from the initial position of the game”.

We calculated the number of possible peg configurations on the board1,
which is a lower bound on the state-space complexity of TwixT. Our calculation
excludes link placement, treats mirrored board positions and rotated board
positions as different positions, and includes the assumption that each player
has no more than 50 pegs. Three areas exist on a TwixT board. The white
border rows can only be occupied by White, the black border rows can only be
occupied by Black, and the centre area can be played by both players. Each area
has the corresponding capacity of 44, 44, and 484 holes. The naming convention
for those areas are BorderW , BorderB , and Common as indicated in Figure
4.1.

Algorithm 4.1 shows the pseudo-code of the state-space complexity calcula-
tion and we explain the code below.

1Appendix A shows the matlab code
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Figure 4.1: Three peg areas on a TwixT board.

Algorithm 4.1:TwixTStateSpace()

stateSpace← 0
for nrPegs← 0 to 100

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nrPegsW ← getNrWhitePieces(nrPegs)
nrPegsB ← getNrBlackPieces(nrPegs)
for nrPegsBorderW ← 0 to max(44, nrPegsW )

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nrCombiBorderW ←
(

44
nrPegsBorderW

)
for nrPegsBorderB ← 0 to max(44, nrPegsB)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nrCombiBorderB ←
(

44
nrPegsBorderB

)
nrPegsCommonW ← nrPegsW − nrPegsBorderW

nrPegsCommonB ← nrPegsB − nrPegsBorderB

nrCombiCommonW ←
(

484
nrPegsCommonW

)
nrCombiCommonB ←

(
484−nrPegsCommonW

nrPegsCommonB

)
nrCombiCommon← nrCombiCommonW × nrCombiCommonB

totalPegCombi← nrCombiCommon× nrCombiBorderW × nrCombiBorderB

stateSpace← stateSpace + totalPegCombi
return (stateSpace)

The algorithm iteratively adds up the number of possible board positions for
each total number of pegs. The number of total pegs ranges from 0 to 100 pegs.
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At first, the algorithm determines the number of white pegs (nrPegsW ) and
black pegs (nrPegsB) for each total number of pegs, which is uniquely defined,
because there is no piece capturing in TwixT.

Once the total number of white and black pegs is known, the algorithm iter-
atively considers all possible distributions of the white and black pegs over the
three areas. The number of white pegs in the BorderW area (nrPegsBorderW )
ranges from 0 to max(nrPegsW , 44). This assures that there cannot be more
white pegs in the BorderW area than there are white pegs in total and that there
cannot be more white pegs in the BorderW area than the available capacity of
44. The number of black pegs in the BorderB area (nrPegsBorderB) ranges
from 0 to max(nrPegsB, 44). The number of white pegs in the Common area
equals the difference between the total number of white pegs and the number of
white pegs that are placed in the BorderW area, and the number of black pegs
in the Common area is calculated analoguely.

nrPegsCommonW = nrPegsW − nrPegsBorderW (4.1)

nrPegsCommonB = nrPegsB − nrPegsBorderB (4.2)

Once the number of white and black pegs is known for each area, then the
number of possible configurations within each area is calculated. The number
of possible peg configurations in the BorderW area is computed by

nrCombiBorderW =
(

44
nrPegsBorderW

)
, (4.3)

and the number of peg configurations in in the BorderB area is calculated
analoguely. We calculate how many configurations are possible in the Common
area using white pegs.

nrCombiCommonW =
(

484
nrPegsCommonW

)
(4.4)

Subsequently, we calculate the number of possible black peg configurations in
the Common area, depending on the present white pegs.

nrCombiCommonB =
(

484− nrPegsCommonW

nrPegsCommonB

)
(4.5)

Knowing the number of possible configurations of white and black pegs in the
Common area, the total number of configurations in the Common area can be
calculated by,

nrCombiCommon = nrCombiCommonW × nrCombiCommonB. (4.6)

Finally, we multiply the number of different board configurations for the three
areas.
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nrtotalPegCombi = nrCombiCommon×nrCombiBorderW×nrCombiBorderB

(4.7)

The summation of the calculated number of peg configurations for each
number of pegs leads to the lower bound of approximately 10140 different board
positions.

4.2 Game-Tree Complexity

A game tree is a directed graph where nodes represent game states and arcs
represent legal moves, with the root node as the initial board position. The
root node of a game tree is recursively expanded for all possible continuations
from each game state until states are reached where the game comes to an
end. Victor Allis [2] defines the game-tree complexity by using two auxiliary
definitions:

Definition 4.1 The solution depth of a node J is the minimal depth (in ply) of
a full-width search sufficient to determine the game-theoretic value of J.

Definition 4.2 The solution search tree of a node J is the full-width search tree
with a depth equal to the solution depth of J.

Definition 4.3 The game-tree complexity of a game is the number of leaf nodes
in the solution search tree of the initial position(s) of the game.

Victor Allis points out that calculating the exact game-tree complexity for a
nontrivial game like chess is hardly feasible. He also mentions that b

daverage
average

gives a crude estimate of the game-tree complexity, where baverage is an estimate
on the average branching factor and daverage is an estimate on the average depth
of a game. We denote the initial branching factor as binitial, the final branching
factor as bfinal, and the average branching factor as baverage. For convenience,
we assume that all pegs are placed in the Common area during a game. This
assumption implies that only a 22× 22 area can be played, an area with a total
capacity of 484. The following equations show the initial, final and average
branching factor equations.

binitial = 484 (4.8)

bfinal = 484− daverage (4.9)

baverage =
binitial + bfinal

2
(4.10)

It is tricky to estimate the average game length of TwixT, because humans
generally do not play out the whole game, and because human games end quickly
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when the playing strength is not equal. We estimate the average TwixT game
length to be 60 when both players are highly skilled and if games are played
out until the end. Using equation 4.10, the estimate of daverage = 60 yields an
average branching factor of baverage = 452; therefore, TwixT has an estimated
game-tree complexity of O(bdaverage

average ) ≈ O(10159).

4.3 Comparison with other Games

Van den Herik et al. [28] investigated the state-space and game-tree complexity
of several games as game characteristics for determining solvability. Table 4.1
shows the identification numbers of the games, the name of the games, and the
matching state-space and game-tree complexities.

Id. Game State-space compl. Game-tree compl.
1 Awari 1012 1032

2 Checkers 1021 1031

3 Chess 1046 10123

4 Chinese Chess 1048 10150

5 Connect-Four 1014 1021

6 Dakon-6 1015 1033

7 Domineering (8× 8) 1015 1027

8 Draughts 1030 1054

9 Go(19× 19) 10172 10360

10 Go-Moku (15× 15) 10105 1070

11 Hex (11× 11) 1057 1098

12 Kalah(6,4) 1013 1018

13 Nine Men’s Morris 1010 1050

14 Othello 1028 1058

15 Pentominoes 1012 1018

16 Qubic 1030 1034

17 Renju (15× 15) 10105 1070

18 Shogi 1071 10226

Table 4.1: State-space complexities and game-tree complexities of various games (van
den Herik et al, 2002).

Figure 4.2 shows the estimated positions of the games in the game space. The
numbers refer to the identification numbers. The grey ellipse in Figure 4.2
illustrates our estimated position of TwixT in the game space.

The estimated state-space complexity potentially exceeds all other games
listed here.

The estimated game-tree complexity of TwixT is above average compared
to other games, but it is lower than the game-tree complexity of Go. Go has an
average branching factor of 250 and average game length of 150 moves, which
results in a game-space complexity of approximately 10360 [2]. Twixt has an
estimated average branching factor of 450 and an estimated average game length
of 60 moves, which results in a game-space complexity of approximately 10159.
The most notable difference between both games is the average game length.
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Figure 4.2: Approximate positions of games in the game space.

This is intuitive, because the shortest possible game in TwixT takes less moves
than the shortest possible game in Go.

4.4 Chapter Conclusions

This chapter contributed to the determination of the position of TwixT in the
game space. We calculated the number of possible peg configurations on the
board of 10140, which is a lower bound of the state-space complexity. The
game-tree complexity is estimated to be 10159. The state-space and game-tree
complexity make TwixT belong to the highest category in terms of complexity.
This means that TwixT is unlikely to be solved in the near future. If the
complexity would have been low, then we could have sufficed with a pure search-
based approach for computer TwixT. It is evident that an approach to computer
TwixT must add game-specific knowledge. A comparison with other games
shows that the state-space complexity of TwixT potentially exceeds all other
shown games. The game-tree complexity of TwixT is above average compared to
those games. The short average game length of TwixT indicates that probably
many games can be played with Monte-Carlo simulations.
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Chapter 5

Game-Tree Search in
TwixT

In this chapter, we present well known game-independent game-
tree search techniques. Furthermore, we describe how game-specific
knowledge can be incorporated in computer TwixT.

Chapter contents: Game-Tree Search in TwixT — Game-Tree Search Techniques,

Game-Specific Knowledge in computer TwixT, Chapter Conclusions.

5.1 Game-Tree Search Techniques

This section shortly describes the concept of a game tree and related game-
independent search techniques.

5.1.1 Game Trees

A game tree is an acyclic directed graph where nodes represent game states
and arcs represent legal moves. The root node of a game tree represents the
initial board position. The root node is recursively expanded for all possible
continuations of the game until game states are reached where the game ends
(called a terminal position or leaf node). A search tree is a subtree in the game
tree.

5.1.2 Minimax Search

The minimax search algorithm combined with a utility function is a tradi-
tional approach for creating an artificial-intelligent player in two-player, zero-
sum games with perfect information. Claude Shannon described the algorithm
in his article about computer chess [40].

The minimax algorithm determines the game-theoretic value of a game, as-
suming perfect play of both players. This assumption implies that both players
use a minimax decision strategy. The player who currently has to make a move
(max) tries to maximize the utility, and the opponent (min) tries to minimize
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the utility. John van Neumann proved that no player benefits from deviation of
the minimax decision strategy [34]. The minimax algorithm performs a depth-
first search in the game tree until a leaf node (terminal position) is reached. A
utility function determines the utility value (win, loss or draw) at the leaf nodes,
after which the utility value is propagated back to the root node. A max node’s
utility value becomes the best utility value of its successors and a min node’s
utility value the worst utility value of its successors.

The minimax value of the root node is the game-theoretic value of TwixT.
A minimax AI player determines the minimax value of all successors of the
search-tree’s root and selects the move that leads to a successor position with
the highest utility value.

A more practical implementation of minimax incorporates a cutoff test and
replaces the utility function with a heuristic evaluation function. A cuttoff node
is a terminal node or a node at a specified maximum depth in the search tree.
A heuristic evaluation function estimates the utility of cuttoff nodes and all its
successors are pruned.

5.1.3 αβ Pruning

Allen Newell and Herbert Simon at Carnegie Mellon University and Cliff Shaw
at the Rand Corporation were the first to use the αβ pruning technique in their
chess program [35].

The αβ algorithm imposes a search window [α,β] at each min and max
node. The lower bound α stores the best score found so far, reachable by the
max player. The upper bound β stores the previously found worst score for
max, reachable by the min player. During back-propagation, if the current
node’s value proves to be outside the search window, then a search through its
siblings can be terminated. The evaluation values are propagated back to the
search-tree’s root, and an αβ player plays the move that leads to the root’s
successor position with the highest expected utility.

5.1.4 Iterative Deepening

Iterative deepening is a search strategy that repeatedly invokes the αβ algorithm
with an increased maximum depth parameter. “This approach is the preferred
search method when there is a large search space and the depth of the solution
is not known” [37]. The overhead of multiple-visited nodes is small compared
to the single-visited nodes at the maximum depth.

Iterative deepening is an anytime algorithm. When there is no time to
complete a search at the current maximum depth, then, when no better move
is found, the best move of the previous αβ search is played. In a competitive
setting, in each game a fixed amount of time is agreed on for each player. We
use a simple time-management scheme where the granted processing time for
a move is the remaining time for the player divided by a fixed constant. The
relative differences in time costs between two sequential αβ calls allow for a
rough estimate on the finishing time of the next αβ invocation. If the estimated
finishing time exceeds the granted time, then there is no next search iteration,
and the best move from the last search is played.
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5.1.5 Transposition Table

A transposition table, first used in Greenblatt’s chess program Mac Hack [26], is
a hash table that stores previously found subtree-evaluation results. A subtree-
evaluation result is reused when a position re-occurs in the search process. Such
an identical re-occurred position is called a transposition. Storage of all board
positions needs an infeasible amount of memory; therefore, transposition tables
have a smaller capacity. Table entries are accessed by an entry index. The entry
index of a board position is the hash key of the board position modulo the size
of the transposition table.

Zobrist hashing is a commonly used hashing method for creating hash keys
in board games [42]. A set of features uniquely represents the state of a board
position. For Zobrist hashing, each feature is represented by a pseudo-random
number. Zobrist hashing defines the hash key of a position by taking the set of
features and subsequently performing an XOR operation on all representative
pseudo-random numbers in an iterative fashion. When a feature is added or
removed when a move is played, then the Zorbrist hash of the resulting position
can be calculated by performing an XOR operation on the previous Zobrist hash
and the pseudo-random number that represents the added or removed feature.
The following set of features represent the state of a TwixT board position: the
state of each hole on the board and the state of all links. All other information,
including whose turn it is, can be derived from these features. A 24×24 TwixT
board has 484 ‘Common Area’ holes, which can be in three states (occupied by
White, Black or unoccupied), and 88 border holes, which can be in 2 states. For
both players there are 2008 linking possibilities between pegs, which can be in 2
states (unlinked or linked). The required number of generated pseudo-random
numbers to ‘Zobrist hash’ a 24× 24 TwixT board is 484× 2 + 88 + 2008, which
equals to 3064 numbers. For TwixT, we create a 32 bits hash key (of which not
all bits are used) and a 32 bit lock key.

Transposition-table entries contain the following information:

• a 32 bit lock key,

• an entry type {lower/upper/exact},
• the utility value of the subtree,

• the best child move of the subtree,

• the depth of the subtree.

The hash and lock key give access to a transposition table entry. If a position
is indexed to a specific entry in the table, then the lock key of the position
and the stored position are compared to see if the positions match. The entry
type indicates if the utility value was proven to fall inside or outside the search
window at time of the search. We also store evaluation results of nodes at a
maximum depth of the search tree, because evaluation in TwixT is known to be
computationally expensive. An entry type’s best move corresponds to the best
successor move, and the depth corresponds to the depth of the subtree. For
storing, we employ a ‘deep’ replacement strategy, which replaces a stored entry
with a matching proposed entry if the proposed entry has a deeper or equal
subtree than the stored entry.
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We use subtree results of matching positions with equal subtree depth, be-
cause the evaluation function is known to be costly. When the entry type is
‘exact’, successor node search is skipped and the stored utility value is used.
When the entry type is ‘lower’, then the subtree is explored with an alpha value
set to the maximum of the current alpha and the stored utility value. The
search window is updated similarly when the entry type is ‘upper’.

5.1.6 History-Heuristic Move Ordering

A good move ordering improves the efficiency of the search process. Donald
Knuth and Roger Moore analysed the importance of a good move ordering in
the αβ framework [30]. When moves are properly ordered, successful moves are
tried first, which leads to many αβ cutoffs.

The history heuristic is a simple heuristic which “maintains a history on
every legal move seen in the search-tree. For each move, a record of the move’s
ability to cause a refutation is kept, regardless of the line of play” [38]. Whenever
moves are generated, the moves are ordered in descending order based on the
history-heuristic move value. Heuristic values for each legal move are stored in
a table. Each table entry has an initial value of 0. Whenever during the search
process a node causes an αβ cut, or is found to be best, the corresponding
history-heuristic table-entry is incremented by 2d. The variable d indicates the
depth of the subtree below the node. To reduce the influence of old good moves
in move ordering, all history heuristic table entries are divided by 2 whenever a
new search is started.

5.1.7 Monte-Carlo Sampling

The Monte-Carlo sampling technique considers the utility value of a randomly
played out game as a sample. A search space S can be too large to be sampled
entirely and a large sampled subset might be a good representative for S. Section
3.3 showed that Monte-Carlo techniques are used in computer Go. A simple
Monte-Carlo approach in games uses win-lose-draw statistics of many randomly
played games to give a good indication of the distribution of the leaf nodes in the
search tree. A basic Monte-Carlo player performs a one ply search and selects
the move that maximizes the expected utility based on many simulations.

5.2 Game-Specific Knowledge in computer TwixT

This section describes how game-specific knowledge can be used in computer
TwixT.

5.2.1 TwixT Board-Dominance Move Ordering

Section 3.2 introduced the concept of board dominance for a player. Section
6.4.4 explains how board dominancy is deduced from a Delaunay Network board-
representation. For move ordering, moves that lead to dominant board positions
are tried before the moves that do not lead to a dominant board position.

Figure 5.1(a) shows a 24×24 TwixT board with one white peg in the middle.
White is dominant on the board. Figure 5.1(b) shows the same board position
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where ‘×’ symbols indicate Black’s response moves that lead to a dominant
position for Black. Figure 5.1(c) again shows the same position, but now the
‘×’ symbols indicate David Bush’s considered response moves [11].

We see that there is overlap between board dominant moves and the moves
of an expert TwixT player, but David Bush also showed that our current model
fails to look ahead. Moves that do not immediately lead to a board dominant
position might have the potential to become dominant at a later stage of the
game. David Bush illustrated this by showing a cluster of non-dominant moves
that he would consider to play as Black. Figure 5.2(a) shows a 24× 24 TwixT
board with three placed pegs. White is dominant on the board. Figure 5.2(b)
shows the TwixT position with ‘×’ symbols that indicate moves that lead to a
dominant board position for Black. Figure 5.2(c) shows the same board position
with the dominant moves for Black and with the considered non-dominant re-
sponse moves of David Bush as ‘�’ symbols. The two directions in which those
moves threaten to cut off White are indicated by two arrows.

David Bush’s considered non-dominant response moves will likely lead to a
dominant board after several moves have been played. Our board-dominance
model does not look ahead and fails to see these moves.

5.2.2 TwixT Board Evaluation

The αβ algorithm uses a heuristic evaluation function to estimate the utility
value of a position if the position is non-terminal. We explain in section 6.4.3
how terminal nodes are evaluated. We assign a utility value of −∞ when the
position is a loss, assign 0 utility when the position is a draw, and +∞ when
a position is a win. For non-terminal nodes we consider how much closer the
evaluating player is to building a winning path of links compared to the oppo-
nent. Anshelevich models a player’s distance with an electrical-resistance-circuit
model in his evaluation function for Hex. The electrical-resistance-circuit model
combines information on the distance yet to be travelled from side to side and
the robustness of such a path. We model these concerns separately with two
features, path distance and path robustness. We add a third feature to enhance
discriminating power for those positions where path distance and robustness are
equal. Our TwixT evaluation function is a weighted sum of three features.

Eval(p, player) = w1 ·f1(p, player)+w2 ·f2(p, player)+w3 ·f3(p, player) (5.1)

All features look at the difference between distance measurements of both play-
ers, which is similar to Anshelevich’s approach.

Shortest-Path-Weight Difference Feature

The first feature uses a shortest-path-weight distance metric to indicate a player’s
minimum number of links required to finalise a linked path from side to side.
This feature is extracted from network board-representations by a shortest-path-
weight algorithm (see Subsection 6.4.1). Let SPW (p, Black) and SPW (p, White)
be the shortest-path-weight distance metric for Black and for White. Feature 1
is defined by Equation 5.2.

35



5.2 — Game-Specific Knowledge in computer TwixT

(a) A 24 × 24 TwixT board with one peg.

(b) Board dominant response moves.

(c) David Bush’s considered response moves.

Figure 5.1: A 24 × 24 TwixT board position with one peg (a), board dominant
response moves (b), and David Bush’s response moves (c).
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(a) A 24 × 24 TwixT board position with three
pegs.

(b) Board dominant response moves.

(c) Board dominant response moves with
David Bush’s considered non-dominant response
moves.

Figure 5.2: A 24 × 24 TwixT board position with three pegs (a), board dominant
response moves (b), and board dominant response moves with David
Bush’s considered non-dominant response moves (c).
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f1(p, player) =

{
SPW (p, Black)− SPW (p, White) if player is White,
SPW (p, White)− SPW (p, Black) if player is Black.

(5.2)

Maximum-Flow Difference Feature

The second feature uses a maximum-flow distance metric to indicate a player’s
number of shortest paths available to finalize a linked path from side to side.
This feature is extracted from network board representations by a maximum-
flow algorithm (see Subsection 6.4.2). Let MF (p, Black) and MF (p, White)
be the maximum-flow metric for Black and for White. Feature 2 is defined by
Equation 5.3.

f2(p, player) =

{
MF (p, Black)−MF (p, White) if player is White,
MF (p, White)−MF (p, Black) if player is Black.

(5.3)

Shortest-Path-Weight List Difference Feature

The third feature does not calculate the difference between a single measurement
of both players. Instead it looks at a weighted difference between multiple found
potential winning paths. The maximum flow algorithm can output more than
only the maximum flow for a player. The algorithm determines multiple shortest
paths of which the shortest-path weight is known; therefore, the algorithm can
return an ordered list with shortest-path-weights for each player. This additional
information does not cost extra processing time since we want to know the
maximum flow anyway, and we explore how the information can be used for
evaluation.

An intuitive approach is to look at the difference in shortest-path-weights
between both lists. The number of elements in the list is variable, as for each
player an arbitrary number of augmenting paths can be found. The measure-
ments are ordered and the considered number of measurements for each player
are made equal by discarding an ith shortest path measurement of a player when
the opponent does not have an ith shortest path. Assume n measurements for
both players and let WM = [wmo, wm1, wm2, ...., wmn] be a measurement se-
ries for White and BM = [bmo, bm1, bm2, ...., bmn] be a measurement series
for Black. Furthermore, let wi be a weight for the difference between the ith
measurements. The third feature f3(p, player) is defined by Equation 5.4.

f3(p, player) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∑
i=0

wi · (bmi − wmi) if player is White,

n∑
i=0

wi · (wmi − bmi) if player is Black.
(5.4)
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The first found path is assumed to be more important than the later found
ones. This can be modelled by a weighted sum of the differences where first
path difference gets the highest weight and all subsequent path differences get
a lower weight in a linear decreasing fashion. We want to be able to compare
lists with an arbitrary number of considered measurements. We dynamically
adjust the weights such that the total weight remains the same and the relative
linear decreasing order of weights is also maintained. Assume that we want
to distribute 10, 000 weight units over n elements with n < 100 in a linear
decreasing order and where the elements are indexed from 0 to n − 1. We
calculate the weight of element with index i as follows:

∫
200− 2xdx = −(x− 200)x (5.5)

xPos(x) = x · 100
n

(5.6)

wi = (xPos(i)− 200)xPos(i)− (xPos(i+1)− 200)xPos(i+1) (5.7)

Figure 5.3 illustrates how the surface below the f(x) = 200 − 2x function
defines the weights when there are four or eight measurements.

Figure 5.3: Weight distribution of four measurements (left), and the weight distri-
bution of eight measurements (right).

Evaluation Feature Weights

The three features are weighted in the evaluation function. The first and second
features are assumed to be equally important and they have a higher priority
than the third feature. The third feature, has a low priority and is only added to
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enhance discriminating power when the first two features are unable to discrim-
inate between positions. The shortest-path-weight list difference feature does
not have a higher priority than the maximum-flow feature. The shortest-path-
weight list difference evaluation is less stable because the result is based on the
number of considered paths, which may lead to interpretation mistakes. The
weights are empirically set to w1 = 104, w2 = 104, and w3 = 1.

5.2.3 TwixT Monte-Carlo Enhancements

We enhance the Monte-Carlo player in TwixT by postponing game termination
checks. A game termination check takes significantly more time than a simple
peg placement. One can skip game termination checks in the beginning of the
game, because extra peg placement after a game is ended does not change the
outcome of the game. When it becomes likely that a game is finished, game
termination can be repeatedly checked after n peg placements.

5.3 Chapter Conclusions

This chapter focused on how to combine known game-tree search techniques and
game-specific knowledge in an approach for computer TwixT. Our approach on
combining game-tree search techniques and game-specific knowledge is to im-
plement combinations in AI players. We described game-independent game-tree
search techniques that are commonly used in two-player zero-sum games with
perfect information. We described two types of AI players. The αβ player, uses
a minimax decision strategy for move selection. Selected game-independent en-
hancements for αβ include: iterative deepening, history-heuristic move ordering,
and using a transposition table. The second type of AI player, the Monte-Carlo
player, uses a one-ply search and selects the best move based on statistical
win/draw/loss statistics of many randomly played games.

We also described how game-specific knowledge can be added. We described
how to order moves such that moves that lead to dominant board positions
are tried first. We explained how our evaluation function works. It uses three
features that all express the difference between player win distances. The first
feature looks at the difference between both players in the minimal required
number of links yet to be placed in order to win the game. The second feature
looks at the difference between both players in the number of shortest paths
found from side to side. The third feature looks at the differences between both
players in an ordered list of path weights. All features require that a TwixT
board position is translated into a network representation. Network board-
representations are used to extract player distances. The usage of network
board-representations in computer TwixT is explained in Chapter 6. We also
mentioned how we enhanced the Monte-Carlo player. Basically, we reduced the
overhead of game-termination checks by postponing them.
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Chapter 6

Network Search in TwixT

In this chapter, we explain how networks are used in computer
TwixT.

Chapter contents: Network Search In TwixT — Introduction to Networks, Net-

works in the TwixT, Network-Topology Update Rules, Network Feature Extraction,

Chapter Conclusions.

6.1 Introduction to Networks

A graph G = (V, E) consists of a set of vertices (sometimes called nodes) V and
a finite set of pairs of distinct vertices, called edges, E.

V = {v1, v2, v3, . . . , vn} (6.1)

E = {e1, e2, e3, . . . , em} with ek = {vi, vj} ∧ vi, vj ∈ V (6.2)

A directed graph (digraph) D = (V, A) consists of a set of vertices V and a
finite set of ordered pairs, called arcs, A.

A = {a1, a2, a3, . . . , am} with ak = {vi, vj} ∧ vi, vj ∈ V (6.3)

A network N = (V, A, s, t, w) is a digraph (V, A) in which two vertices are
distinguished as source and target vertex (s and t), and in which each arc has
a non-negative weight. A weight function w : A → R determines the weight of
an arc.

Connected vertices ‘shake hands’ in our implementation of networks. If there
is an arc from u to v, then there is also an arc from v to u. As a result, an
undirected network is expressed by a directed network. For convenience, we
define networks as if they were undirected N = (V, E, s, t, w) with w : E → R.
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6.2 Networks in TwixT

Our TwixT game engine stores the following four types of networks: link net-
works, allowed-link networks, combined networks, and Delaunay networks. We
explain each network type from the perspective of White. Black’s perspective
can be easily derived and needs no further explanation.

6.2.1 Link Networks

We store White’s link network and Black’s link network, where each edge
e(v1, v2), v1, v2 /∈ {s, t} represents a placed link of the corresponding player.
Figure 6.1 shows White’s initial link network overlaid on a 12×12 TwixT board.

Figure 6.1: White’s initial link network.

The set of vertices V of White’s link network is initialized such that a represen-
tative vertex is included in V for each hole on the TwixT board. We denote the
representative vertex of the hole with row r and column c as vr,c. In White’s
link network, upper-row peg vertices connect with s and lower-row peg vertices
connect with t. White’s initial link network contains no other edges, because
there are no links on the board. Link networks have a default weight function
w(u, v) = 1.

6.2.2 Allowed-Link Networks

We store White’s allowed-link network and Black’s allowed-link network, where
each edge e(v1, v2), v1, v2 /∈ {s, t} represents a possible link placement of the
corresponding player. Figure 6.2 shows White’s initial allowed-link network
overlaid on a 12×12 TwixT board.

The set of vertices V of White’s allowed-link network is initialized such that
a representative vertex is included in V for each hole on the TwixT board.
In White’s allowed-link network, upper-row peg vertices connect with s and
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Figure 6.2: White’s initial allowed-link network.

lower-row peg vertices connect with t. White’s allowed-link network contains
edges such that there is a representative edge in E for each possible link for
White between holes on the board. Allowed links are allowed in the sense that
they are not made impossible by the opponent. They are not instantly allowed
according to the rules. Extra white peg’s at a knight’s move distance may be
required to place the link. Allowed-link networks have a default weight function
w(u, v) = 1.

6.2.3 Combined Networks

We store White’s combined network and Black’s combined network, where each
edge e(v1, v2), v1, v2 /∈ {s, t} represents placed link or allowed links for the
corresponding players. White’s combined network represents all holes on the
board by a vertex vr,c ∈ V . The set of edges of White’s combined network is the
union of edges in White’s link network (ELNW ) and edges in White’s allowed-
link network (EALNW ). An edge in White’s combined network represents a
placed link, an allowed link or a connection with the source or target vertex.
We created two weight functions wtravel and wcapacity.

The first weight function models travel costs between vertices.

wtravel(u, v)

⎧⎪⎨
⎪⎩

0 if e(u, v) ∈ ELNW

1 if e(u, v) /∈ ELNW ∧ e(u, v) ∈ EALNW

+∞ otherwise
for u, v ∈ V (6.4)

Edges that connect with source or target and edges that represent placed links
get 0 travel costs. Edges that represent allowed link get a travel cost of 1.

The second weight function models flow capacity between vertices.
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wcapacity(u, v)

⎧⎪⎨
⎪⎩

+∞ if e(u, v) ∈ ELNW

1 if e(u, v) /∈ ELNW ∧ e(u, v) ∈ EALNW

0 otherwise
for u, v ∈ V (6.5)

Edges that connect with source or target and edges that represent placed links
get +∞ capacity. Edges that represent allowed link get a capacity of 1.

Figure 6.3 illustrates how White’s perspective on a 12×12 board position is
represented by White’s link network, White’s allowed-link network, and White’s
combined network. The network representations are overlaid on a 12×12 TwixT
board.

(a) A 12×12 board position. (b) White’s link network.

(c) White’s allowed-link network. (d) White’s combined network.

Figure 6.3: A 12×12 board position (a), White’s link network (b), White’s allowed-
link network (c), and White’s combined network (d).
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6.2.4 Delaunay Networks

We store White’s Delaunay network, where edges represent White’s Voronoi-
region connectedness. The process of creating a Delaunay network representa-
tion of a TwixT board position is explained below.

First, non existent pegs, which we call virtual pegs, are added to a TwixT
board position with to correct strength-interpretation mistakes on the board.
Black and white virtual pegs are placed at the corresponding border rows to
indicate that the ‘upper’ and ‘lower’ border rows are under influence of White,
and the ‘left’ and ‘right’ border rows are under influence of Black. Virtual pegs
of corresponding colour are also added at the middle of a link to indicate the
strength of the link. Figure 6.4 shows an example 24×24 TwixT board and the
same board position with added virtual pegs. The white squares, at the ‘upper’
and ‘lower’ border rows, indicate White’s virtual pegs and the black squares, at
the ‘left’ and ‘right’ border rows, indicate Black’s virtual pegs.

(a) A 24×24 TwixT board position. (b) A TwixT position with added virtual
pegs.

Figure 6.4: A 24×24 TwixT board position (a), and a TwixT position with added
virtual pegs (b).

Subsequently, we create a Delaunay triangulation, the dual representation
of a Voronoi tessellation, to model Voronoi-region connectedness. The dual
representation is all we need for dominance checking, because all pegs with a
shared Voronoi region boundary are connected in the Delaunay triangulation.
Many methods exist for drawing a Delaunay triangulation from a set of points
on a plane. We used Fortune’s sweep algorithm [7]. Ownership information
is added to the Delaunay edges to indicate to which of the players an edge
belongs. An edge is owned by White if it connects white pegs, owned by Black
if it connects black pegs, and owned by no player otherwise. Figure 6.5(a)
shows the Voronoi tessellation of the TwixT position of Figure 6.4(b). Figure
6.5(b) shows the Voronoi representation with the Delaunay triangulation. The
Delaunay triangulation has edges between pegs that are owned by White, owned
by Black, and owned by no player. A close examination shows that adjacent
Voronoi regions are connected in the Delaunay triangulation. Figure 6.5(c)
shows the Delaunay triangulation with White’s owned edges, and Figure 6.5(d)
shows the Delaunay triangulation with Black’s owned edges.
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(a) Voronoi representation of a TwixT po-
sition.

(b) Voronoi representation with Delaunay
triangulation.

,
(c) Delaunay triangulation with only
White’s owned edges.

(d) Delaunay triangulation with only
Black’s owned edges.

Figure 6.5: Voronoi representation of a TwixT position (a), Voronoi representa-
tion with Delaunay triangulation (b), Delaunay triangulation with only
White’s owned edges (c), and Delaunay triangulation with only Black’s
owned edges (d).

Finally, a Delaunay network is created from the Delaunay triangulation to
capture White’s Voronoi-region connectedness as a network. All White’s pegs
and virtual pegs are represented as a vertex in the Delaunay network. White’s
Delaunay triangulation edges are represented by edges in the Delaunay network.
The source vertex is connected with all upper-row peg vertices and a target
vertex connects with all lower-row peg vertices. Delaunay networks have a
default weight function w(u, v) = 1.

6.3 Network-Topology Update Rules

Network-topology update rules change the topology of the network representa-
tions according to TwixT linking rules. Only the link and allowed-link networks
need to be updated after a move is performed on the board. Combined networks
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are derived from the link and allowed-link networks and we do not iteratively
update the Delaunay network board-representation after moves are played.

We explain how the topology of link networks and allowed-link networks are
updated after the placement of a white peg. Black is not allowed to link with
vr,c for each white peg placement with row r and column c. Therefore, Black’s
allowed-link network is updated such that vr,c has no outgoing edges. Because of
the auto-linking rule (see Section 2.1.3), one or more links are considered to be
placed if there are white pegs at a knight-jump distance of one. White’s allowed-
link network indicates if a considered link is allowed. The placement of a link
is represented by an edge between the corresponding vertices on White’s link
network. Placed links are removed from White’s allowed-link network. Black is
not allowed to cross the placed link. Therefore, all link-crossing allowed-links
are removed from Black’s allowed-link network. Figure 6.6(a) shows an example
board position. White has one link in each corner and has one unlinked peg in
the middle of the board. Figure 6.6(b) shows the connections that are going
to be removed from Black’s allowed-link network. Figure 6.6(c) shows Black’s
allowed-link network after all link-crossing allowed links are removed. We do
not show the source and target vertices and do not show the source and target
connecting edges for clarity reasons.

6.4 Network Feature Extraction

We use network search algorithms to extract features from the network repre-
sentations of TwixT board positions. Extracted features include: shortest-path-
weight, maximum flow, game termination, and board dominance.

6.4.1 Shortest-Path-Weight Feature

The shortest-path-weight feature expresses a player’s minimal number of re-
quired link placements to win the game. We explain the shortest-path-weight
metric from White’s perspective. White’s shortest-path weight is extracted from
White’s combined network with weight function wtravel (see Subsection 6.2.3).

The weight of a path, p = v1 → v2 →, . . . , vk−1 → vk, is defined by

w(p) =
k−1∑
i=1

w(vi, vi+1). (6.6)

The shortest-path weight from s to t is defined by

ShortestPathWeight(s, t) = min{w(p) : p is a path from s to t}. (6.7)

Typically a breadth-first search (BFS) is used to find the shortest-path
weight in a graph if the graph is a uniform-cost digraph. Dijkstra’s shortest-
path algorithm is typically used when the graph is a weighted digraph. White’s
combined network is not a uniform-cost digraph, but it is a special case of a
weighted digraph, because all edges are binary weighted. This property has
implications for the breadth-first-search algorithm and the Dijkstra’s shortest-
path algorithm. A basic implementation of BFS cannot deal with the fact that
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(a) A 24×24 board board position with four links
and an unlinked peg.

(b) Black’s unallowed links.

(c) Black’s allowed-link network.

Figure 6.6: A 24×24 board position with four links and an unlinked peg (a), Black’s
unallowed links (b), and Black’s allowed-link network (c).
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there are edges with weight 1 and edges with weight 0. Dijkstra’s shortest-
path algorithm is an overdesigned solution for finding a shortest-path weight
in a combined network, because it takes into account the possibility of differ-
ent edges having various non-negative weights while edges can only be binary
weighted. An extension of the standard BFS overcomes the limitations of not
being able to deal with edges of weight 0 or 1. The extension is straightforward,
but the basics of BFS have to be clear in order to understand the small change
in the algorithm.

The basic BFS algorithm 6.1, as shown in Algorithm 6.1, uses a First-In-
First-Out (FIFO) queue Q. All vertices v ∈ V store the currently known dis-
tance to the source d[v] and d[v] is initially set to∞. The source vertex is added
to the empty FIFO queue and its known distance to the source is set to 0. As
long as the queue is not empty, the BFS repeatedly dequeues the first vertex
from Q to be visited and performs a relaxation step on all non-visited adjacent
vertices. (The relaxation step is labelled as (i) in the pseudo code.) The relax-
ation step of an adjacent vertex includes: updating the known distance to the
source; checking if the target is reached; and, if the target is not found, putting
the vertex at the end of the queue to be visited later. The search terminates
when the target is found or when the queue is empty. The BFS returns the
target’s known distance to the source.

Algorithm 6.1:Breadth-First Search()

for each v ∈ V

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[v]←∞
d[s]← 0
Enqueue(Q, s)
while Q �= ∅

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u← Dequeue(Q)
for each v ∈ Adj[u] (i)

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if d[v] =∞

then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d[v]← d[u] + 1
if v = t
then return (d[v])

else
{
Enqueue(Q, v)

return (∞)

Extended Breadth-First Search

We extended the BFS by changing the relaxation step of the algorithm to over-
come the limitations of not being able to deal with edges of weight 0 or 1. We
changed the position where a relaxed vertex is added in the FIFO queue when
the target is not reached. An adjacent vertex is placed at the end of the queue
when it is connected by an edge with weight 1. This corresponds to scheduling
the vertex to be explored at a later stage of the search. An adjacent vertex is
placed in front of the queue when it is connected by an edge of weight 0.
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For the ordering of Q in a BFS the following holds: If vertex v comes after
u in Q it implies that d[v] = d[u] or d[v] = d[u] + 1. The placement of vertices
reachable with edge weight 0 at the front of Q does not violate the ordering.
The placement of vertices reachable with edge weight 1 to the end of Q also
doesn’t violate the ordering. This proves that Q remains properly ordered with
the vertex placement as described above.

The distance updating happens as follows. When a neighbouring vertex is
reachable by an edge with weight 1, then its new distance becomes the minimum
of its old known distance and the known distance of the currently visited vertex
plus 1. When a vertex is reachable by an edge with weight 0, then its new
known distance becomes the minimum of its old known distance and the known
distance of the currently visited vertex. Our implementation also keeps track of
the parent vertex.

Dijkstra’s shortest-path algorithm [18] is assumed to be known to the reader.
The difference between the Dijkstra’s shortest-path algorithm and extended BFS
is that Dijkstra’s shortest-path algorithm uses a priority queue instead of a FIFO
queue, and that the relaxation step is slightly different. Initially all vertices are
placed in the priority queue with a known distance to the source set to +∞.
During the relaxation step the known distance is updated and if the target is
not found the priority queue typically has to be reordered based on the known
distance to the source. As we have shown, there is no need for reordering;
therefore, we have a small improvement using the extended BFS algorithm.

6.4.2 Maximum-Flow Feature

The Maximum flow feature expresses a player’s freedom to travel from side to
side. “The maximum flow problem is to find a feasible flow through a single-
source, single-sink flow network that is maximum” [18]. White’s maximum flow
is extracted from White’s combined network. Two weight functions are used,
w1 and w2.

The maximum flow can be found by using the Edmonds-Karp algorithm
[18]. The algorithm is very straightforward. A copy of the combined network
is created to serve as a residue network. Repeatedly, a shortest path from s
to t is determined (using the travel weighting function wtravel) and extracted
from the residue network until there is no path between s and t. After an
augmenting path is found, all path edges with a capacity of 1 are deleted from
the residue network. The path edges with infinite capacity are not deleted. The
number of shortest paths found determines the maximum flow. Special caution
is required concerning path selection, because different path-selection strategies
might lead to a different number of augmenting paths to be found. We remove
paths according to a strategy where a shortest path with vertices closest to the
target is selected.

6.4.3 Game-Termination Feature

The game termination feature indicates if a game is a draw, a win for White, a
win for Black, or still in progress. The game is a draw if both players are unable
to make an uninterrupted chain of links between the corresponding sides. In
terms of networks: a board position is a draw if for both players no path exists
from s to t in the corresponding combined network. The existence of a path
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between s and t is checked with an informed depth-first search. Our ‘informed’
version of a DFS inserts adjacent vertices into an ordered priority queue with an
increasing Euclidean distance order of vertices in the queue. Figure 6.7(b) and
Figure 6.7(c) show the combined networks for White and Black respectively for
the drawn position (Figure 6.7(a)) that we have seen in Chapter 2 (see Figure
2.2). Both figures illustrate that a drawn position leads to a failed search for a
path from s to t on White’s combined network and Black’s combined network.

A win for a player can be checked strictly or softly. For White the game is
won in a strict sense if there is a path from s to t in White’s link network. There
is a ‘soft’ win for White if there is no path from s to t in Black’s combined link
network. A soft win does not have to be a strict win because White, the soft
winning player, might not have connected to the border rows. Connecting the
border rows is normally a formality but it is not always possible. There is an
exceptional situation where Black, the soft losing player, cannot move because
there are no legal moves left. We declare such a situation as a win for White
and use the soft win condition in our AI players. An informed depth-first search
based on the Euclidian distance to the target checks for possible paths between
sides for White and Black. If the game is not a draw, not a win for White, and
not a win for Black, then the game is still in progress.

6.4.4 Board-Dominance Feature

The board dominance feature expresses if a player can travel between the cor-
responding opposing sides via owned dominant gaps. Section 3.2 explains the
concept of board dominance, and Delaunay Networks are explained in Subsec-
tion 6.2.4. In network terms: a board is dominant for White if White has a
path from source to target in the Delaunay network. The existence of such a
path is checked with a best-first search. If a board position is not dominant for
White, then it is dominant for Black.

6.5 Chapter Conclusions

This chapter explained how networks are used in computer TwixT. A short
introduction to network theory clarified the terminology and concepts used
throughout the rest of the chapter. We have explained the following four types
of networks: link networks, allowed-link networks, combined networks, and De-
launay networks. Two different edge-weight functions are expplained. The first
weight function models travel costs between vertices and the second flow capac-
ity between vertices. Network-topology update rules change the topology of the
network board-representations according to TwixT linking rules. Search algo-
rithms extract features from the network board-representations. We explained
how we extract the minimal number of links for a player to win the game, ex-
tract the maximum flow of a player, and how to check for game termination
and board dominance. Edges are binary weighted by the travel cost weighting
function, which means that the weight of an edge is either zero or one. We
extended the relaxation step of a normal breadth-first search to allow binary
weighted edges.
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(a) A drawn TwixT position.

(b) White’s combined network.

(c) Black’s combined network.

Figure 6.7: A drawn TwixT position (a), White’s combined network (b), and Black’s
combined network (c).
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Chapter 7

Experiments and Results

In this chapter, we measure the effectivity and efficiency of known
search techniques and game-specific knowledge.

Chapter contents: Experiments — Experimental Design, αβ Player Experiments,

Monte-Carlo Player Experiment, Player Effectivity Experiment, Chapter Conclusions.

7.1 Experimental Design

Our approach is to implement combinations of game-specific knowledge and
known game-tree search techniques in AI players. The AI players are tested on
effectivity and efficiency. A TwixT simulation environment implements TwixT
computer rules (Subsection 2.1.3) and supports automated play between two
AI agents. Automated game playing takes place on an 8 × 8 TwixT board
and both players conform to a game playing time of 10 minutes per player per
game. The time scheduling per move for both players is based on the player’s
remaining time in the game divided by 4. The time scheduling allocates more
time to the first moves. We implemented two types of AI players. The first AI
player is an αβ player. The implemented αβ enhancements include: iterative
deepening, history-heuristic move ordering, board-dominance move ordering,
and the use of a transposition table. We use network search algorithms to
extract features from network board-representations. Extracted features from
the network include: shortest path weight, maximum flow, board dominance,
and game termination (see Section 5.2). The board-dominance feature is used
for move ordering, and the other features are used in the evaluation function.
The second AI player is a Monte-Carlo player.

The effectivity of an AI player is measured by the win statistics from 100
simulated games versus other players. The effectivity of an AI player is made
explicit by looking at the decision-making process. We test which combination
of techniques leads to the best αβ player, and subsequently we evaluate if the
strongest αβ player wins versus the basic Monte-Carlo player.
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7.1.1 Board Size

Our choice of testing on an 8 × 8 board deserves some explanation. Testing
on efficiency and effectivity of TwixT AI players on large boards has severe
disadvantages. Large boards require more moves by both players to finish a
game. The requirement of playing more moves within a constant time frame
leads to less calculation time per move on average. Large boards reduce the
look-ahead capability of a player, because on large boards there are on average
more possible response moves for each game state. Having less time to search a
larger space leads to bad playing strength. We want to allow playing strength
comparable to an amateur player and game play on a 8 × 8 board seems to
enable this. The drawback of playing on small board sizes is that they offer
little variance in gameplay, because board positions allow just a few reasonable
response moves.

7.2 αβ Player Experiments

Our αβ player uses the standard αβ algorithm with iterative deepening and with
the evaluation function as described in section 5.2.2. We add a randomized
number between 0 and 1000 to the evaluation function to prevent that the
games are deterministic. The randomized number is approximately 2% of the
evaluation value range.

7.2.1 Evaluation Function

We use the throughput of the evaluation function as an indicator of the effi-
ciency of the evaluation function. The throughput of the evaluation function is
measured by how many times the initial TwixT board can be evaluated within
one minute. The evaluation time of an initial TwixT board is the worst case
evaluation time for our evaluation function. Table 7.1 shows the number of
evaluated initial TwixT board positions for various board sizes.

Number of evaluated initial TwixT board positions per minute Board Size
63432 6× 6
22196 7× 7
6966 8× 8
3536 9× 9
1351 10× 10
728 11× 11
353 12× 12

Table 7.1: The number of evaluated initial TwixT board positions within one minute
for various board sizes.

7.2.2 Move Ordering

We test the impact on efficiency and effectivity of history-heuristic (HH) move
ordering (see Section 5.1.6), board-dominance (BD) move ordering (see Section
5.2.1), and board-dominance history-heuristic (BDHH) move ordering. BDHH
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is a combination of board-dominance move ordering and history-heuristic move
ordering. BDHH has a board dominant list of moves in front of a non-dominant
board list. Moves within each list are ordered based on their history-heuristic
value in descending order.

For each test we play 100 games between the αβ player with and without
move ordering.

Move Ordering Effectivity Results

Tables 7.2 - 7.4 show the win results of using HH, BD, and BDHH move ordering.

Winning player
Starting player αβ αβ with HH ordering

αβ 1 49
αβ with HH ordering 6 44

Table 7.2: Win results of the αβ player versus an αβ player with history-heuristic
(HH) move ordering.

Winning player
Starting player αβ αβ with BD ordering

αβ 15 35
αβ with BD ordering 15 35

Table 7.3: Win results of the αβ player versus an αβ player with board-dominance
(BD) move ordering.

Winning player
Starting player αβ αβ with BDHH ordering

αβ 0 50
αβ with BDHH ordering 19 31

Table 7.4: Win results of the αβ player versus an αβ player with board-dominance
history-heuristic (BDHH) move ordering.

We can conclude that the αβ player is most effective when it uses history-
heuristic move ordering. It is remarkable that the win/loss results of the best
player show more wins when the opponent starts. It is also remarkable that the
BDHH player loses 19 games to the αβ player when it starts.

Move Ordering Efficiency Results

Tables 7.5 - 7.7 show the efficiency results of using HH, BD, and BDHH move
ordering.

We can conclude that the αβ player is most efficient when it uses history-
heuristic move ordering.
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αβ αβ with HH ordering
Depth Nodes Time (ms) Nodes Time (ms)

1 46 257 46 288
2 992 5936 298 1462
3 11885 65385 4000 21993

Table 7.5: αβ player history-heuristic move ordering efficiency results.

αβ αβ with BD ordering
Depth Nodes Time (ms) Nodes Time (ms)

1 46 274 46 327
2 975 5930 622 5466
3 13211 72784 8884 70629

Table 7.6: αβ player board-dominance (BD) move ordering efficiency results.

αβ αβ with BDHH order-
ing

Depth Nodes Time (ms) Nodes Time (ms)
1 46 269 46 334
2 981 6014 331 3608
3 13114 70784 4668 37637

Table 7.7: αβ player board-dominance history-heuristic (BDHH) move ordering ef-
ficiency results.

7.2.3 Transposition Table

We test the efficiency of using a transposition table by looking at the differences
between an αβ player with and without transposition table while allowing a
player to determine the best move within one hour. The tested position is
the initial board position, and the evaluation function does not have an added
random number. We use a transposition table with 131.072 (217) entries and
both players use history-heuristic move ordering. Table 7.8 shows that less time
is required to complete a search at a maximum depth when using a transposition
table. Less nodes are visited, because previously stored evaluation results are
used.

αβ HH with transposi-
tion table

αβ HH

Depth Nodes Time Nodes Time
1 49 469 49 453
2 189 1187 189 1172
3 2735 19219 3906 27453
4 36943 191844 50168 253844
5 215766 1021640 593984 3000891

Table 7.8: The efficiency results of the αβ HH player with and without transposition
table.
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7.3 αβ Player versus Monte-Carlo Player Exper-
iment

A player’s effectivity corresponds with the game playing strength versus other
players. We tested the αβ player with history-heuristic ordering and transposi-
tion table versus the basic Monte-Carlo player by playing 100 matches. Table
7.9 shows the win results of the αβ player versus the basic Monte-Carlo player.
The Monte-Carlo player has an average simulation performance of 77.654 sim-
ulations per minute, and on average 24 random moves are needed before the
game terminates.

Winning player
Starting player αβ with HH and TT Basic Monte Carlo

αβ with HH and TT 46 4
Basic Monte Carlo 34 16

Table 7.9: Win results of the αβ player with history heuristic (HH) and transposition
table (TT) versus the basic Monte-Carlo Player.

We can conclude that the αβ player with history heuristic and transposition
table is much stronger than the basic Monte-Carlo player.

7.4 Chapter Conclusions

In this chapter we measured the effectivity and efficiency of known search tech-
niques and game-specific knowledge. We explained the experimental design,
have shown the results and interpreted the results. The experiments showed
that with our experimental setup the αβ player with history heuristic and trans-
position table is most efficient and effective for computer TwixT.
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Chapter 8

Conclusions

The aim of this research was to investigate how a computer program
can be written that plays the game of TwixT as efficient and effec-
tive as possible.

Chapter contents: Conclusion — Research Questions Revisited, Problem State-

ment Revisited, Future Research.

8.1 Research Questions Revisited

We revisit each of the research questions from section 1.2:

Research Question 1: What game-specific knowledge used by human players
is applicable to computer TwixT?

Chapter 2 contributed to the acquisition of game-specific knowledge that needs
to be represented in a TwixT playing program. We described the official rules,
the pen and paper version rules, and a rule set for computer TwixT. Our com-
puter TwixT rule set adopts the TwixT PP rules with an added auto-linking
rule. We examined strategic and tactical TwixT knowledge that is used by ex-
pert players. Human players estimate a board-position’s utility value based on
a complex interaction between many interrelated features that cannot be easily
extracted by a computer. The strategic and tactical heuristics work under spe-
cific conditions, but it is unclear how these heuristics can be effectively combined
and implemented in a TwixT playing program. Accurate predictive evaluation
of a board-position’s utility value requires a deep look-ahead capability. The
look-ahead capability is limited in TwixT, because of the many possible contin-
uations of a game for each board position.

Research Question 2: What can we learn from research that is related to
TwixT?

Chapter 3 investigated research in similar games. Research on the connection
games Hex, Bridg-It and the Shannon Switching Game showed that network
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board-representations can evaluate the game state. Section 6.2 explains the
network representations that we use in computer TwixT. We have also seen
how network topology update rules can model the underlying game mechanics.
Section 6.3 explains how network topology update rules capture TwixT link-
ing rules. Anshelevich’s Hex evaluation function considers how much closer a
player is to building a winning chain than the opponent is to building a winning
chain. Anshelevich’s Hex program Hexy measures player distances by the total
resistance in a player’s electrical-resistor-circuit board-representation. Jack van
Rijswijk’s Hex playing program Queenbee uses the ‘two-distance’ to measure
player distances in a player’s network board-representation. Our TwixT evalu-
ation function is inspired by their work (see Section 5.2.2).

Research Question 3: What is the complexity of TwixT?

Chapter 4 contributed to the determination of the position of TwixT in the game
space. We calculated the number of possible peg configurations on the board to
be 10140, which is a lower bound of the state-space complexity. The game-tree
complexity is estimated to be 10159. The state-space and game-tree complexity
make TwixT belong to the highest category in terms of complexity. This means
that TwixT is unlikely to be solved in the near future. If the complexity would
have been low, then we could have sufficed with a pure search-based approach
for computer TwixT. It is evident that an approach to computer TwixT must
add game-specific knowledge. A comparison with other games shows that the
state-space complexity of TwixT potentially exceeds all other shown games.
The game-tree complexity of TwixT is above average compared to those games.
The short average game length of TwixT indicates that probably many games
can be played with Monte-Carlo simulations.

Research Question 4: How can we efficiently and effectively combine game-
specific knowledge and known game-tree search techniques in a TwixT AI player?

Chapter 5 focused on how to combine known game-tree search techniques and
game-specific knowledge in an approach for computer TwixT. Our approach on
combining game-tree search techniques and game-specific knowledge is to im-
plement combinations in AI players. We described game-independent game-tree
search techniques that are commonly used in two-player zero-sum games with
perfect information. We described two types of AI players. The αβ player, uses
a minimax decision strategy for move selection. Selected game-independent en-
hancements for αβ include: iterative deepening, history-heuristic move ordering,
and using a transposition table. The second type of AI player, the Monte-Carlo
player, uses a one-ply search and selects the best move based on statistical
win/draw/loss statistics of many randomly played games.

We also described how game-specific knowledge can be added. We described
how to order moves such that moves that lead to dominant board positions
are tried first. We explained how our evaluation function works. It uses three
features that all express the difference between player win distances. The first
feature looks at the difference between both players in the minimal required
number of links yet to be placed in order to win the game. The second feature
looks at the difference between both players in the number of shortest paths
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found from side to side. The third feature looks at the differences between both
players in an ordered list of path weights. All features require that a TwixT
board position is translated into a network representation. Network board-
representations are used to extract player distances. The usage of network
board-representations in computer TwixT is explained in Chapter 6. We also
mentioned how we enhanced the Monte-Carlo player. Basically, we reduced the
overhead of game-termination checks by postponing them.

Chapter 6 explained how networks are used in computer TwixT. A short
introduction to network theory clarified the terminology and concepts used
throughout the rest of the chapter. We have explained the following four types
of networks: link networks, allowed-link networks, combined networks, and De-
launay networks. Two different edge-weight functions are expplained. The first
weight function models travel costs between vertices and the second flow capac-
ity between vertices. Network-topology update rules change the topology of the
network board-representations according to TwixT linking rules. Search algo-
rithms extract features from the network board-representations. We explained
how we extract the minimal number of links for a player to win the game, ex-
tract the maximum flow of a player, and how to check for game termination
and board dominance. Edges are binary weighted by the travel cost weighting
function, which means that the weight of an edge is either zero or one. We
extended the relaxation step of a normal breadth-first search to allow binary
weighted edge

Chapter 7 focussed on the last research question: “How can we efficiently and
effectively combine game-specific knowledge and known techniques in a TwixT
AI player?”. The main focus was on measuring the efficiency and the effectivity
of the search process.

We explained the experimental design. Our approach is to implement com-
binations of game-specific knowledge and known game-tree search techniques in
AI players. The AI players are tested on effectivity and efficiency. A TwixT
simulation environment implements TwixT computer rules (Subsection 2.1.3)
and supports automated play between two AI agents. Automated game play-
ing takes place on a 8 × 8 TwixT board and both players conform to a game
playing time of 10 minutes per player per game. The time scheduling per move
for both players is based on the player’s remaining time in the game divided
by 4. The time scheduling allocates more time to the first moves. We im-
plemented two types of AI players. The first AI player is an αβ player. The
implemented αβ enhancements include: iterative deepening, history-heuristic
move ordering, board-dominance move ordering, and the use of a transposi-
tion table. We use network search algorithms to extract features from network
board-representations. Extracted features from the network include: shortest-
path weight, maximum flow, board dominance, and game termination (see Sec-
tion 5.2). The board-dominance feature is used for move ordering, and the other
features are used in the evaluation function. The second AI player is a basic
Monte-Carlo player.

The effectivity of an AI player is measured by the win statistics from 100
simulated games versus other players. The effectivity of an AI player is made
explicit by looking at the decision-making process. We tested which combination
of techniques leads to the best β player and subsequently we evaluated if the
strongest αβ player wins versus the basic Monte-Carlo player.

Experiments showed that, with our experimental setup, the αβ player with

61



8.2 — Problem Statement Revisited

history heuristic and transposition table is most efficient and effective for com-
puter TwixT.

8.2 Problem Statement Revisited

All answers to the research questions contributed to answer the problem state-
ment of Section 1.2:

How can a computer program be written that plays the game of TwixT as effec-
tively as possible?

Experiments show that, with our experimental setup, the αβ player with his-
tory heuristic and transposition table is most efficient and effective for computer
TwixT.

8.3 Challenges and Future Research

Our contribution to the domain of computer TwixT can serve as a basis for
further research. The main challenge for future research will be finding more
game-specific enhancements that lead to a higher effectivity and efficiency of AI
players.

Little enhancements can be made by tuning parameters. It would be in-
teresting to see how the αβ player plays with different player distance metrics,
edge weighting functions, augmenting path deletion strategies, evaluation fea-
ture weights, etc.

The real challenge is to find new methods that reduce the complexity or
enhance predictive evaluation in a time efficient manner. Our methods can be
taken as a basis, or as a source of inspiration, but they have to be extended to
allow for better playing strength and better performance on bigger boards.

Our implementation of board-dominance checking was not time efficient,
because the underlying board representation, the Delaunay triangulation, was
created from scratch after a move is played. We expect an increase in perfor-
mance of dominancy checking when the Delaunay triangulation is iteratively
updated.

The randomly played games during Monte-Carlo simulations lead to situa-
tions where all response moves are equally likely to be played. The Monte-Carlo
player’s view on the utility of a move gets seriously distorted, because response
moves in TwixT are not equally likely to be played. Assume that we create a
rule base with manually coded local patterns, where each pattern we defines a
probabilistic distribution of surrounding response moves. What would happen
if a basic Monte-Carlo player’s move selection is based on the local patterns?
More advanced Monte-Carlo simulation techniques, such as UCT [31], can also
be tested in the future.
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Appendix A

Matlab Code State-Space
Complexity

% Kevin Moesker
% MATLAB code for calculating the lower bound on the state-space
% complexity for TwixT.

% Note: I make an important assumption that there are only 50 pegs
% available for each player, and the placement of links is
% disregarded.

% common bookkeeping vars
n = 24;
borderBlack = (n-2) * 2;
borderRed = (n-2) * 2;
commonHoles = (n-2) * (n-2);

% init boardpositions to 0
totalBoardPositions = 0;

% the official rules state that there are 100 pegs total
% 50 black and 50 white

totalPegs = 100; % limit on the number of pegs 50 for each player

for j = 0: totalPegs
j % j is the number of considered pegs
% calculate the number of red and black pegs
if(mod(j, 2) == 0)
% we have even number of pieces

nrRedPegs = j / 2;
nrBlackPegs = j / 2;

else
% we have odd number of pieces

nrRedPegs = (j-1) / 2;
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nrBlackPegs = j - nrRedPegs;
end

% the number of pegs for black and red are known
% * determine the number of possible distributions over the
% three areas.
% (BlackOnly area - RedOnly area and Common Area)
% * determine the bounds for iteration over the blackOnly
% and redOnly area’s.
if(nrBlackPegs < borderBlack)

maxBlackcounter = nrBlackPegs;
else

maxBlackcounter = borderBlack;
end
if(nrRedPegs < borderRed)

maxRedcounter = nrRedPegs;
else

maxRedcounter = borderRed;
end

for i = 0: maxBlackcounter
% i number of pegs in blackOnly area
nrCombinationsBlackSide = nchoosek(borderBlack, i);
for z = 0: maxRedcounter

% z number of pegs in redOnly area
nrCombinationsRedSide = nchoosek(borderRed, z);
blackLeftForCombi = nrBlackPegs - i;
redLeftForCombi = nrRedPegs - z;
if(blackLeftForCombi + redLeftForCombi <= commonHoles)

nrCombiBlack = nchoosek(commonHoles,
blackLeftForCombi);

nrCombiRed = nchoosek(commonHoles -
blackLeftForCombi,

redLeftForCombi);
nrCombinationsCombiVlak = nrCombiBlack *
nrCombiRed;

extraBoardPositions = nrCombinationsBlackSide *
nrCombinationsRedSide *nrCombinationsCombiVlak;
totalBoardPositions = totalBoardPositions +
extraBoardPositions;

end
end

end
end

% MATLAB OUTPUT:
% totalBoardPositions 1.5987e+139
% In statespacecomplexity at 60
% Warning: Result may not be exact. Coefficient is greater
% than 1.000000e+015 and is only accurate to 15 digits.
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