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Summary

While pathfinding is an extensively studied field in computer games, planning the actual movements
to be performed while following the path is an open field to more in-depth research. Different vehicles
may require a different set of movement actions and may be subject to different physical limitations.
Following a path that was planned without considering optimal action selection and physical possibility
might produce visible movement artifacts, which in turn can be noticed by human players. Movement
artifacts may include abrupt movement and stopping, taking visibly too narrow corners and “glitching”,
i.e., performing sudden, unreasonable movement. Detecting irrational, impossible or simply uncanny
behavior easily triggers a repulsive reaction in the player, destroying believability of the game world,
and with it the created immersion. Believing in the game world and immersing into it is an important
concept in computer gaming; without it many games would lose their entertainment value. Minimizing
movement artifacts and providing life-like AI movement is thus a goal for computer games. Physical
movement planning is a technique to plan an optimal path while regarding physical possibility of actions
at all times, annihilating movement anomalies.

The problem statement is given as “In order to ensure believability of characters in a simulated
environment, current pathfinding techniques have to be modified to incorporate planning with physical
limitations of the controlled vehicle”. The two research questions answered in the course of the research
are “Can physical movement planning approaches provide additional depth in gaming by providing more
realistic movement?”, and “Can pathfinding techniques be enhanced to provide more realistic movement,
while still being computationally feasible?” by employing physical movement planning in a computer
game.

This thesis research examines the use of AI search techniques to plan a path in the physical state
space of a vehicle. Different discretization strategies are proposed for every state space variable, and
different state space representations are proposed for a variety of vehicles, including pedestrians and cars.
Two search algorithms are collaborating to find a path in the discretized physical state space. An initial
probing search step makes use of a greedy best-first search in order to quickly expand nodes towards the
goal. If the probing step fails to find a path, A* is used instead, utilizing the already expanded nodes as a
vantage starting configuration. Both algorithms make use of a heuristic evaluation function guiding them
towards the goal. The proposed heuristic evaluation function incorporates Pinter’s method to calculate
shortest trajectories for vehicles with a turning radius, but is extended to regard velocity and acceleration
limits to calculate the traversal time.

The resulting approach is called aiPath. The search produces physically possible, shortest paths,
because only physically possible actions are considered in every node of the state space. Experiments
testing the quality of the heuristic evaluation function and the generated paths are performed and their
results analyzed. An integration into a game making heavy use of open street traffic, Emergency 5,
provides detailed results in a real-life scenario. aiPath is used as a local planner for EM5, improving
curve shapes and ensuring physical possibility of the paths generated by the EM5 pathfinding system.

The integration into Emergency 5, as well as comparisons to other approaches and qualitative analysis
of the results answer the research questions.
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List of Terms

A* is a heuristic search algorithm to find the shortest path on a graph, see also Subsection 2.1.1.

Dijkstra’s algorithm is an algorithm to perform an uninformed search on a graph, see also Section 2.1.

EM5: short for Emergency 5, an open-world disaster simulation game presented in Section 1.3.

Euclidean Distance is the distance between two points as obtained with a ruler, or “as the crow flies”.

Heuristic or a heuristic evaluation function, is a function providing an estimate of expected costs.
Section 5.4 provides more detail.

IDA* or Iterative Deepening A* is an A* variant designed to use lower amounts of memory by
iteratively deepening the search horizon.

Open Street Network is a connected set of roads, like commonly given in urban situations, as opposed
to racetracks with just one possible traversal route.

Path Following describes a procedure invoked every simulation step to move an entity along a path.
Different levels of realism are possible.

Path Quality is a rather subjective measure of path realism, as opposed to the objective measure of
path length.

Pathfinding is a technique to obtain a possible sequence of waypoints in order to reach a goal. Typically,
this is achieved by graph search algorithms.

Search Graph is typically an abstraction of a more complicated space to enable efficient searching.

State Space is a description for the set of all possible states an object can have.

Uncanny Valley or the Uncanny Valley Effect is a description for a sudden reduction in acceptance
towards simulated humans if they behave quite, but not exactly like humans [36].
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Chapter 1

Introduction

Movement planning is a technique to schedule movement actions in a way so that
the resulting movement fulfills certain constraints, regarding physical possibility
or aesthetic criteria. This thesis presents aiPath, an approach to plan short-
est paths that do not violate physical constraints. It uses the well-established
search algorithm A* to find a shortest path in the physically constrained state
space of a vehicle.
Video games, becoming increasingly more realistic simulations of a wide array
of real-life scenarios, provide a growing domain for AI research, most impor-
tantly intelligent movement [34]. Physically correct movement helps preserving
immersion in simulated environments and creates feasible paths in real-world
situations. This chapter provides an introduction to the topic of movement
planning and shows its use in video game AI and real world applications.

Chapter contents: Introduction to the topic of constrained movement planning and areas of use.

1.1 Pathfinding and Movement Planning

This section introduces the key techniques in the field of pathfinding and movement planning. It discusses
the differences between finding the shortest path and finding the optimal sequence of actions, and why
the latter provides a significant improvement in observed path quality.

1.1.1 Pathfinding

Pathfinding is a common AI technique to find the shortest route between two nodes, a start node and
the goal node, on a graph representing a physical environment [44]. In order to find the shortest route,
costs are assigned to edges of the graph, and search algorithms are subsequently used to find a path
from the start to the goal node. A path consists of a list of nodes that have to be visited in order to
reach the goal. Notable search algorithms are (depth-limited) depth first search, Dijkstra’s algorithm
[16] and heuristic search algorithms such as A* [23] and IDA* [29]. To find a path in a physical world
representation, the physical space is converted to a search graph, which is then searched on; nodes on
the resulting path are re-translated into the spatial world representation. Pathfinding is widely used in
computer games AI, producing paths for user controlled units or AI opponents [34]. Another domain
making heavy use of pathfinding is movement in robotics [10]. However, pathfinding is not restricted to
work on spatial worlds. Other areas of use include packet routing in networks, where the search graph
corresponds directly to the network structure.
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1.1.2 Movement Planning
Pathfinding only provides a list of nodes to be traveled in order to reach a goal, but no detailed instructions
what actions to perform in between each two nodes. A separate path following algorithm can be used in
order to convert a path into a sequence of movement instructions. Alternatively, a movement planning
algorithm can immediately search on the space of available actions, producing a sequence of actions
required to achieve the goal. If at any time during path traversal, multiple different actions with varying
effects are available, some kind of movement planning is required to appropriately select actions. In
sophisticated computer game movement procedures, ducking and jumping might be planned at certain
points on the path. For a parking assistant, selecting a gear and steering angle are actions that have to be
planned in order to maneuver a car into a parking space. While selecting a movement action during path
traversal is possible, an optimal sequence of actions is only guaranteed if the whole path is considered.

1.1.3 Motion-Constrained Path Planning
While movement planning already provides the appropriate action to be executed at any given point in
time, until the goal state is reached, planning actions based upon an already planned spatial path may
pose certain problems. For example, the shortest path between two points in space might be physically
impossible for a vehicle to follow. Figure 1.1 provides two examples of a shortest path that is impossible
for the vehicle to follow, and one feasible shortest path. Post-processing techniques can improve the
feasibility of spatial paths, but only up to a certain extent [34]. In order to find the shortest path
regarding all physical limitations of a vehicle, a movement planning algorithm has to find the shortest
spatial path, such that each two consecutive nodes are physically possible to traverse. This process is
also called physical path planning, or motion-constrained path planning, if arbitrary constraints are to
be met.

Physical path planning is widely used in robotic applications [39]. Computer games, however, often
strip this expensive extra realism in favor of computationally cheaper approaches, taking into account the
risk that the resulting behavior might be suboptimal. Paths are often post-processed in games; giving
them a mere appearance of physical correctness [8]. Nevertheless, post-processing cannot fix physically
infeasible paths, and thus players can notice these fallacies.

a b a b a b

Figure 1.1: A vehicle planning to move from a to b. Left: Shortest path on a grid. Middle: Shortest path
after path smoothing or obtained through any-angle path planning. Right: The only feasible path concerning
the physical restrictions of the vehicle.

1.2 Game AI
This section distinguishes game AI designed to be a strong opponent from AI that was specifically designed
to be entertaining. It furthermore focuses on movement in games, and provides an overview about game
AI techniques commonly used for navigation, pathfinding and path following. It discusses the importance
of AI behavior which is understandable by the player for an immersive gaming experience.

In a certain subset of games, an AI opponent is desired to play the game as challenging as possible.
These are typically games in which a human player can outperform state-of-the-art AI, such as Go [51].
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In other cases, such as when an AI is capable of outplaying humans by far, an opponent mimicking the
skill level of the human player is desired [30]. Many video games are designed to tell a story rather than
modeling an intelligent opponent. In these games, AI functions to bring the simulated environment to
life [37][47].

1.2.1 Video Game AI Goals

Video game AI has a main purpose: to entertain the player. A key component in entertainment is
generating a believable game world. In order to achieve more realism, sophisticated graphics and physics
engines are used. Developments in CPU architecture, away from monolithic, high performance CPU
cores towards multi-core machines and their intrinsic capability of performing multiple different tasks
at once, have led to an increase of available computational resources for AI as well. AI aids generating
an immersive gaming experience in two ways. For once, more believable computer opponents or allies
can be simulated. Secondly, AI is used to provide seamless background action, making a game world
appear alive. Players can easily identify with the character they are playing, and thus, they provide an
overall acceptance of game graphics; i.e., a computer controlled character looking like a human controlled
character might be accepted as the character of another player, or, more generally, as an authentic
piece of the world. If however small, but inexplicable, faults in the behavior of a computer controlled
character are noticed, suspicion rises and the AI character quickly falls victim to the uncanny valley effect,
which triggers a rejective attitude in the player [4][36]. Believability of the game world and immersion
are quickly destroyed, and the gaming experience suffers [12]. Serious games, while not designed to be
entertaining, but rather to convincingly present real-life scenarios, rely on the fact that players have
to identify with characters in the simulated environment, and thus take playing the game seriously.
Destroying the immersion in a simulated environment might ruin its applicability as a serious game. As
most games make use of some kind of motion, generating believable movement is an important prerequisite
for generating believable game worlds. AI character movement should ideally appear equal to human
controlled character movement. Realistic AI movement is therefore a key component for preserving overall
believable characters and games [50].

1.2.2 Movement Techniques in Games

Typically, computer games make use of spatial pathfinding to produce paths. These paths are then com-
monly postprocessed by algorithms like path smoothing to look more realistic [8]. In order to achieve
the AI agent actually following the path, another post-processing step transforms the sequence of way-
points to a sequence of actions. This transformation is typically done just-in-time during path execution,
and is called path following. Path following is commonly combined with other, collision-preventing or
purely cinematic navigation approaches to a dedicated steering system, which weights different desires
and produces an actual movement [34]. Naive implementations, like a simple interpolation in between
waypoints, make use of a stateless path following algorithm, which may take some, but certainly not all
physical limitations of a vehicle into account. More sophisticated steering approaches plan ahead on the
path, calculating the optimal speed at any time, or giving at least the impression, like the “chase the
rabbit” path following variant, shown in Figure 1.2, as described by Millington [34]. However, all these
systems fail to accurately incorporate physical limitations, as this cannot be achieved by a post processing
step. It is also to be noted that the most commonly described approaches are only applicable for ground
based vehicles. Figure 1.3 displays visual path improvement by post-processing, but the technique cannot
produce a physically possible path for the vehicle.

A certain amount or error tolerance is innately present in computer games for their entertainment
value. This also allows players and AI to reach goal points within a certain radius, and still be considered
to have arrived at the specified location exactly. Tolerances like these have to be known to the AI in
order to exploit them the same way a human player would do. However, tolerances and their subse-
quently introduced errors may also harm the believability and integrity of the game world. For serious
or simulation type games, tolerances should be kept as low as possible. Providing state-of-the-art AI
techniques in games with acceptable resource consumption may bridge the gap between academic AI and
AI in games [6].
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Figure 1.2: Chasing the rabbit: The vehicle is attracted towards the blue circle ahead on the path. The originally
planned, red, path is smoothed and a trajectory like the blue one is generated.

a b

Figure 1.3: Path post-processing can generate more visually pleasing paths, however, these approaches can neither
guarantee shortest paths nor physical correctness.

1.3 Emergency 5
Emergency 5, abbreviated EM5, is an upcoming title of German game development studio Promotion
Software, and the latest successor in the Emergency series [46]. The gameplay in the Emergency series
revolves around micromanaging emergency services in different catastrophe and accident situations, for
example distribute firefighters over several burning buildings and assigning rescue personnel to individual
civilian units. While EM5 is meant to be a game for entertainment purposes, it is located on the boundary
of serious games and disaster simulation, with high-fidelity graphics and realistic level design to provide
an immersive experience. EM5 features large, open world street maps resembling major German cities.
Playing the game, the user sends individual commands to rescue personnel, which the game AI in turn
realizes by performing movement, playing animations and modifying the game world. Another essential
task for EM5s AI is providing ambient entertainment. The game world should be filled with pedestrians,
commuters and bystanders, all of which should behave in a natural way. Figures 1.4 and 1.5 provide
examples of ambient behavior generated by the AI. Furthermore, vehicular traffic should populate roads
in a realistic manner. For vehicular traffic, this means following traffic laws, avoiding accidents and, in
general, submit to physical constraints that are not enforced, yet should be followed. As the gameplay
features disaster scenarios, blocked roads or even whole city blocks should be circumnavigated believably,
that is, vehicles should not appear to be all aware of the whole map, but merely a smaller region around
them.
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Figure 1.4: A crowd of bystanders gathering near an accident site in EM5. The debugging grid to measure in-game
distances is activated.

Figure 1.5: AI providing ambient micro-actions to simulate a living game world, like moving birds, pedestrians
using cell phones and bike unlocking before usage.
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EM5s vehicular movement system makes use of lane graphs, which represent the center lines of each
lane on the street network. Figure 1.6 illustrates an example of lane center graphs in an intersection.
The pathfinding system plans paths on this representation, providing a sequence of straight and circular
segments. While following this path, a steering component ensures that the vehicle moves with the
maximally sustainable speed, but still respects speed limitations from traffic laws. Collision prevention
and priority rules are partially implemented through a reservation system, exclusively or collaboratively
reserving lane segments for one or more vehicles at a time. Temporarily blocked lanes, e.g. a road segment
in use by an emergency vehicle, should not be entered. Planned arrival and departure times are taken
into account when reserving lane segments in order to achieve higher realism.

Figure 1.6: Street and sidewalk navigation graph obtained from lane centers. Paths obtained from this structure
have to be smoothed in order to look realistic.
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1.4 Problem Statement
From above sections one can conclude that game AI techniques, though typically providing adequate
level of entertainment, fail to guarantee error free behavior. Users can discover faulty movement easily
in many cases, which might disrupt an immersive experience. The problem can be stated as follows:

In order to ensure believability of characters in a simulated environment, current
pathfinding techniques have to be modified to incorporate planning with physical lim-
itations of the controlled vehicles.

The main research question to answer is therefore:

Can physical movement planning approaches provide additional depth in gaming by
providing more realistic movement?

Additionally, highly computationally expensive, state-of-the-art AI techniques are typically not available
in computer games, due to the amount of resources spent for, among others, graphics and physics simu-
lation. This has led to the second research question, concerning the evaluation and optimization of the
computational efficiency of the approach.

Can pathfinding techniques be enhanced to provide more realistic movement, while
still being computationally feasible?

A method to search physically sound paths in a discretized state space description of the planning vehicle
is presented, aiPath. aiPath uses A* in the customary discretized physical state space of the vehicle to
find a physically correct path to any goal configuration. The underlying A* algorithm uses a customized
heuristic evaluation function to be able to search the state space efficiently. Comparisons of aiPath
to other state-of-the-art techniques, like using A* search with different heuristic evaluation functions
or using the pathfinding/steering ensemble in EM5, answer the first research question. As EM5 makes
heavy use of open street network traffic, an integration of aiPath into EM5 is used to answer the second
research question concerning the computational, and thus commercial, viability of the approach.

1.5 Outline
This outline concludes the first chapter of this thesis, indicating the problem statement and exploring
the research domain. Chapter 2 provides further, more in-depth information about the field of research,
explains algorithms and procedures and provides an overview of comparable work in the area. Chapter 3
presents the state space descriptions aiPath works on. Chapter 4 presents improvements to discretization
methods and heuristic evaluation functions, resulting in aiPath, a proposed solution to answer the
research questions. Comparisons of aiPath to existing approaches, qualitative and quantitative tests
are described in Chapter 5, furthermore, the results to all experiments are presented. Concluding this
thesis and answering the research questions, Chapter 6 reflects upon the results achieved during research
and analyzes them critically. Finally, further topics of interest and newly exposed research questions are
conglomerated.
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Chapter 2

Background

This chapter describes techniques evaluated and compared in this thesis. It
discusses searching algorithms, discretization measures to convert a continuous
domain to a search graph and how physical limitations of vehicles can be math-
ematically modeled and incorporated into the search algorithm.

Chapter contents: How to search on a graph and how to obtain a search graph from a simulated environment.

2.1 Search
Search is an intensively studied field in AI [44]. This section provides an overview of commonly used
search techniques. Most search algorithms operate on a search graph, iteratively expanding child nodes
of the currently selected node. Search algorithms return a set of nodes which, if followed one by one,
representing a path from the start node to the goal node. Figure 2.1 depicts a search graph with two
shortest paths. Simple search algorithms like breadth-first search and depth-first search perform an
exhaustive search on the whole graph, however, runtime and memory complexity does not scale well with
an increase in path length. Simple search algorithms also merely test for the presence of a path to the goal
node. Breadth-first search is guaranteed to find the path with a minimal number of nodes, when every
edge has a uniform distance. More sophisticated search algorithms are required to find shortest paths on
graphs featuring non-uniform edge distances. To provide a custom distance measure, connections between
nodes typically are assigned a specific cost, c, which should be considered during search. A minimum
cost path then corresponds to the shortest path using the custom measure. For spatial searches, that
is, searches on a graph with nodes representing points in space, Euclidean distance between the nodes
is an appropriate cost measure for edges. If traversal speeds should be considered, the traversal time is
to be preferred. Most commonly, Dijkstra’s algorithm and variants thereof are used to perform point to
point searches minimizing costs [16]. If minimal cost paths between one start node and all other nodes
in the search graph are desired, the Bellmann-Ford algorithm is preferred, cf. [9]. Dijkstra’s algorithm
is guaranteed to return the shortest path as long as no negative-weight edges are present in the search
graph; the Bellman-Ford Algorithm and the Floyd-Warshall Algorithm can handle negative edge weights
as well [9].

2.1.1 Informed Search
All presented search algorithms so far suffer from the naivety to expand all nodes on the graph until the
goal node is found. This includes many nodes not even close to the shortest path. In order to reduce
the number of node expansions, a heuristic evaluation function can provide an estimated distance from
any node to the goal node, h. As the heuristic introduces additional information beyond the realm of
the search graph, algorithms making use of it are called informed search algorithms. Using a heuristic
evaluation function typically reduces the number of nodes expanded, especially those farther away from
the shortest path. An easily obtainable and usually sufficient heuristic in spatial searches is the Euclidean
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Figure 2.1: A search graph. Edges are weighted by their costs of traversal, leaving {A, C, E} and {A, B, D, E} as
shortest paths from the start to the goal node.

distance between the positions corresponding to the current and goal nodes. A naive search algorithm
making use of heuristic evaluation is greedy best-first search, always expanding the child node with lowest
cost estimation. Greedy best-first search is very fast, however, depending on the heuristic function used,
it may not necessarily return the shortest path, if the heuristic value and true costs diverge at some point
[13]. A* is a search algorithm extending Dijkstra’s algorithm with a heuristic evaluation function [23]. It
is commonly used in video games pathfinding for its performance and simplicity of implementation. A*
keeps nodes which are encountered, but not yet expanded, in a structure called open list. This structure
is sorted by the estimated cost of the whole path, c+h. Each iteration, the smallest element e is removed
from the open list, all child nodes are added instead, and the original node e is added to the closed
list, a second container used to avoid re-opening already fully explored nodes. As A* keeps a list of all
previously expanded nodes, it may use up a significant amount of memory on larger graphs. Variants
like IDA* reduce memory usage in exchange for a higher run-time [29].

In order for A* to be optimal, the used heuristic function has to be admissible, i.e., must not overes-
timate the costs to the goal. Furthermore, consistency is a desirable property of the heuristic evaluation
function. The consistency constraint is fulfilled if the heuristic score decreases monotonically towards the
goal node.

2.2 World Representations

Some worlds are designed in a discrete way. For example, commonly used in education are the following
two simple examples; the vacuum cleaner world and the Wumpus-World, from the video game Hunt
the Wumpus [44]. As discrete worlds, each possible state can be mapped one-to-one onto nodes on
a search graph. Most board games, for example chess and checkers, are set in discrete environments
as well, which allow humans and computers to search for strategies and solutions in a more restricted
environment. Some video game genres, like turn-based strategy games, closely represent the board game
model, as they are modeled to be discrete in space and time as well. A main drawback of discrete game
worlds is the lack of realism, as humanly perceivable physical space and time is of continuous nature.
Measuring and visualizing continuous attributes on a board game is a difficult task, however, variables
can easily be measured and visualized as real valued numbers or charts on a computer screen. This
technological advantage allows for the usage of continuous game worlds in computer games.1 The search
techniques evaluated in the previous section only function in discrete domains, or those with a specially
featured search graph. This section discusses ways to transform continuous domains to discrete ones by
discretization.

1While the computer is still a finite machine, even floating point numbers are discrete representations of numbers,
however, the discretization is sufficiently fine to be negligible in most cases. Also, a search graph containing all possible
floating point values would be infeasibly large.
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A B

Figure 2.2: Vacuum cleaner world and a chess board: Two examples of discrete game worlds.

2.2.1 Grid Discretization
The possibly easiest method to discretize a continuous domain to a discrete one is done by rounding each
point in space towards the closest cell in an evenly spaced grid. Figure 2.3 shows how arbitrary points in
space are assigned to discrete cells. A search graph can be obtained from the grid by using the cell center
points are node positions in space, as also illustrated in Figure 2.4. Because a grid is evenly spaced, most
implementations allow random access on cells. Custom costs can be introduced by weighting cells. Being
simple to implement and flexible in usage, grids are commonly used in robotics maneuvering and game
world discretization [3][48]. Sparsely filled grids reserve great portions of memory to represent empty
cells. If random access is not a necessity, the grid can also be represented by a collection of only the filled
cells, reducing memory usage. While grid discretization provides good results describing physical spaces,
not all search spaces can be discretized well. If variables in a search space description are mutually
dependent, their relationship may be broken by the process of discretization. While the components
of position vectors are independent, direction vectors may fulfill additional constraints. For example, a
normalized direction vector may not have unit length after discretization any more. While the possible
error on an independent variable is at most the width of a grid cell, the error on dependent variables can
easily be higher. To avoid unexpected discretization artifacts, it is suggested to break down mutually
dependent variables to independent components.

Figure 2.3: A number of points in space assigned to their respective grid cells. Any position is now limited to cell
center points. Finer detail is lost.

Figure 2.4: Left: A grid with four inaccessible cells. Right: The search graph derived from the grid. All edges
are weighted the same.
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Remapping Continuous Domains. In certain cases, the world layout is not properly reflected by
a search grid. For example, representing a two dimensional ring structure by a two dimensional grid
may lead to longer searching times, as heuristics have to work around the occupied area in the middle.
Remapping such spaces to more uniform representations before discretization can aid in subsequent path
searches [43]. Figure 2.5 presents an example of a layout remapping. Remapping can also reduce empty
cell overhead in less densely blocked areas while increasing resolution in regions lacking it.

a
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f
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c d

ef

e

Figure 2.5: Remapping of a grid to better reflect the underlying geometry. Note that the Euclidean distance
between a and f is deceivingly low in the original version. The distance between cells a and f in the remapped
version models the path costs between them more realistically.

Variable Grid Resolution. For large, unevenly filled grids, investing most of the grid cells just do
describe empty space might be considered a waste of memory. Hierarchical fixed-resolution grids provide
a viable alternative to more complicated approaches [24]. Variable cell size and geometry can be obtained
by using variable resolution techniques such as a kD-Tree. More sophisticated approaches may even make
use of decision trees to map high dimensional state spaces efficiently [35].

2.2.2 Navigation Mesh
A navigation mesh, or navmesh for short, is a mesh, commonly triangular and two-dimensional, situated
in three dimensional space, providing an abstraction step between the world representation and a search
graph. Cost-intensive techniques generate a mesh that fits and follows the environment, leaving holes
where insurmountable objects prevent movement. Navigation meshes can be generated using Delaunay
triangulation [14], for which many improvements exist [15]. The search graph is subsequently obtained
from each shared edge producing a node connected to the other nodes on the same triangle. For sparsely
blocked game worlds, navmeshes typically produce smaller search graphs, which are easier to store and
faster to search on. Figure 2.6 provides an example of a navigation mesh and the resulting search
graph. For large simulated environments, hierarchical pathfinding like HPA* [5] can provide a significant
performance increase over non-hierarchical algorithms [31].
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Figure 2.6: Left: Red: A navmesh, describing the navigable areas in space. All free regions are included in a
triangle, and all triangles share one edge. Blue: a path between a and f , planned on the center points of shared
triangle edges. Path post-processing is required to provide a realistic path. Right: The corresponding search
graph. Note the reduction in number of nodes compared to a grid based approach.

2.3 Mathematical Background of Physical Constraints

This section presents common physical limitations that should be adhered in games, and their Newtonian
physics equivalents. Shown are acceleration and deceleration force constraints, linear speed limits, angular
acceleration and speed limits, plus some special limitations, as minimal turning radii or maintaining a
limited centripetal force. All physical constraints are swiftly explained for which vehicular types they
apply and of what significance they are. This section assumes usage of the SI-Units meters, kilograms
and seconds in the game world. Also, acceleration and deceleration coefficients a and d are always given
in positive quantities, acting as undirected forces.

2.3.1 Linear Acceleration

Linear acceleration is described by the force currently exerted on an object. This measure is often
expressed as g − force, with 1g being a equal to 9.80665 m/s2, which is the acceleration towards the
center of gravity of earth on sea level. Acceleration limits for unprepared humans are found at around
5−7g,≈ 50-70 m/s2, with symptoms such as loss of consciousness when exceeded [2]. Disregarding rocket
driven vehicles, typically, achievable accelerations are much lower. Not only the inertia of the vehicle has
to be overcome, also, the connection between the vehicle and the ground only provides a certain traction.
The amount of force generated vs. the amount of force acting on the ground is typically denoted by the
friction coefficient µ. A sports car, accelerating from 0 to 100 km/h in 3 seconds would then experience an
acceleration of 9.25925 m/s2. Deceleration forces may be higher, as they do not require engine generated
force to apply, but naturally, they also succumb to physical traction limits.

In games with relatively uniform surfaces, the friction coefficient may be kept constant for all surfaces,
and can effectively be incorporated into an acceleration limit of a type of vehicle. For games with distinct
off-track surfaces, or games with a wide array of surface types, possibly being affected by changing weather
conditions, modeling the friction coefficient explicitly may be a necessity.

Other factors such as air resistance affecting the maximally achievable acceleration are widely ignored
in this thesis. For airplane movement, these factors have to be taken into account. Also, certain racing
games might simulate increased air resistance at higher speed, as well as an additional downforce generated
by negative lift.

For a vehicle operating in n dimensions, typically 2n different acceleration limits can be derived.
These limitations are applied directed along the unit axes of the local coordinate system of a vehicle and
in their opposite directions. A vehicle may accelerate quickly straight ahead, but less quickly backwards.
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The formula for distance traveled while uniformly accelerating is given by:

s = 1
2
at2 + v0t (2.1)

Where v0 denotes the velocity prior to the acceleration procedure, and t denotes the duration of the
acceleration phase.

A second formula, describing the derivative of Formula 2.1, expresses the velocity gained.

vt = v0 + at (2.2)

Using these formulas, the time it takes to pass any distance with fixed acceleration and given initial
and target velocity can be calculated. In case both acceleration and deceleration are allowed as move-
ment action, or to calculate heuristics spanning a wider distance than the standard discretization step,
Formula 2.3 provides the relationship between optimal acceleration distance and deceleration distance
for given initial and target velocities and fixed acceleration and deceleration force.

s = sa + sd

asa − dsd = v2
t − v2

0
2

(2.3)

Using Formulas 2.1, 2.2 and 2.3, the time it takes to travel a predefined distance, with known ac-
celeration and deceleration forces and start and goal velocities can be obtained. Figure 2.7 illustrates
the geometric relationship of the variables. The traversal time calculated is used in Subsection 4.2.2 to
weight the distance heuristics, based on the current and goal point velocity and the acceleration limits of
the vehicle.
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Figure 2.7: A time/velocity diagram showing the relationship between the entering velocity, v0 at time t0, the
departure velocity after the segment is passed v1, at time t1. The slopes ∆v0/∆t and ∆v1/∆t represent the accel-
eration force a and the deceleration force d, respectively. The distance traveled is represented by the tinted area.
Using Formula 2.3, the traversal time t1 − t0 can be calculated, as all other variables are given.

amax

vmax

Figure 2.8: Linear acceleration limit amax and speed limit vmax for a car. As cars are able to move backwards,
the backwards acceleration and speed limits are nonzero.
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2.3.2 Linear Speed Limit
Typically, special relativity is not simulated in computer games, thus virtually no universal speed limits
exist. However, maximum engine output only allows a limited speed for vehicles. Humanoid characters
traveling on foot are obviously subject to speed limitations as well. Besides the maximum speeds, a
vehicle can reach, often a lower speed is desired, for example in simulated traffic environments. Here,
roads each may have a distinct speed limit, for example 50km/h or 13.88m/s.
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Figure 2.9: Time/Velocity diagrams with speed limit vmax. Left: vmax cannot be reached in the available
distance. Right: vmax is reached.

Incorporating a speed limit is straightforward. Depending on initial and goal velocity, two valid cases
can occur: Figure 2.9, left, presents the case in which the maximal speed cannot be exceeded on the
distance available. In this case, travel time is given by Formula 2.3.

The right half of Figure 2.9 displays the case in which maximal speed can be exceeded: In this case,
acceleration time and distance to attain the speed limit are calculated using Formula 2.1 and 2.2; as well
as distance and time needed to brake to the target velocity. The remaining distance is then calculated
to be traveled by the maximal speed allowed. Again, speed limitations may be depending on the local
orientation of the velocity vector. A car is typically able to drive faster forwards than backwards.

2.3.3 Angular Acceleration
A vehicle may be limited in the change of rotation speed per second. This not only concerns vehicle
types that are able to turn on the spot, like tanks, helicopters or humans but also vehicles like airplanes,
as for example rolling is a rotation around an axis within an airplane. Depending on the local axis of
movement, different angular accelerations may be sustainable for the vehicle and the pilot. Figure 2.10
shows the yaw, pitch and roll axes for an aircraft. Any rotation around one of these axes with limited
angular acceleration thus have to begun and ended slowly. As cars typically are not able to rotate in
place, this limitation is no further investigated in this research.

2.3.4 Angular Speed Limit
Akin to the linear speed limitation, angular speed can be limited for various reasons. From a purely
aesthetic point of view, humanoid characters should not turn in place unbelievably fast; also, nausea may
occur for any occupant of a fast spinning vehicle. A too high angular speed may even lead to centripetal
forces large enough to damage the vehicle. As before, vehicles are usually able to sustain angular speeds
better in certain directions than others.

2.3.5 Centripetal Acceleration
Except for moving in a straight line, a certain curvature of the path is inevitable. In these cases, without
centripetal force, an object’s momentum would simply keep the object on a linear trajectory. In order
to move in a circular way, a constant force pointing towards the center of the sphere is necessary, the so
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roll

pitch

yaw

Figure 2.10: Yaw, pitch and roll angles for an aircraft. Angular movement may be restricted for each angle by
both acceleration and turning speed limits.

called centripetal force. Centripetal acceleration for a circle with radius r is calculated with the following
formula:

ac = v2

r
(2.4)

Interaction between the variables concerning centripetal acceleration is illustrated by Figure 2.11. For
real vehicles, the available centripetal force is limited, limiting achievable turning radii in turn. For
ground based vehicles such as cars, centripetal force is limited by the available traction. Other vehicles
may only sustain limited lateral acceleration before damage is inflicted.

r

ac

v

Figure 2.11: Centripetal force ac, forcing a vehicle moving with velocity v onto a circular trajectory with radius r.
If ac was absent, the vehicle would continue moving in a straight line.
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2.4 Related Work
This section refers to similar approaches of movement planning and producing more realistic movement
in general from both academic and game AI.

2.4.1 Any-Angle Path Planning
Any-angle pathfinding is a cumulative term to describe techniques to find a shortest path between points
on a two-dimensional grid in a way such that the resulting path is not artificially constrained to the
grid coordinates in the plane. Being restricted to the grid coordinates, although all points on the plane
are theoretically possible, creates suboptimal and artificially looking paths. Commonly used strategies
to improve paths in games are path smoothing post-processing techniques like string pulling [41]. Post-
processing paths however is bound to improve upon a potentially suboptimal path, and may not reach
as good results as planning an any-angle path directly. Field D* [19], an extension to D* [49], and
Theta* [38] both are able to eliminate the artificial coordinate restriction during planning time using
linear interpolation between each node expansion or planning shortcuts to any successor node if a line
of sight check succeeds. Both however are not guaranteed to find optimal paths. Anya, a pathfinding
method inspired by the Continuous Dijkstra Algorithm, is designed to provide true optimal paths without
additional memory overhead [22]. Being able to traverse grids in a less artificially constrained manner
is vital for motion constrained pathfinding, however, existing any-angle pathfinding algorithms focus on
finding shortest distance paths only, disregarding possible angular constraints.

2.4.2 Motion Planning in Robotics
High dimensional state spaces occur whenever a robotic appliance features multiple joints. Planning in
these state spaces usually involves preprocessing and remapping input states [10]. A planned trajectory
is then commonly achieved by inverse kinematic calculations [33]. Other approaches produce a graph
of connecting collision free states in the configuration space of the robot, then use a planner to find
shortest paths on the generated graphs [27]. These methods perform efficiently even in high dimensional
spaces, however, they quickly become infeasible for non-stationary robots and dynamic environments [17].
Motion planning techniques for mobile robotics tend to plan a spatial path first, then employing a local
planner to generate a physically possible plan for the robot to follow. This approach is applied in the
Robot Operating System, ROS [52], using a Dynamic Window Approach local path planner [20]. Rather
than finding the shortest path, these local planners focus on steering robots regarding their physical
limitations and without hitting obstacles [28]. Alternatively, a spatial path may serve as heuristic for
a more complex state space search [32]. Recently developed algorithms in the field of unmanned aerial
vehicle control compute a coarse, roughly physically possible, shortest path first, then refine the path at
run-time using a local path planner [26]. While keeping a constant velocity, this approach is not unlike
the one presented in this thesis.

2.4.3 Racing Game AI
For racing games with a static racetrack, often an ideal racing line is pre-calculated during the track
design stage. The ideal racing line may include optimal velocities to be driven at any point. Also, as
different vehicle types can have different friction coefficients, maximal speeds and accelerations, multiple
ideal lines may be calculated, one per vehicle type. Commonly, domain experts sketch a rough outline of
the ideal line; iterated tests then provide information to optimize parameters manually or automatically
[7]. Racing under open street conditions faces the task to provide ideal racing lines for every possible
path through a street network of potentially lifelike dimensions. Here, instead of calculating actual racing
lines, center lines of straight road segments are supplied, as well as - potentially subdivided - circular
segments for curves [1]. Deviating from the center lines is allowed to a fixed degree, and shortest paths
are searched using standard AI search techniques, most commonly the A* algorithm [8]. Velocities are
calculated during path following, looking ahead as far as needed to securely slow down in order to stop
or drive safely along a circular segment. These techniques only generate locally optimal behavior, as
velocities and physical constraints are not taken into account during planning time. For background
AI populating the streets this might suffice, but in racing scenarios, more sophisticated approaches are
required.
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Chapter 3

Search Domain of AIPATH

This chapter describes the search domain aiPath operates in. Using an un-
derlying A* algorithm, aiPath requires a discrete representation of the state
space. State spaces of multiple vehicle types are presented.

Chapter contents: The state space description of various vehicle types.

3.1 State Space Description
In pathfinding techniques, only the represented position in space is included in each search graph node. In
order to plan a path according to physical constraints, the current physical state has to be added to each
node. Performing motion constrained pathfinding for a car thus implies that the vehicular orientation
and the velocity of the car have to be incorporated in each node in addition to the position in space. In
order to reduce the size of the search graph, a minimal state space description is desirable. For a surface
bound car, at least a two dimensional position vector, and an orientation angle is required to describe
the vehicle at rest. Assuming no loss of traction, the two dimensional velocity vector can be further
reduced by one dimension by projecting it onto the orientation of the car. Thus, a minimal state space
representation of a car can be described by a state space vector (x, y, ϕ, v), with x and y describing the
position on the plane, ϕ describing the rotational offset of the vehicle to the x-axis in an angular measure,
and v denoting the real-valued speed of the vehicle. The state space primarily used in this thesis and in
all experiments is thus a four dimensional one, with two spatial components, one rotational component
and the linear velocity of the vehicle.

As a car is not able to turn on the spot, and lateral forces are much higher than rotational accelerations
in a typically possible curve, angular speed, and therefore its change, are not considered. For other vehicle
types, the rotational speed would at least add another data field to the state, see also Subsection 3.1.1.

a

b
action

Figure 3.1: An action transforming the point a in state space to point b, altering position, velocity and orientation.

Possible actions in this state space are accelerating, decelerating, and changing the heading ϕ. Each
action can be executed for a time t, producing an altered state space (x′, y′, ϕ′, v′). Actions therefore
describe edges in the search graph. Not all actions are mutually exclusive, so multiple actions may be
executed at the same time, forming a composite action. Figure 3.1 shows an example of an action changing
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the state space vector, and Figure 3.2 shows an iteration of a node expansion in the state space. Some
actions, like accelerating and decelerating may cancel each other out, while other actions, like turning,
depend on the state space to have a nonzero velocity. The listed actions may all be executed with a
certain intensity, for example, an acceleration force a is bound by 0 and the maximal possible linear
acceleration force such that 0 ≤ a ≤ amax. For memory and run-time reasons, intensities should be
discretized so that only a limited subset of possible actions is explored. For child node generation, every
possible combination of actions and intensities is generated, with a fixed positional change of either 0,
−1 or 1 for both x and y. The time t required to execute the composite action is then calculated and
assigned to be the cost of performing this action. It is assumed that each action is performed for the
whole time t with uniform intensity.
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Figure 3.2: Expanding nodes in the vehicle state space. Acceleration and deceleration are performed with all
discretely possible values, and combined with all possible steering angles. Only one possible discretization value
is shown. Greyed out nodes are discarded after checking their validity – keeping zero speed is forbidden, as is
decelerating when standing still. The generated node network functions as search graph input for A*.
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3.1.1 Proposed Descriptions
This subsection presents proposed state space descriptions for a selection of vehicle types. Besides pedes-
trians and cars, EM5 contains boats and helicopters. Airplanes, tracked vehicles and possibly hovercraft
are thinkable vehicles to be added in extensions. As the state space descriptions are very generic, it
should be possible to transform vehicle representations of most games and simulations into one of the
proposed descriptions.

Surface Bound Vehicles

Surface bound vehicles are vehicles that are limited to movement on a plane, like earthbound vehicles
are limited to the ground. While ships are not ground based, they still behave much like ground based
vehicles. Most computer games feature AI movement for surface bound vehicles only, leaving this vehicle
type as the most relevant.

Pedestrians typically move slowly enough so that acceleration is not a decisive factor. They are able
to turn on the spot, as they have no turning radius, so rotational speed should be limited. Again, as
sustainable rotational speeds for humans are low, limiting rotational acceleration is a feature that may be
dropped. Humans are able to walk backwards, but rarely do so. Limiting backwards speed to 0 or a small
percentage of forward speed seems appropriate. Humans, due to their high center of gravity, may however
be subject to lateral acceleration limits. Limiting centripetal acceleration, the planner can ensure that
with rising speed, larger circles are taken, without limiting the ability to turn on spot. Proposed state
space description is (x, y, ϕ, v), tracking position, orientation and speed. Because pedestrians are very
agile in comparison to other vehicle types, path post-processing and sophisticated steering algorithms
can improve their paths to a higher degree, lowering the demand for movement planning for pedestrians.

Cars occur in many games, from racing game simulations to open city games. Unlike pedestrians, cars
can benefit a lot from improved movement planning. Cars feature a distinctive turning radius as well as
they are subject to lateral acceleration at higher velocities. Furthermore, both linear acceleration and
deceleration have to be taken into account when planning. The interesting set of physical limitations
and the fact that cars are a common AI vehicle type in games make this vehicle type most valuable for
further testing in this research. As noted above, the proposed state space representation is given by the
state space vector (x, y, ϕ, v), tracking position, orientation and speed. Rotational speed is, unlike for the
pedestrian type, not of much significance for the car vehicle type.

Tanks or other tracked vehicles are commonly able to turn without forward movement. In this respect,
they behave like pedestrians. However, as tracked vehicles typically can make perfect use of their ability
to move backwards, their backwards speed should not be artificially limited. Due to the mass and size of
tanks, rotational accelerations manifest more obviously, thus they should be limited and included in the
description. The proposed state space vector is (x, y, ϕ,∆ϕ, v), adding the rotational velocity ∆ϕ to the
state space to allow putting a limit on the rotational acceleration.

Ships are another example of surface bound vehicles. Limiting acceleration and deceleration forces is
obligatory due to their large masses. While some ships, like hovercraft and pump-jet powered ships may
turn on the spot, this is not a common trait. Because of the low maximum speeds and large turning
radii, centripetal acceleration is insignificant in modeling ships.

Aerial Vehicles

Aerial vehicles are vehicles that move detached from the ground. Additional to the forces generated by
the vehicle, the gravitational pull has to be considered. Aerial vehicles, as they are able to move in three
dimensions, feature six dimensional state vectors, (x, y, z, ϕ, θ, ψ) only to describe a static configuration,
here x, y and z denoting the position in space while ϕ, θ and ψ denote the yaw, pitch and roll angles,
respectively.
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Airplanes generate lift from forward movement. Unless for more precise physical simulations, movement
in other directions is to be forbidden and their possible external occurrence neglected. Thus, the velocity of
an airplane can be solely represented in direction of flight. Acceleration forces of both linear and rotational
kind have to be considered and limited to viable extents. The proposed description breaks down the state
of an airplane to three dimensional spatial coordinates, three orientation angles, three angular speeds and
the forward speed of the aircraft. The resulting state space vector is (x, y, z, ϕ, θ, ψ,∆ϕ,∆θ,∆ψ, v), adding
the rotational yaw, pitch and roll speeds ∆ϕ, ∆θ and ∆ψ as well as the linear forward speed v to the
static configuration state space vector.

Helicopters have a limited range of pitch and roll angles, beyond which they cannot generate sufficient
lift to hover. Speed and acceleration limits on all rotational variables are required. Besides pitch and
roll angles, the angle of attack of the rotor blades provides upwards thrust, which can be modeled by a
locally upwards facing speed and acceleration. The state space representation is identical to the airplane
model, except that the upwards facing main thrust generates lift directly, as opposed to indirectly in the
airplane case.

Other

Other vehicles may include a variety of less commonly simulated vehicles, such as hovercraft, rockets and
submarines. Due to the manifold of possible vehicle types, and the fact that most vehicles share common
traits, only the most exotic one, namely spacecraft, is listed here.

Spacecraft are typically set in a state of no acceleration. Depending on the configuration, they can
freely rotate around any axis. Naturally, these rotations are subject to limited speeds and accelerations.
The biggest difference between spacecraft and any other vehicle type presented so far is that they do not
feature a distinctive deceleration force, as there is only negligible to no drag in their environment. It means
that to maneuver from resting position to another resting position, a vehicle has to accelerate, then negate
the former acceleration by rotating and accelerating an equal amount in the opposite direction. The state
space can be described by a vector equal to the one used for airplanes, (x, y, z, ϕ, θ, ψ,∆ϕ,∆θ,∆ψ, v),
however, the set of possible actions differs.



Chapter 4

Physical Movement Planning with
AIPATH

This chapter describes aiPath, the state space discretization technique in use
and the heuristic evaluation function for the underlying A* algorithm. An ad-
ditional search step, performing a non-backtracking best-first search before A*,
called the probing search step, is briefly introduced.

Chapter contents: Introduction of aiPath and how it works.

4.1 Introducing AIPATH

In this thesis research, a standard A* pathfinding algorithm is equipped with a heuristic evaluation
function estimating the time between any two points in the car-type vehicle state space described in
Chapter 3. The A* algorithm is then employed to search a path in a given state space using a custom
discretization strategy. Depending on the urgency, aiPath can also produce an incomplete path by using
the heuristic evaluation function to perform a non-backtracking best-first search to probe for the goal
node. That way, a vehicle may start moving along the probed path well before A* provides an optimal
result. If the search space contains few obstacles, the probing search may find a valid shortest path
without constructing an open and closed list. If the probing step fails to produce a valid path, all visited
nodes can be re-used for A* by inserting them into the open list. Algorithm 1 provides pseudocode
explaining how aiPath combines the probing search and A*.

Algorithm 1 aiPath Pseudocode
1: procedure aiPath(startNode, goalNode) returns a sequence of nodes towards goalNode
2: path← ProbingSearch(startNode, goalNode)
3: if GoalTest(path.last, goalNode) then
4: return path
5: closedList← ∅
6: openList← Insert(startNode)
7: for each node in path do
8: openList← Insert(node)
9: path← aStar(startNode, goalNode, openList, closedList)

10: return path
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4.2 Heuristic Evaluation Function
A perfect heuristic evaluation function returns the exact costs of the rest of the path for any node, allowing
for an optimal O(n) best-first search, with n being then number of nodes on the path. Due to possible
obstructions on the path, implementing a perfect heuristic function is infeasible. Any imperfect heuristic
evaluation function can be used in combination with search algorithms like A* to provide an improved
order of nodes to expand next, reducing the number of search iterations. In order to be guaranteed to
find an optimal path, a heuristic has to be admissible, that is, the estimated costs have to be less or equal
to the actual costs to. Using Euclidean distance as spatial heuristic works well in low dimensional spaces.
As with higher dimensional search spaces the branching factor increases steeply, a more focused heuristic
function is required in order to comply with reasonable memory and time constraints. While consistency
is a desirable property [40], it can not be trivially achieved due to the discretization of the search space.
Tests with inconsistent heuristics show show that any overhead due to inconsistency is comparatively
low for practical purposes [18]. The heuristic evaluation function used in this research is designed to be
admissible while being as close as possible to the actual costs.

The proposed heuristic evaluation function for aiPath estimates the distance to the goal node, and,
in a second step, uses the given speed and acceleration values to calculate an accurate traversal time.

4.2.1 Distance Estimation
Calculating the distance between two oriented points on a plane for a turning radius limited vehicle
is derived from the work of Pinter [41]. His work is based upon the fact that any oriented point can
be reached by moving a distance along one circle segment, continuing movement in a straight line and
entering another circle segment. A circle segment may either be a clockwise or counterclockwise turn;
that is, a vehicle turning right or left in a local coordinate frame. In order to find the minimal distance,
the turning radius is used for the radius of the circular segments. Subsequently, all combinations of
clockwise and counterclockwise turns are calculated; the lowest outcome denoting the distance between
the two oriented points using a turning radius. Figure 4.1 shows all four combinations of clockwise and
counterclockwise turning. Pinter’s algorithm does not include the use of variable turning radii, like a
speed dependent minimal turning radius, which would be required to model centripetal force limits.

r

a b

r

a b

r

a b

r

a b

Figure 4.1: All four ways to navigate between two oriented points a and b on the plane using a turning radius r.
The lengths of the different trajectories are calculated and the shortest one is chosen.

Figure 4.2 shows the value of the heuristic function plotted in a heat map style. Clearly visible are
the discontinuities along the turning circle, as points within the turning circle cannot be reached without
additional maneuvering. From the heuristic, the optimal goal orientation at any point can be determined
as well. Figure 4.3 displays a quiver plot, illustrating both the optimal arrival orientation as well as the
heuristic value at any point, assuming a trajectory from the origin.
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Figure 4.2: Left: The search setup used to plot the distance estimating heuristic function. Middle: A heat
map plot of the heuristics value from the origin towards any point, using a turning radius r. Origin and goal are
both facing upwards, i.e., in positive y direction. Note that the area directly ahead of the vehicle behaves like
Euclidean distance, which is included for comparison on the Right.
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Figure 4.3: A 3d-quiver plot of the ideal arrival orientation for any point. The heuristic distance from the origin
to any point is indicated by the height of the arrow. Every arrow points in the direction of optimal arrival, i.e.
the goal direction with the lowest heuristic value. All distances are given in meters. The discontinuity in both
direction and heuristics value along the turning radius can clearly be seen.
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4.2.2 Traversal Time Estimation
The previously discussed distance estimation function takes only three out of the four state space variables
of the car-type state space described in Chapter 3 into account; the position given by x and y and the
orientation ϕ. To be able to operate efficiently in the complete four dimensional state space, a feature
concerning the fourth component, the velocity v, is required. Taking the velocity into account produces
a heuristic evaluation for any node in seconds until arrival, as opposed returning the distance to the goal.

The proposed heuristic evaluation function, estimating traversal time, makes use of the calculated
distance to the goal node, then takes the additional three factors into account to calculate the minimal
time for arrival:

(1) Velocities at the start and goal state are considered, as well as (2) possible speed limitations,
to calculate a movement time with maximum viable speed. In order not to overestimate costs, (3)
acceleration and deceleration limits are used, ensuring the vehicle to move as fast as possible at all times.

The traversal time is then calculated by inserting the given distance s and the initial and goal velocities
v0 and vg into the Formulas 2.1 and 2.2. A test is performed whether s suffices to accelerate to vmax,
then decelerate to vg. If this test fails, solving Formulas 2.1 and 2.3 for t provides the minimal traversal
time. If the test succeeds, meaning the vehicle spends some time with the maximum velocity, the time to
pass the remaining distance at vmax is added to the partial result. Formula 4.1 shows the mathematical
formulation of the traversal time calculation, and Algorithm 2 provides pseudocode describing how to
detect under- or overshooting, how to react on it and how to calculate the traversal time in detail.

t(s, v0, v1, a, d) =



√
v2

0+2a·
2ds−v2

0+v2
1

2ad −v0

a +

√
v2

1+2d·
2ds−v2

0+v2
1

2ad −v1

d if s
vmax

< vmax−v0
a + vmax−v1

d

s
vmax

+ 1
2 · (

vmax−v0
a + vmax−v1

d ) else

(4.1)

Algorithm 2 Traversal Time Estimation Heuristics Pseudocode

1: procedure EstimateTraversalTime(startNode, goalNode, config) returns the traversal time be-
tween two nodes

2: distance← EstimateTraversalDistance(startNode, goalNode)
3: v0 ← startNode.v
4: v1 ← goalNode.v
5: tmaxSpeed ← distance/config.maxForwardSpeed

6: tacc. ← (config.maxForwardSpeed − v0)/config.maxAcceleration

7: tdec. ← (config.maxForwardSpeed − v1)/config.maxDeceleration

8: if tmaxSpeed ≥ (tacc. + tdec.) then
9: return tmaxSpeed + (tacc. + tdec.)/2

10: accelerationDistance← 2·config.maxDeceleration·distance−v2
0 +v2

1
2·(config.maxAcceleration+config.maxDeceleration)

11: decelerationDistance← distance− accelerationDistance
12: if accelerationDistance < 0 or accelerationDistance > distance then
13: return HandleOvershooting(v0, v1, distance, config)
14: accelerationT ime←

√
v2

0 +2·config.maxAcceleration·accelerationDistance−v0
config.maxAcceleration

15: decelerationT ime←
√

v2
1 +2·config.maxDecceleration·decelerationDistance−v1

config.maxDecceleration

16: return accelerationT ime+ decelerationT ime
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Handling Overshooting

During traversal time estimation, two kinds of error can occur. The calculation of the acceleration
distance can return a negative distance or a distance that is larger than the total distance available.
These cases correspond to under- or overshooting, i.e. not being able to accelerate or decelerate, as
the absolute speed difference

∣∣vg − v0
∣∣ is too high for the available acceleration forces a and d. A naive

approach is to forbid expansion of these nodes by returning a very high or infinity value as heuristic,
CostMax. As a valid setup may, however, include a seemingly impossible setting, a more sophisticated
approach is to be preferred. Depending on the vehicle configuration, the vehicle either has to make a
turn in order adapt the speed, or may brake, turn in place and try again. If both options are present, the
one taking less time is preferred. Algorithm 3 provides pseudocode explaining the overshooting handling
in detail. Appendix A.2 contains heat map plots of the heuristic function using different overshooting
strategies.

Algorithm 3 Overshooting Handling Pseudocode
1: procedure HandleOvershooting(v0, v1, distance, config) returns the time to handle over- or

undershooting
2: tcircular ←∞
3: tlinear ←∞
4: if config.maxLateralAcceleration ̸= 0 then
5: tcircular ← HandleCircularOvershooting(v0, v1, distance, config)
6: if config.maxTurnOnSpot then
7: tlinear ← HandleLinearOvershooting(v0, v1, distance, config)
8: return Min(tcircular, tlinear)

x

y

d

r

Figure 4.4: A vehicle unable to accelerate to its goal velocity on a straight line with distance d will deliberately
plan a circle of sufficient circumference to gain enough speed. A lower bound for the radius of the circle r is given
by the turning radius of the vehicle.

Circular Overshooting Handling. If the vehicle has a defined turning radius, it has to drive a circle
in order to gain or lower additional speed. Figure 4.4 shows an example of circular backup to prevent
undershooting. Note that the minimal distance for a turning circle, sturn, is 2πr, r being the turning
radius. The minimal distance smin to achieve vg can be calculated using the Formulas 2.1 and 2.2. If
smin < sturn, the vehicle can adapt speed before finishing the circle. The time on the remaining section
of the circle is calculated using the traversal time estimation Formula 4.1. If smin ≥ sturn however,
performing a single turning radius turn does not suffice to adapt the velocity. In this case, the radius of
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x

y

d

brakingbacking up

Figure 4.5: A vehicle unable to accelerate to a certain velocity in the required distance d may have to brake first,
back up by either turning on the spot or driving backwards, then accelerate again from a point further away.

the circle is adjusted so that the length fits smin exactly. Pseudocode illustrating the circular overshooting
handling is available in Algorithm 4.

Algorithm 4 Circular Overshooting Handling Pseudocode
1: procedure HandleCircularOvershooting(v0, v1, distance, config) returns the time to handle

over- or undershooting
2: if v1 < v0 then
3: tadjustSpeed ← (v1 − v0)/config.maxAcceleration

4: dadjustSpeed ← 1/2 · config.maxAcceleration · t2adjustSpeed

5: else
6: tadjustSpeed ← (v0 − v1)/config.maxDeceleration

7: dadjustSpeed ← 1/2 · config.maxDeceleration · t2adjustSpeed

8: backupCircumferenceNeeded← dadjustSpeed − distance
9: minCircumferenceturningRadius ← 2 · π · config.turningRadius

10: minCircumferencelateralF orce ← 2 · π · config.maxSpeed2/config.maxLateralAcceleration

11: minCircumference← Max(minCircumferenceturningRadius, minCircumferencelateralF orce)
12: if backupCircumferenceNeeded ≥ minCircumference then
13: return tadjustSpeed

14: return EstimateTraversalTime(v0, v1, dadjustSpeed, config)

Linear Overshooting Handling. If the vehicle is allowed to change its movement direction while
standing still, instead of driving a lengthy curve to match velocities, it may be faster to stop, back up
an appropriate distance and retry from there. Figure 4.5 illustrates this procedure. Limited angular
acceleration and speed determine the time required to turn around on the spot. Calculating deceleration
time to a complete stop and accelerating to the desired velocity is straightforward, the remaining, backing
up section, is calculated using Formula 4.1 and the appropriate acceleration and deceleration values.
Algorithm 5 provides pseudocode, explaining the linear overshooting handling. In case the vehicle is
allowed to move backwards, backing up can also be done without turning on the spot. Other speed and
acceleration limits may apply when moving backwards.



4.3 — Discretization Strategies 29

Algorithm 5 Linear Overshooting Handling Pseudocode
1: procedure HandleLinearOvershooting(v0, v1, distance, config) returns the time to handle

over- or undershooting
2: tbrake ← v0/config.maxDeceleration

3: dbrake ← 1/2 · config.maxDeceleration · t2brake

4: dSegment1 ← dBrake − distance
5: tacc. ← v1/config.maxAcceleration

6: dacc. ← 1/2 · config.maxAcceleration · t2acc.

7: dSegment2 ← dacc.

8: dSegment3 ← dSegment1 + dSegment2

9: tbackup ← EstimateTraversalTime(0, 0, dSegment3, config)
10: tovershoot ← tbrake + tbackup + tacc.

11: return tovershoot

4.2.3 Performance Considerations
Because the complete heuristic evaluation function is calculated for any visited node during search, that
is, both distance and traversal time are calculated, performance requirements may render optimization
of the heuristic evaluation function for speed a necessity. A performance improvement may be achieved
by replacing the costly distance estimation procedure by computationally less expensive estimations. To
achieve similar results with lower calculation costs, goal nodes within a certain angle ahead of the vehicle
may be calculated using underlying Euclidean distance, as the results of this function are quite similar, as
also illustrated by Figure 4.2. The summed difference between heuristic distance and Euclidean distance
can be calculated by systematically summing over all possible translation angles α between the origin and
the goal position, and over all possible goal orientations ϕ. The average offset as a function of Euclidean
distance ō(de) is then calculated as described by Formula 4.2, summing up the difference between heuristic
score h and Euclidean distance de. Note that the distance estimating heuristic h takes two parameters,
the start node, situated in the origin, and the goal configuration. Both configurations are given in the
three dimensional, incomplete state space description (x, y, ϕ), with x and y describing the position and
ϕ providing the orientation angle.

Figure 4.6 shows the difference between heuristically estimated distance and Euclidean distance, and
clearly illustrates that the offset loses significance if the goal is more than about 4 turning radii away. Thus,
for heuristic evaluations of distant points, a weighted Euclidean distance may suffice, saving calculation
overhead. The traversal time is then calculated based on the estimated distance. Figure A.1 provides a
more detailed plot, with offset values for all goal translation angles.

ō(de) = 1
360

360◦∑
α=0◦

1
360

360◦∑
ϕ=0◦

h


 0

0
0◦

 ,

 cos(α) ∗ de

sin(α) ∗ de

ϕ


− de (4.2)

4.3 Discretization Strategies
This section presents the different discretization strategies used on the state space variables. As in this
thesis research the main focus was cast on car-type vehicles, the discretization strategies described are
designed to work well with cars as well, results for other vehicle types may vary. The car state space is
given by the vehicle position, orientation and speed, or the vector (x, y, ϕ, v). As x and y describe spatial
coordinates, spatial discretization is applied. The orientation of the vehicle is discretized by the means of
directional discretization. The current velocity of the vehicle is discretized using uniform discretization.
As the search graph not only features nodes, but also edges, the possible actions transforming one state
space vector into another have to be discretized as well in order to keep the search graph edge number
finite. Actions are discretized using special action intensity and action duration discretization strategies.
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Figure 4.6: The average difference between heuristic distance estimation and Euclidean distance plotted against
the Euclidean distance in multiples of turning radii. It is clearly visible that beyond 4 turning radii, the estimated
distance converges towards a static offset of the Euclidean distance. The average overhead for distant goal point
appears to be 2 turning radii.

4.3.1 Uniform Discretization
Uniform discretization describes the most simple form of discretization by rounding any given value to
the closest one supported by the discretization resolution. This is the one dimensional equivalent of a
grid discretization.

4.3.2 Spatial Discretization
Besides static non-uniform discretization and adaptive discretization methods, a simple grid remains one
of the most basic and thus frequently used discretization methods [21]. However, using a grid loses
resolution detail by assigning any point entered the positional coordinates of the center point of the
associated grid. In Figure 4.7, the left and middle illustrations describe the naive grid discretization and
show the loss of detail by marking the whole cell in one color, indicating that the sub-cell resolution is
lost. The spatial discretization strategy for aiPath exploits the fact that A* mainly uses discretization
to reduce the number of search nodes. Furthermore, the fact that already explored search nodes may be
re-opened and re-assigned with differing costs and predecessor nodes allows for a selection which node’s
exact, undiscretized position may be stored. Figure 4.7, right, illustrates the discretization procedure.
Any grid cell may at most hold one node, as in standard uniform grid discretization. The cost and
heuristic value of the node determine, which node is kept. All nodes that A* considers inferior to the
one preserved are discarded, but the exact position of the node with lowest sum of cost and heuristic
value is preserved. If a better node is detected in the same grid cell during path planning, it replaces the
previously best node and overwrites its exact position, cost, heuristic value and predecessor.

4.3.3 Directional Discretization
Discretizing direction vectors using uniform grid discretization is straightforward, but produces a higher
amount of discretization error. It is proposed to represent direction vectors as mutually independent
rotation angle and magnitude values instead. The orientation of the vehicle is thus expressed as a
rotation angle measured counterclockwise to the x-axis. Figure 4.8 illustrates the reduced error when
discretizing direction vectors with the proposed strategy. The direction of the velocity vector can be
converted to an angular value as well, using a separate data field to denote the speed, i.e., the length of
the velocity vector projected to the orientation vector. Exploiting the assumption that the vehicle does
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Figure 4.7: Left: Some points in space associated with grid cells. Middle: Using naive discretization, every
point on the grid is merely associated with a whole cell. Right: Using the presented discretization approach, any
cell may only contain one node, but the exact position of the node is preserved.

not lose traction, the velocity vector is expected to be always collinear to the orientation vector. Thus,
the orientation component of the composite velocity can be dropped. Vehicle speed is discretized with a
user-defined resolution, much like the spatial discretization. Angular orientation is discretized to degrees,
as they are a human friendly representation for angles and prove to be of sufficiently fine resolution to
successfully search with.

Figure 4.8: Left: Discretization of direction vectors results in nonuniform angles and differing lengths for the
vectors marked red. Right: Representing direction vectors as an angle and a magnitude, using discrete angular
increments for directions produces constant magnitudes and uniform angular intervals.

4.3.4 Action Intensity Discretization

Being a transformation between state spaces, action intensities do not necessarily have to be discretized
using the same mechanism or coarseness as state space variables. Acceleration and deceleration forces
were limited to either zero force, in case the vehicle should maintain a certain, possibly its maximally
allowed, velocity, or full force. Adding a third possible discrete step in between no acceleration and the
acceleration limit allows the vehicle to travel more smoothly. However, this additional intensity is only
chosen during search if the path layout demands it, as reaching, then keeping maximum velocity as quickly
and for as long as possible, then braking down using maximal force always produces a minimum cost
path. Due to discretizational error, however, interjecting an action with lower-than-maximal force may
produce a shorter path. Steering angles, describing the intensity of the turning action, may be discretized
to a user defined number of degrees. Using the same resolution as for directional discretization of the
state space can generate shorter paths, however, limiting the possible steering angles to multiples of 5 or
10 provides a significant reduction of the branching factor, speeding up the search. Figure 4.9 shows an
example of action intensity discretization for steering right at various intensities. An important difference
in action intensity discretization to uniform discretization is that the intensity limits should always be
conserved as real values. For example, a vehicle that is allowed to turn 15◦ per step should be able to
perform a steering action with 15◦ intensity, even if the discretization allows only intensities with the
value being a multiple of 10◦.
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r

Figure 4.9: A vehicle turning right with different, discrete action intensities. The intensity limits should always
be included, for turning this means allowing no turning and turning with exactly the turning radius limitation.

4.3.5 Action Duration Discretization
Instead of discretizing the action duration directly, the spatial change, that is, the Euclidean distance
between the node to be expanded and the child nodes, is discretized to the resolution of the spatial grid.
This strategy ensures that at least a distance of one spatial grid cell is traversed. The necessary action
duration to perform the spatial change is then calculated and used for child node generation.

4.3.6 Temporal Discretization
An alternative, additional discretization of temporal variables is possible, but provides little to no benefit
while degrading the precision of the result of the heuristic evaluation function. Time, measuring costs
and heuristic estimates of costs, is thus not discretized in the course of this research. Costs are not a
state space variable - they are adapted if another, shorter, path is found. Incorporating costs to the
state space leads to insertion of a new node each time a cost is adapted. As node reduction is a main
goal of discretization, and discretization of time does not give a reduction in the number of nodes, this
procedure is not applied in aiPath. However, when searching with a maximum vehicle speed, minimal
costs between two adjacent nodes, costmin, can be easily calculated, and subsequently, cost values may
be discretized using costmin as a basis. Discrete cost values may lead to more ties during node selection,
placing higher emphasis on the heuristic function as tie-breaker. Discretizing both cost and heuristic
values leads to more unbroken ties, and thus a higher number of expanded nodes is expected.

4.4 Probing Search
Due to the high branching factor in the four dimensional search space, a greedy best-first search with no
backtracking can be used in a pre-search step to perform a probing search led by the heuristic function
towards the goal. Algorithm 6 explains the algorithm in detail. If no obstacles or other problems
unregistered for by the heuristic arise on the path, a shortest path can be found without using the
A* algorithm at all. If the probing step fails, all visited nodes can be used as starting points for the
subsequent A* search as shown in Figure 4.10, conserving their already calculated heuristic values and
costs. Performing a probing search and starting movement according to it can reduce latency times, when
it is more important that vehicles do not appear to be unresponsive then that they always follow the
shortest path. Physical correctness is always given due to the fact that the probing search makes use of
the physical state space description. If the underlying heuristic is admissible and consistent, the shortest
path is found in abundance of obstacles. If the underlying heuristic is not consistent, suboptimal paths
may be found, as no history of traversed nodes is kept.
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Algorithm 6 Probing Search Pseudocode
1: procedure ProbingSearch(startNode, goalNode) returns a sequence of nodes towards goalNode
2: node← startNode
3: global best h← Heuristic(node)
4: do
5: path← Insert(node)
6: if GoalTest(node, goalNode) then return path
7: successors← Expand(node)
8: local best h← global best h
9: for each successor in successors do

10: h← Heuristic(successor)
11: if (h < local best h) then
12: local best h← h
13: node← successor
14: improvement← (local best h < global best h)
15: if improvement then
16: global best h← local best h
17: while (improvement);
18: return path

Figure 4.10: Even though the probing search terminates unsuccessfully due to obstacles on the path, the nodes
visited can be re-used as starting points for A*, to plan the shortest of the three presented trajectories.
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4.5 Implementation Details
As of today, C++ is still the main programming language used in creation of video games [34]. For
ease of integration with EM5 and other video games, the search environment was programmed in C++,
making use of the Boost C++ libraries [11] and the aiTools library [45]. Importance was attached to
the ability to wrap any search graph easily, without forcing the user to keep certain functionality in the
nodes or the search graph description itself. By design, static search graphs, keeping the nodes in an
unaltered structure and keeping a separate priority queue for node expansion as well as dynamic search
graphs, that are expanded whenever a node is visited, are supported. Furthermore, costs, heuristic score
and parent/child nodes are queried using a uniform interface, allowing the internal structure to either
keep these values in the nodes for easier access, or even implement sophisticated caching and indexing
structures for cost tables or the graph structure. The search graph and its nodes were generically set
up to work with any underlying data types, allowing to switch from floating-point values to fixed point
arithmetic at any point.

Costs of the path are measured in seconds, describing the time it takes a vehicle to follow the path.
Besides the state space, each node thus holds a time in seconds describing the costs of the path to this
point. Another field, the heuristic measure, provides the estimated time of the rest of the path. Also,
as the search graph is generated on the fly, a pointer to the lowest-cost parent is held in each node, as
shown in Figure 4.11. Both the actually calculated position for each successor and also the discretized
value is saved in the node. This allows for sorting and selecting nodes from a grid cell, as well as following
a planned path with higher accuracy. If another node is expanded in the same grid cell, the node with
lower costs is preserved, just as in regular A*.

Node
+Position: float_type[2]
+Orientation: Angle
+Speed: float_type
+Time: float_type
+Heuristic: float_type
+Predecessor: Node*
+DiscretePosition: int_type[2]

Figure 4.11: UML diagram of the Node class used for the A* search.

The default implementation makes use of a boost::multi index container for an open list, allowing
to keep nodes sorted according to multiple criteria. This way, removing the node with lowest cost and
heuristic score (c+h) can be achieved in O(1), and searching nodes by their state space can be performed
in O(log(n)) by using a binary search; n being the number of nodes in the open list.

4.5.1 EM5 Integration
Due to the modular structure of EM5s code, modifying and extending the game is made easy. The steering
component can be replaced by a custom component, receiving the planned path and altering the curve
segments in question before relaying the improved path to an encapsulated original steering component.
Figure 4.12 shows how the local path planner class integrates within the existing EM5 infrastructure.

The code produced for this thesis research as well as the code used from the aiTools library is designed
to work with arbitrary graph representations and used utility functions, as long as a common interface is
used, easing the integration. In order to improve path layouts in EM5 without letting AI vehicles leave
the roads and to comply with the EM5 reservation system, aiPath is used as local planner for vehicles
with a limited allowed deviation from the already planned path by the EM5 pathfinding system.
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PathfindingSystem

Path

SteeringSystem

NavigationComponent

CoreEntity GameEntity

Component

Entity

{generates}

{follows}

LocalPathPlanner {improves}

Figure 4.12: The main classes concerning steering in EM5 and their interactions. The blue shaded area marks the
integration boundary between original and new code. The PathfindingSystem plans center line paths for vehicles,
the SteeringSystem translates them to actual movement. Replacing the SteeringSystem by a local path planner,
improving upon the path and then relaying the improved path to an encapsulated SteeringSystem, the path can
be intercepted without changing the original program structure much.



36 Physical Movement Planning with AIPATH



Chapter 5

Experiments and Results

This chapter contains all experiments carried out in this research and their re-
sults. The quality of the generated paths is assessed visually and compared to
paths produced by the work of Pinter and paths used in EM5. The quality of the
heuristic evaluation function is compared to the distance-estimating approach
by Pinter. Lastly, the results of the probing search are assessed.

Chapter contents: Experiments performed and their results.

5.1 General Test Setup
Most experiments are conducted with similar search setups. Unless otherwise specified, paths are planned
by A* only, making use of the proposed traversal time estimation heuristic. Because the probing search
might find suboptimal paths due to the non-monotonicity of the heuristic evaluation function, it is only
included for probing search specific tests. For all tests performed, the goal test requires a node to be
spatially within 0.3 discrete steps, the rotational deviation to be no more than one degree and a speed
difference of at most 0.1m/s. As the physical state space of a vehicle is not intrinsically bound, limiting
the number of search iterations prevents aiPath from running out of memory. For all tests, the maximum
allowed number of iterations is set to 100, 000 (105), after which a search is considered failed. All tests
including random variables are repeated at least 1000 times in order to obtain meaningful averages. If
paths to random locations are planned, typically all four variables of the goal node plus the velocity of the
start node are randomized according to a uniform distribution. Furthermore, the turning radius of the
vehicle and the lateral acceleration possible are selected randomly. Possible values for the turning radius,
as derived from EM5 data, are between 5 and 8 meters. Lateral acceleration is bound by 10 and 20m/s2,
allowing reasonable speeds in curves. Acceleration and deceleration values as well as speed limits are kept
constant for all tests, with maximum acceleration amax = 1.5m/s2, deceleration limit dmax = 5m/s2 and
speed limit vmax = 13.8m/s2. In order to plan interesting paths with respect to the turning radius used,
goal positions are generated uniformly with a distance to the origin between 0 and 8 turning radii. Goal
orientations are sampled from the whole possible range of orientations, from 0◦ to 360◦. Velocities are,
if not specified otherwise, generated randomly between 0 and vmax. The hardware in use for all tests is
an Intel i7 quad-core processor with 32GB of RAM. EM5 internal tests are performed under Windows
within the EM5 framework, all other tests are run under Linux.

5.2 Improvements in Path Quality
For varying input parameters, aiPath can reliably return physically valid paths. Input parameters may
vary in search parameters, that is, start and goal node settings like position, velocity and orientation,
or vehicular parameters such as turning radius, acceleration and deceleration limits and velocity limits.
Figure 5.1 provides examples of planning a curve with limited turning radius. If the turning radius of the
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vehicle surpasses the radius of the curve, an elaborate turning maneuver is planned rather than breaking
physical limitations. As common path following methods are limited to follow the planned path, such
flexibility in pathfinding is unachievable with path post-processing methods. Figure 5.2 shows planned
paths for naively impossible situations, in which the vehicle has to accelerate to a goal speed that is too
high to be reachable in the available distance. aiPath solves the issue by planning a backup circle, to
increase the distance traversed in order to be able to accelerate to the goal velocity. Note that, while
the heuristic evaluation function estimates costs based on a circle and straight segments, as shown in
Figure 5.2 on the far right, aiPath is able to find better paths even if restrained by the lateral acceleration
limit. Instead of planning a curve with uniform diameter, a curve with growing radius is planned. As
the vehicle starts with zero velocity, the first planned steps can only be traveled slowly due to the linear
acceleration limit of the vehicle. Here, the turning circle size is determined by the turning radius. After
the vehicle gains speed, the turning circle radius gradually increases, in order for the vehicle to stay under
the lateral acceleration limit.

Figure 5.1: Planning a curve with increased turning radius. When the turning radius exceeds the radius of the
curve, a backup circle is planned, allowing to reach the goal without violating physical constraints.
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Figure 5.2: Deliberately planned backup circles on the path from a to b. Acceleration limits and the target velocity
at b are set such that the vehicle is unable to reach the goal in a straight line. For different lateral acceleration
limits ac, different backup circles are planned. With ac = 50, the centripetal acceleration limit has no effect on
the path. At lower lateral acceleration limits, the effect is more noticeable.

5.2.1 Visual Path Quality Comparison

Fixing the speed and disabling lateral force limits, search parameters as used by Pinter [41] can be
replicated. Searches with random layouts show that both approaches deliver visually comparable search
results. Figure 5.3 displays an overlay of paths planned by both approaches under equal circumstances.
It is to be noted that Pinter’s algorithm relies on expanding the next 8, 24 or 48 neighbors, making
certain angled straight lines impossible to plan. Effects of this restriction can be found in the middle of
the path in Figure 5.3, where the green path deviates to the right seemingly without reason. aiPath
suffers from no such restrictions, unless introduced on purpose by discretizing the direction more coarsely.
Other, smaller deviations between both approaches are to be attributed to the different discretization
techniques used. Unlike Pinter’s implementation, aiPath is not constrained to the limitations imposed
by pre-calculated lookup tables for heuristic values and grid cells crossed, allowing to vary turning radii
at runtime. Naturally, aiPath also allows planning optimal velocities already during path planning.
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Figure 5.3: Overlay of a path planned by aiPath (black) over a path planned by Pinter’s approach (green). Equal
spatial and directional discretization settings as well as equal turning radii and obstacle grids were used. Path
smoothing can improve the visual appearance for both paths.

5.3 Testing in EM5
While EM5 has a working pathfinding and steering routine, generated paths can still be improved by
employing aiPath. The EM5 pathfinding system relies solely on static information in the graph on how
to plan curves, i.e., vehicular constraints and differing speeds are not taken into account during planning
time. Traffic should obey traffic laws and follow distinct lanes, so neither the EM5 pathfinding nor the
steering system, producing a behavioral sound vehicle, can be replaced without further action. To be able
to benefit from aiPath, it is implemented as a local path planner, improving curves while still following
each lane, and still employing the original EM5 steering system to obey traffic laws.

A local planner can improve path optimality locally, as it can plan to cut curves slightly or taking
slightly wider curves in order to fulfill physical constraints of the vehicle. These optimized curve shapes
may, depending on the speed and lateral acceleration limits, be traveled faster than the originally planned
curve. As an additional benefit, slight variations in driving behavior let the traffic seem less sterile and
artificial. For every road segment, EM5 not only provides the center line, but also possible deviations
to both sides. Figure 5.4 shows a typical right curve. The blue shaded region marks the area which
the vehicle may use to navigate the curve. Some grid cells are illustrating a discretized representation of
blocked and free cells. Alternatively, aiPath allows custom functions to assess child node validity, making
the construction of an extra blocked grid superfluous. A custom validity check function can measure the
distance of the child node position to the ideal line provided by EM5, and reject all nodes outside the
blue, allowed area.

To allow cutting corners or purposely selecting a wider radius, multiple start and goal nodes are
provided. Each node deviating from the center line receives a cost penalty, as the vehicle has to drive
a slightly longer diagonal in the segment before. Figure 5.5 illustrates the increase in distance before
reaching the curve. The additional time spent on the preceding segment used to initialize the costs of
the deviating starting points.

The penalty is calculated with an estimate of the traversal time, assuming the previous area was
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Figure 5.4: A 90◦ right curve, illustrating the available parameters to plan an EM5 curve:
• Blue center line: Supplied by EM5 as naive optimal trajectory.
• r, the radius of the curve.
• wr, the width of the road as supplied by EM5
• wu, the maximal possible distance to deviate from the center line before the vehicle may collide; depends

on the vehicular dimensions.
• Blue shaded region: Possible vehicular center points during curve traversal.
• Grid cells: Transparent if unblocked, red if blocked due to obstacles or vehicle dimensions.
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Figure 5.5: Blue: The ideal line provided by EM5. Red: a possible planned trajectory with deviation t from the
center line. The length of the segment preceding the curve to be planned, s, and the lateral translation from
the ideal line, t, form a right-angled triangle with hypotenuse u. The difference in estimated path traversal time,
h(u) − h(s) is added to the costs of the deviated starting point.
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entered on the center line and continuously traveled at maximum velocity towards the starting node of
the curve segment. Figure 5.6, right, shows possible deviations from the EM5 ideal curve shape, both
purposely selecting a wider turning radius and cutting the curve. This test modifies the usable road width
wu, to produce different levels of curve cutting, simulating different widths of vehicles. Figure 5.6, left
shows planned curve paths with varying usable road width, leading to different levels of curve cutting.
Because the planned curves respect turning radius and lateral acceleration limitations, they may be
traveled slightly faster than following the circle perfectly. Table 5.1 presents traversal time improvements
for the planned trajectories. A decrease of traversal time up to 31.57% is only possible because the newly
found curve has an improved shape, and thus can be traveled faster due to less lateral acceleration.

(0,0)8

8

Figure 5.6: Left: An example of curve cutting and one of choosing a deliberately wider turning radius. Right:
Resulting paths in an 8 meter curve with changing usable road width. Blue: The ideal line as used by EM5.
Black: Minimal usable road width. Grey shades: Increased usable road width allows shorter paths.

Type Length Travel Time % Improvement
EM5 Ideal Line 12.56 0.89 0 %
wu 0.6 Meters 12.68 0.73 18.04%
wu 1.2 Meters 13.38 0.78 12.46%
wu 1.8 Meters 13.62 0.73 18.04%
wu 2.4 Meters 12.39 0.65 26.84%
wu 3.0 Meters 12.39 0.72 18.95%
wu 3.6 Meters 12.32 0.67 24.54%
wu 4.2 Meters 12.24 0.64 27.72%
wu 4.8 Meters 12.16 0.71 20.42%
wu 5.4 Meters 11.69 0.64 28.38%
wu 6.0 Meters 11.59 0.61 31.57%

Table 5.1: Improved path lengths and travel times with increased wu, the usable road width. Distance and time
penalties for diverting from the center on the previous segment are included. A 30 meter straight street segment
is assumed.



42 Experiments and Results

5.3.1 Performance Feasibility Testing
EM5 maps feature mostly similar junctions and road intersections, only few are designed by hand to
resemble famous landmarks in real world cities. The most commonly used curves in intersections are
shown in Appendix A.3. Using these curve, searches with varying turning radii, velocity and lateral
acceleration limits are performed to estimate the average workload introduced by aiPath. In this test,
start and goal velocity are selected to be equal.

For each of the four most common curve types, 1000 paths were planned, with a total average number
of iterations of 1098. Table 5.2 shows results for each curve type, and Appendix A.4 provides histograms
illustrating the deviation of number of iterations in detail. The histograms clearly show that the majority
of path searches take well below 1000 iterations, only a few outliers skew the average.

Curve Type Curve Radius Average Number of Iterations
Short Right, A.6 6 meters 230
Short Left, A.7 13 meters 1161
Long Right, A.8 8 meters 678
Long Left, A.9 15 meters 2323

All 1098

Table 5.2: Average number of iterations to plan common EM5 curves with varying desired velocities, acceleration
limits and vehicle turning radii.

The EM5 navigation systems currently consumes a significant amount of calculation resources, up
to 25% of the whole workload, in certain situations. Considering that the steering system alone used 5
milliseconds to update in early EM5 versions, it seems natural to impose a 5 millisecond update time
for aiPath as well. However, like in many video games, the level of detail is scaled in such a way
that maximal detail is possible on a target machine. Adding a highly complex movement planning
system to EM5 in its current state is certainly computationally infeasible. For a path search taking 1000
iterations, the generic proof of concept implementation of aiPath uses 10.8 milliseconds on the testing
hardware. Figure 5.7 provides a histogram of search time deviations. The majority of searches take
about8 milliseconds, only a small percentage of searches takes longer than 10 milliseconds. These outliers
appear to be normally distributed around 27 milliseconds. A possible explanation for the outliers can be
found in the way the open list is implemented. Being a sorted, heap-like structure, the order of insertions
into the open list matters. It is possible, that for a small percentage of searches, a costly restructuring or
re-allocation procedure has to be invoked. Improving the open list implementation may thus eliminate
the outliers. Still, with a median path search time of 8 milliseconds, only one path can be planned every
two updates, allowing only 25 path queries per second. Using the generic, single-threaded implementation
seems to be infeasible for EM5. Implementing aiPath efficiently for a specific game, and optimizing the
implementation for calculation speed, significantly reduced overhead is expected [25][42].

In EM5, most calculations are performed sequentially on a single core. A few specialized systems, for
example the pathfinding system, transfer their calculations into a separate thread, to make use of multi-
core processors. However, EM5 typically does not utilize a multi-core machine at full capacity. When
outsourcing aiPath to another CPU core and reducing planning latency by following the originally
planned path before the planned improvements are returned, aiPath can be successfully integrated as
local movement planner. Figure 5.8 shows vehicles in EM5 following curves planned by aiPath. On a
quad-core processor almost exclusively running EM5, enough CPU resources are idle to allow integration
of aiPath with close to zero calculation overhead. The only overhead present in EM5 is the asynchronous
waiting for the planner to return, which is negligible.
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Figure 5.7: Histogram of the wall clock search time in milliseconds, obtained from 5000 searches with 1000
iterations each.

Figure 5.8: Vehicles planning their trajectories physically correct in EM5 curves.
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5.4 Quality of the Heuristic Evaluation Function
The quality of the heuristic evaluation function used for aiPath’s underlying A* algorithm is assessed
on multiple levels. First of all, admissibility is verified. The estimated costs returned by the heuristic
function are evaluated visually against the values produced by the planner, resulting in an estimate of how
well the evaluation function represents the actual planning domain. The heuristic evaluation function is
then tested against the distance estimation function used by Pinter by performing A* searches with both
heuristics.

Admissibility

In the ideal case, heuristics should accurately describe the actual costs for the rest of the path. Typically
though, obstacles may occur on the path, which are left unaccounted for by the heuristics. In order for
A* to provide an optimal path, any used heuristic has to underestimate the remaining path costs, i.e. at
most return the actual costs. The heuristics used for aiPath, described in Section 4.2, first calculates
the shortest possible trajectory between two points, and subsequently produces the ideal speed profile
on the path. As the traversal time estimation uses the physical acceleration and deceleration limitations
of the vehicle, it can guarantee that the vehicle cannot arrive in less time than estimated. The heuristic
evaluation function does, however, ignore the limited centripetal acceleration of a vehicle. A limited
centripetal acceleration may force the vehicle to select a wider than minimal turning radius, and thus
can produce a longer path. Any possible speed increase due to a wider turning circle increases traversal
time as well, because the increase in distance traveled is always higher.

tcircle(r) = 2 · π · r√
a · r

(5.1)

Using Formula 2.4 for centripetal force and the circumference formula for a circle, the time pass a
whole circle with a given centripetal acceleration limit is given by Formula 5.1. As this is a monotonically
increasing function, the ideal circle to follow is always the smallest turning circle possible. Thus, ignoring
lateral acceleration limits can only lead to underestimating path length. Because the heuristic disregards
the discretization of the state space, it is not consistent and thus does not fulfill the triangle inequality, an
otherwise desirable property [40]. Not fulfilling the triangle inequality also does not guarantee a successful
result of the probe search step even in the absence of obstacles, as it may get stuck in a local minimum.

Visual Assessment

Using the search setup described in Figure 5.9, the heuristic evaluation function was plotted. Performing
searches to all possible goal positions provides the actual minimal costs to arrive at the goal position
respecting discretization and lateral acceleration limits. Figure 5.10 shows the results for the heuristic
evaluation function, and is to be compared to Figure 5.11, which shows the plotted results obtained from
the actual search. The effect of discretization is quite noticeable, also the action duration discretization
presented in Subsection 4.3.5 can be noticed. A path close in length to an integer multiple of the dis-
cretization cell size is found cheaper than neighboring paths. Because of this, a path of one discretization
cell size is the shortest possible path, any closer point has to be reached by at least two discrete steps.
Differences in colors are to be attributed to different scaling of the color space; as the search requires at
least one search iteration, no zero-cost paths can be found without introducing an additional subroutine.
Still, the heuristic evaluation function resembles the actual path costs visually quite well, and thus high
quality paths are expected.

Comparison to Distance Estimation Heuristic

To compare aiPath’s heuristic evaluation function to estimating only the distance, paths were planned to
random locations with random orientation and velocity. Different car setups with random turning radii
in the range of 5 to 10 meters were used, a range inspired by EM5 vehicles, but also sensible for real world
applications. As clearly visible in Figure 4.6, the influence of a turning radius on the heuristic function
diminishes for evaluated positions further away than four times the turning radius. For this reason,
random goal positions were chosen within the range of 0 to 8 turning radii, to incorporate varying effects
of the turning radius. Arrival orientations were selected uniformly on the set of 0◦ to 360◦. Table 5.3
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Figure 5.9: Search setup to plot the heuristic evaluation function: A vehicle positioned in the origin, with ϕ = 90◦

heading and zero velocity plans a path to any other point on the plane in a certain region with the same goal
heading and velocity. The path traversal time is indicated through color information at the goal position.

shows a significant reduction in search iterations when improving Pinter’s spatial heuristic evaluation
function with the travel time estimation introduced in Subsection 4.2.2. On average, using the traversal
time heuristic improved search iteration count by 97.52%. Shorter paths feature less improvement, with a
possible explanation that the velocity varies less on shorter paths, due to the acceleration and deceleration
limits. Using Euclidean distance as a heuristic has proven to be infeasible for the problem due to memory
limitations of the hardware used. Table 5.4 also shows a slight improvement in path traversal time. While
the distance based heuristic merely ignores the traversal speed, aiPath uses a static move ordering with a
bias towards acceleration and keeping speed, producing high quality paths even when ignoring the velocity
for the heuristic evaluation function. Because of this static move ordering, the traversal time estimation
heuristic only improves upon the distance estimation heuristic on average by 2.50%. Appendix A.5
contains histograms showing the distribution of improvement percentages for both iteration count and
path length.
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Figure 5.10: A heatmap style scatter plot showing the heuristic evaluation of any position in the (x, y) plane in
a certain range, with ϕ = 90◦ i.e. facing in positive y direction, and zero velocity. The turning radius r used for
the vehicle is indicated.
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Figure 5.11: A heatmap style scatter plot showing the actually found costs by aiPath to any position in the (x, y)
plane in a certain range, with ϕ = 90◦ i.e. facing in positive y direction, and zero velocity.



5.4 — Quality of the Heuristic Evaluation Function 47

Average Number of Iterations
Euclidean Path Length (Quantity) Distance-Based Time-Based Reduction by

0 - 10 (167) 13651 842 93.83%
10 - 20 (524) 18961 705 96.28%
20 - 30 (811) 21393 868 95.94%
30 - 40 (884) 35344 585 98.34%
0 - 50 (467) 48894 732 98.50%
50 - 60 (160) 49854 1051 97.89%
60 - 70 (47) 51566 1160 97.75%
All (3060) 34238 849 97.52%

Table 5.3: Average number of search iterations of distance and movement time based heuristics. Calculation
cycles were reduced on average by 97.52% compared to the distance based heuristic. Averages were obtained from
3060 path searches to random locations.

Average Traversal Time
Euclidean Path Length (Quantity) Distance-Based Time-Based Reduction by

0 - 10 (167) 12.53 11.89 5.10%
10 - 20 (524) 12.19 11.60 4.78%
20 - 30 (811) 11.94 11.66 2.38%
30 - 40 (884) 12.47 12.32 1.20%
40 - 50 (467) 14.29 14.07 1.51%
50 - 60 (160) 16.32 16.04 1.73%
60 - 70 (47) 17.98 17.69 1.59%
All (3060) 13.96 13.61 2.50%

Table 5.4: Average path traversal times achieved by distance and movement time based heuristics. Using time
based heuristics, traversal time was reduced by 2.50% compared to the result obtained with distance based
heuristics.



48 Experiments and Results

5.5 Discretization Resolution Results
Discretization resolution has an impact on both path quality as well as search iteration count. A coarse
discretization allows larger step sizes and reduces the number of nodes expanded, but it also increases
discretizational error, resulting in possibly longer paths. Path searches to random goal positions in the
vehicle state space with different discretization settings provide an insight into optimal discretization
settings for the search configuration used.

5.5.1 Spatial Discretization Tests
The effect of the grid resolution used for spatial discretization on path length and search iteration count
is evaluated in this test using searches to 1000 random locations with varying discretization resolution.
Figure 5.12 shows resulting average number of iterations during search and path length plotted against
the grid resolution used for spatial discretization. Note that both path length and number of iterations
increase slowly beyond the point where the optimal resolution was reached; a steeper gradient is expected.
This is to be attributed to the fact that failed searches, i.e., searches which take longer than a user defined
number of steps, are not counted, as the real iteration count is unknown. Increasing problem difficulty by
increasing discretization coarseness leads to more failed searches. These failed searches, already taking
up more iterations than allowed, are most likely also longer than succeeding paths. Stripping these paths
explains the slow rise in both path length and iteration count for coarser discretization values. Figure 5.14
shows the rising percentage of failed paths for coarser discretization resolutions. Table 5.5 contains the
number of iterations for given cell sizes and their standard deviation, both of which feature a common
minimum at a discretization cell size of 1.2. Table 5.6 contains the same information for the path length.
Note that the standard deviation of path length rises more quickly than the average path length with
an increase of cell size, as also shown in Figure 5.13. This is to be attributed to the fact that a coarser
discretization may introduce certain shortcuts, but also generally lowers path quality, increasing their
length.
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Figure 5.12: Plotting average number of search iterations (blue) and path length (red) against spatial discretization
grid size. The average number of iterations is expectedly higher for finer discretization resolutions, then grow
as the search problems become more difficult to solve because of the more limited possibilities. Note that a
discretization grid cell size of 1.5 seems to be optimal for this search setup.
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Figure 5.13: Standard deviations of search iterations (blue) and path length (red) plotted against spatial dis-
cretization grid size. Note that the standard deviation of path length increases significantly for grid cell sizes
greater than 1.5.
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Figure 5.14: The percentage of failed paths plotted against spatial discretization grid size retrieved from 1550
path searches to random locations. With growing cell size, more paths fail due to the added complexity.
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5.5.2 Directional Discretization Tests
Selecting optimal rotational discretization values is not as straightforward as finding an optimal positional
discretization. Figure 5.15 illustrates that, even for a comparatively fine rotational discretization using
10◦, the turning radius of the vehicle can disturb path planning as it requires rotational adjustment in
a very precise manner. Still, reducing the rotational resolution from 1◦ to 2◦ lowered the number of
search iterations from 22868 to 5307, or by 76.79%, with a negligible change in path length. Optimal
discretization parameters should be selected for every distinct search problem, to provide reduced search
times and optimal path quality.
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Figure 5.15: Planned paths from a to b with rotational discretization coarseness value ∆ϕ at 1◦, 2◦ and 10◦.
Beyond 2◦, the discretization conflicts with the turning radius, resulting in suboptimal paths.

Cell Size Avg. # of Iterations Iteration Count Std. Dev. Iteration Count Change
0.1 2036 2241 -89.11%
0.2 1279 1602 -18.82%
0.3 1085 1383 -0.83%
0.4 1047 1353 2.75%
0.5 1083 1386 -0.60%
0.6 1024 1180 4.86%
0.8 978 1295 9.14%
1.0 1076 1560 0.00%
1.2 843 1252 21.66%
1.5 879 1340 18.33%
2.0 933 1366 13.36%
3.0 1020 1457 5.28%
4.0 1002 1318 6.88%
5.0 1133 1363 -5.29%

Table 5.5: Average number of iterations for varying spatial discretization grid sizes. Iteration count changes are
based on the unit grid cell resolution with cell size 1. For each discretization resolution, the same 1000 planned
paths to random locations provide the average values. Note that both the iteration count and its standard
deviation feature a minimum at discretization cell size 1.2.

5.6 Probing Search Results
The probing search step of aiPath uses a non-backtracking best-first search algorithm to provide a
physically correct, preliminary path that can be followed during path-planning using A*. The probing
search is thus assessed for performance and path quality in comparison to A*. Using a search setup
comparable to the one used in measuring the heuristic evaluation function performance as explained in
Section 5.4, the probing search was used to plan paths to various locations on the plane. Figure 5.16 shows
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Cell Size Avg. Path Length Path Length Std. Dev. Path Length Change
0.1 19.46 7.56 -0.41%
0.2 19.45 7.57 -0.39%
0.3 19.45 7.54 -0.39%
0.4 19.48 7.53 -0.53%
0.5 19.51 7.47 -0.66%
0.6 19.49 7.38 -0.57%
0.8 19.35 7.39 0.12%
1.0 19.38 7.58 0.00%
1.2 19.06 7.50 1.64%
1.5 18.97 7.47 2.12%
2.0 19.03 7.63 1.78%
3.0 19.06 7.85 1.65%
4.0 19.16 8.22 1.10%
5.0 19.24 8.38 0.69%

Table 5.6: Average path lengths for varying spatial discretization grid sizes. Path length changes are based on
the unit grid cell resolution with cell size 1. For each discretization resolution, the same 1000 planned paths
to random locations provide the average values. The standard deviation of path lengths rises noticeably with
increasing discretization cell size.

that the probing search finds a path to at least the grid cell neighboring the goal every time, and that in
most cases, sub-cell resolution precision can be achieved. As discretization parameters should typically
be chosen in a way that one cell with deviation is negligible, using only the probing search is a viable
option in absence of obstacles. Table 5.7 shows improvements in the number of search iterations for path
searches to 1446 random locations using both A* and probing search. On average, the probing search uses
about 99.42% less iterations to produce a path. The distribution of improvement percentages is displayed
by Figure A.16. As the heuristic evaluation function in use is admissible, but not consistent, the probing
search is not guaranteed to find the shortest path. Table 5.8 shows that especially for relatively close
goals, the probing search tends to construct longer paths than necessary. Obtained from 4323 searches to
random goals, an average traversal time overhead of 11.87% is found for the probing search. Figure A.17
provides a histogram of the traversal time overhead deviation. Even though the probing search is not
optimal, the resulting behavior is always comprehensible, as it follows the heuristic evaluation function
in every situation.

Average Number of Iterations
Euclidean Path Length (Quantity) A* Search Probing Search Reduction by

0 - 10 (79) 1442 25 98.25%
10 - 20 (247) 3961 34 99.14%
20 - 30 (383) 6770 39 99.42%
30 - 40 (418) 7653 44 99.43%
40 - 50 (222) 9141 49 99.47%
50 - 60 (75) 15140 56 99.63%
60 - 70 (22) 11152 73 99.34%
All (1446) 7894 46 99.42%

Table 5.7: Average number of search iterations of A* and probing search. Calculation cycles were reduced on
average by 99.42% compared to A*. This average improvement is the result of 1446 searches to random locations.
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Average Path Traversal Times
Euclidean Path Length (Quantity) A* Search Probing Search Probing Overhead Overhead Std. Dev.

0 - 10 (55) 2.46 15.37 83.94% 26.70%
10 - 20 (307) 7.22 11.04 34.51% 15.78%
20 - 30 (798) 12.00 14.50 17.19% 7.55%
30 - 40 (1522) 16.82 19.11 11.98% 5.35%
40 - 50 (1266) 21.29 23.31 8.65% 8.43%
50 - 60 (337) 25.62 27.41 6.51% 2.47%
60 - 70 (38) 31.70 33.21 4.53% 2.62%
All (4323) 17.19 19.64 12.44% 11.87%

Table 5.8: Average path traversal times produced by planning 4323 paths to random locations using A* and the
probing search. The probing search produces suboptimal results especially on short paths, with an overhead of
up to 83.94%. On longer paths, the overhead drops, and with it, its standard deviation.
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Figure 5.16: Deviations between probing search end positions and goal positions plotted as arrows pointing from
found position to target position. Most deviation can be found at the rim of the turning radius, as the heuristic
evaluation function is discontinuous there.



Chapter 6

Conclusions

Searching a physically correct path using aiPath in a multidimensional vehi-
cle state space has proven to be a viable technique to generate realistic paths.
This chapter answers the research questions, presents general conclusions and
examines possible enhancements and future research.

Chapter contents: Conclusions about aiPath.

6.1 Answering Research Questions
aiPath is designed to answer the research questions positively. This section analyzes whether the results
confirm that aiPath meets the demands. To reiterate, the first research question is formulated as:

Can physical movement planning approaches provide additional depth in gaming by
providing more realistic movement?

aiPath can indeed improve the quality of planned paths compared to approaches not regarding physical
constraints. More realistic movement is implied by the physical feasibility of the path, other improvements
regard path traversal time, which, rather than path length, is optimized using aiPath. The approach is
robust, because the underlying A* algorithm is guaranteed to find a possible path if one exists, as long as
the heuristic evaluation function in use is admissible. While path post-processing techniques face natural
limitations if unforeseen circumstances arise, aiPath can find alternative solutions. Path post-processing
techniques most commonly have to resort to breaking physical constraints, for example by forcing the
vehicle into a smaller turning radius than possible. Situations in which a locally steered vehicle may get
stuck, or in which a vehicle is given a seemingly impossible task of accelerating in a distance too short
for its acceleration limit can be resolved by using aiPath. Flexibility in finding solutions is inherently
present due to the searching nature of the underlying A* algorithm; where steering routines can only
improve paths, aiPath can find the true shortest path regarding physical limitations.

Integrating aiPath as a local planner into EM5, variations in movement for differing vehicle types
can be achieved. It is to be noted that, even though random deviations are much simpler to implement,
aiPath always guarantees physical possibility as it searches in the physical state space of the vehicle
directly. As an additional benefit, paths planned by aiPath are in general faster to traverse than original
EM5 curves.

The second research question concerns the algorithmic complexity of physical path planning and whether
the approach can be computationally feasible:

Can pathfinding techniques be enhanced to provide more realistic movement, while
still being computationally feasible?

The computational complexity of A* depends heavily on the branching factor, which in turn depend on
the discretization parameters used. A finer discretization generates more successor nodes, but provides
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smoother paths and may produce solutions missed by a coarser discretization. A certain range of dis-
cretization coarseness values can produce aesthetically pleasing paths within reasonable planning time
and memory bounds.

For hundreds of simultaneously moving vehicles in EM5, aiPath is deemed to be computationally
too complex. EM5 already spends a large share of CPU time on navigation, meaning that any increase
in navigation computations become infeasible quickly.

However, EM5 does not use all CPU cores to their full potential, allowing lazy evaluation of path
planning requests by aiPath. While the vehicle is following the path provided by the default EM5
pathfinding system, aiPath may compute a higher quality, physically correct path in a separate thread.
Upon completion, the inferior path can be replaced. Performing a probing search step before A* search,
making use of the heuristic evaluation function to provide a physically valid path, implements a similar
concept. During path following, a complete path can be planned concurrently in a separate thread. Using
aiPath for AI controlled vehicles can enhance realism of produced paths and driving behavior.
Concluding this research, the problem statement is reviewed:

In order to ensure believability of characters in a simulated environment, current
pathfinding techniques have to be modified to incorporate planning with physical lim-
itations of the controlled vehicles.

Planning a path concerning the physical limitations of the controlled vehicle can be achieved by aiPath,
using A* with a domain-aware heuristic evaluation function on the physical state space of the vehicle.
aiPath can therefore be used to improve believability of characters in simulated environments, and thus
convey immersive experiences while playing.

6.2 General Conclusions and Recommendations
As A* is an optimal algorithm, it searches until either a path is found or it is proven that there is no
path. The latter requires an expansion of all search graph nodes, which is infeasible in the case of possibly
quasi-infinite physical domains. In order to achieve good performance even in search failure cases, the
number of iterations may be limited to a number scaling with Euclidean distance or heuristic distance
between the start and goal node. It is also advised to prohibit node expansion strictly from areas the
vehicle is not meant to navigate. In a game setup using urban traffic, this may mean to discard all nodes
which are expanded off road. This limitation may, however, cause vehicles to turn or navigate more
restricted than a player is. In general, care has to be taken to constrain the search using finely tuned
discretization parameters and a good heuristic function modeled after the state space description for the
vehicle type in question.

In many computer architectures, integer calculations are still faster than floating point calculations.
As the state space used for searching and representing nodes is discretized anyway, fixed point arithmetic
may improve both calculation time as well as reproducibility of results, as floating point calculations are
prone to provide inaccurate results.

Usage of AIPATH beyond Computer Games

In the field of robotics, using a two planner setup in order to improve performance may be necessary,
especially if the robot deviates from the path and needs to re-plan. A global planner, set up with a
coarser discretization, generates a rough plan towards the goal. Using slightly more restrictive physical
parameters for the global planner makes sure it is possible to follow the path even in case of minor
deviations. A local planner is then used to plan short segments ahead of the robot to any point on the
global path. If the robot deviates from the path, only the local plan has to be revised, rather than a
complete path to the goal.

6.3 Future Work
Testing aiPath in various domains, from different computer game genres and different vehicle types to
testing with live robots is a task to be performed in future work. As discretization settings heavily in-
fluence the planning performance as well as the path performance, machine learning techniques assisted
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by automated tests in the actual problem domain may aid game designers in choosing the appropriate
trade-off between path quality and performance. Replacing the wrapped A* by an anytime search algo-
rithm may provide higher quality paths with less overhead, as the vehicle may start following the path at
an early stage, and the planner may continue to refine the path while the vehicle is following it. ARA*
[32], an anytime A* variant, may be a viable alternative.

Future Work for EM5 If aiPath is widely used to plan paths for EM5 vehicles, performance should
be improved. Naturally, many performance enhancing improvements can be made to any pathfinding
algorithm. Commonly planned (sub–)paths may be cached per vehicle type, such as recurring curves
in EM5, and using lookup tables or defining a piecewise heuristic evaluation function, as described in
Subsection 4.2.3, can provide significant reduction in computation time. Lastly, not all background AI
must necessarily perform physically correct movement. Limiting the usage of physical path planning for
situations like car chases or user-commanded, but AI-controlled, vehicles, aiPath can add realism to
especially the situations with importance to the player.
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Appendix A

Additional Figures

A.1 Heuristic Values by Distance and Angle
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Figure A.1: Difference between heuristic distance and Euclidean distance to goals at certain angles and distances
plotted as a heatmap. Distances to goal points are given in multiple of turning angles. Note that for goal points
farther than 4 turning radii away, the effect of the turning radii quickly diminishes for all goal angles. Still, all
goal points ahead of the vehicle are closer by a certain factor than goal positions behind the vehicle.
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A.2 Overshooting Handling Effects on the Heuristic Evaluation
Function

In order to correctly estimate the traversal time between two state space configurations with known
distance, under- and overshooting have to be taken into account. Depending on the vehicle configuration,
linear, circular or a combination of both overshooting handling strategies are used. Each diagram plots
the traversal time as color encoded value onto the goal distance versus initial velocity plane. Distances
to the goal are given in meters, velocities are given in meters per second.
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Figure A.2: Heatmap of heuristic evaluation function values for variable distances and initial velocities. The
target velocity is constant at 1m/s. Acceleration and deceleration limits were also set to 1m/s2. The large white
region is impossible to reach without backing up due to overshooting, i.e., the initial velocity is too high to
decelerate to the goal velocity with the given distance. Also note the smaller white region near the origin created
through undershooting, in which the initial velocity is too low to reach the goal velocity in the available distance.
Naturally, the edge between possible and impossible to reach configurations is a discontinuity, which will prevail
in all overshooting handling strategies.
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Linear Overshooting Handling
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Figure A.3: Heatmap of heuristic evaluation function values for variable distances and initial velocities obtained
with linear backing up allowed. No more regions are impossible, but moving too fast quickly increases the time
needed to travel especially shorter distances. Note the slight discontinuity in the yellow region, due to reaching
the maximally allowed velocity.
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Circular Overshooting Handling
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Figure A.4: Circular backing up leads to this heatmap of the heuristic evaluation function values for variable
distances and initial velocities. The undershooting effect is much more pronounced than for the linear backing up
strategy, as it requires to maneuver a whole turning radius circle with low starting velocity. Note the discontinuities
introduced by correctly assuming a circle radius fitting to both the turning radius of the vehicle, as well as the
lateral acceleration limit. Note also that the discontinuity introduced by reaching the maximum velocity is more
defined, as possibly a longer distance with the maximum velocity is traveled.
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Combined Overshooting Handling
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Figure A.5: Heatmap of the heuristic evaluation function using the minimum of both linear and circular backup. If
possible for the vehicle, this strategy should be chosen, as it lowers the traversal time and reduces the discontinuity
effect for undershooting.
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A.3 EM5 Curve Types

The most commonly occurring curves in EM5 maps are presented in this section.

Figure A.6: Typical right curves in EM5. This curve is the most narrow curve occurring with a curve radius of
only 6 meters.

Figure A.7: Typical left curve in EM5. Compared to the right curve, this curve is a lot wider, with a 13 meter
turning radius.
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Figure A.8: A sharp, longer right curve with an approximately 8 meter minimal curve radius.

Figure A.9: A long left curve with an approximate minimal curve radius of 15 meters.
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A.4 EM5 Curve Search Iterations
Histograms describing the deviations in number of iterations to plan the most common EM5 curves.
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Figure A.10: Histogram describing the deviation of number of iterations to plan the EM5 6 meter radius curve
shown in Figure A.6. Most searches can be performed with a low number of iterations, but varying turning
radius and input speeds surpassing the lateral acceleration limit in the curve produce some more complex backup
maneuvers with higher number of iterations.
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Figure A.11: Histogram describing the deviation of number of iterations to plan the EM5 13 meter radius left
curve shown in Figure A.7. For the 13 meter curve, the lateral acceleration limit is not reached, but due to the
longer curve, more possibilities arise to produce shorter traversal times. Planning maneuvers like cutting curves
may increase the number of iterations.
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Figure A.12: Histogram describing the deviation of number of iterations to plan the EM5 8 meter radius curve
shown in Figure A.8. For the 8 meter curve, the lateral acceleration limit is not reached, lowering the upper bound
of search iterations. The overall number of longer path searches is increased, because the path is substantially
longer.
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Figure A.13: Histogram describing the deviation of number of iterations to plan the EM5 15 meter radius long
left curve shown in Figure A.9. Due to the length of the curve, every backtracking operation in A* requires a
high number of iterations, producing a significant number of outliers.
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A.5 Histograms of Heuristic Improvement Result Tables
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Figure A.14: Histogram of the iteration count improvement in percent of all 3060 path searches to random
locations. Improvement of the time estimation heuristic is calculated based on the distance based heuristic. The
majority of searches were improved by over 90%
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Figure A.15: Histogram of the traversal time improvement in percent of all 3060 path searches to random locations.
Improvement of the time estimation heuristic is calculated based on the distance based heuristic. Most path
traversal times could be improved between 0 to 20%.
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A.6 Histograms of Probing Search Result Tables
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Figure A.16: Histogram of the iteration count improvement in percent of all 1446 path searches to random
locations. Improvement of the iteration count compares the number of iterations required for the probing search
versus the number of iterations required for A*.



A.6 — Histograms of Probing Search Result Tables 75

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

Traversal time overhead in percent

N
u
m

b
er

 o
f 
in

st
a
n
ce

s

Figure A.17: Histogram of the traversal time overhead in percent of all 4323 path searches to random locations.
As A* finds shorter paths than the probing search, the overhead compares path traversal times of the probing
search with A* path traversal times.
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