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Abstract

Board games and computer game-playing have been a subject for research in
computer science and artificial intelligence for quite some years now. Beating
humans at their own games has been a dream for many computer scientists since
the early 1950s. A dream which eventually came true in 1994, when Chinook
became the first man-machine world champion in Checkers.

This thesis describes the analysis and implementation of a fairly new two-player
zero-sum board game called OCTI, and more precisely the variant “OCTI: New
Edition”. To begin with, both the state-space complexity and game-tree com-
plexity of the game are computed. Using these values, suitable techniques to
make a computer play the game adequately are selected, using both search al-
gorithms and limited game knowledge. These algorithms are later refined with
heuristics, forward pruning and transposition tables. Finally, some tests are
run to select the best algorithm and fine-tune the knowledge-based evaluation
function.
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Chapter 1

Introduction

A game is a series of interesting choices. — Sid Meier

This chapter is a general introduction to games, Artificial Intelligence and com-
puter game-playing. In section 1.1 we will first define the domain of computers
and games, followed by an introduction to computer game-playing in section
1.2. In section 1.3 we will define the problem statement and research questions
and finally in section 1.4 an outline of this thesis is given.

1.1 Games and computers

Games have been around as long as humanity has. Some games are meant
purely for entertainment, while other games challenge the intellect of humans.
Board games usually offer a pure form of abstraction, allowing two (or more)
players to compete against each other without having to worry about tedious
logistics.

Games come in all sorts of shapes and sizes, but some have some properties in
common with others, which allows us to categorise them. For example we can
distinguish them by the number of players, the kind of information they provide
to the players, whether they are convergent or divergent, and so forth.

The idea to have computers play games as intelligently as possible has been
launched as early as the 1950s by Shannon (1950) and Turing (1953). Both
described a chess-playing program which, ultimately, led to Deep Blue de-
feating the reigning World Champion (Schaeffer and Plaat, 1997). In over half
a century, many advances have been made, and computers are getting better
and better in lots of games, but humans are still in control of several games,
like Backgammon and Go. There are four reasons that make games interesting
research subjects.

1. The knowledge in games is mostly exact and well-defined, which makes
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them easier to translate to computer programs, compared to real-life prob-
lems (van den Herik, 1983).

2. Although the rules of most intelligent games are easy to learn, playing the
game is quite hard (Minsky, 1968).

3. Games can be used to test new ideas in problem solving, which can later
be used in other fields of study like mathematics and economics (Nilsson,
1971).

4. Creating a machine that plays an intelligent game can sometimes give a
new insight into the way people reason. Famous representatives of this
statement are de Groot (1946), and Newell and Simon (1972).

Beating humans at their own game is the summum for AI researchers specialising
in games. But building a World Champion computer program can sometimes
be a long and difficult process, often going one step at a time. In the beginning,
each advance can be only applicable to the very narrow field of the game itself,
but sometimes it can be translated to other domains. Research in games is
therefore not only important to the game-playing community, but sometimes
also to the rest of the AI world.

1.2 Computer game-playing

Abstract games are played in two different ways by computers: using knowledge
or using brute-force search. The choice of method depends on the game, and
its complexity.

If a purely knowledge-based technique is chosen, the game is played using know-
ledge only, and a search algorithm is not used. This is only possible if sufficient
information of the initial state and all the subsequent states for playing the
game is available. It should be possible to store the game knowledge, and of
course storing and discovering new game knowledge has to be feasible too, an
example of a game which can be played (and even solved) using knowledge only
is the game of Nim (Bouton, 1901).

If a purely search-based technique is chosen, the game tree of the game is con-
structed and explored, and a search algorithm is used to select the best move. In
a game tree, a node represents a position on the board and an edge represents a
move. A leaf represents a terminal position: either win, loss or draw. If possible
in time and space restrictions, the entire game tree of the game is constructed
and saved. This way, the exact outcome of any move is known and the game is
considered solved. If this is not possible, a search tree is generated. This tree is
only a part of the game tree, with the root being the current position to eval-
uate. In a search tree, the leaf nodes also include non-terminal positions. An
evaluation function is used to estimate the value of a certain position and this
evaluation is used in conjunction with the Minimax algorithm (von Neumann
and Morgenstern, 1944) to search the tree.
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1.3 Problem statement and research questions

In computer game-playing, the goal is to make a computer play a certain game
as good as possible. So the problem statement for this thesis is the following:

How can a computer program be written that plays the game of OCTI as
efficiently as possible?

In order to answer this problem statement, several other questions arise. We
will deal with three research questions.

1. What is the complexity of OCTI?

To answer this research question, the complexity of OCTI needs to be computed.

2. What known techniques can be used to play OCTI?

Once the complexity of the game is known, techniques to play the game will be
selected. If the game is not very complex, this will usually be a full enumera-
tion. More complex games will traditionally use a search algorithm with some
limited game-specific knowledge. Very complex games normally are played us-
ing knowledge-rich methods. When the techniques used to play the game are
known, the next step is the acquisition of knowledge.

3. What game-specific knowledge is required to make a computer play OCTI?

If we exclude complete enumeration, then clearly all games have to be played
with some form of game-specific knowledge. Depending on the chosen approach
(search-based or knowledge-based), this amount of knowledge can vary.

Once these three questions are answered, a program to play OCTI can be built.

1.4 Outline of this thesis

The outline of the thesis is as follows:

• Chapter 1 contains a general introduction to games and computers, ex-
plains how computers play games, and defines the problem statement and
research questions.

• Chapter 2 gives an introduction to the abstract board game OCTI and its
strategies.
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• Chapter 3 discusses a complete complexity analysis of OCTI, including
state-space complexity, game-tree complexity and a comparison of OCTI
and other abstract board games.

• Chapter 4 states the techniques used to make the program play OCTI: tree
construction, search algorithms, move ordering, windowing techniques and
transposition tables.

• Chapter 5 states the general principles of OCTI, revisits the strategies and
explains the implementation of the evaluation function for the game.

• Chapter 6 lists tests and their results of the various search algorithms.

• Chapter 7 lists tests and their results of the evaluation function tweaking.

• Chapter 8 concludes the thesis with an evaluation of the problem state-
ment, answers to the research questions, final conclusions and recommend-
ations for future research.
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Chapter 2

The game of OCTI

Good positions don’t win games, good moves do. — Gerald Abrahams

This chapter is an introduction to the main research subject: the game of OCTI.
First, a general introduction to OCTI and its variants is given in section 2.1,
followed by the rules of “OCTI: New Edition” in section 2.2. In section 2.3 the
OCTI notation is defined by means of an example game, and finally in section
2.4 some strategies for OCTI are given.

2.1 Introduction to OCTI

OCTI is the name of a series of board games developed by Donald Green. There
are currently two versions: “OCTI: New Edition” (formerly named “OCTI for
Kids”) which is played on a 6×7 board, and “OCTI-Extreme” (also known
as “OCTI-X”) which is played on a 9×9 board (Green, 2000b; Sutton, 2002;
Gendelman and Meshulam, 2004). The basic idea in both versions of the game
is to capture one or all of the opponent’s home bases (called “OCTI squares”)
or capture all of his pieces (called “pods”). In order to achieve this, a player
must first equip his pods with small pegs called “prongs” which will enable the
pod to move in the chosen direction. This way, a pod can be equipped with up
to 8 prongs which will allow it to move in every direction on the board.

2.2 Rules of “OCTI: New Edition”

As seen in the previous section, several versions of the game of OCTI exist.
This thesis deals with the 6×7-variant, called “OCTI: New Edition”. For the
sake of clarity, throughout the text we will be using the term “OCTI” whenever
“OCTI: New Edition” is meant.

The game starts with 4 pods per player (4 yellow and 4 red). The pods are
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placed on the starting squares, called OCTI squares. Furthermore, each player
has a supply of 12 prongs which can be inserted in any direction on any of his
own pods. Figure 2.1 shows the starting position.

Figure 2.1: Starting position in OCTI.

The player with the yellow pods must make the first move. A move can be any
of three things: (1) adding a prong to a pod, (2) moving a pod to an adjacent
square, or (3) jumping over a pod in an adjacent square. In the starting position,
moving and jumping is not yet allowed since a pod needs a prong to be able to
move in the direction of the prong. In OCTI, there is a fundamental difference
between jumping and capturing. In this thesis, we will define “jumping” as the
process of jumping over a pod without capturing it, and “capturing” as both
jumping the pod and removing it from the board.

When a player chooses to add a prong to one of his pods, the turn ends and
the next player must make a move. A pod can hold 8 prongs, named a through
h. Prong a faces upwards from player yellow’s point of view. The other prongs
are named clockwise following the alphabet. At first, each player starts with 12
prongs, but prongs can be stolen from the opponent by capturing the opponent’s
pods. Once a prong is placed on a pod it cannot be removed, and pods cannot
be rotated during the game.

Moving a pod to an adjacent square is only possible when the pod has a prong
in that direction. The target square must also be empty. In “OCTI-Extreme”
it is also possible to stack pods of the same player on top of each other, but this
is not allowed in “OCTI: New Edition”. Once a player has moved one of his
pods, the turn ends and the next player is to move.

Jumping is the most complicated move possible in the game. Jumping pods is
only possible when three requirements are met: the pod must have a prong in
the direction of the jump, the square that is being jumped must hold a pod
(either friendly or enemy) and the square where the pod will land must be
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empty. Furthermore, multiple jumping is allowed. When after a jump the pod
lands on a square where another jump is possible, the player can jump again.
Jumping, however, is never mandatory. When a pod is being jumped over it can
be captured, but this is not required either. This way, jumping can be used to
drastically improve the mobility of pods, or to capture both friendly and enemy
pods. When a pod is captured, its prongs are removed and given to the player
which has captured the pod. The player can then use these prongs to add to his
own pods later in the game. Captured pods are removed from the board and
can never be added again. Jumping over the same pod in one series of jumps is
not allowed however, which brings the maximum number of jumps in one series
to 7.

The game ends when a player steps with one of his pods on one of the OCTI
squares of the opponents. This can be either via a jump move, or via a nor-
mal move. Stepping on one of the OCTI squares immediately ends the game.
Another option to end the game is to make it impossible for your opponent to
move, either by capturing all of his pods, leaving him with only empty pods and
no more prongs to add or block all remaining pods so that they cannot move
or jump again. This will also end the game immediately. The player to step on
an enemy OCTI square or to block the opponent is declared the winner.

Even though no documentation can be found in the literature about draws in
OCTI, they are possible. When both players position their pods in such a
fashion that they can not add any more prongs, nor move their pods on the
board the position could be declared a draw. The same could be said about
endless repetitions of both player making the same sequence of moves over and
over again. However, in the official rules on the OCTI website, nor in previous
reports of tournaments, draws are not mentioned.

The rules to all the OCTI variants can be found in Green (2000b).

2.3 OCTI notation and example game

The squares in OCTI are numbered 1 through 6 horizontally and 1 through 7
vertically, all seen from player yellow’s point of view. Since a player can make
three kinds of moves in the game, the notation also has three different forms.

When a player adds a prong to a pod, first the location of the pod is given,
followed by the letters of the prongs it already contains, a plus sign and finally
the letter of the prong being added. Adding prong a to an empty pod in square
2,2 is written as follows: 22+a. If this pod already had prongs a, c and f and
prong b is being added, the line reads: 22acf+b.

When a pod is being moved, first the coordinates of the starting position are
given, followed by the prongs equipped on the pod. Next a dash is written and
finally the coordinates of the target position are written. Moving a pod from
2,2 to 2,3 is written as follows: 22a-23. If the pod has multiple prongs, the
notation might be: 22abh-23.
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When a pod makes a jump move, first the starting coordinates of the jump
are written along with the equipped prongs on the pod. A dash follows with
the coordinates of the square the pod is landing on. If the player chooses to
capture the pod jumped, an x is inserted. Should the player choose to make an-
other jump, another dash is added along with the coordinates of the new target
square, and optionally an x when the pod jumped is captured. This sequence
is repeated as often as necessary. A pod moving from 2,3 via 4,1 and 4,3 to
6,1 while capturing the last pod jumped is written as follows: 23ad-41-43-61x.
Capturing all pods along the way would be written as: 23ad-41x-43x-61x.

A game of OCTI can be saved into an SGF file (Saved Game File) using special
codes and headers. This game can be read and written by the program to allow
games to be saved. The header file for “OCTI: New Edition” is as follows:

(
;GM[19] RU[kids]

Some extra codes can be added, e.g., the time and date of the game and the
names of both players. But the only required codes are GM[19] to identify the
game of OCTI and RU[kids] to identify the “OCTI: New Edition” rule set.

The next lines in the file are all move lines, written as a semicolon and a capital
B or W to identify the player (in OCTI, B stands for the yellow player and W
for the red player). Followed by the move in OCTI notation enclosed by square
brackets. A final closing bracket ends the file. The following file shows a short
example:

(
;GM[19] RU[kids]

;B[32+a]
;W[36+e]
;B[32a-33]
;W[36e-35]
;B[33a-34]
;W[35e-33x]
;B[42+g]
;W[33e-32]
)

This corresponds with the game shown in figure 2.2.
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Figure 2.2: OCTI example game.

2.4 Strategies in OCTI

To play a game of OCTI, a player has to keep four things in mind while deciding
which move to play. These are the basic strategies of OCTI, taken from Green
(2000a):

1. Trade-off between building and moving

This is a thing a player has to consider continuously: choose to either add a
prong to a pod or move a pod to a new location. When a player chooses to
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move a pod, this means he1 loses a turn to add a prong. So it is better only to
move a pod when it really offers an advantage. Wandering around the board
makes the opponent’s pieces more developed while yours remain the same.

2. Move your pods in teams

It is better to keep two pods close to each other. When pods are moving in
formation, they can cover more ground together. Especially due to the jumping
rule, and the fact that you are not required to capture jumped pods, two pods
can be a serious threat to the opponent, even if he is still a few squares away.

3. Do not let the opponent capture pods and/or prongs

This rule is quite straightforward. Every player has only 4 pods and 12 prongs.
Amongst skilful players, a game can take quite some time before finishing and
the supply of prongs might run out. Therefore, try to keep your prongs in your
possession, in some cases this could even mean capturing your own pods to not
let them fall in enemy hands.

4. Make pods move forward and backward

In the short version of the game, where a player is trying to capture only one
OCTI square, it is very important to make your pods be able to move forward
and backward. When a player launches an attack on an enemy OCTI square, he
can capture the pod guarding the base, and since his pod has a prong equipped in
the opposing direction, step back onto the OCTI square the next turn, effectively
winning the game.

1Throughout this thesis, we will be using “he” or “his” whenever “he or her” or “his or
her” is meant.

10



Chapter 3

Complexity analysis of
OCTI

Games are a compromise between intimacy and keeping intimacy
away. — Eric Berne

A good step to get to know a game, and to learn the best way to implement
it is by starting with a complete complexity analysis. This analysis consists of
two different values: the state-space complexity and the game-tree complexity.
In section 3.1 we will first compute the state-space complexity, followed by the
game-tree complexity in section 3.2. Finally, in section 3.3 we will compare
OCTI’s complexity to the complexity of other games.

3.1 State-space complexity

The state-space complexity is the total number of different board configura-
tions possible in a game. Exactly calculating this number is often very difficult;
therefore upper bounds are most commonly used, including some illegal pos-
itions that can never be reached. For OCTI, we assume that the number of
illegal positions is much smaller than the number of legal positions. The ac-
tual count of legal positions will probably be fairly comparable to this upper
bound including illegal positions. Therefore, we will compute the state-space
complexity including these illegal positions.

In OCTI there are 6×7, thus in total 42 squares which all pods can occupy.
The maximum number of pods on the board is 8 (4 pods per player), and the
minimal number is 1 (1 pod, all others are captured). A game can never have
more than 8 pods, which is the starting position and no pods can be added to
the game; or less than 1 pod which is a terminal position. Let R be the number
of red pods on the board, and Y the number of yellow pods on the board. So
the total number of positions with 2 or more pods is derived in the following
formula:
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4∑
R=1

4∑
Y =1

(
42
R

)(
42−R

Y

)

The amount of possible pod positions can be found in table 3.1.

pods possibilities R/Y pod positions
2 1 1,722
3 2 68,880
4 3 1,567,020
5 4 25,520,040
6 3 325,238,732
7 2 3,399,269,328
8 1 29,979,666,990

Total: 33,731,332,712

Table 3.1: Number of possible pod positions.

The terminal positions, with only 1 pod on the board are not included in the
count. However, this number is very simple to compute: there are 42 squares
which all can be occupied by one red or one yellow pod, which add another
84 possibilities to the count. This brings the total number of pod positions to
33,731,332,796.

This only includes the total number of ways to place the pods on the board.
However, pods can be loaded with up to 8 prongs per pod, with a maximum of
24 prongs, 12 for each player. Players can also steal prongs from the opponent
when capturing a pod, giving its prongs to the capturing player.

There are 8 slots on each pod to insert prongs, thus 256 different prong combin-
ations per pod. However, the total number of prongs on the board is limited to
24, which needs to be taken into account when computing the total number of
prong configurations. In the following formula, N is the total number of pods
(red and yellow) on the board and I the total number of prongs on all pods.
The factor max (0, 24− I + 1) makes sure that illegal positions are not added
to the count.

8N∑
I=0

(
8N

I

)
×max (0, 24− I + 1)

The total amount of possible positions can be found in table 3.2.

As said before, this count includes some unreachable positions. Examples are
pods that have moved in a direction for which they have no prong, or more
than one pod standing on an enemy base. However, for the game of OCTI we
assume that the actual number of legal positions will not be much lower than
this number, so we define the state-space complexity of OCTI as O(1028).
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pods pod positions prong positions total positions
1 84 256 21,504
2 1,722 1,114,112 1,918,500,864
3 68,880 218,103,808 1.50229903 × 1013

4 1,567,020 38,656,145,007 6.05749523 × 1016

5 25,520,040 5.57744796 × 1012 1.42336695 × 1020

6 325,238,732 5.43832534 × 1014 1.76875404 × 1023

7 3,399,269,328 3.18846469 × 1016 1.08384502 × 1026

8 29,979,666,990 1.14296287 × 1018 3.42656462 × 1028

Total: 33,731,332,796 1.17539697 × 1018 3.96477064 × 1028

Table 3.2: Total number of possible positions.

3.2 Game-tree complexity

The game-tree complexity is a number indicating the amount of different games
that can be played. To calculate the size of the game tree, two values are needed:
the average branching factor, and the average game length. Both values here are
based on game play on the Internet, found at http://www.octi-online.com/.

Sutton (2002) has analysed games of OCTI played over the Internet, and has
concluded that the average branching factor of OCTI is 31. When the game
starts, each player has 32 possible moves (4 pods with each 8 prongs to add).
The branching factor does not vary much in the beginning of the game. In the
middle game, due to the jumping rule, the branching factor can be as high as
101. In the endgame, the branching factor is lower, sometimes even as low as
2. To compute the game-tree complexity, we will use the value of 31 obtained
by Sutton (2002).

The length of a 6×7 OCTI game is rather short, due to the relative small size
of the board and the fact that OCTI is more of a tactical game. Game lengths
rarely surpass 25 moves. This would bring the total game tree size to 3125, or
1.92 × 1037.

3.3 OCTI compared to other games

As we have seen in sections 3.1 and 3.2, the state-space complexity of OCTI
is O(1028) and the game-tree complexity is O(1037). In other words, OCTI
has a relatively small state-space, but a relatively large game-tree. This makes
OCTI best approached by brute-force methods and some knowledge of the game,
e.g., using intelligent search. OCTI’s complexity compared to other games’
complexity can be found in table 3.3, based on van den Herik, Uiterwijk, and
van Rijswijck (2002).

Based on this list of complexities, OCTI can be compared to the game of Check-
ers. Checkers, as opposed to OCTI, is a rather old game and has been the subject
of AI research for quite some time. This resulted in the creation of Chinook,
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Game State-space Game-tree
Nine Men’s Morris 1010 1050

Pentominoes 1012 1018

Awari 1012 1032

Kalah (6,4) 1013 1018

Connect-Four 1014 1021

Domineering (8×8) 1015 1027

Dakon-6 1015 1033

Checkers 1021 1031

OCTI (6×7) 1028 1037

Othello 1028 1058

Qubic 1030 1034

Draughts 1030 1054

Chess 1046 10123

Chinese Chess 1048 10150

Hex (11×11) 1057 1098

Shogi 1071 10226

Renju (15×15) 10105 1070

Go-Moku (15×15) 10105 1070

Go (19×19) 10172 10360

Table 3.3: Complexity of OCTI compared to other games.

which eventually became the first Man-Machine World Champion in any game
in 1994 (Schaeffer, 1997). Since OCTI is only a few orders of magnitude more
complex than Checkers, it can be assumed that, with the necessary research,
OCTI can one day beat a human opponent, too.

If we compare OCTI to Checkers once more, it can be assumed that, with the
necessary time and research, strongly solving OCTI is possible. Quite recently, a
breakthrough has been made in Checkers on solving a common and well-known
opening called the “White Doctor” (Schaeffer et al., 2005a; Schaeffer, 2005b).
It is expected that, if sufficient computing resources are available, Checkers will
be completely solved in a few months.
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Chapter 4

Search

Without error there can be no brilliancy. — Emanuel Lasker

The concept of game trees has been previously defined in section 1.2. Later,
in section 3.3 we have stated that the complexity of OCTI does not permit a
full enumeration of the whole game. This means that when the game tree for
OCTI will be constructed, we will only be able to search through it to a given
depth. Therefore, search methods will have to be developed which will guide the
search as efficiently and consistently as possible. The goal is to look as deeply
as possible for a certain position and time.

In this chapter, we will first discuss the methods used to construct the search
tree in section 4.1. Next, in section 4.2 we will introduce algorithms for searching
through a tree. We will discuss the αβ-algorithm and its extensions used in our
program in sections 4.3, 4.4, 4.5 and 4.6. Furthermore, in section 4.7 we will also
list some other methods which were not implemented, and discuss the overall
framework of our program in section 4.8.

4.1 Tree construction

Constructing the search tree is done by means of move generation in games.
At a given position, all the moves are generated that will lead to another legal
position. Also, we will have to check if a given node is a terminal position. Both
matters will be discussed in subsections 4.1.1 and 4.1.2.

4.1.1 Move generation

Generating legal moves in OCTI is a quite straightforward process. As stated
in section 2.1, there are three types of moves in the game of OCTI: adding a
prong, moving a pod and jumping and/or capturing pods. Depending on the
given position, not all three types of moves are always possible. For example,
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when no pod on the board has a prong equipped, jumping and moving will not
be possible.

The move generator automatically detects the type of position and invokes the
subroutines that generate the actual moves. Thus, when no more prongs can
be added, the prong-move generator will not be called. When jump-moves are
involved, the move generator does a quick depth-first search to generate all
possible jumps, with and without captures. Since these moves rarely surpass
3-4 jumps per move, doing this extra search will not slow the move generator
down significantly.

4.1.2 Detection of terminal nodes

Detecting terminal nodes is once again quite straightforward in OCTI. As stated
in section 2.1, the game is over when a pod steps on an opponent’s OCTI square,
or when the opponent cannot move any more. First, the algorithm checks for
enemy pods on a home base, and next a quick scan of the board is done to
evaluate if all pods are blocked for moving. If any of these scans is successful,
the game is deemed over and the player that made the previous move is declared
the winner.

4.2 Searching

Searching through game trees is usually done using depth-first search. In this
type of search, the first branch to an immediate successor of the current node is
recursively expanded until a leaf node is reached. The algorithm then backtracks
and checks the remaining branches.

Depth-first searching usually works like a charm for games, but there is a caveat.
A depth limit has to be provided before the search starts. Since we do not
know how many seconds the search is going to take, a technique called iterative
deepening is used (Russell and Norvig, 1995). With ID, the search starts to a
given ply depth x, finishes, and then starts over the search to depth x+1. This
process is then repeated until the allowed search time runs out. This might seem
like a lot of wasted time on re-searching nodes, but the overhead is surprisingly
small.

Because of ID, the search can be stopped at any time, and a valid best move at
that time can be returned. The longer the search has been running, the deeper
the algorithm has searched.
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4.3 Alpha Beta

While the algorithm is searching the game tree, the value of the best terminal
node found so far might change. Certain moves in the tree have such a value
that they cannot affect the expected value of the tree any more. The αβ-
algorithm takes advantage of this situation and prunes the search tree by not
searching useless branches. The algorithm is credited to John McCarty in 1956,
although he did not publish it. Brudno (1963) was the first to write it down.
Its correctness was later proved by Knuth and Moore (1975).

We will use αβ for searching in OCTI, since it is still the most well-known and
widely-used search algorithm in games. Most chess-playing programs use it.
The algorithm uses lower (α) and upper (β) bounds to guide its search through
the tree. These bounds are used to cut off certain branches of the tree. For a
more detailed explanation of the algorithm see Russell and Norvig (1995).

4.4 Windowing techniques

A way to optimise the αβ-search is to fine-tune the αβ-window. As we know, αβ
uses a window to keep track of the lowest and the highest value encountered.
Branches with a value outside the window are not searched and are cut off.
Usually it is faster to search with a smaller window since this yields the most
cut-offs. However, sometimes this also cuts off a good branch and re-searching
is necessary. Changing the αβ-window from the default [−∞,∞] to a smal-
ler window is called a windowing technique. In the following subsections we
will discuss three windowing techniques: aspiration search in subsection 4.4.1,
principal-variation search in subsection 4.4.2 and null-move search in subsection
4.4.3.

4.4.1 Aspiration search

Aspiration search is not actually a new form of search, but merely a different
way of starting each αβ iteration. Aspiration search uses aspiration windows:
when an iteration of αβ is finished, the returned minimax value m is used to
calculate the new α and β values. Quite often, a static factor f is used, such
that α = m − f and β = m + f . This smaller window makes a quicker search
possible. However, if the minimax value is outside the window, a re-search with
the default [−∞,∞] window is necessary. More information about the actual
algorithm can be found in Shams, Kaindl, and Horacek (1991).

4.4.2 Principal-variation search

With principal-variation search (PVS), the window is kept as small as possible,
with its lower bound set to α, and its upper bound to α + 1. The basic idea
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behind this method is that it is cheaper to prove a subtree inferior, than to
determine its exact value. It has been shown that this method does well for
bushy trees like in chess. In section 3.2 we have seen that the branching factor
of OCTI (31) is in the same range as chess (35), therefore it might be a good idea
to try PVS in OCTI too. Provided we have a good move-ordering mechanism,
PVS reduces the size of the search tree. For a more detailed description of the
algorithm, see Marsland (1986).

4.4.3 Null-move search

Making the null move means changing who is about to play, without moving
any piece on the board. It is equal to passing, which is not allowed in OCTI.
The reason to use the null move is to enable us to establish threats which is
important for move ordering.

The null move was first described by Beal (1989) and later extended by Don-
ninger (1993). The idea is to perform a depth-limited search with the null move
before doing the actual search. The search depth of the null move search is
normally the search depth of the normal search, but reduced by a factor R,
which is usually set to 2. The null move is not always searched however. In the
following situations no null move is used.

• The previous move was a null move.

• The search is at the root of the tree.

• The current player is at a considerable disadvantage, the chances of a
cut-off being extremely low.

We have assumed that making any move is always better than passing. In
OCTI however, some situations can occur (though be it rarely) that passing
would be a better choice. But since passing is not allowed, using the null move
in this situation could return an illegal move. This situation is called zugzwang
(Uiterwijk and van den Herik, 2000). To avoid this problem, the null move is
also not used when the side to move can not add a prong any more. Adding a
prong always fortifies a pod, and therefore eliminates zugzwang.

4.5 Move ordering

Since the αβ-algorithm is a depth-first search algorithm, ordering the search
tree such that the branches which will yield the best score are evaluated first
will greatly speed up the searching. However, if we knew which branches would
result in the best score at any time, searching would no longer be necessary. To
order the search tree as good as possible, we have to create an ordering function
which tries plausible moves first which yields big cut-offs. In order to select
plausible moves, heuristics are used.
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There are many different types of heuristics. For example game-specific versus
game-independent heuristics, or static versus dynamic heuristics. In this thesis,
we will focus on game-specific and game-independent heuristics. Game-specific
heuristics use game characteristics to order the moves. Game-independent heur-
istics are based on other properties of search algorithms.

In this section we will describe two game-independent heuristics: the killer-
move heuristic in subsection 4.5.1 and the history heuristic in subsection 4.5.2.
In subsection 4.5.3 we will briefly discuss the game-specific heuristics.

4.5.1 Killer-move heuristic

The killer move heuristic is a fairly simple heuristic based on the fact that a
move which was best for a certain position will probably also be pretty good
for a similar position. It was first proposed by Huberman (1968). Since αβ is a
depth-first search algorithm, implementing it is pretty straightforward. When
the algorithm has found a certain move to be the best move for a certain position,
this move is saved to be tested first in the next position (at the same search
depth). To begin with, this “killer move” is checked for validity in the current
position. If the move is possible, it is added first to the move list. If it is not
a valid move, move generation proceeds as usual. The cost to implement killer
moves is quite cheap. For k moves at n plies, its memory requirement is only
k×n, no problem for any modern computer. For more information about killer
moves, see Akl and Newborn (1977). An example of a killer-move list is given
in table 4.1.

depth killer
1
2 42d+b
3 52+a
4 42bd-64x
5 64bd+a
6 64abd-65

Table 4.1: Killer-move list example.

4.5.2 History heuristic

In a certain way, the history heuristic is pretty similar to the killer-move heur-
istic. It was first defined by Schaeffer (1983). The history heuristic saves a
history table for each move in the game. In OCTI, two tables are required per
player: one for moving pods over the board, and one for adding prongs to pods.

The first history table records the moves that pods can make on the board.
This table consists of 42 × 42 = 1764 entries. These represent 42 from-squares
and 42 to-squares. Quite obviously this table includes some impossible moves,
e.g., from one edge of the board to another, but this does not cause a problem
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for the later usage so it is ignored. Each time a move that involves moving
a pod from one square to another is found to be the best move for a certain
position, its counter in the history table is incremented. When later a new
node is searched, the possible moves are ordered by descending order of their
scores. The second history table works exactly like the first one, except this one
stores moves that involve adding prongs. This table has a size of 42× 8 = 336.
When at a certain position in the search tree a move is found to be the best,
the algorithm automatically selects the corresponding table and increments the
score of that move. When a list of moves to be ordered is presented, each table
is used when necessary.

History tables are kept throughout the entire game. They are initialized once
at the beginning of the game and only reset when the game is finished and a
new game is started. Once a player has made a move, each score in the table
is divided by two when a new search process begins. Once again, the memory
requirement of this heuristic is fairly small. The total number of scores kept is
(1764 + 336)× 2 = 4200, with the average size of a move in memory of 6 bytes,
this is less than 25 kilobytes.

4.5.3 Game-specific ordering

As we have stated in section 2.4, there are several general strategies which have
to be taken into consideration when playing a game of OCTI. Two of these can
be used in move ordering: (1) trade-off between building and moving and (2)
do not let the opponent capture pods and/or prongs.

Hurting your opponent is usually smarter than fortifying your own pieces in a
war-based game like OCTI. Capturing all the opponent’s pieces will result in
an automatic win. Therefore, moves that allow jumping/capturing of enemy
pods are placed first in the list of possible moves. Next are the moves which
add a prong to one of your own pods. Building your pieces is a better idea than
moving a piece. The remaining moves are then added at the end of the list.

Move ordering, however, is not the only place where game strategies are im-
plemented. The evaluation function, discussed in chapter 5, is the foremost
place for this type of game logic. Move ordering should be aware of the game
strategies, but a good evaluation function should also take them into account.

4.6 Transposition table

While searching a game tree, it can sometimes happen that the exact same
position is searched more than once. For example, the same position is reached
via a different route in the tree. These positions are called transpositions. If
the results of a search on a position can be stored somewhere, re-searching the
same position later can be avoided or drastically shortened by using those stored
results.
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Transpositions can happen all the time in OCTI, even though they are rare in
the beginning of the game. Since in OCTI the pieces on the board can change
due to the addition of prongs, the same position will return less often. But
since we are using iterative deepening, using the transposition table will almost
certainly have a positive effect during the entire game.

In the following subsections we will be discussing the details of our implement-
ation of the transposition table mechanism. In subsection 4.6.1 we will first
describe the hashing algorithm, followed by the use of the table in subsection
4.6.2, and lastly the probability of errors in subsection 4.6.3.

4.6.1 Hashing

In an ideal world, saving all the positions encountered in the search tree and
their results in memory would be the best option. However, this is not possible
due to memory restriction in our current computers. A transposition table is
therefore implemented as a hash table using some hashing method.

In OCTI there are two different pieces (red and yellow pods), which each can
hold 256 different combinations of prongs. Furthermore, there are 42 squares on
the board which can all be occupied. For any possible combination a random
number is generated: a grand total of 21,504 (2×256×42) random numbers. The
hash-value of a position is computed by doing an XOR operation on the numbers
associated with the piece-square combination of that position. In addition, if
the current player to move is red (the second player) an extra random number
is added to the hash. This method is called Zobrist-hashing (Zobrist, 1970).

If the transposition table consists of 2n entries, the first n bits of the hash value
of a certain position are used as an index value for the table element. The
remaining bits (the hash key) are used to distinguish among different positions
mapping on the same hash index. For OCTI we use a 64-bit hash value (com-
puted with 64-bit random values) and a transposition table which can hold 220

or 1,048,576 entries.

4.6.2 Use of the table

Each element in the transposition table has following components:

hash The hash value of the current position;

move The best move to make in the current position;

score The αβ value of this position;

flag Defines the type of score: exact, upper bound or lower bound;

depth The depth at which this position was searched.
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The complete hash is stored in the transposition table to check for so-called
type-2 errors (Breuker, 1998). More on these errors is given in subsection 4.6.3.
This is done because sometimes the index value is the same, even though the
hash value is different. There is also a possibility that the retrieved move is not
valid for the current position. To avoid playing an illegal move or crashing the
entire program, the retrieved move is first checked for validity. The transposition
table can be used in three ways:

1. The depth to be searched is less than or equal to the depth stored in the
transposition table and the score of the position is exact. The position
does not have to be searched further and the stored score is returned to
the algorithm. This is the main reason transposition tables are used.

2. The depth to be searched is less than or equal to the depth stored in the
transposition table and the score of the position is not exact. The score of
the position can be used to narrow the αβ-window, the α value is adjusted
if the score is a lower bound or the β value is adjusted if the score is an
upper bound.

3. The depth to be searched is greater than the depth stored in the transpos-
ition table. The move stored in the table is used first while searching the
possible moves. This type of move ordering can sometimes lead to faster
searches.

For a more detailed description of the algorithm, see Marsland (1986) and
Breuker (1998).

4.6.3 Probability of errors

Using a transposition table as a hash table introduces two types of errors. The
first type is a type-1 error. A type-1 error occurs when two different positions
have the same hash value. This mistake will not be recognised and can lead
to wrong evaluations in the search tree. This type of error is absolutely not
wanted.

Let N be the number of distinguishable positions, and M be the number of
different positions to be stored. The probability that this error will not happen
is given by the following equation, taken from Breuker (1998):

P (no errors) ≈ e−
M2
2N .

As an example we consider our program, which searches 30,000 nodes per second.
If it plays OCTI using a total of three minutes of thinking time, the number of
nodes searched is 5.4 × 106. Breuker (1998) states that for 30% of the nodes
an attempt is made to store them in the transposition table. For now, we will
assume this percentage is also valid for OCTI. In this example, this is 1.62×106
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nodes. If the hash value consists of 64 bits, the probability of at least one type-1
error is:

1− e
− (1.62×106)2

2×264 ≈ 7.11× 10−8.

Because the transposition table is small, we cannot store all the positions oc-
curred in the search. It happens that a position is to be stored in an entry,
which is already occupied by another position. This is called a type-2 error or
a collision. A choice has to be made which of the two involved positions should
be stored in the transposition table. There are several replacement schemes
(Breuker, Uiterwijk, and van den Herik, 1994), which deal with the collision
problem. We use a simple scheme that overwrites the element in the table if the
depth of the position stored in the table is smaller than or equal to the depth of
the current search. Notice that for every new search process the transposition
table is cleared.

4.7 Other methods

In the literature, many other enhancements to αβ exist. Even though they are
not implemented in our program, we will shortly describe two examples here.

Futility pruning (Heinz, 1998) is a well-known technique. The idea is not to
spend more time looking at a given node, because it is considered bad. The
problem, however, is that it is not known when a node is bad. In other, more
older games, like Chess, this knowledge is well-developed, but in newer games
like OCTI it is guesswork due to the lack of grandmasters.

The countermove heuristic (Uiterwijk, 1993) is another move-ordering tech-
nique. The idea is that many moves also have a “natural” countermove, which
is the best move to respond, irrespective of the actual board position. Since
the results of using the countermove heuristic are often similar to those of the
history heuristic, we have chosen not to implement this method.

4.8 Overall framework

The overall way to combine all known techniques in the program is as follows.
First, the transposition table is checked if it contains some information about
the current position. If it does, and the search depth in the table is deep enough,
the tree is pruned using the data in the table. If it does not, the move stored in
the table is first used in the move ordering. Next, if available, the killer move
is added second in the list of possible moves. And lastly, the remaining moves
are generated for the current position which are then ordered using the history
tables. When zugzwang is not an issue, a depth-reduced null-move search is
done before the actual search with the principal-variation search algorithm.
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Chapter 5

Evaluation function

Winning is enjoyable, but losing does not detract from the pleasure
of playing. — Nakayama Noriyuki

As stated in the previous chapters, the evaluation function is (when combined
with the search algorithm) the heart of a computer game-playing program. In
order to conduct an intelligent search, the evaluation function should give a
good estimate of the current game value at any time. In section 5.1 we will
first examine some general principles of OCTI. We will list useful strategies in
section 5.2, describe the actual implementation of the evaluation function in
section 5.3 and briefly discuss its fine-tuning in section 5.4.

5.1 General principles of OCTI

The goal of OCTI is either to occupy one of the enemy bases, or to disallow the
opponent to move by capturing all of his pods for example. Winning a game
can thus be achieved via two distinct methods. Quite obviously, the evaluation
function has to take this duality into account.

The primary objective in the game is to occupy as quickly as possible one of
the opponent’s bases. When playing OCTI, this is the preferred and easiest
strategy to win the game. Therefore, positions which have friendly pods closer
to the enemy bases should yield a better score.

The secondary objective in the game is to capture as many of the opposing pods
as possible, without endangering your own pods. In the evaluation function, a
position with less friendly pods should have a worse score than a position with
more pods.
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5.2 Strategies revisited

Aside from the obvious objectives in the game, several strategies can be used
as a rule of thumb to yield better play. The four main strategies which were
previously discussed in section 2.4 should therefore be incorporated into the
evaluation function. Below we provide a quick reminder of the main strategies.

• Trade-off between building and moving

• Move your pods in teams

• Do not let the opponent capture pods and/or prongs

• Make pods move forward and backward

To make the evaluation function more efficient, a few conditions have to be
added to these strategies. More details on the actual implementation of the
function are given in the next section.

5.3 Implementing the evaluation function

The basic idea of the evaluation function is to attribute a certain number of
points to each pod on the board. These points are calculated using two major
factors: material difference, described in subsection 5.3.1 and the position of
the pods on the board, described in subsection 5.3.2.

5.3.1 Material difference

Some preliminary testing has been done to discover good values for pods and
prongs. These have been set at 1000 points for a basic pod and 100 points for a
basic prong. Several bonuses can be added, 500 points for a friendly pod in the
vicinity of the current pod or 200 points for a prong pointing in the direction of
the opponent’s OCTI squares. An additional bonus of 400 points can be added
when a pod has prongs in opposing directions, as this can be important in the
endgame.

The first basic strategy states that it is better to build your pieces than to move
your pieces when not necessary. In the evaluation function, additional points
are added to a pod when a prong is added. When a player is not in danger of
losing any pieces, adding a prong is often the best choice. Not making this move
will result in a loss of 100 points. If a player has no more available prongs, he
will not be able to gain more points by fortifying his pieces and will have to try
other methods.

The second strategy claims that is is better to move your pods in teams, as this
makes higher mobility possible and allows for quick attacks on the opponent’s
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pieces. In the evaluation function, pods have a basic value of 1000 plus their
prongs, but when a friendly pod is located in an adjacent square and a prong
allows a jump, an additional 500 bonus points is added to this current pod
score. If the other friendly pod can also jump over this pod, it too will receive
500 bonus points. This allows for a steady bonus when pods are kept together.
In tactics, this both allows for fast moving due to jumps, but also for blocking
the opponent’s jumps over your pods.

The third strategy says that it is vital not to let your opponent capture any pods
and/or prongs. Capturing prongs is only possible when capturing pods. When
a player captures a pod, the current player loses the points attributed to the
captured pod, thus his score will be significantly lower. The search algorithm
will make sure not to lose a pod, since this is a very important basis for points in
the evaluation function. Losing pods makes it harder to win, so the punishment
in the evaluation function should be severe.

The fourth strategy implies that it is advisable to have your pods move forward
and backward when near the opponent’s OCTI squares, as this allows capturing
a pod on a home base and stepping on it (thus winning) the next move. In the
evaluation function this is implemented as an additional bonus of 400 points
once the pod has past the middle of the board (rows 5, 6 and 7 for the yellow
player; and rows 1, 2, and 3 for the red player). Thus the pod must have both
prongs a and e, b and f, c and g, and/or d and h.

5.3.2 Pod position

Another important factor when attributing points to a certain position is the
place of the pods on the board. When the pods are closer to the opponent’s
OCTI squares, the score should be higher as winning is easier. To accomplish
this, the distance of the square where the friendly pod is located to the enemy
bases is calculated. The vertical dimension of the board is used as a yardstick,
such that the smaller the distance is, the higher the bonus factor will be. Some
preliminary testing revealed that 5000 is a good value to use as a bonus score.
If d is the distance from a square to the opponent’s home bases, the static factor
ScoreDist is calculated as follows:

ScoreDist = (7− d)× 5000.

This factor is calculated for each pod the player has, so if a player loses a pod
to the opponent, he will also lose the bonus due to the positioning of his pods
on the board.
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5.4 Fine-tuning the evaluation function

The values used in the current version of the evaluation function have only
been obtained through some preliminary testing. In the early stages of program
development, these values have proved to be the most effective after some trial-
and-error testing. However, these values are probably far from optimal and
the evaluation function still needs some fine-tuning. In chapter 7 however, some
extensive testing will be done with the evaluation function, to make it as optimal
as possible.
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Chapter 6

Search algorithm testing

One bad move nullifies forty good ones. — Horowitz

This chapter describes some numerical tests about the techniques described in
chapter 4. All results in this chapter are taken from a series of 100 games of
OCTI. Each algorithm played 50 times as yellow, and 50 times as red. A small
random factor was also added to the evaluation function to avoid playing the
same game 100 times. For each turn, the search depth of the algorithm was
fixed, and iterative deepening was enabled.

First, the various windowing techniques were tested in section 6.1. The best
algorithm was then extended with move ordering techniques in section 6.2 and
later the transposition tables were added in section 6.3. Finally, in section 6.4
a short conclusion is given about all search algorithm tests.

The windowing techniques were tested first, since they do not change the tree
traversal but only allow for more and better cut-offs. The transposition tables
were tested last since they should always have a positive effect whenever iterative
deepening is used. In all tests, the results will be displayed as the average
number of nodes searched per search depth, the time in seconds it took to reach
that depth and the percentage of nodes gained when using two different search
algorithms.

6.1 Windowing techniques

Three windowing techniques were implemented into the game: aspiration search,
principal variation search, and the null move. First the two algorithms will be
tested against plain αβ in subsections 6.1.1 and 6.1.2, then the best algorithm
will be tested against itself with the null move enabled in subsection 6.1.3.
These tests were run at a fixed search depth of 5 plies, as it almost takes a day
to complete a test run of 100 games at this depth.
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6.1.1 Aspiration search

In the first test, plain αβ played against aspiration search. For aspiration search,
the window was set from α− 1500 to β + 1500 when starting a new search.

Alpha Beta AS
depth # sec # nodes # sec # nodes % gain

1 0.0 35 0.0 34 2.8
2 0.008 540 0.011 647 −19.8
3 0.130 8,212 0.126 8,147 0.8
4 1.760 105,709 2.011 116,786 −10.4
5 21.314 1,194,108 19.657 1,134,986 4.9

Table 6.1: Aspiration search test results.

As table 6.1 shows, aspiration search performs much like normal αβ, with only
a small enhancement at depth 5.

6.1.2 Principal-variation search

In this test, αβ was compared to principal variation search.

Alpha Beta PVS
depth # sec # nodes # sec # nodes % gain

1 0.0 34 0.0 39 −14.7
2 0.008 521 0.010 676 −29.7
3 0.123 7,747 0.119 6,729 13.4
4 1.717 100,714 1.275 69,247 31.2
5 19.893 1,144,571 10.929 566,722 50.4

Table 6.2: Principal-variation search test results.

As shown in table 6.2, principal variation search performs a lot better than
aspiration search. At deeper search depths, the performance gain ranges from
30% to 50%.

6.1.3 Null-move search

In the last test of this series, two different versions of principal variation search
played against each other. One used the null move heuristic, and the other did
not. For the null move, R (the reduced-depth parameter) was set to 2.
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Null move disabled Null move enabled
depth # sec # nodes # sec # nodes % gain

1 0.0 40 0.0 40 0.0
2 0.009 633 0.011 745 −17.6
3 0.126 7,123 0.047 2,818 60.4
4 1.269 65,311 0.398 22,515 65.9
5 11.869 624,345 2.237 121,311 80.5

Table 6.3: Null-move search test results.

As table 6.3 clearly shows, when the null move is used (from search depth 3
onward) it yields a significant reduction in nodes searched, ranging from 60%
to 80%.

6.2 Move ordering

Two different game-independent move-ordering techniques were implemented
for OCTI: the killer-move heuristic, and the history heuristic (the use of the
transposition move is tested in subsection 6.3.3). The best algorithm this far,
PVS with the null move enabled, will play against its counterpart with the
killer move enabled in subsection 6.2.1, and later with both ordering techniques
enabled in subsection 6.2.2. Furthermore, in subsection 6.2.2 a few variants
of the history heuristic are also tested. In all these tests, most settings remain
unchanged, but the search depth was locked at 6 ply since move ordering enabled
a considerable speed-up in search time.

6.2.1 Killer-move heuristic

In the killer-move test, PVS with the null move enabled was equipped with the
killer-move heuristic. One killer was recorded per search depth.

Killer disabled Killer enabled
depth # sec # nodes # sec # nodes % gain

1 0.0 41 0.0 41 0.0
2 0.011 675 0.008 472 30.0
3 0.057 3,026 0.028 1,435 52.5
4 0.411 20,296 0.181 7,711 62.0
5 2.401 114,343 0.790 33,345 70.8
6 15.789 770,456 5.045 207,272 73.0

Table 6.4: Killer-move heuristic test results.

As shown in table 6.4, using the killer heuristic as move ordering on top of PVS
and null move yields another speed-up of up to 73% at depth 6.
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6.2.2 History heuristic

To test the impact of the history heuristic, six tests were run. In test (a), the
best algorithm this far, PVS with the killer move enabled, played against its
counterpart with the history heuristic enabled. For the first test, the values in
the history tables were incremented with 1 each time a best move was found. In
test (b) the best algorithm from test (a) played against another history variant,
where the tables were incremented with d, the depth at which the move was
found to be best. In the next two tests, (c) and (d), the same set-up was used,
but the incrementation values were set to d2 and 2d.

The best algorithm after these four tests will once again be tested against its
counterpart that uses game-specific ordering. In test (e) we will order the moves
in such a way that jumps and captures are tried before all other moves. In test
(f) the moves will be ordered in yet another way: first jumps and captures, next
moves involving adding prongs to the pods, and lastly the remaining moves.

History disabled History (+1) enabled
depth # sec # nodes # sec # nodes % gain

1 0.0 41 0.0 39 4.8
2 0.009 466 0.008 242 48.0
3 0.032 1,412 0.028 778 44.9
4 0.191 7,233 0.199 3,964 45.1
5 0.866 33,748 0.970 19,206 43.0
6 5.412 203,366 5.889 112,868 44.5

Table 6.5: History heuristic test (a) results.

As table 6.5 shows, using the history heuristic yields an additional reduction in
search nodes of about 45%.

In test (b), two algorithms with history-heuristic move ordering were tested
against each other. One player used the previously used +1-scheme, while the
other player increments the counters with d, the search depth at which the best
move was found.

History +1 History +d
depth # sec # nodes # sec # nodes % gain

1 0.0 39 0.0 39 0.0
2 0.006 234 0.006 242 −3.4
3 0.006 779 0.025 754 3.2
4 0.138 3,549 0.142 3,597 −1.3
5 0.780 19,279 0.801 17,314 10.1
6 4.657 101,459 5.144 110,091 −8.5

Table 6.6: History heuristic test (b) results.

The results in table 6.6 show that both schemes are only marginally different.
We will therefore continue to use 1 as incrementation factor in the following
tests.
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In test (c), the counters were incremented with the square of the search depth
d2 at which the best move was found.

History +1 History +d2

depth # sec # nodes # sec # nodes % gain
1 0.0 39 0.0 38 2.5
2 0.006 234 0.006 238 −1.7
3 0.022 742 0.024 755 −1.7
4 0.134 3,585 0.151 3,628 −1.1
5 0.699 18,449 0.765 18,367 0.4
6 4.091 97,439 4.855 106,539 −9.3

Table 6.7: History heuristic test (c) results.

Once again, as table 6.7 shows, both schemes are almost identical to each other
in node reduction. In the next test, 1 will be the reference incrementation factor.

In test (d), the fourth and last test of this series, the factor 2d was used to
increment the history counters.

History +1 History +2d

depth # sec # nodes # sec # nodes % gain
1 0.0 39 0.0 39 0.0
2 0.007 244 0.006 242 0.8
3 0.026 766 0.024 764 0.2
4 0.155 3,600 0.148 3,705 −2.9
5 0.804 18,411 0.771 18,484 −0.3
6 4.995 104,292 5.095 107,443 −3.0

Table 6.8: History heuristic test (d) results.

Table 6.8 shows that once more there is almost no difference between both
schemes. For OCTI, there is no difference in node pruning when different ver-
sions of the history heuristic are being used. Winands (2004) reports similar
results for Lines Of Action, however the results are most likely game-dependent.
For simplicity, we will use the basic +1-scheme in the rest of the tests.

So far, all the tests of the history table were done by re-ordering all new gen-
erated moves with the table. In the following three tests, basic game-specific
knowledge is combined with the history tables. A quick reminder: jumping
and/or capturing is usually considered the best action, followed by adding a
prong and thus fortifying your pieces, and lastly moving your pods on the board.

In test (e), first all jump- and/or capture-moves were generated, which were then
ordered using the history tables. Then, normal prong-moves and pod-moves
were generated together, which were then ordered using the history tables and
were added to the list of moves.
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Normal history Ordered history
depth # sec # nodes # sec # nodes % gain

1 0.0 39 0.0 40 −2.5
2 0.006 246 0.008 367 −49.1
3 0.024 761 0.030 1,140 −49.8
4 0.135 3,627 0.177 5,449 −50.2
5 0.701 17,066 0.763 23,381 −37.0
6 4.692 103,807 4.377 124,499 −19.9

Table 6.9: History heuristic test (e) results.

Using this version of history ordering with game-specific knowledge actually
performs worse than standard history ordering, as shown in table 6.9. In the
next test, the standard will therefore be normal history ordering.

In the sixth and last test, (f), first the jump/capture-moves were independently
generated and ordered using the history tables. Next, the prong-adding moves
were also generated and ordered and added to the list. Lastly, the remaining
pod moves were generated and ordered and were also appended to the list.

Normal history Ordered history
depth # sec # nodes # sec # nodes % gain

1 0.0 38 0.0 39 −2.6
2 0.005 238 0.009 372 −56.3
3 0.024 761 0.031 1,150 −51.1
4 0.147 3,854 0.194 5,798 −50.4
5 0.729 18,641 0.839 25,554 −37.0
6 4.202 104,157 5.237 154,466 −48.3

Table 6.10: History heuristic test (f) results.

As table 6.10 shows, using this game-knowledge supported version of history
ordering once again performs worse than standard history move ordering. The
normal history heuristic will therefore remain our standard for the upcoming
tests.

6.3 Transposition table

To test the effect of transposition tables on OCTI, each of its components was
enabled alone and tested against the reference player at this time: PVS with
null move, killer move and history heuristic (+1). In subsection 6.3.1 the trans-
position table is only used when an exact hit has been found. In subsection
6.3.2 only the upper/lower bound hits in the table are used. In subsection 6.3.3
the table is solely used as a move ordering mechanism, and finally in subsection
6.3.4 all components are enabled and the table is fully used.
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6.3.1 Only using exact table hits

In this test, the transposition table pruning was only enabled when the minimax
value stored in the table was an exact value, thus obtained from the evaluation
function. The number of tthits is therefore defined as the number of times that
exact values in the tables were used to cut off the search.

TT disabled TT enabled (exact)
depth # sec # nodes # sec # nodes #tthits % gain

1 0.0 39 0.0 38 0 2.5
2 0.011 241 0.009 249 0 −3.3
3 0.047 766 0.044 784 1 −2.3
4 0.217 3,597 0.316 3,664 2 −1.8
5 0.977 18,858 1.599 18,075 15 4.1
6 4.859 106,084 10.505 108,655 46 −2.4

Table 6.11: TT (exact) test results.

As table 6.11 shows, only pruning the tree when an exact hit is found in the
transposition table yields almost no reduction in nodes searched. The gain
ranges from −3.3% to 4.1%, which makes almost no difference. Furthermore,
the added overhead of adding, replacing and retrieving positions makes the
algorithm slower.

6.3.2 Only using upper and lower bound pruning

In this test, only upper and lower bound hits in the table were used to speed
up the search process. These values are obtained from previous α and β values
and can be used to adjust the search window. In this case, the tthits count is
the number of upper and lower bound hits that were used to prune the tree.

TT disabled TT enabled (ubound/lbound)
depth # sec # nodes # sec # nodes #tthits % gain

1 0.0 39 0.0 38 0 2.5
2 0.013 236 0.008 241 1 −2.1
3 0.044 751 0.039 736 11 1.9
4 0.234 3,727 0.271 3,344 109 10.2
5 0.975 19,990 1.221 14,693 645 26.4
6 5.152 111,117 6.057 73,672 3,482 33.6

Table 6.12: TT (upper/lower bound) test results.

As shown in table 6.12, using upper and lower bound reduces the number of
nodes with about 33% at search depth 6.
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6.3.3 Only using move ordering

In this test, the transposition table was only used as a move ordering mechanism.
If the current position has a value and a move stored in the table, that move
is tried first when searching the position, even if the value stored in the table
could have been used to cut off the tree. The tthits value stands for each time
the transposition table is used to re-order the moves.

TT disabled TT enabled (ordering)
depth # sec # nodes # sec # nodes #tthits % gain

1 0.0 37 0.0 39 0 −5.4
2 0.013 237 0.007 228 1 3.7
3 0.043 751 0.042 740 14 1.4
4 0.232 3,632 0.310 3,561 124 1.9
5 0.901 17,569 1.552 17,178 656 2.2
6 5.229 106,712 8.461 87,362 4,996 18.1

Table 6.13: TT (ordering) test results.

As the results in table 6.13 show, only using the move ordering feature of the
transposition table yields a reduction in nodes searched of about 18% at search
depth 6.

6.3.4 Full use of the table

In the last test of this series, the transposition table was fully enabled, combining
all three features tested in the previous tests. This time, tthits is the number
of times some information stored in the table was used in the search. This can
either be an exact hit, an upper/lower bound hit or a re-ordering hit.

TT disabled TT enabled (full)
depth # sec # nodes # sec # nodes #tthits % gain

1 0.0 38 0.0 38 0 0.0
2 0.013 240 0.008 241 1 −0.4
3 0.046 770 0.038 731 14 5.0
4 0.227 3,691 0.272 3,371 121 8.6
5 0.968 19,065 1.310 14,583 689 23.5
6 5.247 105,389 6.325 73,939 3,653 29.8

Table 6.14: TT (full) test results.

As table 6.14 shows, using the full transposition table lowers the number of
nodes searched with about 30% at depth 6.
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6.4 Chapter conclusions

As seen throughout this chapter, most search enhancements yield a positive
result in search nodes reduction. So far, only aspiration search has a negative
influence. Therefore, the recommended search algorithm will use the following
enhancements:

• Principal-variation search;

• Null-move search with factor R = 2;

• The killer-move heuristic with 1 killer per depth;

• The history-heuristic with factor +1;

• The transposition table fully used.
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Chapter 7

Evaluation function testing

Some part of a mistake is always correct. — Savielly Tartakover

The evaluation function has two major components: the material difference and
the position of the pods on the board. These two scores are added up to form
the actual evaluation of the current position.

This chapter describes several tests, each consisting of 100 games of OCTI with
the players switching sides halfway through. In each of these tests, a factor
ranging from 0.0 to 2.0 in 10 steps was multiplied with one of the components
of the evaluation function. After 100 games, the factors which gave the best
results (highest win percentage) were once again tested in 10 smaller steps to
find the best value. This value is then set as the reference when testing the next
component.

In section 7.1 we will first test the material difference component, followed by
the pod position component in section 7.2. Finally, in section 7.3 we will give
some short chapter conclusions.

7.1 Material difference testing

To find the best material difference factor, 10 tests were run, each consisting of
100 games of OCTI. In each of the tests, one player had its material difference
component of the evaluation function multiplied with a factor ranging from 0.0
to 2.0 in 10 steps (thus 0.0, 0.2, 0.4, 0.6, 0.8, 1.2, 1.4, 1.6, 1.8 and 2.0). The other
player played with the reference factor 1.0. After each test, the win percentage
of the player with the varying factor was recorded. Figure 7.1 plots these win
percentages against the factor used in the test.
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Figure 7.1: Test results: Material difference (1).

As figure 7.1 shows, the optimum lies around factor 0.2, so 10 more tests were
run with factors ranging from 0.0 to 0.4. The factor was increased by 0.033 each
time. The results can be found in figure 7.2.

Figure 7.2: Test results: Material difference (2).

As both tests show, factor 0.2 yields the most wins (56%), thus this factor is the
optimum to use in the final evaluation function. This factor will now become
our reference for both players in the following test.

7.2 Pod position testing

These tests are similar to the first series of tests described in the previous section.
The factors were once again ranging from 0.0 to 2.0 in 10 steps. The previously
obtained factor 0.2 for the material difference is used in both players in this
test. Figure 7.3 plots the win percentage against the factor used.
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Figure 7.3: Test results: Position (1).

As shown in figure 7.3, the optimum lies around factor 0.0. For the second series,
once more 10 tests with a factor around 0.0 were run, of which the results are
shown in figure 7.4. The games with a factor below 0 are not shown in the
graph, since they resulted in a 100% loss each time. With a factor below 0, the
evaluation function actually encouraged defeat, the player tried to capture his
own pods as soon as possible.

Figure 7.4: Test results: Position (2).

As can be concluded from both tests, factor 0.133 is the optimum for the second
component of the evaluation with 56% wins.

7.3 Chapter conclusions

After testing the evaluation function, factor 0.2 for the material difference com-
ponent and factor 0.133 for the pod position component were found to be the
best choice. These will be incorporated in the final evaluation function of the
program. This also shows that the pod position component is actually the more
important component in the evaluation, even though its factor is lower, the total
score when compared to the material difference factor is still higher.
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Chapter 8

Conclusions

Once the game is over, the king and the pawn go back in the same
box. — Italian proverb

This chapter contains the final conclusions on our research. Section 8.1 revisits
the problem statement and research questions, and section 8.2 lists possibilities
for future research.

8.1 Problem statement and research questions
revisited

In section 1.3 we have defined the following research questions:

What is the complexity of OCTI?

In chapter 3, we have seen that the state-space complexity of OCTI is O(1028),
and the game-tree complexity is O(1037). These numbers however are only an
approximation, as the state-space complexity includes some unreachable posi-
tions, and the game-tree complexity is based on games between humans and is
subject to change once more computer programs that can play OCTI are cre-
ated. Both the state-space complexity and the game-tree complexity of OCTI
are comparable to that of the game of Checkers. Completely solving OCTI is,
like Checkers, probably possible with the necessary time and research.

What known techniques can be used to play OCTI?

As described in chapter 4, many known techniques can be used for OCTI. Com-
pared to standard αβ-search, PVS, the killer move heuristic, the history heur-
istic, null-move pruning and transposition tables all cause a more or less sub-
stantial reduction in nodes searched.
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What game-specific knowledge is required to make a computer play
OCTI?

The evaluation function described in chapter 5 implements different strategies
that are deemed useful in OCTI, like moving your pods in teams and not letting
your pods get captured.

Now that the research questions have been answered, we can also formulate an
answer to the problem statement:

How can a computer program be written that plays the game of
OCTI as efficiently as possible?

To write a computer program to play OCTI, known search algorithms like αβ-
search and its enhancements: PVS, killer move heuristic, history heuristic, null
move pruning and transposition tables can be used. Basic game knowledge in
the form of a static evaluation function based on game strategies also have to
be used.

8.2 Future research possibilities

As always, some enhancements can be made to the current research. The com-
plexity analysis of OCTI is only an estimate. When the game gains popularity
in the AI world, a better count can be calculated.

The search algorithms and enhancements can be more fine-tuned. The null
move is used in the game, with a pretty basic way to define zugzwangs. Maybe
a better definition can be found. The factor R is currently set at 2 in the
whole game, an adaptive R depending on the search depth might provide better
results. Storing two killer moves in the search might provide a reduction in
nodes. The same argument can be made for storing two transpositions for each
table key. After a search, dividing the counts in the history tables by another
value than 2 might be beneficial. And maybe other techniques that are not
described here can be applied to OCTI. Furthermore, it might be useful to try
to construct an opening book for OCTI. Also, an endgame database could be
another possible addition. Even so, it could be possible to create a more efficient
or faster implementation of OCTI.

The evaluator is still a crude estimate of the value of a board position. A
more elaborate (and perhaps faster) evaluator might possibly be created. Also
techniques like pattern matching and machine learning might be applied to
OCTI, since they are under investigation in other games, including Checkers.

Finally, the program could be tested against other opponents to measure its
actual playing strength. These opponents can be either humans or computers.
Due to the absence of human grandmasters and other OCTI programs this was
not possible in the scope of this research.
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