
ACTION SPACE REPRESENTATION IN
COMBINATORIAL MULTI-ARMED BANDITS

Gijs-Jan Roelofs

Master Thesis 15-24

Thesis submitted in partial fulfilment
of the requirements for the degree of

Master of Science of Artificial Intelligence
at the Faculty of Humanities and Sciences

of Maastricht University

Thesis committee:

Dr. M.H.M. Winands
Dr. G.M. Schoenmakers

Maastricht University
Department of Knowledge Engineering

Maastricht, The Netherlands
July 2015

Preface

This master thesis is written in partial fulfillment of the requirements for the degree of Master of Science
of Artificial Intelligence at the Department of Knowledge Engineering. This thesis is placed within the
field of search techniques in computer games, specifically Monte-Carlo Tree Search and Combinatorial
Multi-Armed Bandit problems. I would like to thank my thesis supervisor Dr. Mark Winands, for his
insight and above all tolerance for endless discussion, along with the whole DKE staff for my formative
years at DKE. I would also like to thank Dries de Rydt, Taghi Aliyev, and other friends who endured my
endless talks on the subjects within this thesis. Finally but certainly not least, I would like to thank my
family for their unconditional support during my education at DKE.

iv Preface

Summary

Monte-Carlo sampling based approaches have been applied to great success in domains of online planning
with sizable state spaces. When applied to an combinatorial action space state-of-the-art algorithms such
as Monte-Carlo Tree Search (MCTS) fail to provide similar levels of performance as found when applied
to a polynomial action space. Algorithms which do not approach the action space as enumerable, such
as Näıve Monte-Carlo Sampling (NMC) and Linear Side Information (LSI), have had better success. In
this thesis we experimentally analyze robustness of various algorithms in two domains with combinatorial
action space and propose two augmentations to MCTS, Hierarchical Expansion (HE) and Dimensional
Expansion (DE), to cope with an effectively innumerable action space. We then explore the implications
of partial moves returned by the tree and propose an augmentation to MCTS for this problem based on
RAVE.

The first problem domain is a simple model of a Combinatorial Multi-Armed Bandit (CMAB) problem.
In this problem the player is tasked with choosing the optimal combination of arms for all bandits.
The model is setup to perform a sensitivity analysis on the various algorithms with regards to the
characteristics of the CMAB problem.

The second problem domain is Berlin, an online planning domain in the form of a deterministic, simul-
taneous turn-based strategy game with an combinatorial action space. The action space is represented
as a decision making problem for a team of cooperative agents.

Both Dimensional Expansion (DE) and Hierarchical Expansion (HE) are shown to outperform NMC
and LSI within the CMAB domain, while Hierarchical Expansion is shown to outperform DE, NMC, LSI
and heuristic based approaches within the domain of Berlin. The partial move augmentations are shown
to improve performance in both DE and HE.

vi Summary

Contents

Preface iii

Summary v

Contents vii

1 Introduction 1

1.1 Games & AI . 1

1.1.1 Search Techniques . 1

1.1.2 Dealing with State-Space . 2

1.1.3 Dealing with Action-Space . 2

1.2 Problem Domains . 3

1.2.1 Berlin . 3

1.2.2 Combinatorial Multi-Armed Bandit . 4

1.3 Research Outline . 5

1.3.1 Problem Statement . 5

1.3.2 Research Questions . 5

1.4 Thesis Outline . 6

2 Problem Domains 7

2.1 Combinatorial Multi Armed Bandit . 7

2.1.1 Complexity Analysis . 8

2.2 Berlin . 8

2.2.1 Complexity Analysis . 9

2.2.2 Action Space Representation . 9

2.2.3 Heuristic Agent . 10

3 Search Algorithms 13

3.1 Exploration Strategies . 13

3.1.1 Upper Confidence Bounds . 13

3.1.2 Successive Rejects . 13

3.1.3 Sequential Halving . 13

3.2 Monte-Carlo Tree Search (MCTS) . 15

3.2.1 RAVE . 16

3.3 Näıve Monte-Carlo Sampling (NMC) . 17

3.4 Linear Side-Information (LSI) . 19

3.4.1 Time Limited LSI . 21

4 Proposed Enhancements 23

4.1 Introduction . 23

4.2 Hierarchical Expansion . 24

4.3 Dimensional Expansion . 25

4.4 Partial Move Completion . 25

viii Contents

5 Experiments & Results 27
5.1 Experimental Setup . 27
5.2 Combinatorial Multi-Armed Bandit . 27

5.2.1 Sensitivity, number of Bandits . 28
5.2.2 Sensitivity, number of Arms . 29
5.2.3 Sensitivity, non-linearity . 29

5.3 Berlin . 33
5.3.1 Action Space Exploration . 34
5.3.2 Playout Policies . 36
5.3.3 Search Algorithms . 38
5.3.4 Partial Move Completion . 40

6 Conclusion 43
6.1 Research Questions . 43
6.2 Problem Statement . 44
6.3 Future Research . 44

Appendices 49

A Experimental Results: Berlin - Expansion 51

B Experimental Results: Berlin - Heuristics 55

C Experimental Results: Berlin - Search Algorithms 59

D Experimental Results: Berlin - Partial Move Completion 63

1

Introduction

“Planning is the art and practice of thinking before acting.”
– Patrik Haslum

Chapter overview: The following chapter provides an introduction to this thesis consisting of the
motivation for, and the techniques and problem domains explored within. The chapter closes with the
goal, divided up into the problem statement and research questions, and a general outline of the structure
of this thesis.

1.1 Games & AI

Since the inception of the field of Artificial Intelligence (AI), decision-making has been one of its major
sub fields. Within decision-making one of the most common problems is that of a single agent tasked with
finding the optimal action, or sequence of actions, which achieves a given goal. Many real-world domains
which derive from this problem are often too complicated to use in research, or result in experiments
where the variables affecting the results cannot easily be separated. In these cases abstract models are
often used to distill domains to their core problems which then in turn can be analyzed and reasoned
about.

Games provide a step between abstract models and complex real-world problems. They allow specific
problems to be explored without being exposed to the complexities of real-world constraints, but still
complex enough to provide interesting problems. Furthermore, their ability to directly measure the
performance of a found solution against a human player has always been a driving factor in research.

Chess has led to the discovery of many different techniques, and is an excellent example of this. What
began with Alan Turing in 1953 [52] culminated in a master-level human player being defeated in 1997
by Deep Blue [10], and led to the discovery of such techniques as αβ-search [28], NegaScout [42] and
Proof Number search [2].

1.1.1 Search Techniques

These techniques are based on a state-space based search, with the area of interest constrained to that
considered most relevant for the agent’s decision at hand. This reduction is done to deal with the so-called
“curse of state dimensionality” [31]: the concept that the state-space grows too vast to approach as a
whole with the, often limited, resources at hand.

One of the core assumptions in these techniques is that the outcome of an action or state can be
predicted through the use of an evaluation function: a function which describes the current and future
worth of a state for a player. The evaluation function is what enables the above outlined techniques to
constrain the search to interesting states by pruning those states which are deemed uninteresting.

As the field of AI grew, games of ever-growing complexity were explored. Games such as Go prohibited
the application of hitherto working techniques because of two reasons: first, the base assumption - the
existence of an easily definable evaluation function - was invalidated and second, the branching factor

2 Introduction

grew to such heights that even with heavy pruning the state-space could no longer be searched to any
sufficient degree. Different approaches and models needed to be employed which did not rely on knowledge
of the domain itself or exploration of the full state-space.

1.1.2 Dealing with State-Space

One such model is the Multi-Armed Bandit (MAB) [54]. MAB models the state as a sequence of slot
machines, each when played providing a value drawn from a random distribution specific to that machine.
The agent is represented as a gambler who, at each round, has to decide on which machine to play in an
effort to maximize his reward.

The problem the gambler faces each round is that of making the choice between choosing a different
machine in hope to gain more information on its expected payoff (exploration), and selecting the machine
with the highest expected payoff thus far (exploitation). The basis of this problem is that we assume no
knowledge on the problem domain at hand. Any knowledge gained, is gained through observation of the
outcome of any executed actions.

The MAB is therefore an example of a model that can be used to represent many types of problems,
essentially any problem in which we want to explore the consequences of a set of choices for which we do
not yet know the outcome or payoff. By researching the implications of this model we gain knowledge on
how to develop and apply techniques which can be used in a broad range of situations.

The application of MAB on the domain of Go led to the development of Monte-Carlo Tree Search
(MCTS) [29, 16] and Upper Confidence Bounds (UCB) [16], and through them the rise of expert-level
play for small (9× 9) boards [22, 43].

The basis of MCTS is that the state-space is sampled to determine the value or expected reward of
an action, requiring no knowledge on the domain through heuristic evaluation. The use of a selection
policy to explore the tree ensures that the technique is able to handle domains with ever growing state
complexity, outperforming previous algorithms [35].

The success in the domain of Go sparked interest in the application of the technique in different
domains [8]. New levels of expert play in games were reached as MCTS was applied to new domains
ranging from deterministic board games such as Hex [3], Havannah [18], real-time video games such as
Ms. Pacman [21] and Total War: Rome II [26], and even non-deterministic domains such as Settlers of
Catan [49] and Poker [41].

New domains were created specifically to expose the shortcomings of the techniques explored thus far.
Arimaa [48] is one such domain, a turn-based strategy game in which an action is subdivided into one to
four sub-actions. This subdivision leads to an action-space complexity which is combinatorial in nature
and proved to be a challenging new problem. Where in Chess the average branching factor is 35, and in
Go it increases to 200, in Arimaa this number reaches 17,000 on average and up to 50,000 in complicated
mid-game situations [32]. The techniques used thus far can no longer be applied as they operate under
the assumption that the action-space can be enumerated efficiently, or better said, that each action can
be sampled at least once [38].

1.1.3 Dealing with Action-Space

This combinatorial action-space complexity introduces the concept of the “curse of action dimensionality”
[38]: the concept of an action split up into multiple dimensions, each for which a decision needs to be
made, is inherent to multi-agent strategy games.

In this type of game the optimal sequence of actions needs to be decided for a team of agents,
represented by the units the player controls. This in turn results in a multi-dimensional, or combinatorial
action space, as opposed to the single dimensional one traditionally found when dealing with planning
for a single agent.

The complexity of this action space stems from its definition as a cross-product of all the action
spaces of the individual agents. In both the domains of Arimaa [19, 32, 55] and StarCraft [47] a naive
restructuring of the action space lead to increased performance. In this restructuring the action space was
restructured such that each ply explored the variations of a part of the move. However, the implications
of this restructuring, and variations thereof have not yet been explored. Within MCTS, the complexities
of these action spaces have mostly been dealt with through abstracting over the domain [6, 15]. One
approach was to use heuristics on the individual agents and let the search decide on the overall strategy of

1.2 — Problem Domains 3

aggregated groups of agents, named squads [47]. However, this only partly solved the issue, as it reduced
the action space per dimension but did not address the combinatorial nature of the action space. A
restructuring of the action space was still required in which each ply the variations of actions per squad
were explored, instead of all possible actions of the player as a whole [47].

Apart from restructuring the action space, success was had by approaching these problems as Com-
binatorial Multi Armed Bandit problems (CMAB) [20] [13] [38]. Naive Monte-Carlo [38] (NMC) and
Linear Side-Information [31] (LSI) algorithms are two algorithms which follow this approach and have
had success over MCTS in the domain of µRTS.

The basis for both approaches is a relaxation of the problem. In the relaxed problem we operate
under the assumption that the actions of an agent do not affect the outcome of the actions of an agent
in the same team. In other words, the reward of an action is linear over its sub-actions.

Each technique then approaches a divide-and-conquer approach in which each dimension, or sub-
action, is explored individually before the results of which are combined into an action.

In this thesis we explore the implications of various representations of the action space in the game tree
and establish a formal definition which can be used to deal with these type of problems. We then compare
the performance of MCTS with these extensions to that of the alternative proposed techniques, namely
NMC and LSI, within the domain of Berlin, and in the abstract domain of Combinatorial Multi-Armed
Bandits.

1.2 Problem Domains

In this thesis we experiment in two different domains: The online AI tournament of Berlin, and a domain
devised for this thesis which is as close to the formal definition of a CMAB as possible.

1.2.1 Berlin

Berlin is a turn-based strategy game implemented for the Berlin AI competition, started in 2013 by the
Thirdside Collective [51]. It is a strategy game in which the player focuses purely on the strategy and
deployment of units. Each turn each player needs to make a decision simultaneously on how units move
along the graph. All units are equal in strength, and the outcome of a battle is simply the remainder
of units left on a node and thus deterministic. By abstracting over the tactical aspect, or combat, of
strategy games the game allows experimentation to focus on the strategical decision making.

Figure 1.1: An example visualization of Berlin on http://berlin-ai.com/.

The complexity from Berlin rises from two aspects: the necessity to decide for each soldier, each turn,
and the observation that the choice for each soldiers influences the outcome of choices made for other
soldiers. The problem cannot be modeled as a MAB without the actions space expanding rapidly through
its combinatorial nature, and this complexity is explored in Section 2.2.

4 Introduction

1.2.2 Combinatorial Multi-Armed Bandit

The second domain proposed in this thesis is a straightforward implementation of the Combinatorial
Multi-Armed Bandit (CMAB) [13]. In the CMAB model each round the player needs to decide between
super arms, sets of arms, to be played instead of single arms. In other words we identify actions which
can be broken up into multiple dimensions, each with their own set of sub-actions. In the domain of
Berlin, a super arm could represent a decision for all soldiers in a single turn. The underlying arms could
represent the choices per soldier. If the classical MAB framework were to be applied to Berlin, each
of these super arms would need to be treated as an individual arm. This naive approach, in which we
explore all actions per player per ply, suffers from two issues [13]:

• The action space may become exponential due to the combinatorial explosion.

• Any information, called the side-information [38], which could be observed on the underlying arms
of a super-arm is discarded.

Side-information is the concept of learning the underlying worth of an underlying arm through its
repeated use over multiple super-arms. The side-information is tightly linked to the linearity of the
underlying value function in the domain. If a value function is linear in nature, then we can optimize
the exploration of the combined action by determining the value of its sub-actions and optimizing for
those. As the linearity of the value function decreases, and the value of arms becomes more and more
intertwined, the correlation of the value of a single arm to the estimated worth of a super-arm becomes
less significant.

Multi-Armed Bandit

BA C

Arms

ED F

HG I

Combinatorial Multi-Armed Bandit

BA C
A A A B A C

Super Arm

ED F
B A B B B C

HG I
C A C B C C

Arm

Figure 1.2: Action division between Multi-Armed Bandit and Combinatorial Multi-Armed Bandit.

Two techniques, LSI and NMC [31, 38], which have been proposed that simultaneously deal with
the expansive action space and try to exploit this underlying side-information. However, so far these
techniques have been tested in a single CMAB domain, µRTS, while the CMAB model introduces
several variables that influence the complexity of the problem, namely:

• The number of bandits: the number of dimensions.

• The number of arms: the size of the action set of each dimension.

• The linear versus non-linear nature of the reward function, or interdependence between the reward
functions of the individual dimensions.

By constructing a domain that is as close as possible to the model of a CMAB, we can explore how
various algorithms respond to the variables in this model.

For consistency sake, in this thesis the super arm is referred to as the combined action cA, with its
individual arms i, each with a respective set of sub-actions Ai. A single action from arm i, or set Ai, is
denoted as ai. The set of all combined actions possible from a given state is denoted as C. The details
of the proposed domain, and its implications are further explored in Section 2.1.

1.3 — Research Outline 5

1.3 Research Outline

When MCTS is applied to games with a combinatorial action space, the assumption that the action
space should be enumerable ensures that performance is subpar. Alternative techniques which have been
proposed that deal specifically with this problem, such as NMC and LSI, seem to outperform a MAB-
based MCTS approach [31] and as of yet no formal extensions to MCTS exist which deal specifically
with CMAB. However, these techniques have only been compared in the domain of µRTS [38] and no
sensitivity comparison to the various features of the CMAB model has been performed as of yet. µRTS
is a simplified implementation of a Real-Time Strategy (RTS) game with heterogeneous units. It is
both deterministic and real-time, meaning that players can issue actions simultaneously, and actions are
durative.

1.3.1 Problem Statement

From this the problem statement of this thesis follows as:

Determine the performance of state-of-the-art techniques in domains which can be modeled as a Combi-
natorial Multi-Armed Bandit (CMAB), and formulate extensions to MCTS which improve its performance
in this domain.

1.3.2 Research Questions

From the perspective of MCTS, the following research questions arise from the problem statement:

1. How can MCTS be extended to cope with a combinatorial action space?

2. How can MCTS be extended to exploit the side-information inherent in a CMAB model?

To answer these questions an investigation into different representations of the action-space within
MCTS is performed. Two variations on how the action-space can be explored within a CMAB are
proposed, Hierarchical Expansion and Dimensional Expansion. From this problem statement also raises
the question on which domains these techniques and extensions can be tested, and thus the following
research questions:

3. How does performance of the proposed techniques vary across variations in the CMAB model?

To answer this question a domain is proposed in which we can easily experiment with the defining
features of a CMAB. Experiments are then performed in an effort to analyze the sensitivity of the proposed
algorithms to variations in the model and compared to state-of-the-art techniques LSI and NMC.

4. What is the performance of the proposed techniques in the domain of Berlin?

To address this final research question, the experimental setup is split up into four sections to evaluate
the performance of the proposed extension in the domain of Berlin. The central line of comparison in
these experiments is a top performing heuristic bot in the Berlin A.I. competition. The experimental
setups analyze the topics of:

• Action Space Representation: The variations of the proposed extensions on MCTS are explored.

• Algorithms: A heads-up tournament in which the best performing MCTS extensions are compared
to state-of-the-art techniques.

• Partial Move Completion: As the proposed action space representation allows partial moves
to be returned by the search, a strategy needs to be defined to complete these moves. Here we
compare the performance of both informed and un-informed strategies.

• Playout Strategies: How the performance of the algorithms is affected by the introduction of
domain knowledge.

6 Introduction

1.4 Thesis Outline

The thesis opens with an introductory chapter explaining the problem at hand and its background,
supplemented with a cursory overview of the techniques explored within. Chapter 2 provides further
detail and analysis of the domains explored in this thesis and outlines the various approaches researched
to deal with the domain of Berlin.Chapter 3 details the techniques used in this thesis, the theory behind
them and any alterations required for their application in the domains explored. Chapter 4 outlines the
enhancements proposed in this thesis and discusses their strengths and shortcomings. Finally, Chapter
5 provides the results and analysis of the experiments in both domains on the outlined algorithms while
Chapter 6 concludes the thesis and offers suggestions of improvement and directions for future research.

2

Problem Domains

Chapter overview: The following chapter details the problem domains in which experiments are run
in this thesis. Two different problem domains are described; a straightforward representation of a CMAB,
and the domain of Berlin.

2.1 Combinatorial Multi Armed Bandit

The problem domain outlined in this section was devised to provide a test bed which was as close to the
CMAB model as possible. By providing this domain the various techniques and enhancements outlined
in this thesis could be tested without concern of abstraction variations, as detailed in Subsection 2.2.2.

The multi-armed bandit (MAB) problem, which serves as the basis of this model, is the problem
of optimizing the sum of rewards earned through a sequence of actions. At each stage the agent has
to execute one ai from a set of stochastic actions A = {a1, ..., ak}. Each ai is parameterized with an
unknown distribution χi from which a reward is drawn if the agent executed ai [38].

The primary distinction between the MAB and CMAB model is that for a MAB the agent needs to
decide for a single variable, whereas in a CMAB it needs to decide for n variables. Formally, a CMAB is
defined by:

• C: A set of values consisting of {A1 × ... × An}, where Ai is the set Ai = {ai;1, ..., ai;j}. A single
value from C is referred to as the combined action cA. A combined action consists of n variables,
defined as the sub-actions ai of cA.

• R: A reward distribution χ1 × ...× χn → R, depending on sub-actions ai within a given cA.

• V : A function which given a combination of values cA drawn from all Ai, returns whether the
combination is legal and allowed within the domain.

A CMAB can be translated into a MAB by translating each legal value combination into a single
arm. However, in doing so we lose the inherent structure of the values which can be exploited to learn
the expected reward per sub-action ai [38, 13].

To showcase the distinction of a linear versus non-linear correlation between the variables, a reward
function is proposed in which the inter-correlation between variables can be adjusted. In this reward
function the value returned by the reward distribution for ai is multiplied by a given weight and then
integrated through summation or integration with the value returned for ai−1. Formally, this reward
function is defined as:

v0 = 1 (2.1)

vi = opi(R(ai)× wi, vi−1) (2.2)

where
wi is the weight set per ai

opi is either
∏

or
∑

and set per ai

8 Problem Domains

During experimentation opi is stochastically determined to be either
∏

or
∑

at the start of a game
based on a variable ε representing the non-linearity of the reward function. To remove any introduced
bias, the structure is determined at the beginning of each game, and shared between players. During
experimentation R is represented by Gaussian distributions with µ = 0.0, σ = 2.0 . The game is played
for a single round, with the highest scoring player being the player with cA which maximizes the reward
function where R is replaced by µ, defined as the actual reward function per ai.

2.1.1 Complexity Analysis

Action Space As all Bandits have an equal number of arms, the action space, or branching factor of
this game is xy, where x is the number of Arms, and y the number of Bandits in the game.

State Space As the game is played for a single round, the action space is equal to the state space.

2.2 Berlin

This section details the domain of Berlin [7] and provides a complexity analysis, followed by two alternative
representations of the action space. These representations approach the action space from two different
perspectives, one from a node-as-agent perspective, and the other as a soldier-as-agent perspective.

Berlin is a simultaneous N-player zero-sum game with similarities to the popular board game Risk,
but fully deterministic. It is a turn based strategy game with homogeneous units in which the goal is
to achieve the maximum number of points within a preset turn limit. The game is played on a directed
graph which is fully observable, with soldiers only allowed to move along edges connected to their origin
node. Each turn the player decides if and how soldiers are sent over adjacent edges to attack or reinforce
neighboring nodes. Ownership of a node changes if there is a single attacker with more soldiers than the
defender. The remainder in difference between the owner with the most soldiers and second-most soldiers
on a node is the number of soldiers that survive for the next round. Each node specifies the number of
victory points it is worth at the end of the game, and the number of reinforcements the owner receives
per turn upon.

Within the experiments we model the simultaneous aspect in Berlin by viewing the deciding player
as the first player, clearing any decisions made by other players. This in turn results in paranoid, but
still adequate playing strength, as determined by [17, 50].

Figure 2.1: The GUI built to locally visualize and run Berlin tournaments.

2.2 — Berlin 9

2.2.1 Complexity Analysis

Action Space By viewing the action space complexity from the perspective of a node, the core com-
plexity is a weak composition [39] constituting the number of soldiers that can be sent out on adjacent
edges. Then, the variations of these compositions in which the number of soldiers that are sent out
is varied needs to be explored. Both these facets combined define the summed compositional part of
Equation (2.3). The final product in Equation (2.3) constitutes the combinatorial aspect of a decision
for all nodes owned by the player.

∏
n⊆N

ns∑
k=0

(
ne + k − 1

k − 1

)
(2.3)

where

N is the set of nodes owned by the player

ns is the number of soldiers on node n

ne is the number of edges connected to node n

While the action space complexity is not much of an issue in early game situations, the combinatorial
nature ensures that the actions of any non-trivial sized state can no longer be efficiently enumerated.
Per example, the graph in games in Berlin can easily consist of 30 nodes, with an edge connectivity of
3. Mid-game the average number of soldiers per node is approximately 10 for decent players. In a game
where a player controls half the map, 7.006× 1036 legal moves exist per turn.

Game Tree The complexity of the game tree follows naturally from the action space as Berlin is a
game with a preset number of rounds, as outlined in Equation (2.4).

∏
i⊆r

Ai (2.4)

where

Ai is the action-space complexity of round i

r is the number of rounds in a match, typically 25

It must be noted that a large number of actions do not lead to a distinct state, which in turn suggests
that transposition tables could provide a benefit to any search based approach [2, 14, 46, 37].

2.2.2 Action Space Representation

Key to all algorithms which deal with representing the problem domain as a CMAB is how to define the
division between CMAB and its child MABs. For Berlin we propose two alternative representations: node-
as-agent and soldier-as-agent. The decision between both representations is a choice over the branching
factor (width) versus depth of the search tree as shown in Figures 2.2, 2.4 and 2.3. Both NMC and LSI
inherently benefit from a smaller branching factor. MCTS benefits from a balance between the two as
no guarantees can be made on all sub-actions in a cA action being explored if the depth is too large,
and the algorithm suffers if the tree is too wide. This problem is further explained in Subsection 4.4 and
experimentally explored in Subsection 5.3.4

Node-as-Agent

In this representation we see each individual MAB as a decision for a single node. The perspective of
the agent [30] is from the node, where per ply, all actions for a given node are expanded from the given
state. The depth of the tree per ply then becomes |N |, the number of nodes, as it is factored out of
the action space complexity Equation 2.3. The action space per layer, or branching factor of the tree, is
considerably reduced but still sizeable as governed by the remainder of Equation 2.3.

10 Problem Domains

Figure 2.2: Näıve modeling of the action space in Berlin.

Depth:

Root

A0;0 An;0

...

A0;m A0;m...

Node-as-Agent

Branching factor:

Figure 2.3: Node-as-Agent modeling of the action space in Berlin.

Soldier-as-Agent

In this representation we see each individual MAB as a decision for a single soldier. The depth of the
tree per ply then becomes |S|, where S is the total number of soldiers for the target player. The action
space per tree is then governed by the number of edges for the node the soldier resides on, which usually
is 1 ≤ ne ≤ 6.

2.2.3 Heuristic Agent

To provide a performance baseline in the experiments in Berlin, the Genghis Khan agent from the online
Berlin AI tournament has been recreated. This agent has performed well in the competition and was
open-sourced so we can freely analyze its performance and integrate it into playout simulation. [7, 25]

Each turn, this agent assigns a value and constructs a distance matrix for each node. Each outgoing
edge is then assigned a normalized value equal to the combined worth of the heuristic value of all nodes
multiplied by their distance over this edge, given the distance matrix. Soldiers are divided among the
outgoing edges according to their respective normalized value. Any remainder soldiers are divided equally
among all edges. As a defensive strategy, the bot deducts the number of soldiers required to defend the
node from the soldiers to be sent along the edges. The number required is defined as the number of
enemy soldiers on directly adjacent nodes.

The value of a node is defined as:

2.2 — Berlin 11

Depth:

Root

A0;0 An;0

...

A0;m A0;m...

Soldier-as-Agent

Branching factor:

Figure 2.4: Soldier-as-Agent modeling of the action space in Berlin.

owner(n)× 2nvp × 4nsp (2.5)

where
n is node in question

owner() is a weighted function returning -1 for owned nodes, and 1 for enemy and unowned nodes.

nvp is the number of victory points the node is worth at the end of the game.

nsp is the number of soldiers the node produces per round upon ownership.

12 Problem Domains

3

Search Algorithms

Chapter overview: This chapter outlines the various exploration strategies, search techniques and
extensions used in this thesis. We first elaborate on the various exploration strategies that are employed
by the search techniques explored in this thesis. We then detail the search techniques evaluated in this
thesis, which comprise Monte-Carlo Tree Search (MCTS), Näıve Monte Carlo (NMC) and Linear Side
Information (LSI).

3.1 Exploration Strategies

One of the core concepts in search algorithms is the policy which decides which node is explored at each ply.
These policies determine the nature of the search algorithm in terms of how it responds to cumulative and
simple regret. Simple regret is the expected error between an algorithm’s recommendation, and optimal
decision [9]. The cumulative regret is the accumulated error between an algorithm’s recommendation and
the optimal decision over multiple actions [9]. Within the search strategies explored in this thesis UCB
and Sequential Halving are used, and thus explained in this section. We elaborate on Successive Rejects,
as it served as an introduction on the concept of discarding arms from future consideration.

3.1.1 Upper Confidence Bounds

Upper Confidence Bounds (UCB) is a finite time exploration strategy for MABs proposed by [5]. The
basis of the algorithm is that it optimizes cumulative regret at an optimal logarithmic rate, without
knowledge of the reward distributions R behind each arm. The policy is split up into the current average
reward µc, and the one-sided confidence interval for µc. UCB gives an upper bounding value for each arm,
below which the expected reward drops with high probability [5]. For n samples, UCB has an optimal
rate of cumulative regret of O(ln(n)) [33]. This in turn means that any action ai recommended suffers
a simple regret that decreases at best at a polynomial rate [9]. Algorithm 1 outlines the UCB selection
policy.

3.1.2 Successive Rejects

As the name implies, Successive Rejects successively removes the worst performing arm from the selection.
Each round a budget nk is computed, each remaining arm is sampled, and finally the worst arms removed.
The lower bound on simple regret is guaranteed by by the lengths of the rounds [4]. Algorithm 2 outlines
the Successive Rejects policy.

3.1.3 Sequential Halving

As with Successive Rejects, the algorithm is divided into rounds in which arms are rejected from further
rounds. The prime distinction from Successive Rejects is how time is divided among the rounds, and
which arms are rejected per round. In Sequential Halving each round the number of arms are halved,
and the sample budget is distributed equally among all rounds, and then among all arms [27].

14 Search Algorithms

Algorithm 1 Upper Confidence Bounds (UCB) [5]

Input: Sample Budget T , Set of Arms A
Output: Recommended arm ai

// Ensure that each arm has at least 1 sample
1: for all ai ← arms do
2: x̄i ← sample(ai)
3: ni ← ni + 1

// Exploit: Sample the best scoring arm, and update
4: for t = 1 . . . T do

5: ai ← max(x̄i +
√

2ln(t)
ni

)

6: x̄i ← x̄i + sample(ai)
7: ni ← ni + 1

8: return ai where max(x̄i)

Algorithm 2 Successive Rejects [4]

Input: Sample Budget T , Set of Arms A
Output: Recommended arm ai
1: S1 ← A, n0 ← 0
2: ¯logK ← 1

2 +
∑K

i=2
1
i

// Calculate a budget per round
3: for all k ∈ {1, . . . , |A| − 1} do
4: nk = d 1

¯logK
× T−|A|
|A|+1−k e

// Each round, reject the weakest arm
5: for k = 1 . . . |A| − 1 do
6: for all ai ∈ Sk do
7: vi ← vi + sample(ai, nk − nk−1)

8: µ̄i ← vi
|Sk|

9: Sk+1 ← max(Sk, |Sk| − 1)

10: return Sk, containing a single element.

3.2 — Monte-Carlo Tree Search (MCTS) 15

Sequential Halving outperforms Successive Rejects and currently provides the best bounds on simple
regret [27]. It was adapted for MCTS in a variant named Sequential Halving On Trees (SHOT) [11], its
application as a selection policy for tree search is explored in [40]. Algorithm 3 outlines the Successive
Rejects policy.

Algorithm 3 Sequential Halving [27]

Input: Sample Budget T , Set of Arms A
Output: Recommended arm ai
1: S1 ← A, rounds← dlog2Ke − 1
2: for k = 1 . . . rounds do
3: samples← b T

|Sk|dlog2|S|ec
4: for all ai ∈ Sk do
5: for s = 1 . . . samples do
6: µi ← sample(ai)

7: Sk+1 ← max(Sk, dSk

2 e)
8: return Sk, containing a single element.

3.2 Monte-Carlo Tree Search (MCTS)

Monte-Carlo Tree Search (MCTS) [16] is a best-first search technique in which a tree is iteratively
built consisting of nodes representing states. Heuristic evaluation of a game state is not performed as
traditionally, using the current state of the world, but on the simulated terminal state resulting from the
selected state. This makes MCTS uniquely qualified for problems where determining an optimal course
of action using heuristics is non-trivial [12]. MCTS consists of four phases [12], as depicted in Figure 3.1;
each repeated in succession until a computational constraint is reached, commonly being wall-clock time.
These phases are:

Selection Expension Simulation Backpropagation

The selection function is applied

recursively until a leaf node is

reached

One or more nodes

are created
The result of this game is

backpropagated in the tree

One simulated

game is played

Selection Expansion Simulation Backpropagation

The selection function is

applied recursively until

a leaf node is reached

One or more nodes

are created
The result of this game is

backpropagated in the tree

One simulated

game is played

 Repeated X times

Figure 3.1: Monte-Carlo Tree Search

Selection: In the selection phase, starting from the root node, a child node is recursively selected
according to a selection strategy Ss until a leaf node s is reached.

Expansion: In the expansion phase, the expansion strategy Se is applied to the selected node s, which
traditionally expands the node by populating it with subsequent states.

Simulation: Starting from leaf node s, the game is simulated in self-play according to some playout
strategy Sp until the cut-off strategy Sc decides to stop the simulation, traditionally when a player has
won the game. Such a simulation is called a playout.

16 Search Algorithms

Backpropagation: In this phase the results from the simulation is propagated backwards from leaf
node p to the nodes that were traversed to reach p according to a back-propagation strategy Sb. Tradi-
tionally the result is counted singular positive if the root player has won, and singular negative for a loss
[12, 44].

MCTS has successfully been applied to similar domains in which tactical planning is central [6, 47].

3.2.1 RAVE

Figure 3.2: Example of action a & b estimation from state s. The outcome of the simulation is shown in
the bottom squares. Monte-Carlo estimation favours move b, as a led to two losses. However, move a
also led to three wins, and is favoured by RAVE. The simulation with move a from the root does not

belong to subtree (s) and does not contribute to the AMAF estimate Q(s, a) [24].

Monte-Carlo Tree Search does not generalize related positions or moves. The simulations over a state,
or action, are the only way in which the algorithm determines their value. The Rapid Action Value
Estimation (RAVE) [23] algorithm provides an initial value for a given state or action which decreases
over time as simulation information on it becomes available. This value is gained through knowledge
shared between related nodes in the search tree. It significantly improves performance in a domain where
states or actions are recurring and can be shared between subtrees.

The base assumption of RAVE is that the value of an action a in state s is equal for all states within the
subtree τ(s), regardless of when it is played. This assumption, that the value of a move is unaffected by
other moves, is often called the All-Moves-As-First heuristic. RAVE works by storing the mean outcome
of all simulations in which action a is selected after state s, for state s [23]. In traditional application of
RAVE in Upper Confidence Bounds (UCB) [16] applied to Trees (UCT) [16], the value returned by UCT
and RAVE are combined linearly with a decaying value β based on the number of simulations already
run through the node. This ensures that the UCT value of the node is taken in the limit, instead of the
biased estimate returned by RAVE.

3.3 — Näıve Monte-Carlo Sampling (NMC) 17

3.3 Näıve Monte-Carlo Sampling (NMC)

Both Näıve Monte-Carlo (NMC) [38] and Linear Side-Information (LSI) [31] are based on the theory that
to deal with an expansive action space as proposed in online planning in a CMAB, an algorithm needs
to define two strategies:

1. A candidate generation strategy, for reducing the set of all possible combined actions cA, named C,
leading from a given state to a reasonably small subset C∗ ⊆ C of candidates.

2. A candidate evaluation strategy, for identifying the best combined action cA in C∗ by gradually
improving the corresponding estimates in µ.

As outlined in the section on the CMAB model, a combined action cA is defined as an action consisting
of several sub-actions. Each set of possible sub-actions is defined as Ai, with a single sub-action defined
as ai. The combination of these sub-actions is what leads to the expansive size of C [31].

Näıve Sampling is a sampling strategy for a CMAB based on the assumption that the reward distri-
bution can be decomposed as a linear summation: R(x1, . . . , xn) =

∑
i=1...nRi(xi). This assumption,

that the reward distribution is linear over the domain, is called the näıve assumption [38]. Within NMC,
this assumption allows the CMAB problem to be broken into a collection of n+ 1 MAB problems:

• MABg, the global MAB where each of the legal combined actions cA that have been sampled so
far is represented as an arm.

• MABi, the local MABs, one for each set of sub-actions Ai which only consider the sub-actions
ai;j ∈ Ai.

Näıve Sampling uses the local MABs to explore new value combinations that have a higher expected
reward through the näıve assumption. The global MAB is used to exploit the value combinations with
the best reward so far [38]. Figure 3.3 shows a schematic version of the NMC algorithm. At each round
t a policy π0 is used to determine whether to explore (MABi) or exploit (MABg) [38].

• If explore was selected: A1, . . . , An is sampled by using a policy πl to select a value for each ai
independently. The resulting combined action cA is added to the global MABg.

• If exploit was selected: A1, . . . , An is sampled by using a policy πg to select a value combination
using MABg.

For π0 traditionally an ε-greedy strategy is chosen, where explore is chosen with probability ε, and
exploit with 1 − ε. Assuming ε < 1 every cA ∈ C will be generated and then sampled infinitely often.
Thus, NMC converges to the best cA ∈ C, independently of whether the näıve assumption holds [31].

NMC was shown to outperform the standard tree search algorithms, such as UCT and ABCD in the
domain of µRTS when the action space was not restructured.

18 Search Algorithms

.. ..

Global MAB

Global MAB

Exploitation Exploration

BA C

A A0

D

A i+1 An

ao

Query each individual MAB for an action ai using
policy ,then combine them into a new combined
action cA which is added to the global MAB.

E.g.: Exploitation / Exploration based policy

Select a previously explored combined
action cA according to policy _

Local MABs

ExplorationExploitation

ai+1
an

Local MAB A0

a

b c

b

d

Each round, decide whether to
explore or exploit using policy

Figure 3.3: Näıve Monte Carlo,
where πl uses an exploitation/exploration policy to select a sub-action ai for local MAB Ai.

3.4 — Linear Side-Information (LSI) 19

3.4 Linear Side-Information (LSI)

The success of NMC was the starting point of LSI [31]. In NMC the candidate generation and evaluation
are stochastically interleaved, at a single sample resolution. This interleaving allows the exploiting of the
samples made at evaluation in an effort to improve the estimate side information for exploration.

However, if m samples are devoted directly to candidate generation, m new candidates are generated.
If the näıve assumption holds, these could instead be generated with guidance from the side information
[31]. Also, while NMC converges to the best cA, for no reasonable budget of samples T can a guarantee
be made on the quality of the recommended action through the set of C, or the generated subset of
C∗ [31]. This latter observation stems from the fact that the recommended action by NMC is selected
through the empirical mean which could be based on a single sample of the respective combined action
cA [31].

LSI tries to address both of these issues. The algorithm handles candidate generation and evaluation
sequentially, instead of interleaved. The overall sample budget T is divided into Tg, for the candidate
generation which runs first, and Te = T − Tg , for the candidate evaluation which runs second. This
alteration is based on the fact that for regular planning in MABs state-of-the-art algorithms guarantee
an exponential decrease of probability in selecting a sub-optimal cA with a given T [31].

Candidate generation works by first constructing a weight function over all sub-action dimensions
Ai. This is done by evaluating the sub-actions within each dimension using sampling budget Tg. Using
these weight functions a distribution is constructed for each dimension Ai. k combined actions are then
constructed by sampling the distribution behind each Ai and combining the resulting sub-actions into
a combined action. Candidate evaluation then uses the Sequential Halving policy given the sampling
budget Te to determine the best combined action cA.

Figure 3.4 depicts a schematic overview of the two-phase sampling scheme which serves as the basis
for LSI, Figure 3.5 shows the pseudo-code of the entire algorithm. More formally, the algorithm is divided
up into the following phases:

• Generate which serves to generate the first k(Te) cA-actions. This procedure is split up into:

1. The generation of a weight function R̂ over the sub-actions in Ai. R is constructed by creating
a combined action cA for each individual sub-action ai;j . The combined action is constructed
using a given policy E and evaluated using part of the sampling budget Tg.

2. The generation of a biased distribution DR̂ over C towards R̂.

3. Sampling (up to) k(Te) cA-actions from C using DR̂.

• Evaluate which uses the Sequential Halving algorithm detailed in Subsection 3.1.3 until a
single combined action cA is left to be recommended.

The policy E used to construct a combined action from a targeted sub-action is what provides the
two main variations of LSI: Linear Side Information for Vertices (LSIv) and Linear Side Information for
Facets (LSIf). The distinction in the two variations lies in how the sub-actions used for sampling are
extended to full actions:

• In LSIv, all m samples in the budget for ai,j are dedicated to the cA-action containing only ai,j .
The other sub-actions are chosen to be null -moves.

• In LSIf , the budget m is randomly distributed over all cA-actions which contain ai,j . In other
words, m cA-actions are generated in which all sub-actions beside ai,j are randomly selected.

Depending on the linearity of the reward function in the domain, and the possibility to use null -
moves, either LSIv or LSIf is preferred. If the reward function in the domain is linear in nature, LSIv
is preferred as the underlying value can be calculated without regard of the other sub-actions. If it is
non-linear in nature, LSIf is preferred as the average over all other sub-actions needs to be considered
to provide a correct estimate of the average value of the sub-action at hand.

20 Search Algorithms

Generate

Side Info

Generate a cAi;j

per ai;j

Extend cAi;j

Fragment LSIF

Vertex LSIV

Either

Evaluate cAi;j

Update R(ai;j)

Generate
k cA actions

using R

Per Ai, sample a sub-action
ai;j from R, and combine
those into an action cA.

Create a biased distribution R
per Ai over the estimated

worth of all ai;j in Ai
Fill in all other subactions of
cAi;j randomly.

Fill in all other subactions of
cAi;j with null-moves.

Evaluate

Sequential
Halving

Result as C*

Evaluate cA in C* m
times.

Select best cA for
C* in next round

 Apply Sequential Halving until
C* consists of a single cA.

Figure 3.4: Linear Side Information (LSI)

Figure 3.5: (a) The general 2PHASE-CMAB planning scheme, as well as the LSI scheme for candidate
generation and evaluation, (b) specifics of the LSIV and LSIF instances of 2PHASE-CMAB, and (c)

two specific procedures for LSI candidate generation. [31]

3.4 — Linear Side-Information (LSI) 21

3.4.1 Time Limited LSI

The algorithm outlined in Figure 3.5 is limited only in the sample budget T , and cannot be cut-off based
on a time-constrained budget. As Berlin, one of our problem domains, is setup as a time-constrained
problem, an alternative is suggested in which Te and Tg represent a budget in calculation time. For this,
the Evaluate and SideInfo functions were altered as shown in algorithms 4 and 5.

Algorithm 4 LSItl Evaluate

Input: Set of generated c actions C∗, time budget Te
Output: Recommended c action
1: C0 ← C∗

2: for i = 0 . . . blog2|C∗|c ∧ timeLeft(Te) do
3: m← b Te

|Ci|dlog2|C∗|ec
4: for all c ∈ Ci do
5: for m times ∧ timeLeft(Te) do
6: r ∼ v(c)
7: averaging update µ̂ with r

8: Ci+1 ← d|Ci|/2e µ̂-best elements of Ci

9: sort(Ci+1) using µ̂.

10: return max(Ci) using µ̂

Algorithm 5 LSItl SideInfo

Input: Time Budget Tg
Output: Recommended arm R̂
1: A← ∪ni=1Ai

2: m← b Tg

|A|c
3: i← 0
4: while Ai contains unsampled action ai,j ∧ timeLeft(Te) do
5: for m times ∧ timeLeft(Te) do
6: r ∼ v(Extend(ai,j))

7: averaging update R̂(ai,j) with r

8: i← modulo((i+ 1), |A|)
9: return R̂

Experimental results showed both LSI and LSItl to be of equal playing strength.

22 Search Algorithms

4

Proposed Enhancements

Chapter overview: The main contributions of this thesis: an alternative representation of the search
space which allows a combinatorial action space to be explored using MCTS, named Hierarchical Expansion
(HE), and an extension on this technique which allows MCTS to determine the optimal sequence of
dimensions to explore, named Dimensional Expansion (DE).

4.1 Introduction

The core issue for search techniques in complex action spaces is the inability to efficiently enumerate the
actions possible [38], and is the issue at hand which the proposed alterations try to tackle. However,
inspiration for the extensions outlined in this chapter came from the intuitive understanding that a
CMAB consists of MABs with heterogeneous payoff. Move ordering such as Killer Heuristics have shown
to produce increased playing strength in the context of αβ search [1]. From this understanding follows
that the sequence in which MABs are explored could provide a move ordering of sorts, and that there
exists some optimal sequence which leads to an optimal increase in playing strength.

Furthermore, MCTS is a best-first search algorithm that thrives in problem domains which have ample
“pruning opportunities”. In other words, the easier it is for the algorithm to distinguish between “good”
moves, the deeper it will search the tree. If the value of a move can be shown to be better than other
moves at the same ply, MCTS with UCT will tend to focus on exploration of those moves. Conversely, if
competing moves exist with similar value, the algorithm tends to divide the computation budget between
them. Restructuring a search space to provide such “pruning opportunities” through Move Groups has
led to an increase in playing strength in both Amazons and Go [45, 14, 36].

Both Hierarchical Expansion (HE) and Dimensional Expansion (DE) follow a similar strategy to Move
Groups to deal with an expansive action space, namely that the depth of the tree is expanded in an effort
to curb the branching factor [14, 53]. The primary distinction between HE and DE is the application of
domain knowledge. With HE we assume to know some heuristic function that orders the dimensions to
be explored. With DE we assume no knowledge on the domain, and the search space is structured such
that MCTS will simultaneously search for both the optimal sequence of dimensions to explore and move
to return. From this follows the intuitive understanding that if the heuristic function of HE is optimal,
HE will outperform DE.

As such, HE and DE provide two benefits:

1. They allow MCTS to operate on a prohibitively large action space by re-organizing the action space
such that the branching factor is curbed.

2. They introduce a pruning opportunity in the tree by placing those nodes first which are most likely
to have a distinct value.

Subsection 4.2 details the Hierarchical Expansion algorithm, Section 4.3 details the Dimensional
Expansion algorithm. Figures 4.1, 4.2 and 4.3 showcase the different expansion functions on a sample
domain with a 3-dimensional (Yellow, Green & Blue) Combined Action, in which each dimension has 2
actions (0 & 1).

24 Proposed Enhancements

4.2 Hierarchical Expansion

The basis of both the HE and DE is to sacrifice the depth of the tree to curb the branching factor of
the tree. In HE and DE we assume that the action space can be divided into a set dimensions D, each
ai ∈ D with a set of actions Ai. For HE we then assume some ordering for D is known, or that the order
in which we explore dimensions does not matter.

In normal expansion for MCTS a combined action cA is created which consists of a choice for all
dimensions in D. In Hierarchical Expansion we create a sub-action ai and select an action for a single
dimension di ∈ D. At each iteration we expand into a sub-action and merge this into the incomplete
combined action cA constructed thus far until a choice is made for all dimensions of D.

Figure 6 shows the algorithm for Hierarchical Expansion within MCTS, while Figure 4.2 shows a
schematic representation of the example domain expanded using HE. By restructuring the action space
we limit the branching factor to max |Ai|, avoiding the construction of a combinatorial action space.

If the domain we are dealing is a recursive CMAB (A CMAB consisting of CMABs instead of MABs),
we apply HE recursively on the sub action ai. The incomplete combined action cA will then not be
expanded further until we have made a complete decision cA1 for all dimensions in the child CMAB.

Figure 4.1: Näıve expansion of a combinatorial action for the given sample domain.

Figure 4.2: Hierarchical expansion of the action space

Algorithm 6 Hierarchical Expansion

Input: State s, Incomplete Combined Action cA, Set of Dimensions D, Ordering over Dimensions o.
Output: Set of (in)-complete Combined Actions possible for dimension x
1: fD ← D − filledDimensions(cA) // The ordered set of dimensions with no action in cA
2: x ← o(fD).head
3: for all a← Actions(s, x) do // The actions in dimension x given state s
4: actions← (cA ∪ a)

5: return actions

4.3 — Dimensional Expansion 25

4.3 Dimensional Expansion

Key to HE is the ordering D on the dimensions. If this ordering is optimal, HE will be the optimal
strategy. However, when this ordering is unknown, a situation very similar to αβ-pruning could occur
in which little to no pruning occurs due to the fact that sub-trees have similar estimated value and no
definitive decision can be made without extensive exploration.

To solve the problem where no ordering is known, Dimensional Expansion (DE) is introduced. This
expansion strategy simultaneously explores over the individual dimensions and ordered sequence of dimen-
sions. By sacrificing tree depth we hope to discover those nodes which provide early pruning opportunity.
The algorithm works by sequentially choosing which dimension di to explore, and then to determine which
action in di to explore. This decision is divided over two ply so that the algorithm may prune those as-
pects which are not interesting, and simultaneously avoid the combinatorial complexity of presenting
both choices in a single ply.

The strength of the algorithm becomes apparent in those domains in which there is strong synergy in
the value outcome of actions over different dimensions, in other words those domains with a non-linear
component to their reward function. Through its exploration over the sequence of dimensions it will
discover those sequences of actions which result in a higher expected reward.

The sequence in the action space is a concept introduced to allow exploitation of more valuable sub-
actions, but in terms of the reward function this ordering over sub-actions does not exist. Thus, the action
space is essentially duplicated over those branches which explore different sequences of dimensions. Two
sequences with the same sub-actions give the same result, and the downside to this technique becomes
apparent. Many samples are spent on branches which, after exploitation, are no longer visited and the
samples spent on sub-actions in these branches are wasted. The recovery of this side-information is an
active topic, and explored in experiment 5.3.4 where it is recovered through partial move completion with
the application of RAVE [46, 24].

Figure 4.3 shows the expansion tree in the sample domain. In this example, the sub-trees which do
not directly branch form the main line are implied as to limit the figure to a manageable level. The
pseudo-code is outlined in Algorithm 7.

Algorithm 7 Dimensional Expansion

Input: State s, Incomplete Combined Action cA, Set of Dimensions D
Output: Set of (in)-complete Combined Actions leading from cA
1: if cA has no target dimension then
2: fD ← D − filledDimensions(cA) // The ordered set of dimensions with no action in cA
3: a← cA
4: for all d← fD do
5: a.target← d
6: actions← a
7: else
8: x← cA.target
9: for all a← Actions(s, x) do // The actions in dimension x given state s

10: actions← (cA ∪ a)

11: return actions

4.4 Partial Move Completion

By allowing expansion over partial moves, or sub-actions, MCTS can no longer guarantee that a fully
developed action will be returned. We therefore need to provide an Extension policy e which will, given
a set of sub-actions, construct a valid combined action.

The options explored in this thesis outline the following policies:

• er: A stochastic policy which extends the incomplete move by filling it with a random selection for
each Ai ∈ undecided(cA).

26 Proposed Enhancements

Figure 4.3: Dimensional Expansion. The sub-trees which do not directly branch from main line are not
shown.

• ek: A heuristic policy which extends the incomplete move by filling it with recommendations from
a heuristic agent for each Ai ∈ undecided(cA).

• eRAV E : An online training policy which relies on RAVE to provide the best sampled sub-action
during tree exploration for each Ai ∈ undecided(cA). The RAVE estimated values from the root
node are used to provide the values for the sub-actions.

Through the use of RAVE, or for this context a global action transposition table, we use the concept
of side-information in the context of partial move completion. Both this and the option of introduc-
ing domain knowledge for impartial moves could considerably improve performance and is a concept
experimentally tested in Section 5.3.4.

5

Experiments & Results

Chapter overview: The following chapter contains an outline of the experimental setup, and the
various experiments explored. For each experiment, the results are summarized and discussed. Detailed
coverage of the results can be found in the relevant appendices.

5.1 Experimental Setup

To conform to the experimental setup used by [31], an ε-greedy policy was used for all policies in NMC
with the ε0 parameter preset to 0.25. The Tg and Te parameters for LSI were set to 0.25N and 0.75N
respectively. The C constant, used by UCT (Algorithm 1) is set to the default 1√

2
. Early experimentation

lead to decent values around 0.7 0.8, which lead to the setting of 1√
2
.

5.2 Combinatorial Multi-Armed Bandit

The first experiment is setup to showcase the sensitivity of various algorithms to action space complexity.
In this experiment, we compare the following algorithms on the CMAB problem domain:

• Näıve Monte-Carlo (NMC)

• Linear Side Information Fragment (LSIf)

• Monte-Carlo Tree Search using UCT (MCTS)

• Monte-Carlo Tree Search using UCT, Hierarchical Expansion (MCTS - HE) with an arbitrary
ordering.

• Monte-Carlo Tree Search using UCT, Dimensional Expansion (MCTS - DE)

Both the weights wi and range of the arms χi is set to 500. The ratio of non-linear versus linear
operations opi, ε, in the evaluation function is set to 0.1. The reasoning behind this is that we want to
simulate real-world games, and any decently complex enough combinatorial game will have components
in its value function which affect others (non-linearity). As the structure is reset at the beginning of every
game, by using a small ε value we allow both games to be created which are purely linear in nature, and
those which have non-linear aspects. As the value returned by each arm is also randomly determined at
the beginning of the game, we weight the arms with a preset value of 500 to ensure that the resulting
range of values returned by the combined actions C on CMAB is distinctive enough in the game tree.

As the number of bandits increases, the average value of the value function increases. From this
follows that an algorithm with consistent playing strength should show an increase in value as complexity
of any of the variables in the action space increases. For Hierarchical Expansion an arbitrary ordering
(0Ṅ) is picked. The bias introduced by this ordering is removed as the underlying structure of the CMAB
is changed for each game.

28 Experiments & Results

104

105

106

1 2 4 6 8 10 12 16 24 32 48 64

Va
lu

e
pe

rr
ou

nd
(#

)

Number of Bandits (#)

Dimensional MCTS
LSI

NMC
Hierarchical MCTS

MCTS

Figure 5.1: Results for the 4-armed bandit setup

Each datapoint in the experiment is the average result of 300 games, with a 5000ms timelimit per
action. For LSI, we used the original algorithm which does not support time constraints. As such, the
playout budget given is calculated per setup using simulated annealing to conform to the time limit.

5.2.1 Sensitivity, number of Bandits

Figure 5.1 shows the sensitivity of the various algorithms on a 4-armed bandit setup over the number of
Bandits. The 4-Armed Bandit setup was chosen as the initial setup to showcase the performance of the
various algorithms in a domain where the branching factor starts at a trivial size and gradually progresses
to a sizable amount.

MCTS is the best performing algorithm until the action space of the domain reaches a threshold
complexity of 8 bandits (i.e.: with an action space complexity of 48, or 65, 536). Performance then
decreases drastically, given the fact that we expect a rise in value, not a decline. Here we see that the
algorithm is ill-suited to deal with the rise in complexity and nears performance levels associated with
random play as the action space cannot be enumerated any more.

While LSI underperforms as the complexity of the action space is low, it outperforms NMC once
complexity starts to rise, which is in line with results shown in [31]. Both algorithms outperform MCTS
as complexity rises, and perform as expected given the increase in complexity [38, 31].

Of interest is that both HE and DE show better performance once complexity rises. We see the
potential of DE to exploit the sequence of dimensions, finding those Bandits which prove to be crucial in
the value function and outperforming HE.

Upon inspection it is shown that in this domain, as opposed to regular game domains, most time has
to be spent in the Selection Phase. This would explain why both HE and DE perform slightly worse than
MCTS as relatively more time is spent in the Selection Phase due to the increased depth of the tree.

5.2 — Combinatorial Multi-Armed Bandit 29

This predicts that in domains where less relative time is spent in the Selection Phase, the performance
gap will dissipate.

5.2.2 Sensitivity, number of Arms

Figure 5.2 shows the sensitivity of the various algorithms over both arms and the number of bandits.
This experiment is setup to show the sensitivity over both the branching factor in dimensions and in
actions per dimension.

As the actions per dimension (Arms) increases we see that except for LSI and MCTS, the performance
of all algorithms increases. For LSI we see that while performance increases over the number of Bandits,
it falters over the number of Arms. This is most likely due to the fact that inherent in the algorithm
is the requirement to iterate over all sub-actions per dimension. (See Figure 3.5 SideInfo(Tg) and
Evaluate(C∗, Te))

Of note is the robustness of both HE and DE against action space complexity, as both algorithms out-
perform all others as complexity increases. As the number of arms increases, we see that the performance
gap between HE and DE diminishes. An expected result, as the importance of the sequence in dimensions
is proportional to number of Bandits, not Arms. An increased branching factor per dimension in the
tree prohibits DE from searching the tree to a critical depth. This trend finally results in DE showing
declining performance as the action space becomes too large at 64 arms, and 48 bandits (i.e.: 4864 or
3.9× 10107). Even then, both algorithms outperform all others.

Figure 5.3 shows that as complexity of the action space increases, not only the average value by
HE and DE outperforms NMC and LSI, but also the confidence interval of the action value returned is
smaller. Both NMC, with ε-greedy as primary policy, and LSI, divide computation budget equally among
the dimensions of a combined action, and thus do not optimize for the dimension which affects value the
most.

5.2.3 Sensitivity, non-linearity

Figure 5.4 shows the sensitivity of the various algorithms over to the non-linearity of the reward function.
In this experiment we vary the variable ε in the CMAB model which alters the non-linear nature of the
reward function. The results show the average relative performance. This is defined as the average of
vi;j

vmax;j
over all j, where vi;j is the value for algorithm i on trial j. Each point in this graph was the result

of 1200 trials.

In the results of this experiment we see several inflection points with regards to performance between
the algorithms:

1. At ε = 0.0 we see Hierarchical MCTS outperform Dimensional MCTS. This observation can be
explained by the understanding that if no individual dimensions provide substantial more reward, or
are crucial in the reward function, the added complexity of the tree depth from Dimensional MCTS
will only prove a hindrance. However, as the rewards from the individual arms are heterogeneous
some move ordering still exists over the dimensions. And even though the reward function is linear
and thus the values returned from arms are less distinctive, the algorithm identifies and focuses on
those arms which are more interesting, in turn resulting in a good relative value as compared to
NMC and LSI.

2. At 0.0 < ε < 0.35 we see Dimensional MCTS outperform Hierarchical MCTS as expected. Dimen-
sional MCTS identifies and exploits the dimensions which provide a substantial contribution to the
reward function. 0.35 identifies the point in this setup where the number of interesting dimensions
starts to outrank the depth at which Dimensional MCTS can explore the tree efficiently.

3. At ε > 0.5 we see the behaviour of LSI change. As the dimensions that MCTS can explore given the
budget tend to be non-linear, we see that Dimensional MCTS explores those most interesting first.
This results in a more reliable value and thus outperforms Hierarchical MCTS. However, we see that
LSI starts to increase in relative performance as not all non-linear dimensions are properly exploited
by both MCTS variants. LSI guarantees a minimal allocation of the budget per dimension, and
thus provides a baseline for each dimension.

30 Experiments & Results

213

214

215

216

217

218

219

220

221

1 2 4 6 8 10 12 16 24 32 48 64 1 2 4 6 8 10 12 16 24 32 48 64

213

214

215

216

217

218

219

220

221

1 2 4 6 8 10 12 16 24 32 48 64 1 2 4 6 8 10 12 16 24 32 48 64

213

214

215

216

217

218

219

220

221

1 2 4 6 8 10 12 16 24 32 48 64 1 2 4 6 8 10 12 16 24 32 48 64

213

214

215

216

217

218

219

220

221

1 2 4 6 8 10 12 16 24 32 48 64

4 arms 8 arms

16 arms 24 arms

32 arms 48 arms

64 arms

Dimensional MCTS
LSI

NMC
Hierarchical MCTS

MCTS

Number of Bandits (#)

A
ve

ra
ge

va
lu

e
pe

rr
ou

nd
(#

)

Figure 5.2: Average score of techniques over number of Bandits and Arms in action space.
4, 8, 16, 24, 32, 48 and 64 Arms per Bandit.

5.2 — Combinatorial Multi-Armed Bandit 31

213

214

215

216

217

218

219

220

221

1 2 4 6 8 10 12 16 24 32 48 64 1 2 4 6 8 10 12 16 24 32 48 64

213

214

215

216

217

218

219

220

221

1 2 4 6 8 10 12 16 24 32 48 64 1 2 4 6 8 10 12 16 24 32 48 64

213

214

215

216

217

218

219

220

221

1 2 4 6 8 10 12 16 24 32 48 64 1 2 4 6 8 10 12 16 24 32 48 64

213

214

215

216

217

218

219

220

221

1 2 4 6 8 10 12 16 24 32 48 64

4 arms 8 arms

16 arms 24 arms

32 arms 48 arms

64 arms

Dimensional MCTS
LSI

NMC
Hierarchical MCTS

MCTS

Number of Bandits (#)

A
ve

ra
ge

va
lu

e
pe

rr
ou

nd
(#

)

Figure 5.3: Boxplot score of techniques over number of Bandits and Arms in action space.
4, 8, 16, 24, 32, 48 and 64 Arms per Bandit.

32 Experiments & Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
va

lu
e

(%
)

Measure of Non-linearity (%)

Dimensional MCTS
LSI

NMC
Hierarchical MCTS

Figure 5.4: Averaged relative score with regards to best value that round. 32 Arms, 32 Bandits.

4. At ε > 0.95 we finally see LSI outperform both MCTS variants. As slowly every component in the
reward function becomes non-linear, time must be spent on all components to prevent a collapse in
value.

Apart from these specific observations we see that NMC, as expected, does not react well to the
violation of the näıve assumption and performs worse as the linear components of the reward function
are transformed into non-linear components.

5.3 — Berlin 33

5.3 Berlin

The following sections outline the results of the experiments performed on the domain of Berlin. Section
5.3.1 compares the performance of the enhancements to MCTS as outlined in Section 4. In Subsection
5.3.2 the performance of different playout strategies on the best performing enhancements from Subsection
4 are compared. Then in Section 5.3.3 the findings of the previous experiments are combined in a
comparison of the playing strength of the various algorithms outlined in this thesis.

All experiments for Berlin are played on the “2 Player - Standard” map, as depicted in Figure
5.5. This map is of sufficient complexity such that we showcase the expansive action space, and used
in the online AI tournament of Berlin, while maintaining a symmetrical setup so no position has an
advantage. The choices made by other players are cleared before search is started for the current player,
as to avoid any bias inherent in simultaneous turn games. As a performance baseline, we compare the
algorithms against the Genghis Khan AI. Genghis Khan is a well-performing heuristics-based AI in the
online tournament of Berlin. The standard action representation used, unless noted otherwise, is that of
node-as-agent. Early experimentation lead to the observation that this representation is strictly better
for all algorithms, except LSI. The reason for this can be explained by LSI’s inherent weakness to a large
sub-action branching factor, which is negated by the soldier-as-agent perspective. We further experiment
with this in Subsection 5.3.3.

Figure 5.5: Map “2 Player - Standard” for Berlin. All square nodes produce a single soldier per turn
and give the player one victory point at the end of the game.

For this domain a round-robin tournament is setup in which each combination of players and starting
positions is tested for a preset number of matches. This rotation is introduced to remove any bias
introduced by the position of the player. To ease comparison of performance, line coloring and symbol
usage in graphs will be consistent for techniques between experiments.

34 Experiments & Results

5.3.1 Action Space Exploration

In this experiment the performance of the Hierarchical Expansion and Dimensional Expansion enhance-
ment, and its variations, to MCTS are explored. The following variations are tested:

• Hierarchical Expansion (HE), where an arbitrary ordering is picked at the start of the game.

• Hierarchical Expansion - Random (HE, R), where the ordering is randomized after each expansion.
This extension provides a mix between HE and DE in which the algorithm is allowed to search for
a sequence over the sub-actions, without the added depth of the ply which selects the dimension.
However, the algorithm has no control over which dimension is selected after an action.

• Hierarchical Expansion - Knowledge (HE, K), where the ordering of dimensions explored is based
on a heuristic function. In Berlin the distance of the node to the nearest enemy owned node is used.
This ensures that nodes that lie along the frontier are explored first.

• Dimensional Expansion (DE), the application of DE without any alterations.

• Dimensional Expansion - Nodes (DE,N), a variation on DE in which an alternative action represen-
tation is used to expand over. In this alternative representation a new layer of expansion is added
in which we iterate over the number of soldiers to send out over the edges. This is done in an effort
to curb the branching factor when using the node-as-agent perspective in the action representation.

The detailed results of the experiment can be reviewed in Appendix A. In Figure 5.6 the overall
performance of these techniques in the previously outlined tournament setup is shown. Figure 5.6 is
primarily intended as a showcase of the overall behavior of each algorithm with regards to an increase
in computation time. Figure 5.7 showcases the relative performance between algorithms better. This
structure, where we explore both the behavior and relative performance, will be used throughout further
experiments. From these figures the following are apparent:

• MCTS is outperformed by all other algorithms.

• MCTS - HE,K is the best performing algorithm (≥ 0.8 win rate), outperforming both variations
of DE. However, as calculation time increases relative performance drops. (As compared to MCTS
- HE and MCTS - HE,R)

• The importance of the inherent ordering in dimensions is shown through the performance difference
between MCTS - HE,K, MCTS - HE,R and MCTS - HE.

From inspection of game plays it becomes apparent that while MCTS performs well in the early game,
performance drops drastically as complexity of the game, and thus the branching factor, increases. As the
player owns more nodes, the combinatorial nature of the action space ensures the computation budget
prohibits expansion of even a single layer.

As the calculation budget is increased, the initial lead provided by domain knowledge lessens. In
appendix A we see that the performance of MCTS - HE,K as compared to its variations drops significantly.
MCTS - HE,K ensures that even in budget-constrained situations the search will explore nodes crucial
according to the heuristics. However as the budget increases the other variations ensure exploration of
these nodes as well and at the same time explore nodes incorrectly deemed worthless by heuristics.

Appendix A shows us that DE and its variations outperform uninformed HE at lower budgets, but
lose relative performance once the computation budget increases. Upon playthrough inspection we see
that DE correctly identifies nodes of importance and explores these first. However, Berlin is a domain
with a low playout per second performance. And as such, the number of playouts in the experimental
setup is not enough to overcome the added increase in tree depth, and performance falters.

DE is an expansion technique that, without extensions which provide information on actions played
in other branches of the tree such as RAVE, will lose significant side-information on the performance
of actions played in different branches. This loss of side-information versus depth of exploration is the
trade-off that needs to be considered when applying the technique. We further explore this phenomenon
in the experiment of 5.3.4 and show ways to regain this loss of information.

5.3 — Berlin 35

0

0.1

0.3 0.5 1.0 2.5 5.0
0.4

0.5

0.3 0.5 1.0 2.5 5.0

0.4

0.5

0.6

0.3 0.5 1.0 2.5 5.0
0.4

0.5

0.6

0.3 0.5 1.0 2.5 5.0

0.8

0.9

1

0.3 0.5 1.0 2.5 5.0
0.6

0.7

0.8

0.3 0.5 1.0 2.5 5.0

MCTS MCTS - DE

MCTS - DE,N MCTS - HE

MCTS - HE,K MCTS - HE,R

Calculation Time (s)

W
in

R
at

e
+

D
ra

w
R

at
e

2
(%

)

Figure 5.6: Overview of algorithm behavior in terms of overall playing strength between expansion
strategies for MCTS, given computation time.

36 Experiments & Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.5 1.0 2.5 5.0

W
in

R
at

e
+

D
ra

w
R

at
e

2
(%

)

Calculation Time (s)

MCTS
MCTS - DE

MCTS - DE,N
MCTS - HE

MCTS - HE,K
MCTS - HE,R

Figure 5.7: Comparison of overall playing strength behavior between expansion strategies for MCTS,
given computation time.

5.3.2 Playout Policies

In this experiment the performance of various playout policies is explored. We compare the playout
policies against both a pure Random agent and the Genghis Khan agent which serve as a performance
baseline. As Hierarchical Expansion with domain knowledge (MCTS - HE, K) proved to be the superior
technique in Section 5.3.1, this technique is used in the following experiment to find the optimal playout
policy. Mixed playout strategies, in which a heuristic policy is chosen ε-greedy over random during
playout, have been shown to outperform pure strategies depending on the domain [17, 34]. In this
experiment we test the following playout policies:

• A pure heuristic playout policy (MCTS - HE, Genghis Khan), or, ε = 1.0, where playout is delegated
to the Genghis Khan Agent

• A pure random playout policy (MCTS - HE, Random), or, ε = 0.0, where playout is delegated to
the Random agent.

• The two best performing mixed strategy agents as determined by earlier experimentation, where
ε = 0.25 and ε = 0.75. (MCTS - HE, .25 / .75)

From the results shown in Figures 5.8 and 5.9, and appendix B it becomes apparent that Genghis
Khan is a formidable agent, outperforming mixed and pure strategies until a threshold computation
budget is reached.

From Appendix B it becomes apparent that the Genghis Khan agent becomes particularly susceptible
to a mixed strategy with heavy emphasis on heuristics as the computation budget increases. At peak
computation budget, the overall win rate of MCTS - HE, .75 is 0.7 over Genghis Khan head-to-head,
with a draw rate of 0.13. Of interest is also that the pure heuristic playout strategy is outperformed by
both the mixed strategies and pure random playout policies at even low computation budget constraints.

This suggest that, at first, the performance cost incurred when using heuristic and thus performance
intensive agents is overcome by the increase in information gain of each playout. However, these policies
overfit on the problem domain by only exploring those options deemed interesting by the heuristic agent.
While this is a strength when the computation budget is low, the fact that options are overlooked is a
weakness that can be exploited as the computation budget increases, which is what we see in the results
of this experiment. This in turn implies there exists some optimal ε per computation budget. These
observations corroborate earlier research suggesting mixed strategies to be stronger playout policies than
pure heuristic ones[17, 34].

5.3 — Berlin 37

0.6

0.7

0.8

0.9

1

0.3 0.5 1.0 2.5 5.0

0.5

0.6

0.7

0.8

0.3 0.5 1.0 2.5 5.0
0.6

0.7

0.8

0.9

0.3 0.5 1.0 2.5 5.0

0.5

0.6

0.7

0.3 0.5 1.0 2.5 5.0
0.5

0.6

0.7

0.3 0.5 1.0 2.5 5.0

0

0.1

0.2

0.3 0.5 1.0 2.5 5.0

Genghis Khan

MCTS - HE, .25 MCTS - HE, .75

MCTS - HE, GenghisKhan MCTS - HE, Random

Random

Calculation Time (s)

W
in

R
at

e
+

D
ra

w
R

at
e

2
(%

)

Figure 5.8: Overview of algorithm behavior in terms of playing strength behavior between playout
strategies for MCTS, given computation time.

38 Experiments & Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.5 1.0 2.5 5.0

W
in

R
at

e
+

D
ra

w
R

at
e

2
(%

)

Calculation Time (s)

Genghis Khan

MCTS - HE, .25
MCTS - HE, .75

MCTS - HE, GenghisKhan
MCTS - HE, Random

Random

Figure 5.9: Comparison of overall playing strength behavior between playout strategies for MCTS, given
computation time.

5.3.3 Search Algorithms

In the following experiment the performance of the various search algorithms outlined in this thesis are
explored. As in Section 5.3.2, the performance of these algorithms is compared to both the Random and
Genghis Khan agent. The playout policy for all algorithms is set to the overall best performing policy
from the previous section, ε = 0.75 with Genghis Khan.

Early experimentation lead to the observation that the alternative model representation for Berlin,
in which we look at the problem from the soldier-as-agent perspective, lead to increased performance
for LSI, but not NMC. This alternative representation is therefore included in the experimental setup as
LSIalt.

In this experiment the following algorithms are tested in a round-robin tournament setup:

• Time limited LSI, using the traditional action-space representation as LSItl and the alternative
representation as LSIalt.

• MCTS, and both the DE and HE extensions.

• NMC

From appendix C and Figures 5.10 and 5.11 it becomes apparent that MCTS is outperformed by
all other algorithms, and even beaten by the Random Agent. While surprising at first, this can be
explained by the fact that the Random agent samples the entire action space, while MCTS fails to as the
action space increases in size during the match and thus the action space becomes innumerable given the
computation budget. MCTS then returns a random decision on the limited action space it did explore,
as none of the actions were sampled enough to provide a clear distinction on the best move available.

As expected, we see both heuristic agents (Random and Genghis Khan) decrease in performance as
the computation budget increases. Of interest is that both variations of LSI seem to be outperformed by
NMC. The results shown in Section 5.2 imply that as complexity of the CMAB increases, the performance
gap between LSI and NMC decreases. The results of Section 5.2 also indicate that the performance of
LSI is negatively correlated to an increase in the number of Arms in per Bandit in a CMAB model.
It is therefore of the author’s opinion that we are seeing the logical end conclusion of applying LSI in
a complex domain with an unfavorable model representation. This is corroborated by the observation
that the LSI variation using the alternative model representation, where the number of Arms per Bandit
is decreased in favor of an increase in the number of Bandits, outperforms the LSI variation using the
standard representation.

5.3 — Berlin 39

0.8

0.9

1

0.3 0.5 1.0 2.5 5.0
0.5

0.6

0.3 0.5 1.0 2.5 5.0

0.3

0.4

0.5

0.3 0.5 1.0 2.5 5.0
0

0.1

0.3 0.5 1.0 2.5 5.0

0.3

0.4

0.5

0.3 0.5 1.0 2.5 5.0
0.7

0.8

0.9

1

0.3 0.5 1.0 2.5 5.0

0.6

0.7

0.8

0.3 0.5 1.0 2.5 5.0
0.1

0.2

0.3

0.3 0.5 1.0 2.5 5.0

Genghis Khan LSI - alt

LSI - tl MCTS

MCTS - DE MCTS - HE,K

NMC Random

Calculation Time (s)

W
in

R
at

e
+

D
ra

w
R

at
e

2
(%

)

Figure 5.10: Overview of algorithm behavior in terms of overall playing strength behavior between
search techniques, given computation time.

Finally, we see that HE outperforms all other algorithms, and its relative performance increases as
the computation budget increases. DE suffers from the same weaknesses as outlined in Subsection 5.3.1,
barely outperforming LSI, but handily beaten by NMC.

40 Experiments & Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.5 1.0 2.5 5.0

W
in

R
at

e
+

D
ra

w
R

at
e

2
(%

)

Calculation Time (s)

Genghis Khan
LSI - alt

LSI - tl
MCTS

MCTS - DE
MCTS - HE,K

NMC
Random

Figure 5.11: Comparison of overall playing strength behavior between search techniques, given
computation time.

5.3.4 Partial Move Completion

In this section we compare the different strategies of completing a partial move returned by the search. We
compare both DE and HE in an effort to show the difference in depth of exploration versus exploitation.
The following strategies are compared:

• Random move completion. Any undecided node is filled with a random distribution of soldiers
along edges.

• Heuristic move completion. Any undecided node is decided by the partial move provided by the
Genghis Khan agent.

• RAVE move completion. Any undecided node is decided by the best performing move as returned
by RAVE. RAVE in this experiment is only used for completing the partial move, not to aid the
tree search policy during search.

Figure 5.12, 5.13 and appendix D show the results of these experiments. As expected, heuristic based
completion of the partial move provides a significant advantage over both random and RAVE based
completion at low computation budget constraints. Also, we see that both non-heuristic based policies
improve over time as the computation budget increases.

RAVE provides a significant boost to all algorithms, giving a trend that seems to indicate it will
outperform heuristic completion as time increases. This observation stems from the fact that both in DE
and HE side-information is lost on moves played in different branches of the algorithm. We expect DE
to gain the most from this approach as the loss of side-information is the largest. This is shown in the
results of the experiment as DE benefits immensely from the information regained through RAVE.

Of interest is that the heuristic based approach for DE outperforms all other approaches when the
calculation budget is kept below 5 seconds. This confirms the intuition that DE successfully explores
and exploits those moves crucial in the game, and shows that its lack of performance in the heads-up
tournament is primarily explained by its lacking search depth.

5.3 — Berlin 41

0.1

0.2

0.3

0.3 0.5 1.0 2.5 5.0
0.6

0.7

0.8

0.9

1

0.3 0.5 1.0 2.5 5.0

0.5

0.6

0.7

0.3 0.5 1.0 2.5 5.0
0.1

0.2

0.3

0.3 0.5 1.0 2.5 5.0

0.5

0.6

0.3 0.5 1.0 2.5 5.0
0.1

0.2

0.3

0.3 0.5 1.0 2.5 5.0

0.4

0.5

0.6

0.3 0.5 1.0 2.5 5.0
0.7

0.8

0.9

0.3 0.5 1.0 2.5 5.0

0.6

0.7

0.8

0.3 0.5 1.0 2.5 5.0

MCTS - DE MCTS - DE - Heuristic

MCTS - DE - RAVE MCTS - HE

MCTS - HE - Heuristic MCTS - HE - RAVE

MCTS - HE,R MCTS - HE,R - Heuristic

MCTS - HE,R - RAVE

Calculation Time (s)

W
in

R
at

e
+

D
ra

w
R

at
e

2
(%

)

Figure 5.12: Overview of algorithm behavior in terms of overall playing strength behavior between
partial move completion policies,

given computation time.

42 Experiments & Results

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.5 1.0 2.5 5.0

W
in

R
at

e
+

D
ra

w
R

at
e

2
(%

)

Calculation Time (s)

MCTS - DE
MCTS - DE - Heuristic

MCTS - DE - RAVE
MCTS - HE

MCTS - HE - Heuristic
MCTS - HE - RAVE

MCTS - HE,R
MCTS - HE,R - Heuristic

MCTS - HE,R - RAVE

Figure 5.13: Comparison of overall playing strength behavior between partial move completion policies,
given computation time.

6

Conclusion

Chapter overview: This chapter provides a reflection on the problem statement and its subsequent
research questions by reviewing the results of the experiments and drawing conclusions based on them.
Finally, directions for future research are provided.

6.1 Research Questions

1. How can MCTS be extended to cope with a combinatorial action space?

Chapter 1 shows that examples of research into other domains [32, 47] has shown that alternative
representations of a combinatorial action space have resulted in increased performance. Näıve Monte
Carlo (NMC) [38] and Linear Side Information (LSI) [31] have both been shown to perform well with the
CMAB model and outperformed näıve applications of MCTS. Both approaches give inspiration to the
formalization and proposal of two algorithms, Hierarchical Expansion (HE) and Dimensional Expansion
(DE), in Chapter 4 which simultaneously allow MCTS to tackle action spaces of a combinatorial nature,
and explore and exploit the inherent ordering over dimensions of sub-actions in a CMAB.

2. How can MCTS be extended to exploit the side-information inherent in the CMAB model?

Both HE and DE focus on the exploitation of the ordering of dimensions within a CMAB, but do
not explicitly use the side-information inherent in the sub-actions of dimensions. However, experiment
5.3.4 shows that existing techniques that provide information over recurring actions, such as RAVE, can
be used to provide side information in strategies used to complete partial moves with substantial benefit
to performance. Exploratory experiments showed performance improvements when using RAVE in the
search, however this remains the topic of future research and these results are not handled in this thesis.

3. How does performance of the applied algorithms vary across variations in the CMAB model?

Experiments on the CMAB model, as outlined in Section 5.2 show that the various algorithms react
differently to changes in characteristics of the model. While the näıve application of MCTS outperforms
the other algorithms at trivially sized problems, as the domain reaches any reasonable level of complexity
the performance of MCTS drops. The general observation is that LSI outperforms NMC, however as the
problem complexity increases, this gap lessens and is even shown to revert in the domain of Berlin. LSI
seems to be particularly vulnerable to the size of the sub-action space. Both DE and HE are shown to be
resistant to a rise in complexity, outperforming the other algorithms in the CMAB experimental setup.
DE and HE both scale better given increasing time constraints, which is a logical outcome given that
both algorithms are based on MCTS as opposed to the selection policies which optimize simple regret
used by NMC and LSI. The end result being that the proposed MCTS extensions outperform LSI and
NMC as the computation budget increases.

44 Conclusion

4. What is the performance of the applied algorithms in the domain of Berlin?

The experiments in Section 5.3 show that the exploitation of the priority in dimensions through HE
outperforms both NMC and LSI, and beats the heuristic agent Genghis Khan for higher time settings.
With the application of RAVE on the partial move completion we see that the requirement for heuristic
knowledge in domain ordering can be removed while maintaining and even improving performance. While
HE with heuristic knowledge outperforms DE, without reasonable heuristics it is outperformed by DE
when RAVE is used to augment partial moves. This observation is particularly interesting to General
Game Playing (GGP), as no heuristics are known on the game beforehand. The improvements on
performance gained through RAVE in the partial playout policies seem to indicate that the performance
of DE could be further improved if the side-information can be used within the search. Of note is that
the ordering of dimensions heavily influences the performance of HE, following from the observation that
a stochastic ordering reset after every expansion performs better than an arbitrarily picked ordering.
This variation of HE (HE,R), provides a mix between DE and HE in the sense that the algorithm does
search for a sequence over the sub-actions, but has no control over this exploration as the dimension is
determined randomly after each expansion. The benefit in contrast to DE is that no ply is added which
determines the dimension to explore.

6.2 Problem Statement

Determine the performance of state-of-the-art techniques in domains which can be modeled as a Combina-
torial Multi-Armed Bandit (CMAB), and formulate extensions to MCTS which improve its performance
in this domain.

In this thesis two alternative representations of the action space for a CMAB are presented which
exploit the ordering of dimensions and allow MCTS to efficiently search these domains. The basis for
these techniques lies in the informal application of these strategies in previous research and the success
of NMC and LSI in the domain of µRTS over MCTS. An alternative definition of LSI is proposed which
does not rely on a simulation budget, handles a more expansive sub-action space and performs equal to
the original algorithm.

Results show that the techniques proposed, HE and DE, outperform näıve MCTS, NMC and LSI in
various experimental setups in a straight-forward adaption of the CMAB model, and HE outperforms
NMC, LSI and DE in the domain of Berlin. However, the decreased performance in Berlin for DE
can be compensated by extending the algorithm with proper partial move completion. It is shown
that both LSI and NMC outperform both HE and DE in situations with a low computational budget,
but this performance gap lessens as the budget increases. NMC outperforms LSI in the domain of
Berlin, continuing the observation first shown in the CMAB model that LSI suffers in performance as the
complexity of the sub-action space increases. The effectiveness of exploring and exploiting the ordering
of dimensions is shown through the effective playing strength of both HE and DE and its variations.

6.3 Future Research

While it was shown that there is performance to be gained through exploitation of the ordering in
dimensions in a CMAB, no experiments have been performed yet on how side-information could be
exploited given the new representations using existing techniques. Research has shown significant gains
in performance through the use of selection policies in UCT which are specifically targeted at domains
with a large branching factor [9]. These techniques have not been discussed in this thesis because they
cannot handle an innumerable action space and, more importantly, ignore the inherent side-information
in the domain. However, through HE and DE, these techniques become viable. The exploitation of
side-information could then be exploited through the use of different extensions to MCTS such as RAVE.
The performance gap between MCTS, NMC and LSI in the domain of Berlin is of interest and could be
explained through the different exploration strategies used by the algorithms.

Bibliography

[1] Selim G. Akl and Monroe M. Newborn. “The principal continuation and the killer heuristic”. In:
Proceedings of the 1977 annual conference. ACM. 1977, pp. 466–473.

[2] L. Victor Allis, Maarten van der Meulen, and H. Jaap Van Den Herik. “Proof-number search”. In:
Artificial Intelligence 66.1 (1994), pp. 91–124.

[3] Broderick Arneson, Ryan B. Hayward, and Philip Henderson. “Monte carlo tree search in hex”. In:
Computational Intelligence and AI in Games, IEEE Transactions on 2.4 (2010), pp. 251–258.

[4] Jean-Yves Audibert and Sébastien Bubeck. “Best arm identification in multi-armed bandits”. In:
COLT-23th Conference on Learning Theory-2010. 2010, p. 13.

[5] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the multiarmed bandit
problem”. In: Machine learning 47.2-3 (2002), pp. 235–256.

[6] Radha-Krishna Balla and Alan Fern. “UCT for Tactical Assault Planning in Real-Time Strategy
Games.” In: IJCAI. 2009, pp. 40–45.

[7] Berlin AI Competition. url: http://berlin-ai.com/.

[8] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, Simon Colton, et al. “A sur-
vey of monte carlo tree search methods”. In: Computational Intelligence and AI in Games, IEEE
Transactions on 4.1 (2012), pp. 1–43.

[9] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. “Pure exploration in finitely-armed and continuous-
armed bandits”. In: Theoretical Computer Science 412.19 (2011), pp. 1832–1852.

[10] Murray Campbell, A. Joseph Hoane, and Feng-hsiung Hsu. “Deep Blue”. In: Artificial intelligence
134.1 (2002), pp. 57–83.

[11] Tristan Cazenave. “Sequential halving applied to trees”. In: Computational Intelligence and AI in
Games, IEEE Transactions on 7.1 (2015), pp. 102–105.

[12] G.M.J.B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H. van den Herik, and Bruno Bouzy.
“Progressive strategies for monte-carlo tree search”. In: Proceedings of the 10th Joint Conference
on Information Sciences (JCIS 2007). World of Science. 2007, pp. 655–661.

[13] Wei Chen, Yajun Wang, and Yang Yuan. “Combinatorial multi-armed bandit: General framework
and applications”. In: Proceedings of the 30th International Conference on Machine Learning. 2013,
pp. 151–159.

[14] Benjamin E. Childs, James H. Brodeur, and Levente Kocsis. “Transpositions and move groups in
Monte Carlo tree search”. In: Computational Intelligence and Games, 2008. CIG’08. IEEE Sym-
posium On. IEEE. 2008, pp. 389–395.

[15] Michael Chung, Michael Buro, and Jonathan Schaeffer. “Monte-Carlo planning in RTS games”. In:
CIG. 2005.

[16] Rémi Coulom. “Efficient selectivity and backup operators in Monte-Carlo tree search”. In: Com-
puters and games. Springer, 2007, pp. 72–83.

[17] Niek G.P. Den Teuling and Mark H.M. Winands. “Monte-Carlo Tree Search for the simultaneous
move game Tron”. In: Computer Games Workshop at ECAI 2012, pp. 126-141. Montpellier, France
(2012).

[18] Timo Ewalds. “Playing and solving Havannah”. In: M.sc Thesis, University of Alberta (2012).

46 BIBLIOGRAPHY

[19] David Fotland. “Building a world-champion arimaa program”. In: Computers and Games. Springer,
2006, pp. 175–186.

[20] Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. “Learning multiuser channel allocations in cog-
nitive radio networks: A combinatorial multi-armed bandit formulation”. In: New Frontiers in
Dynamic Spectrum, 2010 IEEE Symposium on. IEEE. 2010, pp. 1–9.

[21] Xiaocong Gan, Yun Bao, and Zhangang Han. “Real-time Search method in non-deterministic game
- Ms. Pacman”. In: ICGA JOURNAL 34.4 (2011), pp. 209–222.

[22] Sylvain Gelly and David Silver. “Achieving Master Level Play in 9 x 9 Computer Go.” In: AAAI.
Vol. 8. 2008, pp. 1537–1540.

[23] Sylvain Gelly and David Silver. “Combining online and offline knowledge in UCT”. In: Proceedings
of the 24th international conference on Machine learning. ACM. 2007, pp. 273–280.

[24] Sylvain Gelly and David Silver. “Monte-Carlo tree search and rapid action value estimation in
computer Go”. In: Artificial Intelligence 175.11 (2011), pp. 1856–1875.

[25] Genghis Khan Agent. url: https://github.com/mathieugagne/genghis-khan.

[26] T. Goslin and P. Andruszkiewicz. Monte-Carlo Tree Search in TOTAL WAR: ROME II. Aug. 2014.
url: http://aigamedev.com/open/coverage/mcts-rome-ii/.

[27] Zohar Karnin, Tomer Koren, and Oren Somekh. “Almost optimal exploration in multi-armed ban-
dits”. In: Proceedings of the 30th International Conference on Machine Learning (ICML-13). 2013,
pp. 1238–1246.

[28] Donald E. Knuth and Ronald W. Moore. “An analysis of alpha-beta pruning”. In: Artificial intel-
ligence 6.4 (1979), pp. 293–326.

[29] Levente Kocsis and Csaba Szepesvári. “Bandit based monte-carlo planning”. In: Machine Learning:
ECML 2006. Springer, 2006, pp. 282–293.

[30] Sven Koenig. “Agent-centered search”. In: AI Magazine 22.4 (2001), p. 109.

[31] Antońın Komenda, Alexander Shleyfman, and Carmel Domshlak. “On Robustness of CMAB Al-
gorithms: Experimental Approach”. In: Computer Games. Springer, 2014, pp. 16–28.

[32] Tomas Kozelek. “Methods of MCTS and the game Arimaa”. In: M.sc Thesis, Charles University,
Prague, Faculty of Mathematics and Physics (2009).

[33] Tze Leung Lai and Herbert Robbins. “Asymptotically efficient adaptive allocation rules”. In: Ad-
vances in Applied Mathematics 6.1 (1985), pp. 4–22.

[34] Dale LaPlante and Christopher Nota. “Improvements to MCTS Simulation Policies in Go”. In:
M.Sc. Thesis (2014).

[35] Chang-Shing Lee, Mei-Hui Wang, Guillaume Chaslot, Jean-Baptiste Hoock, Arpad Rimmel, Olivier
Teytaud, Shang-Rong Tsai, Shun-Chin Hsu, and Tzung-Pei Hong. “The computational intelligence
of MoGo revealed in Taiwan’s computer Go tournaments”. In: Computational Intelligence and AI
in Games, IEEE Transactions on 1.1 (2009), pp. 73–89.

[36] Richard J Lorentz. “Amazons discover monte-carlo”. In: Computers and games. Springer, 2008,
pp. 13–24.

[37] T. Anthony Marsland. “A review of game-tree pruning”. In: ICCA journal 9.1 (1986), pp. 3–19.

[38] Santiago Ontanón. “The combinatorial multi-armed bandit problem and its application to real-time
strategy games”. In: Ninth Artificial Intelligence and Interactive Digital Entertainment Conference.
2013.

[39] Daniel R. Page. “Generalized algorithm for restricted weak composition generation”. In: Journal
of Mathematical Modelling and Algorithms in Operations Research 12.4 (2013), pp. 345–372.

[40] Tom Pepels, Tristan Cazenave, Mark H.M. Winands, and Marc Lanctot. “Minimizing Simple and
Cumulative Regret in Monte-Carlo Tree Search”. In: Computer Games. Springer, 2014, pp. 1–15.

[41] Marc Ponsen, Steven De Jong, and Marc Lanctot. “Computing approximate nash equilibria and ro-
bust best-responses using sampling”. In: Journal of Artificial Intelligence Research (2011), pp. 575–
605.

BIBLIOGRAPHY 47

[42] Alexander Reinefeld. “An improvement of the Scout tree-search algorithm”. In: ICCA Journal 6.4
(1983), pp. 4–14.

[43] Arpad Rimmel, Olivier Teytaud, Chang-Shing Lee, Shi-Jim Yen, Mei-Hui Wang, and Shang-Rong
Tsai. “Current frontiers in computer Go”. In: Computational Intelligence and AI in Games, IEEE
Transactions on 2.4 (2010), pp. 229–238.

[44] G.J.B. Roelofs. “Monte Carlo Tree Search in a modern board game framework”. In: B.sc. Thesis,
Maastricht University (2012).

[45] Jahn-Takeshi Saito, Mark H.M. Winands, Jos W.H.M. Uiterwijk, and H. Jaap van den Herik.
“Grouping nodes for Monte-Carlo tree search”. In: Computer Games Workshop. 2007, pp. 276–283.

[46] Jonathan Schaeffer. “The history heuristic and alpha-beta search enhancements in practice”. In:
Pattern Analysis and Machine Intelligence, IEEE Transactions on 11.11 (1989), pp. 1203–1212.

[47] Dennis Soemers. “Tactical Planning Using MCTS in the Game of StarCraft”. In: B.sc. Thesis,
Maastricht University (2014).

[48] Omar Syed and Aamir Syed. “Arimaa-a new game designed to be difficult for computers”. In: ICGA
Journal 26.2 (2003), pp. 138–139.

[49] István Szita, Guillaume Chaslot, and Pieter Spronck. “Monte-carlo tree search in Settlers of Catan”.
In: Advances in Computer Games. Springer, 2010, pp. 21–32.

[50] Mandy J.W. Tak, Marc Lanctot, and Mark H.M. Winands. “Monte Carlo Tree Search variants for
simultaneous move games”. In: Computational Intelligence and Games (CIG), 2014 IEEE Confer-
ence on. IEEE. 2014, pp. 232–239.

[51] Thirdside Development. url: http://thirdside.ca/.

[52] Alan M. Turing. “Chess”. In: Reprinted in 1988 in Computer Chess Compendium. Springer, 1953,
pp. 14–17.

[53] Gabriel Van Eyck and Martin Müller. “Revisiting move groups in monte-carlo tree search”. In:
Advances in Computer Games. Springer, 2012, pp. 13–23.

[54] Peter Whittle. “Multi-armed bandits and the Gittins index”. In: Journal of the Royal Statistical
Society. Series B (Methodological) (1980), pp. 143–149.

[55] Haizhi Zhong. “Building a strong Arimaa-playing program”. PhD thesis. University of Alberta,
2005.

48 BIBLIOGRAPHY

Appendices

Appendix A

Experimental Results: Berlin -
Expansion

The following chapter contains the experimental results for the comparison of various expansion policies
in the domain of Berlin. Each table shows the win ratio (W) and draw ratio (D) per match up. If the
row algorithm outperforms the column algorithm, defined as W + D

2 ≥ 0.5, then the entry is marked as
bold. The experimental setup of each datapoint is 60 matches, equally divided over all combinations for
starting positions. The matches are played on the 2 Player - Standard map.

52 Experimental Results: Berlin - Expansion

Row
vs

Column
MCTS

MCTS
DE

MCTS
DE,N

MCTS
HE

MCTS
HE,K

MCTS
HE,R Total

MCTS W0.00/D0.00
W0.00/D0.00

W0.02/D0.00
W0.00/D0.00

W0.00/D0.00
W0.00/D0.00

MCTS - DE W1.00/D0.00
W0.45/D0.13

W0.60/D0.15
W0.02/D0.03

W0.17/D0.10
W0.45/D0.08

MCTS - DE,N W1.00/D0.00
W0.42/D0.13

W0.48/D0.15
W0.02/D0.08

W0.17/D0.20
W0.42/D0.11

MCTS - HE W0.98/D0.00
W0.25/D0.15

W0.37/D0.15
W0.08/D0.03

W0.12/D0.22
W0.36/D0.11

MCTS - HE,K W1.00/D0.00
W0.95/D0.03

W0.90/D0.08
W0.88/D0.03

W0.72/D0.22
W0.89/D0.07

MCTS - HE,R W1.00/D0.00
W0.73/D0.10

W0.63/D0.20
W0.67/D0.22

W0.07/D0.22
W0.62/D0.15

Figure A.1: Results for experiment Expansion, given 250ms.

Row
vs

Column
MCTS

MCTS
DE

MCTS
DE,N

MCTS
HE

MCTS
HE,K

MCTS
HE,R Total

MCTS W0.00/D0.00
W0.00/D0.00

W0.02/D0.00
W0.00/D0.02

W0.00/D0.02
W0.00/D0.01

MCTS - DE W1.00/D0.00
W0.37/D0.22

W0.53/D0.15
W0.02/D0.07

W0.17/D0.22
W0.42/D0.13

MCTS - DE,N W1.00/D0.00
W0.42/D0.22

W0.52/D0.15
W0.05/D0.08

W0.17/D0.18
W0.43/D0.13

MCTS - HE W0.98/D0.00
W0.32/D0.15

W0.33/D0.15
W0.02/D0.05

W0.12/D0.18
W0.35/D0.11

MCTS - HE,K W0.98/D0.02
W0.92/D0.07

W0.87/D0.08
W0.93/D0.05

W0.63/D0.20
W0.87/D0.08

MCTS - HE,R W0.98/D0.02
W0.62/D0.22

W0.65/D0.18
W0.70/D0.18

W0.17/D0.20
W0.62/D0.16

Figure A.2: Results for experiment Expansion, given 500ms.

Row
vs

Column
MCTS

MCTS
DE

MCTS
DE,N

MCTS
HE

MCTS
HE,K

MCTS
HE,R Total

MCTS W0.00/D0.00
W0.00/D0.00

W0.00/D0.00
W0.00/D0.00

W0.02/D0.00
W0.00/D0.00

MCTS - DE W1.00/D0.00
W0.35/D0.20

W0.45/D0.15
W0.00/D0.08

W0.18/D0.12
W0.40/D0.11

MCTS - DE,N W1.00/D0.00
W0.45/D0.20

W0.52/D0.20
W0.03/D0.17

W0.17/D0.12
W0.43/D0.14

MCTS - HE W1.00/D0.00
W0.40/D0.15

W0.28/D0.20
W0.02/D0.08

W0.13/D0.13
W0.37/D0.11

MCTS - HE,K W1.00/D0.00
W0.92/D0.08

W0.80/D0.17
W0.90/D0.08

W0.57/D0.32
W0.84/D0.13

MCTS - HE,R W0.98/D0.00
W0.70/D0.12

W0.72/D0.12
W0.73/D0.13

W0.12/D0.32
W0.65/D0.14

Figure A.3: Results for experiment Expansion, given 1000ms.

53

Row
vs

Column
MCTS

MCTS
DE

MCTS
DE,N

MCTS
HE

MCTS
HE,K

MCTS
HE,R Total

MCTS W0.00/D0.02
W0.00/D0.00

W0.02/D0.02
W0.00/D0.02

W0.00/D0.00
W0.00/D0.01

MCTS - DE W0.98/D0.02
W0.45/D0.08

W0.42/D0.25
W0.02/D0.08

W0.13/D0.10
W0.40/D0.11

MCTS - DE,N W1.00/D0.00
W0.47/D0.08

W0.23/D0.33
W0.02/D0.10

W0.07/D0.23
W0.36/D0.15

MCTS - HE W0.97/D0.02
W0.33/D0.25

W0.43/D0.33
W0.05/D0.03

W0.08/D0.28
W0.37/D0.18

MCTS - HE,K W0.98/D0.02
W0.90/D0.08

W0.88/D0.10
W0.92/D0.03

W0.65/D0.27
W0.87/D0.10

MCTS - HE,R W1.00/D0.00
W0.77/D0.10

W0.70/D0.23
W0.63/D0.28

W0.08/D0.27
W0.64/D0.18

Figure A.4: Results for experiment Expansion, given 2500ms.

Row
vs

Column
MCTS

MCTS
DE

MCTS
DE,N

MCTS
HE

MCTS
HE,K

MCTS
HE,R Total

MCTS W0.00/D0.00
W0.00/D0.00

W0.00/D0.03
W0.00/D0.00

W0.02/D0.02
W0.00/D0.01

MCTS - DE W1.00/D0.00
W0.43/D0.08

W0.23/D0.25
W0.03/D0.07

W0.07/D0.15
W0.35/D0.11

MCTS - DE,N W1.00/D0.00
W0.48/D0.08

W0.22/D0.25
W0.07/D0.05

W0.08/D0.13
W0.37/D0.10

MCTS - HE W0.97/D0.03
W0.52/D0.25

W0.53/D0.25
W0.02/D0.17

W0.07/D0.23
W0.42/D0.19

MCTS - HE,K W1.00/D0.00
W0.90/D0.07

W0.88/D0.05
W0.82/D0.17

W0.58/D0.12
W0.84/D0.08

MCTS - HE,R W0.97/D0.02
W0.78/D0.15

W0.78/D0.13
W0.70/D0.23

W0.30/D0.12
W0.71/D0.13

Figure A.5: Results for experiment Expansion, given 5000ms.

54 Experimental Results: Berlin - Expansion

Appendix B

Experimental Results: Berlin -
Heuristics

The following chapter contains the experimental results for the comparison of various playout policies
in the domain of Berlin. Each table shows the win ratio (W) and draw ratio (D) per match up. If the
row algorithm outperforms the column algorithm, defined as W + D

2 ≥ 0.5, then the entry is marked as
bold. The experimental setup of each datapoint is 60 matches, equally divided over all combinations for
starting positions. The matches are played on the 2 Player - Standard map.

56 Experimental Results: Berlin - Heuristics

Row
vs

Column

Genghis
Khan

MCTS
MCTS
HE,
.25

MCTS
HE,
.75

MCTS
HE,

GenghisKhan

MCTS
HE,
Ran-
dom

Random Total

Genghis Khan W1.00/D0.00
W1.00/D0.00

W0.68/D0.32
W0.25/D0.65

W1.00/D0.00
W1.00/D0.00

W0.82/D0.16

MCTS W0.00/D0.00
W0.02/D0.08

W0.02/D0.07
W0.05/D0.02

W0.05/D0.07
W0.37/D0.17

W0.08/D0.07

MCTS - HE, .25 W0.00/D0.00
W0.90/D0.08

W0.25/D0.22
W0.35/D0.32

W0.28/D0.45
W0.83/D0.08

W0.44/D0.19

MCTS - HE, .75 W0.00/D0.32
W0.92/D0.07

W0.53/D0.22
W0.53/D0.27

W0.38/D0.40
W0.85/D0.10

W0.54/D0.23

MCTS - HE, GenghisKhan W0.10/D0.65
W0.93/D0.02

W0.33/D0.32
W0.20/D0.27

W0.23/D0.45
W0.95/D0.02

W0.46/D0.29

MCTS - HE, Random W0.00/D0.00
W0.88/D0.07

W0.27/D0.45
W0.22/D0.40

W0.32/D0.45
W0.88/D0.10

W0.43/D0.24

Random W0.00/D0.00
W0.47/D0.17

W0.08/D0.08
W0.05/D0.10

W0.03/D0.02
W0.02/D0.10

W0.11/D0.08

Figure B.1: Results for experiment Heuristics, given 250ms.

Row
vs

Column

Genghis
Khan

MCTS
MCTS
HE,
.25

MCTS
HE,
.75

MCTS
HE,

GenghisKhan

MCTS
HE,
Ran-
dom

Random Total

Genghis Khan W1.00/D0.00
W0.83/D0.15

W0.53/D0.30
W0.23/D0.75

W0.88/D0.08
W1.00/D0.00

W0.75/D0.21

MCTS W0.00/D0.00
W0.07/D0.05

W0.02/D0.03
W0.00/D0.05

W0.00/D0.00
W0.53/D0.15

W0.10/D0.05

MCTS - HE, .25 W0.02/D0.15
W0.88/D0.05

W0.23/D0.32
W0.30/D0.35

W0.17/D0.62
W0.93/D0.05

W0.42/D0.26

MCTS - HE, .75 W0.17/D0.30
W0.95/D0.03

W0.45/D0.32
W0.58/D0.27

W0.48/D0.33
W1.00/D0.00

W0.61/D0.21

MCTS - HE, GenghisKhan W0.02/D0.75
W0.95/D0.05

W0.35/D0.35
W0.15/D0.27

W0.32/D0.28
W0.88/D0.03

W0.44/D0.29

MCTS - HE, Random W0.03/D0.08
W1.00/D0.00

W0.22/D0.62
W0.18/D0.33

W0.40/D0.28
W0.93/D0.05

W0.46/D0.23

Random W0.00/D0.00
W0.32/D0.15

W0.02/D0.05
W0.00/D0.00

W0.08/D0.03
W0.02/D0.05

W0.07/D0.05

Figure B.2: Results for experiment Heuristics, given 500ms.

Row
vs

Column

Genghis
Khan

MCTS
MCTS
HE,
.25

MCTS
HE,
.75

MCTS
HE,

GenghisKhan

MCTS
HE,
Ran-
dom

Random Total

Genghis Khan W1.00/D0.00
W0.73/D0.22

W0.40/D0.35
W0.28/D0.55

W0.80/D0.13
W1.00/D0.00

W0.70/D0.21

MCTS W0.00/D0.00
W0.00/D0.00

W0.00/D0.02
W0.00/D0.03

W0.00/D0.05
W0.43/D0.17

W0.07/D0.04

MCTS - HE, .25 W0.05/D0.22
W1.00/D0.00

W0.32/D0.35
W0.57/D0.32

W0.25/D0.42
W1.00/D0.00

W0.53/D0.22

MCTS - HE, .75 W0.25/D0.35
W0.98/D0.02

W0.33/D0.35
W0.75/D0.17

W0.38/D0.45
W1.00/D0.00

W0.62/D0.22

MCTS - HE, GenghisKhan W0.17/D0.55
W0.97/D0.03

W0.12/D0.32
W0.08/D0.17

W0.28/D0.33
W0.92/D0.08

W0.42/D0.25

MCTS - HE, Random W0.07/D0.13
W0.95/D0.05

W0.33/D0.42
W0.17/D0.45

W0.38/D0.33
W0.95/D0.05

W0.47/D0.24

Random W0.00/D0.00
W0.40/D0.17

W0.00/D0.00
W0.00/D0.00

W0.00/D0.08
W0.00/D0.05

W0.07/D0.05

Figure B.3: Results for experiment Heuristics, given 1000ms.

57

Row
vs

Column

Genghis
Khan

MCTS
MCTS
HE,
.25

MCTS
HE,
.75

MCTS
HE,

GenghisKhan

MCTS
HE,
Ran-
dom

Random Total

Genghis Khan W1.00/D0.00
W0.47/D0.38

W0.20/D0.30
W0.12/D0.75

W0.67/D0.27
W1.00/D0.00

W0.57/D0.28

MCTS W0.00/D0.00
W0.00/D0.00

W0.00/D0.02
W0.07/D0.05

W0.00/D0.03
W0.53/D0.02

W0.10/D0.02

MCTS - HE, .25 W0.15/D0.38
W1.00/D0.00

W0.18/D0.37
W0.62/D0.28

W0.22/D0.60
W1.00/D0.00

W0.53/D0.27

MCTS - HE, .75 W0.50/D0.30
W0.98/D0.02

W0.45/D0.37
W0.77/D0.20

W0.45/D0.38
W1.00/D0.00

W0.69/D0.21

MCTS - HE, GenghisKhan W0.13/D0.75
W0.88/D0.05

W0.10/D0.28
W0.03/D0.20

W0.22/D0.38
W0.95/D0.05

W0.39/D0.29

MCTS - HE, Random W0.07/D0.27
W0.97/D0.03

W0.18/D0.60
W0.17/D0.38

W0.40/D0.38
W0.98/D0.00

W0.46/D0.28

Random W0.00/D0.00
W0.45/D0.02

W0.00/D0.00
W0.00/D0.00

W0.00/D0.05
W0.02/D0.00

W0.08/D0.01

Figure B.4: Results for experiment Heuristics, given 2500ms.

Row
vs

Column

Genghis
Khan

MCTS
MCTS
HE,
.25

MCTS
HE,
.75

MCTS
HE,

GenghisKhan

MCTS
HE,
Ran-
dom

Random Total

Genghis Khan W1.00/D0.00
W0.38/D0.30

W0.17/D0.13
W0.20/D0.53

W0.42/D0.38
W1.00/D0.00

W0.53/D0.22

MCTS W0.00/D0.00
W0.00/D0.02

W0.02/D0.00
W0.00/D0.03

W0.00/D0.00
W0.42/D0.13

W0.07/D0.03

MCTS - HE, .25 W0.32/D0.30
W0.98/D0.02

W0.22/D0.32
W0.77/D0.13

W0.33/D0.42
W1.00/D0.00

W0.60/D0.20

MCTS - HE, .75 W0.70/D0.13
W0.98/D0.00

W0.47/D0.32
W0.77/D0.20

W0.42/D0.32
W1.00/D0.00

W0.72/D0.16

MCTS - HE, GenghisKhan W0.27/D0.53
W0.97/D0.03

W0.10/D0.13
W0.03/D0.20

W0.15/D0.25
W0.97/D0.03

W0.41/D0.20

MCTS - HE, Random W0.20/D0.38
W1.00/D0.00

W0.25/D0.42
W0.27/D0.32

W0.60/D0.25
W1.00/D0.00

W0.55/D0.23

Random W0.00/D0.00
W0.45/D0.13

W0.00/D0.00
W0.00/D0.00

W0.00/D0.03
W0.00/D0.00

W0.08/D0.03

Figure B.5: Results for experiment Heuristics, given 5000ms.

58 Experimental Results: Berlin - Heuristics

Appendix C

Experimental Results: Berlin -
Search Algorithms

The following chapter contains the experimental results for the comparison of various algorithms in the
domain of Berlin. Each table shows the win ratio (W) and draw ratio (D) per match up. If the row
algorithm outperforms the column algorithm, defined as W + D

2 ≥ 0.5, then the entry is marked as
bold. The experimental setup of each datapoint is 100 matches, equally divided over all combinations
for starting positions. The matches are played on the 2 Player - Standard map.

60 Experimental Results: Berlin - Search Algorithms

Row
vs

Column

Genghis
Khan

LSI
alt

LSI
tl

MCTS
MCTS
DE

MCTS
HE,K NMC Random Total

Genghis Khan W0.96/D0.04
W1.00/D0.00

W1.00/D0.00
W1.00/D0.00

W0.63/D0.26
W0.89/D0.11

W1.00/D0.00
W0.92/D0.06

LSI - alt W0.00/D0.04
W0.72/D0.19

W1.00/D0.00
W0.63/D0.18

W0.16/D0.22
W0.28/D0.28

W0.77/D0.12
W0.51/D0.15

LSI - tl W0.00/D0.00
W0.09/D0.19

W1.00/D0.00
W0.34/D0.16

W0.04/D0.12
W0.08/D0.05

W0.53/D0.08
W0.31/D0.08

MCTS W0.00/D0.00
W0.00/D0.00

W0.00/D0.00
W0.00/D0.00

W0.00/D0.01
W0.00/D0.00

W0.00/D0.00
W0.00/D0.00

MCTS - DE W0.00/D0.00
W0.19/D0.18

W0.50/D0.16
W1.00/D0.00

W0.06/D0.09
W0.07/D0.14

W0.68/D0.10
W0.36/D0.09

MCTS - HE,K W0.11/D0.26
W0.62/D0.22

W0.84/D0.12
W0.99/D0.01

W0.85/D0.09
W0.36/D0.25

W0.97/D0.03
W0.68/D0.14

NMC W0.00/D0.11
W0.45/D0.28

W0.87/D0.05
W1.00/D0.00

W0.79/D0.14
W0.39/D0.25

W0.94/D0.03
W0.64/D0.12

Random W0.00/D0.00
W0.12/D0.12

W0.39/D0.08
W1.00/D0.00

W0.22/D0.10
W0.00/D0.03

W0.03/D0.03
W0.26/D0.05

Figure C.1: Results for experiment Algorithms, given 250ms.

Row
vs

Column

Genghis
Khan

LSI
alt

LSI
tl

MCTS
MCTS
DE

MCTS
HE,K NMC Random Total

Genghis Khan W0.96/D0.04
W1.00/D0.00

W1.00/D0.00
W0.99/D0.01

W0.38/D0.45
W0.95/D0.05

W1.00/D0.00
W0.90/D0.08

LSI - alt W0.00/D0.04
W0.60/D0.16

W0.98/D0.01
W0.61/D0.20

W0.16/D0.20
W0.24/D0.25

W0.83/D0.05
W0.50/D0.13

LSI - tl W0.00/D0.00
W0.24/D0.16

W1.00/D0.00
W0.45/D0.26

W0.04/D0.15
W0.10/D0.19

W0.59/D0.14
W0.35/D0.13

MCTS W0.00/D0.00
W0.01/D0.01

W0.00/D0.00
W0.00/D0.00

W0.00/D0.00
W0.00/D0.00

W0.00/D0.01
W0.00/D0.00

MCTS - DE W0.00/D0.01
W0.18/D0.20

W0.29/D0.26
W1.00/D0.00

W0.03/D0.09
W0.01/D0.05

W0.75/D0.08
W0.32/D0.10

MCTS - HE,K W0.17/D0.45
W0.64/D0.20

W0.81/D0.15
W1.00/D0.00

W0.88/D0.09
W0.49/D0.20

W0.99/D0.01
W0.71/D0.16

NMC W0.00/D0.05
W0.52/D0.25

W0.71/D0.19
W1.00/D0.00

W0.94/D0.05
W0.31/D0.20

W0.98/D0.02
W0.64/D0.11

Random W0.00/D0.00
W0.12/D0.05

W0.27/D0.14
W0.99/D0.01

W0.17/D0.08
W0.00/D0.01

W0.00/D0.02
W0.22/D0.04

Figure C.2: Results for experiment Algorithms, given 500ms.

Row
vs

Column

Genghis
Khan

LSI
alt

LSI
tl

MCTS
MCTS
DE

MCTS
HE,K NMC Random Total

Genghis Khan W0.92/D0.06
W0.97/D0.03

W1.00/D0.00
W0.97/D0.02

W0.23/D0.38
W0.91/D0.06

W1.00/D0.00
W0.86/D0.08

LSI - alt W0.01/D0.06
W0.53/D0.21

W0.98/D0.02
W0.75/D0.14

W0.09/D0.22
W0.24/D0.17

W0.88/D0.06
W0.50/D0.13

LSI - tl W0.00/D0.03
W0.26/D0.21

W1.00/D0.00
W0.37/D0.26

W0.06/D0.19
W0.07/D0.14

W0.73/D0.12
W0.36/D0.14

MCTS W0.00/D0.00
W0.00/D0.02

W0.00/D0.00
W0.00/D0.00

W0.00/D0.00
W0.00/D0.00

W0.00/D0.01
W0.00/D0.00

MCTS - DE W0.01/D0.02
W0.11/D0.14

W0.37/D0.26
W1.00/D0.00

W0.01/D0.09
W0.08/D0.07

W0.77/D0.09
W0.34/D0.10

MCTS - HE,K W0.39/D0.38
W0.69/D0.22

W0.75/D0.19
W1.00/D0.00

W0.90/D0.09
W0.52/D0.28

W0.99/D0.01
W0.75/D0.17

NMC W0.03/D0.06
W0.59/D0.17

W0.79/D0.14
W1.00/D0.00

W0.85/D0.07
W0.20/D0.28

W0.96/D0.03
W0.63/D0.11

Random W0.00/D0.00
W0.06/D0.06

W0.15/D0.12
W0.99/D0.01

W0.14/D0.09
W0.00/D0.01

W0.01/D0.03
W0.19/D0.05

Figure C.3: Results for experiment Algorithms, given 1000ms.

61

Row
vs

Column

Genghis
Khan

LSI
alt

LSI
tl

MCTS
MCTS
DE

MCTS
HE,K NMC Random Total

Genghis Khan W0.98/D0.01
W0.98/D0.02

W1.00/D0.00
W0.89/D0.11

W0.16/D0.22
W0.77/D0.10

W1.00/D0.00
W0.82/D0.07

LSI - alt W0.01/D0.01
W0.51/D0.27

W0.96/D0.04
W0.56/D0.25

W0.08/D0.20
W0.11/D0.19

W0.89/D0.07
W0.45/D0.15

LSI - tl W0.00/D0.02
W0.22/D0.27

W0.98/D0.01
W0.39/D0.19

W0.06/D0.10
W0.05/D0.10

W0.75/D0.10
W0.35/D0.11

MCTS W0.00/D0.00
W0.00/D0.04

W0.01/D0.01
W0.00/D0.00

W0.00/D0.01
W0.00/D0.01

W0.04/D0.04
W0.01/D0.02

MCTS - DE W0.00/D0.11
W0.19/D0.25

W0.42/D0.19
W1.00/D0.00

W0.01/D0.09
W0.07/D0.11

W0.84/D0.07
W0.36/D0.12

MCTS - HE,K W0.62/D0.22
W0.72/D0.20

W0.84/D0.10
W0.99/D0.01

W0.90/D0.09
W0.59/D0.22

W1.00/D0.00
W0.81/D0.12

NMC W0.13/D0.10
W0.70/D0.19

W0.85/D0.10
W0.99/D0.01

W0.82/D0.11
W0.19/D0.22

W0.98/D0.02
W0.67/D0.11

Random W0.00/D0.00
W0.04/D0.07

W0.15/D0.10
W0.92/D0.04

W0.09/D0.07
W0.00/D0.00

W0.00/D0.02
W0.17/D0.04

Figure C.4: Results for experiment Algorithms, given 2500ms.

Row
vs

Column

Genghis
Khan

LSI
alt

LSI
tl

MCTS
MCTS
DE

MCTS
HE,K NMC Random Total

Genghis Khan W0.92/D0.06
W1.00/D0.00

W0.99/D0.01
W0.88/D0.10

W0.12/D0.15
W0.64/D0.20

W1.00/D0.00
W0.79/D0.07

LSI - alt W0.02/D0.06
W0.49/D0.19

W0.96/D0.02
W0.57/D0.24

W0.05/D0.08
W0.08/D0.14

W0.94/D0.05
W0.45/D0.11

LSI - tl W0.00/D0.00
W0.32/D0.19

W0.95/D0.02
W0.34/D0.31

W0.04/D0.04
W0.04/D0.11

W0.76/D0.13
W0.35/D0.11

MCTS W0.00/D0.01
W0.02/D0.02

W0.03/D0.02
W0.00/D0.00

W0.01/D0.00
W0.00/D0.01

W0.05/D0.04
W0.02/D0.01

MCTS - DE W0.02/D0.10
W0.19/D0.24

W0.35/D0.31
W1.00/D0.00

W0.00/D0.03
W0.03/D0.10

W0.79/D0.05
W0.34/D0.12

MCTS - HE,K W0.73/D0.15
W0.87/D0.08

W0.92/D0.04
W0.99/D0.00

W0.97/D0.03
W0.61/D0.23

W1.00/D0.00
W0.87/D0.08

NMC W0.16/D0.20
W0.78/D0.14

W0.85/D0.11
W0.99/D0.01

W0.87/D0.10
W0.16/D0.23

W0.98/D0.02
W0.68/D0.12

Random W0.00/D0.00
W0.01/D0.05

W0.11/D0.13
W0.91/D0.04

W0.16/D0.05
W0.00/D0.00

W0.00/D0.02
W0.17/D0.04

Figure C.5: Results for experiment Algorithms, given 5000ms.

62 Experimental Results: Berlin - Search Algorithms

Appendix D

Experimental Results: Berlin -
Partial Move Completion

The following chapter contains the experimental results for the comparison of various policies for partial
move completion in the domain of Berlin. Each table shows the win ratio (W) and draw ratio (D) per
match up. If the row algorithm outperforms the column algorithm, defined as W + D

2 ≥ 0.5, then the
entry is marked as bold. The experimental setup of each datapoint is 100 matches, equally divided over
all combinations of starting positions. The matches are played on the 2 Player - Standard map.

64 Experimental Results: Berlin - Partial Move Completion

Row
vs

Column

MCTS
DE

MCTS
DE

Heuristic

MCTS
DE

RAVE

MCTS
HE

MCTS
HE

Heuristic

MCTS
HE

RAVE

MCTS
HE,R

MCTS
HE,R
Heuristic

MCTS
HE,R
RAVE

Total

MCTS - DE W0.00/D0.00
W0.08/D0.15

W0.62/D0.12
W0.08/D0.12

W0.64/D0.12
W0.19/D0.18

W0.01/D0.03
W0.02/D0.11

W0.20/D0.10

MCTS - DE - Heuristic W1.00/D0.00
W0.90/D0.07

W0.99/D0.01
W0.95/D0.04

W1.00/D0.00
W0.94/D0.05

W0.49/D0.18
W0.80/D0.12

W0.88/D0.06

MCTS - DE - RAVE W0.77/D0.15
W0.03/D0.07

W0.82/D0.12
W0.33/D0.28

W0.86/D0.08
W0.51/D0.24

W0.11/D0.14
W0.38/D0.22

W0.48/D0.16

MCTS - HE W0.26/D0.12
W0.00/D0.01

W0.06/D0.12
W0.08/D0.07

W0.52/D0.10
W0.13/D0.20

W0.00/D0.03
W0.05/D0.03

W0.14/D0.09

MCTS - HE - Heuristic W0.80/D0.12
W0.01/D0.04

W0.39/D0.28
W0.85/D0.07

W0.90/D0.05
W0.60/D0.16

W0.04/D0.09
W0.28/D0.31

W0.48/D0.14

MCTS - HE - RAVE W0.24/D0.12
W0.00/D0.00

W0.06/D0.08
W0.38/D0.10

W0.05/D0.05
W0.09/D0.14

W0.01/D0.02
W0.03/D0.07

W0.11/D0.07

MCTS - HE,R W0.63/D0.18
W0.01/D0.05

W0.25/D0.24
W0.67/D0.20

W0.24/D0.16
W0.77/D0.14

W0.05/D0.14
W0.23/D0.15

W0.36/D0.16

MCTS - HE,R - Heuristic W0.96/D0.03
W0.33/D0.18

W0.75/D0.14
W0.97/D0.03

W0.87/D0.09
W0.97/D0.02

W0.81/D0.14
W0.74/D0.20

W0.80/D0.10

MCTS - HE,R - RAVE W0.87/D0.11
W0.08/D0.12

W0.40/D0.22
W0.92/D0.03

W0.41/D0.31
W0.90/D0.07

W0.62/D0.15
W0.06/D0.20

W0.53/D0.15

Figure D.1: Results for experiment Partial move, given 250ms.

Row
vs

Column

MCTS
DE

MCTS
DE

Heuristic

MCTS
DE

RAVE

MCTS
HE

MCTS
HE

Heuristic

MCTS
HE

RAVE

MCTS
HE,R

MCTS
HE,R
Heuristic

MCTS
HE,R
RAVE

Total

MCTS - DE W0.00/D0.01
W0.06/D0.14

W0.44/D0.16
W0.07/D0.15

W0.47/D0.15
W0.08/D0.21

W0.03/D0.03
W0.03/D0.07

W0.15/D0.12

MCTS - DE - Heuristic W0.99/D0.01
W0.82/D0.15

W0.99/D0.01
W0.89/D0.07

W0.98/D0.02
W0.91/D0.07

W0.50/D0.20
W0.70/D0.22

W0.85/D0.09

MCTS - DE - RAVE W0.80/D0.14
W0.03/D0.15

W0.84/D0.11
W0.39/D0.27

W0.83/D0.11
W0.56/D0.26

W0.12/D0.24
W0.25/D0.24

W0.48/D0.19

MCTS - HE W0.40/D0.16
W0.00/D0.01

W0.05/D0.11
W0.06/D0.15

W0.49/D0.15
W0.13/D0.18

W0.02/D0.04
W0.01/D0.08

W0.14/D0.11

MCTS - HE - Heuristic W0.78/D0.15
W0.04/D0.07

W0.34/D0.27
W0.79/D0.15

W0.79/D0.15
W0.48/D0.29

W0.06/D0.18
W0.24/D0.26

W0.44/D0.19

MCTS - HE - RAVE W0.38/D0.15
W0.00/D0.02

W0.06/D0.11
W0.36/D0.15

W0.06/D0.15
W0.08/D0.07

W0.03/D0.06
W0.00/D0.07

W0.12/D0.10

MCTS - HE,R W0.71/D0.21
W0.02/D0.07

W0.18/D0.26
W0.69/D0.18

W0.23/D0.29
W0.85/D0.07

W0.03/D0.14
W0.19/D0.17

W0.36/D0.17

MCTS - HE,R - Heuristic W0.94/D0.03
W0.30/D0.20

W0.64/D0.24
W0.94/D0.04

W0.76/D0.18
W0.91/D0.06

W0.83/D0.14
W0.59/D0.28

W0.74/D0.15

MCTS - HE,R - RAVE W0.90/D0.07
W0.08/D0.22

W0.51/D0.24
W0.91/D0.08

W0.50/D0.26
W0.93/D0.07

W0.64/D0.17
W0.13/D0.28

W0.57/D0.17

Figure D.2: Results for experiment Partial move, given 500ms.

Row
vs

Column

MCTS
DE

MCTS
DE

Heuristic

MCTS
DE

RAVE

MCTS
HE

MCTS
HE

Heuristic

MCTS
HE

RAVE

MCTS
HE,R

MCTS
HE,R
Heuristic

MCTS
HE,R
RAVE

Total

MCTS - DE W0.00/D0.06
W0.04/D0.12

W0.40/D0.17
W0.03/D0.09

W0.45/D0.16
W0.10/D0.22

W0.01/D0.05
W0.01/D0.11

W0.13/D0.12

MCTS - DE - Heuristic W0.94/D0.06
W0.78/D0.15

W0.95/D0.05
W0.78/D0.13

W0.94/D0.05
W0.86/D0.10

W0.39/D0.26
W0.69/D0.15

W0.79/D0.12

MCTS - DE - RAVE W0.84/D0.12
W0.07/D0.15

W0.83/D0.12
W0.39/D0.27

W0.88/D0.06
W0.54/D0.25

W0.14/D0.23
W0.33/D0.31

W0.50/D0.19

MCTS - HE W0.43/D0.17
W0.00/D0.05

W0.05/D0.12
W0.10/D0.15

W0.51/D0.15
W0.09/D0.17

W0.00/D0.04
W0.00/D0.10

W0.15/D0.12

MCTS - HE - Heuristic W0.88/D0.09
W0.09/D0.13

W0.34/D0.27
W0.75/D0.15

W0.82/D0.13
W0.45/D0.30

W0.16/D0.16
W0.13/D0.34

W0.45/D0.20

MCTS - HE - RAVE W0.39/D0.16
W0.01/D0.05

W0.06/D0.06
W0.34/D0.15

W0.05/D0.13
W0.10/D0.06

W0.00/D0.05
W0.03/D0.08

W0.12/D0.09

MCTS - HE,R W0.68/D0.22
W0.04/D0.10

W0.21/D0.25
W0.74/D0.17

W0.25/D0.30
W0.84/D0.06

W0.03/D0.15
W0.13/D0.23

W0.37/D0.19

MCTS - HE,R - Heuristic W0.94/D0.05
W0.35/D0.26

W0.63/D0.23
W0.96/D0.04

W0.68/D0.16
W0.95/D0.05

W0.82/D0.15
W0.46/D0.25

W0.72/D0.15

MCTS - HE,R - RAVE W0.88/D0.11
W0.16/D0.15

W0.36/D0.31
W0.90/D0.10

W0.53/D0.34
W0.89/D0.08

W0.64/D0.23
W0.29/D0.25

W0.58/D0.20

Figure D.3: Results for experiment Partial move, given 1000ms.

65

Row
vs

Column

MCTS
DE

MCTS
DE

Heuristic

MCTS
DE

RAVE

MCTS
HE

MCTS
HE

Heuristic

MCTS
HE

RAVE

MCTS
HE,R

MCTS
HE,R
Heuristic

MCTS
HE,R
RAVE

Total

MCTS - DE W0.02/D0.06
W0.02/D0.16

W0.26/D0.24
W0.01/D0.10

W0.32/D0.18
W0.06/D0.14

W0.01/D0.06
W0.01/D0.06

W0.09/D0.13

MCTS - DE - Heuristic W0.92/D0.06
W0.56/D0.24

W0.81/D0.15
W0.59/D0.20

W0.96/D0.03
W0.71/D0.18

W0.35/D0.22
W0.42/D0.18

W0.67/D0.16

MCTS - DE - RAVE W0.82/D0.16
W0.20/D0.24

W0.81/D0.15
W0.47/D0.25

W0.87/D0.12
W0.47/D0.32

W0.16/D0.21
W0.23/D0.30

W0.50/D0.22

MCTS - HE W0.50/D0.24
W0.04/D0.15

W0.04/D0.15
W0.09/D0.06

W0.43/D0.24
W0.17/D0.20

W0.03/D0.08
W0.03/D0.12

W0.17/D0.16

MCTS - HE - Heuristic W0.89/D0.10
W0.21/D0.20

W0.28/D0.25
W0.85/D0.06

W0.81/D0.13
W0.44/D0.32

W0.16/D0.19
W0.12/D0.20

W0.47/D0.18

MCTS - HE - RAVE W0.50/D0.18
W0.01/D0.03

W0.01/D0.12
W0.33/D0.24

W0.06/D0.13
W0.07/D0.16

W0.04/D0.05
W0.03/D0.10

W0.13/D0.13

MCTS - HE,R W0.80/D0.14
W0.11/D0.18

W0.21/D0.32
W0.63/D0.20

W0.24/D0.32
W0.77/D0.16

W0.05/D0.21
W0.21/D0.30

W0.38/D0.23

MCTS - HE,R - Heuristic W0.93/D0.06
W0.43/D0.22

W0.63/D0.21
W0.89/D0.08

W0.65/D0.19
W0.91/D0.05

W0.74/D0.21
W0.45/D0.32

W0.70/D0.17

MCTS - HE,R - RAVE W0.93/D0.06
W0.40/D0.18

W0.47/D0.30
W0.85/D0.12

W0.68/D0.20
W0.87/D0.10

W0.49/D0.30
W0.23/D0.32

W0.62/D0.20

Figure D.4: Results for experiment Partial move, given 2500ms.

Row
vs

Column

MCTS
DE

MCTS
DE

Heuristic

MCTS
DE

RAVE

MCTS
HE

MCTS
HE

Heuristic

MCTS
HE

RAVE

MCTS
HE,R

MCTS
HE,R
Heuristic

MCTS
HE,R
RAVE

Total

MCTS - DE W0.01/D0.03
W0.01/D0.12

W0.16/D0.32
W0.02/D0.07

W0.17/D0.29
W0.02/D0.08

W0.01/D0.05
W0.01/D0.02

W0.05/D0.12

MCTS - DE - Heuristic W0.96/D0.03
W0.51/D0.22

W0.86/D0.12
W0.50/D0.21

W0.87/D0.10
W0.55/D0.22

W0.19/D0.19
W0.22/D0.18

W0.58/D0.16

MCTS - DE - RAVE W0.87/D0.12
W0.27/D0.22

W0.78/D0.19
W0.40/D0.28

W0.80/D0.14
W0.41/D0.35

W0.16/D0.18
W0.19/D0.34

W0.49/D0.23

MCTS - HE W0.52/D0.32
W0.02/D0.12

W0.03/D0.19
W0.09/D0.17

W0.38/D0.22
W0.11/D0.14

W0.02/D0.09
W0.02/D0.13

W0.15/D0.17

MCTS - HE - Heuristic W0.91/D0.07
W0.29/D0.21

W0.32/D0.28
W0.74/D0.17

W0.68/D0.23
W0.44/D0.22

W0.14/D0.20
W0.13/D0.13

W0.46/D0.19

MCTS - HE - RAVE W0.54/D0.29
W0.03/D0.10

W0.06/D0.14
W0.40/D0.22

W0.09/D0.23
W0.09/D0.13

W0.00/D0.09
W0.06/D0.08

W0.16/D0.16

MCTS - HE,R W0.90/D0.08
W0.23/D0.22

W0.24/D0.35
W0.75/D0.14

W0.34/D0.22
W0.78/D0.13

W0.18/D0.16
W0.09/D0.21

W0.44/D0.19

MCTS - HE,R - Heuristic W0.94/D0.05
W0.62/D0.19

W0.66/D0.18
W0.89/D0.09

W0.66/D0.20
W0.91/D0.09

W0.66/D0.16
W0.40/D0.28

W0.72/D0.16

MCTS - HE,R - RAVE W0.97/D0.02
W0.60/D0.18

W0.47/D0.34
W0.85/D0.13

W0.74/D0.13
W0.86/D0.08

W0.70/D0.21
W0.32/D0.28

W0.69/D0.17

Figure D.5: Results for experiment Partial move, given 5000ms.

