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Abstract

Since the invention of the computer, attempts have been made to create programs, which are able to
compete against humans in games. For a long time, several variants of the Minimax algorithm dominated
the field of board games. However, the recent invention of the Monte-Carlo Tree Search (MCTS) algorithm
allowed computer players, to drastically improve their performance in some games, in which Minimax
did not perform well. This thesis tries to answers the question, how MCTS can be used to form a strong
player in the game of “EinStein würfelt nicht!”.

“EinStein würfelt nicht!” (EWN) is a board game invented by Ingo Althöfer in 2005. On a 5 × 5
board, two players try to be the first who reach the opposite corner, while movement is restricted by a die
roll performed each turn. Despite its relatively simple rules, EWN is complex enough to be researched
in the field of Artificial Intelligence

MCTS is a fairly recent best-first search algorithm that is best known for its performance in Go.
Many different enhancements have been proposed so far, from which several are examined in this thesis
for the case of EWN. It is described how MCTS has to be modified to work with the die rolls of EWN
and which approaches have been used to reduce memory consumption.

Several enhancements and combinations of them are assessed to form the strongest-possible EWN
agent. The enhancements are playout strategy, Prior Knowledge, Progressive History, MAST, Variance
Reduction and Quality-based Rewards. The most beneficial enhancements seem to be Lorentz’s (2012)
playout strategy and Prior Knowledge. The resulting agent uses the both these enhancements and is then
compared to the state-of-the-art EWN agent MeinStein. In the performed experiments, the performance
of both agents has shown to be on equal footing.
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Chapter 1

Introduction

T his chapter gives an overview over AI in games and search algorithms. It states
the problem statement and defines the research questions, which are the basis
for this master thesis.

Chapter contents: Introduction — Games and AI, Search, problem statement and research questions.

1.1 Games and AI

Games have been an important pastime for thousands of years. While there exist several games that can
be played with only one person (such as Solitaire), most games are dependent on more than one player
and cannot be played alone. This can lead to a problem if no other players are available at the moment,
which led to the idea to replace them with an artificial counterpart. An example of an early attempt
to create such an artificial player is the Turk, which gave the impression to be able to play chess fully
autonomously through complex clockwork mechanics. In fact, the Turk housed a human player instead
and the clockworks were only used by that player to move the chess figures (Schaffer, 1999).

The first real automated players have been made possible through the invention of the computer.
Since then, more and more games have been adapted for the computer and often featured also computer
players to avoid the need for human competitive players. With constantly increasing computation power
and better algorithms, these agents grew stronger throughout the last years. One major breakthrough
was the defeat of the then-incumbent world chess champion Garry Kasparov by IBM’s chess computer
Deep Blue in a six-games match in 1997 (Campbell, Hoane Jr, and Hsu, 2002).

One of the major advancements in the recent past has been the development of agents, which are able
to compete against expert-level players in Go on smaller boards. Before that, Go was one of few classic
board games that has eluded the attempts to create a strong AI player. Even now, competing against
expert-level players on the standard 19 × 19 board proves difficult (Browne et al., 2012).

1.1.1 Games with Chance

An important subdomain are games with a chance factor, such as card games or games including dice.
An example for this kind of game is Backgammon, which has also been adapted to computers. Already
in 1979, an AI agent managed to defeat the then-incumbent world champion Luigi Villa in 7 out of 8
matches. This was also the first time that a computer program was able to defeat any world champion
in any game (Tesauro, 1995).

Another game including chance is Can’t Stop, in which a player can take several turns consecutively.
However, depending on the die rolls it is possible that the progress of all these turns is lost if that mechanic
is used too often. The player constantly has to estimate if taking another turn is worth the risk of losing
all previous progress (Ren Fang, Glenn, and Kruskal, 2008).

A more recent example of a game with chance elements is “EinStein würfelt nicht!”, in which the
possible moves are influenced by a die roll. It is easy to learn but still allows for tactics and strategy,



2 Introduction

which makes it interesting for tournaments. The game is actively played on the online gaming platform
Little Golem (2015).

1.2 Search

In order to calculate the best move of a game, an agent has to examine the different possibilities and
evaluate their strength as a move. Since this evaluation is dependent on the future moves of the opponent
and the agent itself, they have to be considered as well by building a whole tree of possible future moves.
Depending on the complexity of the game, the tree can become very large and traversing every branch
can take longer than the allotted thinking time for the agent. In order to analyze such a tree, several
search algorithms have been developed, some of which are shortly presented hereafter.

The Minimax algorithm (Von Neumann and Morgenstern, 1944) first reduces the size of the tree
by limiting its maximal depth. An evaluation function then gives each leaf node an estimated value of
how good that state is for the agent. Assuming that both players are playing as strong as possible, this
information is then back-propagated by assigning each node the best value of all child nodes with respect
to the current player.

In order to reduce the number of nodes, which have to be considered by the Minimax algorithm, the
αβ-pruning algorithm (Knuth and Moore, 1975) has been introduced. It tries to reduce the number of
nodes to consider by cutting away any branches of the tree, which are proven to be strictly worse than
the best already found sibling node.

To adapt the Minimax algorithm to games with a chance element, the Expectimax algorithm (Michie,
1966) has been developed. It adds chance nodes to the tree, which represent each chance element of the
game. These chance nodes are not assigned the best value of its child nodes, but their average value
instead.

1.2.1 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) (Coulom, 2007; Kocsis and Szepesvári, 2006) is a fairly new approach
in game AI and has been described in detail in Browne et al. (2012). The basic idea of the algorithm
is to randomly play out some games and examine promising moves more closely. This is repeated for a
predefined time and the most promising move is chosen to be executed. Its major advantage over the
Minimax algorithm and its enhancements is that it does not require an evaluation function. This can be
important, because for some games such as Go (Coulom, 2007) an evaluation function can be difficult to
design. Other domains for MCTS include real-time games such as Ms. Pac-Man (Pepels et al., 2014) as
well as games with imperfect information like Scotland Yard (Nijssen and Winands, 2012).

While MCTS has been researched in depth for deterministic games, using it for games with a chance
element is a fairly new research topic and requires further investigation (Lanctot et al., 2013).

1.3 Problem Statement and Research Questions

The chance element in “EinStein würfelt nicht!” has a strong impact on the players’ decision but still
allows for tactics and strategy (Lorentz, 2012). This makes it suitable for investigating the performance
of MCTS in a game with a chance element. From that, the following problem statement can be derived:

How can we develop an MCTS agent for “EinStein würfelt nicht!”, which performs as
strong as possible and in a feasible amount of time?

This leads to the following four research questions:

1. How can MCTS be made suitable for games with chance elements?

As explained above, using MCTS for games with a chance element is an unexplored territory and
has to be investigated further. How can the die roll of EWN be incorporated into MCTS in such a
way, that it represents the game realistically?
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2. What, if any, is the benefit of Variance Reduction in the case of EWN?

The game tree branches of MCTS are not necessarily comparable directly due to the chance elements
of EWN. Variance Reduction tries to make these branches more comparable and it has to be
assessed, if this is beneficial for the game of EWN.

3. What, if any, is the benefit of playout strategies in the case if EWN?

More realistic playouts during the playout help MCTS to evaluate the branches of the game tree.
Playout strategies try to play the game more realistically and it has to be evaluated, which strategies
work the best in the case of EWN.

4. What, if any, is the benefit of Selection strategies for MCTS in the case of EWN?

MCTS needs a number of games per branch, to give a first realistic estimate of which branch is
the most promising one. Selection strategies try to guide MCTS into selecting potentially more
promising branches more often in this stage. It has to be explored, how this benefits MCTS in
EWN.

1.4 Thesis Outline

In the following, the outline of the thesis is described.

Chapter 1 gives an introduction to Games and AI and search algorithms, and “EinStein würfelt nicht!”.
This introduction then leads to the problem statement and the four research questions.
Chapter 2 describes the game “EinStein würfelt nicht!” in detail. History and background of the game
is given, followed by an explanation of the rules. Afterwards, certain strategies are discussed before the
chapter concludes with an overview of the game’s complexity.
Chapter 3 gives a description of the MCTS algorithm and explains the enhancements, which are added
to it. The chapter discusses MCTS and explains each algorithm step. Afterwards, the enhancements
playout strategy, Prior Knowledge, Progressive History, MAST, Variance Reduction and Quality-based
Rewards are explained.
Chapter 4 discusses how MCTS and each of the enhancements have been adapted for EWN. The chapter
begins with an explanation on how MCTS has been modified to work with the chance events of EWN.
Following, the structure of a node is explained. The remainder of the chapter describes how each en-
hancement introduced in Chapter 3 is used in the context of EWN.
Chapter 5 presents the experiments, which were done and analyzes their results. The experimental setup
is described, followed by experiments for tuning UCT’s C value and diminishing returns experiments.
The added benefit of the tree, when compared to Flat Monte-Carlo is also examined. Afterwards, the
enhancements described in Chapter 4 are assessed. The chapter finished with an experiment comparing
the best agent against MeinStein, a strong Expectimax based agent.
Chapter 6 gives the conclusion of the thesis and outlines possible future research. The findings of ex-
periments are concluded and the research questions and the problem statement are answered. Possible
ideas for future research are proposed and explained.
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Chapter 2

EinStein Würfelt Nicht!

T his chapter describes the game “EinStein würfelt nicht!” with all its rules and
also gives an overview over the strategies to consider when playing the game.
Finally the complexity of the game is discussed.

Chapter contents: EinStein Würfelt Nicht! — Rules, Strategies and Complexity.

2.1 Background of the Game

The game “EinStein würfelt nicht!” (EWN) is a two-player board game by Ingo Althöfer in 2005. The
name of the game means “EinStein does not roll dice”. The first word, “EinStein”, refers to Albert
Einstein but also means “one stone”, which is expressed by the capitalized letter “s”. The name also
refers to a statement of Albert Einstein, which was later abbreviated to “God does not roll dice”. In
addition, the name describes one of the rules of the game, saying that one does not have to roll dice with
only one stone/token left. The game is the official game of a German exhibition focusing on Einstein
during the Einstein Year 2005.

The game has already been researched under different aspects. Lorentz (2012) investigated the differ-
ences in performance between an MCTS agent and a pure Monte-Carlo search agent. Except for a basic
playout and selection strategy, no additional enhancements to the MCTS agent have been discussed.
Turner (2012) investigated endgame situations with up to 7 pieces left on the board and compared the
results to the moves of different EWN agents during a tournament at the 16th Computer Olympiad in
Tilburg.

2.2 Rules

EWN is a board game for two players and is played on 5 × 5 board. Each player starts with six tokens
numbered from 1 to 6. Player 1 starts in the upper-left corner and player 2 in the lower-right corner,
arranging their tokens in that corner as they like. Figure 2.1 shows a possible board position after placing
all tokens.

The goal of the game is to be the first player to reach the opposite corner with a token. Every turn is
executed by first rolling a six-sided die. Afterwards the token that has the same number as the current
die roll is moved. For the player starting in the upper-left corner, the directions down, right or diagonally
down-right are allowed, and vice versa for the other player. If that square is already occupied, the existing
token is removed from the game and replaced by the token, which has just been moved. This is even true
if the previous token belongs to the same player.

As a result, it is possible that the rolled number of the die does not have a corresponding token. In
such a case the player can choose between the next-higher or next-lower available token. If a player has
only one token left, he does not need to roll, since every result would lead to the same token. A player
automatically loses if he has no tokens left.
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Figure 2.1: EinStein würfelt nicht! board after placing all tokens

Variant: Backwards Capture
In the standard rules it is not possible to move backwards with a token. The Backwards Capture variant
of the game alters that rule by allowing a token to move backwards, if that move would capture another
token.

Variant: Black Hole
In this variant, the center square of the board is a “black hole”. In game terms this means that if a player
moves his token onto that square, it is immediately removed from the game. This makes it easier for the
players to get rid of their tokens but also blocks one of the direct paths to the goal.

2.3 Strategies

Capturing
When moving a token in “EinStein würfelt nicht!”, one of the most important questions to consider is,
whether another token should be captured or not. This highly depends on the current board position.
On the one hand, the fewer tokens a player has, the higher the probability is that he can move the
token he would like to move. On the other hand, having few tokens left increases the danger of being
completely captured by the other player and thus losing the game. For capturing tokens of the opponent,
the opposite has to be considered. Capturing these tokens increases the probability of the opponent to
move his desired token. It can still be a good move though, for example if there is a token close to the
goal, which would allow the other player to win soon.

Moving
The second important question is whether one should move directly toward the goal or take a detour.
Similarly to the capturing, this also depends on the current board state. Moving closer to the goal mini-
mizes the remaining number of moves the player has to take in order to reach the goal. On the contrary
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it can be beneficial to take a detour such that the token is harder to capture for the other player.

Considering Chances
In addition to these considerations, it is also important to notice the probability with which a specific
token will move in the next turn. For instance, if the opponent has only tokens 5 and 6 left, the proba-
bility for token 5 to move is 5

6 while for token 6 only 1
6 . If the player wants to avoid being captured, but

has to move towards one of these two tokens, it is likely better to move towards token 6, as this token
will less likely move in the opponent’s next turn.

2.4 Complexity

State-Space Complexity
The state-space complexity describes the number of possible board positions reachable from the initial
setup of the board (Allis, 1994). An upper bound for this complexity can be given by calculating each
possible board combination for all possible numbers of tokens on the board. Shannon (1950) describes
the following formula in order to calculate all possible board combinations with a fixed number of tokens:

C =
n!

(n− k)!× i1!× i2!× ...× im!

Here, n is the number of squares on the board, k is the number of tokens on the board, and ix is the
number of identical tokens (for instance the 8 pawns of the same color in chess). In EWN every token
is unique, meaning that each ix! would be 1 in the above formula and can be omitted. In order to get
all possible board combinations, the results for each number of remaining tokens have to be added up,
resulting in the following formula for EWN:

SSC ≤
12∑
k=1

25!

(25− k)!
≈ 2.68× 1015

This result contains board combinations impossible to achieve with legal moves and does not consider
symmetry, meaning that it can only give an upper bound for the state-space complexity. The results
confirm the calculations of Turner (2012).

Game-Tree Complexity
The game-tree complexity is described as the average branching factor to the average length of the
game (Allis, 1994). Self-play experiments have shown that the average branching factor including chance
outcomes for EWN is ∼16.10 and the average game length is ∼18.51. Thus, the game-tree complexity
for EWN is:

GTC = 16.1018.51 ≈ 2.18× 1022

2.5 Chanciness

In the domain of games, chanciness describes by what extend the outcome of a game is influenced by
its chance elements. Erdmann (2009) has developed a method to measure this chanciness in games and
applied that method to EWN among others. In general, chanciness is a value between 0 and 1, where 0
means that the outcome of a game only depends on the skill of the players and 1 means that the outcome
of the game only depends on chance. It has been shown that the chanciness not only depends on the
game but also on the players playing that game.

In the case of EWN, different player strengths have been simulated by using Flat Monte-Carlo agents
with various numbers of simulations. Experiments have been performed with equally strong players and
with increasingly stronger players. The results of Erdmann (2009) regarding EWN’s chanciness are shown
in Table 2.1.

The first block of results shows the chanciness if both players are equally strong. The chanciness
increases with rising strength of the players. The next two blocks of results show that chanciness decreases,
as one player becomes increasingly stronger. The chanciness is also smaller, if the stronger player is the
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first player to move. The last result shows that chanciness is rather high, if one player is stronger than
the other and the weaker player is already fairly strong. These results indicate that it could be difficult
to prove the superiority of a player, if both players perform already on a high level.

Player 1 Simulations Player 2 Simulations Chanciness

1 1 0.51 ± 0.028
8 8 0.62 ± 0.025
64 64 0.71 ± 0.022
512 512 0.84 ± 0.015

1 8 0.44 ± 0.023
1 64 0.35 ± 0.020
1 512 0.30 ± 0.017

8 1 0.43 ± 0.021
64 1 0.33 ± 0.018
512 1 0.24 ± 0.017

512 1024 0.82 ± 0.013

Table 2.1: Chanciness in EWN (Erdmann, 2009)



Chapter 3

Monte-Carlo Tree Search

T his chapter describes the Monte-Carlo Tree Search algorithm including a de-
scription of every main step as well as the UCT formula.

Chapter contents: Monte-Carlo Tree Search — Overview, Algorithm Steps and UCT

3.1 Overview

Monte-Carlo Tree Search (MCTS) (Coulom, 2007; Kocsis and Szepesvári, 2006) is a best-first search
algorithm. It combines the idea of Monte-Carlo sampling with a tree in order to enhance performance.
In basic Monte-Carlo sampling, the outcome of currently available actions is estimated by repeatedly
solving each state after a given action at random. The idea is that the higher the number of simulations
is, the higher the accuracy of the predictions is as well. In MCTS, a tree is added in order to make use
of knowledge about future events.

The nodes of this tree represent a state, while the edges represent the action, which was used in
order to reach that state from the previous state. Each node stores information about the times it was
visited as well as the cumulative score for all simulations of the node’s state and all following states.
The algorithm is split up into four steps, which are described in the following. In addition, Algorithm 1
provides a pseudo code version of the algorithm.

MCTS has been shown to perform successfully in various games. Examples for such games include
Go (Gelly et al., 2012), Amazons (Lorentz, 2008) and Hex (Arneson, Hayward, and Henderson, 2010).
Especially in Go, MCTS has marked a new era for computer players. Previously, Go was one of few classic
games in which human players outperformed computer players even on small boards. MCTS was the
first approach that was able to beat expert level human players on smaller Go boards. However, playing
against such players on the standard 19 × 19 board still proves difficult for MCTS (Browne et al., 2012).

3.2 Algorithm Steps

The following algorithm steps are based on Chaslot et al. (2008), but the expansion step was modified.
Each step is visualized in Figure 3.1. The four steps are repeated either until a certain time has passed
or until a predefined number of loops is executed.

Selection
During the selection step, a leaf node of the tree is selected. In order to do so, the algorithm starts at
the root of the tree and analyzes all children of it. Normally, the analysis assigns each child a rating
based on the number of wins and visits, but other criteria can also influence that rating. Afterwards, the
child that fits the criteria of the analysis the best is chosen and the procedure is repeated for that node.
This continues until the chosen node is a leaf node. In the end, the node, which is most suited to be
investigated more closely, is selected.
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Repeated X times

Selection Backpropagation

The selection strategy is
applied recursively until an
unknown position is reached

Expansion

New nodes are added
to the tree

Playout

One simulated 
game is played

The result of this game 
is backpropagated in 
the tree

Figure 3.1: Visual representation of the MCTS algorithm steps

Expansion
In the expansion step, the selected leaf node is expanded. In this thesis, this means, that each possible
move in the state of the selected node is added as a child to that node. In Chaslot et al. (2008), only one
node is added during this step instead.

Playout
In the playout step, one of the new children added during the expansion step is simulated until a terminal
state is reached. This can be done by randomly picking and executing one of the possible moves, but it
is also possible to give moves different weights or even use more elaborate strategies.

Backpropagation
During the backpropagation step, the result of the playout is backpropagated through the tree. Starting
from the node that has just been simulated, the visit count of the node is increased by one. The score
of the node is also updated with the playout result from the parent node’s point of view. This means
that, if in the playout Player 1 won, and it is the turn of Player 1 at the parent node, then the score of
the current node is updated by a win score. The score of a single game lies in the bounds of [0, 1]. This
procedure is repeated for each parent node until the root node is reached.

3.3 Upper Confidence Bound Applied to Trees

As described above, each node is assigned a rating in order to indicate how suited it is to be investigated
more closely. One of the most common methods to assign such a rating is Upper Confidence Bound
Applied to Trees (UCT) (Kocsis and Szepesvári, 2006). The following formula describes UCT:

UCT =
sn
vn

+ C

√
ln vp
vn

In the above formula, sn is the score of node n, vn is the number of times node n was visited, vp is the
number of times the parent node of node n was visited and C is a constant. The first part of the formula
represents how well the current node performed on average in the previous simulations. The second part
of the formula is a counterbalance for exploration. It favors less often visited nodes and as such forces
MCTS to also consider nodes, which currently have a worse score, than the sibling with the best score.
The impact of the second part can be manipulated through the constant C.

This formula does not work if a node is not visited yet, because the denominator would be 0 in this
case. This issue can be resolved by giving such nodes a default value such as 1 or ∞. In this thesis
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Algorithm 1 MCTS

1: function MCTS(Node root)
2: startT ime← currentT ime
3: while startT ime+ thinkingT ime > currentT ime do
4: currentNode← root

5: while currentNode has children do . Selection
6: bestChild← first child of currentNode
7: for all children of currentNode as child do
8: if child.calculateUCT () > bestNode.calculateUCT () then
9: bestNode← child

10: end if
11: end for
12: currentNode← bestChild
13: end while

14: currentState← game state in currentNode . Expansion
15: newChildren← create Nodes for each possible move in currentState
16: currentNode.children← newChildren

17: currentNode← one child of currentNode . Playout
18: currentState← game state in currentNode
19: while ¬currentState.gameEnded() do
20: possibleMoves← currentState.getMoves()
21: chosenMove← choose move from possibleMoves
22: currentState.executeMove(chosenMove)
23: end while
24: result← currentState.getResult()

25: while currentNode has parent do . Backpropagation
26: currentNode.visits+ +
27: currentScore← result from currentNode.parent’s point of view
28: currentNode.score← currentNode.score+ currentScore
29: currentNode← currentNode.parent
30: end while

31: end while
32: bestChild← first child of root
33: for all children of root as child do
34: if child.visits > bestChild.visits then
35: bestChild← child
36: end if
37: end for
38: return bestChild
39: end function
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however, the following modified formula is used:

UCT =
sn

vn + 10−6
+ C

√
ln vp

vn + 10−6
+ rand(0, 10−6)

This formula extends the standard UCT formula by adding a small value to the denominator of both
fractions. In the case of vn = 0, the first fraction will be 0 (as sn = 0 if vn = 0). The second fraction will
also be 0 for vp = 1 but much larger for vp > 1. This has the effect that unvisited nodes are forced to be
explored at least once. In the cases where vn > 0 the small addition to the denominator has a negligible
effect. The second modification to the formula is to add a small random number in the end. This number
has the effect that ties between two nodes with the same UCT value are resolved at random, countering
a bias introduced by the node order.

3.4 Playout Strategy

As mentioned in Section 3.2, there are different approaches for the playout step. For instance, instead
of choosing a move each turn completely at random, different moves can be assigned different weights,
based on an evaluation function. Another approach can be to use a search algorithm in the playout as
well. The goal of this approach is to increase the accuracy of the playout, which probably increases the
accuracy of the node’s rating as well, given sufficient time. However, not every playout strategy that
performs well on its own increases the performance of MCTS (Bouzy and Chaslot, 2006; Lorentz, 2012).
As a result, playout strategies have to be compared using MCTS and not on their own.

3.5 Prior Knowledge

Each time new nodes are added to the tree during the expansion step, MCTS needs several playouts
until a first estimation of these nodes is possible. Prior knowledge tries to reduce the time needed for
this first estimation by assigning each new node a predefined value depending on the move, which leads
to that node (Gelly and Silver, 2007). As predefined values, the node gets a number of visits vprior > 0
and a score sprior depending on a heuristic function, where 0 ≤ sprior ≤ vprior. These numbers are not
backpropagated but are only used to influence the selection step at the current level of the tree. Should
the heuristic estimation not match the actual strength of the current move, it will be disproven by MCTS
over time, as the proportion of the predefined values decreases with each visit of the node. The higher
the initial number v is chosen, the longer it takes MCTS to disprove an inaccurate estimation.

3.6 Progressive History

The Progressive History enhancement (Nijssen and Winands, 2011) tries to improve the performance of
the selection step. In order to do so, the number of wins and playouts are remembered independently for
each move for each player. The data for this can come from the tree as well as from the moves performed
during the playout step. Progressive history is based on the idea that a move that often leads to a win,
is likely to be a good move in the current situation as well. In order to make use of that knowledge,
Progressive History modifies the UCT formula by adding another part to it:

UCTPH =
sn
vn

+ C

√
ln vp
vn

+
sPHn
vPHn

× W

vn − sn + 1

In the above formula, the meaning of sn, vn, vp and C is identical to the one in Section 3.3. For the
new elements it holds that sPHn is the score of the move that leads to node n within the Progressive
History table, vPHn is the number of visits of the move that leads to node n within the Progressive
History table and W is the factor, with which the impact of the Progressive History can be modified.
The denominator vn− sn + 1 describes the number of losses of node n (plus 1 to avoid dividing by 0). In
this way, the influence of the Progressive History part decreases for badly performing moves.
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3.7 Move-Average Sampling Technique (MAST)

MAST (Finnsson and Björnsson, 2008) is a different approach to improve the accuracy of the playout
step. In MAST, the same information as in the Progressive History enhancement is stored. Instead of
using that information during the selection step, it is applied during the playout step. In this thesis, this
is done by using an ε-greedy approach. This means, that the best move according to the Progressive
History table will be chosen with p = 1 − ε probability. For the remaining p = ε probability, a random
move is chosen (Tak, Winands, and Bjornsson, 2012).

3.8 Variance Reduction

In trees with chance elements, different branches of the tree are not necessarily comparable because
different chance outcomes were used for each branch. Variance reduction (Veness, Lanctot, and Bowling,
2011) tries to solve this problem by reusing chance outcomes from other branches. One approach to
achieve this is to have a table of dice rolls for each level of the tree. Each time, a node is reached the
nth time, the nth entry of the table that belongs to the level of the node is used as the current chance
outcome. If it does not exist yet, it is generated and stored in the table. In a more simplified version
of this approach, only one table for all nodes of the tree is used, regardless of the node’s level (Cowling,
Powley, and Whitehouse, 2012). This means, that each time any node is visited for the nth time, the nth

entry of the table is used.
Instead of using different tables for each level of the tree, it is also possible to use a table for sequences

of chance outcomes. Here, the different branches are only distinguished at the root, meaning that each
child node of the root is a different branch. Each time one of the branches is chosen for the nth time, the
nth sequence of chance outcomes is used for the following tree traversal. As before, if an entry does not
exist yet, it is generated and stored in the table.

3.9 Quality-based Rewards

In games, it is often possible to evaluate if a player barely won or if he dominated the game. For instance
consider a chess game. A game could have ended with both players having only two pawns left, plus the
king of the winner. In such a game, it is unlikely that the winner played significantly stronger than the
opponent. However, another game could have ended with the losing player having only two pawns left.
The winner, though, only lost 3 pawns and a bishop. In such a game it is likely that the winner played
considerably stronger than the opponent.

The concept of Quality-based Rewards tries to make use of these differences (Pepels et al., 2014). If
a game during the playout step ended with a dominant player, then that playout should get a higher
weight for backpropagation. In order to do so, the Quality-based Rewards approach calculates a bonus
to the reward of a playout. This is based on the result, the average of previous results and their standard
deviation. The final reward is calculated as follows.

rb = r + sgn(r)× a× b(λq), r ∈ {−1, 0, 1}

In this formula, rb is the adjusted reward, r is the initial reward (loss, draw, win), a is a scalar, which
has to be determined empirically, and b(λq) is the bonus added to the reward. b(λq) is defined as

b(λq) = −1 +
2

1 + e−kλq

where k is a constant to be determined empirically and λq is

λq =
q − Q̄τ

σ̂τQ
, q ∈ (0, 1)

Here, q describes the quality of the playout, Q̄τ is the average of all past quality values for winning
player τ and σ̂τQ is the standard deviation of all past quality values for winning player τ .
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Chapter 4

MCTS and EinStein Würfelt Nicht!

T his chapter describes how MCTS has been adapted to work with EWN and how
the enhancements described in Chapter 3 are used in the context of EWN.

Chapter contents: MCTS and EinStein Würfelt Nicht! — Implementation Details and Enhancement Specifi-

cations

4.1 Chance

As discussed in Section 2.2, a die roll determines each turn, which tokens are available for movement.
This rule has to be addressed within MCTS as well. Each time MCTS chooses a move, the available
moves have to be limited to those corresponding to a temporary die roll. This affects the available nodes
during the selection step, as well as possible moves during the playout step. To resolve this problem,
each node has a flag for every number 1-6. During creation of the node, it is checked, which die rolls
will lead to that node, and the corresponding flag is set to true. Every time a child has to be selected,
a random number is generated, and subsequently only the children are available whose matching flag is
true. During the playout step, it is sufficient to create only the moves belonging to a random die roll
each turn.

As an example, consider a board situation in which Player 1 has tokens 1, 4 and 6 left, as shown in
Figure 4.1. When MCTS tries to access the child nodes in this situation, a random die roll is generated.
In this example, a 3 is generated. Instead of returning each child node, it is checked, which nodes are
associated with the die roll 3. In this case, the left four nodes are returned. The rightmost node is still
a child node of the current node, but is kept invisible from MCTS due to the current die roll.

Tokens left: 1, 4, 6
Current die roll: 3

Move Token 1
up

Associated die rolls:
1, 2, 3

Move Token 1
left

Associated die rolls:
1, 2, 3

Move Token 1
up-left

Associated die rolls:
1, 2, 3

Move Token 4
up

Associated die rolls:
2, 3, 4, 5

Move Token 6
left

Associated die rolls:
5, 6

Figure 4.1: Limited access to nodes depending on die roll
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4.2 Node Representation

Because of the decision to generate all possible children during the expansion step (see Section 3.2) and
the relatively short average game length of EWN, the engine generates a high number of nodes. As
computer memory is limited, the nodes had to be designed lightweight.

Necessary for MCTS are values for the number of wins and visits as well as information of the parent
node and child nodes. Instead of using an array to store references to all child nodes, a single reference
to the first child node is used. In addition, a reference to the next sibling node is stored. From this
information, a sequence of all child nodes can be reconstructed.

For the expansion step, the board state is needed as well. However, storing this information in a
node consumes a large amount of memory. Instead, only the move that led to the node is stored. With
the initial board state and the sequence of moves leading to the current one, the board state can be
reconstructed.

Finally, information about the die rolls that lead to the node is needed, as described in the previous
section. This can be achieved by representing each possible die number as a Boolean variable, signaling
whether that number will lead to the node or not. However, in Java, a Boolean variable consumes 8 Bit
of memory. To address this problem, a Byte variable is used instead. By using bit shifting operations,
this variable can function as a memory efficient representation of 8 Boolean variables. As there are only 6
possible die roll outcomes, 2 more boolean values could be stored without consuming any more memory.
These values are used to indicate if the move leading to the node is a capturing move, and which player
executed the move. While this information could be easily restored from other existing data, it is still
useful to reduce overhead. If a move is a capturing move is an information used for Progressive History
and MAST, as explained in Section 4.5. Knowing, which player executed a specific move can is relevant
on several occasions and is therefore useful to be accessed in a convenient way. Figure 4.2 gives a visual
overview of the byte variable allocation used in a node.

Player 1
Capturing 

Move
145 3 26

Die rolls

Figure 4.2: Byte variable allocation

4.3 Playout Strategy

Section 3.4 discussed the advantages of a playout strategy to improve the accuracy of the playout step.
Lorentz (2012) proposes a simple strategy, which favors capturing moves and moves that place a token
strictly closer to the goal over the remaining ones.

The idea behind this approach is, that in most cases, the direct way is favorable, as taking another
way only makes sense to evade an opponent’s token. However, this is only useful in specific situations,
which is the reason why these kind of moves receive a lower weight. Capturing moves are also favored
as they are useful in most situations, regardless of the token’s player. Having less tokens on the board
increases the probability that specific token can be moved in future turns, while capturing the opponent’s
tokens often prevents them to come too close to the goal.

This strategy is accomplished by doubling the probability of such moves to be chosen during each turn
of the playout. In addition, if one of the moves is a win in one, it is chosen regardless of its probability.
Otherwise the move is chosen with the roulette-wheel approach (cf. Powley, Whitehouse, and Cowling,
2013). First, all weights for the currently available moves are added up. Then this value is multiplied by
a random number between 0 and 1. Finally, the weight for each move is subtracted again from this value.
Once the value becomes negative, the move, which just subtracted its weight, is chosen to be executed.
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4.4 Prior Knowledge

In Section 3.5 the advantages of initializing new nodes with Prior Knowledge were discussed. Lorentz
(2012) proposes a similar strategy to the strategy presented in the previous section by favoring capturing
moves and moves leading closer to the goal. Each new node is initialized with a visit count of 100.
Depending on the nature of the move, which led to the new node, the win counter is initialized with a
different number. The standard value for a node is 40 wins. If the move brought the token closer to the
goal, a higher value is used depending on how close the token is to the goal after the move. Capturing
moves receive a value of 65. If a move fulfills both criteria, it gets the higher value and 5 bonus points.
Table 4.1 gives an overview of the values used for each possible move.

Move not leading closer to goal
Capturing Move 65

Non-Capturing Move 40
Move leading closer to goal

Non-Capturing Move Capturing Move

Distance to
goal after

move

0 100 105
1 90 95
2 75 80
3 60 70

Table 4.1: Prior Knowledge Values

4.5 Progressive History and MAST

Implementing Progressive History and MAST for EWN was accomplished by modifying the playout
and backpropagation steps. Two tables are used to store the history information: One table stores the
cumulative score for each move, the other counts how often that move has been executed. During the
playout step, each move that has been executed is remembered. After the playout is finished, the history
tables are updated for each move. A move is distinguished by were the token came from, were it went
and whether it captured another token.

To find the correct index within the tables, a number representing the move is generated. This is
done by multiplying the numbers for fromColumn, fromRow, toColumn and toRow with 1000, 100, 10 and
1 respectively. This has the effect that each of these numbers becomes a different digit in a four digit
number. In addition, 10000 is added, if the move was a capturing move. For instance, a capturing move
from square (2,4) to square (1,4) would receive the number 12414. It is not necessary to distinguish the
two players, because they cannot execute the same move, as moving backwards is not allowed in EWN.
This is not a memory efficient way to save the moves but has the advantage that the index remains
human-readable. The total size of one table is 14444 and uses ∼113KB of memory in Java. Since the
tables are static, this memory consumption is negligible on today’s computers.

The moves performed during the selection step are also taken into account by a modified backpropa-
gation step. During the traversal back to the root, it also updates the history tables for moves performed
during the selection step. The tables are always cleared at the beginning of each simulation.

To use this information for Progressive History, the modified UCT formula described in Section 3.6
is used during the selection step. For MAST, an ε-greedy approach uses the history data to choose each
move in the playout step.

4.6 Variance Reduction

Section 3.8 explained, that Variance Reduction reuses die rolls of other parts of the search tree. Two
of the proposed methods were implemented. The first method uses Variance Reduction applied to each
node individually, the second method applies Variance Reduction to the nodes of each level of the tree.
Both variants need information about how often a node has been visited, which is already an integral
part of MCTS and can be reused.
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For the first variant, an ArrayList was used to keep track of the previous die rolls. Each time a node
is accessed, it gets assigned the nth entry of the ArrayList as the current die roll, where n is the visit
counter of the node. If the ArrayList is shorter than n, a random die roll is generated and appended.

For the second variant, a two-dimensional ArrayList is used instead. The first dimension describes
the level of the node and the second dimension describes the past die rolls for that level. When a node is
accessed, the lth entry of the nth ArrayList is used, where l is the level of the node within the tree and n
is the number of visits. l can be determined by counting the number of predecessors of the node. If l is
larger than the number of ArrayLists in the first dimension, a new one is added. If n is larger than the
size of the lth ArrayList, it is expanded as described above.

4.7 Quality-based Rewards

The implementation of Quality-based Rewards for EWN needs a quality measurement of the game, as
described in Section 3.9. Counting the number of remaining tokens on the board is unlikely a suitable
quality measurement, as having fewer tokens is often favorable over having more tokens. Simultaneously,
having few tokens increases the risk of losing, if the opponent captures all remaining tokens. It is highly
depending on the board situation, if more or fewer tokens are desirable, which is the reason why this
approach is unlikely suitable as a quality measurement. Instead it is proposed to count the number
of turns, the losing player would still need at least to reach the goal. This approach gives a bonus to
playouts, in which the losing player would need several more turns to reach the goal, as this was likely
the result of a strong play.

Another possible approach is to use the game length. While Pepels et al. (2014) propose to give
particularly short games a bonus, this might be counterproductive in EWN. A short game in EWN
is often caused by a series of favorable die rolls instead of a strong play. Therefore, it is proposed to
downgrade the reward of such playouts as they are not presenting a meaningful result.

4.8 MeinStein

MeinStein (cf. Krabbenbos, 2015) is an EWN agent written by Theo van der Storm and won the 16th

Computer Olympiad in EWN (Turner, 2012). As such it is suitable as a benchmark for evaluating the
performance of the agent written for this thesis. MeinStein uses an Expectimax algorithm (Michie,
1966) with iterative deepening. The minimal depth is 6 and the maximal depth is 20. A time constraint
is also used, which might prevent MeinStein from reaching the maximal search depth. In its standard
setting, the time constraint is set to 3.5 seconds. A transposition table is used to enhance the performance.
The size of the transposition table is normally calculated dynamically based on the available memory,
but has been fixed to 4,000,000 entries for the experiments in this thesis. Table entries are only replaced
if the new entry comes from a deeper search than the already existing entry. MeinStein does not use
move ordering.

In order to test against MeinStein, it has been modified by removing all GUI elements. MeinStein
provides the ability to set the current state of the board using a modified version of the Forsyth-Edwards-
Notation (FEN) for chess. Each time it is MeinStein’s turn, the current board state is exported to that
modified FEN and then imported into MeinStein. After finishing its calculations, MeinStein returns
the move that has to be performed.

Because MeinStein uses the Expectimax algorithm, it uses an evaluation function to estimate a
certain board state. Using an ε-greedy approach, this evaluation function could also be used in the
playout step of MCTS. To use this approach, the current board state is imported into MeinStein as
described above. Afterwards, MeinStein’s Expectimax algorithm is used with a search depth of 1.
Effectively, this evaluates each possible move using the evaluation function and returns the move with
the highest estimated winning probability. At the same time, this approach ensures that the evaluation
function is used as intended.



Chapter 5

Experiment Results

T his chapter describes the setup used for the experiments and discusses the re-
sults for the performed experiments to assess MCTS and its enhancements.

Chapter contents: Experiment Results — Experimental setup and result discussion

5.1 Experimental Setup

Unless otherwise noted, each experiment has been performed with the following setup. Both agents were
given a thinking time of 1s per turn. 1000 games were performed per experiment, with sides switched
after each game to avoid first or second player bias. As a result, each agent plays 500 games as Player 1
and 500 games as Player 2. The results generally show the win ratio of Player 1 in percent and indicate
the confidence bounds for a 95% confidence level.

All agents are written in Java. The experiments have been performed using CentOS 5.11 and Java
1.7.0 40 64-Bit. The following hardware has been used.

• 2 x AMD Dual-Core Opteron F 2216, 2.4 GHz, 95 Watt (max. 2 Opteron Socket F Processors)

• 8 GB DDR2 DIMM, reg. ECC (4 DIMMs, max. 32 GB, 16 DIMMs)

• NVIDIA nForce4 2200 Professional chipset

• 2x PCI-E x8 slots via riser card (full height, half length)

• 80 GB hot-swap SATA hard drive, max. 2 hot-swap hard drives

• DVD-ROM

• Onboard dual Broadcom BCM5721 Gigabit Ethernet

• Onboard XGI Z9s VGA 32 MB DDR2 graphics

• 1 U rackmount chassis incl. mounting rails

• 500 Watt power supply

On the given setup, the agent written for this thesis performs on average ∼44000 simulations in the
first second and on the first turn of a game, when using the playout strategy and Prior Knowledge
enhancements.
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5.1.1 Starting Positions

The rules for EWN make it not entirely clear how the process of arranging the players’ tokens at the
beginning of the game takes place. Four variants are possible. First, it could be that the players place
their tokens alternating. Second, it could be that one player places all his tokens on the board and then
the second player places all his tokens on the board. Third, both players could place their tokens on the
board in secret, using a piece of paper or similarly to hide their starting position. In the last variant,
which Is used in this thesis, both players always place their starting tokens at random. This variant
ensures that no bias resulting from the starting position is introduced.

5.2 Tuning C

Within the UCT formula (see Section 3.3), C is used to balance the exploration factor. As initial value
for C,

√
2 has been chosen. In a next step, two agents with the playout strategy and Prior Knowledge

enhancements played against each other, where one player always used C =
√

2 and the other player used
a different value for C. Figure 5.1 shows the winning percentage of the player using various C values,
including standard deviation. As seen, modifying the C values does not change the performance of the
agent by much. Interestingly, even a greedy approach performs only slightly worse. This could be due to
the fact, that a small random number is added to each UCT calculation to break ties. If MCTS would
become stuck in a branch, in which it loses most of the times, the small random number will be big
enough to choose a different branch. Because the performance did not change significantly for the other
C values, the initial value of

√
2 was not changed for the other experiments.
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Figure 5.1: Experiment results: C values

5.3 Diminishing Returns

In order to determine the influence of an increased number of simulations, several experiments have
been performed. Both players used the same MCTS agent, which has been limited to a fixed number
of simulations instead of a time limit per turn. For the experiments, the number of simulations was
set to 500, 1000, 2000, 4000, 8000 and 16000. Each instance was tested against all instances with more
simulations. This experiment has been performed with three different variants of the MCTS agent.
These are the plain MCTS agent without enhancements, the MCTS agent with the Prior Knowledge
enhancement, and the MCTS agent with the Prior Knowledge and playout strategy enhancements.

Tables 5.1, 5.2 and 5.3 show the results of these experiments. The tables show the winning percentages
of the column player. Figures 5.2, 5.3 and 5.4 also give a visual representation of these results. As
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seen in Table 5.1, if there is no knowledge added to MCTS, doubling the number of simulations is not
sufficient to increase the performance noticeably. However, after quadrupling the number of simulations
and thereafter, performance increases. This experiment has been performed with 32000 simulations in
addition to the numbers mentioned before. This was done to verify that the unexpectedly high number
of wins of 8000 simulations against 16000 simulations does not denote an upcoming new trend.

In Table 5.2, Prior Knowledge was added to both agents. This led to a significant improvement in
performance for doubling the number of simulations. This may indicate that the Prior Knowledge does
indeed guide MCTS into promising nodes. As a result, the higher number of simulations is likely not
wasted on moves, which do not perform well but have to be disproven. For Table 5.3, the playout strategy
was added in addition to the Prior Knowledge. The results do not differ significantly from Table 5.2. In
both tables, the effect on the performance decreases, the more simulations are used. Finally, doubling
from 8000 to 16000 simulations does not seem to influence the performance anymore, as it is expected
by the law of the diminishing returns (Heinz, 2001; Robilliard, Fonlupt, and Teytaud, 2014).

1000 2000 4000 8000 16000 32000
500 50.8 55.1 55.4 59.8 60.6 63.9
1000 50.2 51.4 56.4 57.3 62.2
2000 51.0 53.2 54.8 64.1
4000 50.1 53.7 61.4
8000 55.0 53.1
16000 51.0

Table 5.1: Diminishing return results without enhancements
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Figure 5.2: Visual representation of Table 5.1
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1000 2000 4000 8000 16000
500 61.4 65.5 69.5 69.2 71.8
1000 57.5 62.3 64.7 65.3
2000 54.1 58.5 60.7
4000 52.6 59.4
8000 49.5

Table 5.2: Diminishing return results with prior
knowledge enhancement

1000 2000 4000 8000 16000
500 59.3 63.9 68.8 68.5 70.1
1000 57.2 61.4 62.5 63.3
2000 50.8 54.7 59.7
4000 54.1 53.7
8000 47.9

Table 5.3: Diminishing return results with Prior
Knowledge and playout strategy enhancements
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Figure 5.3: Visual representation of Table 5.2

5.4 Flat Monte-Carlo

In this section, two experiments were performed to evaluate the added benefit of the tree when compared
to Flat Monte-Carlo. In the first experiment, both agents used no enhancements. In the second experi-
ment, the playout strategy and Prior Knowledge enhancements were added to MCTS. Prior Knowledge
has not been added to the Flat Monte-Carlo agent, since it will not have much influence because it
initializes the nodes with 100 visits, while each node will be visited several thousand times. The results
of these experiments can be found in Table 5.4. As expected, MCTS performs significantly better than
Flat Monte-Carlo when using no enhancements. With enhancements, the difference is even higher. This
indicates, that the added domain knowledge does help MCTS to assess the different branches of the tree
more effectively. Similar results were shown by Lorentz (2012), where MCTS competed against Flat
Monte-Carlo with 30 seconds of thinking time.
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Figure 5.4: Visual representation of Table 5.3

Player 1 Player 2 Wins Player 1 (%)
MCTS
No enhancements

Flat Monte-Carlo
No enhancements

58.0 ± 3.1

MCTS
+ Playout strategy
+ Prior Knowledge

Flat Monte-Carlo
+ Playout strategy

62.6 ± 3.0

Table 5.4: Experiment results: MCTS vs. Flat Monte-Carlo
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5.5 Playout Strategy and Prior Knowledge

The experiments in this section try to determine the influence of the playout strategy and Prior Knowl-
edge implementation proposed by Lorentz (2012). In order to do so, four experiments were performed
as shown in Table 5.5. The first two rows show, how the playout strategy and Prior Knowledge en-
hancements compare to a MCTS agent without any enhancements. As seen, both enhancements improve
the performance of the agent significantly with the playout strategy performing a bit better than Prior
Knowledge.

In a second step, the influence of the combination of both enhancements has been tested against the
two enhancements alone. These results show that adding additional domain knowledge does not improve
the performance as much, if other domain knowledge is already available. In the case of combining Prior
Knowledge with the playout strategy, the confidence bounds do not give hard empirical evidence that the
combination performs better than only the slayout strategy. However, the combination performs slightly
better than only Prior Knowledge. These results indicate again that the playout strategy has a slightly
larger impact on performance than Prior Knowledge.

Player 1 Player 2 Wins Player 1 (%)
Playout strategy No enhancement 61.1 ± 3.0
Prior Knowledge No enhancement 58.5 ± 3.1
Playout strategy + Prior Knowledge Playout strategy 52.3 ± 3.1
Playout strategy + Prior Knowledge Prior Knowledge 53.8 ± 3.1

Table 5.5: Experiment results: Playout strategy and Prior Knowledge in MCTS

5.6 Progressive History and MAST

In this section, the influence of using history data in the selection and playout steps is examined. At first,
a series of experiments has been performed to find a suitable value for the W constant of the modified
UCT formula in Progressive History. As initial value for W , 1 has been chosen. Afterwards two agents
with the Progressive History enhancements, one with W = 1 and one with another value for W were
tested against each other. The results for these experiments are shown in Figure 5.5. As can be seen, no
significant difference can be observed for these different values, so the initial value of 1 has remained for
further experiments.

Five experiments were performed to determine how Progressive History increase the performance of
MCTS in EWN. Three experiments with different ε values have been performed to do the same for
MAST. Table 5.6 shows the results of these experiments.

As seen, an agent using Progressive History performs slightly stronger than an agent without any
enhancements. In the next step, it has been examined how Progressive History relates to the Prior
Knowledge enhancement. It can be seen that the combination of Prior Knowledge and Progressive History
performs significantly stronger than Progressive History alone. However, when compared to the Prior
Knowledge enhancement, no significant enhancement can be observed for combining both approaches.
These three experiments indicate, that Progressive History gives an improvement in performance when
used solitary, but does not add to the performance of Prior Knowledge.

Prior knowledge however does add to the performance of Progressive History. From this, it can be
assumed that the initialization of nodes by the Prior Knowledge enhancement already influences the
selection in a similar way as Progressive History. Prior Knowledge has the advantage that it works
without any previous simulations. This might explain why it adds to the performance of Progressive
History, which needs several simulations before its tables show meaningful statistics. To confirm this
assumption, it has also been tested, how Progressive History compares to Prior Knowledge. The result
shows that Prior Knowledge performs slightly worse than Progressive History, which supports the previous
assumption.

Another approach that has been tested is the combination of Progressive History and the playout
strategy enhancement. As before, there seems to be no difference in the agents’ performance when
comparing Progressive History to no Progressive History.
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Figure 5.5: Experiment results: W values

The last performed experiments compare an agent with the MAST enhancement to an agent with no
enhancements. As MAST was implemented using an ε-greedy approach, three different values have been
tried out for ε. The results show no improvement in performance, independently from the chosen value
for ε. This indicates that this approach does not work in the context of EWN. The reason for this might
lie within the relatively small number of possible moves in the game and in the high simulation number.
The moves might be not distinctive enough for MAST to recognize meaningful differences. In EWN, it
is hard to find a move that is a bad move in most situations. The strength of a move is very dependent
on the current board situation. Also the table could be saturated due to the high simulation number.

Player 1 Player 2 Wins Player 1 (%)
Progressive History No enhancement 54.7 ± 3.1
Prior Knowledge + Progressive History Progressive History 58.0 ± 3.1
Prior Knowledge + Progressive History Prior Knowledge 51.3 ± 3.1
Progressive History Prior Knowledge 46.9 ± 3.1
Playout strategy + Progressive History Playout strategy 49.6 ± 3.1
MAST ε = 0

No enhancement
49.4 ± 3.1

MAST ε = 0.05 49.5 ± 3.1
MAST ε = 0.1 49.7 ± 3.1

Table 5.6: Experiment results: Progressive History and MAST in MCTS

5.7 Variance Reduction

This section discusses the results regarding the Variance Reduction experiments. Two different versions
of Variance Reduction have been tested. The first version applies Variance Reduction to each node on the
same level, the second version applies Variance Reduction to each node of the tree. These versions are
referenced as Variance Reduction per level and Variance Reduction per node respectively. The experiment
results can be found in Table 5.7.

At first, both versions have been tested against an agent with no enhancements and thinking time of
1s. The results for this experiment were not distinct at first, which is why the number of experiments has
been raised to 10000 in this case. As seen, both versions of Variance Reduction do not seem to improve the
performance of MCTS. In the next step, Variance Reduction has been added to an agent with the Prior
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Knowledge and playout strategy enhancements and tested against an agent without Variance Reduction.
This experiment has been performed to find out if Variance Reduction interacts positively with domain
knowledge. Again, the results show no significant change in the performance of MCTS. The last step
consisted of an experiment in which both agents haven been limited to 100 simulations per turn. This
experiment has been performed to find out, if a high number of simulations reduce the influence of
Variance Reduction. As with the previous results, there is no noticeable improvement in performance
due to Variance Reduction.

The reason for these results might be explained with the nature of EWN. The upper levels of the
search tree are visited numerous times. This has the effect that on average, each branch already used
each die roll equally often. In this case, Variance Reduction is not needed to compare different branches
of the tree meaningfully. In the lower levels of the search tree, the effect of Variance Reduction should
increase, as these branches have been visited only few times. However, in the lower levels of tree, the
game also progressed further. In the case of EWN, this means that most likely, several tokens have been
already removed from the game. This results in a decreased influence of the die rolls, which subsequently
decreases the importance of Variance Reduction.

Player 1 Player 2
Thinking time/
simulation limit

Wins Player 1 (%)

Variance Reduction per level No enhancement 1s 50.8 ± 1.0
Variance Reduction per node No enhancement 1s 50.4 ± 1.0
Variance Reduction per level
+ Prior Knowledge
+ Playout strategy

Prior Knowledge
+ Playout strategy

1s 47.3 ± 3.1

Variance Reduction per node
+ Prior Knowledge
+ Playout strategy

Prior Knowledge
+ Playout strategy

1s 50.2 ± 3.1

Variance Reduction per level
+ Prior Knowledge
+ Playout strategy

Prior Knowledge
+ Playout strategy

100 simulations 48.0 ± 3.1

Variance Reduction per node
+ Prior Knowledge
+ Playout strategy

Prior Knowledge
+ Playout strategy

100 simulations 48.8 ± 3.1

Table 5.7: Experiment results: Variance Reduction in MCTS

5.8 Quality-based Rewards

This section’s experiments have been performed to assess the performance of Quality-based Rewards.
Both agents are using the playout strategy enhancement to make the playouts resemble real games more
closely. This should help the Quality-based Reward enhancement to identify exceptional playouts. Three
approaches have been used to give bonus rewards. The first approach counts the minimal number of
turns, the losing player needs to reach the goal. The second and third approach uses the total game
length of every playout, where the second approach rewards below-average long games and the third
approach rewards above-average long games.

The results for all three experiments show no significant change in performance when adding Quality-
based Rewards. The reason for this could lie within the nature of the game EWN. Figures 5.6 shows
the distribution of the game length. 5.7 shows the number of turns the losing player would still have
to reach the goal. Both figures also give the average value and standard deviation. As seen, the game
length rarely deviates more than 3 turns from the standard deviation. For the number of the turns left
the losing player would need to reach the goal, almost all playouts lie within the standard deviation. It
is possible that there is not sufficient variety in these values for Quality-based Rewards to take effect.
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Player 1 Player 2 Wins Player 1 (%)
Quality-based reward
for many turns left
+ Playout strategy

Playout strategy 49.5 ± 3.1

Quality-based reward
for small game length
+ Playout strategy

Playout strategy 50.2 ± 3.1

Quality-based reward
for large game length
+ Playout strategy

Playout strategy 49.9 ± 3.1

Table 5.8: Experiment results: Quality-based Rewards in MCTS
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5.9 MeinStein’s Evaluation Function for Playouts

The experiments in this section are aimed towards evaluating MeinStein’s evaluation function used
in the playout step in an ε-greedy way. The value for ε has been chosen to be 0.05. The results of
these experiments can be found in Table 5.9. The results show, that the evaluation function increases
the performance of MCTS when compared to no enhancements. When compared against an agent with
the playout strategy enhancement, no significant difference in performance can be observed, indicating
that the playout strategy and MeinStein’s evaluation function often choose the same move during
the playouts. When Prior Knowledge is added to both agents, no difference can be observed between
MeinStein’s evaluation function and the playout strategy.

It has also been examined how much the playout enhancements influence the simulation number of
the agent. Table 5.10 shows the average number of simulations in the first second and on the first turn
of a game. The results show that the playout strategy has only a small influence on the simulation num-
ber, reducing it by 7.5%. MeinStein’s evaluation function however reduces the number of simulations
drastically, by 85%. This indicates that the evaluation function is well suited to estimate the strength of
certain moves. This can be seen from the fact that the agent with the playout strategy and the agent with
MeinStein’s evaluation function perform equally even though the agent with the evaluation function
has much fewer simulations.

Player 1 Player 2 Wins Player 1 (%)
MeinStein Evaluation Function No enhancement 53.3 ± 3.1
MeinStein Evaluation Function Playout strategy 53.0 ± 3.1
Prior Knowledge +
MeinStein Evaluation Function

Playout strategy + Prior Knowledge 49.1 ± 3.1

Table 5.9: Experiment results: MeinStein’s Evaluation Function

Enhancement Number of Simulations Decrease (%)
No enhancement 51942 0
Playout strategy 47808 7.5
MeinStein Evaluation Function 7837 85

Table 5.10: Number of Simulations for different enhancements, first second, first turn

5.10 MeinStein

In this section, MeinStein is tested against the strongest version of the agent written for this thesis.
That agent uses the Prior Knowledge and playout strategy enhancements. The experiments have been
performed with thinking times of 1, 3.5 and 5 seconds for both sides. Table 5.11 shows the results of
these experiments. The results show, that the agent written for this thesis can compete with MeinStein.
Different thinking times do not seem to influence this result significantly. For MeinStein, the reason
for that probably lies within the search depth, which is reached in the given time limit. For the first
turn, the reached search depth is 8 for 1s and 3.5s. For 5s, the search depth is also 8.3 on average. This
means, that in most cases, MeinStein is not able to benefit from the additional thinking time. The
MCTS agent is maybe not able to perform better with higher thinking times because of the law of the
diminishing returns.

In a second step, experiments were performed to assess, how the two aforementioned enhancements
influence the performance when compared to MeinStein. The experiment results show, that both
enhancements significantly improve the performance of the MCTS agent. This shows, that these en-
hancements do not only work when used in self-play, but also against entirely independent agents.
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Player 1 Player 2 Thinking Time Wins Player 1 (%)

MeinStein

Prior Knowledge
+ Playout strategy

1s 47.8 ± 3.1
3.5s 49.3 ± 3.1
5s 49.9 ± 3.1

No enhancement
1s

57.5 ± 3.1
Playout strategy 50.5 ± 3.1
Prior Knowledge 53.2 ± 3.1

Table 5.11: Experiment results: MeinStein vs. MCTS

5.11 Discussion

This section gives discussion of all previous experiments. It has been determined that it is difficult to find
enhancements for MCTS, which significantly improve its performance in EWN. The only enhancements
that are proven to work for EWN are the Prior Knowledge and playout strategy enhancements introduced
by Lorentz (2012). Other enhancements like Variance Reduction or MAST do not seem to influence the
performance of MCTS significantly. Only Progressive History shows a significant improvement of this
performance when used in isolation. Once combined with either of the domain knowledge enhancements,
this improvement cannot be observed anymore.

The reason for these results is likely to lie within the high chanciness of the game, as discussed in
Section 2.5. As mentioned there, once both players play reasonably strong, the outcome of the game
is primarily influenced by chance and not the players’ skill (Erdmann, 2009). This means that if a
player would play much stronger than the opponent, he would probably still win only a few more games.
Assuming, a player would win on average 51% of all games, 27000 matches would be needed to be 95%
certain that the stronger player actually won the majority of the matches. With 6700 games, it is only
50% certain that the stronger player actually won more games (Turner, 2012). Summarizing, this means
that it might be that some of the enhancements tested previously are actually working, but many more
games would be needed to prove that. Still, the playout strategy and Prior Knowledge enhancements
show that some enhancements can increase significantly the performance of MCTS in EWN.
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Chapter 6

Conclusion and Future Research

T his chapter gives a summary to this thesis and answers the problem statement
and research questions from Chapter 1. Afterwards, ideas for future research
within this topic are discussed.

Chapter contents: Conclusion, Answer of Research Questions and Problem Statement, and Future Research

6.1 Summary

An MCTS Agent for EinStein würfelt nicht! tried to find out, how MCTS can be adapted to work in
game with chance events such as EWN, and which enhancements can be used to improve its performance.
Therefore, an introduction of the general topic was given, describing the influence of computer players
in games in the past. Different search techniques were introduced before the problem statement and
research questions have been formulated.

In the next chapter, the history and rules of EWN have been explained. The distinct features of the
game were given, including a description of strategies to consider when playing the game. The upper
bound for the state-space complexity of the game has been shown to be ∼ 2.68× 1015 and the game-tree
complexity has been shown to be ∼ 2.18× 1022. The chanciness of the game was introduced and it has
been concluded that the difference in performance of two strong players can be difficult to prove.

The third chapter has given a detailed overview of the MCTS algorithm. The chapter started with
introducing MCTS with its history and some of its accomplishments. Next, each algorithm step and
the UCT formula have been described. The rest of that chapter explained the concepts of various
enhancements to MCTS, including the playout strategy, Prior Knowledge and Variance Reduction.

The next chapter focused on how MCTS and its enhancements have been adapted for EWN. At first,
it has been described how MCTS was modified to properly handle the die rolls of EWN. After that, the
structure of a single node has been discussed and it has been explained how the node has been designed
to be memory efficient. Afterwards, the specific adaptation of the different enhancements was described.
The chapter ends with the introduction of MeinStein, and how it can be used to design a playout
strategy.

Chapter 5 was used to give the results of various experiments and explains there meaning. The chapter
begins with a description of the experimental setup, providing hardware and software specifications.
Next, is has been shown, that the exploration factor of the UCT formula has a smaller impact on the
performance than expected, concluding that values between 1 and 2 all lead to relatively equal results.

Afterwards, the results of several experiments regarding diminishing returns have been discussed. The
experiments showed that with more domain knowledge, higher simulation numbers are more beneficial.
As expected, at some point the law of the diminishing returns has been observed.

The next experiments have proven that MCTS outperforms Flat Monte-Carlo. It was shown that
this effect increases when domain knowledge is added. The effect of domain knowledge has also been
proven in the following section, were it was shown that both the playout strategy and Prior Knowledge
enhancements work for EWN.
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In the following experiments, it has been shown that Progressive History can improve the performance
of MCTS when used in isolation, but does not show noticeable improvements when used in combination
with domain knowledge. The second enhancement using history knowledge, MAST, has been proven to
not alter the performance of MCTS.

Variance reduction was then examined in the next section. Various experiments have shown that
Variance Reduction does not work in the case of EWN, which was explained by the nature of the game.
Similar results have been described for the Quality-based Rewards enhancement. It has been shown
that the board configuration at the end of the game and the game length are not feasible as quality
measurements.

In the last part of Chapter 5, MeinStein’s evaluation function has been assessed as a playout strategy
and MeinStein was used as a benchmark for the agent written for this thesis. It has been shown that
MeinStein’s evaluation function slightly improves the performance of an agent without other enhance-
ments but does not outperform an agent with the playout strategy. It has been shown that the agent
written for this thesis performs similar to MeinStein for various time constraints.

In the end, it can be concluded that a combination of the playout strategy and Prior Knowledge
enhancements works best for EWN. Some other enhancements work only when used in isolation but there
effect diminishes when tried to combine with the aforementioned enhancements. A likely explanation
for this lies within the high chanciness as described in Section 2.5. Using both domain knowledge
enhancements, the agent already performs strong enough that a subtle increase in performance due
to other enhancements is lost to the high chanciness.

6.2 Answering the Research Questions

This section will answer the research questions of this thesis, as given in Section 1.3.

How can MCTS be made suitable for games with chance elements?
In the case of EWN, the chance element was a die roll. To incorporate this die roll into MCTS, the nodes
have to be expanded such that they can indicate if a certain die roll would lead to them. The selection
step also has to be modified. Before a child is selected, a random die roll is generated. When choosing a
child node, only the children are considered, which are fitting the previously made die roll.

What, if any, is the benefit of Variance Reduction in the case of EWN?
In the case of EWN, Variance Reduction does not seem to be beneficial for an MCTS agent. In EWN, the
importance of the die roll decreases with the game’s progression. At the beginning of the game, where
the die roll is still important, Variance Reduction has no benefit because a higher number of simulations
already makes the branches comparable.

What, if any, is the benefit of playout strategies in the case if EWN?
Playout strategies have proven to be the most beneficial for MCTS and EWN. In every performed exper-
iment using the proposed playout stratgegy of Lorentz (2012), it significantly improved the performance
of the agent independently from other used enhancements. However, other playout related enhancements
such as MAST or MeinStein’s evaluation function do not seem to give a further improvement.

What, if any, is the benefit of Selection strategies for MCTS in the case of EWN?
For Selection strategies, Progressive History has shown that it can improve the performance of MCTS
in EWN when used in isolation. However, when added to an agent with domain knowledge, no signif-
icant improvement was observed. Prior Knowledge initialization as introduced by Lorentz (2012) has
been shown to enhance the performance of MCTS in combination with all other tested enhancements.
Quality-based Rewards do not seem to influence the agent’s performance in EWN.
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6.3 Answering the Problem Statement

In this section, the problem statement from Section 1.3 is answered.

How can we develop an MCTS agent for “EinStein würfelt nicht!”, which performs as strong as possible
and in a feasible amount of time?
Developing an MCTS agent for EWN consisted of two parts. First, MCTS had to be adapted to work
with EWN. This was done by modifying MCTS to work with die rolls and optimizing it to be memory and
computational efficient. The second step consisted of implementing various enhancements and assessing
their performance. The enhancements, which significantly improved the agent’s performance, were the
playout strategy and Prior Knowledge enhancements. Both have been added to form the strongest
possible agent based on the experimental findings. Benchmarking that agent against the state-of-the-art
EWN agent MeinStein has proven that MCTS can compete with established Minimax algorithms in
EWN.

6.4 Future Research

In this section, ideas for future research are proposed. While the topic was researched in depth, there are
still research opportunities available.

As noted previously, the high chanciness of EWN makes it difficult to recognize, if one player is
superior to the other player. It is possible, that some of the discussed enhancements actually give a
small advantage so it could be beneficial to run all experiments more often to discover such advantages.
Especially Progressive history could be interesting to test more extensively, as it actually improved the
agent’s performance when compared to no enhancements.

It is also possible that some enhancements only work with higher thinking times. It could also be
reassessed how this affects the performance of the agent against MeinStein, as it is possible that MCTS
and Expectimax react differently to higher thinking times.

Another possible idea for future research is to tweak more of the values used in the various enhance-
ments. Reasonable approaches would be to tune the values for the playout strategy and Prior Knowledge
enhancements, as these enhancements are the most promising ones, but the W value for the Progressive
History enhancement would also be a good choice, as that enhancement seemed to increase performance
to some extent, as mentioned above.

There are also some variants of the game with minor rule changes. On Little Golem (2015) there
is a variant introduced, in which moving backwards is allowed for capturing. Another variant on Little
Golem forces the players to remove any token that was moved to the center square of the board. It could
be interesting to see, how these rule changes affect MCTS and its enhancements.

There is also a variant on a 6 × 6 board with 10 tokens (2-12, without 7), where two six-sided dice
are rolled per turn. In this variant, the starting positions could be far more important, as some tokens
(such as token 6) have a higher probability of being moved due to the normal distribution of the two die
rolls.
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