

 VOORBEELD

Learning to Play as a Team

Designing an Adaptive Mechanism for
Team-Oriented Artificial Intelligence

Sander Bakkes

Master’s Thesis CS 03-04

Thesis submitted in partial fulfilment
of the requirements for the degree of

Master of Science of Knowledge Engineering
in the Faculty of General Sciences

of the Universiteit Maastricht

Thesis committee:
Prof. dr. H.J. van den Herik

Prof. dr. E.O. Postma
Ir. P.H.M. Spronck

Drs. H.H.L.M. Donkers

Universiteit Maastricht
Institute for Knowledge and Agent Technology

Department of Computer Science
Maastricht, The Netherlands

November 2003

“If Pacman had affected us as kids we'd be running around in dark
rooms, munching pills and listening to repetitive music.”

Marcus Brigstocke, British comedian

Contents

Preface 4

1 Introduction 5
1.1 The evolution of commercial computer-game AI 5
1.2 Research background . 7
1.3 Problem Statement and Research Question 7
1.4 Thesis overview . 8

2 AI in commercial computer games 9
2.1 Adaptive behaviour in commercial computer games 9
2.2 Team AI in commercial computer games 10

2.2.1 Means of communication 11
2.2.2 Team organisation . 12

2.3 Adaptive team AI in a typical commercial computer game 13
2.4 Summary . 16

3 The TEAM artificial intelligence adaptation mechanism 17
3.1 Evolutionary algorithms . 17
3.2 Synopsis of TEAM . 18
3.3 Approaches for team-oriented adaptation 19
3.4 Design of the team-oriented evolutionary algorithm 20

3.4.1 Representation . 21
3.4.2 Population . 22
3.4.3 Parent selection mechanism 23
3.4.4 Evaluation function . 23
3.4.5 Variation operators . 26
3.4.6 Survivor selection . 26

3.5 Fail-safe considerations . 27
3.5.1 Fitness-recalculation mechanism 27
3.5.2 History fall-back concept 28

3.6 Implementation of TEAM . 29
3.7 Summary . 30

1

4 Experiments 31
4.1 Evaluation of an experimental run 31
4.2 TEAM vs. Static team AI . 32

4.2.1 Experimental setup . 32
4.2.2 Results . 33
4.2.3 Conclusion of the results 34

4.3 TEAM vs. Quake III team AI . 37
4.3.1 Experimental setup . 37
4.3.2 Results . 37
4.3.3 Conclusion of the results 39

4.4 Summary . 39

5 Discussion 41
5.1 Qualitative evaluation of TEAM 41
5.2 Learned behaviour . 42
5.3 Forgetting tactics . 43
5.4 AI and entertainment . 44

6 Conclusions and future research 46
6.1 Answer to the Research Question 46
6.2 Answer to the Problem Statement 47
6.3 Recommendations for Future Research 48

References 49

Appendices

A Experimental results
TEAM vs Static Opponent 55
A.1 Experimental run #0 (Long run) 56
A.2 Experimental run #1 . 57
A.3 Experimental run #2 . 58
A.4 Experimental run #3 . 59
A.5 Experimental run #4 . 60
A.6 Experimental run #5 . 61

B Experimental results
TEAM vs Original Quake III Opponent 62
B.1 Experimental run #1 . 63
B.2 Experimental run #2 . 64
B.3 Experimental run #3 . 65
B.4 Experimental run #4 . 66
B.5 Experimental run #5 . 67
B.6 Experimental run #6 . 68
B.7 Experimental run #7 . 69
B.8 Experimental run #8 . 70
B.9 Experimental run #9 . 71

2

B.10 Experimental run #10 . 72
B.11 Experimental run #11 . 73
B.12 Experimental run #12 . 74
B.13 Experimental run #13 . 75
B.14 Experimental run #14 . 76
B.15 Experimental run #15 . 77

C Forgetting tactics 78

Summary 80

3

Preface

There is a theory which states that the most powerful problem-solver in the
universe is the human brain, that created “the wheel, New York, wars and so
on” (after Douglas Adams [1]). There is another theory which states that the
most powerful-problem solver in the universe is the evolutionary mechanism,
that created the human brain (after Charles Darwin [11]).
For centuries on end, mankind marvelled its self-proclaimed intelligence, but

at present we have not even managed to create an artificial entity with the in-
tellectual capabilities of an ant. For instance, ever since the creation of the first
team-oriented commercial computer games, the artificial intelligence of game
opponents lacked adaptive capabilities, e.g., the ability to learn from mistakes.
A mechanism suitable for adaptive behaviour in team-oriented commercial com-
puter games does not exist.
This thesis discusses the design of the Tactics Evolutionary Adaptability

Mechanism (TEAM), an evolutionary inspired mechanism for adaptive team-
oriented artificial intelligence. We expect researching the topic of adaptation
in artificial environments to be beneficial to the study and application of ar-
tificial intelligence techniques in general, and machine-learning techniques in
commercial computer games in particular.
I would like to thank the Institute for Knowledge and Agent Technology

(IKAT) in Maastricht for allowing me to pursue my interest in the field of
artificial intelligence and granting me the freedom to fill in the master’s thesis
research as I deemed fit. My special gratitude goes out to my coach, Pieter
Spronck, for his support, dedication and being a constant source of inspiration.
Outside the academia, living in Maastricht offered many beautiful and event-

ful days, and I consider myself lucky for sharing them with dear friends.
Finally, I would like to express my immeasurable appreciation to my parents

for their unconditional devotion, support and faith.

Sander Bakkes
Maastricht, November 2003

4

Chapter 1

Introduction

Freely adapted from Arthur C. Clarke [9], one could claim that through the
advancement of artificial intelligence (AI) any sufficiently advanced creation
will be indistinguishable from a human being. However, observing current robots
being unable to find their way in a sparsely furnished room, pats convincing AI in
the far future, if it is achievable at all. According to Darwinistic beliefs, mankind
itself once was as undeveloped as these artificial creations, and yet, humanity
advanced. According to Tim Robbins [36], humanity advanced ‘not because it has
been sober, responsible, and cautious, but because it has been playful, rebellious,
and immature’.
With this element of playfulness in mind, this chapter presents the back-

ground of the thesis. In section 1.1 the subject of the thesis is introduced in
a historical perspective. Section 1.2 discusses the background of the thesis’ re-
search and section 1.3 discusses the research objectives. An outline of the thesis
is given in section 1.4.

1.1 The evolution of commercial computer-game
AI

The designers of ‘ancient’ commercial computer games already acknowledged the
need for computer-controlled opponents to show pseudo-intelligent behaviour.
From an entertainment point of view there was no need for this behaviour to
be comparable to human intelligence. Yet, one way or the other the computer-
controlled opponents should be intelligent enough to entertain the person that
is playing the game.
A classic example of entertaining AI in commercial computer games, is the

game Pacman (illustrated in figure 1.1). This game implements a rudimentary
form of AI that ensures entertaining gameplay. The opponents of the game
Pacman moved randomly through the environment with an increasing speed.
However, there are many facets of the AI in Pacman that can be improved. In
an improved approach the opponents would, for instance, conspire against the

5

Figure 1.1: Screenshot of the game Pacman.

human player in a massive organised manhunt. Such an improvement would
certainly be challenging, perhaps even too difficult. Therefore, the designers of
commercial computer games seek a balance between on the one hand improved
AI and on the other hand entertainment.
Nowadays, the digital entertainment industry is continuously striving for re-

alistic and stunning audio-visual presentation. Unfortunately, the incorporation
of artificial intelligence does not yet get the attention it deserves. Artificial intel-
ligence is one of the elements of so-called ‘gameplay’, which comprises everything
but the visual and auditory presentation of the game. A game needs interesting
gameplay to keep the player interested when after the first few minutes of play
the initial amazement fades away. Therefore, the element of gameplay should re-
ceive considerable attention from the developers. However, even in high-profile
games, such as the recently released first person shooter Epic’s UNREAL II,
designers often focus on the presentation of the game, and refrain from design-
ing an exceptional gameplay. In recent years, game reviewers have critically
examined the artificial intelligence of commercial computer games in addition
to sound, graphics and gameplay issues. More and more they emphasise the
need of improved artificial intelligence in commercial computer games.
To fulfil the need of improved artificial intelligence, our research discusses a

step towards adaptation of opponent behaviour capable of exceeding the limita-
tions of its designer’s vision by, for instance, generating new unforeseen tactics
and intelligently adapting to the human player in order to create a more chal-
lenging experience.

6

1.2 Research background
The research background of this thesis is artificial intelligence in commercial
computer games. Regarding the research background, we discuss two observa-
tions: the inferior artificial intelligence in current commercial computer games
in general, and the lack of adaptive team AI in commercial computer games in
particular.
First, in recent years the opponents in commercial computer games respond

to their environment in an increasingly intelligent way. Commonly, the artificial
intelligence of commercial computer-game opponents is based on non-adaptive
techniques [44]. Non-adaptive artificial intelligence has a major disadvantage:
once a weakness in the artificial intelligence is discovered, nothing stops the
human player from taking advantage of the discovery. The disadvantage can
be resolved by letting commercial computer-game opponents behave adaptively,
e.g., learn from their mistakes. Adaptive behaviour can be achieved by using
machine-learning techniques. Examples of machine-learning techniques are arti-
ficial neural networks [27] and evolutionary algorithms [16]. In future-generation
games, machine-learning techniques can be used to improve the artificial intel-
ligence of computer-game opponents.
Second, the organisation and interaction of computer-game opponents in

team-oriented games is a challenge for artificial-intelligence research. This so-
called ‘team AI’ is not entertaining in the current generation of games, with
regard to the preference of human players to play against other humans over
playing against artificial opponents [35]. A human team is easily able to achieve
excellent results against a team of computer controlled opponents. Currently,
the team AI in commercial computer games lacks adaptive behaviour. We focus
the research on investigating how to improve team AI by using machine-learning
techniques. The evolutionary algorithms machine-learning technique is used as
main inspiration, since we expect it to be suitable for our purpose. This ex-
pectation is, for a large part, based on the impressive results that evolution-
ary algorithms have shown in the field of robot soccer [29] and coevolutionary
games [12]. Nowadays, the behaviour of opponents in commercial team-oriented
computer-games is at best a superficial attempt to convince an observer of their
intelligence. In practice the artificial intelligence of commercial computer-game
opponents is not as developed as one would wish. In future games we envi-
sion artificial intelligence that is capable of adaptive behaviour that resembles
intellectual capabilities of human intelligence. To ultimately teach artificial cre-
ations how they can learn is strived for. This thesis presents one step into this
direction.

1.3 Problem Statement and Research Question
As stated above, the background of our research is artificial intelligence in com-
mercial computer games. We observed that current commercial computer-game
opponents are endowed with inferior team-oriented behaviour. The observation

7

has led us to the following problem statement.

Problem statement: Is it possible to improve the performance
of opponents in state-of-the-art commercial computer games, with
regard to their team-oriented behaviour?

As stated in section 1.2, one reason for the inferiority of team-oriented be-
haviour in commercial computer games is that it lacks adaptive team AI.
We aim at creating adaptive team AI capable of exceeding the limitations

of its designer’s vision by unsupervised and intelligent adaptation to the envi-
ronment.
An approach to deal with this aim is to create a mechanism which imposes

adaptive team AI on commercial computer-game opponents. The following
research question guides our research.

Research question: Is it possible to create a mechanism that
imposes adaptive team AI on commercial computer-game opponents
and achieves a qualitatively acceptable performance?

In our attempt to answer the research question, we have three objectives.

1. Designing a mechanism that imposes adaptive team AI on opponents in
commercial computer games.

2. Implementing the design in a test environment.

3. Obtaining a qualitatively acceptable performance of the adaptive mecha-
nism, i.e., performance that is computationally fast, robust, efficient and
effective [38].

1.4 Thesis overview
The remainder of the thesis is organised as follows. Chapter 2 discusses an
overview of recent developments on artificial intelligence in commercial com-
puter games. Chapter 3 discusses the first research objective; designing a mech-
anism that imposes adaptive team AI on opponents in commercial computer
games. Subsequently, chapter 3 discusses the second research objective; im-
plementing the design in a test environment. Chapter 4 discusses performing
experiments, preparatory to discussing the third research objective; obtaining
a qualitatively acceptable performance of the adaptive mechanism. Chapter 5
discusses the third research objective, and additionally discusses the approach.
Chapter 6 first answers the research question and then comes to a conclusive
answer of the problem statement.

8

Chapter 2

AI in commercial computer
games

This chapter discusses recent developments on artificial intelligence in commer-
cial computer games. The chapter is structured as follows: section 2.1 discusses
(the lack of) adaptive behaviour in commercial computer games. In section 2.2,
the topic of AI in commercial computer games is extended, by discussing team
AI in detail. Subsequently, section 2.3 discusses team AI in a typical commercial
computer-game. At the end of this chapter a summary is presented.

2.1 Adaptive behaviour in commercial computer
games

Commercial computer-game opponents who learn, or exhibit adaptive behav-
iour, are rarely investigated. As yet adaptive behaviour is not applied in prac-
tice because it cannot be accomplished using conventional methods. Adaptive
behaviour leans on techniques that are still unproven in commercial computer
games. The application of unproven adaptive techniques is risky for game devel-
opers because of two reasons: because it can slow down their development cycle,
and because the end-results are typically unpredictable [43]. Game developers
therefore tend to reuse proven, non-adaptive, techniques. We briefly discuss two
commonly used proven techniques: scripts and finite-state machines.
First, scripts are typically used to implement the artificial intelligence of

commercial computer-game opponents. Unfortunately, the scripting technique
lacks adaptive capabilities. Therefore, it is not possible to design an exhaustive
script. Once a human player discovers a ‘hole’ in the script nothing prevents
the player from exploiting it. The discovery made public, can spoil the game
for the gaming community.
Second, finite-state machines are commonly used to model intelligence. An

example of a finite-state machine is displayed in figure 2.1 [45]. Finite-state ma-

9

chines (commonly abbreviated as FSMs) can be described by four components:
(1) an initial state or record of something stored someplace, (2) a set of possible
input events, (3) a set of new states that can result from the input, and (4) a set
of possible actions or output events that result from a new state. Finite-state
machines entail the disadvantage to offer no possibility to adapt its behaviour.
New behaviour requires the finite-state machine to be redesigned.

Figure 2.1: Finite-state machine of a Quake III agent.

Alternatives for non-adaptive techniques exist, and are demanded by a need
in the market to employ adaptive AI in commercial computer games [42]. To
prevent exploitation of inferior behaviour of computer-game opponents, adap-
tive behaviour is desirable. Online adaptability, which can be used to learn
from mistakes, is a key feature many game developers yearn for. Some existing
commercial computer-game opponents appear to adjust their behaviour to the
human players’ actions, but often programmers of a game rely on controlled
randomness [20]. This form of adaptation is limited. Genuine adaptive intel-
ligence lies, for instance, in the ability to learn from mistakes and to find new
ways of accomplishing a goal. Machine-learning techniques, such as classifier
systems, neural networks and evolutionary algorithms, are specifically designed
for adaptive AI. Therefore, machine-learning techniques are potentially suitable
for application in commercial computer games.

2.2 Team AI in commercial computer games
Team-oriented AI is a field of research, originating from the need to let agents
[18], in our case commercial computer-game opponents, compete or cooperate
in a specific environment. In the remainder of this thesis we study the cooper-

10

ation of agents to accomplish specific tasks. Adaptive team AI in commercial
computer games consists of four components:

1. Individual agent AI. This components is required because each agent
needs appropriate rudimentary intelligence for a specific environment. A
practical example: agents would be useless should they be running into
traps like lemmings. Individual agent AI is game-specific. Therefore, we
do not discuss it in more detail.

2. Means of communication. This component is discussed in sub-section
2.2.1.

3. Team organisation. This component is discussed in sub-section 2.2.2.

4. An adaptive mechanism. This component allows for adaptive behav-
iour. Note that without an adaptive mechanism, team AI is non-adaptive.
Because of the importance an adaptive mechanism, we devoted a whole
chapter to it (chapter 3).

2.2.1 Means of communication

Analogous to human players, who need to communicate with each other in order
to establish social interaction, communication is also a requirement for agents
in team-oriented environments. They need to come to a mutual understanding.
Typically, agents pass along messages containing information or orders. For
example, an agent informs a team-mate of the occurrence of a pre-defined event.
Likewise, information can be used to compute needed counteractions and spread
orders amongst the agents of a team.
Communication in team AI is not limited to creating and propagating mes-

sages. It is imperative that the semantics of a message are captured, so agents
can process the messages in the way the sender of the original message expects.
For instance, often a technique called ‘match templates’ is used, which allows
agents to ‘understand’ a received message. Once the meaning of a message is
clear, the agent gives an appropriate response, e.g., an action inferred from its
rule-base.
In case only agents have to communicate with each other, message interpre-

tation is a redundant task since it is algorithmically defined in the source-code
of the game. However, human players often control agents by sending mes-
sages. It is conceivable that an agent receives an indistinctive message from
a human player, and is expected to respond in an intelligent way. In case of
misunderstood chat messages Eliza-like responses are a possibility [47]. It is
quite common that a game requires complex message interchange. Therefore,
team-oriented games benefit from the implementation of a well-defined commu-
nication and transaction protocol, e.g., from the FIPA protocol suite [18].

11

2.2.2 Team organisation

Team AI requires the design of a team organisation, since there can be no team
cohesion without it. There are two distinctive approaches to organise a team
of agents in commercial computer games: namely (1) a decentralised approach,
and (2) a centralised approach.
The decentralised approach is a small extension to the already existing indi-

vidual agent’s AI. This approach is usually modelled as displayed in figure 2.2
(left). Freely adapted from the adage that ‘the intelligence is in the environ-
ment, not in the ant’ [35], the decentralised approach is based on the theory that
team behaviour emerges when individual agents exchange observations and in-
tentions. For team behaviour to emerge, the agents need to base their decisions
not merely on their own internal state but also on the information received from
other agents. Since this requires the interchange of information, basic means
of communication are needed, as mentioned in sub-section 2.2.1. Next to the
relative ease of implementation, a decentralised organisation has shown impres-
sive results [40]. A disadvantage of the decentralised approach is that it needs
conflict resolution. Messages that are propagating across the agent-network rep-
resent different intentions and suggestions. All these intentions and suggestions
typically generate conflicts. Another disadvantage of the decentralised approach
is that there is no process ‘thinking’ for the team as a whole. Therefore the ac-
tions of each agent are fully autonomous. Fully autonomous agents are useful
in specific environments, but generally the lack of team cohesian is considered
as a disadvantage since it does not allow for tight coordination of agents.

Figure 2.2: Decentralised organisation (left) and centralised organisation (right).

The centralised approach does not cope with the disadvantages of the decen-
tralised approach. This approach is schematically displayed in figure 2.2 (right).
The centralised approach is specifically designed to create and maintain well-
organised team cohesion. In this approach, decision making is centralised. A
decision is processed into orders, which are sent to agents. Borrowed from
the military command hierarchy, the centralised approach enables fast agent
responses and coordinated manoeuvres without wasting time exploring possi-
bilities and resolving conflicts. Within a centralized approach we can distinguish

12

two basic implementations: namely an authoritarian command style, and coach-
ing command style.
The authoritarian command style is only focussed on team results and ignores

extra agent information. The waste of information can result in bad decisions
for some agents. However, the authoritarian command style is highly efficient
for issuing commands to agents which are treated as ignorant soldiers. The
coaching command style is a less strict way of commanding agents. It is aimed
at advising an agent what to do, rather than forcing him to orders. The indi-
vidual agents can choose to give no priority to an advice. A coaching command
style is only suitable if a decreased team cohesion is of no significance. Addition-
ally, one can define command styles which borrows from both the authoritarian
command style and the coaching command style, where some commands are
interpreted as orders and others as suggestions.

2.3 Adaptive team AI in a typical commercial
computer game

This section discusses adaptive team AI in a typical commercial computer game,
in advance of designing a team-oriented adaptive mechanism for commercial
computer games.
A typical team-oriented game is the Capture-The-Flag (CTF) team-based

game mode of the commercial computer-game Quake III, a real-time action
game. After a brief description of the game, we discuss the Quake III imple-
mentation of the four components required for adaptive team AI: (1) individual
agent AI, (2) means of communication, (3) team organisation, and (4) an adap-
tive mechanism.
The Capture-The-Flag team-based game mode is found in practically all

first-person shooters. Van Waveren gives an adequate description of the game
and the Capture-The-Flag team-based game mode [46]:

"Quake III Arena belongs to the genre of the first person shoot-em
up games. A player views from a first person perspective and moves
around in a real-time 3D virtual world. The most important tasks
are staying alive and eliminating opponents within this virtual world.
These opponents are other people, equal in strength and abilities,
connected to the same game through a network or the Internet. The
players have a wide range of weapons, items and power-ups available
to aid in the battles. The game has a set of different virtual environ-
ments called levels or maps, that contain rooms and hallways. The
battles in the game take place in these maps much like gladiators fight
in an arena. Players can score points by taking out other players.
When killed, a player respawns at one of the designated locations on
the map and can continue to fight. Quake III Arena also has several
team-oriented gameplay modes. In normal teamplay there are two
teams with players that fight each other. The team with the highest

13

accumulated score, of all players on that team, wins. There is also
a Capture-The-Flag (CTF) team-based game mode. Again there are
two teams with players. Each team has a base structure in the game
world or map. A flag is positioned in such a base. A team scores
points by capturing the flag of the opposing team and bringing it back
to their own flag in their own base."

First, individual agent AI is provided to each Quake III agent, allowing
it to observe the environment it finds oneself in, navigate through it by using
A* based pathfinding techniques [13][28], and providing means of survival in the
form of combat and tactical skills. Agents are assigned to a profile of behavioural
characteristics and a difficulty level. These two assignments define behavioural
elements, such as, the accuracy the agents shoot with. Quake III agents are
based on a layered architecture [3], which is displayed in figure 2.3 [46]. The
first layer is the primary input and output layer for the agent. The second layer
provides rudimentary intelligence, such as a manoeuvring capability. The third
layer defines ’intelligent’ behaviour, such a shooting a weapon. The fourth,
and to our research most significant, layer defines the team control mechanism,
which issues team-oriented agent commands.

Figure 2.3: Quake III agent layered architecture.

Second, means of communication is made possible by the ability of agents
to send messages. The agents use match templates to capture the semantics
of a message. When agents are communicating with human players, Eliza-like
responses are used [47].
Third, regarding team organisation, the designers of Quake III chose a cen-

tralized approach. The centralised team organisation approach is implemented
in the form of a coaching command style. Therefore, as explained in section
2.2.2, the team organisation in Quake III does not require conflict resolution.
Fourth, an adaptive mechanism is not present in Quake III. The team AI

uses a static rule-base and a simple finite state machine which represents the
possible states of the team game. The team AI assigns each of the agents an
offensive, a defensive, or a roaming role. The offensive and defensive roles are
global tactical assignments. The roaming role does not entail a global tactical
purpose and results in reactive agent behaviour. The implementation of a role
is different in each state. For instance, in state x a defensive role means that
an agent receives the command to defend the friendly flag, while in state y

14

Team-members Defensive agents Offensive agents
1 0 1
2 1 1
3 1 2
4 2 2
...
n− 1 n

2 − 0.5
n
2 + 0.5

n n
2

n
2

Table 2.1: Example of static division of roles for one state.

this defensive role implies that an agent is commanded to accompany a team-
member. In Quake III, the division of roles for each state is static with respect
to the number of team-members. An example of this static division of roles for
a specific state is displayed in table 3.1, where n is an even positive integer.
The CTF team-based game mode requires strategic interplay of agents. Since

Quake III lacks an adaptive mechanism, required for adaptive team AI, we use
the game Quake III, and its CTF team-based game mode, as a basis for de-
signing and testing an abstract and generally applicable team-oriented adaptive
mechanism.

Figure 2.4: Agent capturing a flag in the Quake III CTF game.

15

2.4 Summary
In this chapter three topics were discussed, which concerned artificial intelligence
in commercial computer games.
First we discussed the lack of adaptive artificial intelligence in commercial

computer games. We noted that machine-learning techniques are designed for
adaptive intelligence, and therefore have the potential to be successfully applied
in commercial computer games.
Second, we discussed team AI in commercial computer games, and stated

that adaptive team AI consists of four components:

1. individual agent AI,

2. means of communication,

3. team organisation, and

4. an adaptive mechanism.

Third, we discussed adaptive team AI in Quake III, a typical commercial
computer game. We observed that the game lacks an adaptive mechanism,
required for adaptive team AI. Therefore, we decided to use this game as a basis
for designing and testing an adaptive mechanism that imposes adaptive team
AI on opponents in commercial computer games. This adaptive mechanism is
discussed in chapter 3.

16

Chapter 3

The TEAM artificial
intelligence adaptation
mechanism

This chapter discusses the first research objective; designing a mechanism that
imposes adaptive team AI on opponents in commercial computer games. Sub-
sequently, the chapter discusses the second research objective; implementing the
design in a test environment.
We designed the Tactics Evolutionary Adaptability Mechanism (TEAM), an

adaptation mechanism that imposes adaptive team AI on opponents in com-
mercial computer games. TEAM is explicitly designed to be a generic adaptive
mechanism for team-oriented commercial computer games in which the game
state can be represented in a finite state machine. The design is illustrated by
projecting design choices to the game Quake III, a typical commercial computer-
game.
As discussed in chapter 1, the adaptive mechanism is based on evolutionary

algorithms. The first section (3.1) of this chapter presents a description of evo-
lutionary algorithms. Subsequently, section 3.2 presents a synopsis of TEAM.
After the synopsis we discuss three design elements of TEAM: the team-oriented
adaptation approach (section 3.3), the design of the team-oriented evolutionary
algorithm (section 3.4), and fail-safe considerations of TEAM (section 3.5).
The implementation of TEAM in Quake III is briefly discussed in section 3.6.
A summary of the chapter is presented in section 3.7.

3.1 Evolutionary algorithms
In the preface of this thesis we already mentioned that there is a theory which
states that the most powerful problem-solver in the universe is the human brain,
that created “the wheel, New York, wars and so on” (after Douglas Adams [1]).

17

There is another theory which states that the most powerful problem-solver in
the universe is the evolutionary mechanism, that created the human brain (after
Charles Darwin [11]).
Conceptually, evolutionary algorithms are inspired by the Darwinistic evo-

lution theory on the origin of man and on the Mendelian genetics. We use evo-
lutionary algorithms as a basis for designing a machine-learning technique for
team-oriented artificial intelligence. Eiben introduces evolutionary algorithms
as follows [16]:

"Given a population of individuals the environmental pressure
causes natural selection (survival of the fittest) and this causes a
rise in the fitness of the population. It is easy to see such a process
as optimisation. Given an objective function to be maximised we
can randomly create a set of candidate solutions, i.e., elements of
the objective function’s domain, and apply the objective function as
an abstract fitness measure - the higher the better. Based on this
fitness, some of the better candidates are chosen to seed the next
generation by applying recombination and/or mutation to them. Re-
combination is a binary operator applied to two selected candidates
(the so-called parents) and results one or two new candidates (the
children). Mutation is unary, it is applied to one candidate and re-
sults in one new candidate. Executing recombination and mutation
leads to a set of new candidates (the offspring) that compete - based
on their fitness - with the old ones for a place in the next generation.
This process can be iterated until a solution is found or a previously
set computational limit is reached. In this process selection acts as a
force pushing quality, while variation operators (recombination and
mutation) create the necessary diversity. Their combined application
leads to improving fitness values in consecutive populations, that is,
the evolution is optimizing."

A schematic representation of the evolutionary process is displayed in figure
3.1 [17]. Eiben notes that evolution actually is not ‘optimizing’, it is ‘approxi-
mating’, by approaching optimal values closer and closer over its course.

3.2 Synopsis of TEAM
This section presents a synopsis of TEAM, in advance of discussing it in detail.
TEAM is based on evolutionary algorithms. However, TEAM employs four
features which distinguish the adaptive mechanism from typical evolutionary
approaches:

1. Centralised agent control mechanism evolution. TEAM evolves an
agent control mechanism, contrary to evolving a population of individual
agents. In section 3.3 this first feature is discussed in detail.

18

PopulationPopulation

Parents
Parent selection

ParentsParents
Parent selectionParent selection

Survivor selectionSurvivor selection
Offspring

Recombination
(crossover)

Mutation

OffspringOffspring

Recombination
(crossover)

Mutation

Recombination
(crossover)

Mutation

InitialisationInitialisation

TerminationTermination

Figure 3.1: The evolutionary mechanism cycle.

2. Mutualistic-symbiotic evolution. Team-oriented behaviour is learned
by a cooperation of multiple instances of an evolutionary algorithm. Each
instance of the evolutionary algorithm learns relatively uncomplicated
team-oriented behaviour. The combination of all instances, results in rela-
tively complex team-oriented behaviour. In section 3.4 this second feature
is discussed in detail.

3. State-specific genome evolution. Each instance of the evolutionary
algorithm evolves a population of relatively short genomes, which repre-
sent state-specific team-oriented behaviour, contrary to evolving a pop-
ulation of relatively large genomes, which represent behaviour for every
state. This feature implied that the design of a perspicuous, generally
applicable, evaluation function is feasible. In section 3.4 this third feature
is discussed in detail.

4. Evolution with history fall-back. This feature ensures a desirable
evolutionary course. In section 3.5 this fourth feature is discussed in detail.

Exceptionally, TEAM is the first existing team-oriented artificial intelligence
adaptation mechanism.

3.3 Approaches for team-oriented adaptation
In academic publications and existing commercial computer games we have not
encountered an adaptive mechanism for team AI. Therefore we have to design an
adaptive mechanism ourselves. Based on evolutionary algorithms, there are two
approaches for creating a suitable adaptive mechanism for adaptive team AI,
similar to the (de)centralised team organisation approach discussed in section
2.2.2. First, the decentralised approach, and second, the centralised approach.

19

The decentralised approach is based on standard evolutionary algorithms
concerning the evolution of individual agents. A decentralised adaptation ap-
proach is aimed at evolving the AI of a population of individual agents capable
of operating in a team and by evolutionary influences performing this task with
increasing efficiency.
The centralised approach has a viewpoint directed at evolving the AI of the

team itself, rather than the AI of individual agents. The centralised adaptation
approach is derived from the desire of directly to evolve to improved behaviour
for the team as a whole. Thus, the centralised approach typically does not
evolve each team-member, but evolves whatever controls this team.
One could state that team-behaviour already is emerging from the internal

organisation and coordination of agents [50]. Thus, instead of evolving agents,
evolving an abstract mechanism that controls these agents is a straightforward
derivation from this observation, resembling the centralised approach. A disad-
vantage of the decentralised approach is the expected complexity of evaluating
the team’s behaviour on the level of each individual agent. Ascribing a success-
ful action to the effectiveness of one agent or the ineffectiveness of its opponent
requires adding a significant amount of game specific information. The cen-
tralised approach offers a less complex and generally applicable evaluation since
it only needs to evaluate how the team is behaving as a whole. As is discussed
in sub-section 3.4.4, this is something that can be expressed with relative ease.
Therefore, our preference for a suitable adaptive mechanism approach goes out
to the centralised approach.
Our preference for a centralised approach is strengthened by an additional

consideration. The decentralised approach is an approach for evolving a pop-
ulation of agents. Since this approach bears close resemblance with standard
evolutionary algorithms we naturally have to consider their downsides, of which
a computationally high cost and slow evolution are harmful to our research ob-
jective. In order for human players competing with the team of agents to notice
behavioural adaptation, the evolution has to occur in a limited timeframe. The
team behaviour in a decentralised approach has to emerge from the interplay of
every individual agent, while a centralised approach is evolving the behaviour
for the whole team directly. We therefore expect an adaptive mechanism that
is based on a centralised approach to evolve faster than an adaptive mechanism
that is based on a decentralised approach.

3.4 Design of the team-oriented evolutionary al-
gorithm

In this section we present the design elements of TEAM’s evolutionary algo-
rithm. Derived from common steps for building an evolutionary algorithm we
denote six elements [16]:

1. representation,

2. population,

20

3. parent selection mechanism,

4. evaluation function,

5. variation operators,

6. survivor selection.

In the following sub-sections we present a detailed description of our design
choices for each of the above.

3.4.1 Representation

We observe that the team control mechanism for the existing Quake III imple-
mentation is based on a FSM with four states (figure 3.2 [45]). These four states
are team-game specific; in this case they represent the states in a CTF game.
The state transitions that are displayed are all possible transitions for this CTF
game. Each state describes a hard-coded tactic merely for the specific state.
For example in state x a programmer can incorporate tactic x, and in state y
a different tactic (y). As discussed in section 2.3, in the Quake III implemen-
tation the description of a tactics consists of a division of roles, which can be
represented by real valued genes.

Figure 3.2: Four states of a CTF game.

A common approach to represent tactics for use in an evolutionary algo-
rithm would be to create one long genome, which contains the required genetic
information for all states. We, however, choose to deviate from this approach
and explore something different. We propose two deviations from standard
evolutionary algorithms, which we discuss in the upcoming paragraphs.
Our first design choice is to base our genomes on the tactic description

of merely one state. Thus, for every state of the FSM we generate different
genomes. The genomes for each state have no communal relation with one
another.

21

Our second design choice is to have multiple instances of the evolutionary
algorithm, one for every state of the FSM.
A primal consideration for the first design choice, basing the genomes on

the tactic description of one state, is that it allows us to keep the genomes
relatively small. To represent a tactic description of a state, a genome requires
a few real valued genes which bear the division of roles description. By using
small genomes we are able to evolve quickly. The genome no longer represents
the inter-state cohesion, which is favourable in our case, since the actions that
occur in each state can be completely different and have no direct relation with
one-another.
Regarding the second design choice, to have multiple instances of the evo-

lutionary algorithm, a benefit from this design choice is that it allows short
evolutionary cycles. Each state transition completes one cycle of a state’s evo-
lutionary algorithm. While the real-time environment is in a specific state, the
evolutionary algorithms of other (idle) states are accessible for computations.
One could, for instance, already mutate the population of idle state’s genomes.
All instances of the evolutionary algorithm are operating independently. Each
instance of the evolutionary algorithm is focussed at learning one relatively small
task, and is able to learn this task without intervening with the learning tasks
of other instances of the same evolutionary algorithm.
As we mentioned in the previous paragraph, each state transition completes

one cycle of a state’s evolutionary algorithm. The game’s state transitions occur
very often, an average of one transition in five seconds is quite common. It is
our expectation that frequent state transitions in combination with our design
choices result in a human player to quickly notice the effect of the evolutionary
process.

3.4.2 Population

In our environment, designing the population implies we have to define how
many genomes are in the population. Since the game is running in real-time we
can only evaluate one genome at a time. Therefore, the speed of the evolution
benefits from a small population size. In our design we use a population size of
5.
In typical evolutionary algorithms the first population is a seed of randomly

generated genomes. In our environment however we do not have the luxury
of allowing randomly generated genomes to evolve to desired behaviour since
someone who is playing the game should not have to wait for the opponent team
to become challenging in time, it has to be challenging right from the start of
the game. To ensure that the strength of a team is at least equal to what has
been manually designed, our population is initialised with genomes describing
a strategy close to each state’s manually designed strategy. By doing so we
enforce that a human team is not confronted with an inferior opponent-team
when the game starts.
Consequently, care should be taken that the evolutionary adaptive mecha-

nism offers the capability to drastically deviate from this initial strategy in order

22

to provide a dynamic and unrestricted evolution. Driving force to accomplish
this capability lies in a suitable parent selection mechanism (sub-section 3.4.3),
choosing appropriate variation operators (sub-section 3.4.5), and designing an
adequate survivor selection mechanism (sub-section 3.4.6).

3.4.3 Parent selection mechanism

Our population consists of a small number of genomes. It therefore is logical
that of the given population we design our parent selection mechanism to use
the best genome to control the team behaviour. By selecting the best genome
as parent, the next population contains genomes based on this parent, which is
expected to result in equal or better team-behaviour.
Naturally, a small population size is dangerous with respect to genetic di-

versity. For lack of genetic diversity we need means of escaping local optima,
which is discussed in sub-sections 3.4.4, 3.4.6 and 3.5.2.

3.4.4 Evaluation function

An essential element of an evolutionary algorithm is a function which evaluates
the quality of a genome, which is expressed by the so-called fitness value. In
evolutionary algorithms such a function is denoted as an evaluation or fitness
function, depending on the terminology of the research environment. Implicitly,
the evaluation function represents the requirements the genomes have to adapt
to. In our environment, evaluating genomes is complex because of the environ-
ment’s real-time nature and since the assessment of agent’s behaviour in the
CTF team-based game mode is not transparent.
The design of our evaluation function uses an abstract and generally ap-

plicable view of the game-state. Our evaluation function consists of three com-
ponents: a base fitness value, a time-scaling mechanism, and a delayed-reward
mechanism [27].
First, the base fitness value is calculated by using annotations on the finite

state machine, which describes the states of a game (displayed in figure 3.2).
Generally speaking, if the application use a genome that provides an undesirable
state transition, this genome should receive a low fitness value. Similarly, a
desirable state transition should be rewarded with a high fitness value. By using
such an orderly and straightforward basis for the evaluation function, we are not
faced with complex questions concerning the best behaviour in a certain state.
Analogously, we annotate the FSM of the team-oriented game, as is displayed
in figure 3.3, where a desirable state transition (denoted with +) receives a
base fitness value of 1.0, and an undesirable state transition (denoted with −)
receives a base fitness value of 0.0. Note that, depending on specific conditions,
certain state transitions can be either desirable or undesirable. In the displayed
annotated FSM, ‘diagonal’ transitions are greyed out. They are theoretically
possible, but since we cannot determine via what route the transitions would
normally have taken place, these transitions receive a neutral fitness value to
make sure they do not affect other genomes.

23

(1)
Both flags

at their base

(2)
Base flag

stolen

(3)
Enemy flag

stolen

(4)
Both flags

stolen

+ friendly flag recovered by team
- opponent carries flag to his base (opponent scores)

-

+ friendly flag recovered by team
- opponent carries flag to his base (opponent scores)

-

+ + flag carrier returns to base (friendly team scores)
- enemy flag recovered by opponent

+ enemy flag is returned by flag carrier (friendly team scores) +
enemy flag recovered by opponent -

Figure 3.3: Annotated CTF finite state machine.

Transition Time to state transition Fitness value
+ Short High
+ Long Fairly high
− Long Fairly low
− Short Low

Table 3.1: Global characteristics of the evaluation function.

Second, a time-scaling mechanism is needed since, as one can intuitively
expect, a black-and-white annotation of the FSM is not sufficient for measuring
the success of a genome. If the game resides in a specific state for a long time one
can consider this as neutral behaviour, since it neither transits to a desirable nor
to an undesirable state. If we use this ‘neutral’ behaviour as a point of reference,
we can use it to more accurately distinguish between desirable and undesirable
behaviour. Note that in the FSM of the team-oriented game, a neutral state
does not exist, which is typical for this type of game. However, it is possible to
use the principle of neutrality by adding a time-aspect to the fitness function.
Such a time-aspect is implemented with a time-scaling function, which scales the
base fitness according to the amount of time for a state transition to take place.
In our environment we want to demarcate between fast and slow occurrences
of state transitions. The function should therefore have a significant effect on
transitions that took less than a couple of seconds. It also should have a clear
effect on transitions of various long time differences, e.g., in the interval of one
to several minutes. We decided to use a damping square root function, of which
the effect is plotted in figure 3.4.

24

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 32 61 92 12
2

15
3

18
3

21
4

24
5

27
5

30
6

33
6

Sec.

Sc
al

in
g

fa
ct

or

Figure 3.4: Output of the scaling function.

Third, a delayed-reward mechanism is required since without it the problem
of creating local optima would arise. An illustrative example of local optima
can be found in soccer, where fully defensive tactics are impractical for scoring
goals, and fully offensive tactics are unsuitable for defending your own goal;
tactics should be found that are effective in all situations. Consider that be-
haviour is only desirable if the team can retain this behaviour, or improve on
this behaviour. If desirable behaviour quickly transits to undesirable behaviour,
then the genome which resulted in the originally desirable behaviour does not
suffice. Therefore, we need the evaluation function to encourage a desirable
state transition at zero depth, but at the same time discourage an undesirable
state transition at depth one. What is more, it is possible that a genome at
zero depth is in itself good, but a genome at depth one is not adequate. The
tactic deemed optimal for a specific state can be an unfortunate choice for a
successive state. We therefore only reward genomes with a high fitness if their
resulting desirable behaviour is not immediately annulled, because otherwise we
are creating local optima. To avert the evaluation function from creating local
optima, we use a delayed-reward mechanism to consider the long-term effect of
the tactic described in a genome.
Concluding our design considerations, we propose the following evaluation

function. Expression 3.1 denotes the fitness of a genome at a certain depth. Let
Fitnessi be the fitness of a genome at depth i. Then,

Fitnessi =
1

i+ 1

Ã
base±min

Ã√
sec−

p
sec
3

10
, 1.0

!!
(3.1)

where, i is the depth, base is the transition’s desirability value as assigned
by the annotated finite state machine, and sec denotes how many seconds were
between the previous and the current state transition. The ± sign implies a −
operator for a desirable state transition, and a + operator for an undesirable

25

state transition. Next, we denote the evaluation function in expression 3.2. Let
Delayed_fitness be the delayed-fitness value of a genome. Then,

Delayed_fitness =
nX
i=0

Fitnessi (3.2)

where i is a counter for the depth, n is a positive integer, and Fitnessi the
fitness of a genome at depth i. In our case n = 2, since we use a two-deep
delayed-reward mechanism.

3.4.5 Variation operators

For online adaptation of team AI to be appreciated by human players, significant
changes in opponent behaviour should not take a considerable number of gener-
ations. Therefore, the population should be subjected to significant changes in
every new generation. As variation operators we are given the choice between
a genetic recombination of genes, a genetic mutation of genes, or both.
A recombination of genes results in erratic variation of the genetic informa-

tion. In our real-time environment we are evolving genomes online and therefore
can only evaluate one genome at a time. Erratic variation of genetic infor-
mation is likely to result in undesirable behaviour. Consequently, the online
evolutionary mechanism should not allow these genomes to be introduced in
the population. Thus, a genetic recombination of genes is not suitable in our
environment.
The only suitable variation operator is a genetic mutation. We choose for a

so-called scaled mutation operator. The general idea behind a scaled mutation
comes from the desire of giving the mutation operator a less static nature.
Instead of always having the same absolute mutation, a scaled mutation operates
by mutating in close relation with the achieved fitness value of a genome. We
distinguish two different types of genome-classes:

1. Genomes which obtained a low fitness. These genomes are subdued
to a large mutation since they do not seem able to achieve (satisfactory)
progress.

2. Genomes which obtained a high fitness. These genomes are subdued
to a small mutation since they most likely approach an optimum.

3.4.6 Survivor selection

We defined a small finite-sized population, which implies that we have to make
a choice on which individuals we are going to allow in the new generation. An
important consideration for the design of this survivor selection is providing
genetic diversity in the population, thus protecting the evolutionary approx-
imation against becoming too greedy and getting stuck in a local optimum.
We decided not to reseed the next generation with genomes based on selected
children, but provide genetic diversity in the population by using a form of

26

elitism. Our population is used as a storage location for preservation of best-
so-far genomes.
Since the environment we are using is time-critical we desire the fitness value

of the genomes to constantly improve. Therefore, we designed the survivor
selection mechanism to replace the worst genome with a better genome. If an
inferior genome is offered to the population, the genome is discarded from the
population.

3.5 Fail-safe considerations
Let us start this section with an appropriate quote from Frank Herbert [21]:

"A beginning is the time for taking the most delicate care that
the balances are correct."

This quote describes the characteristic risks of evolutionary algorithms in
a nutshell. By definition an evolutionary algorithm is a shining example of
so-called black-box technology, once it is running we can observe its effects
but have no direct control on the process anymore. The lack of control can
cause a population to evolve to an undesirable direction. However, if we take a
look at biology, human physiology provides means of influencing the quality of
offspring. For instance, eminent abnormalities of an embryo that can develop
towards a non-viable fetus can cause a naturally induced abortion of the embryo
[51]. Another example, the fertility of pre-menopausal females has typically
been significantly reduced [22]. Both examples are contributed to a natural
mechanism of ensuring the quality of the offspring, thus indirectly having a
positive effect on the course of evolution.
Fail-safe considerations in evolutionary algorithms are required, since we

desire means of controlling the evolution. TEAM explicitly needs a mechanism
to ensure the quality of the population since it only occasionally can evaluate
genomes and since the size of the population is small.
This section describes two such mechanisms we designed for TEAM. In sec-

tion 3.5.1 we discuss the fitness recalculation of genomes in the population. In
section 3.5.2 we discuss history fall-back, a concept for allowing the evolution
to revert to a previous state.

3.5.1 Fitness-recalculation mechanism

In commercial computer games we typically have to deal with a large amount of
randomness. Specifically in the action-game genre, this randomness, or chance
as some would call it, is very typical. Often players describe it as simply being
in the wrong place at the wrong time. For instance, in Quake III, unexpected
encounters with opponents or traps can result in getting killed before one even
gets the chance to start a tactical manoeuvre.
Randomness in the environment poses a major problem for evolutionary

algorithms. Unlike discrete games with perfect information, it is difficult to

27

demarcate between our opponent being unlucky and our team using an effective
strategy. This poses a problem for our evaluation function since we cannot be
sure the fitness is the direct result of the tactic expressed by the genome.
TEAM implements a solution to this uncertainty based on a straightforward

observation. Imagine a genome that is used in a specific state obtains a high
fitness. Assume we would select this genome for the next cycle of the evolution-
ary process. The selected genome obtained a high fitness and shall therefore
undergo only a slight mutation. If the original genome really was ‘good’, this
new genome obtains a comparable fitness. But, if the high fitness of the previous
genome was caused by lucky circumstances, those circumstances presumably no
longer exist, and as a result the fitness of the new genome would be significantly
lower in comparison with the parent genome.
Taking the observation, described in the previous paragraph, into account

solves the demarcation problem. TEAM recalculates the fitness of all parent
genomes dependant on the fitness of their children. Should the children of a
‘good’ genome obtain low fitness values then the fitness of the parent genome
gradually decrease. Since the fitness of the parent decreases, eventually this
‘bad’ parent is removed from the population.
The recalculation process serves as a filter for only keeping genomes in the

population that are genuinely fit. This security measure restrains the evolution-
ary algorithm from using inferior genomes as a basis for further evolution.

3.5.2 History fall-back concept

In our environment we need the evolutionary mechanism to be able to revert
to an earlier state. In theories concerning natural evolution this demand for
reversibility would be a contradicting one, since by definition the process of
evolution cannot be reversed. In our environment however it is a necessity.
Let us illustrate the necessity of reversible evolution by an example. Nor-

mally one is evolving towards a termination condition based on reaching a known
optimum of the designed evaluation-function. Due to the stochastic nature of
evolutionary algorithms, such a condition may not exist or may never be reached,
therefore a need for extending the stop criteria with secondary conditions arises.
Conceptually the idea remains that a population evolves in a certain direction.
In each cycle of the evolutionary algorithm the population alters to a more fit
population. Now, in our environment the fitness of the population is based on
how it is performing, and this performance indirectly depends on our opponent
team. Assume that after several dozen of cycles we have evolved a population
that is dominant over the opponent team. Since the population has learned a
better strategy, one is inclined to believe that we have reached an optimum that
satisfies a stop criterion.
Assume that in this moment the opponent devises a strategy that is superior

to the one we are currently using. The very strategy we once considered optimal
can be inferior in changing circumstances. Typical evolutionary algorithms are
not designed to deal with such changes. If after a number of generations a
population approaches an optimum, the population no longer has the genetic

28

diversity needed to evolve to a new optimum when the optimum condition itself
shifts.
TEAM is capable of dealing with little genetic diversity in the population.

We designed the adaptive mechanism to create diversity in the next population
based on best-so-far genomes in the population, in combination with a well-
scaled mutation. Should the evolution be ‘stuck’ somewhere it can always fall
back on best-so-far genomes. One can correctly note that there is a possibility
of the population containing only over-fitted genomes, which is unsuitable in
changing circumstances. Yet, child genomes of this over-fitted population obtain
a low fitness in next cycles of the evolutionary algorithm. Consequently, the
fitness-recalculation mechanism ensures that inferior genomes are removed from
the population if the fitness of their children remains low. Additionally, the
population is updated with genomes that have been subdued to a large mutation,
thus restoring the genetic diversity in the population.
We expect the history fall-back mechanism to provide the ability to cope

with changing opponent behaviour. In section 4.3 we discuss an experiment
which analyses the performance of TEAM in an environment with changing
opponent behaviour.

3.6 Implementation of TEAM
This section discusses the implementation of TEAM, in accordance with the
second research objective.
The design of TEAM is implemented in the game Quake III. ID Software,

the creator of Quake III, made available the latest version of the game source
code. With the game source-code, a modified Quake III release was built. A
modification (or ‘mod’) is essentially a new game one can play in the Quake
III environment, using modified rules, weapons, levels, AI etc. ID Software
has always allowed the gaming community to create their own modifications,
which is likely to be the main reason for the longevity and dedicated community
that surrounds the Quake-family of games. To give an impression of the size
of the current community, in the year 2003 hundreds of Quake III servers are
online on a daily basis, and modifications are released regularly [31]. Creating a
modification for the Quake III environment offers the advantage of programming
C++ in an industrial standard IDE. Quake III modifications are compiled in
the form of a so-called Quake Virtual Machine, which is a safe and platform
independent alternative for .dll files.
We implemented the design of TEAM in the form of a modification. The

modification allowed a team of agents, controlled by the Quake III team AI,
to play against a team of agents controlled by TEAM. Note that we left the
original code intact, TEAM is provided as an option for the old team-oriented
artificial intelligence. In figure 3.5 we present a global representation of the
implementation of TEAM in the Quake III environment. TEAM is called by a
state-transition event in the Quake III environment. Subsequently, the adaptive
mechanism outputs a genome, which is processed by the Quake III environment.

29

Process tactic for this
state

Translate genetic
information to tactics

description

Genome State transition

Quake III environment

TEAM learning mechanism

Figure 3.5: Implementation of TEAM in the Quake III environment.

3.7 Summary
This chapter discussed the first research objective; designing a mechanism that
imposes adaptive team AI on opponents in commercial computer games. Addi-
tionally, the chapter discussed the second research objective; implementing the
design in a test environment.
The chapter presented the design of TEAM. We described evolutionary al-

gorithms, which are our main source of inspiration for designing TEAM. Based
on evolutionary algorithms, we described two possible approaches for a team-
oriented adaptive mechanism. First, a centralised adaptive mechanism ap-
proach, and second, a decentralised adaptive mechanism approach.
Founded on the design choice of designing an centralised team-oriented adap-

tive mechanism, we gave an in-depth description of TEAM. TEAM employs four
features, which distinguish the adaptive mechanism from typical evolutionary
approaches. First, a centralised agent control mechanism evolution. Second,
a mutualistic-symbiotic evolution. Third, a state-specific genome evolution.
Fouth, evolution with history fall-back.
The uncontrollable nature of evolutionary algorithms poses a risk to our

research since we want to assure that the algorithm evolves within devised
boundaries. We therefore discussed two fail-safe considerations for the adap-
tive mechanism. First, we discussed recalculating the fitness of parent genomes
based on the fitness of their children. Second, we discussed the ability of the
evolution to revert to an earlier state.
In addition to the design of TEAM, we discussed the implementation of

TEAM in the form of a modification for Quake III, a typical commercial computer-
game.

30

Chapter 4

Experiments

This chapter discusses performing experiments, preparatory to discussing the
third research objective; obtaining a qualitatively acceptable performance of the
adaptive mechanism.
The experiments concerned testing the capability of TEAM to successfully

learn while competing against static team AI (experiment 1), and the capability
of TEAM to successfully learn while competing against the Quake III team AI
(experiment 2). Before these experiments are discussed in detail, the evaluation
of an experimental run is discussed in section 4.1. Subsequently, the first ex-
periment is discussed in section 4.2, and the second experiment in section 4.3.
Finally, a summary of the chapter is given in section 4.4.

4.1 Evaluation of an experimental run
An experimental run consists of two Quake III teams playing the Capture-The-
Flag team-based game mode until the game is interrupted by the experimenter.
In an experimental run, a team that is controlled by TEAM is competing against
a team with non-adaptive team AI. To quantify the performance of TEAM, two
properties of an experimental run are used: the absolute turning point, and the
relative turning point.
First, we define the absolute turning point as the first moment in which

the team using TEAM statistically outperformed the other team. To test the
hypothesis that the team controlled by TEAM outperformed the other team,
we observe the sampling distribution of the proportion p under the null hy-
pothesis that both teams are of equal strength, and the alternative hypothesis
that TEAM outperformed the other team. The sampling distribution of p is a
discrete distribution of two parameters: (1) N , the number of samples, and (2)
r, the probability that the performance of both teams is equal. Assuming the
performance of both teams is equal (r = .5), the probability of the sample result
p is displayed in expression 4.1, where the counter i starts with the number of
wins w for the adaptive opponent. Using a sample size of N = 20 we denote the

31

Win:Lose ratio Chance of unequal performance
12 : 8 74.83%
13 : 7 86.84%
14 : 6 94.23%
15 : 5 97.93%
16 : 4 99.41%

Table 4.1: Chance of TEAM outperforming the opponent.

chance of TEAM outperforming the opponent in table 5.1. Observe that the
chance for unequal performance at a ratio of 15 wins against 5 losses is 97,93%.
When this ratio is achieved, we reject the null hyphothesis. We expect this ratio
to be feasible for TEAM. Therefore, we redefine the absolute turning point as
the first moment in which the team controlled by TEAM obtains a win:loss ratio
of a least 15 wins against 5 losses in a sliding window of N = 20. Note that
therefore 20 is the lowest absolute turning point we can reliably calculate.

p =
NX
i=w

N !

i!(N − i)!
(.5)N (4.1)

Second, we quantify the noticeable effect of TEAM by defining the relative
turning point as the last moment in which the team using TEAM has a zero lead
with respect to the other team, with the requirement that from this moment
on the team using TEAM does not lose its lead for the rest of the experimental
run.

4.2 TEAM vs. Static team AI
This section discusses the experiment where TEAM is competing against static
team AI. The focus of the experiment is to confirm that a team controlled by
TEAM can successfully adapt. In sub-section 4.2.1, the experimental setup is
discussed. Sub-section 4.2.2 discusses the results of the experiment, and sub-
section 4.2.3 draws a conclusion from the experimental results.

4.2.1 Experimental setup

In an experimental run two Quake III teams play the Capture-The-Flag team-
based game mode until the game is interrupted by the experimenter. One team
is controlled by TEAM, while the other team is controlled by static team AI.
Combat between teams takes place in a so-called open map, of which an example
is displayed in figure 4.1. In an open map there are no walls. Therefore, agents
have an unrestricted view over the environment. Thus, open maps minimize the
chance for coincidental agent-encounters. The individual agent AI, means of
communication, and team organisation of both team’s agents is the same. Both

32

Figure 4.1: Example of agents operating in an open map.

teams, each consisting of four agents, only differ in the used control mechanism;
one team uses an adaptive control mechanism (TEAM), while the other team
uses a non-adaptive control mechanism (static team AI). By merely laying our
focus on the control mechanism we are able to justly draw conclusions concerning
the performance of TEAM, given the experimental-results. We expect the team
of agents controlled by TEAM to discover a way to exploit static behaviour of
the static team AI.
The static team is implemented by temporarily modifying the code of the

original team AI in the Quake III environment in such way that it results in
static team behaviour. The team using TEAM is initialised with the same
behaviour as the static team.
We first performed a long experimental run to obtain a general impression

of TEAM’s performance. Next we performed five short experimental runs. The
long experimental run is a run we let continue over a twenty-hour period. Short
experimental runs are runs that were typically executed during a six-hour pe-
riod. In a short experimental run typically a total of about 200 points is scored.

4.2.2 Results

In this sub-section, we discuss two experimental results: (1) the results of the
long experimental run, and (2) the results of the short experimental runs.
First, in the long experimental run the sum of the points scored by both

33

Experiment # Absolute turning point Relative turning point
1 63 8
2 150 144
3 70 52
4 137 126
5 173 12

Table 4.2: TEAM vs Static team AI - Turning points.

teams is 692. Of this total, the team controlled by TEAM obtained 520 points,
and the team controlled by the static team AI obtained the remaining 172
points. This obviously shows that the adaptive team has become significantly
better than the static team. The course of the absolute performance of TEAM is
plotted in figure 4.2, additionally with a sixth-order polynomial trendline. The
x-axis denotes the number of points that are scored by both teams. The value
on the y-axis denotes the number of points which the team using TEAM scored
over the last twenty scored points. Thus, if both teams are of equal strength,
one observes an y-axis value of 10. The course of the relative performance of
TEAM is plotted in figure 4.3. The x-axis denotes the number of points that are
scored by both teams. The value on the y-axis denotes the lead of the adaptive
team with regard to the non-adaptive team. The absolute turning point of this
experimental run is 72, while the relative turning point is 62.
Second, short experimental runs showed an equivalent course, compared to

the long experimental run. The course of the absolute and relative performance
of a typical short experimental run is displayed in figure 4.4 and 4.5, respectively.
In this experimental run the sum of the points scored by both teams was 175,
of which the team controlled by TEAM obtained 116 points, and the team
controlled by the static team AI obtained the remaining 59 points. Like the
result of the long experimental run, this result obviously shows that the adaptive
team has become significantly better than the static team. The turning points
of each experimental run are displayed in table 5.2. A full listing of all test
results is given in appendix A.

4.2.3 Conclusion of the results

In each experimental run we observe that initially the performance of both teams
is similar. In time, and without any significant degradation in the adaptive-
team’s performance, the lead of the adaptive team sharply increases. From
this result, we may draw the conclusion that TEAM is capable of successfully
adapting to static opponent behaviour.
Because the experiment against the static team AI was focussed on confirm-

ing that a team controlled by TEAM can successfully learn, which all experi-
mental runs did, we decided to forego further tests against static team AI and
tackle the more difficult task of pitting TEAM against the original Quake III

34

0

5

10

15

20

1 51 101 151 201 251 301 351 401 451 501 551 601 651

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

Figure 4.2: TEAM vs Static team AI - Long Run (Absolute performance).

-50

0

50

100

150

200

250

300

350

400

1 51 101 151 201 251 301 351 401 451 501 551 601 651

Point #

Le
ad

 o
f a

da
pt

iv
e

te
am

Figure 4.3: TEAM vs Static team AI - Long Run (Relative performance).

35

0

5

10

15

20

1 51 101 151

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

Figure 4.4: TEAM vs. Static team AI - Short Run (Absolute performance).

-10

0

10

20

30

40

50

60

70

1 51 101 151

Point #

Le
ad

 o
f a

da
pt

iv
e

te
am

Figure 4.5: TEAM vs. Static team AI - Short Run (Relative performance).

36

team AI.

4.3 TEAM vs. Quake III team AI
This section discusses the experiment where TEAM is competing against the
Quake III team AI. The focus of the experiment is to confirm that a team con-
trolled by TEAM can successfully adapt in an environment where the opponent
behaviour changes. In sub-section 4.3.1, the experimental setup is discussed.
Sub-section 4.3.2 discusses the results of the experiment, and sub-section 4.3.3
draws a conclusion from the experimental results.

4.3.1 Experimental setup

The setup of this experiment is similar to the previous experiment, with the
difference that TEAM is tested against a dynamic team AI, instead of static
team AI. For this purpose we pitted TEAM against the original Quake III
team AI, which uses intelligent switching between static tactics. In comparison
to static team AI, the team AI of Quake III provides more dynamic team-
behaviour. It is dynamic in a sense that the team is capable of efficiently using
different tactics based on the state of the Capture-The-Flag team-based game
mode, and has resemblance with how human players operate in team-oriented
environments. In Quake III, a tactic is a division of roles description linked with
a specific state.
In Quake III the dynamic team AI is implemented in the following fashion.

Normally a team is using tactic x. However, a team switches to tactic y in
case it is not able to capture a flag within a preset period of time. Tactic y
implements a more aggressive style of playing, where tactic x is more defensive.
Competing against a dynamic team is more difficult since winning the game

is no longer restricted to finding tactics that are dominant over merely one static
tactic. Dominant tactics for competing against a static opponent are likely to
be insufficient in changing circumstances. Note that the circumstances change,
it is a certainty that the opponent team changes its behaviour if the adaptive
team wins. Even though the Quake III team AI changes between merely two
tactics, the behavioural shift poses a challenge for TEAM since it now has to
deal with significant behavioural changes of the opponent.
However, TEAM is designed to be capable of defying changes in the opponent

behaviour. It therefore is our expectation that dominant behaviour occurs in
due time. The test results discuss if our expectation is justified.

4.3.2 Results

This sub-section discusses the results of a team controlled by TEAM compet-
ing against a team controlled by the original Quake III team AI. In the first
experimental run, a total of 700 points are scored, of which the team controlled
by TEAM obtained 497 points, and the team controlled by the original Quake

37

Experiment # Absolute turning point Relative turning point
1 148 20
2 263 158
3 106 70
4 38 36
5 99 50
6 42 24
7 58 114
8 107 48
9 205 132
10 92 32
11 61 56
12 127 144
13 136 50
14 91 82
15 53 54

Table 4.3: TEAM vs Quake III team AI - Turning points

III team AI obtained the remaining 203 points. This obviously shows that the
adaptive team has become significantly better than the team controlled by the
original Quake III team AI.
To determine the reproducibility of the first experimental run, the test-

match is repeated several times. The turning points of each experimental run
are presented in table 5.3. A full listing of all test results is given in appendix
B. To give an impression of the course of a typical experimental run, we plotted
the absolute performance in figure 4.6. Additionally, the course of the relative
performance of this experimental run is plotted in figure 4.7.
The average of all absolute turning points is 108.40, with a standard deviation

of the mean of 61.99. Note that the median of these results is 99. The maximum
observed absolute turning point is 263, while the minimum absolute turning
point is 38. Additionally, the standard error of the mean is 18.69, which indicates
that with 68.27% certainty the real average of the absolute turning point lies in
the interval [90, 127].
Regarding the relative turning point, the average of all relative turning points

is 71.33, with a standard deviation of the mean of 44.78. The median of these
results is 50. Additionally, the maximum observed relative turning point is
158, while the minimum relative turning point is 20. The standard error of the
mean is 13.50, which indicates that with 68.27% certainty the real average of
the relative turning point lies in the interval [58, 85].

38

4.3.3 Conclusion of the results

In each experimental run we observed that initially the performance of both
teams is similar. In time, and without any significant degradation in the adap-
tive team’s performance, the lead of the adaptive team sharply increases. In
all experimental runs, TEAM learned to significantly outperform the Quake III
team AI. From this result we may draw the conclusion that TEAM is capable
of successfully adapting to significant changes in the opponent behaviour.

4.4 Summary
This chapter discussed performing experiments, in order to draw a conclusion
with regard to the third research objective; obtaining a qualitatively acceptable
performance of the adaptive mechanism. A qualitatively acceptable perfor-
mance is denoted by the capability of TEAM to successfully learn while com-
peting against static team AI (experiment 1), and the capability of TEAM to
successfully learn while competing against the Quake III team AI (experiment
2).
The first experiment concerned testing TEAM competing against static team

AI. From the experimental results we may draw the conclusion that TEAM is
capable of successfully adapting to static opponent behaviour.
The second experiment concerned testing TEAM competing against the

Quake III team AI. From the experimental result we may draw the conclu-
sion that TEAM is capable of successfully adapting to changes in the opponent
behaviour.

39

0

5

10

15

20

1 51 101 151 201 251 301 351 401 451

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

Figure 4.6: TEAM vs. Quake III team AI - Typical Run (Absolute perfor-
mance).

-50

0

50

100

150

200

250

1 51 101 151 201 251 301 351 401 451

Point #

Le
ad

 o
f a

da
pt

iv
e

te
am

Figure 4.7: TEAM vs. Quake III team AI - Typical Run (Relative Performance).

40

Chapter 5

Discussion

In this chapter four topics are discussed. First, in regard to the third research
objective; obtaining a qualitatively acceptable performance of the adaptive mech-
anism, section 5.1 evaluates the qualitative performance of TEAM. Second, in
section 5.2 the behaviour learned by the TEAM is discussed. Third, section 5.3
discusses the phenomenon of TEAM ‘forgetting’ tactics. Fourth, section 5.4
discusses the relationship between artificial intelligence and entertainment in
commercial computer games.

5.1 Qualitative evaluation of TEAM
In this section we evaluate the qualitative performance of the adaptive mech-
anism. TEAM is an online adaptive mechanism, and for online adaptation
to work in practice, we denote four requirements for qualitative performance.
First, it must be computationally fast. Second, robust with respect to random-
ness inherent in the environment. Third, efficient with respect to the number
of adaptation trials, and fourth, effective with respect to the intermediate AI
generated during the adaption phase [38]. Below we discuss each of these four
requirements in detail.

1. Computationally fast. In our environment the adaptation-process takes
place online. Therefore the adaptation mechanism should only consume a
minimum of processing resources to prevent disruption of the flow of the
gameplay. TEAM is computationally fast because it only needs to return
a single genome to the application and update a small population after
each state-transition.

2. Robust. TEAM is robust in a sense that while the gaming mechanism of
action-games is largely probabilistic, it is able to cope with a large amount
of randomness in the environment. As already discussed in chapter 3,
TEAM uses a delayed-reward mechanism (sub-section 3.4.4), a fitness-

41

recalculation mechanism (sub-section 3.5.1), and a history fall-back con-
cept (sub-section 3.5.2) to impose robust behaviour.

3. Efficient. TEAM is efficient with respect to the number of trials required
for a human player to notice the effects of adaptation of opponent’s be-
haviour. In chapter 4 we stated that the average relative turning point of
a team controlled by TEAM is 71.33. We are particularly pleased with
this result considering that TEAM has to learn against the original Quake
III opponent who already behaves efficiently, and by adaptation of agent
behaviour significantly outperforms this opponent. Should the opponent
we tested TEAM against be not as fine-tuned as the original Quake III
opponent, the average relative turning point would have been even lower.

4. Effective. The effectiveness of an adaptive mechanism is measured in
terms of the challenge adaptive agents pose compared to e.g., non-adaptive
agents. Evolutionary algorithms are often disregarded from research since
they generally are in-effective for online adaptation tasks [38]. Yet, ob-
serving the experimental results it is a great gratification that TEAM,
which is inspired by evolutionary algorithms, is indisputably effective con-
sidering the fact that it outperformed non-adaptive opponents without
any significant degradation in performance.

In summary, we may conclude that TEAM is computationally fast, robust,
efficient and effective.

5.2 Learned behaviour
Analysing the behaviour of TEAM, we observed that the population does not
converge to a single dominant strategy. On the contrary, TEAM is continuously
adapting to the environment in order to remain dominant on an overall basis.
In this section we discuss towards which tactics TEAM is inclined to evolve.

We observed that in state ‘Both flags at their base’, the adaptive team tends to
go on full offence. Additionally, in state ‘Base flag stolen’, it tends to become
predominantly offensive, and in state ‘Enemy flag stolen’ it tends to become
predominantly defensive. Finally, in state ‘Both flags stolen’ the adaptive team
tends to become predominantly offensive.
Remarkably, the team has learned to go on full offence when both flags are

at their base. Considering that the team risks losing its own flag due to an
inferior defence, a qualitative explanation of the benefit of this tactic is in place.
A primary requirement for returning the enemy flag to the friendly base, and

thus scoring a point, is first actually capturing the enemy flag. The adaptive
team learned to go on full offence in state ‘Both flags at their base’. Yet, the
non-adaptive team’s tactic is moderate in this state; some agents are assigned
to an offensive role, while others are assigned to a defensive role. Due to the
offensive field supremacy of the adaptive team in this state, it is plausible that
the adaptive team manages to capture the enemy flag.

42

Still, in order for the adaptive team to score a point, it needs to return the
flag to the friendly base. Constant adaptation of the other states ensures that
tactics are used which provide a balance between on the one hand defending
the agent that is trying to return the enemy flag to the friendly base, and on
the other hand preventing the enemy team from capturing and returning the
friendly flag to its base. As can be intuitively felt, ensuring that the enemy flag
is captured, and successively retaining this positive momentum, is an effective
way to win the Capture-The-Flag team-based game mode.
The original Quake III team AI uses only moderate tactics in all states.

Therefore, it is not able to counter any field supremacy. This exemplifies the
inadequacy of non-adaptive artificial intelligence. Despite the fact that the
original Quake III team AI is fine-tuned to be suitable for typical situations, it
cannot adapt to superior player tactics, like the above-sketched situation.

5.3 Forgetting tactics
This section discusses the phenomenon of TEAM ‘forgetting’ tactics, presents
an analysis of its occurrence, and suggests how to prevent the occurrence of this
phenomenon.
We noticed that if we let the experiments continue even after an absolute

turning point was discovered, it sometimes happened that the quality of the
population started to degrade, which resulted in inferior behaviour. An experi-
mental run where this phenomenon occurs is displayed in appendix B.4. In most
adaptive mechanisms this phenomenon occurs because the concerning mecha-
nism continues to learn new behaviour, even when it is already successful. In
practice the effects of continuously adapting are often informally described as
if the adaptive mechanism is ‘forgetting’ what it previously learned. As noted
in [38], simply stopping the adaptive mechanism when it has reached an opti-
mum is not a good solution, because the agents should still be able to adapt to
changing player tactics. We therefore implemented a fitness-recalculation mech-
anism, which was already discussed in section 3.5.1, to protect the population
from degrading.
However, in the experimental run displayed in appendix B.4, we observed

that under special circumstances it is possible that the quality of the popula-
tion degrades. Ironically, in contrast to the fitness-recalculation mechanism’s
design goal of preventing the quality of the population to degrade, the fitness-
recalculation mechanism is sometimes obliquely causing the degradation. Recall
that we continuously recalculate the fitness value of parent genomes in the pop-
ulation. Assume that the population consists of genomes of a relatively high
quality, but that the children of these genomes obtain low fitness values due
to some unlucky circumstances. Consequently, the fitness value of the ‘good’
parent genomes decreases. Since in this case the fitness value of some parent
genomes in the population is relatively low, it is likely that they are replaced
by genomes which receive higher fitness values in the present ‘unlucky’ circum-
stances. However, such genomes clearly got lucky when they were evaluated,

43

and consequently their fitness value decreases quickly after being added to the
population. Thus, the quality of the population sometimes is inclined to de-
crease, because genomes which seem superior (but are not) can replace genomes
which are superior (but don’t seem to be).
A potentially significant degradation of the population’s quality is caused by

the replacement of the complete population by inferior genomes. An example of
this phenomenon is displayed in appendix C. Note that the adaptive mechanism
still is able to recover from the behaviour caused by such an inferior population,
but fact is that the population is designed for preservation of best-so-far genomes
and therefore should not be easily replaced as a whole.
To prevent a degrading quality of the population therefore implies that

genomes in the population are replaced if, and only if, a higher certitude of
their ‘good’ performance can be obtained. Such increased safekeeping of the
population entails that changes in the population are enforced at a slower rate.
Therefore, in commercial application of TEAM, a balance should be found be-
tween on one hand sustaining earlier behaviour, and on the other hand quickly
responding to behavioural changes.

5.4 AI and entertainment
TEAM is specifically designed to create a strong AI system capable of defeating
the best human players, as is common practice in academic AI game-research
[8]. However, game developers do not share the academia’s objective of creating
strong AI systems. With regard to artificial intelligence, their focus comprises
maximizing the entertainment value of their products [8]. Imagine that a game
is published where human players cannot defeat the artificial opponents. This
would not be entertaining; rather, it would be a frustrating experience for human
players. For instance, Quake III agents could easily shoot with 100% accuracy,
but in practice they deliberately do not.
Regarding the effectiveness of TEAM, we designed the adaptive mechanism

to increase its performance by adaptation based on the assumption that a strong
human player sees this adaptive behaviour as a challenge. However, assume that
we are not dealing with a strong human player, but with a novice player, then
evidently this person is not entertained if the game is too difficult.
Therefore, strong AI systems have to be toned down to adjust to human play-

ers in such a way that human players are continuously challenged, instead of be-
ing ‘sadistically slaughtered’. For instance, in the action game genre, computer-
game opponents should strive to be only slightly superior to human players.
Thus, these computer-game opponents are challenging enough for human play-
ers to continuously attempt to win, and at the same time, are not frustrating
since they no longer unremittingly win significantly.
Concluding, for entertainment purposes, the adaptive mechanism should not

be focussed on winning, but rather should be based on subjective criteria which
ensure that a challenging ‘balance’ between artificial opponents and human play-
ers emerges. With TEAM this can be possibly accomplished by redesigning the

44

evaluation function. Future research should determine how well this works.

45

Chapter 6

Conclusions and future
research

At the end of this thesis we return to the problem statement and research ques-
tion. Section 6.1 revisits the research question. In section 6.2 the problem
statement is answered. Subsequently, section 6.3, describes future research di-
rections.

6.1 Answer to the Research Question
In section 1.3 we presented our problem statement and posed one research ques-
tion that should be answered before we could deal with the problem statement.
In this section we answer the research question. In the next section we will
formulate from this answer a reply to the problem statement.
Our research question was:

Research question: Is it possible to create a mechanism that
imposes adaptive team AI on commercial computer-game opponents
and achieves a qualitatively acceptable performance?

In our attempt to answer the research question, we have three objectives.

1. Designing a mechanism that imposes adaptive team AI on opponents in
commercial computer games.

2. Implementing the design in a test environment.

3. Obtaining a qualitatively acceptable performance of the adaptive mecha-
nism, i.e., performance that is computationally fast, robust, efficient and
effective [38].

46

In accordance with the first research objective, we designed a team-oriented
adaptive mechanism and named it the Tactics Evolutionary Adaptability Mech-
anism (TEAM).
In accordance with the second research objective, we successfully imple-

mented the design of TEAM in Quake III, a state-of-the-art commercial computer-
game.
In accordance with the third research objective we evaluated the adaptive

capability of TEAM. We denoted two experiments. The first experiment con-
cerned testing TEAM while competing against static team AI, and was aimed
at investigating the adaptive capability of TEAM. The second experiment con-
cerned testing TEAM while competing against the original Quake III team AI,
and was aimed at investigating the adaptive capability of TEAM in an envi-
ronment where the opponent behaviour changes. Based on the experimental
results, discussed in chapter 4, we drew the following conclusions:

• TEAM is capable of successfully adapting to static opponent behaviour.

• TEAM is capable of successfully adapting to changes in the opponent
behaviour.

The conclusions of both experiments show that TEAM endows opponents in
team-oriented commercial computer games with successful adaptive behaviour.
We evaluated the requirements for qualitatively acceptable performance [38],

and drew the conclusion that TEAM is computationally fast, robust, efficient
and effective. Thereupon, we may draw the conclusion that TEAM obtained a
qualitatively acceptable performance.
By achieving all our research objectives, we may draw a final conclusion by

answering the research question with an unequivocal yes, it is indeed possible to
create a mechanism that imposes adaptive team AI on commercial computer-
game opponents and achieves a qualitatively acceptable performance.

6.2 Answer to the Problem Statement
Our problem statement was:

Problem statement: Is it possible to improve the performance
of opponents in state-of-the-art commercial computer games, with
regard to their team-oriented behaviour?

Our approach to answering the problem statement was aimed at creating
adaptive team AI capable of exceeding the limitations of its designer’s vision by
unsupervised and intelligent adaptation to the environment. Taking the answer
to the research question above into consideration, the answer to the problem
statement must be that it is indeed possible to improve the performance of
opponents in state-of-the-art commercial computer games, with regard to their
team-oriented behaviour.

47

The answer to the problem statement does not preclude that there are alter-
native ways to improve the performance of opponents in state-of-the-art com-
mercial computer games, and even further improve upon adaptive team-oriented
behaviour.
TEAM is capable of unsupervised and intelligently adapting to the envi-

ronment, and as stated in section 5.2, TEAM adapted to the environment in
such a way that it evolved towards dominant tactics. These dominant tactics,
which resulted in ’dangerous’ but successful behaviour, exceeded the vision of
the designers of Quake III, which was focussed at always behaving moderately.
Therefore, we have fulfilled our aim of creating adaptive team AI capable of
exceeding the limitations of its designer’s vision by unsupervised and intelligent
adaptation to the environment.
In chapter 1 we stated that adaptive team AI in commercial computer games

does not exist. Therefore, our results provided a significant contribution to
the study and application of artificial intelligence techniques in general, and
machine-learning techniques in commercial computer games in particular.

6.3 Recommendations for Future Research
In chapter 5 we discussed that TEAM is suitable for online team-oriented ar-
tificial intelligence of commercial computer-game opponents. However, some
more research must be done before TEAM can be used for entertainment pur-
poses in commercial computer games. We specifically demarcate between on
the one hand designing an effective adaptive mechanism, and on the other hand
designing an entertaining adaptive mechanism. Designing an effective adaptive
mechanism typically is the concern of computer science research, where an enter-
taining adaptive mechanism is an interesting area of research for psychologists
and cultural-scientists. Therefore, the topic of entertainment poses a suitable
area of future research, particularly with an eye on commercial implementation
of machine-learning techniques in commercial computer games.
On a personal note, we suggest extending the research to highly tactical

team-oriented commercial computer games, such as games in the real-time strat-
egy game genre. As Buro [8] states, unlike other game genres, these games offer
a large variety of fundamental AI research problems, like adversarial real-time
planning, decision making under uncertainty, spatial and temporal reasoning,
pathfinding, resource management and collaboration, learning, and, opponent
modeling. We therefore endorse the vision of Buro that the results of real-time
strategy game research increases our understanding of fundamental AI prob-
lems, like the ones listed above, and has considerable impact on the real-time
control domain in general and the computer games industry in particular, which
is in need of creating intelligent commercial computer-game opponents.
The design of TEAM positively answered the problem statement, by suc-

cessfully adapting tactics. However, we recommend future research to be, ul-
timately, aimed at creating adaptive AI capable of deciding which behavioural
adaptations are required, and determine how to best accomplish the adaptation.

48

References

[1] Adams, D. (1995)
"The Original Hitchhiker Radio Scripts".
Harmony Books
ISBN: 0517883848

[2] Aha, D. W. (1991)
"Case-based learning algorithms".
In Proceedings of the DARPA Case-Based Reasoning Workshop, pp. 147—
158
Washington, D.C.: Morgan Kaufmann

[3] Bachmann, F. et al. (2000)
"Software Architecture Documentation in Practice: Documenting Architec-
tural Layers".
SPECIAL REPORT CMU/SEI-2000-SR-004 - March 2000
Carnegie Mellon - Software Engineering Institute

[4] Barnes, P. and Hutchens, J. (2002)
"Testing Undefined Behavior as a Result of Learning".
AI Game Programming Wisdom (ed. Rabin, S.), pp. 615-623
Charles River Media

[5] Boullart, L., Krijgsman, A. and Vingerhoeds, R.A. (1992)
"Application of artificial intelligence in process control".
Pergamon Press
ISBN: 0080420176

[6] Buche, C., Parenthoën, M., Tisseau, J. (2002)
"Learning by imitation of behaviour for autonomous agents".
Laboratoire d’Informatique Industrielle, ENIB
Université de Bretagne Occidentale, France

[7] Buijs, A. (1999)
"Statistiek om mee te werken".
Zesde druk, derde oplage, Educative Partners Nederland
ISBN: 90-207-2733-8

49

[8] Buro, M. (2003)
"RTS Games as Test-Bed for Real-Time AI Research".
Department of Computing Science, University of Alberta, Canada
Proceedings of the 7th Joint Conference on Information Science, JCIS 2003,
Editors: Chen, K., et al.

[9] Clarke, A.C. (1972)
"Profiles of the Future".
Indigo, London

[10] Cohen, P.R. (1995)
"Empirical Methods for Artificial Intelligence".
ISBN: 0-262-03225-2 (HC)

[11] Darwin, C. (1859)
"The Origin of Species, by means of Natural Selection, or the Preservation
of Favoured Races in the Struggle for Life".
Murray of London, London, United Kingdom

[12] Demasi, P., Cruz, A.J. de. O. (2002)
"Online coevolution for action games".
Instituto de Matemática - Ńucleo de Computação Electrônica
Universidade Federal do Rio de Janeiro

[13] Dijkstra, E.W. (1959)
"A note on two problems in connection with graphs".
Numeriche Math, 1, pp. 269-271

[14] Donkers, H.H.L.M. (2003)
"Nosce Hostem, Searching with opponent models".
SIKS Dissertation Series No. 2003-13
Universiteit Maastricht, The Netherlands
ISBN: 90-5278-390-X

[15] Duan, J., Gough, N.E., Mehdi, Q.H. (2002)
"Multi-agent reinforcement learning for computer-games agents".
Multimedia & Intelligent Systems Research Laboratory
University of Wolverhampton, United Kingdom

[16] Eiben, A.E., Smith, J.E. (2003)
"Evolutionary Computing Tutorial Part 1: What is an Evolutionary
Algorithm?".
http://www.evonet.polytechnique.fr/CIRCUS2/
valise/bcraenen/intro_tut.pdf

[17] Eiben, A.E., Smith, J.E. (2003)
"Lecture Slides - What is an Evolutionary Algorithm?".
http://www.evonet.polytechnique.fr/CIRCUS2/valise/bcraenen/EC-
tutorial-whatis.ppt

50

[18] FIPA (2001)
"The foundation for intelligent physical agents".
http://www.fipa.org

[19] Gosavi, A. (2003)
"Simulation-Based Optimization: Parametric Optimization Techniques and
Reinforcement Learning".
Kluwer Academic Publishers
ISBN: 1402074549

[20] Hahn, A.D. (2003)
"The Fortress of infinitude - A random repository of interests and infor-
mation".
http://www.randomterrain.com/gamedesign/randomness.html

[21] Herbert, F. (1965)
"Dune".
Philadelphia, PA: Chilton Books
ISBN: 0441172717

[22] Jansen R.P.S. et al. (1998)
"The bottleneck: mitochondrial imperatives in oogenesis and ovarian follic-
ular fate".
Molecular and Cellular Endocrinology 145, pp. 81-88

[23] Johnson-Laird, P.N. (1997)
"De computer en de menselijke geest - Een inleiding in de cognitieweten-
schap".
FontanaPress/HarperCollins
ISBN: 90-274-4165-0

[24] Kernighan, B., Ritchie, D.M. (1989)
"C Handboek".
Prentice Hall - Academic Service
ISBN: 90-6233-488-1

[25] Laird, J.E. (2000)
"It Knows What You’re Going to Do: Adding Anticipation to a Quakebot".
Proceedings of the AAAI 2000 Spring Symposium Series: Artificial Intelli-
gence and Interactive Entertainment, March 2000 (AAAI technical report
#SS-00-02).

[26] Laird, J.E., Van Lent, M. (2000)
"Interactive Computer Games: Human-Level AI’s Killer Application".
Proceedings of the AAAI National Conference on Artificial Intelligence,
August 2000.

[27] Mitchell, T.M. (1997)
"Machine Learning"., pp. 81-127, 368-390

51

McGraw-Hill Science/Engineering/Math
ISBN: 0070428077

[28] Nilsson, N.J. (1982)
"Principles of Artificial Intelligence".
Springer-Verlag, 2nd edition, Berlin

[29] Pietro, A. D., While, L., Barone, L. (2002)
"Learning in RoboCup keepaway using evolutionary algorithms".
In W. B. Langdon, E. Cantu-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K.
Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter,
A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO
2002.

[30] Pfeifer, R., Scheier, C. (2002)
"Understanding Intelligence".
The MIT Press, Cambridge, Massachusetts, London, England
ISBN: 0-262-66125-X

[31] PlanetQuake (2003)
"The epicenter of everything Quake".
http://www.planetquake.com

[32] Postma, E.O. (1994)
"SCAN: A Neural Model of Covert Attention".
Universiteit Maastricht, The Netherlands
ISBN: 90-9007320-5

[33] Pyeatt, L.D. et al. (1998)
"Learning to Race: Experiments with a Simulated Race Car".
Colorado State University

[34] Rabin, S. (2002)
"AI Game Programming Wisdom".
First Edition, Charles River Media
ISBN: 1-58450-077-8

[35] Rijswijck, J., van (2003)
"Learning Goals in Sports Games".
Game Developers Conference, San Jose, 2003
Department of Computing Science, University of Alberta

[36] Robbins, T (1980)
"Still Life With Woodpecker".
Bantom, New York, pp. 19

[37] Robert, G., Portier, P., Guillot, A. (2002)
"Classifier systems an ‘animat’ architectures for action selection in
MMORPG".
AnimatLab, Laboratoire d’Informatique de Paris, France

52

[38] Spronck, P.H.M., Sprinkhuizen-Kuyper, I.G., Postma, E.O. (2003)
"Online Adaptation of Computer Game Opponent AI".
Universiteit Maastricht, The Netherlands

[39] Spronck, P.H.M., Sprinkhuizen-Kuyper, I.G., Postma, E.O. (2002)
"Improving Opponent Intelligence by Machine Learning".
Universiteit Maastricht, The Netherlands

[40] Sterren, W., van der (2002)
"Squad Tactics: Team AI and Emergent Maneuvers".
AI Game Programming Wisdom (ed. Rabin, S.), pp. 233-246
Charles River Media

[41] Stroustrup, B. (1997)
"The C++ Programming Language".
Third Edition, Addison-Wesley
ISBN: 0-201-88954-4

[42] Taylor, C. (2002)
"President of Gas Powered Games, shares his opinions with us about the
future of PC gaming".
GameSpy.com, Dec. 7, 2002
http://www.gamespy.com/interviews/december02/christaylor/index.shtml

[43] Tozour, P. (2002)
"The Evolution of Game AI".
AI Game Programming Wisdom (ed. Rabin, S.), pp. 3-15
Charles River Media

[44] Tozour, P. (2002)
"The Perils of AI Scripting".
AI Game Programming Wisdom (ed. Rabin, S.), pp. 541-547
Charles River Media

[45] Waveren, J.P.M. van, (2001)
"The Quake III Arena Bot".
Master’s thesis, revision 1
University of Technology Delft, Faculty ITS

[46] Waveren, J.P.M. van, and Rothkrantz, L.J.M. (2001)
"Artificial Player for Quake III Arena".
2nd International Conference on Intelligent Games and Simulation GAME-
ON 2001 (eds. Quasim Mehdi, Norman Gough and David Al-Dabass).
SCS Europe Bvba, pp. 48-55

[47] Weizenbaum, J. (1966)
"ELIZA — A computer program for the study of natural language commu-
nication between man and machine".
Communications of the ACM 9(1), pp. 36-45

53

[48] Winands, M.H.M. (2000)
"Analysis and Implementation of Lines of Action".
Master’s Thesis CS 00-03
Universiteit Maastricht, The Netherlands

[49] Woodcock, S. (2000)
"Game AI: The State of the Industry".
Gamasutra
http://www.gamasutra.com/features/20001101/woodcock_01.htm

[50] Wooldridge, M. (2002)
"An Introduction to Multiagent Systems", pp. 214-221.
John Wiley & Sons, Chichester, England
ISBN: 0 47149691X

[51] Wyrobek, A.J. et al. (1996)
"Mechanisms and Targets Involved in Maternal and Paternal Age Effect on
Numerical Aneuploidy".
Biology and Biotechnology Research Program, L-452, Lawrence Livermore
National Laboratory
Environmental and Molecular Mutagenesis 28, pp. 254-264

54

Appendix A

Experimental results
TEAM vs Static Opponent

Experiment # Absolute turning point Relative turning point
0 72 62
1 53 8
2 150 144
3 70 52
4 137 126
5 173 12

Avg 109.17 67.33
StDev 50.17 56.86
StError 15.13 17.14

Median 104.5 57
Minimum 53 8
Maximum 173 144

Avg Low 94 50
Avg High 124 84

Figure A.1: Summary of experiment results.

55

A.1 Experimental run #0 (Long run)

Score total 692
Score adaptive team 520
Score non-adaptive team 172
Absolute turning point 72
Relative turning point 62

0

5

10

15

20

1 51 101 151 201 251 301 351 401 451 501 551 601 651

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-50

0

50

100

150

200

250

300

350

400

1 51 101 151 201 251 301 351 401 451 501 551 601 651

Point #

Le
ad

 o
f a

da
pt

iv
e

te
am

56

A.2 Experimental run #1

Score total 207
Score adaptive team 138
Score non-adaptive team 69
Absolute turning point 63
Relative turning point 8

0

5

10

15

20

1 51 101 151 201

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

0

10

20

30

40

50

60

70

80

1 51 101 151 201

Point #

Le
ad

 o
f a

da
pt

iv
e

te
am

57

A.3 Experimental run #2

Score total 197
Score adaptive team 108
Score non-adaptive team 89
Absolute turning point 150
Relative turning point 144

0

5

10

15

20

1 51 101 151

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-15

-10

-5

0

5

10

15

20

25

1 51 101 151

Point #

Le
ad

 o
f a

da
pt

iv
e

te
am

58

A.4 Experimental run #3

Score total 175
Score adaptive team 116
Score non-adaptive team 59
Absolute turning point 70
Relative turning point 52

0

5

10

15

20

1 51 101 151

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-10

0

10

20

30

40

50

60

70

1 51 101 151

Point #

Le
ad

 o
f a

da
pt

iv
e

te
am

59

A.5 Experimental run #4

Score total 170
Score adaptive team 102
Score non-adaptive team 68
Absolute turning point 137
Relative turning point 126

0

5

10

15

20

1 51 101 151

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-10

-5

0

5

10

15

20

25

30

35

40

1 51 101 151

Point #

Le
ad

 o
f a

da
pt

iv
e

te
am

60

A.6 Experimental run #5

Score total 272
Score adaptive team 145
Score non-adaptive team 127
Absolute turning point 173
Relative turning point 12

0

5

10

15

20

1 51 101 151 201 251

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-5

0

5

10

15

20

25

30

1 51 101 151 201 251

Point #

Le
ad

 o
f a

da
pt

iv
e

te
am

61

Appendix B

Experimental results
TEAM vs Original Quake
III Opponent

Experiment # Absolute turning point Relative turning point
1 148 20
2 263 158
3 106 70
4 38 36
5 99 50
6 42 24
7 58 114
8 107 48
9 205 132

10 92 32
11 61 56
12 127 144
13 136 50
14 91 82
15 53 54

Avg 108.40 71.33
StDev 61.99 44.78
StError 18.69 13.50

Median 99 50
Minimum 38 20
Maximum 263 158

Avg Low 90 58
Avg High 127 85

Figure B.1: Summary of experiment results.

62

B.1 Experimental run #1

Score total 700
Score adaptive team 497
Score non-adaptive team 203
Absolute turning point 148
Relative turning point 20

0

5

10

15

20

1 51 101 151 201 251 301 351 401 451 501 551 601 651

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-25

0

25

50

75

100

125

150

175

200

225

250

275

300

1 51 101 151 201 251 301 351 401 451 501 551 601 651

63

B.2 Experimental run #2

Score total 344
Score adaptive team 197
Score non-adaptive team 147
Absolute turning point 263
Relative turning point 158

0

5

10

15

20

1 51 101 151 201 251 301

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

0

5

10

15

20

25

30

35

40

45

50

55

60

1 51 101 151 201 251 301

64

B.3 Experimental run #3

Score total 456
Score adaptive team 254
Score non-adaptive team 202
Absolute turning point 106
Relative turning point 70

0

5

10

15

20

1 51 101 151 201 251 301 351 401 451

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-10

0

10

20

30

40

50

60

70

80

90

1 51 101 151 201 251 301 351 401 451

65

B.4 Experimental run #4

Score total 712
Score adaptive team 532
Score non-adaptive team 180
Absolute turning point 38
Relative turning point 36

0

5

10

15

20

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-25

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701

66

B.5 Experimental run #5

Score total 460
Score adaptive team 353
Score non-adaptive team 107
Absolute turning point 99
Relative turning point 50

0

5

10

15

20

1 51 101 151 201 251 301 351 401 451

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-50

0

50

100

150

200

250

1 51 101 151 201 251 301 351 401 451

Point #

Le
ad

 o
f a

da
pt

iv
e

te
am

67

B.6 Experimental run #6

Score total 399
Score adaptive team 289
Score non-adaptive team 110
Absolute turning point 42
Relative turning point 24

0

5

10

15

20

1 51 101 151 201 251 301 351

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-25

0

25

50

75

100

125

150

175

200

1 51 101 151 201 251 301 351

68

B.7 Experimental run #7

Score total 509
Score adaptive team 374
Score non-adaptive team 135
Absolute turning point 58
Relative turning point 114

0

5

10

15

20

1 51 101 151 201 251 301 351 401 451 501

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-25

0

25

50

75

100

125

150

175

200

225

250

1 51 101 151 201 251 301 351 401 451 501

69

B.8 Experimental run #8

Score total 425
Score adaptive team 326
Score non-adaptive team 99
Absolute turning point 107
Relative turning point 48

0

5

10

15

20

1 51 101 151 201 251 301 351 401

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-25

0

25

50

75

100

125

150

175

200

225

250

1 51 101 151 201 251 301 351 401

70

B.9 Experimental run #9

Score total 512
Score adaptive team 306
Score non-adaptive team 205
Absolute turning point 205
Relative turning point 132

0

5

10

15

20

1 51 101 151 201 251 301 351 401 451 501

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-25

0

25

50

75

100

125

1 51 101 151 201 251 301 351 401 451 501

71

B.10 Experimental run #10

Score total 372
Score adaptive team 259
Score non-adaptive team 113
Absolute turning point 92
Relative turning point 32

0

5

10

15

20

1 51 101 151 201 251 301 351

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-25

0

25

50

75

100

125

150

175

1 51 101 151 201 251 301 351

72

B.11 Experimental run #11

Score total 296
Score adaptive team 209
Score non-adaptive team 87
Absolute turning point 61
Relative turning point 56

0

5

10

15

20

1 51 101 151 201 251

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-25

0

25

50

75

100

125

150

1 51 101 151 201 251

73

B.12 Experimental run #12

Score total 539
Score adaptive team 425
Score non-adaptive team 114
Absolute turning point 127
Relative turning point 144

0

5

10

15

20

1 51 101 151 201 251 301 351 401 451 501

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-25

0

25

50

75

100

125

150

175

200

225

250

275

300

325

1 51 101 151 201 251 301 351 401 451 501

74

B.13 Experimental run #13

Score total 496
Score adaptive team 367
Score non-adaptive team 129
Absolute turning point 136
Relative turning point 50

0

5

10

15

20

1 51 101 151 201 251 301 351 401 451

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-25

0

25

50

75

100

125

150

175

200

225

250

1 51 101 151 201 251 301 351 401 451

75

B.14 Experimental run #14

Score total 369
Score adaptive team 239
Score non-adaptive team 130
Absolute turning point 91
Relative turning point 82

0

5

10

15

20

1 51 101 151 201 251 301 351

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-25

0

25

50

75

100

125

1 51 101 151 201 251 301 351

76

B.15 Experimental run #15

Score total 368
Score adaptive team 252
Score non-adaptive team 116
Absolute turning point 53
Relative turning point 54

0

5

10

15

20

1 51 101 151 201 251 301 351

Point #

A
vg

 p
oi

nt
s

ov
er

 n
=2

0

-25

0

25

50

75

100

125

150

1 51 101 151 201 251 301 351

77

Appendix C

Forgetting tactics

This appendix presents an example of TEAM ‘forgetting’ tactics. Data is used
from state ’Both flags at their base’ of the experimental run which is displayed
in appendix B.4.
Observe figure C.1. Initially, the population consists of genomes with high

fitness values. Due to unlucky circumstances the fitness value of the genomes
is recalculated to lower values, and replaced by genomes which seem superior.
Subsequently, as can be observed, the fitness value of the new genomes is also
recalculated to lower values. The effect of this process is that in a short period
of time the population consisting of genomes which are superior (but do not
seem to be) is replaced by a population of genomes which seem superior (but
are not).

78

 Slot1 Slot2 Slot3 Slot4 Slot5
Point Genome Fitness Genome Fitness Genome Fitness Genome Fitness Genome Fitness
532 1341 1.27 1317 1.36 1329 1.26 1330 1.13 1344 1.40
 0.84 1.32 0.91 1346 1.25 1.33
 0.79 1.07 0.95 0.83 1.05
 1.37 1361 1.11 0.71 1348 1.52
 1359 1.66 1.16
 1.39 0.81
 0.99 1352 0.83
 1360 1.08
537 1356 0.99 0.88 0.83 0.96 0.93
 0.82 1371 1.16 0.99 0.56
 1.12 1.05 1368 0.66
 0.96 0.99 1369 1.41
 1.29
 0.86
 0.85
 1374 0.93
 1376 1.35
541 1.16 1379 1.30 1370 1.02 1380 1.17 1.21
 0.78 1.03 1382 1.20 0.84 1.02
 0.65 0.61 1.17 0.88
 1393 0.85 0.38 1.05 1385 1.14
 0.93 1396 0.45 0.72 0.86
 0.59 1397 1.01 0.56 0.65
 1400 0.93 0.66 1405 0.90
 0.62 0.80 0.70
 0.48 0.88 0.46
 1404 0.96 0.89
 0.92
 0.68
546 0.66 0.73 1411 0.57 0.65 1406 0.89

Figure C.1: Example of the occurance of a degrading quality of the population.

79

Summary

In the short history of computer science, ‘ancient’ commercial computer games,
such as Pacman, demonstrated that an entertaining commercial computer game
requires a rudimentary form of artificial intelligence. Throughout the years,
commercial computer games became increasingly realistic with regard to the
visual and auditory presentation. However, artificial intelligence in commercial
computer games has not yet obtained a high degree of realism.
We observed that current commercial computer-game opponents are en-

dowed with inferior team-oriented behaviour. The observation has led us to
the following problem statement: is it possible to improve the performance of
opponents in state-of-the-art commercial computer games, with regard to their
team-oriented behaviour?
One reason for the inferiority of team-oriented behaviour in commercial com-

puter games is that it lacks adaptive team AI. We aim at creating adaptive team
AI capable of exceeding the limitations of its designer’s vision by unsupervised
and intelligent adaptation to the environment.
An approach to deal with this aim is to create a mechanism which imposes

adaptive team AI on commercial computer-game opponents. The following
research question guided our research: is it possible to create a mechanism
that imposes adaptive team AI on commercial computer-game opponents and
achieves a qualitatively acceptable performance?
In our attempt to answer the research question, we had three objectives: (1)

designing a mechanism that imposes adaptive team AI on opponents in commer-
cial computer games, (2) implementing the design in a test environment, and
(3) obtaining a qualitatively acceptable performance of the adaptive mechanism,
i.e., performance that is computationally fast, robust, efficient and effective [38].
In accordance with the first research objective, we designed a team-oriented

adaptive mechanism and named it the Tactics Evolutionary Adaptability Mech-
anism (TEAM).
In accordance with the second research objective, we successfully imple-

mented the design of TEAM in Quake III, a state-of-the-art commercial computer-
game.
In accordance with the third research objective, we evaluated the require-

ments for qualitatively acceptable performance [38], and drew the conclusion
that TEAM is computationally fast, robust, efficient and effective. Thereupon,

80

drew the conclusion that TEAM obtained a qualitatively acceptable perfor-
mance.
By achieving all our research objectives, we drew a final conclusion by an-

swering the research question with an unequivocal yes, it is indeed possible to
create a mechanism that imposes adaptive team AI on commercial computer-
game opponents and achieves a qualitatively acceptable performance.
Our approach to answering the problem statement was aimed at creating

adaptive team AI capable of exceeding the limitations of its designer’s vision by
unsupervised and intelligent adaptation to the environment. Taking the answer
to the research question above into consideration, the answer to the problem
statement must be that it is indeed possible to improve the performance of
opponents in state-of-the-art commercial computer games, with regard to their
team-oriented behaviour.
TEAM is capable of unsupervised and intelligently adapting to the envi-

ronment. TEAM adapted to the environment in such a way that it evolved
towards dominant tactics. These dominant tactics, which resulted in ’danger-
ous’ but successful behaviour, exceeded the vision of the designers of Quake III,
which was focussed at always behaving moderately. Therefore, we have fulfilled
our aim of creating adaptive team AI capable of exceeding the limitations of its
designer’s vision by unsupervised and intelligent adaptation to the environment.
Adaptive team AI in commercial computer games does not exist. Therefore,

our results provided a significant contribution to the study and application of
artificial intelligence techniques in general, and machine-learning techniques in
commercial computer games in particular.

81

