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Abstract

The implementation of AI players for games exists at least since 1956 where the �rst chess player MA-
NIAC was implemented. Since this time AI players got more and more attention. For over 14 years now
Monte-Carlo Tree Search (MCTS) got investigated.

This thesis explains Ticket to Ride and the implementation of the game in the Monte-Carlo Tree Search
(MCTS) framework. However, the game engine also had to be implemented as well as several enhance-
ments for the MCTS algorithm. In the game each player plays a train building company connecting
certain cities as fast as possible. To know which routes to build each player gets certain destination
tickets, which he has to ful�ll until the game ends. These destination tickets are only known to the player
himself.

Ticket to Ride imposes several problems, which have to be considered. The board itself and each possibil-
ity a player has each round are known. The game also contains imperfect information, because a player
does not necessarily know the cards of his opponents as well as the destination tickets, he needs to ful-
�ll. The game also contains chance events when a player chooses to draw a card or new destination tickets.

This thesis includes a more detailed description of the rules of Ticket to Ride as well as a calculation
of the state-space complexity and game-tree complexity. MCTS, the handling of imperfect information
and chance events and several other enhancements to MCTS are discussed. This enhancements are the
Single-Observer, Multiple-Observer, determinized UCT, voting, progressive unpruning, progressive bias,
early termination of the playout step and an � -rule based strategy.

Since no usable implementation of the game exists, the problems and certain speci�cations of the imple-
mentation have to be discussed as well. The conditions under which the experiments were performed are
discussed as well. The results show that the combination of progressive unpruning and progressive bias
works best with using either the Single-Observer or the Multiple-Observer as its base.

The remaining enhancements were tested as well, but showed no improvement over the combination
of the two progressive approaches. Some enhancements like the determinized UCT, the voting player or
the playout strategy performed even worse than its Single-Observer variant.
It is also shown how well imperfect information is handled in the case of Ticket to Ride by comparing
it to two di�erent types of the cheating player. Both of them are able to access the knowledge of all
players. One cheating player also has �xed chance events. The Multiple-Observer has a similar result
when playing against the cheating player. Both agents were tested with and without the combination of
progressive bias and progressive unpruning. Both agents were able to win � 40% of all games. Therefore
both agents perform well considering their disadvantage.
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Chapter 1

Introduction

T his chapter shows the usage of AI in games. It gives a brief introduction to
search algorithms and the imperfect-information game Ticket to Ride. It also
introduces the research questions and gives a brief overview of this thesis.

1.1 Games and AI
Over the last few years game-playing agents have become more and more popular. You did not play
games only at home with your friends and family or in your local game shop, but also on your computer
or smart phone against other persons all over the world but also against the computer itself.

For playing against the computer, intelligent agents have to be developed. Such agents can have
di�erent goals. Such an agent can either play the game as good as possible or it tries to reach a certain
kind of level to play against.

These agents were developed for di�erent kinds of games like chess, checkers, Go or poker. The more
common AI methods are search algorithms. Most of these techniques need an evaluation function. The
better such an evaluation function classi�es each possible movement, the better it plays the game. Such
evaluation functions can be hard to �nd.

1.1.1 History of AI players
In 1956 the �rst chess program, called MANIAC, was able to defeat a novice player in a simpli�ed chess
game (Douglas, 1978). Since then more agents were implemented. The supercomputerDeep Blue was
the �rst who was able to defeat a world champion under normal chess tournament conditions against Garry
Kasparov in 1997. In this match Deep Blue had to play six times, Deep Blue won 3.5{2.5 (Campbell,
Hoane Jr., and Hsu, 2002). Around this time people focused more on researching on alternatives for AI
engines for other games.

Since then Go has become popular as a research topic. Building a strong engine has turned out to be
di�cult, because Go requires a more complex evaluation function than chess. Monte-Carlo Evaluations
was �rst introduced as a Go player by Br�ugmann (1993). With this introduction an evaluation function
was no longer required. 13 years later it was further developed as Monte-Carlo Tree Search (MCTS)
(Kocsis and Szepesv�ari, 2006, Coulom, 2007a). Since then more players were implemented, which were
even able to compete against humans on expert level. In 2014 the MCTS program Crazy Stone won
against the 9 dan player Norimoto Yoda (Wedd, 2015). Norimoto Yoda had a handicap of 4 stones.

1.1.2 Search Algorithms
There are many di�erent search algorithms. A search algorithm is normally used to ful�ll an objective.
These objectives can have di�erent forms. It is either used to �nd a path to an objective or to �nd a
winning state. There exist di�erent kinds of search algorithms. In this section a brief overview about
seven di�erent search algorithms is given: Minimax, �� -pruning, maxn , Expectimax, Dijkstra, A � and
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MCTS.

Minimax
Minimax is an adversarial search algorithm (Von Neumann and Morgenstern, 1944). The algorithm gives
each leaf node a value by using a heuristic function. The algorithm assumes that each player plays as
best as possible. It does so by assuming that the root player or max player maximizes the results, while
the other player tries to minimize it. At each node the best value according to the belonging player gets
chosen.

�� -pruning
�� -pruning improves the Minimax algorithm by pruning branches. A branch is pruned when it is proven
that it cannot inuence the upcoming decisions (Knuth and Moore, 1975).

maxn

The maxn algorithm (Luckhart and Irani, 1986) can be used for games with more than two players. It
works similar to the Minimax algorithm. The biggest di�erence is that each player has his own value,
and that each player maximizes it.

Expectimax
Expectimax (Michie, 1966) is used for games with a chance element. It changes the Minimax algorithm
such that it also contains a chance node. The Expectimax algorithm uses the chance element to calculate
the value of a node by multiplying the values of the children with their probabilities.

Dijkstra
Dijkstra is a single agent graph search algorithm (Dijkstra, 1959). It tries to �nd the path with the lowest
cost between a starting node and each other node. Each node, except for the starting node, starts with
a cost for the path equal in�nity. The algorithm starts at the starting node. It updates all nodes, which
are neighbors and were not visited yet. The updated cost is equal to cost of the distance. It then chooses
the node with the lowest cost and removes it from the list of non-visited nodes. This node is then the
current node and all neighbors are updated with the tentative distances.

A �

A � is a single agent path�nding algorithm. It is used to �nd the path with the lowest cost between two
nodes in a graph. To �nd such a path it estimates at each node the total cost of movement and tries to
keep it as low as possible. The graph tries to build a way over the nodes, which have the lowest estimated
movement cost (Hart, Nilsson, and Raphael, 1968).

Monte-Carlo Tree Search
MCTS is a best-�rst search algorithm (Coulom, 2007a). The algorithm is based on simulating the game
multiple times and then choosing the most promising option as your move or turn. The algorithm builds
a tree. Each node contains the information for the choosing process.

1.1.3 Success of Monte-Carlo Search as an AI player
One of the �rst successful Monte-Carlo search was called GIB. It was a bridge player implemented by
Ginsberg (2001). It competed in the 1998 and the 2000 World Computer Bridge Championships. It won
all games 1998 and all but one in the 2000 championship.
A successful implementation of MCTS for an Euro style board game was done by Szita, Chaslot, and
Spronck (2010) in Settlers of Catan. The MCTS-10,000 player performed the best with winning 49% of
all played games against several other players.
It also has shown some success in handling imperfect information (Cowling, Powley, and Whitehouse,
2012). They have tested several games with imperfect information. The games tested were Lord of
the Rings: The Confrontation (LOTR:C), Dou Di Zhu and the Phantom (4,4,4) game. The
approach was also tested against humans in the case of LOTR:C. There it was able to win 16 of the 32
games played the human player. When the player switched sides the AI player, the AI player was able
to win 14 of the 32 games.
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It also worked well for several other games like Amazons (Lorentz, 2008) and Scotland Yard (Nijssen and
Winands, 2012).

1.2 Ticket to Ride
In this thesis the game of Ticket to Ride (TTR) is investigated. Each player takes over the job of a train
building company in America and tries to build train tracks to connect certain cities as fast as possible.
Ticket to Ride is a Euro style board game. This means that it uses rather simple rules, has only indirect
player interaction and no one gets eliminated before the game ends. The game was invented by Alan R.
Moon and was published 2004 by Games Of Wonder. It has won several awards and the rules have been
translated into 11 other languages. The game also has several spin-o�s, where you can play the game in
other settings with normally only a few more rules. These rules can involve other ways to get victory
points or special building rules for tracks. Di�erent expansions can change the number of players, but
two to �ve players is the most common one.

Each player has destination tickets on his hand, which are unknown to his opponent. A player can
also draw train cards. These cards are also only known to him. Therefore TTR imposes several problems
to the MCTS algorithm. These problems are imperfect information as well as chance events.

1.3 Problem Statement and Research Questions
The goal of this thesis is to implement an MCTS player, which is able to play Ticket to Ride as strong
as possible. This leads to the following problem statement:

How can an MCTS player for TTR be developed?

To address the problem statement, this thesis answers the following three research questions.

Are Monte-Carlo methods applicable to Ticket to Ride?
It has been shown that Monte-Carlo methods work for many di�erent types of games (Browne et al.,
2012), but it has to be tested that it also works for the imperfect-information game Ticket to Ride. It
has to be tested as well, if MCTS is able to handle the stochastically of TTR.

How can MCTS handle the imperfect-information game in the domain of TTR?
Only a little amount of research has been done on handling imperfect-information in MCTS. This makes
it an interesting topic to investigate further, how the imperfect information inuences the performance
of the game. This will be done, by testing several strategies, which are used to handle imperfect informa-
tion. The tested strategies are the Single-Observer, the Multiple-Observer and determinized UCT. These
strategies were all introduced by Cowling et al. (2012). The last tested strategy is the voting approach
(Nijssen and Winands, 2012).

Which enhancements can improve the MCTS player?
It also has to be tested, which enhancements to the implemented player improve its e�ectiveness. The
enhancements tested in this thesis are progressive unpruning (Chaslot et al., 2008 and Coulom, 2007b),
progressive bias (Chaslot et al., 2008) and an � -rule based strategy.

1.4 Thesis Outline
The outline of this thesis is:

Chapter 1 gives an introduction to the thesis. It starts with introducing the usage of AI in games.
This also covers the success of MCTS in di�erent games. Then it gives an overview of di�erent search
algorithms used in this thesis. Afterwards the general idea and principles of Ticket to Ride are explained.
This is followed by the problem statement and research questions.
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Chapter 2 is about Ticket to Ride. The rules of the game are explained and di�erent strategies are
shown. It gives a brief introduction of the di�erent stand-alone editions and expansions for the game.
The chapter closes with the calculation of the state-space complexity and game-tree complexity.

Chapter 3 gives an introduction in MCTS. It begins with explaining Flat Monte-Carlo. Afterwards
the enhancement of Flat Monte-Carlo, Monte-Carlo Tree Search, is explained. Then the selection strat-
egy Upper Con�dence Bounds for Trees is closer analyzed. Then the di�erent enhancements, which were
used in this paper, are introduced. These enhancements contain progressive unpruning and progressive
bias as well as determinization, cheating MCTS, Single- and Multiple-Observer, determinized UCT, early
termination and � -based strategies.

Chapter 4 shows the connection of Ticket to Ride and MCTS. This chapter shows the special im-
plementations, which had to be done, such that Ticket to Ride can be analyzed by MCTS. Therefore
the special node structure is discussed �rst. Then implementation of choosing destination tickets, an
important part of Ticket to Ride, is explained. Afterwards it is explained how the di�erent types of
hidden information are handled.
The chapter also shows the implementation of UCT and explains the speci�cations of di�erent enhance-
ments. Therefore the heuristic knowledge used for progressive bias and progressive unpruning is explained.
Di�erent playout policies are also discussed. These playout policies cover the random playout, early ter-
mination and the used � -rule based strategy. It closes with an explanation on how to calculate the shortest
path during a game.

Chapter 5 describes the experiments which are performed. It starts with introducing the general
players. Afterwards the experimental setup is shown. This is done by not only showing the setup of
the di�erent used players, but also by introducing con�dence bounds, which is later used to validate the
results. It also gives the speci�cations of the environmental setup. Afterwards the di�erent experiments
are shortly explained and there results are given and explained.

Chapter 6 concludes the thesis. A brief summary of the results of the thesis is given. Then the
research questions and the problem statement are answered. The thesis closes with a proposal of future
research possibilities.



Chapter 2

Ticket to Ride

T his chapter explains the rules and strategies of Ticket to Ride. It gives a brief
overview over the di�erent standalone editions and expansions of Ticket to Ride
and examines its complexity.

2.1 Rules
Ticket to Ride can be played by two to �ve players in the original game. The game consists of a gaming
board (see Figure 2.1), 12 train cards in eight di�erent colors each, 14 locomotives counting as any color,
30 destination tickets and 45 trains for each player. All colored cards and the locomotives are shu�ed.
Together they form one stack of train cards. The destination tickets are shu�ed as well. Each player
gets dealt four train cards and three destination tickets, from which each player has to keep at least two.
The destination tickets that are not chosen return to the bottom of the destination tickets stack. Also
�ve open train cards are visible to all players at any time. The goal of the game is to gain the most
victory points. A player can get victory points in the three following ways. First the player can build a
track between to cities, second the player can build a continuous path between the two listed cities from
a destination ticket and third a player can own the longest continuous path. This is a bonus objective,
which can change in di�erent game modes. A player can also lose points. A player loses points if he has
not ful�lled a destination ticket at the end of the game. The player loses the value, which is written on
the ticket. During each turn a player has up to three options. He can draw cards, build a track between
two cities or take new destination tickets.

Drawing and Choosing Cards
A player can obtain up to two cards in his turn. A player can either choose from the cards visible to all
players, or a player can draw hidden cards from the card stack. If the player chooses a visible card, the
card is immediately replaced by the top most card of the card stack. If the player chooses a locomotive
card openly, he cannot draw another card. A player also cannot choose a locomotive as his second openly
drawn card. Another special rule is that as soon as three locomotives can be openly chosen, all open
train cards get replaced. The open cards from before go onto the discard pile.

Claiming a Track
A player can build a track by paying the number and color of a track visible on the board. If the color
of a track is gray, the player can choose any color to build this road. The player has to give the number
of cards visible on the board of the chosen color or can replace any number of train cards with the same
number of locomotives. Afterwards this player puts the same number of trains on the claimed track. If
a track has two options (see Figure 2.2), he can choose one of them and puts his train on the chosen
color. The other track can no longer be claimed in a game except this game is played by more than three
players. The player has to use the remaining color for building the connection. If a track is claimed, this
connection is gone and cannot be claimed by another player. If two cities have two connections, the same
player can only claim one of them when playing with four or more players. The player also immediately
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Figure 2.1: Two tracks connecting two cities

Number Points
1 1
2 2
3 4
4 7
5 10
6 15

Table 2.1: Points for claimed tracks. Left side of the table states, how many trains a player needs for a
track. On the right side the according victory points are shown.

gains the victory points for the track he claimed. The number of victory points is determined by the
number of trains the player needs to build the track (see Table 2.1).

Draw Destination Tickets

Figure 2.2: Two tracks connecting two cities

A player can also draw three destination tickets. He has to choose one but he can keep two or all three
of them.

The game starts to end if one player has less than three trains left at the end of his turn. Afterwards
each player, including the player who owns less than three trains, has one turn left. In the end all
destination tickets are revealed and the bonuses or penalties for destination tickets are added to the



2.2 | Strategy 7

victory points gained by claiming tracks. At last the longest continuous path is calculated and each
player who has it gets 10 additional victory points. The player with the most victory points wins. If one
or more players are tied for the most victory points, the player with the most ful�lled destination tickets
wins, if there is still more than one player the player who holds the longest continuous path wins. The
rules can be also found online at the Days of Wonder homepage (Moon, 2015).

2.2 Strategy

2.2.1 Counting Cards

A good strategy is to keep a good overview over the remaining available cards. To do so, the player
should pay attention to the cards other players draw openly or pay while claiming tracks. Each type of
card, like locomotives or white trains, only occurs a certain number of times and can so inuence the
tracks a player can claim. The cards, which are known to the player, are open cards, discard pile, his
own cards and chosen cards by the opponents. With this knowledge the player can make an assumption,
which cards are on the hand of the other player and which cards are still in the stack. As a consequence
the player can estimate for which tracks he can still get enough cards and which color the player should
choose.

2.2.2 Choosing Destination Tickets

For the game it is quite important, which kinds of tracks a player takes during which point in the game.

At the Beginning of the Game

The �rst destination tickets a player chooses are important, because they inuence the tracks a player
is going to build during the game. A player should take one of the more valuable destination tickets.
Destination tickets with a high value lead to a wide distribution over the board, and so it is more likely
that destination tickets, a player gets later in the game, are easier or already complete. If one of the other
routes is close by and can be incorporated into the �rst destination ticket, it should be chosen as well.
This way a player can ful�ll more destination tickets while building fewer tracks. If the last destination
ticket is not connectable to the other destination tickets a player should not take it, so he can draw new
destination tickets earlier in the game and is able to get destination tickets, which are nearer to his built
path and as such easier to build.

During the Game

A player can follow two di�erent strategies for choosing destination tickets during the game. In the
�rst strategy the player takes new destination tickets as early as possible, to incorporate more destination
ticket objectives when he chooses which tracks to claim. The other strategy is to choose new destination
tickets as soon as the player ful�lled his existing destination tickets or a player has no possibility to
complete the remaining destination tickets. Both strategies have advantages and disadvantages. The
advantage of choosing destination tickets early in the game is that a player can make a better plan of
which tracks to take. The disadvantage is that the player may distract himself too much, and is not
able to ful�ll the bigger destination tickets until the game ends. The advantage of choosing destination
tickets after a player completed all other destination tickets is that the player can focus on completing
this new drawn destination tickets. Another advantage could be that the player gets destination tickets,
which are easily or already ful�lled. This strategy also has a disadvantage. The disadvantage is that the
player may not be able to ful�ll these new drawn destination tickets, because other players �nish the game.

At the Last Turn of the Game

At the last turn a player has the same options as in any other turn during the game. If a player
has su�ered great losses due to un�lled destination tickets, but has built his tracks in such a way that it
covers a lot of cities, it could be plausible to draw new destination tickets, to cover the losses he made
due to un�lled destination tickets. But this strategy contains gambling due to the fact that you can only
estimate, which destination tickets are left and which destination tickets are owned by other players.
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2.2.3 Claiming Tracks of Importance to Opponents
Another strategy is to claim tracks, which are of great importance to other players. Such a track could
be a track, which connects two di�erent paths. Opponents then have to estimate of how much value this
track is for the opponent and if it is worth paying the resources and spending a turn. The advantage of
such a move is that the opponent has to spend more resources to connect these two paths and maybe
does not gain the possibility to do so. The disadvantage is that the player has to give up resources of his
own and that the track could be of no to little value for the other player.

2.2.4 Building a Continuous Route
The last strategy is that a player tries to build a track connecting to one of his routes, so that an opponent
does not build such tracks to the player’s disadvantage. This is especially true for the games with two
or three players, because all tracks can only use one of their connections. In games with more players,
more possibilities become available for certain connections. It can be plausible to skip bigger tracks, if
the player is sure that such tracks are not useful for other players. Most players would not build such
tracks, because the resources, such a move costs, are too high and could be of more value to the player
elsewhere.

2.3 Stand Alone Editions and Expansions
After the �rst game has been released, four di�erent stand-alone editions were published. The game also
has six expansions. Two of them would be so called \Mini Expansions". All other games contain more
rules and new content. Most of the expansions cover new maps, like the Europe map in the \Ticket To
Ride Europe" stand-alone edition. This stand-alone edition adds a new map, new destination tickets and
train stations as new game elements. This edition also adds new rules. These cover ferries, tunnels and
train stations. It also adds a new kind of destination ticket, which a player can only get in the beginning.
These destination tickets are the \longest destination ticket" and are worth the most points. One of the
new rules cover train stations, which allow players to use one track that is owned by another player. This
is a fourth option a player can take on his turn. Each train station is worth 4 victory points at the end
of the game, if it is still not placed. Some of the games also have di�erent or more bonus objectives. One
of them is to have the most ful�lled destination tickets. This thesis only covers the original \USA Map".

2.4 Complexity
This section discusses the state-space and the game-tree complexity (Allis, 1994) for the two-player variant
of Ticket to Ride.

2.4.1 State-Space Complexity
The state-space complexity is the number of legal board con�gurations, which can be reached from the
initial position of the game. The calculation for Ticket to Ride depends on the tracks, which are built
and the destination tickets on the hands of the players. The USA map has 78 di�erent tracks. The
distribution of tracks for a certain number of trains can be seen in Table 2.2. At the end of a game not
all tracks are necessarily built. Since a wide variety of track combinations is possible, an upper bound
for track con�gurations can be calculated by 378. Here 3 represents the di�erent possibilities for a track.
A track can be built by the �rst player, the second player or be unoccupied. The total number of tracks
is 78.

One player can also own up to 28 destination tickets while the other one only owns 2. Any other
combination is also possible as well. The total number of combinations can be calculated as following:

28X
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�
�
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�

This leads to � 5:76 � 1017 possibilities for destination tickets. This number has to multiplied by the
number of possible tracks con�gurations. The number of possible track con�gurations is 378 � 1:64� 1037.
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Number of Trains Number of Tracks
1 5
2 25
3 17
4 14
5 8
6 9

Table 2.2: Number of tracks for a certain number of trains.

This leads to the following total number of board con�gurations: � 9:46� 1054. This is an overestimation,
because it is not possible to build all tracks in the actual game. To compare the state-space complexity,
chess was chosen. Shannon calculated this number to be � 1043 (Shannon, 1950). Therefore the state-
space complexity of TTR is more than � 1011 higher than chess.

2.4.2 Game-Tree Complexity
The game-tree complexity of a game is the number of leaf nodes in the solution search tree of the initial
position of the game. To calculate an exact number is often not possible. An estimation can be made in
normal cases. To estimate the average number of turns is needed. The average number of possibilities
for each player on each turn, the average branching factor, is also required. There are three di�erent
possibilities a player can do each turn.

� Draw or choosing new train cards

� Claim a road

� Draw new destination tickets

When the player chooses to draw or select new train cards, he can choose between �ve open cards or
the topmost card of the stack. As a second card it is possible that a player cannot choose another card,
because he took a locomotive as his �rst card. He also cannot choose a locomotive as his second card.
For choosing cards a player has at most 36 options, if no locomotives are visible or become visible as a
player chooses new cards. The least number of options a player can have for drawing cards is 18 while 2
locomotives are visible and no more locomotives become visible while choosing cards.

The number of tracks a player can claim is highly dependent on the train cards a player has on his
hand. For the number of di�erent possibilities a player can choose from, it is also important, which tracks
were claimed, because it decreases the number of tracks a player can possibly build. A total number of
78 di�erent tracks exists. The possibility that a player can build all tracks at the same time is unlikely.

Finally, a player has the possibility to gain new destination tickets. When he draws destination tickets,
he has 7 di�erent options to choose from. He can either choose 1 destination ticket (3 possibilities), two
destination tickets (3 possibilities) or all three destination tickets (1 possibility).

The options a player has each turn, can be seen in Figure 2.3. The formula to calculate the game-tree
complexity is in general GT C = cl � bl . c is the average number of chance nodes, b is the average branching
factor and l is the average length of the game. In most games the decision nodes and chance nodes are
separated from each other, but in Ticket To Ride decision nodes and chance nodes are mixed. This
changes the formula to GT C = (d+ c)l . d is

P 5
n =1 di , c is the sum of c1 and c2 and l is still the length of

the game. These values were gained by self-play experiments, so these values are a statistical estimation
of the values. If a player chooses to draw destination tickets, the number of possibilities is d3 = 7. The
player can select cards openly, by either choosing two colored cards or choosing one locomotive. The
player has on average � 11.34 options to choose two cards(d1) or � 0:43 options to take a locomotive d2.
The combination of c1 and d4 represents the option, where the player chooses a card and draws a card
from the stack. c1, choosing a card and afterwards drawing a card, is on average � 66.01. d4, drawing a
card �rst and afterwards choosing a card, is about � 71.19. Since c1 and d4 contain a lot of similar results
and d4 is not commonly used in actual game play, it is not included completely in the calculation. Since
d4 and c1 contain many similar results the di�erence is used. The di�erence is 5.18. d5 is the average
number of tracks a player can build on his turn. d5 is � 99.23. This number counts each color a track
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Figure 2.3: Options for a player

Var. Action Types Possibilities
d1 Choosing two cards 11.34
d2 Choosing a locomotive 0.43
d4 Drawing one card and then choosing one card 71.19
d3 Choosing destination tickets 7
d5 Building a track 99.23
c1 Choosing one card and then drawing one card 66.01
c2 Drawing two cards 124.61

Table 2.3: Possibilities for di�erent action types

can be build from separately. c2 represents the possibilities a player has, if he draws two hidden cards.
This number is on average � 124:61. Finally, the length of the game is not �xed, because it ends after
a certain condition is met. The average number of turns is � 91:70. An overview over the other values
can also be seen in Table 2.3. This leads to c1 + c2 +

P 5
n =1 di � 313:79, so the Game-Tree Complexity

is GT C = 313:7991:70 � 8:75 � 10228. This value can also be compared to chess. Shannon calculated this
number to be 10120. The game-tree complexity of TTR is therefore 10118 times higher than the game-tree
complexity of chess.



Chapter 3

Monte-Carlo Tree Search

T his chapter explains Monte-Carlo Tree Search (MCTS). At �rst the basis of
MCTS, at Monte-Carlo, is explained. Then the MCTS algorithm itself is ex-
plained. Afterwards the Upper Con�dence Bounds for Trees, also called UCT,
is shown and the enhancements used for this paper are explained.

3.1 Flat Monte-Carlo
Flat Monte-Carlo is an algorithm which samples the possible actions of a given state (Br�ugmann, 1993).
The algorithm does not need an evaluation function or domain knowledge to work. The algorithm starts
with determining the possible actions from the current state of the situation. The algorithm has a time
limit or a certain number of simulations as a restriction for simulating but other restrictions can be
possible as well. The algorithm then simulates a game for each possible movement. It �rst does the
chosen action and then does random movements until the game is �nished. This is repeated for all
other actions. Each action gets either an equal number of simulations or equal time to do so. After
each simulation the action adds one to the number of simulations and one to the number of wins, if the
simulation ended in a win for the current player. In the end the action with the highest win rate is chosen
as the best possible action.

3.2 Monte-Carlo Tree Search
MCTS is an expansion of Flat Monte-Carlo (Coulom, 2007a and Kocsis and Szepesv�ari, 2006). MCTS
uses a tree to save the actions and their results. As �rst step a root node is created. Afterwards four dif-
ferent parts of the algorithm are repeated until a given time has passed or a certain number of iterations
is reached. The four parts are selection, expansion, simulation and backpropagation. These four parts
can also be seen in Figure 3.1.

Selection. Starting from the root node, the algorithm selects one of its children by using the cho-
sen selection policy. This is repeated until a leaf node is reached.

Expansion. The node, which was chosen in selection, gets a number of children equal to the num-
ber of possible actions by the chosen node. Each of these children represents another action from the
possible actions.

Playout. The game uses a policy until the game is �nished. This policy can be to choose random
actions, but more informed policies are possible as well.

Backpropagation. The chosen node and its parents get updated with the results of the simulation.
The visit counter of each node is increased. If the result is a win for the player belonging to a current
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Figure 3.1: MCTS

node the number of wins is increased as well.

The action which is chosen at the end can be determined by di�erent algorithms. One of them chooses
the node with the most visits.

3.3 Upper Con�dence Bounds for Trees
Upper Con�dence Bounds for Trees or UCT is a selection policy for MCTS (Kocsis and Szepesv�ari, 2006).
This policy uses the following function:

max
i 2 A p

si

ni
+ C

r
ln np

ni

si is the total score and ni is the number of visits of node i . i is a child of p. C is a constant. This
constant is tweaked by experiments. Ap contains all children of p. To select a node the UCT value for
each node is calculated. The node with the highest UCT value is selected as the most promising node.

3.4 Enhancements
MCTS can be enhanced in many ways. This thesis covers the enhancements used for the implemen-
tation. These enhancements include progressive unpruning, handling imperfect information and early
terminations.

3.4.1 Progressive Unpruning
Progressive unpruning is used to reduce the branching factor (Chaslot et al., 2008 and Coulom, 2007b).
Overtime more and more nodes become available as well. Progressive unpruning uses domain knowledge
to assign values to nodes. How many nodes are available gets calculated with the following formula.

T = A � B k � k init

The value k states the number of nodes which are available. The value k starts with the value of kinit ,
which is 5. A is 50 and B is 1.3 as the paper of Chaslot et al. (2008) states. k gets increased until T is
smaller than the number of simulations.
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3.4.2 Progressive Bias
Progressive bias is another approach, which is based on heuristic knowledge (Chaslot et al., 2008). Sim-
ilarly to progressive unpruning, this approach also tries to guide the selection step into earlier selecting
nodes which have a high heuristic value. The enhancement of the selection step is made through an
addition to the UCT formula.

max
i 2 A p

si

ni
+ C

r
ln np

ni
+

H i

ni

H i represents the heuristic knowledge from the action in node i . This value is divided by the number of
times the node is visited, so the inuence of the heuristic knowledge gets smaller over time. Therefore
nodes of higher importance get evaluated more closely earlier in the game.

3.4.3 Number-of-Visits-Dependent Strategy
In the two earlier sections progressive unpruning and progressive bias were discussed. Both strategies
can be enhanced by starting at a later point in the simulation. This point is given by a threshold T .
The number of visits of the selected node has to be at least equal to this threshold to apply the chosen
selection strategy to the node. As long as the threshold is not reached, the selection step uses another
given selection strategy. For example this selection strategy could be UCT. The threshold T has to be
found empirically.

3.4.4 Determinization
Determinization is an approach to handle imperfect information (Frank and Basin, 1998). Determiniza-
tion converts a game of imperfect information into a game with perfect information. It uses the structure
of the game and the history of the actual game, to �ll in the hidden information. In each iteration, one
of the determinizations is randomly chosen as the current state, which is used for all four parts of the
MCTS algorithm.

Determinization has two disadvantages which were explained by Frank and Basin (1998). The �rst
disadvantage is called strategy fusion. For each determinization a best action exists. The problem of
strategy fusion is to �nd one action which is best for the information set which combines all possible deter-
minizations. The second disadvantage non-locality describes the possibility that a determinization may
be unlikely in an actual game. For example, if the opponent has built certain tracks, which would ful�ll
a certain destination ticket, it is likely that the opponent has this destination ticket. In determinization
it could happen that a player would get another destination ticket, which represents an unlikely state.
Even if determinization has several disadvantages, it works for several games like Skat (Buro et al., 2009),
Bridge (Ginsberg, 1999) and Phantom Go (Cazenave, 2006).
To explain determinization, Ticket to Ride can be used for an example. The train cards from the beginning
and the train cards which are drawn from the stack by the opponents are unknown to the player. The
number of train cards for each color is known to all players. It is also known which cards are in the
discard pile and which open cards are chosen by the opponents. With this information a stack of cards
can be created. Each opponent then gets a number equal to his hidden cards randomly from this stack.
The remaining cards then build the new stack for the current simulation.

3.4.5 Cheating MCTS
Cheating MCTS is used for games with imperfect information. This strategy does not try to handle im-
perfect information, but uses all information even if this is normally not possible for the player. Cheating
MCTS cannot only be used to handle imperfect information, but it also can be used to gain information
about the upcoming chance events. This could be done by �xing upcoming chance event.

3.4.6 Single-Observer MCTS
The Single-Observer enhancement is an enhancement for games with imperfect information (Cowl-
ing et al., 2012). For each simulation a random determinization is chosen. This enhancement changes the
selection step. In the selection step the algorithm disables all moves, which are not possible. It also adds
new moves, if they become available through the new determinization. This can also be seen Figure 3.2.
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Figure 3.2: Possible moves for di�erent determinizations

Figure 3.3: MCTS algorithm

The �gure shows the possible moves for the three di�erent determinizations A, B and C. As can be seen
in the picture some moves are possible for more than one determinization. Single-Observer MCTS has a
disadvantage, because of the high number of di�erent determinizations a lot of nodes have to be added to
the tree near the root. The high branching factor can lead to a smaller depth of the tree (Cowling et al.,
2012).

3.4.7 Multiple-Observer MCTS
Multiple-Observer MCTS was introduced by Cowling et al. (2012). In this approach each player has a
separate tree. Each tree contains the information from the corresponding player’s point of view. The
actions of the other players are represented by one node. The algorithm expands the tree for each player
simultaneously. The changes of Multiple-Observer MCTS can be seen in Figure 3.3. In each simulation a
random determinization is chosen. From this determinization it gets determined which moves are possible.
This type of enhancement changes the selection step, the expansion step and the backpropagation step.
The Multi-Observer works similar to the Single-Observer, but instead of selecting a move in one tree, it is
done in all trees. The same depth of the tree represents the same step. In the trees of the other players,
the turn of the player is represented by only one node.

In the selection step the current player chooses a node. In the other trees the placeholder node is
selected. The current player then changes to the next player and the same steps are repeated until a leaf
node is reached.

In the expansion step the current player expands the selected node as usual. Each other tree is
expanded by the placeholder node.

In the backpropagation step each tree gets updated as usual. Multiple-Observer MCTS �xes the
disadvantage of Single-Observer MCTS. All nodes of the opponents are only represented by one node, so
the total branching factor is smaller than in Single-Observer MCTS and less nodes are available in total.
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3.4.8 Determinized UCT
Determinized UCT is another approach to �x the disadvantage of Single-Observer MCTS (Cowling et al.,
2012). Determinized UCT uses a �xed number of determinizations. Each of these determinizations is
randomly chosen out of all possible determinizations at the beginning. Every determinization has its own
tree, so that the branching factor does not change throughout the simulations. Instead of choosing a new
determinization after each iteration, the next �xed determinization is chosen. The tree is also changed
correspondingly. The rest of the algorithm works like the normal MCTS algorithm except for the choosing
step. In the choosing step all children from all roots are combined. If two nodes correspond to the same
move, the nodes add up the visits and the score of the node. The node with the most visits is chosen as
the action, which is played. Other choosing methods are possible as well. One other possibility is that
each tree gets one vote. The action which has the most votes is then chosen. If some moves are tied for
most votes, the action with the most number of visits is chosen (Nijssen and Winands, 2012). Another
possibility was explored by Fern and Lewis (2011). The algorithm, called Ensemble UCT, chooses the
node with the highest average score over all trees. Therefore the following formula has to be maximized.

QRP (s; a) =

P
i Q( i ) (s; a) � n( i ) (s; a)

P
i n( i ) (s; a)

Q( i ) (s; a) represents the score of action a in state s in tree i . n( i ) (s; a) represents the number of visits of
the same node.

3.4.9 Early Terminations
The early termination takes place in the simulation step. In the normal simulation step the game is
simulated until the end. For early terminations the game is either played for a certain number of turns
or until a certain condition is met. An example for the usage of an evaluation function to terminate the
simulation, is given by Winands and Bj�ornsson (2010). For the game of Amazons it has been shown that
it enhances the algorithm if the simulation is cut o� after a certain number of turns, the game state is
then evaluated with an evaluation function to give a result for the current playout (Lorentz, 2008).

3.4.10 � -based strategies
The � -greedy strategy enhances the selection of nodes in the simulation step. � has a value higher than
0 and smaller than 1 (� 2 ]0; 1[). The strategy follows the strategy (1-� ) of the times, but does a random
move in all other times. The random action could be a move, which follows the strategy, but it can be
any other move as well. This � has to be tweaked empirically.

� -greedy strategy
The � -greedy strategy analyses each action after certain criteria. After each action is analyzed the best
action is performed.

� -rule based strategy The � -rule based strategy is similar to the � -greedy strategy. But rather than
choosing the best node, it chooses an action based on expert domain knowledge.
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Chapter 4

MCTS in Ticket to Ride

T his chapter explains integration of MCTS in Ticket to Ride.

4.1 Nodes
A node has to know all its children as well as the children which are possible at the moment. For each
information set di�erent determinizations exist. Due to this it can happen that a player can build a track
in one determinization, but not in another one. A node also has to save the number of visits and wins.

4.1.1 Actions
A node in Ticket to Ride has to represent three di�erent actions a player can take, but it has only to
represent one of these actions at a time.

� Choose and/or draw cards

� Choose destination tickets

� Build one track

Each of these actions has to be represented in a special way. The action of choosing or drawing a card
is represented by a number. This value represents the card’s position within the visible train cards. If
the value is equal to the size of the array, a card is drawn. Choosing a destination ticket can also be
represented by a number. For this the node can save up to three values between 0 and 2. If a destination
ticket is chosen, the player gets three destination tickets to choose from. The saved values represent the
position of the destination tickets in this list. The last action is to build a track. This action can also be
represented by a number. Each track has a certain ID by which it can be referenced. If a node represents
this type of action, it is necessary to know which colors can be used by the player to build this track. All
actions need a list to store information, so each di�erent type of action can reuse that list. The action
also stores information about its type and the player who performs it.

4.2 Choosing Destination Tickets
This section describes the process of choosing destination tickets at the beginning and during the game.
The tickets at the start of the game are evaluated and chosen directly. The tickets, which are chosen
during the game, are checked, if they are ful�lled and then evaluated with MCTS.

4.2.1 Start of the game
At the start of the game each player is handed three destination tickets. From these tickets the player
has to choose at least two. If one ticket is not chosen, it gets returned to the bottom of the destination
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tickets stack. These tickets have to be chosen right away. The selection of at least two tickets can be
separated in several steps. The engine always chooses only two tickets. First the destination tickets the
player got, are evaluated by the number of points a player scores, if they ful�ll them. The destination
ticket with the highest score is chosen as the �rst destination ticket. The tracks on the shortest path of
this destination ticket are virtually built for the further analysis of the two remaining destination tickets.

The shortest path for the remaining two destination tickets are calculated separately. These paths are
then compared to the path of the already chosen destination ticket. Each track, which exists in both lists,
is removed. The number of removed tracks is counted for each destination ticket separately. After each
track is checked, the destination ticket, which shares the most tracks with the �rst destination ticket, is
chosen. If both destination tickets have removed the same number of tracks, the destination ticket with
fewer tracks to build is chosen. If two paths share some or most of their track, a longer continuous path
can be built. This helps later in the game to integrate more destination tickets in the network of trains
a player has.

If no distinct answer is found, the destination ticket with the higher value is chosen. In the case
that both destinations have the same value, the last destination ticket is chosen. This ticket can still be
considered random, because the destination tickets a player get are random and as such are in a random
order.

4.2.2 During the game
As soon as all destination tickets are ful�lled, a player should draw new destination tickets, especially if
the end of the game is not imminent. The possible combinations of destination tickets, if he takes new
destination tickets �rst, is at least 2925. The general formula to calculate this number is

total =
(30 � nr )!

(27 � nr )! � 3!

nr represents the number of destination tickets, which are known by the player. The value 2925 represents
a two-player game, where each player has chosen his starting hand. The calculation of this number also
considers to have no knowledge about the destination tickets of the opponent other than the number. nr
is in this case equal 6.

If the opponent’s destination tickets are known, nr = 3, the number of combinations is still 2024.
Drawing destination tickets is unreliable, if a player tries to predict which destination tickets he would
get. If a player has all his destination tickets ful�lled, new destination tickets are drawn immediately, if
it is not his last round of the game.

The player draws three new destination tickets as his next action. From these tickets he has to take
at least one, but he can keep any number. Unful�lled tickets still give negative points at the end of the
game.

All destination tickets are checked, if they are ful�lled, because a player built tracks, which belong
to this destination ticket. The unful�lled drawn tickets generate the new actions by creating a separate
action for each possible combination. Up to seven di�erent actions are possible when no destination ticket
was already ful�lled, otherwise fewer combinations are possible. To these actions the ful�lled destination
tickets are added, such that the destination tickets are added to the player’s hand when the action is
selected. If at least one of the drawn destination ticket is ful�lled, an action which includes only ful�lled
destination tickets, is created as well. These actions are then evaluated with MCTS.

4.3 Hidden Information
In Ticket to Ride it is unknown which cards were secretly drawn by the opponents. It is also unknown
which destination tickets the opponents have chosen. These are two di�erent types of hidden information
and therefore have to be handled di�erently. The process of �lling in this hidden information is also
called determinization.

4.3.1 Train Cards
The stack and train cards drawn from it by the opponent are unknown to the player. These train cards
can be estimated. This process is called determinization.
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To �nd out these train cards, the player can use the deck of train cards. The deck represents all train
cards, which are on the hands of all players, open-lying, the stack and the discard pile. All cards, which
were chosen openly, the cards to choose from, and are on the discard pile are removed from the deck. For
a determinization for a certain player, his unknown cards have to be assigned. The remaining cards have
to be in the stack or on the opponents’ hands. This deck is called hidden cards for the rest of this thesis.
It is possible to narrow down the cards of the opponent even further. As soon as the stack is empty, all
cards, which are on the hands of all opponents, are known to the player. All cards are now either in the
discard pile, open-lying or on the hands of a player. In a game with two people a player knows for certain
which cards are owned by the opponent. In a game with more than two players, a player only knows the
cards that have to be on the hands of all opponents.
As an example a two-player game of TTR is considered, which both players have drawn cards directly
from the stack, so these cards are only known by the players. Player 1 has drawn two red and a yellow
card and Player 2 has drawn a green and also a yellow card. As soon as the stack is empty, all cards
of the opponent are known by the player. Player 1 would need to look in the discard pile and at the
open-lying cards, eliminate these cards from the possible deck of cards, and then do the same with his
own cards and the cards which were chosen by the opponent openly. The remaining cards have to be the
cards which were secretly drawn by the opponent. This procedure is easily adaptable for more than two
players, but then a player has to assign these cards randomly to the hands of his opponents.
In the determinization each opponent gets assigned cards equal to his number of cards which he has
drawn from the stack. If some of these cards are known, because the stack was empty at one point,
this knowledge is used �rst. The remainder of cards is randomly assigned from the hidden cards. The
remaining hidden cards are then shu�ed and become the new stack. To use the example from above,
Player 1 knew that Player 2 has a green and a yellow card on his hand. In the next round he drew
another card from the stack. In the determinization a green and a yellow card is assigned to the hand of
Player 2, because he has not played these cards yet. He also gets a random card from the hidden cards,
because Player 1 has no information about this card. The remaining hidden cards become the new stack.

4.3.2 Destination Tickets
Each player also has destination tickets. These destination tickets are known to the player, but unknown
to his opponent. The number of destination tickets is also known. Each destination ticket is unique. A
game has always the same destination tickets, so the destination tickets which exist are known as well.
The destination tickets of the player are subtracted from all possible destination tickets. The remaining
destination tickets are possible for the opponents. Three di�erent strategies have been implemented to
determine which destination tickets an opponent could have. The �rst strategy randomly assigns the
destination tickets. The last two strategies use the tracks the opponent has built. The destination tickets
which would be ful�lled get selected. Both strategies use these destination tickets as the destination
tickets the opponent has. If these destination tickets are more than the opponent should have, the
second strategy takes the destination tickets with the highest value. The third strategy chooses these
destination tickets randomly. If the opponent has too few destination tickets, the second strategy takes
the destination tickets with the lowest value from the remaining destination tickets. The third strategy
chooses these destination tickets randomly from the remaining ones.

4.4 Chance
Ticket to Ride has two di�erent chance events. One chance event happens when a player draws new
destination tickets. The other type of chance event happens, if the player chooses or draws a train card.
Both chance events are handled similarly. At the beginning of each iteration a new game situation is
created. The cards which are determined to be in the stack and the remaining destination tickets are
shu�ed separately. If the stack should be empty, the discard pile gets shu�ed and becomes the new
stack. This is the reason why this implementation has no chance nodes and therefore does not calculate
each chance as it happens.

In the special case of the cheating MCTS, discussed in Subsection 3.4.5, chance events are �xed. The
chance events are �xed by not shu�ing the stack of train cards or mission tickets, if a new board for a
simulation is created. Therefore the chance events are �xed until the stack of train cards is empty. The
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discard pile is then shu�ed randomly to create a new stack. From this point the chance events are no
longer known to the player regarding the discard pile. The destination ticket stack gets never shu�ed,
so this information is always known to the cheating MCTS.

4.5 Upper Con�dence Bounds for Trees
Upper Con�dence Bounds for Trees (UCT) as described in Section 3.3 needs some adjustment before it
can be implemented. Two di�erent problems have to be further examined. The �rst problem happens
if a node was never visited yet. The second problem occurs if more than one child has the same UCT
value.

To handle the �rst problem, the method to calculate the UCT value returns 1.
For the second problem, a random value is added to the UCT value. Therefore a random value

between 0 and 1 is divided by 10k. This random value does not have an inuence on the actual UCT
value, but allows to di�erentiate between the di�erent nodes.

4.6 Selection Strategy
This section describes the di�erent strategies, which were implemented to improve the selection step.
The used heuristic knowledge is explained �rst, because the selection strategies are based on it.

4.6.1 Heuristic Knowledge
Progressive bias and progressive unpruning depend on heuristic knowledge. Therefore each action gets a
certain value. These values need some game knowledge which has to be calculated. Two di�erent types
of information are important here. The �rst information contains all tracks, which still have to be built,
to ful�ll the destination tickets of a player. The second information stores the train colors, which are
needed for the tracks, to ful�ll the destination tickets of a player.

An overview of these values can be seen in Table 4.1. The nodes are �rst ordered by the type of

Action Condition Value
Track Destination ticket contributing x � 10
Track Not contributing � 10
Card Track contributing 4
Card Locomotive 1
Card Drawn and contributing 4
Card Not contributing � 4
Card Maybe not contributing � 4

Table 4.1: Heuristic values for di�erent actions

action. All three actions are theoretically possible, but they are not all possible together. Therefore a
player can choose either to build tracks and choose and/or draw train cards; or choose destination tickets.
The destination tickets are not closer examined and are all evaluated this the same value.
Track
The number of times a track is needed to ful�ll destination tickets is used to calculate the heuristic value
for track building actions. If a track is needed at least once, it gets a value of x � 10, where x is the
number of times, the track is needed. If this number is 0, the action gets a value of � 10.
Card
If an action involves drawing cards, each card that is drawn is evaluated separately. If the action only
chooses to take a locomotive, the action gets a value of 1. If the action takes a card, which is needed
to build a track, 4 is added to the value of the action. If the action draws a card from the stack, it
is important which cards could be in the stack. If only cards, which would contribute to a destination
ticket, are possible the action’s value gets a bonus of 4. If the action draws or chooses a card, which
cannot contribute to a destination ticket, the value of the action gets a penalty of 4. The same penalty
also gets applied, if the possibility exists that a drawn card does not contribute to a destination ticket.
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Drawing two cards which help to build such tracks gets a value of 8. Choosing or drawing only one
card that will contribute to the possible tracks will give an action a value of 0. If only a locomotive
is chosen, the action gets a value of 1. If an action chooses two cards, which might not or does not
contribute to destination ticket tracks, the action gets a value of -8.

4.6.2 Progressive Bias And Unpruning
Progressive bias and progressive unpruning use the heuristic knowledge to select nodes during the selection
step. The values are calculated once for each node. Progressive bias uses heuristic knowledge during the
UCT calculation, while progressive unpruning uses the value to prune children.

A threshold for the number of visits can be given. This threshold has to be reached in a parent
node, before progressive unpruning or progressive bias is used on its children. Otherwise it uses another
selection strategy such as UCT. This strategy is given at the initialization.

4.7 Playout Policies
The further discussed policies were implemented to improve the simulation step. This section discusses
the random policy, the early termination policy and the strategy policy.

4.7.1 Random
The most common playout policy is the random playout. All actions a player can take are determined and
one of them is randomly chosen. Due to the fact that the outcome of acquiring new destination tickets is
highly unpredictable, each action which chooses new destination tickets is not added as a possible move
and only other actions can be chosen.

4.7.2 Early Termination
As discussed in Subsection 3.4.9 the playout can be terminated earlier than the end of the game. If the
early termination is used, the playout ends after 45 moves which is about half of a normal game. The
game is then rated as a regular game. This means it is either rated as a win or a loss for the corresponding
player.

4.7.3 � -Rule Based Strategy
Instead of doing random plays during the simulation step, these steps can follow certain rules. This is
called a playout strategy. In this master thesis an � -rule based strategy is used. The playout strategy
follows the strategy (1 � � ) of the times and does a random play � of the times.

Each round, if the playout strategy is used, the tracks, which are needed to ful�ll the current desti-
nation tickets are calculated and saved for all players. Each player has his own list with his own tracks.
Each round the playout strategy looks for the track, which needs the highest number of train cards and
belongs to the list of the current player. If a buildable track is found, which needs six cards, the selection
ends early and the action to build the track is performed. If no track is found, the playout compares the
buildable tracks to the tracks of the other player. The strategy then searches for the smallest track for
which the player has the necessary cards. If a track is found, which needs only one card, the track is
built immediately. After all tracks were compared and no track was found that �ts the criteria, cards are
drawn or chosen. All possibilities, which either choose or draw up to two cards, are calculated and one of
them is randomly performed. If no cards were drawn or chosen, one of the tracks which is buildable, is
randomly executed. If the playout needs to select a random action, all possible actions except choosing
new destination tickets are found. One of these actions is then randomly selected and afterwards per-
formed.

Ful�lling destination tickets has the advantage that the simulation is more accurate, because this would
happen in the actual game as well. It is also preferred to build tracks for the player itself over tracks,
which the opponent needs. The reason for building tracks, which are needed by opponents, is that it can
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be helpful to block opponents to ful�ll their destination tickets. However, a player only wants to invest
as little as possible in such a strategy. Building tracks also ends the simulation faster, and so a higher
number of simulations is possible.

This type of playout policy has another option for an early termination. The termination should be
performed, if the list of tracks to build is empty. This is a point during the game where new destina-
tion tickets are chosen. It is a good point to end the playout, because choosing destination tickets in a
simulation is unpredictable (see Subsection 4.2.2). Therefore no meaningful results can be obtained from
choosing new destination tickets during the playout strategy and the current game situation can still be
evaluated.

4.8 Finding the Shortest Path
During the game the calculation of the shortest path is used for di�erent strategies like progressive bias,
progressive unpruning or the playout strategy. The strategies depend on the knowledge to know, which
tracks have to be built to accomplish destination tickets. Dijkstra and A � , briey discussed in Section
1.1.2, were used to �nd the shortest path. The infrastructure of railroads or map of tracks is stored as an
undirected graph. In this graph the nodes represent the cities and the edges represent the tracks. The
cost of an edge is equal to the number of trains a player needs to build that track. For further analysis
it is also important to know, if a track was already built and if so, which player build the track.

Before a game starts, the graph is evaluated and the lowest connection cost from one city to each other
city is calculated. After this is done for all cities, this information is stored for later analysis. A � uses
the stored information to plot the shortest path from one city to another. Therefore Dijkstra was used
as an underestimation for A � . Instead of an heuristic function the A � algorithm uses the evaluation of
the Dijkstra algorithm as its heuristic knowledge. The A � algorithm considers, if a track was built by
the player the information is considered to �nd a shorter path. The algorithm also takes into account, if
a track was built by an opponent. A � then tries to �nd an alternative shortest path.

The algorithm does not consider, if the player actual has enough resources to build all tracks. This
means, that if a player should not own enough trains, which he needs to claim a track, a shortest path
would be returned.



Chapter 5

Experiments and Results

T his chapter shows the di�erent AI players, which were implemented. It also
explains the setup of the experiments. Then the di�erent experiments are ex-
plained and the results are analyzed.

5.1 AI Players
In general, �ve di�erent types of AI Players were implemented. The �ve players are Cheating Player,
Single Observer, Multiple-Observer MCTS, determinized UCT and voting. All of these players can be
enhanced by the di�erent enhancements discussed in Chapter 4.

A special player, which was implemented, is a combination of progressive unpruning and progressive
bias. The agent works in the following way. First the nodes are pruned with progressive unpruning.
Afterwards the node is selected with progressive bias. All information about progressive unpruning can
be found in Subsection 3.4.1. Progressive bias has been explained in Subsection 3.4.2.

5.2 Experimental Setup
In most cases, each experiment was performed at least 200 times. If an experiment included more than
200 games, this information is included in the experiment. Each player started in an equal number of
games, so if 200 games were played, each player started 100 times. If it is not otherwise stated, the MCTS
algorithm got 2 seconds of thinking time. The other thinking time, which has been used, is 4 seconds.

This section will also discuss the unde�ned parameters of di�erent players. Con�dence bounds are
explained as well. Next, the environment in which the experiments were performed is shown.

5.2.1 Player Setup
The used values for the di�erent constants are discussed below. All agents are simulating until the end
of the game, if not otherwise stated.

The UCT algorithm, see Section 3.3, uses a C value of
p

2. The progressive unpruning (see Subsec-
tion 3.4.1) and progressive bias (see Subsection 3.4.2) approaches have a threshold of 0. This means that
both strategies directly start their approach after a node is selected the �rst time. The constants, which
are used to determine how many nodes are not pruned in the progressive unpruning selection step, were
set as discussed in Subsection 3.4.1. Therefore A was set to 25 and B to 1.3. The value for kinit is 5.
The heuristic value of progressive bias is not modi�ed. The voting and determinized UCT approaches
shu�e the card stack each time when a new board for a simulation is created. This way the cards in
the hands of the other player are always the same, but the train card stack and the mission stack are
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shu�ed. The playout strategy uses the early termination strategy discussed in Subsection 4.7.3 and does
not necessarily play until the game is �nished. The � value of the � -rule based strategy is 0.05.

5.2.2 Con�dence Bounds
To give the con�dence bound of an experiment the following formulas are used

s(w) =

p
w � (1 � w)

p
n

and
b(w) = z% � s(w)

s(w) is the standard error. w is the winning rate from any of the both players. For this thesis a con�dence
bound of 95% is chosen, so z% is 1.96.

5.2.3 Environmental Setup
All experiments were performed on a CL211LOA2-B transtec CALLEO 211L AMD Opteron Server. The
server has the following speci�cations:

� 2 x AMD Dual-Core Opteron F 2216, 2.4 GHz, 95 Watt (max. 2 Opteron Socket F Processors)

� 8 GB DDR2 DIMM, reg. ECC (4 DIMMs, max. 32 GB, 16 DIMMs)

� NVIDIA nForce4 2200 Professional chipset

� 2x PCI-E x8 slots via riser card (full height, half length)

� 80 GB hot-swap SATA hard drive, max. 2 hot-swap hard drives

� DVD-ROM

� onboard dual Broadcom BCM5721 Gigabit Ethernet

� onboard XGI Z9s VGA 32 MB DDR2 graphics

� 1 U rackmount chassis incl. mounting rails

� 500 Watt power supply

5.3 Single Observer
For this experiment, di�erent types of MCTS agents were tested against the Single Observer (SO). The
results of these tests can be seen in Table 5.1. A total of four experiments were performed. Each experi-
ment was performed with 2 and 4 seconds thinking time. The �rst experiment shows the performance of
the SO versus Flat Monte-Carlo with usage of determinization (FSO).
For most games the FSO performs less than the SO. In this case the FSO performs better for both think-
ing times. Similar observations were obtained by Browne (2013), were the Flat Monte-Carlo Player also
beats the MCTS Player. He showed that if the number of simulations is higher, the Flat Monte-Carlo
Player starts to perform worse and the MCTS Player starts to perform better, so that at a certain point
the MCTS player is better than Flat Monte-Carlo Player. A similar phenomenon may occur here as well,
because the results appear to be better for the 4 seconds thinking time than the 2 seconds thinking time.

It was also tested, if narrowing down the number of determinizations has an inuence on the performance
of the SO. Therefore the SO was tested against the SO with the worst mission enhancement (WM) and
the worst mission random enhancement (WMR). Both enhancements were explained in Subsection 3.4.4.
As the results show, the SO-WM agent performs better than the SO with 2 seconds thinking time. The
SO-WMR player has a slightly lower performance against the SO than the SO-WM. If both agents have
a thinking time of 4 seconds, they both win about 50% of the played games. Therefore they enhance the
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Figure 5.1: Visualization of SO results

agent only, if fewer determinizations are done and as such each simulation has a higher inuence on the
end result. The last agent tested is the Multiple-Observer (MO). The MO performs worse than the SO
for 2 seconds thinking time. If the players used 4 seconds thinking time no signi�cant di�erence could be
shown.

A visualization of the results is shown in Figure 5.1. The �gure shows the result of the player in percent.
The player is the player stated in the description next to the bar. The �gure compares the result of the
same player for the two di�erent thinking times.

Player
2 sec 4 sec

SO % SO Nr. SO % SO Nr.
SO vs. FSO 42 � 6.84 84 46 � 4.88 184
SO vs. SO-WMR 47.5 � 6.92 95 50 � 6.93 100
SO vs. SO-WM 44 � 6.88 88 50.5 � 6.93 101
SO vs. MO 57 � 6.86 114 55.5 � 6.89 111

Table 5.1: Single Observer

5.4 Cheating Player

As another experiment, the Cheating Player (CP) was tested against the Flat Monte-Carlo Player, which
knows the cards of the other player (FCP). It was also tested, if knowing the stack changes something.
This means that the player knows beforehand, which cards will be drawn or which cards are the re-
placement cards for chosen cards. This player gets the additional description of U, which stands for
unshu�ed. Both results can be seen in Table 5.2. The CP-U player played 400 games to get signi�cant
results. The results were visualized in Figure 5.2. The visualization shows the results from the view of
the Flat Monte-Carlo player.

In both cases the Flat Monte-Carlo Player performs better than the corresponding Cheating Player.
The CP has a winning rate of 40.5%. The CP-U performs slightly better. CP-U has a winning rate of
45.5% against FCP-U.

Pl. 1 Pl. 2 Pl. 1 % Pl. 2 % Pl. 1 Wins Pl. 2 Wins
FCP CP 59.5� 6.8 40.5� 6.8 119 81

FCP-U CP-U 56� 4.86 44� 4.86 224 176

Table 5.2: FCP vs. CP
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Figure 5.2: Visualization of FCP vs. CP results
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Figure 5.3: Visualization of FSO vs. SO with Enhancements results

5.5 Enhancements
In this section the four di�erent enhancements are closer analyzed. They are compared to di�erent agents
and also compared with each other.

5.5.1 FSO vs. Enhancements
The enhancements, which are tested in this section, are progressive unpruning (PU, see 3.4.1), progressive
bias (PB, see 3.4.2), the combination of progressive unpruning with progressive bias (PUB) and a � -
rule based playout strategy (PS, see 4.7.3). The heuristic values, which were used for the progressive
enhancements, can be seen in Subsection 4.6.1. All enhancements were tested against the FSO �rst, to
see if they enhance the playout of the SO in such a way that the SO is able to defeat the FSO on average.
As can be seen in Table 5.3, most enhancements, except SO-PS, are able to defeat the Flat Monte-Carlo
agent in more than 80% of the games. SO-PS loses over 70% of the time when playing against the Flat
Monte-Carlo player. The visualization of the results, visible in Figure 5.3, shows that SO-PUB performs
best against the FSO. SO-PB wins 88.5% of all games. SO-PU performs a little bit less than the other
two progressive approaches with winning only 87% of all games.

Pl. 1 Pl. 2 Pl. 1 % Pl. 2 % Pl. 1 Wins Pl. 2 Wins
FSO SO-PU 13 � 4.66 87 � 4.66 26 174
FSO SO-PB 11.5 � 4.42 88.5 � 4.42 23 177
FSO SO-PUB 7.5 � 3.65 92.5 � 3.65 15 185
FSO SO-PS 70.5 � 6.32 40.5 � 6.32 141 59

Table 5.3: FSO vs. SO with Enhancements

5.5.2 Improving Flat Monte-Carlo with Enhancements
To see, if the enhancements help to enhance the performance of the SO, the enhancements were tested
against the Flat Monte-Carlo, which was also improved by the same enhancements. The results for these
experiments can be seen in Table 5.4. The progressive approaches played 600 games in total, when they
had 2 seconds thinking time, to get clearer results. The approaches with 2 seconds thinking time do not
give a clear result. The enhanced version of FSO seems to performs less than the enhanced SO, but these
results are not clear. The SO-PS performs similarly to the FSO-PS with winning 49.5% of all games.
To get clearer results both approaches got more thinking time, so the thinking time was increased to 4
seconds.
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Figure 5.4: Visualization of FSO vs. SO both with enhancements

With 4 seconds thinking time the progressive unpruning approach performs best against its at vari-
ant. The other progressive variants have a slightly smaller winning rate, but both win more than 50% of
the time. PB wins 55% of all games and PUB wins 57.5% of all games. The performance of the playout
strategy remains the same.
The visualization of the games can be seen in Figure 5.4. The results are presented in the same way as
in Section 5.3.

Player
2 sec 4 sec

SO % SO Nr. SO % SO Nr.
SO-PU vs. FSO-PU 51 � 4 306 60.5 � 6.78 121
SO-PB vs. FSO-PB 51.33 � 4 308 55 � 4.88 220
SO-PUB vs. FSO-PUB 51.83 � 4 311 57.5 � 6.85 115
SO-PS vs. FSO-PS 49.5 � 6.32 99 48 � 6.92 96

Table 5.4: SO vs. FSO both with Enhancements

5.5.3 SO vs. Enhancements

This section shows the results of the SO, which plays against the di�erent enhancements. As can be seen
in Table 5.5, all enhancements, except the PS, perform better than the SO without enhancements. It
was expected that the default SO performs worse than the progressive approaches. This was expected,
because the default FSO lost the majority of the games against the SO enhanced with progressive ap-
proaches. However, the default FSO was able to win against the default SO more than 50% of all games.
While it was expected that the heuristic enhancement performs better than the SO, it was not anticipated
that the di�erence would be that signi�cant. The worst performing enhancement, PU, wins 88% of the
games. PB wins 95% of the games and PUB even wins 99.5% of the 200 games.
PS performs signi�cantly worse than the SO with winning only 32.5% of all games.

To get a clearer overview over the results, the results were visualized in Figure 5.5. The results show the
results in percent for the enhanced players.

Pl. 1 Pl. 2 Pl. 1 % Pl. 2 % Pl. 1 Wins Pl. 2 Wins
SO SO-PU 12 � 4.5 88 � 4.5 24 176
SO SO-PB 5 � 3.02 95 � 3.02 10 190
SO SO-PUB 0.5 � 0.98 99.5 � 0.98 1 199
SO SO-PS 67.5 � 6.49 32.5 � 6.49 135 65

Table 5.5: SO vs. SO with enhancements
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Figure 5.5: Visualization of SO against di�erent enhancements
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Figure 5.6: Visualization of di�erent enhancements playing against each other

5.5.4 Combinations

In this section, the three working enhancements were tested against each other. The results of these ex-
periments can be seen in Table 5.6. The results show that progressive unpruning loses against progressive
bias over 70% of the games and against the combination of progressive unpruning and progressive bias
about 80% of the games. Progressive bias and progressive unpruning performs slightly better (57% win
ratio) than progressive bias. All in all PUB wins more than 50% of the games against PU as well as
against PB. These results are in line with the results of Subsection 5.5.3.
The results of the di�erent enhancements playing against each other also can be seen in Figure 5.6.

Pl. 1 Pl. 2 Pl. 1 % Pl. 2 % Pl. 1 Wins Pl. 2 Wins
SO-PU SO-PB 28 � 6.22 72 � 6.22 56 144
SO-PU SO-PUB 20 � 5.54 80 � 5.54 40 160
SO-PB SO-PUB 43 � 6.86 57 � 6.86 86 114

Table 5.6: Testing enhancement against each other in the SO agent

5.6 Multiple-Observer MCTS

Multiple-Observer MCTS was also tested with several enhancements and tested against the same en-
hancements used in the Single Observer. All experiments were done with a thinking time of 2 and 4
seconds. The results of this experiment are shown in Table 5.7. The PU approach for 2 seconds and the
PB for 2 seconds played 400 games. The remaining experiments were performed 600 times.
The experiment shows that only MO-PB has some advantage over its SO variant. The SO-PB wins only
43:25% of the played games with 2 seconds thinking time. This advantage over the SO seems to become
smaller when using a thinking time of 4 seconds. SO-PB wins 49:17% against MO-PB with 4 seconds
thinking time. SO-PU wins � 50:33 of all games against the MO-PU with 4 seconds thinking time. The
MO-PUB has no advantage with 2 seconds thinking time. SO-PUB wins 50:83% of its games against the
MO-PUB. This changes if both have a thinking time of 4 seconds. SO-PUB wins 46.5% of all games under
the same remaining conditions. For an easy comparison between the di�erent thinking times, Figure 5.7
can be used.
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Player
2 sec 4 sec

SO % SO Nr. SO % SO Nr.
SO-PU vs. MO-PU 46.75 � 4.89 187 50.33 � 4 302
SO-PB vs. MO-PB 43.25 � 4.86 173 49.17 � 4 295
SO-PUB vs. MO-PUB 50.83 � 4 305 46.5 � 3.99 279

Table 5.7: SO vs. MO both with Enhancements
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Figure 5.7: Visualization of MO vs. SO both with enhancements

5.7 Multiple Trees MCTS
In this section the two di�erent strategies, which use more than one tree to map their results, are
discussed. Both strategies were explained in Subsection 3.4.8. First both approaches are tested without
any enhancements. Determinized UCT is then enhanced with progressive unpruning and progressive bias.
Finally, the voting player is enhanced with all three progressive approaches.

5.7.1 SO vs. Determinized UCT and Voting
Determinized UCT (DZ) and voting (V) was tested with 1, 5, 10 and 20 trees and played against the SO
with the same enhancements. It has to be considered that both approaches when they are using only one
tree are the same. This also means that for each tree only a certain randomly calculated determinization
was chosen. Determinized UCT with 1 and 10 trees played 400 games instead of the usual 200 games.
The results can be seen in Table 5.8 and Figure 5.8.
The results show that the SO performs clearly better than all voting agents. The determinized UCT also
seems to perform better than the voting player, but in most cases this improvement is rather small. The
only approach, where the voting player performed better than the determinized UCT against the SO was
for 20 trees. The voting player was able to win 41.5% of all games, while the determinized UCT player
was only able to win 38.5% of all games. The determinized UCT player was also not able to perform
signi�cantly better than the SO. Determinized UCT performs best with using only one tree, in which
case no player performs signi�cantly better than the other one.

Player
Determinized UCT Voting

SO % SO Nr. SO % SO Nr.
SO vs. 1 Tree 50.75 � 4.9 203 58 � 6.84 116
SO vs. 5 Trees 57.5 � 6.85 115 58.5 � 6.83 117
SO vs. 10 Trees 56.25 � 4.86 225 62.5 � 6.71 125
SO vs. 20 Trees 61.5 � 6.74 123 58.5 � 6.83 117

Table 5.8: SO vs. Determinized UCT and Voting

5.7.2 Determinized UCT
In this subsection, determinized UCT is closer analyzed. The enhancements, which were tested, are
progressive unpruning or progressive bias. The results are shown in Table 5.9.
The results show, that SO-PB performs clearly better than all DZ players. These results can be compared
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Figure 5.8: Visualization of the results of DZ and V vs. the SO
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Figure 5.9: Visualization of DZ vs. SO both with enhancements

to the results of the SO versus the DZ player, seen in Table 5.8. Since the SO won at most 62% of all
games against the DZ player, when using no enhancements, it can be shown that PB improves the SO
more than all DZ players. The SO-PB was able to win at least 82% of all played games against the
DZ-PB players.
SO-PU performs better than the DZ agents in most cases. DZ-1-PU wins 46.5% of all games and so does
not perform signi�cantly worse than SO-PU, but it also does not perform better. For 10 and 20 trees the
PU strategy performs better for the SO. It can be seen in the table that PU in general performs better
for the DZ agents than PB.

Player
Progressive Unpruning Progressive Bias

SO % SO Nr. SO % SO Nr.
SO vs. DZ-1 53.5 � 6.91 107 82 � 5.32 164
SO vs. DZ-5 63.5 � 6.67 127 86.5 � 4.74 173
SO vs. DZ-10 76 � 5.92 152 92.5 � 3.65 185
SO vs. DZ-20 86.5 � 4.74 173 98 � 1.94 196

Table 5.9: SO vs. DZ both with enhancements

5.7.3 Voting
The voting agent was also enhanced. The enhancements are the same as the determinized UCT agent, but
progressive unpruning and bias was also added to test their performance. The remaining experimental
setup was the same as for determinized UCT. Table 5.10 shows the experiments, which were done for
progressive unpruning. The results for progressive bias and progressive unpruning with progressive bias
are represented by Table 5.11. Figure 5.10 shows all results with 2 seconds thinking time.
The general results are similar to the results from determinized UCT. All voting agents perform strictly
worse than the SO. Progressive unpruning was also tested with 4 seconds thinking time. The voting
player with 5 trees performed slightly better than before, but not signi�cantly. It is also important to
notice that SO-PB performs less against the V agents than the DZ agents. Though the results of PU
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Figure 5.10: Visualization of V vs. SO both with di�erent enhancements results

strategy does not show a signi�cant di�erence for either the DZ or the V player.
The results show less di�erence for the voting variant, when using di�erent numbers of trees. V-PB only
has a winning di�erence of 7 games, while DZ-PB has a winning di�erence of 32 games. V-PU still has
a di�erence of 66 games and is so equal to the variance of the determinized variant.

Player
2 sec 4 sec

SO % SO Nr. SO % SO Nr.
SO vs. V-1 59.5 � 6.8 119 56 � 6.88 112
SO vs. V-5 58 � 6.84 116 63 � 6.69 126
SO vs. V-10 70 � 6.35 140 - � - -
SO vs. V-20 91 � 3.97 182 - � - -

Table 5.10: SO vs. V both enhanced with progressive unpruning

Player
Progressive Bias Progressive Unpruning + Bias
SO % SO Nr. SO % SO Nr.

SO vs. V-1 59.5� 6.8 119 60.5� 6.78 121
SO vs. V-5 63� 6.69 126 62� 6.73 124
SO vs. V-10 62.5� 6.71 125 64.5� 6.63 129
SO vs. V-20 63� 6.69 126 66.5� 6.54 133

Table 5.11: SO vs. V both enhanced with PB and PUB

5.8 Early Termination Approach

This section tests the early termination approach discussed in Subsection 4.7.2. Di�erent agents were
tested against each other. All of them were not enhanced by selection strategies or playout policies except
SO-PUB where it is explicitly stated. In all tests the two agents perform similarly, but one agent termi-
nates the playout step after 45 moves while the other agent simulates the game to the end. The player,
which uses the termination strategy, gets a T added to its description. The results of these experiments
can be seen in Table 5.12 and Figure 5.11.

In general, the two approaches seem to have the same performance. For the cheating player, the termi-
nation enhancement seems to perform slightly better than for the other agents. But this result is not
signi�cant. FSO, SO, PUB and MO win in general a similar number of games to the early termination
variant.
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Pl. 1 Pl. 2 Pl. 1 % Pl. 2 % Pl. 1 Wins Pl. 2 Wins
CP-T CP 55 � 6.89 45 � 6.89 110 90
SO-T SO 50 � 6.93 50 � 6.93 100 100

FSO-T FSO 50.5 � 6.93 49.5 � 6.93 101 99
SO-PUB-T SO-PUB 51.5 � 6.93 48.5 � 6.93 103 97

MO-T MO 47 � 6.92 53 � 6.92 94 106

Table 5.12: Termination results
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Figure 5.11: Visualization of Termination results

5.9 Number of Visits vs. Ratio
In this section, agents with di�erent choosing strategies, which determine the move to play in the actual
game, were tested against each other. One of the agents chooses the node with the most number of visits,
the other agent chooses the node with the highest winning ratio. All experiments were run for 400 games
instead of the normal 200 games. The players were not enhanced by another strategy. Table 5.13 shows
the results of these experiments. As seen in the table, the agent, which chooses the node with the most
number of visits, performs better than the agent, which chooses the node with the highest winning ratio.
For the cheating player and the voting 5 agent, the di�erence is only small. The FSO seems to gain the
most bene�t when choosing a node by using the highest number of visits. The results were also visualized
in Figure 5.12.

Player Visits % Ratio % Visits Wins Ratio Wins
CP 51.5 � 4.9 48.5 � 4.9 206 194
FSO 61.25 � 4.77 38.75 � 4.77 245 155
SO 56.5 � 4.86 43.5 � 4.86 226 174
MOMCTS 58.5 � 4.83 41.5 � 4.83 234 166
DZ 5 56.75 � 4.86 43.25 � 4.86 227 173
V5 51.5 � 4.9 48.5 � 4.9 206 194

Table 5.13: Number of Visits vs. Ratio

5.10 Combining PUB with other Approaches
This experiment tries to combine PUB with other approaches. All results can be seen in Table 5.14 and
Figure 5.13.

PUB was tested and combined with several approaches to see, if it can be enhanced. PUB was
tested against three di�erent approaches, PUB with worst missions (SO-PUB-WM), PUB with a playout
strategy (SO-PUB-PS) and Multiple-Observer PUB with a playout strategy (MO-PUB-PS).

SO-PUB-PS was also tested against its Multiple-Observer version. This experiment was also done
with the enhancement of worst missions to both agents.

As the result shows, SO-PUB cannot be enhanced. The further addition of the PS to the SO and
the MO �rst seemed to work. Afterwards it was tested, if the agent actually performs better than SO-
PUB. The results show that SO-PUB performs better than MO-PUB-PS. SO-PUB and SO-PUB-PS wins
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Figure 5.12: Visualization of Number of Visits vs. Ratio
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Figure 5.13: Visualization of PUB results

nearly the same number of games. SO-PUB was strictly better than SO-PUB-WM. SO-PUB-PS-WM
and MO-PUB-PS-WM win, similarly to SO-PUB against SO-PUB-PS, an equal number of games.

Pl. 1 Pl. 2 Pl. 1 % Pl. 2 % Pl. 1 Wins Pl. 2 Wins
SO-PUB SO-PUB-PS 50.5 � 6.93 49.5 � 6.93 101 99
SO-PUB SO-PUB-WM 57 � 6.86 43 � 6.86 114 86
SO-PUB MO-PUB-PS 50.5 � 6.93 49.5 � 6.93 101 99

SO-PUB-PS MO-PUB-PS 44.75 � 4.87 55.25 � 4.87 179 221
SO-PUB-PS-WM MO-PUB-PS-WM 50 � 6.93 50 � 6.93 100 100

Table 5.14: Combining PUB with other approaches

5.11 Cheating Player vs. Di�erent Agents
In this section di�erent strategies were tested against the CP, which shu�es the stack, and CP-U, which
does not shu�e the stack. The results can be seen in Table 5.15. All agents played 200 games. CP-U-
PUB played 400 games against SO-PUB.
When comparing the results of the �rst experiment, FCP-PUB against the CP-PUB (see Table 5.2), it
can be clearly seen that the PUB approach enhances the CP strategy, because both CP now perform
better than the FCP. This was not the case in the previous experiment. As can be seen in the results,
most CP perform clearly better than their opponents. The CP and CP-PUB win 58.5% of all games
played against the SO and SO-PUB. The CP performs a little bit less against MO with winning only
57.5% of all games. CP-PUB only wins 57% of all games against MO-PUB.
The CP-U seems to work better than the CP except for CP-U-PUB plays against SO-PUB. The result
shows that CP-U-PUB performs better than the SO-PUB with winning 55.25% of all games. CP-U
performs best against the SO. CP-U wins 64% of all games. The CP-U wins 62.5% of all games against
MO and CP-U-PUB wins only 61% of all games against MO-PUB.
A visualized part of the results can be seen in Figure 5.14. It shows that CP generally performs less than
CP-U except for playing against SO-PUB.
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Player
CP Shu�ed CP Fixed (CP-U)

CP % CP Nr. CP % CP Nr.
CP-PUB vs. FCP-PUB 59.5 � 6.8 119 61.5 � 6.74 123
CP vs. SO 58.5 � 6.83 117 64 � 6.65 128
CP-PUB vs. SO-PUB 58.5 � 6.83 117 55.25 � 3.45 442
CP vs. MO 57.5 � 6.85 115 62.5 � 6.71 125
CP-PUB vs. MO-PUB 57 � 6.86 114 61 � 6.76 122

Table 5.15: CP vs. di�erent agents
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Figure 5.14: Visualization of CP vs. di�erent agents

5.12 Completing destination tickets
During the experiments it became apparent that unimproved strategies like the SO were not able to
complete destination tickets. In a normal two player game, both players should be able to ful�ll at least
two destination tickets most of the time.

As an example, when the FSO played against the SO with 2 seconds thinking time, the FSO was able
to complete 0.5 destination tickets while the SO was able to complete 0.51 destination tickets on average.
The average number of victory points for both players is 42.07. This is not a good result for any Ticket
to Ride player. These results could be explained with too few simulations and the too complex structure
of Ticket to Ride. Especially the �rst destination tickets take the longest time to complete.

As another example, when the FSO-PUB played against the SO-PUB with 2 seconds thinking time, the
FSO-PUB was able to complete 3.83 destination tickets on average. The SO-PUB was able to complete
4.11 destination tickets. This suggests that the enhancements actually guide the MCTS algorithm to
completing more missions. This results also in more points. Both players are able to score 96.58 victory
points. The victory points of the unimproved FSO and SO are therefore more than doubled.



Chapter 6

Conclusion and Future Research

T his chapter concludes the thesis. The thesis and its most important idea are
summarized. Afterwards the conclusion for the thesis is drawn by answering
the research questions and the problem statement. The thesis ends with the
presentation of ideas for future research.

6.1 Thesis summary
An MCTS agent for Ticket to Ride tried to �nd an answer to the question, if an MCTS agent would be
feasible for Ticket to Ride. To give an introduction in the thesis itself, the development of games with
arti�cial players was shown. The success of MCTS was also presented. After a short introduction in the
game itself, a short overview over di�erent search algorithms was given, including MCTS. The chapter
also introduced the research questions and problem statement of this thesis.

To build an MCTS agent for Ticket to Ride the rules of the game and some strategies for the game
were explained. To show how complex the game is, the state-space complexity and game-tree complexity
were calculated. Through this calculation an overestimation for the state-space complexity was found.
It was calculated that � 9:45 � 1054 di�erent board con�gurations could be possible. The game-tree
complexity was also calculated. The number of possible leaf nodes also was an estimation and the value
was calculated to be � 8:75 � 10228. These results were compared to chess. It was shown, that TTR
is more complex then chess. The game-tree complexity is much higher with � 10108 more possible leaf
nodes. The possible number of board con�gurations di�erentiate by 1011 boards.

In the next chapter, the MCTS algorithm, as well as Flat Monte-Carlo were explained. Di�erent en-
hancements were discussed. The focus was on enhancements to handle imperfect information. For this
problem determinization and several other enhancements were introduced. All of the enhancements,
which do not try to improve a certain step of the MCTS algorithm, are designed for determinization.
The Single-Observer was the closest to the standard MCTS agent, but also other agents were shown. The
other three agents were the Multiple-Observer, the determinized UCT and the voting strategy, which is
similar to the determinized UCT strategy except the way the actual move is chosen. Also other en-
hancements were introduced. These enhancements focused on a speci�c step of the MCTS algorithm.
The most common one is UCT, which uses information from the parent as well as the child to select a
node. Progressive unpruning and progressive bias were also explained. Also two playout strategies were
discussed, early termination and � -based strategies.

In the fourth chapter the implementation problems of Ticket to Ride in MCTS were shown. There-
fore several steps had to be explained, like the implementation of the node and its actions. Also certain
problems with the mission action or generating a determinized board were explained. Some of the en-
hancements needed speci�c values, which had to be �tted to Ticket to Ride. One of them was heuristic
knowledge, which was needed for progressive unpruning and progressive bias. The implementation of the
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playout strategy also needed a more detailed explanation.

In the �fth chapter, the introduced players and enhancements were tested. Therefore the setup of the
experiments was described. All values from certain constants of di�erent players, were stated as well.
Afterwards di�erent experiments were performed and evaluated.

The experiment showed, that MCTS was not necessarily working better than Flat Monte-Carlo. In
most cases the addition of the tree could enhance a player. Therefore it was decided to enhance both
players even further. The addition of progressive unpruning, progressive bias or a combination of both,
seemed to make both players at least equal. The Single-Observer with one of the progressive enhance-
ments seemed to work better than its Flat Monte-Carlo variant when having a thinking time of 4 seconds.

Through the experiments it can be concluded as well that several approaches like the voting player or the
determinized UCT player do not work when they are enhanced with one of the progressive approaches.
Multiple-Observer seemed to work for progressive bias and progressive unpruning with 2 second thinking
time. Otherwise it did not seem to make a di�erence except for the combination of both progressive
approaches, which worked better, when it had 4 seconds thinking time.

It was also tested, if the actual selection of the move would be better, if the node with the highest
winning ratio would be chosen. It was shown that most players could not be improved with this choosing
strategy. For the cheating player and the voting 5 player it is not proven that one strategy is better than
the other one. At the moment it seems that neither strategy improves the cheating nor the voting 5 player.

The early termination could only bring a small enhancement to the cheating player. Otherwise the
termination approach did not work better for most approaches except Multiple-Observer, which per-
formed worse. Overall it was found that progressive unpruning combined with progressive bias worked
best, so it was tested combined with several other approaches. In the end, it was not clear if progressive
unpruning combined only with progressive bias works best, but other di�erent enhancements with which
it was tested, did not give a boost in performance or made the agent perform worse.

The two approaches to choose missions during the determinization seemed to work better for 2 sec-
onds thinking time. When changing the thinking time to 4 seconds both agents performed as well as the
Single-Observer. It was tried to add the better working approach to the combination of progressive un-
pruning combined with progressive bias. This approach was the one who chooses the destination tickets
such that it would be worse for the momentarily active player. This player was tested against the same
player without the worst missions enhancement. The more enhanced player performed signi�cantly worse.

The cheating player was the last player, which was tested. The cheating player was tested in two
di�erent ways. One player knew the stack the other one did not. Both agents performed better than
the Single-Observer and the Multiple-Observer they were tested against. But a unexpected result was
obtained when both agents were enhanced with the combination of the progressive approaches. There the
player which knew the stack, did not have a necessarily better performance against the Single-Observer.
Both types of cheating players were tested against the Flat Monte-Carlo player. Both were not able to
defeat the Flat Monte-Carlo more than 56% percent of the time, which is unusual. If both strategies
were enhanced with the combination of progressive unpruning and progressive bias, the cheating player
was able to defeat the at cheating player about 59.5% of all games.

6.2 Answering the Research Questions

The research questions were given in Section 1.3. These questions are answered �rst, before an answer
to the problem statement is given.

Are Monte-Carlo methods applicable to Ticket to Ride?
Monte-Carlo methods seem to work in Ticket to Ride. Without any enhancement the Flat Monte-Carlo
seemed to work best for a thinking time of 2 seconds. If the player should not cheat, determinization had
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to be implemented such that the implemented player would have the same preconditions as a humanoid
player.

How can MCTS handle the imperfect-information game in the domain of TTR?
To test how well MCTS handles imperfect information several strategies were tested against the cheating
MCTS player. The Single- and Multiple-Observer perform worse than the cheating player. This result
was expected, because the cheating player knows the cards of his opponent and can block the player.
The Single-Observer and Multiple-Observer win 42% of all games against the cheating player, which is
shu�ed. The Single-Observer and Multiple Observer performed worse against the cheating player with
non-shu�ed stacks by winning only 39% of all played games. Considering the disadvantage of the Single-
Observer and Multiple-Observer, they still perform well against both types of cheating player.

Which enhancements can improve the MCTS player?
As discussed before, progressive bias, progressive unpruning and the combination of both can enhance
MCTS. The Multiple-Observer enhances MCTS only under certain conditions. The playout strategy was
not able to enhance the MCTS player. Terminating the playout early as well as using the voting or
determinized UCT player, do not enhance the MCTS player.

6.3 Answering the Problem Statement
This section will answer the following question, which was �rst introduced in Section 1.3:

How can a MCTS player for TTR be developed?

Developing an MCTS player for Ticket to Ride was not as easy as it �rst may have seemed to be.
Several facts and conditions have to be kept in mind. One of the bigger problems was that Ticket to
Ride has hidden information and chance events. Therefore determinization has to be used, so MCTS
has the same conditions as a human. Determinization had several problems of its own, which needed
further investigation. Therefore several other strategies had to be closer analyzed, like the Single- and
Multiple-Observer. Through the high variety of possible missions and the game length, MCTS seemed
not to be able to ful�ll missions on its own. Several approaches were tested improve the performance. The
combination of progressive unpruning and progressive bias seems to work the best. A further improve-
ment of this approach could not be shown in this thesis. The best player seems to be progressive bias
combined with progressive unpruning either for the Single-Observer or the Multiple-Observer. Neither
Single-Observer nor Multiple-Observer seems to perform better than the other when enhanced with the
progressive combination. To enhance the best player even more seemed to be di�cult, because the more
enhanced player either performed worse or there was no signi�cant di�erence.

6.4 Future Research
This section describes ideas for future research. Several strategies use constants. These constants can
be tweaked, as discussed in the corresponding parts. The C value of UCT is used in most strategies
and therefore would be a good choice. Progressive unpruning, progressive bias and the combination of
both could also be an interesting choice to tune the parameters, because progressive bias combined with
progressive unpruning is the best strategy and could maybe be enhanced by testing di�erent values for
the T constant. The values for A and B from the progressive unpruning could also be a good choice.
Tuning the � parameter of the rule-based strategy could maybe increase the performance. Testing more
trees for determinized UCT and the voting strategy does not seem to be plausible, because it seemed to
perform worse the more trees were used.

The second idea for future research possibilities could be to test the game with three players or more. In
theory the game can be played with up to �ve players. This thesis covers only the two player variant. It
is important to notice that with more than three players, the game rules slightly change because more
tracks become available. In general, the game with more than two players is more di�cult, because it is
harder to analyze in advance. Especially getting cards can become more di�cult, since several players
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may need the same color. It also gets more likely that at least two players need to build the same track.
Therefore multiple tracks were introduced when playing with more than three players.

Similar to the idea of playing the game with more than two players, would be to test the strategies
with di�erent expansions or stand-alone editions. Most expansions can only be played on a certain
board, so they add most of the time only one or two rules. This changes the strategies a human player
would use and it would be interesting to see, if MCTS is able to adapt to this change of ruling and is able
to perform similarly. An interesting edition could be the Europe variant, where a player is able to use
tracks of other players then placing certain pieces on the map. Another expansion, which was designed
for two or three players, was the Netherlands expansion. It also uses double tracks, but players can build
on both of them, even with only two or three players instead of the normal four or �ve players.

Another possibility would be, to test the strategies against di�erent human players to see if the strate-
gies also work against them. Until now it was only tested against Monte-Carlo players and it would be
interesting to know, if MCTS is able to win against a human player.

The last idea would be to change the selection of the �rst destination tickets. The tickets could also
be chosen with domain knowledge. Therefore a test of all di�erent combinations of destination tickets is
necessary. Each pair of destination tickets would be tested against di�erent other combinations multiple
times. For each test, the combination of the beginning tickets and the end score of the player has to be
saved. This knowledge would be used to choose the two tickets with the highest total score.
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