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Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit der Frage, ob deterministische heuristi-
sche Bewertungsfunktionen durch Randomisierung verbessert werden können.
Heuristische Bewertungsfunktionen werden eingesetzt, um bei einer begrenzten
Suche in Spiel- und Entscheidungsbäumen mögliche Alternativen zu bewerten.
Die im folgenden dargestellte Forschung wurde anhand des Ein-Personen-Spiels
SlideThree durchgeführt, eines Schiebepuzzles ähnlich dem bekannten 15er-Puzzle.
Das Puzzle und seine Eigenschaften werden in Kapitel 3 ausführlich beschrieben.
Als zentraler Punkt werden die Lösbarkeitseigenschaften von Stellungen disku-
tiert.
Die weiteren Kapitel befassen sich mit den Details der verwendeten Metho-
den und der durchgeführten Experimente. Der verwendete Algorithmus für die
Spielbaumsuche ist heuristische Tiefe-t-Suche. Dabei wird der Baum bis zu
einer festen Tiefe t durchsucht.
Zur Bestimmung des Einflusses von Randomisierung auf die Spielstärke deter-
ministischer Bewertungsfunktionen wurden zwei Ansätze entwickelt und im Ex-
periment umgesetzt. Im ersten Ansatz wird die Spielstärke anhand der Zugaus-
wahl gemessen, im zweiten anhand der Gewinnquote einer Anzahl von Spielen
mit begrenzter Zuganzahl.
Aufgrund der durchgeführten Experimente konnte nachgewiesen werden, dass
sich Randomisierung als Mittel zur Verbesserung von heuristischen Bewertungs-
funktionen in Ein-Personen-Spielen eignet. Allerdings muss die deterministische
Bewertungsfunktion bereits eine gewisse Spielstärke besitzen, damit das Ver-
fahren erfolgreich ist.
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Chapter 1

Introduction

Many people like to play games. And lots of software is written in order to
enable computers to play games. The standard method of these programs is to
generate as many possibilities for the next few moves of the game as possible.
In other words, a part as large as possible of the game tree rooted at the current
position is built up. Then, the best move is identified by evaluating the possible
future positions. This evaluation function is usually heuristic, that means it
only estimates the value of a position by some properties. Generally, there are
two ways to improve a game playing program. First, the search algorithm can
be improved. That is, the tree is searched deeper or more efficiently by identify-
ing and pruning unpromising alternatives. Second, the evaluation function can
be improved. If it can be made a better estimator of the quality of a position,
surely the program will play better.
In this thesis, the second way is investigated. We will answer the question
whether randomization can improve heuristic evaluation functions in single
agent search.

1.1 Related Research

Up to now, research in randomized evaluation functions has been conducted for
two player games.
D.F. Beal and M.C. Smith investigated this topic for chess (cf. [4]). They used
random values as an evaluation function in a minimax search of fixed depth.
They discovered that this plays better than random move selection. Moreover,
simple evaluation functions for chess positions could be improved by adding a
random value to them. They suggested that the reason for this behaviour is,
that randomization tends to prefer the positions with the most possible moves.

T. Rolle describes in his diploma thesis the effects of random increments to
deterministic evaluation functions for several simple two player board games
(cf. [12]). His results varied depending on the game and the nature of the
search that was used. Rolle suggests in his thesis, that randomization leads to
less alpha-beta cutoffs during the search and thus makes the tree search more
inefficient.

This thesis intends to extend the research in this field to single agent search.

6



Chapter 1. Introduction 7

1.2 Thesis Structure

The thesis is divided into 8 chapters and an appendix.
The block consisting of Chapters 2, 6, 7, and 8 can be read independently from
the rest and forms a ”short version” of the thesis. It gives a general overview of
the work done without providing every specific detail.

Chapter 2 gives a brief overview of the research conducted.
Chapters 3, 4, and 5 represent the main body of the thesis. Here, the subject
of research and the methods that were used are lined out. Chapter 3 refers
to the Puzzle SlideThree and its properties. Especially the solvability proper-
ties of the game are discussed. In addition, it is explained how the puzzle was
solved with the help of the computer. In Chapter 4 the methods used for the
empirical research are explained. The search algorithm, evaluation functions
and randomization techniques are presented. The experiments are described
in Chapter 5. Two approaches to answer the research question and their real-
ization as experiments are explained. Also, a discussion about the statistical
significance of the results is contained in this chapter.
Chapter 6 summarizes the results that answer the research question.
Unfortunately, a bug occurred in the programs written for running the experi-
ments. Due to a lack of time, it was not possible to redo all affected experiments.
Chapter 7 explains the nature of the bug and how it influenced the results pre-
sented in Chapter 6. Finally, Chapter 8 presents the conclusions that can be
drawn from the conducted research. It also relates what future research in this
area should be done.
In the appendix the handling of the programs for running the experiments is ex-
plained. All programs are written in C++ and run on Windows. Furthermore,
some more results of the experiments are shown in graphs and tables. Finally, a
view is taken on how well Zillions of Games, a software playing multiple games
and puzzles, plays SlideThree.
The thesis also includes a CD-ROM. On this CD, all the data from the experi-
ments can be found as put out by the programs and assembled into tables and
graphs. It contains the programs, database, and samples that were used for
running the experiments. The programs are given as executable files and C++
source code. Also included on the CD is the thesis in PS and PDF format.



Chapter 2

Overview

This chapter gives a brief overview of the conducted research. It starts with a
section on SlideThree, the game chosen for research. Sections 2.2 and 2.3 de-
scribe the algorithm and evaluation functions used for the empirical investiga-
tions. Section 2.4 refers to the why and how of randomization. The experiments
are explained briefly in Section 2.5.

2.1 The Puzzle SlideThree

As subject for research, a single player game was chosen. That is why the game
tree search is called single agent search. The game is called SlideThree and is a
sliding tile puzzle similar to the well known 15 Puzzle (cf. [1]).
It was invented and programmed for Zillions of Games by W. D. Troyka (cf.
[2]). The Puzzle’s properties are outlined in detail in Chapter 3.

Setting

SlideThree is played on a 4 × 4 board with nine tiles which are numbered from
1 to 9. The remaining 7 squares of the playing board are blanks.

Figure 2.1 shows the Start and Win positions of SlideThree. The task is

9 8 7

6 5 4

3 2 1

Start

1 2 3

4 5 6

7 8 9

Win

Figure 2.1: Start and Win Positions

to reverse the order of the tiles by sliding blocks of three tiles horizontally or
vertically. A block can be chosen from a row or column and can only move
within the row or column it was chosen from. Figures 2.2 and 2.3 illustrate the
admissible moves. The tiles of the block must not have blanks between them

8



Chapter 2. Overview 9

9 8 7

6 5 4

3 2 1

9 8

6 5 7

3 2 4

1

Figure 2.2: Admissible Column Slide

9 8 7

6 5 4

3 2 1

9 8 7

6 5

3 2 1

4

Figure 2.3: Admissible Row Slide

and there has to be a blank at one of the ends of the block. The sliding is done
in direction of this blank.

Properties

In this introduction, we only give a short list of properties of the puzzle. For
further details, see Chapter 3.

• Every position has 4, 5, or 6 successor positions.

• There are 11,612,160 different positions in SlideThree.

• The quickest solution for the Start position needs 24 moves.

• The most complicated positions need 26 moves to be solved.

At this point, we introduce the notion of the DTW of a position.

Definition 2.1.1 The DTW (Distance To Win) of a position P is the minimal
number of moves from P to the Win position.

2.2 Search Algorithm

The algorithm used for the research is called depth-t-search. The levels of the
built up game tree are also called plies. Searching a good move for the current
game position works in the following way:

1. Generate the first t plies of the game tree, the current position is the root
position in ply 0.
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2. Evaluate the leaves of this subtree, i.e. the nodes in ply t. For this, a
heuristic evaluation function is used. If the Win position is found before
ply t is reached, this is recognized. The Win always gets the value 0.

3. Pass the values v up the tree by minimizing.
v(predecessor)=min{v(successor1), . . . , v(successorn)}

4. Execute a one-step move leading from the root position in direction of the
depth-t-successor with the minimal value.

The playing strength of depth-t-search varies, depending on the heuristic eval-
uation function and search depth.
In the following, we will talk of the playing strengths of evaluation functions.
This always refers to the playing strength of the respective evaluation function
used in combination with depth-t-search.

2.3 Evaluation Functions

For the research, six heuristic evaluation functions were built and their playing
strengths were measured. For convenience, the word ”heuristic” is left out in
the following.

Definitions

The evaluation functions are defined in detail and explained in examples in
Chapter 4, Section 4.2. In short, the six evaluation functions are:

1. Euclidian On Board (Eu)
Let r(i) be the distance of Tile i to its goal square in rows, c(i) the distance
in columns, respectively.

Eu =
√∑9

i=1 r(i)2 + c(i)2

2. Manhattan Metric (Man)
Sum of the Manhattan distances of the single tiles to their goal square.

3. Neighbour Distance (Nb)
The neighbourhood of each tile is examined. For every wrong, missing, or
additional neighbour of the tile, a malus of +1 is assigned. Also, a malus
of +1 is added for a wrong position of the tile. All malus are assigned
with respect to the goal position of each tile. The sum of all malus is the
value of the SlideThree position.

4. Permutation Distance (Perm)
The SlideThree position is transformed to a permutation π of the numbers
1 to 9.
Perm =

√
0.5 +

∑9
i=1 (π(i) − i)2

5. Inversions Distance (Inv)
The SlideThree position is transformed to a permutation π like in 4.
The Inversions Distance is the number of inversions in π.

6. L2 Distance (L2)
The position is converted into a vector of R16. Then its L2 distance
(euclidian distance) to the vector corresponding to the Win position is
calculated.
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Also, Random Evaluation and Random Play were tested. Random Evaluation
means, that the value of a position is a random number from (0, 1). In Random
Play, a move is chosen randomly, without making any evaluation.

Discussion

The above evaluation functions are very different. Some of them are derived
from the game setting and carry much information, others are rather distant
from the actual structures in SlideThree and general. Thus, we obtain evalua-
tion functions that differ in structure and playing strength. Both factors may
influence the effect of randomization. Therefore it is important to also include
weak and strange evaluation functions in our investigations.

2.4 Randomization

The goal of our research is, to find out whether randomization can improve
deterministic heuristic evaluation functions. By randomization we understand
a random alteration of the heuristic values assigned to the leaves of the searched
tree.

Motivation

There are several reasons, why randomization might be able to improve evalu-
ation functions.

Cycles Deterministic evaluation functions behave always identically in the
same situation. If the evaluation function chooses one move in position P, it
will choose the same move every time, position P is reencountered during the
tree search. Therefore, deterministic evaluation functions often get stuck in
cycles. Randomization offers a possibility to leave such cycles, thus solving this
problem.

Tiebreaks In SlideThree we often have the situation that after a depth-t-
search several successors of the root share the minimal value. In such a tie
situation, randomization might help to choose a good move. Imagine the situa-
tion shown in Figure 2.4. When using randomization, the leaf with the minimal
value will be in the left subtree with a higher probability than in the right sub-
tree. The conjecture is that randomization tends to descend in the subtree with
the most minimal nodes in the case of a tie. This might lead to better play.

K-Best Mode If the randomization is intense enough, it is able to switch the
values of the successors. Thus not only the best, but also the second best, third
best, or k-best moves become candidates for execution.

Summary

The above mentioned problems of deterministic evaluation functions are well
known. In many programs, they are solved by additional routines for cycle
detection, k-best modes, or counting of the nodes. Randomizing the evaluation
function is much less complicated and might deal with several of these problems
at the same time.
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3 3 3 5 9 3 6 8

3 3 3 6

3

s

3

Figure 2.4: Example for Tie Situation

Randomization Techniques

The method that is used for randomization surely has a big influence on the
behaviour of the randomized evaluation functions. Therefore, several types of
randomization were attempted.

1. Add a random value (rv) to the deterministic evaluation function (evf).
(Add)
This is the easiest way of randomizing a deterministic evaluation function.
The intensity of the randomization is scalable by changing the range of
the random value, but depends on the absolute values of the heuristic
evaluation function.

2. Multiply the evaluation function by (1+rv). (Mult)
This is a relative randomization of the evaluation function. Its intensity
no longer depends on the range of the deterministic evaluation function.

3. evf+rv
evf . (Norm+)

This randomization method was designed in such a way that it switches
the order of the moves for low intensity already. In a way, it rejects the
values from the deterministic evaluation function. Here, also moves with
a high heuristic value have a chance to be executed.

4. evf−rv
evf . (Norm–)

Norm– is the mirrored version of Norm+. Whenever Norm+ orders two
positions in one way, Norm– reverses the order.
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5. Add (rv · Perm) to the deterministic evaluation function. (Comb)
Perm is the Permutation Distance, which is one of our deterministic eval-
uation functions. So this type of randomization combines the knowledge
of two deterministic evaluation functions in a random way.

2.5 Experiments

During the research, two classes of experiments were run. Each class uses a
different approach to measure the playing strength of an evaluation function.

2.5.1 Choice of Moves Experiments

Preparation

In preparation of the experiments, the puzzle SlideThree was solved. That is,
a database was built containing all SlideThree positions with their respective
DTW (Distance To Win). The technical details of how the database was built
are described in Chapter 3, Section 3.3.

Setup

In the choice of moves experiments (CoM experiments) it is determined how well
the different evaluation functions choose their moves. During a depth-t-search
for a SlideThree position, its successors get heuristic values. All moves leading
to a successor with minimal heuristic value are considered for execution. These
moves will be called candidate moves in the following. The set of candidate
moves differs depending on the evaluation function used for the search. Among
the candidate moves there are some good moves and some bad moves. A move
leads from the current position to a successor position. Every move that leads
us closer to the Win position is a good move. A bad move leads us away
from the Win position. Therefore, good and bad moves can be distinguished
by the DTW of the successor positions. A less DTW than that of the current
position indicates a good move, a greater DTW a bad move, respectively. In the
experiment, the DTW of all positions is retrieved from the database mentioned
above.
In order to measure the playing strength of an evaluation function in the CoM
experiments, the measure Hits is used.

Definition 2.5.1 Let GM be the number of good moves among the candidate
moves in a SlideThree position. Then, for this position we define:

Hits :=
GM

# candidate moves

As only the candidate moves are considered for execution, Hits is a measure for
the playing strength of an evaluation function in the respective game situation.
In the CoM experiments, the arithmetic mean of the Hits is calculated over a
set of sample positions in a fixed DTW. The sample size is 1068 for all DTWs
in order to obtain statistical significance (cf. Subsection 5.2.2). Only for the
smallest DTW in the experiments, DTW=8, a sample of 1000 SlideThree posi-
tions was used. A full account of how the CoM experiments were set up with
all technical details can be found in Section 5.1. For the results, see Chapter 6.
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2.5.2 Autoplay Experiments

Setup

In the autoplay experiments, depth-t-search is used to play games of SlideThree
for up to 100 moves. The ratio

Games won within 100 moves
Games played

is called winning quota. The winning quota is used as a measure for the playing
strength of an evaluation function.
Typically, one autoplay experiment included about 1000 games, starting from
SlideThree positions in a fixed DTW. Not only the type, but also the intensity
of the randomization was varied. This was done by changing the size of the
intervals from which the random values for the randomization were taken. The
experiments were run for search depths 4, 5, and 6. Their results are explained
in Chapter 6.



Chapter 3

The Puzzle SlideThree

The puzzle SlideThree was invented and implemented for Zillions of Games by
W. D. Troyka (cf. [2]). It is a sliding tile puzzle similar to the well known
15-Puzzle (cf. [1]). In this chapter, the rules of the game are explained and
its properties are presented. The properties are both deduced theoretically and
by computer aid. As a major result, the solvability properties of SlideThree
positions are described. The last section refers to how the puzzle has been
solved by building a SlideThree database.

3.1 Rules

SlideThree is played with nine tiles on a 4 × 4 board. The tiles are numbered
from 1 to 9. At the start of the game, they are positioned in the first three rows
and columns of the playing board in reverse order. The task is to order the tiles
according to their numbers (Figure 3.1).

9 8 7

6 5 4

3 2 1

Start

1 2 3

4 5 6

7 8 9

Win

Figure 3.1: Start and Win Positions

Only blocks of three tiles can be slid. The blocks must be dense, meaning
that there must not be blanks between the tiles. There must be a blank at one
end of the block in direction of which the block is slid. A block is chosen from
one row or column and can only slide within this row or column. Examples for
admissible moves are shown in Figures 3.2 and 3.3.

15
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9 8 7

6 5 4

3 2 1

9 8

6 5 7

3 2 4

1

Figure 3.2: Admissible Column Slide

9 8 7

6 5 4

3 2 1

9 8 7

6 5

3 2 1

4

Figure 3.3: Admissible Row Slide

3.2 Properties

For easier reference we number the rows and columns of the playing board as
shown in Figure 3.4. We will refer to each square by the two dimensional vector
of its row- and column number.

3

2

1 2
1

3

4

4

(2, 4)

Figure 3.4: Numbering of Rows and Columns

3.2.1 Movement of the Blanks

There are seven blanks on the SlideThree playing board. In the Start position,
three are located in the corners (squares (1, 4), (4, 1) and (4, 4)) and four on
the edge of the board (squares (2, 4), (3, 4), (4, 2) and (4, 3)).
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Corollary 3.2.1 The three blanks starting in the corners move only to other
corners of the playing board.

Proof: The blanks in the corners are moved, when a block adjacent to them
is slid. They switch their position from one end of the block to the other, which
is again a corner.

Corollary 3.2.2 The blanks on squares (2, 4) and (3, 4) move only within their
respective rows. The blanks on squares (4, 2) and (4, 3) move only within their
respective columns.

Proof: The proof is given for the blank located on square (2, 4). This blank
only moves when a block adjacent to it is slid. Such a block must cover squares
(2, 1), (2, 2) and (2, 3). If it is slid, the blank moves from square (2, 4) to square
(2, 1), staying within its row. For the other blanks the proof is analogous.

3.2.2 Successors

Every SlideThree position has either four, five or six successors. An example for
a position with six successors is the position Start (Fig. 3.1). With nine tiles,
this is the maximum number of successors. The minimum of four successors
follows from the two corollaries of the previous section. They imply that, in any
game position, each of the rows and columns 2 and 3 hold exactly one blank.
This blank is at one end of the row or column (Corollary 3.2.1). Therefore each
of these four rows and columns contains a block that can be slid. An example
for a position with 5 successors are the successors of the Start position (see e.g.
Figure 3.2).

3.2.3 Number of Positions/Solvability

Number of Patterns

To compute the number of positions occurring in SlideThree we introduce the
notion of a pattern.

Definition 3.2.1 A pattern is the distribution of the tiles on the board without
taking into account the numbers on them.

We will now determine the number of patterns occurring in SlideThree. This
is derived from the possible positions of the blanks on the board. According to
Corollary 3.2.1 there are always three blanks in the corners. So one out of four
corners is covered with a tile. Furthermore, the blanks in rows 2 and 3 and in
columns 2 and 3 can be at either end of their respective rows or columns. In
summary, we have a total of 4 · 2 · 2 · 2 · 2 = 64 patterns occurring in SlideThree.
Within each of the patterns we theoretically have 9! possibilities of arranging
the tiles.

Block Positions

In the following we will show that only half of the 9! permutations occur in each
pattern. For this, the notion of a block position is introduced.

Definition 3.2.2 A block position is a SlideThree position with six successors.
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B1 B2 B3 B4

Figure 3.5: Block Positions

The four patterns of block positions are shown in Figure 3.5.

Lemma 3.2.3 Any sequence of moves from a block position into the same block
position consists of an even number of moves.

Proof: The proof is given for the block position B1 from Figure 3.5. It is
analogous for the other block positions.

We colour the squares of the playing board as shown in Figure 3.6.

Figure 3.6: Colouring of the Squares

When playing from block position B1, each move either covers or uncovers
exactly one of the coloured squares. Therefore we have to perform the same
number of covering and uncovering moves in order to return to B1. So the total
number of moves is even.

Remark 3.2.1 From the above lemma we derive the following:
Let A and B be two SlideThree positions and let a and b be the number of
coloured squares covered by each position. If a and b are of the same parity,
any sequence of moves which starts from A and ends in B consists of an even
number of moves. If a and b are of different parity, the number of moves in any
sequence leading from A to B is odd. Note that the Win position covers an odd
number of coloured squares. Therefore the number of moves in any sequence
from the Start position to the Win position must be even.

Conversion to Permutations

For the next step we introduce numbers for the blanks and squares of the playing
board as shown in Figure 3.7. We now assign to each SlideThree position a
corresponding permutation of the numbers 1 to 16. For an introduction to
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Figure 3.7: Numbering of the Blanks and Squares

permutations, especially the concept of even and odd permutations, see [5].
The numbers of the squares provide the domain of the permutation. The image
is the number of the tile or blank covering the respective square.

π(i) = number of tile or blank on square i

For example, the Start position is assigned to the permutation

σ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 8 7 6 5 4 3 2 1 10 11 12 13 14 15 16

)
For block position B1, the corresponding permutation π can be written as the
product of two permutations ζ and η.

π = ζ · η (3.1)

ζ represents the order of the tiles. In B1, it has fixpoints at numbers 10 to 16.
η represents the order of the blanks. It has fixpoints at numbers 1 to 9.

Main Theorem

We now want to prove that every permutation corresponding to a B1 position
is even. For this, we first take a closer look at η.

Corollary 3.2.4 The permutation η from Equation 3.1 is even.

Proof: We reduce the SlideThree playing board to an undirected graph
with four nodes. The nodes represent the corners of the board. For the Start
position, the graph is shown in Figure 3.8 on the left. The numbers denoting
the blanks are in their start positions. T denotes a tile. It can switch places
with a neighbouring blank. Therefore, the order of the corner blanks is never
changed during the game. I.e. in clockwise direction the order of the corner
blanks is always 10, 16, 13. Thus, there are only three possible configurations
of the corner blanks in B1. They are shown as graph representations in Figure
3.8. Their corresponding permutations in cycle notation are:
α = id, β = (10, 13, 16), γ = (10, 16, 13), which are all even.

The above corollary implies that the Win position corresponds to an even
permutation. Now we are ready to take the final step.

Theorem 3.2.5 Only the even permutations of the tiles in block position B1
are solvable, i.e. there exists a sequence of moves to the Win position.
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Figure 3.8: Order of Corner Blanks in B1

Proof: Let π be the permutation corresponding to a solvable B1 block
position. It suffices to show that ζ in Equation 3.1 is even. From Lemma 3.2.3 we
already know that we need an even number of moves to reach the Win position.
Making a move in the game corresponds to multiplying two permutations. So
the sequence of moves corresponds to a product of permutations, the first factor
being π. Let ω denote the permutation corresponding to the Win position and
µi the permutation corresponding to move i. Then the situation is represented
by the following equation:

π · µ1 · µ2 · · ·µ2n = ω (3.2)

We now determine the permutations corresponding to the moves. If we start

1 2 3

4 5 6

7 8 9

10

11

12

13 14 15 16

10 1 2

4 5 6

7 8 9

3

11

12

13 14 15 16

Move Row 1

Figure 3.9: Permutation for Row 1-Slide

with the identical permutation and slide Row 1 to the right, we obtain (in
cycle notation) the permutation ρ = (1, 2, 3, 10), as illustrated in Figure 3.9.
This permutation is odd, as can be seen when decomposing it to a product of
transpositions:

ρ = (1, 2, 3, 10) = (1, 2)(2, 3)(3, 10)

In every move, three tiles and one blank change their positions in a circular
way. Therefore they can all be represented as a cycle of length 4 in the cycle
notation for permutations. A cycle of length 4 can be decomposed to a product
of three transpositions. So all permutations corresponding to SlideThree moves
are odd. Therefore, the product of the µi in Equation 3.2 is even. Also, ω is
even. This implies that π must be even. We already know that in the decom-
position π = ζ · η, η is even. Therefore ζ must be even.
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Generalization:
SlideThree can be viewed as a special case of the game SlideK, which is played
on a K + 1 × K + 1 board (K ≥ 2). In SlideK there are K2 tiles and 2K + 1
blanks. Blocks can be slid if they contain K tiles without a blank in between.
Theorem 3.2.3 holds for all these variants:
With an analogous numbering of the blanks and squares, we obtain a similar
decomposition π = ζ · η for each solvable B1 position π in SlideK. π here is a
permutation of the numbers 1 to (K + 1)2. ζ represents the permutation of the
tiles, η the permutation of the blanks. The movement of the corner blanks is the
same as in SlideThree. Therefore, η is even. π is a product of an even number
of permutations which represent the moves. Each of the factors can be written
as a product of K transpositions because it is a cycle of length K +1. Applying
the same reasoning as in 3.2.3 we conclude that π is even and consequently ζ is
even.

Number of Positions

We know that only half of the 9! possible permutations of the tiles in B1 are
solvable. It is easy to see that the same applies to each SlideThree pattern. In
the following, we leave out the blanks and narrow our view to the tiles only. We
introduce the notion of the permutation within a pattern. The numbers on the
tiles are counted rowwise from the upper left corner to the lower right corner
of the playing board. An example for how the permutation within a pattern is
derived is given in Figure 3.10.

9 87

6

5

4

3

2

1

Corresponding Permutation:

1 2 3 4 5 6 7 8 9
4 2 7 9 8 1 6 3 5

Figure 3.10: Permutation for a SlideThree Position

Because of the way of counting, sliding a block within a row does not change
the permutation. Sliding a block within a column multiplies the permutation by
either an even or an odd permutation. In SlideThree, there are only 16 patterns
that are solvable for odd permutations. They are shown in the appendix in
Figure H.1. All other patterns are solvable for even permutations.

Summarizing the results, the total number of SlideThree positions amounts to

64 · 9!
2

= 11612160 (3.3)
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Generalization: As remarked earlier, Theorem 3.2.3 holds for SlideK. For
these variants, the total number of positions is

4 · 22(K−1) · K2!
2

. (3.4)

3.3 Building a SlideThree Database

In order to have a means to measure the quality of the evaluation functions in the
later experiments, first a database of all SlideThree positions was created. Each
entry in the database consists of three parts: the pattern of the position, the
permutation of the tiles within the pattern, and its distance to win (DTW). The
DTW of a position is the minimal number of moves that are needed to solve
it (cf. Subsection 2.1.1). The pattern and permutation identify the position
uniquely.

3.3.1 Backward Analysis

The database was created by making a backward analysis of the SlideThree
game tree. This method has already been used and explained by Gasser in his
PhD thesis [7]. In a backward analysis the game tree is expanded from the Win

1. ListRoot=Win;
2. ListPred=empty;
3. ListSucc=empty;
4. dtw=0;
5. new=1;
6. while(new!=0)
7. {
8. new=0;
9. for each in ListRoot
10. {
11. ComputeSuccessors;
12. for each succ
13. {
14. if(succ not in ListPred)
15. {
16. DTW(succ)=dtw+1;
17. write succ to ListSucc;
18. new=1;
19. }
20. }
21. }
22. save(ListSucc);
23. ListPred=ListRoot;
24. ListRoot=ListSucc;
25. ListSucc=empty;
26. dtw=dtw+1;
27. }

Table 3.1: Alg. 1 Backward Analysis

position until it contains all positions occurring in the game. The advantage of
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this backward method is, that each position occurs only once in the tree. The
length of the path from the Win position to another position P is the DTW
of P. Of course, only the positions that are solvable are included in the tree.
Therefore, backward analysis is also a method of gaining knowledge about solv-
ability. The terms successor and predecessor will be used in the following with
respect to the structure of the tree that is built up for the backward analysis.
When playing SlideThree, the Win position does not have successors, of course,
but only predecessors. Table 3.1 shows the algorithm that was used in pseudo
code.

The algorithm uses three lists. ListRoot contains the nodes which have to
be expanded in the current step. ListPred contains the predecessors (the parent
nodes in the backward tree) to the nodes in ListRoot. ListSucc is filled with the
successors of the nodes in ListRoot (the child nodes in the backward tree). For
the first step of the while loop, ListRoot is initialized with the Win position.
The other lists are empty. The variable dtw holds the DTW of the nodes in
ListRoot. The variable new indicates whether new successors were found in the
last step. If there are no more new successors found, new is set to 0 and the
while loop breaks. This happens when all solvable SlideThree positions have
been processed. To enter the while loop, the variable new is initialized to 1
in Line 5. The algorithm works as follows: For all the nodes in ListRoot the
successors are computed. For each of the successors it is checked, whether it
appears in ListPred. This is necessary because the puzzle is reversible. At least
one of the successors must appear as predecessor in ListPred. If the successor
was not found in ListPred, its DTW is set to dtw+1 (it is one move further
away from the Win than its predecessor). Then it is written to ListSucc (Lines
8–20). After each node of ListRoot has been processed in this way, ListSucc
is saved to a file and the lists are reinitialized for the next step (Lines 21–23).
The variable dtw is incremented to the DTW of the nodes of the new ListRoot.
One can imagine the lists moving through the tree rooted at the Win position.
ListRoot contains all nodes at ply dtw, ListPred holds the nodes at ply dtw–1,
and ListSucc is filled with the nodes at ply dtw+1.

Before running the backward analysis for SlideThree, variables for counting
the new found successors in each step were added. Thus, the distribution of the
positions of SlideThree according to their DTWs was obtained (Figure 3.11).
Further results from the backward analysis are:

• The Start position has DTW 24.

• The maximum DTW is 26.

• There are 184 positions with a DTW of 26.

The patterns of the 184 positions in DTW 26 are shown in Figure H.3 in
the appendix. A complete list of them is included on the CD-ROM, filename
26Pos.txt. For each position, its pattern and order codes are given. For the
definition of these codes, see Subsection 3.3.2.

3.3.2 Making the Database Random Access

In the experiments, the DTW for SlideThree positions had to be retrieved very
often. To reduce the time required for this, the files written during the backward
analysis were reformatted to a random access database.
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 Figure 3.11: Distribution of SlideThree Positions

Gödelization

To have random access to a database means that each entry of the database can
be reached directly, without performing expensive file searches. The first step
towards this is to make a Gödelization of the SlideThree positions.

Definition 3.3.1 Let P be the set of SlideThree positions.
An injective function

g: P −→ N

is called Gödelization of P.
The image g(P) is called Gödelnumber of the position P.

In case of SlideThree a Gödelization G was defined for each of the 64 patterns
occurring in the game. Within each pattern, the permutation of the tiles iden-
tifies the position uniquely. So in defining a Gödelization for S9, the symmetric
group of the permutations of the numbers 1 to 9, we obtain a Gödelization for
the positions within a pattern. The Gödelization is defined in a constructive
way. An algorithm for computing the Gödelnumber for a position is given in
pseudo code. Suppose the permutation is given in the form
(π(1), π(2), π(3), π(4), π(5), π(6), π(7), π(8), π(9)). Then the Gödelnumber is com-
puted as explained in Table 3.2.

In other words, we start with subtracting 1 from the first entry of the permu-
tation and multiply it with 8!. This is the value that will be added to in the
following steps. It is called G in Table 3.2. Then we subtract 1 from each entry
of the permutation that is greater than the first one. After that, the first entry
is removed. Now a permutation of the numbers 1 to 8 is left. We subtract 1
from the first entry and multiply it by 7!. The result is added to G from the
previous step. Then we proceed with subtracting 1 of every entry being greater
than the first one and removing the first entry. Now we have a permutation of
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1. G=0;
2. length=9;
3. while(length>0)
4. {
5. G=G+(π(1) − 1)· (length-1)!;
6. for(π(j) )
7. {
8. if( π(j) >π(1) )
9. π(j) = π(j) − 1 ;
10. }
11. π = π without π(1)
12. length=length-1;
13. }

Table 3.2: Alg. 2 Gödelization G

the numbers 1 to 7 for which the whole procedure starts over again. The sum
of all the G values is the Gödelnumber of the permutation or the corresponding
SlideThree position, respectively.

Example: We take the SlideThree position from Figure 3.10 as an example.
The corresponding permutation (in our notation) is
π = (4, 2, 7, 9, 8, 1, 6, 3, 5).
First we calculate (4 − 1) · 8! = 120960.
Next we subtract 1 from each entry that is greater than 4 and remove 4 from
the permutation.
We obtain
π′ = (2, 6, 8, 7, 1, 5, 3, 4), a permutation of the numbers 1 to 8.
Now we proceed:
120960 + (2 − 1) · 7! = 126000.
Reformatting π′: π′′ = (5, 7, 6, 1, 4, 2, 3)
126000 + 4 · 6! = 128880
π′′′ = (6, 5, 1, 4, 2, 3)
128880 + 5 · 5! = 129480
π4 = (5, 1, 4, 2, 3)
129480 + 4 · 4! = 129576
π5 = (1, 4, 2, 3)
129576 + 0 · 3! = 129576
π6 = (3, 1, 2)
129576 + 2 · 2! = 129580
π7 = (1, 2)
129580 + 0 · 1! = 129580
π8 = (1)
126580 + 0 · 0! = 129580
π9 ={}
So the Gödelnumber for this position is G(Pos)=126580.
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Properties: G has the following properties:

• The Gödelnumbers of the positions are unique (injectivity)

• The range of G is {0,1,2, . . . , 9! − 1} ⊂ N

As only half of the 9! SlideThree positions within each pattern are solvable,
only half of the numbers in the range of G are Gödelnumbers of positions. We
have to live with this slight disadvantage to keep the algorithm for calculating
the Gödelnumbers simple and reasonably fast.

Structure of the Final Database

The structure of the final random access database is fairly simple. It consists
of 64 files, one for each SlideThree pattern. Each of the files is a binary file
containing 9! entries. Each entry represents a SlideThree position and is a
record of the following structure:

• short int Pattern (code for the pattern of the position)

• int Order (permutation of the tiles within the pattern)

• short int DTW (DTW of the position)

The size of such a record is 12 Bytes. The entries in Pattern and Order identify
the position uniquely.

Encoding of Positions Order holds the permutation of the tiles within the
pattern encoded as an integer. E.g. the permutation (3, 7, 6, 1, 2, 9, 8, 4, 5)
would be stored as the number 376129845. The code for the pattern is a little
more complicated. It is a three digit integer, the digits having different mean-
ings. Consider the corners of the playing field numbered as shown in Figure
3.12.
In each pattern exactly one of the corners is covered with a tile. The number

43

21

Figure 3.12: Numbering of the Corners

of this corner is the leftmost digit of the code. The positions of the blanks in
rows 2 and 3 and columns 2 and 3 determine the other two digits. For each of
the rows and columns, a binary number is computed. It is 1 if the first square
of the row or column is covered with a tile and 0 if the last square is covered.
The four bits are assembled to a binary four digit number in the following order:

0︸︷︷︸
c2

1︸︷︷︸
c3

1︸︷︷︸
r2

0︸︷︷︸
r3

,
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where ci is column i and rj row j, respectively. In this example, the last square
in column 2, the first square in column 3, the first square in row 2 and the
last square in row 3 are covered with tiles. The four digit binary number is
converted to a decimal number which makes digits 2 and 3 of the pattern code.
Thus every integer in the set
{100, 101 . . . 115, 200, 201 . . . 215, 300, 301 . . . 315, 400, 401 . . . 415} identi-
fies a pattern uniquely.

The advantage of this kind of encoding is that it is easy to compute. Even
more important is the fact that a position can be easily encoded and decoded,
even for a human being. In all programs that were written for this thesis, the
SlideThree positions are represented by their Pattern and Order values.

Reformatting In order to build the random access database, a program was
written which paces the text files that were created during the backward anal-
ysis. The codes for pattern and order and the DTW of each position are taken
from the text file, put in the above described record and written to the database
file corresponding to the pattern. Each record is included at position G(Order)
in the database file. The entries in the database file containing no encoded
SlideThree position are filled with zeroes. The filenames are ’DBxxx’ , of which
xxx is the 3 digit pattern code.
The size of the whole database is about 265 Mb. It is included on the CD-ROM.



Chapter 4

Methods of Empirical
Research

This chapter describes the methods for the empirical research on the behaviour
of randomized evaluation functions in single agent search. The first section
explains the algorithm that was used for searching the SlideThree game tree.
It is followed by the definitions of the heuristic evaluation functions and the
different types of randomization.

4.1 Search Algorithm

The algorithm that was used is called depth-t-search. Note that the highest
interest lies in comparing evaluation functions, not in finding a best search al-
gorithm. Therefore the search algorithm was kept simple.

4.1.1 Depth-t-Search

5 6 1 4 2 9 3 8

5 1 2 3

2

s

1

Heuristic Evaluation

Min

Min

Figure 4.1: Depth-3-Search Example

The game tree of SlideThree is (as in most games) much too large to make
an exhaustive tree search in reasonable time. Therefore, the search is limited to

28
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float DepthTSearch(node n, int t, int depth)
1. {
2. if(n==Win)
3. Value(n)=0;
4. else if(depth==t)
5. Value(n)=Evaluate(n)
6. else
7. {
8. {succ1,...,succm}=ComputeSucc(n)
9. for(j=1 to m)
10. {
11. Value(succj)=DepthTSearch(succj, t, depth+1);
12. }
13. Value(n)=min(Value(succ1),...,Value(succm));
14. }
15. return Value(n);
15. }

Table 4.1: Alg. 3 Depth-t-Search

a fixed depth t. If a node at ply t is reached during the search, it is evaluated by
a heuristic evaluation function. The value of the parent node is the minimum
of the values of its children. The search may be stopped before ply t, if the Win
position is found. The value of the Win position is 0 for all evaluation functions
considered. There is neither move ordering nor pruning done. In pseudo code,
the algorithm is given in Table 4.1. It is a recursive function calling itself for
every node that is expanded. The function takes the current node to expand (n),
the maximum search depth (t), and the current search depth (depth), i.e. the
depth of n in the tree. The depth of the root is 0. DepthTSearch is called with
depth=0 for the starting position. In Lines 2 and 3, a check is made whether n
is the Win position. If so, its value is set to 0. Lines 4 and 5 treat the case that
n is in ply t. If so, n is evaluated by a heuristic evaluation function. Lines 6 to
14 describe the recursion. If n is neither in ply t, nor the Win position, it has
to be expanded. That means that its successors are calculated and evaluated.
To do this, DepthTSearch is called recursively on each of the successors (Lines
9 to 12). As already mentioned, the value of n is the minimum of its children’s
values (Line 15). It is the return value of the function. Figure 4.1 shows how
depth-t-search works for t=3. In this example, a binary tree is searched. The
nodes at ply 3 obtain their values from a heuristic evaluation function. These
values are passed up the tree by minimizing.

4.1.2 Including a Transposition Table

Motivation

If several different sequences of moves have the same start- and end positions,
this is called a transposition. An example for traspositions in SlideThree is the
execution of two independent moves in different order.

Definition 4.1.1 Two moves M1 and M2 are called independent, if the inter-
section of the tiles slid by M1 and M2 is the empty set.
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This happens very often in SlideThree, so many positions occur several times
in the game tree. To avoid the redundant expansion of all these nodes, a trans-
position table is used. Positions are stored in the table after they have been
expanded. They are retrieved from the table when they occur again in the game
tree. This saves a lot of computing time.
In addition to speeding up the tree search, there was another reason for imple-
menting a transposition table. Let P be a position that occurs several times in
the game tree. When doing experiments with randomized evaluation functions,
P will obtain a different value at each occurrence. With a transposition table
this can be avoided to a certain extent.

Hashing Terminology

The transposition table is implemented as a large hash table. Each SlideThree
position is written to the hash table after it has been expanded during the tree
search. Its location in the hash table is called hash index. To determine the
hash index, first the hash value of the position is computed:
Let P denote the set of all SlideThree positions. Furthermore, let k

k: P −→ H ⊂ N

be the function assigning the hash value to each position. Here, H is the set of
hash values. Usually, its cardinality is much higher than the number of entries
in the hash table. Therefore, the hash value has to be transformed to a valid
entry number, the hash index. This is done by another function l:

l: H −→ {0, 1, . . . , size(TT) − 1},
size(TT) being the number of entries in the transposition table.
The concatenation

h = l(k) h: P −→ {0, 1, . . . , size(TT) − 1}
is called hash function h. A good hash function should distribute the positions
uniformly in the hash table.
Whenever two positions compete for the same entry in the table, this is called
a collision. In the following, we distinguish two types of collisions:

1. Two different positions compete for the same entry in the table (Type1).

2. A position competes with itself from two different places in the tree for
the same entry (Type2).

Type1 collisions can be kept small by a good hash function and a sufficiently
large table. Type2 collisions cannot be avoided. There are various possibilities
for the treatment of collisions. How they are treated in our implementation is
described in following.

Implementation

Structure In detail, the transposition table implemented for the experiments
has 219 entries. Each entry is a record of the following structure:

• short int Pattern (pattern code of position)

• int Order (permutation of the tiles within the pattern)
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• short int Depth (depth of position in the search tree)

• float Value (value of the position)

The first two fields, Pattern and Order, are used to identify the position. Two
positions are equal if and only if they have the same Pattern and Order codes.
Storing the depth of the position in the search tree is important. A position is
only retrieved from the table, if its depth is equal to the stored Depth. This
guarantees that the uniformity of the tree search is not altered. The last field
holds the value of the position according to the evaluation function.

Treating Collisions After a position has been expanded, it is written to the
transposition table. If a Type1 collision occurs, the old position in the hash
table is overwritten. This is based on the assumption that transpositions occur
locally in the game tree (cf. [6]). In case of a Type2 collision, the position from
the higher ply is stored. The reason for this is, that the value obtained from a
deeper search is believed to be more reliable.

Hashing Method The hash value for a SlideThree position is computed by
the method suggested by Zobrist [13]. This method is widely used in game
playing programs. It is based on random numbers for each tile and its location
on the board. For SlideThree, 9 · 16 32-Bit random numbers are used, one
for each pair (tile, square). They are assembled to the hash value by the XOR
operator. The advantage of this method is, that the hash value can be calculated
incrementally for many positions. This means that only the changes from one
position to the next have to be recalculated. The most parts of the hash value
can be reused.
The complete hash value is a 32-Bit integer. To obtain a valid hash index, it is
mapped to a number between 0 and 219 − 1 (219 is the size of the transposition
table) by the binary AND operator (&). If we denote the hash value by hv and
the hash index by hi,we have for position p

hi(p) = hv(p) & (219 − 1).

Using AND rather than MOD allows the table size to be a power of 2.

Random Numbers All random numbers in the experiments are generated
with a pseudo random numbers generator called ”Mersenne Twister”. It was
developed and implemented by Makoto Matsumoto and Takuji Nishimura [11].
The code of this pseudo random numbers generator is included on the CD-ROM,
file mt.c.

4.2 Evaluation Functions

Depth-t-search is a heuristic search algorithm. When a node at ply t is reached
during the search, the node is evaluated by a heuristic evaluation function. If
an exhaustive tree search is made, we can use the DTW of the positions as an
evaluation function. This would be a perfect evaluation function. Assume the
DTW of the current position is k. Then every successor has either DTW k + 1
or k − 1. A successor with DTW k + 1 is always a bad move, whereas one with
DTW k − 1 is always a good move.
A heuristic evaluation function only estimates the quality of the position. The
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evaluation is usually based on simple properties of the position that may indicate
its quality. For example, a high number of possible moves might be an indicator
for a good position in some games.
In general, the playing strength of a program depends on the search algorithm
and the heuristic evaluation function. Frequently the evaluation function is
a linear combination of several parts, each part estimating the quality of the
position according to a different property.

4.2.1 Definitions

We define seven simple evaluation functions which estimate the distance to the
Win position by different criteria.

Definition 4.2.1 Let Pos be any SlideThree position.
(1) Euclidian On Board
Let r(i) be the distance in rows, c(i) the distance in columns of tile i to its goal
square, respectively. The value of Pos according to Euclidian On Board is

Eu(Pos) =

√√√√ 9∑
i=1

r(i)2 + c(i)2 (4.1)

(2) Manhattan Metric
Let d(i) be the Manhattan distance of tile i to its goal square (d(i)=distance in
rows + distance in columns). Then the value of Pos according to the Manhattan
Metric is

Man(Pos) =
9∑

i=1

d(i) (4.2)

(3) Neighbour Distance
The value of Pos according to the Neighbour Distance is the sum of various
malus. We assign a malus of +1 to a tile in Pos for each wrong, additional,
or missing neighbour. Furthermore a malus of +1, if the tile is not on its
goal square. The neighbourhood structure is the four neighbourhood. Whether a
neighbour is missing, additional, or wrong is derived with respect to the neigh-
bours of the tile in the Win position.
Let m(i) be the malus for tile i. The Neighbour Distance for Pos is given by

Nb(Pos) =
9∑

i=1

m(i) (4.3)

(4) Permutation Distance
Let π be the permutation of the tiles within Pos. Then the value of Pos according
to the Permutation Distance is

Perm(Pos) =

{ √
0.5 +

∑9
i=1(π(i) − i)2 if Pos �= Win
0 if Pos = Win

(4.4)

(5) Inversions Distance
Let π be defined as in (4). The value of Pos according to the Inversion Distance
is

Inv(Pos) =
{

0.5 + #Inversions of π if Pos �= Win
0 if Pos = Win (4.5)
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(6) L2 Metric
To define this evaluation function, we convert Pos into a vector v(Pos) in R16.
This is done rowwise, starting in the upper left corner. The first four entries of
the vector is the first row of Pos, the second four entries is the second row of
Pos, and so on. The blanks are represented by zeroes.
The value of Pos according to the L2 Metric is the euclidian distance (also called
L2 distance) of v(Pos) to v(Win)=(1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9, 0, 0, 0, 0, 0):

L2(Pos) =

√√√√ 16∑
i=1

(vi(Pos) − vi(Win))2 (4.6)

(7) Random Evaluation
The value of Pos according to the Random Evaluation is

Ran(Pos) =
{

random value ∈ (0, 1) if Pos �= Win
0 if Pos = Win (4.7)

4.2.2 Examples and Remarks

Examples

We give examples for all evaluation functions defined in Subsection 4.2.1. Figure
4.2 shows an example position.

9

8

7

6

5

4

3

2

1

1 2 3

4 5 6

7 8 9

EP Win

Figure 4.2: Example Position (EP)

Euclidian On Board Tile 1 needs to be slid one row up and three columns
to the left to reach its goal square. Therefore we have r(1) = 1 and c(1) = 3.
For the example position EP we obtain

Eu(EP) =
√∑9

i=1 r(i)2 + c(i)2

≈ 6.928
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Manhattan Metric For Tile 1 we have the Manhattan distance
d(1) = 1 + 3 = 4, 1 being the distance in rows, 3 the distance in columns,
respectively. The heuristic value of position EP according to the Manhattan
Metric is

Man(EP) =
∑9

i=1 d(i)
= 4 + 2 + 3 + 4 + 0 + 1 + 3 + 2 + 3
= 22

Neighbour Distance We first calculate the contribution of Tile 1 to the
Neighbour Distance of EP.
In the Win position, Tile 1 is situated in the upper left corner of the playing
board. It has two neighbours, Tile 2 on the right and Tile 4 below. In EP,
Tile 1 is located on square (2, 4) of the playing board. The right neighbour is
missing, which gives a malus of +1. Tile 4 is below Tile 1, which complies with
the Win position, therefore no malus. On the left side and above Tile 1 there
are two additional neighbours. Each of them contributes a malus of +1. It does
not matter that one of them is a blank. Finally there is a malus of +1 because
Tile 1 is not on its goal square. So altogether, Tile 1 contributes a malus of
m(1) = 4. The malus for the other tiles are determined similarly. Thus we get

Nb(EP) =
∑9

i=1 m(i)
= 4 + 5 + 4 + 4 + 4 + 5 + 5 + 5 + 4
= 40

Permutation Distance The permutation of the tiles within EP is

π =
(

1 2 3 4 5 6 7 8 9
8 5 7 1 2 6 4 9 3

)

So the heuristic value of EP as determined by the Permutation Distance is

Perm(EP) =
√

0.5 +
∑9

i=1(π(i) − i)2

=
√

(8 − 1)2 + (5 − 2)2 + · · · + (3 − 9)2
≈ 11.769

Inversions Distance To compute the Inversions Distance of EP, we start
with the permutation π from the previous paragraph. Now we have to count
the inversions in π, i.e. the number of entries that appear in wrong order. We
start with the first entry, which is 8. In lexicographical order, 5 is before 8, so
8-5 is the first inversion. 8-7 is also an inversion. The right order would be 7-8.
For the first entry we furthermore have the inversions 8-1, 8-2, 8-6, 8-4, and
8-3. That makes a total of 7 inversions for the first entry. For the second entry,
which is 5, we have the inversions 5-1, 5-2, 5-4, and 5-3. Altogether we get

Inv(EP) = 0.5 + 7 + 4 + · · · + 1
= 20.5

L2 Metric In order to compute the value of EP according to the L2 Metric,
we need the vector representation of EP. The position is written rowwise to a
vector, the blanks being represented by 0.

v(EP ) = (0, 8, 0, 0,︸ ︷︷ ︸
row 1

0, 5, 7, 1,︸ ︷︷ ︸
row 2

0, 2, 6, 4,︸ ︷︷ ︸
row 3

9, 0, 3, 0︸ ︷︷ ︸
row 4

)
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The vector corresponding to the Win position is

v(Win) = (1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9, 0, 0, 0, 0, 0).

The euclidian distance in R16 is the value of EP according to the L2 Metric:

L2(EP) =
√∑16

i=1(vi(Pos) − vi(Win))2

≈ 16.248

Remarks

Euclidian On Board was suggested by Prof. Ingo Althöfer. It is a refinement of
the Manhattan Metric. The intention was, to give credit to ”diagonal” displace-
ment of the tiles. When a tile is displaced diagonally, there are usually several
shortest Manhattan paths to its goal square. An example of such a situation
is shown in Figure 4.3. In the left situation, Tile 1 is displaced diagonally, i.e.

1

1

Situation 1 Situation 2

Figure 4.3: Motivation for Euclidian On Board

one square down and to the right with respect to its goal position. The right
situation shows Tile 1 two squares below its goal position. In both cases, the
Manhattan distance to the goal square is 2. But in Situation 1, there are two
shortest paths, while in Situation 2, there is only one. The higher flexibility of
Situation 1 is taken into account by Euclidian On Board. The contribution of
Tile 1 in Situation 1 is +2 while in Situation 2 it contributes +4 to the total
value of the position.

The values assigned to Pos by the different evaluation functions can be in-
terpreted as a distance to the Win position. For each evaluation function E, we
have E(Win)=0. To grant this property, the value 0.5 is added in (4) and (5).
Some evaluation functions are not closely related to the game positions. Con-
verting the position into a vector, as done for computing the L2 Metric, means
giving up lots of information. This is also true for considering the permutation
of the tiles only, as done for the Permutation- and Inversion Distance.
Others are more obviously related to the actual position of the tiles on the
playing board. Especially the Neighbour Distance uses lots of information re-
garding the locations and relationships of the tiles. The choice of these very
different evaluation functions was made on purpose. The research should com-
prise evaluation functions of different knowledge level and different origin. The
hope is, that they might respond to different structures of SlideThree, so that
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each of them can contribute to a linear combination later on. Furthermore it is
important to investigate, whether different evaluation functions will respond to
different methods of randomization.

4.2.3 Properties

In this subsection, we discuss some properties of the evaluation functions defined
in Subsection 4.2.1.

Positivity

All heuristic evaluation functions defined in Subsection 4.2.1 are positive. As
only the Win position gets value 0, all deterministic evaluation functions play
perfectly once the Win lies in the scope of the tree search.

Coarseness

In order to get an idea of the coarseness of the different deterministic evaluation
functions, it was determined how many different values were assigned to a num-
ber of different SlideThree positions. For our experiments with depth-t-search,
it is interesting to know how the coarseness changes with respect to the search
depth that is used to evaluate the respective position. Experiments were run for
a mixed sample with 22458 different SlideThree positions (successor positions
of 5000 randomly generated positions) from DTWs 6 to 24. Their results are
shown in Table 4.2.

t Eu Man Nb Perm Inv L2 Sum
0 53 23 22 116 33 211 458
1 48 22 25 111 31 115 352
2 48 22 28 106 30 118 352
3 44 22 24 102 28 94 314
4 41 21 27 94 27 80 290
5 39 21 26 86 24 67 263

Sum 273 134 152 615 173 685

Table 4.2: Number of Different Heuristic Values for 22458 Positions

Ties

Table 4.3 shows the percentage of ties occurring in 5000 depth-t-searches for
SlideThree positions in DTWs 7 to 25.

t Eu Man Nb Perm Inv L2 Av
1 23.6 49.3 23.1 27.0 38.7 1.7 27.2
2 46.8 64.9 41.1 24.2 43.8 34.1 42.5
3 49.9 68.0 43.1 26.8 47.0 30.2 44.2
4 52.1 69.1 48.2 29.8 50.2 36.8 47.7
5 56.2 71.3 49.7 33.7 52.3 41.3 50.8
6 55.9 72.5 51.2 34.4 52.5 44.2 51.8
Av 38.1 65.9 42.7 29.3 47.4 31.4

Table 4.3: Percentage of Tie Situations in 5000 Depth-t-Searches
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Interpretation

Man is the coarsest, Perm and L2 are the finest evaluation functions. The
coarseness increases with the search depth. There is an obvious relationship
between the coarseness and number of ties. The coarser an evaluation function
is, the more often tie situations are produced during the tree search. Therefore,
also the number of ties increases with the search depth.

4.3 Randomization

The goal of this thesis is to determine whether randomization has a positive
effect on the playing strength of evaluation functions. Of course, there are many
possibilities of how randomization can be introduced. In the experiments, five
different types of randomization were tested.

1. Add a random value (rv) to the deterministic evaluation function (evf).
(Add)
This is the easiest way of randomizing a deterministic evaluation function.
The intensity of the randomization is scalable by changing the range of
the random value, but depends on the absolute values of the heuristic
evaluation function.

2. Multiply the evaluation function by (1+rv). (Mult)
This is a relative randomization of the evaluation function. Its intensity
no longer depends on the range of the deterministic evaluation function.

3. evf+rv
evf . (Norm+)

This randomization method was designed in such a way that it switches
the order of the moves for low intensity already. In a way, it rejects the
values from the deterministic evaluation function. Here, also moves with
a high heuristic value have a chance to be executed.

4. evf−rv
evf . (Norm–)

Norm– is the mirrored version of Norm+. Whenever Norm+ orders two
positions in one way, Norm– reverses the order.

5. Add (rv · Perm) to the deterministic evaluation function. (Comb)
Perm is the Permutation Distance, which is one of our deterministic eval-
uation functions. So this type of randomization combines the knowledge
of two deterministic evaluation functions in a random way.

The experiments were designed in such a way, that the type and intensity of the
randomization could be varied easily. How to set the appropriate parameters in
the programs is described in the appendix (cf. Appendix G).
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Figure 4.4: Ranges of Random Values for TileTab Randomization for Tile 1

As an additional randomization for the Manhattan Metric, TileTab was intro-
duced. TileTab chooses random values for each tile and sums them up to the
final value of the position. The range of the random values of the tiles depends
on the Manhattan Distance of the tile to its goal square. An example for Tile
1 is shown in Figure 4.4. E.g. Tile 1 would get a random value from [1.5, 2.5],
if it is located on square (2, 4). TileTab is only available for the Manhattan
Metric. The Results for the TileTab randomization are shown in the appendix,
(cf. Appendix E).



Chapter 5

Experiments

In this chapter, a full account of the conducted experiments is given. Two classes
of experiments were run, each of them using a different approach to measure
the playing strength of evaluation functions. In the following, the setup of
the experiments is described. Also, a statistical model of the experiments is
presented. For the results, see Chapter 6 and the appendix.

5.1 Choice of Moves Experiments

In the first class of experiments the focus is on the choice of moves of the
evaluation functions. They were run for the deterministic evaluation functions
and their randomized versions.

5.1.1 Experiment Design

In the Choice of Moves experiments (CoM experiments), a depth-t-search for
a set of SlideThree positions is performed, varying t from 1 to 8. For each of
the positions, the heuristic values of its direct successors are compared to their
DTWs. The DTW for each position is retrieved from the database described in
Section 3.3.

Measures

In the following, we distinguish several kinds of moves.

Definition 5.1.1 Assume the current situation in the game is a position P with
DTW(P)=k.
By definition of DTW, each of its successors has either DTW=k + 1
or DTW=k − 1. We will call moves into successors with DTW=k − 1 good
moves and successors with DTW=k + 1 bad moves in the following.

We also divide the moves into two classes according to their heuristic values.

Definition 5.1.2 Let again P denote the current position in the game. Its
successors are S1, . . . , Sn, their heuristic values Hv(Si), i = 1, . . . , n.

39
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Candidate move:
A move to a successor Sj with Hv(Sj) = min{Hv(S1), . . . , Hv(Sn)} is called
candidate move.
Rejected move:
A move is a rejected move, if it is not a candidate move.

The two classes of moves from Definition 5.1.1 are natural. They are based on
the definition of the DTW. Distinguishing only two classes of moves resulting
from the heuristic tree search is somewhat artificial. Usually, the heuristic
method makes a refined distinction, like best-, second best-, or worst move.
The restriction to only two classes is done for two reasons:

1. There are only two classes of moves for the game theoretical value DTW.

2. We consider in our experiments only the moves with the best (i.e. minimal)
heuristic value for execution.

We introduce some further notions that will be helpful when defining the
measures for the playing strength of the evaluation functions.

Definition 5.1.3
A Hit is a move that is both a candidate move and a good move.
A Fake is a move that is both a candidate move and a bad move.
A Miss is a move that is both a rejected move and a good move.
A Keep is a move that is both a rejected move and a bad move.

In order to measure the playing strength of the evaluation functions, the
following ratios are computed for each position.

(1) Hits = # Hit
# candidate move

(2) Fakes = # Fake
# candidate move Fakes = 1−Hits

(3) Misses = # Miss
# rejected move

(4) Keeps = # Keep
# rejected move Keeps = 1−Misses

An example for a possible situation after the depth-t-search is shown in Figure
5.1.

DTW=16

Starting Position

DTW=15

Hv=8 Hv=10

DTW=17

Hv=9

DTW=17

Hv=8

DTW=17

Hv=11

DTW=15

Hit Fake
MissKeep Keep

Figure 5.1: Example Situation after Depth-t-Search
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Analysis of Measures

Figure 3.11 implies that the ratios (1) to (4) from Definition 5.1.1 depend on
the DTW of the starting position. For example, the Hits are high if the DTW
of the starting position is 24, because these positions tend to have many good
moves and only a few bad ones. In other words, it is difficult to choose a bad
move if the DTW is higher than 20. Therefore, even if the evaluation function
has problems to recognize good moves, the Hits will be high for such positions.
As the DTW decreases, it becomes increasingly difficult to select a good move.
So the Hits of the evaluation functions will be much lower for small DTWs.
Assuming that all positions in a fixed DTW are similar, the ratios (1) to (4) are
estimators of the conditional probabilities

(1) P(good move|candidate move)

(2) P(bad move|candidate move)

(3) P(good move|rejected move)

(4) P(bad move|rejected move)

The conditional probabilities are linked by the total probability formula.

Lemma 5.1.1 Let p be the probability that a move is a candidate move when
using evaluation function E on a position in DTW=k. The probability that a
move from a position in DTW=k is a good move is denoted by P(gm). For
convenience we set

H = P(good move | candidate move),
M = P(good move | rejected move).

Then
H ≤ M ⇐⇒ H ≤ P (gm)

Proof: The proof is based on the total probability formula:

P(gm) = H · p + M · (1 − p)

⇒:
Assume that H ≤ M.

⇒ P(gm) ≤ H · p + H · (1 − p)
⇔ P(gm) ≤ H

⇐:
Assume that H ≤ P(gm).

⇒ H ≤ H · p + M · (1 − p)
⇔ H · (1 − p) ≤ M · (1 − p)
⇔ H ≤ M

This connection shows in the results of the CoM experiments.
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Suitability of Measures

There are many possibilities how the quality of an evaluation function can be
measured. The criterion that is used in this thesis is its playing strength in
connection with the depth-t-search algorithm. As already mentioned, only can-
didate moves are considered for execution when playing SlideThree with heuris-
tic depth-t-search. Therefore, the Hits are a suitable measure for the playing
strength of an evaluation function.

5.1.2 Conducted CoM Experiments

For the CoM experiments, two series were run.

100 Series

The first series includes experiments on 100 sample positions for search depths
1 to 10. Three Samples were taken randomly from each of the DTWs 5, 8, 9,
10, 11, 14, 15, 18, 19, 20, 21, 23, and 24. The arithmetic means of the Hits
over all sample positions were computed for each sample. The results of these
experiments can be found on the CD-ROM, file ProbHitTab.doc. The experi-
ments were repeated using randomized versions of the evaluation functions on
the samples in DTW=11. Their results are included on the CD, files Random-
izations Compared 1.doc and Randomizations Compared 2.doc
This was the first series of experiments that was run for this thesis. It gives a
good overview on how the Hits of the deterministic versions of the evaluation
functions vary depending on the DTW and search depth. The randomization
experiments encouraged the conjecture that randomization can raise the playing
strength of evaluation functions, but were not statistically significant. There-
fore, a second series of randomization experiments was run.

1000 Series

In this series, experiments were run on samples containing 1000 SlideThree po-
sitions or more. As the running time increases with the sample size, the search
depth was only varied from 1 to 8. For each evaluation function, all types of ran-
domization except Norm+ were used. Norm+ was known to pull the Hits down
to the level of random play from the previous experiments of the 100 series. The
intensity of the randomization was varied and the Hits compared to the Hits of
the deterministic evaluation function. The samples were taken from DTWs 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20. The results are summarized
in Chapter 6. More details are provided in the appendix. The full results are
included on the CD, files Randomization Tab DTW8.doc to Randomization Tab
DTW20.doc.
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5.2 Autoplay Experiments

The autoplay experiments are probably the most interesting ones regarding the
impact of randomization on deterministic evaluation functions. In the autoplay
experiments, whole games of SlideThree are played. Each move is determined
by a depth-t-search with a heuristic evaluation function. The interest here is on
the winning quota. A high winning quota indicates a good evaluation function.

5.2.1 Previous Results

Similar experiments and their results have already been described by D.F. Beal
and M.C. Smith for chess [4] and in the Diploma Thesis of T. Rolle [12] for
several simple two player board games. D.F. Beal and M.C. Smith used ran-
dom values as an evaluation function in a minimax search of fixed depth. They
discovered that this plays better than random move selection. Moreover, simple
evaluation functions for chess positions could be improved by adding a random
value to them. They suggested that the reason for this behaviour is, that ran-
domization tends to prefer the positions with the most possible moves.
T. Rolle’s results varied depending on the game and nature of the search used.
The search algorithm he used was alpha-beta search with and without pre sort-
ing of the moves. In most cases there was no improvement of play when ran-
domization was used. Rolle suggests in his thesis, that randomization leads to
less alpha-beta cutoffs during the search and thus makes the tree search more
inefficient. An improvement was only achieved in one game and with an alpha-
beta search that did not pre sort the moves.
He furthermore gives an explanation for why randomization could have an im-
proving effect at all. He states, that randomization picks the moves with the
most optimal nodes in their subtree with higher probability than others (see also
Section 2.4). Intuitively one might think that this results in descending a sub-
tree containing many good positions. The autoplay experiments were designed
to also investigate this conjecture.

5.2.2 Statistical Model

How important it is to achieve statistic significance in experiments was shown
by E.A. Heinz [9]. Heinz suggests a Bernoulli experiment as a statistical model
for self- or autoplay experiments. Bernoulli random variables take only values in
{0,1}. In order to obtain statistically significant results from the experiments,
the following analysis was made (cf. [8], [9]):

Significance Level

We introduce a Bernoulli random variable X ∈ {0, 1}.

X =
{

1 if Win was found within U moves
0 else

We assume furthermore, that for each evaluation function we have

P (X = 1) = p, P (X = 0) = 1 − p,

where p also depends on the search depth t, DTW of starting position, and
maximum number of moves per game U. When running n such experiments, we
get a vector 
X = {X1,X2 . . . Xn} ∈ {0, 1}n of i.i.d Bernoulli random variables.
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The number of won games W, i.e. W =
∑n

j=1 Xj , is binomially distributed
with parameters n, p. Taking the Winning Quota p̂ = W

n as an estimator for

p, we get
√

p̂·(1−p̂)
n as an estimator of the standard deviation. The random

value Y = p̂−p√
p̂·(1−p̂)

n

is then approximately standard normal distributed. Now

we can determine confidence intervals for p. For a (1 − α) confidence interval,
we need the α/2 quantiles qα/2 of the standard normal distribution. The (1−α)
confidence interval is then[

p̂ − qα/2 ·
√

p̂ · (1 − p̂)
n

, p̂ + qα/2 ·
√

p̂ · (1 − p̂)
n

]
.

The probability that the true value of p is within the (1−α) confidence interval
is 1 − α. For α = 0.05 we have qα/2 = 1.96.

Sample Design

In order to obtain statistically significant results, we need to design the autoplay
experiments such that the confidence intervals will be sufficiently small. The
easiest way to do this, is to choose a sufficiently large sample. On the other
hand, the sample should not be too big, with regard to the running time of the
experiments. One can make a worst case estimation of the size of the confidence
interval (cf. [8]):
The confidence interval is largest, if p̂ = 0.5. If we specify for this case a maximal
deviation of 3% for a (1 − α) confidence level, we get

0.03 = qα/2 ·
√

0.52

n

0.0009 = q2
α/2 · 0.25

n

n =
q2

α/2· 0.25

0.0009

For α = 5 we get

n = 1067.1

So for a deviation of 3% on a 95% confidence level, a sample size of 1068 suffices.
For p̂ �= 0.5, the confidence interval narrows.

Application to Choice of Moves Experiments

We can apply the same statistical model for the Choice of Moves experiments.
Here, the Bernoulli random variable is defined as follows:

X =
{

1 if candidate move is a Hit
0 if candidate move is a Fake

The Hits are then an estimator for the probability of executing a good move in
the current position.
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5.2.3 Experiment Setup

Algorithm

In the following, the algorithm for the autoplay experiments is described.

One after another, the starting positions are read from a sample file. The
sample file holds 1068 randomly chosen SlideThree positions in a fixed DTW.
For each of the starting positions, a game of up to U moves is played. We refer
to the position in which the game currently is as the current position. The game
is played in the following way:

1. Read current position from file

2. Perform depth-t-search for current position

3. If several minimal successors, choose one randomly

4. Else choose successor with minimal value

5. Make chosen successor the new current position

6. Increment number of moves made

7. If current position is Win, print out number of moves made
and quit game

8. If number of moves made reaches upper bound U, print out message
and quit game

9. If Win found in search tree, reduce search depth (t = t − 1)

10. Goto 2

11. If game was quit and still positions in file, goto 1

In the above listing, Line 2 comprises evaluating the nodes with a specific heuris-
tic evaluation function, with or without randomization. The number of moves
made in Line 6 is initialized to 0 before the start of each game. The game is
quit, if either the upper bound of moves is reached or a move into the Win
position was made (Lines 7 and 8). Line 9 is very important for enabling the
algorithm to ”play till the end”. Otherwise, the algorithm would lose the Win
again: Imagine, that in a ply t search for the current position the Win appears
for the first time. Surely, it will be a leaf of the search tree. All nodes on a
path to the Win will be evaluated to 0. As the next current position, we get
a node on the straight path to the Win. What happens, if we continue with
the same search depth? For the next step, everything works out. The Win will
only appear in the paths where it appeared before. Therefore, we also get a
node on the straight path as the new current position. If we continue now with
the same search depth, things become devastating. The Win will now appear
two plies above leaf level, that is on ply t − 2. But if the shortest path to the
Win is of length t − 2, we can build paths of length t to the Win via each of
the successors of our current position: The first move is to the successor, then
we move back to the current position and moves 3 to t are the shortest t − 2
path to the Win. Thus, all successors will be evaluated to 0 and no distinction
between good and bad moves is possible. In decrementing t whenever the Win
appears at leaf level, we assert that it stays at leaf level. We can then be sure
of our good moves and really win the game.
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Random Play D.F. Beal and M.C. Smith remarked in their article [4] that
pure Random Play has an immanent disadvantage compared to the other evalua-
tion functions. For these, a game tree search is conducted. If the Win lies within
the scope of the tree search, this results in perfect play. The solution offered in
[4] is to also make a tree search for Random Play. In this search, detection of
the Win takes place, but no distinction between the other nodes is made. This
solution for Random Play was adapted for the autoplay experiments. Using the
evaluation function RP,

RP(Pos) =
{

0 if Pos = Win
1 else ,

leads to the following behaviour: We get perfect play, if the Win is found in the
tree. Otherwise, the move is chosen randomly among all possibilities.

Computed Values

For an empirical investigation of the conjecture of Rolle [12], a look was taken
on how ties are broken during the game. A tie occurs, if two or more suc-
cessors share the minimal value after a depth-t-search with the deterministic
evaluation function. It is counted how many minimal nodes with respect to the
deterministic evaluation function are contained in each of the subtrees rooted
at the successors. If the tie is broken in favour of one of the successors with
the most minimal nodes in its subtree, this is called a fat move. The fat quota
computed during the experiment is the ratio # fat moves

# ties . In addition to the win-
ning quota and fat quota, several other values are computed during an autoplay
experiment.

1. Maximum number of moves needed to win a game

2. Minimum number of moves needed to win a game

3. Mean number of moves needed to win a game

4. Number of ties (sum over all games)

The number of ties is needed to compute the confidence interval for the fat
quota. It follows the same statistical model as the winning quota. We interpret
it as a Bernoulli experiment with

X =
{

1 if fat move
0 else

When calculating the standard deviance, we have to divide by the number of
experiments, which is in this case the number of ties. Note that the ties are
counted with respect to the deterministic evaluation function. When using
randomization, not the ties produced by the randomized heuristic evaluation
function are counted, but the ties from the deterministic evaluation function.

Conducted Experiments

Autoplay experiments were run for all evaluation functions and all randomiza-
tions on a sample in DTW=14 and a sample in DTW=24. Each of the samples
contains 1068 positions. The intensity of the different types of randomization
was varied. Experiments for search depths 4, 5, and 6 were run. Their Re-
sults are summarized in Chapter 6. A more detailed overview is given in the
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appendix, Chapter B. The full results are included on the CD-ROM, file Auto-
play.doc.

The different kinds of randomization were not only compared to the deter-
ministic evaluation function, but also to the winning quota when ties are always
broken by fat moves. The winning quota of this evaluation proved to be much
lower than the deterministic evaluation function and most of the randomiza-
tions. The reason for this might be that this method leads to much more cycles
than the others. It is the most deterministic method that was tested. When
conducting depth-t-searches with deterministic evaluation functions, the move
to execute was randomly chosen among the minimal successors.

For the Manhattan Metric and Euclidian On Board, a series of autoplay ex-
periments on a sample containing 1000 times the Start position was run. The
serach depth used in these experiments was 5. Different randomizations were
tested. An excerpt of the results is shown in the appendix, Chapter C. The full
results can be found in file Autoplay.doc on the CD.

A series for samples in DTWs 8 to 18 was run for several evaluation func-
tions with search depth 5. An excerpt of the results is presented in Chapter
6 and the appendix, Chapter D. The full results are included on the CD, file
Autoplay.doc.



Chapter 6

Results

This chapter gives a full overview of the results of the research conducted.
Section 6.1 refers to the CoM experiments, Section 6.2 relates the results of the
autoplay experiments. Section 6.3 summarizes the results into some ”rules of
thumb”.

6.1 Choice of Moves

The results of the CoM experiments are summarized in the following two sec-
tions. Section 6.1.1 gives a ranking of the evaluation functions according to their
Hits. The results from the experiments with randomized evaluation functions
are presented in Section 6.1.2.

6.1.1 Ranking of Evaluation Functions

The arithmetic mean of the Hits over all experiments on the samples of size 100
was used to rank the evaluation functions. Three samples of size 100 were taken
from each of the DTWs 5, 8, 9, 10, 11, 14, 15, 18, 19, 20, 21, 23, and 24. The
search depths vary from 1 to 10. From best to worst, the evaluation functions
and their average Hits are:

1. Euclidian On Board (0.693)

2. Permutation Distance (0.651)

3. Inversions Distance (0.633)

4. Manhattan Metric (0.624)

5. Neighbour Distance (0.618)

6. L2 Metric (0.562)

7. Random Evaluation (0.503)

The average Hits for Random Play are 0.500. Random Play and Random Eval-
uation do not differ in playing strength.

48
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6.1.2 Randomization Experiments

Experiments with randomized evaluation functions were conducted on samples
of size 1000 and higher in DTWs 8 to 20. DTWs less than 8 are close to the
endgame and the deterministic evaluation functions play rather well there. They
also play very well in positions with DTW higher than 20, because these posi-
tions have only few bad moves. The search depth was varied from 1 to 8. Also,
different intensities of randomization were tested. Table 6.1 shows which of the
randomizations led to an improvement of the playing strength of the respective
evaluation function. Here, an improvement of the playing strength is assumed if
the following is true: For at least one search depth and at least one intensity of
the randomization, a statistically significant increase of the Hits was observed
for at least one sample. For all other samples, no significant decrease of the Hits
occurred for that search depth and intensity of randomization. No experiments

Add Mult Norm– Comb
Eu + + +

Man + + + +
Nb

Perm + + +
Inv + + + +
L2 + +

Table 6.1: Randomization in CoM Experiments

were conducted with the Permutation Distance and the randomization Comb.
Using Comb for randomizing the Permutation Distance is equivalent to Mult.
Norm+ is not listed in the table. The pilot experiments with randomized evalu-
ation functions showed that Norm+ pulls down the Hits to the level of Random
Play for all evaluation functions.

6.2 Autoplay

The results of the autoplay experiments are split into two sections, each of
them providing different insights into the behaviour of randomized evaluation
functions. Section 6.2.2 shows how the intensity of the randomization influences
the winning quota. The effect of randomization of a fixed intensity for different
DTWs is investigated in Section 6.2.3. But first we take a look at the ranking
of the evaluation functions according to their winning quotas.

6.2.1 Ranking of Evaluation Functions

From best to worst, the deterministic evaluation functions have the following
ranking:

1. Euclidian On Board (0.360)

2. Manhattan Metric (0.174)

3. Neighbour Distance (0.050)

4. Inversions Distance (0.047)
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5. Permutation Distance (0.045)

6. L2 Metric (0.003)

7. Random Evaluation (0.001)

The numbers given in the above listing is the average winning quota over all
experiments on the samples in DTW 14 and 24. The winning quotas of the
L2 Metric are not significantly higher than those of Random Evaluation. Also
in the autoplay experiments, Random Evaluation did not perform better than
Random Play.

6.2.2 Intensity of Randomization

The results in this section are based on a series of autoplay experiments for
two samples of SlideThree positions. The samples were taken randomly from
DTWs 14 and 24, each containing 1068 positions. In summary, the results can
be classified in three different types. When using randomization we observe,
with respect to the winning quota of the deterministic evaluation function,

1. an increase of the winning quota (+).

2. no significant change of the winning quota (≈).

3. a decrease of the winning quota (–).

Table 6.2 shows which of the effects was observed for which evaluation function
and randomization. Here, a + means that a significant increase of the winning
quota was observed for a special intensity of the randomization in most of the
experiments. Of course, we observe a decrease of the winning quota for every
evaluation function when we make the randomization intense enough.

Add Mult Norm+ Norm– Comb
Eu + + – ≈ ≈

Man + + – + +
Nb + + – + +

Perm ≈ ≈ – ≈
Inv ≈ ≈ – ≈ ≈
L2 ≈ ≈ – ≈ ≈

Table 6.2: Effects of Randomization in Autoplay

When taking a closer look at the results, we can give a refined distinction
of the behaviour of the winning quota in dependency on the randomization
intensity.

1. The winning quota increases as soon as randomization is introduced. It
stays at a high level until the randomization becomes too intense, then it
decreases.

2. The winning quota increases only after a certain intensity of randomiza-
tion has been reached. When the randomization becomes too intense it
decreases again.

3. The winning quota does not change when randomization is used. Once the
randomization reaches a certain intensity, the winning quota decreases.
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4. The winning quota drops to 0 as soon as randomization is introduced. It
does not recover.

5. None of the behaviours 1 to 4 was recognizable.

Add Mult Norm+ Norm– Comb
Eu 1 1 4 5 ≈ 5 ≈

Man 1 1 4 5 + 5 +
Nb 2 2 4 5 + 5 +

Perm 3 3 4 3
Inv 3 3 4 3 3
L2 5 ≈ 5 ≈ 4 5 ≈ 5 ≈

Table 6.3: Behaviour of Winning Quota

Table 6.3 lists the evaluation functions and their type of behaviour. The entries
with a 5 are additionally marked with a +, –, or ≈ sign, to indicate the change
in the winning quota when using randomization. The classification of the be-
haviour of the L2 Metric fails because of too low winning quotas.
Figure 6.1 shows some results of the experiments, to give an impression on how
the randomization intensity was varied. The data point 0 is the winning quota
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Figure 6.1: Results for Add, DTW=14, t=5

of the deterministic evaluation function without randomization. As we move to
the right on the x-axis, the intensity of randomization is increased. The numbers
on the x-axis are abbreviations for the interval from which the random number
is taken. E.g. 5 means the random value is taken from [-5, 5]. The y-axis
gives the winning quota. The sample consists of 1068 SlideThree positions in
DTW=14.
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Fat Quota

Randomizing deterministic evaluation functions should have an effect on the
way ties are broken. As described in Section 2.4, the probability of descending
into a subtree with the maximum number of optimal nodes should increase when
randomization is used. We call a move to a successor with the most minimal
nodes in its subtree a fat move. The percentage of ties broken by fat moves
is called fat quota. One would expect that a weak randomization increases the
fat quota. This was not always observed in the experiments. Table 6.4 shows
the behaviour of the fat quota for the different evaluation functions and weak
randomization.

Add Mult Norm+ Norm– Comb
Eu + + – + +

Man + + – + +
Nb + – – – –

Perm + + + +
Inv + + – + +
L2 + – – – –

Table 6.4: Behaviour of Fat Quota

Interpretation

The evaluation functions that are closely related to the game (Eu, Man, Nb)
react positively to randomization. For these, every randomization that does
not switch the heuristic values of the possible successor positions immediately
is able to improve the play of the evaluation functions. In case of Eu and Man,
the improvement is a result of the tiebreaks performed by the randomization.
Nb is improved when a k-best mode is reached.
The three weaker evaluation functions (Perm, Inv, L2) could not be improved by
any randomization 1. For Perm and Inv a more favourable tiebreak behaviour is
reached by randomization. Nevertheless, a weak randomization can only choose
a node among the minimal nodes as obtained by the deterministic evaluation
function. If the deterministic evaluation function does not find a good move, a
weak randomization cannot produce one, either.

6.2.3 Different DTWs

To see how the winning quota changes with the DTW of the starting position, a
series of experiments on samples from DTWs 8 to 18 was conducted for several
evaluation functions. The experiments were run with the deterministic and a
randomized version of the evaluation function. Figure 6.2 shows the results for
Euclidian on Board. The randomization used is Add with the random value
taken from [–0.1, 0.1], the search depth is t=5.

1This result comes from a buggy program.
The Bug and its effects are described in Chapter 7
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Figure 6.2: Euclidian on Board for several DTWs

6.3 Summary

The results of the experiments can be summarized in the following rules of
thumb:

• Randomization is able to improve the play of deterministic evaluation
functions.

• Randomization works best for deep searches and small intensity of ran-
domization.

• Randomization worsens the play of any evaluation function if it becomes
too intense or neglects the knowledge from the deterministic evaluation
completely.

• To achieve an improvement by randomization, the deterministic evaluation
function has to play sufficiently well.
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Bug Report

The programs for the CoM- and autoplay experiments as they were used for
the empirical research have a bug. As stated in Subsection 4.2.3, the Win is
evaluated to 0 by each deterministic evaluation function, which results in a
perfect endgame. For intense randomization, it happens that some positions
get negative heuristic values. In that case, the endgame is no longer perfect
because the Win has no longer minimal value.
The result is, that in a CoM experiment with a search depth equal to the
DTW of the sample positions, the 100% Hits are not achieved. In the autoplay
experiments, the imperfect endgame leads to a faster decrease of the winning
quota when making the randomization more intense.
To fix the bug, it has to be granted that the value of the Win position is always
minimal. This was achieved by simply setting the value of the Win to –1000.
The fixed versions of the programs, comexpfixed.exe and autoplayfixed.exe, are
included on the CD-ROM.
The Bug effects only those randomizations that can lead to negative heuristic
values. These are Add and Norm–. The following Figures illustrate the impact
of the bug on the winning quota in the autoplay experiments for the different
evaluation functions.

As can be seen, the bug has no influence on the general answer to our re-
search question. Fixing the bug leads to even better results, i.e. higher winning
quotas for the randomized evaluation functions. It is especially remarkable,
that the formerly observed indifference of Perm and L2 to randomization was
actually an effect of the bug. When the bug is fixed, these evaluation functions
are also improved significantly by randomization.

In conclusion, we adjust Table 6.2 according to the results from the bug fixed
programs.

Add Mult Norm+ Norm– Comb
Eu + + – + ≈

Man + + – + +
Nb + + – + +

Perm + ≈ – +
Inv + ≈ – + ≈
L2 + ≈ – + ≈

Table 7.1: Effects of Randomization in Autoplay (Corrected)
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Chapter 8

Conclusions

From the outcome of the experiments described in this thesis, we draw the
following conclusions.

8.1 Conclusions from Experiments

Randomization

Randomization is able to improve the playing strength of deterministic evalua-
tion functions in connection with heuristic depth-t-search in single player games.

In order to achieve an improvement, the deterministic evaluation function should
include some knowledge about the game position. It should be closely related
to the game.
The easiest randomization techniques for the heuristic values, adding a random
value or multiplication by a factor (1+random value), lead to the most obvious
improvement. The latter is better to handle, because it adapts to the absolute
value of the evaluation function.
Using a randomization that switches the order of the heuristic values of the
positions completely results in Random Play.

Empirical Methods

To measure the playing strength of evaluation functions, the autoplay experi-
ments are more suitable than the CoM experiments. In the CoM experiments,
a too local view of the behaviour of the game playing algorithm is taken. The
changes in the Hits are mostly below significance level, which makes it difficult
to distinguish between random effects and real improvement. To achieve a sat-
isfying significance, the 95% confidence intervals should be narrowed from ±3%
to ±1.5%. This requires samples that include at least 4272 = 4 · 1068 positions
(cf. Subsection 5.2.2).

8.2 Future Research

A quite impressive increase of the winning quota was observed in many cases.
Therefore it is worthwhile to continue the research on randomized evaluation
functions in game playing programs.
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For SlideThree, it might be interesting to determine even better evaluation func-
tions than Euclidian On Board and test whether randomization can improve
them. The conjecture is that once the deterministic evaluation function reaches
a certain playing strength, it cannot be improved by randomization. Also, the
research should be continued for other single player games.
Depth-t-search is not the standard algorithm used for single agent search. State
of the art are algorithms like A* or IDA* with various extensions (cf. [10]). Re-
peating the experiments with different search algorithms would lead to a more
general view on randomized evaluation functions.
An open question that was raised by Prof. Althöfer and might be worthwhile to
answer is to what extend not only the number of optimal nodes in the different
subtrees, as considered for the fat quota, plays a role, but also their distribution
in their respective subtrees. E.g. is it better to descend a subtree with uni-
formly spread optimal nodes or a subtree with clustered optimal nodes? There
is a conjecture that a clustered distribution of optimal nodes is of advantage
because one does not reject many alternatives when descending the first few
steps into that subtree.
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Appendix A

CoM Experiments

The following figures illustrate three aspects of the Hits. First, the behaviour
of the Hits for different intensities of randomization is shown. Search depth
and DTW of the sample are fixed. The second set of figures are examples of
how the Hits change when the search depth is varied. Here, the randomization
intensity and DTW of the sample set are fixed. Finally, the behaviour of the
Hits in dependency on the DTW of the sample is shown. In this set of figures,
the search depth and randomization intensity are fixed.
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Figure A.1: Hits in Dependency on the Randomization Intensity
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Figure A.2: Hits in Dependency on the Search Depth
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Figure A.3: Hits in Dependency on the DTW of the Sample



Appendix B

Autoplay, DTWs 14 and 24

The following figures show some more results from the autoplay experiments for
the samples in DTWs 14 and 24. In each figure, there are three datasets:

• WQ, the development of the winning quota when the randomization in-
tensity is increased.

• BR, the development of the fat quota with increasing intensity of the
randomization.

• 100%, the winning quota that is reached when ties are always broken in
the direction of the successor with the most minimal nodes in its subtree.

The numbers on the category axis indicate the intensity of the randomization.
For Norm+, Norm-, and Comb, the intervals from which the random number
is taken is given. For Add and Mult, only the right border of the interval is
provided. The interval is symmetric with respect to 0, i.e. 2.5 on the category
axis is an abbreviation for the interval [–2.5, 2.5]. The title of each figure pro-
vides the evaluation function, search depth, DTW of the sample randomization
that was used in the experiment. All winning quotas and fat quotas with their
respective confidence intervals are included on the CD-ROM, file Autoplay.doc.
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Appendix C

Autoplay, Start Sample

The following figures provide a comparison between the winning quotas for
the sample containing 1000 times the Start position and the sample from all
SlideThree positions in DTW=24.                                                                
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Appendix D

Autoplay, DTWs 8 to 18

In this chapter the results of the autoplay experiments on samples from DTW=8
to DTW=18 are presented. In the following figures, R0 denotes the determin-
istic evaluation function (no randomization). The used randomization and the
interval from which the random numbers were taken is indicated. Finally, two
figures give the comparison of Random Play and Random Evaluation.                                                                
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Appendix E

TileTab

In the following table, a comparison between the deterministic Manhattan Met-
ric and the TileTab randomization is made. The winning quota of TileTab is

DTW t Man TileTab
24 4 0.063 0.075
24 5 0.071 0.187
24 6 0.114 0.347
14 4 0.169 0.232
14 5 0.271 0.406
14 6 0.353 0.579

Table E.1: Winning Quota of TileTab Randomization

always significantly better, except for DTW=24, search depth 4.
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Appendix F

Rounded Evaluation
Functions

In Subsection 4.2.3 we discussed the coarseness of the deterministic evaluation
functions and illustrated that it influences the number of ties. A coarse grained
evaluation function leads to more tie situations than a fine grained one. Tie
situations have the advantage that they offer possibilities for randomized play,
and thus a way to leave cycles. Therefore the attempt was made to round the two
finest evaluation functions, L2 and Perm, in order to produce more tie situations.
Autoplay experiments were run for the rounded versions of L2 and Perm on a
sample in DTW=14, with search depth t=5 and all types of randomization.
In all experiments, an increase of the winning quota was observed, which was
most of the time below significance level. Only the results for the Permutation
Distance with randomization Mult, show a significant improvement. This is
illustrated in Figure F. It was proved by I. Althöfer in [3] that it is possible to
increase the coarseness of a linear evaluation function without losing important
information regarding the game positions.
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Appendix G

Program Descriptions

G.1 makesample.exe

The program makesample.exe creates samples of SlideThree positions that can
be processed by comexp.exe and autoplay.exe.

When running the program be sure that the files DTWxx (xx=0, 1, . . ., 26)
and PermTab1 and PermTab2 are in the same directory as the executable file
makesample.exe.

At the start of the program, the user is asked to specify the following parameters:

• int DTW of sample

• int sample size

• int seed for random numbers generator

• char[30] name of output file

The DTW of the sample can be any number between 5 and 26, as well as 0.
When DTW 0 is chosen, the program creates a sample file from all SlideThree
positions.
The sample size can be chosen between 1 and 5000. If the sample size is higher
than there are positions in a certain DTW, the user is informed and asked to
enter a suitable sample size.
One integer is required to initialize the random numbers generator.
At last, the name of the output file has to be entered. The program writes
the sample positions to this file. It is created in the same directory where
makesample.exe is, unless a different path has been specified by the user.

G.2 comexp.exe

Input

In one run of the program, up to 4 experiments can be performed. The number
of experiments to be run is chosen by the user at the start of the program. For
each of the experiments, the user is asked to specify the following parameters:

1. float Weights for the different evaluation functions:
Man, L2, Eu, Perm, Nb, Tile, Inv
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2. int Type of randomization to use

3. int Type of random numbers to use

4. float Weight for random numbers

5. int First search depth

6. int Last search depth

7. int Seed for random numbers generator

8. char[30] Name of input file

9. char[30] Name of output file

In the experiment, the linear combination w1 · Man + w2 · L2 + · · · + w7 · Inv is
used as the deterministic evaluation function, wj being the weights entered by
the user in Point 1.

Important: Tile is the weight for the TileTab randomization. It will not occur
as part of the linear combination. It is implemented as an independent evalua-
tion function, which is why it is listed with the evaluation functions rather than
among the randomizations. To use TileTab, all other weights for the evaluation
functions must be set to 0. The experiment must be run without randomization.
The randomization in TileTab is implicit and will be done without command.

In Point 2, the user can choose between the different kinds of randomization
explained in 4.3, no randomization, and Random Play.
The user is then asked to choose the kind of interval, where the random num-
bers should be taken from (Point 3). Here the structure of the randomization
is determined (one- or two-sided, open or closed intervals).
Finally, the user can influence the intensity of the randomization by setting the
weight for the random numbers.

Example: If we choose (Add) as randomization with a random number taken
from the interval [−0.5, 0.5] and set the weight for the random numbers to 0.2, a
random number will be taken out of the interval [−0.5 ·0.2, 0.5 ·0.2] = [−0.1, 0.1]
and added to the deterministic evaluation function.

In one experiment, several depth-t-searches can be run on the same sample
set. The user chooses the first and last search depths in Points 5 and 6. For
each of the search depths first≤ t ≤ last, a depth-t-search will be performed and
the results collected.
After the search depths are set, the user is asked to enter a seed to initialize the
pseudo random numbers generator.
Finally the names of the input and output files are required. The input file
must be a text file containing sample SlideThree positions stored in the follow-
ing structure: Each position takes up two lines in the file. The first line holds
the pattern code, the second line the order code of the position. The positions
must be stored in the file without gaps, i.e. no empty lines or ”garbage” between
them. Note that the program needs the path to the input file, if it is not in the
same directory as comexp.exe.
Processable input files can be created with the program makesample.exe (cf.
G.1.
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The program comexp will create a text file of the name specified in Point 9,
where all the output is written to.

Random Evaluation and Random Play Experiments with Random Eval-
uation can be run by setting all weights for the evaluation functions to zero and
then choosing (Add) as randomization with a random number from (0, 1). The
open interval guarantees, that the Win is found if it occurs in the searched tree.

The Hits for Random Play can be computed by setting all weights of the eval-
uation functions to 0 and choosing no randomization. In this case, all nodes
obtain 0 as their heuristic value and the Hits then estimate the probability of
choosing a good move randomly, as done in Random Play.

Output

The program calculates for each of the sample positions the Hits, Fakes, Misses,
and Keeps (cf. 5.1.1). Their arithmetic means over all positions in the sample
are written to the output file. The output file also contains the parameters that
were specified by the user when starting the program. Thus, typing mistakes
can be detected and the experiment reproduced. As additional information,
the number of sample positions with ”all best successors” is provided for each
search depth. ”All best successors” means, that all successors obtained the same
heuristic value in the depth-t-search.

G.3 autoplay.exe

Input

The program for running an autoplay experiment is included on the CD-ROM,
file autoplay.exe. It takes as input the following parameters:

1. float Weights for the different evaluation functions:
Man, L2, Eu, Perm, Nb, Tile, Inv

2. int Type of randomization

3. int Type of random numbers

4. float Weight for random numbers

5. int Search depth

6. int Upper bound for the moves in one game

7. int Number of positions to be read from file and played

8. int Seed for random numbers generator

9. char[30] Name of input file

10. char[30] Name of output file
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The parameters 1 to 4 are the same as in G.2. The only difference is, that also
Random Play can be chosen in Point 2. Random Play works as described in
5.2.3.
The search depth specified in Point 5 is used for the depth-t-searches to deter-
mine the next move.
In autoplay, the user must set upper bounds for the number of moves to play
in one game, and the number of games to play (Points 5 and 6). Playing will
be stopped automatically, if the end of the input file is read.
Finally a seed to initialize the random numbers generator is required and the
file names of the input and output files. The input file must be of the same
structure as for the CoM experiments (cf. G.2). If the input file is in the same
directory as autoplay.exe, the filename suffices. Otherwise, the path has to be
specified by the user.

Random Evaluation The program can be set to run experiments with Ran-
dom Evaluation by the following parameters:

• All weights for evaluation functions 0

• Randomization 1 (Add)

• Random numbers 3 ((0, 1))

• Weight for random numbers 1

The choice of the open interval guarantees that the Win is identified in the tree
search.

Output The program produces an output file containing the input parameters
as a header. Thus it is possible to detect typing mistakes and to reproduce an
experiment. The program keeps track of the number of won and played games,
from which the winning quota is calculated. Winning quota and fat quota are
written at the end of the file. The fat quota is called break rate in the output file.
Furthermore, some other, probably interesting properties of the experiments are
written to the file:

1. Maximum number of moves needed to win a game

2. Minimum number of moves needed to win a game

3. Mean number of moves needed to win a game

4. Number of ties (sum over all games)

In some of the autoplay result files included on the CD-ROM, you will also find
a number called ”Collisions”. This is supposed to give the number of Type1
collisions that occurred in the transposition table during the experiment. It is
mere additional information and in the early experiments, it was even computed
wrong. Therefore, it was finally erased from the output of the program. Also
included in the older result files is a list of all played games. One entry consists of
the starting position of the game, the number of moves played and an indication
whether the Win was found.
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G.4 autoplayIA.exe

This program also plays games of SlideThree automatically, but lists the single
moves of the game. When starting the program, the following parameters have
to be entered in the start menu by the user:

1. float Weights for the different evaluation functions:
Man, L2, Eu, Perm, Nb, Tile, Inv

2. int Type of randomization

3. int Type of random numbers

4. float Weight for random numbers

5. int Search depth

6. int Seed for random numbers generator

7. char[30] Name of output file

These parameters are the same as for autoplay.exe. The maximum number of
moves per game is 100 and cannot be set by the user.
For each game that is played, the user is asked to specify the starting position.
This is done by entering the codes for pattern and order of the position (cf.
3.3.2). Then playing starts.
While playing, the following information appears on the screen and is written
to the output file:
First, the current position is put out by its codes for pattern and order and its
DTW. Beneath the current position, the possible successors are listed. From
left to right each entry contains

1. pattern code of the position

2. order code of the position

3. heuristic value of the position after depth-t-search with randomized eval-
uation function

4. heuristic value of the position after depth-t-search with deterministic eval-
uation function

5. number of minimal nodes in the subtree of the position

In case that no randomization was chosen for playing, Points 3 and 4 will both
show the heuristic value of the position. The number of minimal nodes as shown
in Point 5 counts the minimal nodes for this successor. I.e. if the successor ob-
tains the heuristic value k, all nodes with value k in its subtree are counted.
Note that for this, the values with respect to a depth-t-search with the de-
terministic evaluation function are considered. Beneath this list, the number
of collisions in the transposition table is reported (Type1 collision, cf. 4.1.2).
Also, a tie with respect to the deterministic depth-t-search is announced and
if it is broken in the direction of the successor with the most minimal nodes,
the message ”Tie broken to fuller side!” and the number of minimal nodes are
printed on the screen. Finally, the move that was executed is given by the new
current position. On pressing ”Return”, the next move is executed.
After each game, the user can choose whether he wants to quit the program or
see another game.
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SlideThree
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Figure H.1: Patterns that are Solvable for Odd Permutations
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Figure H.2: Nice Starting Positions in DTW 26
                           

 
 
 
 
 

           103                  105                     106                  109                   110              112 
 

 
 
 
 

           115                   201                  202                  204                  207                  208 
 

             
 
 
 

 
           211                  213                  214                  301                  302                  304 
 

 
 
 
              

           307                  308                  311                  313                  314                   400 
 

 
 
 
 
 

           403                  405                  406                  409                  410                  412 
 
 
  
 
 
 
            
 
 
 
 
 

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

        
    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

    
       
    
    

Figure H.3: Patterns of Positions in DTW=26 with Code



Appendix I

Zillions playing SlideThree

Zillions of Games (short: Zillions) is a software that can be easily programmed
to play various games. The search algorithm and evaluation function are pro-
vided by Zillions as black box, only the rules of the game and the graphics used
for generating the playing board have to be programmed. Before starting a
game, the user can specify some parameters that vary the playing strength of
Zillions.

• Playing Strength
Choice between Beginner, Advanced, or Expert

• Variability
Intensity of randomness

• Time Limit
The time Zillions may use to determine the next move

Zillions was set up to play SlideThree and its variants SlideTwo and SlideFour
(cf. 3.2.3). The following tables give the average number of moves Zillions
needed to solve the puzzle. Playing always started at the Start position. In all
experiments, the Playing Strength was set to Expert. The Variability (var) and
Time Limit (time) were varied.

var 1 (low) 5 (medium) 11 (high)
av. moves 10 10 10.3

Table I.1: SlideTwo, Average Over 6 Games Each

var=1 (low) var=5 (medium) var=11 (high) Sum
time=1s 30 29.7 26.7 96.4
time=2s 36.7 39.3 35.3 111.3
time=5s 32 37.3 34.7 104
time=10s 35.3 34 30.7 100

Sum 134 140.3 137.4

Table I.2: SlideThree, Average Moves Over 3 Games Each

The shortest solution for SlideTwo is 10 moves. For SlideFour the shortest
solution is unknown. The shortest solution found by Zillions in the experiments
was 124 moves.
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var=1 (low) var=5 (medium) var=11 (high) Sum
time=1s 340.7 330.7 227.3 898.7
time=2s 146 220.7 228.7 595.4
time=5s 368.7 256.3 234.7 868.7
time=10s 214 138.7 131.7 484.4

Sum 1069.4 946.4 822.4

Table I.3: SlideFour, Average Moves Over 3 Games Each
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