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Abstract

Humans have been playing board games to intellectually compete with each other for many centuries.
Nowadays, research on Artificial Intelligence showed that computers are also able to play several games
at an expert level.

In this thesis, a computer program is built that is able to play the game of Billabong. Billabong is
a deterministic multi-player game with perfect information. Up to four players compete in this racing
game by moving their team of “kangaroos” around a lake in middle of the board. This research focuses
on evaluation-function-based search algorithms for the three- and four-player version of the game.

The thesis starts with an introduction on how to play the game of Billabong, followed by the de-
termination of the state-space and game-tree complexities. Next, the investigated multi-player search
algorithms are described. The traditional search algorithms like maxn and paranoid have conceptual
weaknesses as their general assumptions on the opponents’ strategy are either too optimistic or too pes-
simistic. Best-Reply Search (BRS), recently proposed by Schadd and Winands (2011), is not dependent
on these unrealistic assumptions, but the search tree differs from the game tree as illegal game states
are investigated. Two ideas are proposed to improve the strength of BRS. First, instead of ignoring all
opponents except one, those players have to perform the best move according to static move ordering.
This avoids to search illegal game states. Second, searching for more than just one strongest move against
the root player causes BRS to be more aware of the opponents’ capabilities. The resulting three algo-
rithms BRS1,C−1, BRSC−1,0 and BRSC−1,1 are matched against the three previously mentioned search
techniques.

For the domain of Billabong, BRS turned out to be the strongest search technique. Performing a move
does not change the board state too much such that the search of illegal states does not affect the search
quality. BRS1,C−1 is the most promising variation of BRS. It performs comparatively good against maxn

and paranoid. Its properties are similar to BRS, but due to more overhead caused by the generation of
additional moves, BRS1,C−1 cannot search as many MAX nodes in sequence as BRS. BRS1,C−1 requires
a paranoid move ordering that prefers strong moves against the root player. In the domain of Billabong,
there is only a maxn move ordering. It prefers the moves where the player increases its own progress. As
such a move might also be good for the root player, it might overestimate branches in the search tree.
Therefore, BRS1,C−1 is less strong than BRS. The idea of performing multiple moves against the root
player is not successful either. The variations BRSC−1,0 and BRSC−1,1 perform only a bit better than
paranoid as they are less pessimistic. Both are beaten by BRS and BRS1,C−1.
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Chapter 1

Introduction

This chapter introduces the topic of the thesis. A brief overview about games and Artificial Intelligence
(AI) is presented in Section 1.1. The state of the art in evaluation-function-based multi-player search is
briefly discussed in Section 1.2. Next, the problem statement and research questions are introduced in
Section 1.3. Finally, an outline of the thesis is given in Section 1.4.

1.1 Games & AI

Games have a long tradition in many cultures. All around the world people compete with each other
in many different types of games. Especially board games are interesting because there is no physical
strength but intellectual capabilities are involved.

Already with the first computers, games turned out to be an interesting field of research. People
started to use board games like Chess (Shannon, 1950; Turing, 1953) to compete with human intelligence.
Nowadays, there are many powerful expert AI players like TD-Gammon for Backgammon (Tesauro,
1995), Chinook for Checkers (Schaeffer et al., 1996) and Deep Blue for Chess (Hsu, 2002) that are
able to win against the best human players in the world. There are several reasons why games are an
established domain for researching techniques in AI. In contrast to real-world problems, the rules of
games are well-defined and can often be modelled in a program with little effort (Van den Herik, 1983).
However, playing games is a non-trivial problem. Although the rules of Chess are explained quickly,
humans have not yet figured out how to play it perfectly (Breuker, 1998). Techniques and algorithms
that have been developed in the context of games are applicable in the different domains, e.g. operations
research (travelling salesman problem) (Nilsson, 1971).

The game-playing programs aim to solve the problem of finding the best move in an arbitrary game
situation or the related problem of finding the game-theoretic value of a position. The most applied
algorithm for abstract game playing is search. The current and all future game states can be organized
in a tree structure where the nodes represent the game states. Two nodes are connected if there is a
move that changes the original game state in the intended way. The search space is often quite large
such that a simple brute-force search cannot find the optimal solution in an acceptable time frame.
Starting with minimax search (Von Neumann and Morgenstern, 1944), strong search algorithms and
enhancements have been developed over the years. Most notable of them are αβ-Search (Knuth and
Moore, 1975) and Monte-Carlo Tree Search (Kocsis and Szepesvári, 2006; Coulom, 2007). αβ-Search
uses a heuristic evaluation function to compute which move sequence leads to the best future game state
assuming that the opponents play optimally according to their strategy. Monte-Carlo Tree Search uses
statistics collected while (semi-)randomly playing games to find the move sequence that most probably
leads to a win. Both algorithms are preferred in different domains as both have strengths as well as
weaknesses, e.g. αβ-Search in Chess (Hsu, 2002) and Monte-Carlo Tree Search in General Game Playing
(Björnsson and Finnsson, 2009). αβ-Search leads to powerful play if the heuristic evaluation is strong,
which is sometimes difficult to construct. Monte-Carlo Tree Search requires less domain knowledge, but
performs poorly if the (semi-)randomly played games do not correlate with optimally played ones. This
thesis focuses on evaluation-function-based search algorithms.



2 Introduction

1.2 Multi-player Games

In the past, researchers mostly focused on two-player games. The complexity of playing games increases
with the number of opponents. In multi-player games, players can collaborate to increase their strength
or to outwit other players. If it is not commonly known which players act as a team efficient search
is difficult. The two main evaluation-function-based search algorithms for multi-player games are maxn

(Luckhardt and Irani, 1986) and paranoid (Sturtevant and Korf, 2000). Maxn assumes that every player
tries to maximize its own score while paranoid assumes that all opponents form a coalition against the
root player. Both algorithms have conceptual weaknesses and are based on either a too optimistic or a
too pessimistic assumption for many games.

Schadd and Winands (2011) have proposed Best-Reply Search (BRS) as an alternative search tech-
nique. Instead of letting all opponents move, only the opponent with the strongest move against root
player is allowed to move. Although this search algorithm can lead to illegal and unreachable game states
as usually all players have to move according to the rules, BRS outperforms maxn and paranoid in the
games Chinese Checkers and Focus (Schadd and Winands, 2011). The aim of this thesis is to investigate
the performance of BRS in another test domain, the game of Billabong (Solomon, 1984), and to find
out whether it is possible to improve BRS there by adapting the algorithm. Billabong is a deterministic
perfect-information board game where up to four players compete in a race. Each player has control of
five pieces, so called kangaroos, which have to circuit a lake in the middle of the board while blocking
and exploiting the opponents’ pieces.

1.3 Problem Statement & Research Questions

In computer game-playing, the goal is to create a computer program that plays a certain game as strong
as possible. The problem statement for this thesis is the following:

How can one use search for the game of Billabong in order to improve playing performance?

In order to answer the problem statement, the following three related research questions are investigated.

1. What is the complexity of Billabong?

The complexity of a game depends on the state-space and the game-tree complexity (Allis, 1994). The
state-space complexity is the total number of possible game states. A game state in Billabong is unique
distribution of up to 20 kangaroos on the board. The game-tree complexity is the total number of leaf
nodes in the game tree from the initial position. Both complexities have to be computed as they indicate
whether the game is solvable. If the game is solvable, search techniques with a guaranteed game-theoretic
value are preferred.

2. How strong is Best-Reply Search in Billabong?

In order to answer this question, BRS is matched against the traditional search algorithms maxn and
paranoid in a three- and a four-player experimental setup.

3. How can Best-Reply Search be improved for a given domain?

Best-Reply Search has conceptual drawbacks. Two ideas are proposed to overcome these drawbacks. The
first one allows the opponents to apply its best move according to static move ordering and the second one
allows a larger subset of opponents to perform its strongest move against the root player. These concepts
lead to three variations of Best-Reply Search. The performance of the proposed variations BRS1,C−1,
BRSC−1,0 and BRSC−1,1 are experimentally verified.
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1.4 Outline of the Thesis

The outline of this thesis is as follows:

� Chapter 1 gives an introduction into multi-player games and search techniques. It closes with the
research questions and the thesis outline.

� Chapter 2 explains rules and strategies for the game of Billabong.

� Chapter 3 analyses the complexity of Billabong and compares it to other games.

� Chapter 4 presents the search techniques αβ-search, maxn, paranoid, BRS as well as possible
enhancements like the transposition tables, the killer heuristic and the history heuristic. Further,
a more detailed description of the variations of Best-Reply Search is given.

� Chapter 5 describes the experiments performed and their results.

� Chapter 6 gives the final conclusions and gives recommendations for future research.
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Chapter 2

The Game of Billabong

In this chapter, the game of Billabong is explained in detail. After a brief introduction in Section 2.1,
Section 2.2 describes the rules of the game. Subsequently, Section 2.3 discusses tips and strategies for
successful game play.

2.1 Introduction

The board game Billabong was first described by Solomon (1984). After being licensed and marketed
by the two publishers Amigo Spiel + Freizeit GmbH and Franjos-Verlag in 1993, it became a successful
game in Germany and was nominated for the “Spiel des Jahres”-Award in 1994.

Billabong is a racing game for two to four players. Each player has control of a team of five kangaroos
that can jump over all kangaroos on the board. The complete team has to circuit a lake in the middle
of the board, the billabong. In this strategy game, good positioning is always the key to success as this
leads to strong and long jumps. The name of the game was inspired by real billabongs that are a kind of
lake in the dry Australian outback. The game has some resemblance with Chinese Checkers.

2.2 Rules

Billabong is a deterministic, turn-based and perfect-information multi-player game. The rules of the
game are straight forward. As already mentioned in the previous section, Billabong can be played with
two to four players. Every player has control of five pieces, so called kangaroos, on a 14×16 board. In
the middle of the board there is a lake, the billabong, which is 2×4 tiles large. It is fed by a small river
marking the start-finish line.

Before having a closer look at the rules, the notation for the game is introduced. Inspired by the official
chess notation, all tiles on the board are labelled with a letter and a number indicating the column and
row on the board, respectively (cf. Figure 2.1). In the initial phase, where all players put their kangaroos
on the board, a move is only defined by the tile where the player puts the piece on. For instance, putting
a kangaroo on tile j3 is noted as j3. Later in the game, there are two different types of moves, step and
jump moves, but both can be equally described by the starting and the landing position of the move. For
instance, moving a piece from l5 to k4 is noted as l5 k4. If a move crosses the start-finish line from right
to left, which is a clockwise movement around the billabong, a +-sign is added to the move description.
If it crosses it from left to right, the kangaroo is moving backwards noted by –. For instance, moving from
i2 to h2 crosses the finish-line from right to left, the corresponding notation is i2 h2 +, while moving
in the different direction crosses it from left to right and is noted by h2 i2 –. Crossing the start-finish
line twice is noted by ++ or – –.

Before playing Billabong, each player can choose the colour of its kangaroos. For simplicity reasons,
a fixed order of colours is used in this thesis. Player 1 has the red pieces, Player 2 has the yellow ones,
Player 3 has the orange ones and Player 4 has the white ones.

At the beginning of the game, every player can place its pieces freely on one of the initially 216 empty
tiles of the board. When all pieces are placed on the board, the actual race starts clockwise around the
billabong. From now on, the players can perform a step or a jump move. Step and jump moves cannot be
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Figure 2.1: Empty billabong board

combined and passing is not allowed. In a step move a player moves one of its pieces to an adjacent and
empty tile in vertical, horizontal or diagonal direction. A jump move consists of one or more leaps. The
player can stop leaping even if continuing is possible. A kangaroo can leap over exactly one piece (the
pivot). The pivot has to be in the same vertical, horizontal or diagonal line. The distance from the start
position of the leap to the pivot position must be equal to the distance to the landing spot. While leaping,
the kangaroo is not allowed to cross other pieces or the billabong. A piece cannot land on another piece,
in the billabong or outside the board. A small extension to the original game rules prohibits negative
numbers of start-finish line crossings. This disallows to race around the billabong anticlockwise.

An example of a jump move is given in Figure 2.2a. The initial position of this jump move is h5 and
the piece lands on j13. Therefore the move is noted as h5 j13. It consists of three leaps. The first leap
from h5 to f5 passes the yellow piece on g5. The green square marks a reachable location for the current
player. Its number indicates the number of leaps or steps required. From f5 to f9 it passes by the yellow
piece on f7 and finally leaps over the white piece on h11. Before starting a sequence of leaps in a turn,
the player puts a referee kangaroo on the current position of the selected piece. This enables it to use
the initial position as pivot as well. In Figure 2.2b, the red piece on f2 jumps to b8. Therefore several
leaps are necessary. The third leap from d2 to h2 requires a piece to be on f2, the initial position. As
the referee, marked with R, has been placed on this position, the leap is legal.

A piece that passes the start-finish line a second time is removed from the board and cannot be used as
a pivot any more. The player that first realizes to cross the start-finish line twice with all of its kangaroos
wins.

2.3 Strategy

It is important when playing Billabong that all of one player’s pieces stay close to the centre-of-mass of
all the pieces. If the opponents realize to move in such a way that at least one of the player’s kangaroos
cannot follow, this player usually cannot win the game any more. It cannot jump with this piece and
can only step to adjacent tiles. Therefore it progresses slowly. In the meantime, all other players can
progress normally.

So, it is good for a player to stay close to the peloton, where most pieces are located, and never to
have control over the last piece in the game. This property should not be exaggerated, because it turns
the game into a slow progression game. Figure 2.3a presents a situation where every player constantly
moved all the pieces to the centre of the peloton. The green spots mark every position that is reachable
for the yellow player. None of those moves causes big progress for it. If Yellow allows one of its pieces to
have some distance to the peloton, it enables this piece to do a long jump (Figure 2.3b). Doing so, it is
not unlikely that the player is able to move a piece around the whole board within one turn.

Allowing some gaps in the peloton is also the key to a good start into the race. Of course, the pieces
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(a) Jump move with multiple leaps (b) Usage of the referee kangaroo

Figure 2.2: Legal jump moves

(a) No long jump moves available (b) Strong long jump move due to large gap to the group

Figure 2.3: Jumping possibilities for Yellow
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(a) Sample board situation (b) Jump possibility for A

(c) Jump possibility for B (d) No jumps available for the red player

Figure 2.4: Good position for Red turns into bad position

benefit from a short distance to the start-finish line in the placing phase such that placing the pieces in
the area from i1 to p6 is preferable to placing in the area from a1 to h6, but again the players should
avoid immobility.

It is difficult to plan one’s next moves. Usually, jumping is the most beneficial way of moving, but
often a prepared jumping track can be sabotaged by moving a single piece. In the following example
board situation (Figure 2.4a), both the red and yellow player have good jumps available as they can move
the piece A standing on i5 (Figure 2.4b) or B standing on h4 (Figure 2.4c) half around the billabong.
Unfortunately for the red player, it is Yellow’s turn. Yellow chooses to perform the described jumping
move. In the subsequent board situation (Figure 2.4d) Red has no jumping possibilities available. Fur-
thermore, piece A cannot keep pace with all the other pieces. This requires the red player to concentrate
on piece A and allows the yellow player to easily increase its lead over its opponent. Red is dependent
on the pivot on i5. If the pivot belonged to the red player, it could be sure that it will not move away
unless Red decides to do so. Therefore, it is better to prefer jumping over one’s own pieces than to rely
on the opponent pieces.

Another important aspect in Billabong is to find a good trade-off between cooperation with other
players, blocking other players and only concentrating on its own progress. There are many situations in
the game, where it is beneficial for a player to offer a good jump to an opponent instead of sabotaging.
On the one hand, a sabotaging move might cause slow progress for the player himself, e.g. by preferring
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a step move to a long jump move in order to hinder the opponent’s progress. On the other hand, the
player’s next move can be dependent on the opponent’s move. For instance, the opponent’s move enables
a long jump move in the next turn or releases a block for the current player. Furthermore, the opponent’s
move could cause blocking of one or more different opponents. Blocking good moves of the remaining
opponents can be good for the player because it simplifies to catch up with the leading players.

2.4 Computer Billabong

The rules of Billabong were first described by Solomon (1984). In his book Games Programming, he
explains the basics of games programming and search techniques known at that time. He discusses
the minimax algorithm with αβ-pruning in the chapter Abstract Games. The general advantage of move
ordering during search using static move ordering and killer moves is emphasized. As the book was already
published when research on multi-player search rose, it concentrates on two-player search. Besides the
rules of Billabong, Solomon proposes features of an evaluation function for the two-player game, which
are discussed in Section 4.8.

In 2003, the department Mathematical Sciences of the University of Alaska Anchorage hosted a
small tournament in Computer Billabong for their students as part of a semester project1 in Artificial
Intelligence. Except for the tournament results, there are no publications on the applied techniques.

1The specifications for the semester project and the tournament can be found the website of the university on
http://www.math.uaa.alaska.edu/∼afkjm/cs405/billabong/billabong.html
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Chapter 3

Complexity Analysis

The development of an AI for Billabong requires having an estimate of its complexity. The state-space
and the game-tree complexity of the game of Billabong are examined in Section 3.1 and Section 3.2.
Finally, Section 3.3 compares the complexity of Billabong with other games.

3.1 State-Space Complexity

The state-space complexity is the total number of legal game states reachable from the initial state (Allis,
1994). For many games the exact state-space complexity is quite hard to compute such that only an
upper bound is known that also contains illegal or unreachable game states.

For Billabong, the exact state-space complexity can be computed. This requires to determine the
complexities during the placing and racing phase separately.

3.1.1 Complexity during Placing Phase

The initial board in Billabong is empty. During the placing phase, the player to move has to place a
piece on an empty tile of the board. The players can choose every empty tile on the whole board. The
state-space contains the possible board situations where not all pieces have already been put on the
board. After placing the last piece of the last player, the board state already belongs to the racing phase.
The state-space complexity in the placing phase is dependent on the number of players participating in
the game (cf. Equation 3.1).

ComplexityPlacing(nplayers) =


PlaceP ieces2 if nplayers = 2

PlaceP ieces3 if nplayers = 3

PlaceP ieces4 if nplayers = 4

(3.1)

All possible placings of 0, 1, 2, 3 and 4 pieces are summed up where all players have the same number
of pieces on the board. This is the point in the game where a new round begins and Red is to turn. All
placings of 0, 1, 2, 3 and 4 pieces are added where Red has just placed the next piece and therefore only
Red has 1, 2, 3, 4 or 5 pieces on the board. When playing with three or more players, all placings of 0,
1, 2, 3 and 4 pieces are added where Yellow also has just placed another piece and therefore Red and
Yellow have 1, 2, 3, 4 or 5 pieces on the board. This is repeated for the orange player as well if four
players participate (cf. Equations 3.2, 3.3, 3.4).
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PlaceP ieces2 =

4∑
i=0

PlaceRY OW (i, i, 0, 0)

+

4∑
i=0

PlaceRY OW (i+ 1, i, 0, 0)

(3.2)

PlaceP ieces3 =

4∑
i=0

PlaceRY OW (i, i, i, 0)

+

4∑
i=0

PlaceRY OW (i+ 1, i, i, 0)

+

4∑
i=0

PlaceRY OW (i+ 1, i+ 1, i, 0)

(3.3)

PlaceP ieces4 =

4∑
i=0

PlaceRY OW (i, i, i, i)

+

4∑
i=0

PlaceRY OW (i+ 1, i, i, i)

+

4∑
i=0

PlaceRY OW (i+ 1, i+ 1, i, i)

+

4∑
i=0

PlaceRY OW (i+ 1, i+ 1, i+ 1, i)

(3.4)

So far, all legal numbers of pieces on the board during placing phase are given. Equation 3.5 computes
all possible placings of r red, y yellow, o orange and w white pieces on the board. Table 3.1 presents the
complexity in the placing phase for 2, 3 and 4 players.

PlaceRY OW (r, y, o, w) =

(
224

r

)(
224− r

y

)(
224− r − y

o

)(
224− r − y − o

w

)
(3.5)

Number of players Possible game states
2 428,810,476,298,932,169 4.29× 1018

3 1,567,560,064,242,835,203,596,764,465 1.57× 1028

4 5,088,226,013,643,554,731,036,654,528,506,554,129 5.09× 1037

Table 3.1: Possible game states in placing phase
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3.1.2 Complexity during Racing Phase

The racing phase starts when all pieces have been placed on the board. During this phase the players can
also remove pieces from the board and therefore the state-space also contains terminal positions. Again
the state-space complexity depends on the number of players participating in the game (cf. Equation
3.6).

ComplexityRacing(nplayers) =


RacingP ieces2 if nplayers = 2

RacingP ieces3 if nplayers = 3

RacingP ieces4 if nplayers = 4

(3.6)

All possible positions of 0, 1, 2, 3, 4 and 5 red pieces are combined with 0, 1, 2, 3, 4 and 5 yellow
pieces. Those are also combined with 0, 1, 2, 3, 4 and 5 orange and white pieces respectively, if the
corresponding players participate. (cf. Equations 3.7, 3.8, 3.9). Note that just i, j, k or l can be 0. In
this case, the game state is a terminal position.

RacingP ieces2 =

5∑
i=0

5∑
j=0

i+j 6=0

RacingRY OW (i, j, 0, 0) (3.7)

RacingP ieces3 =

5∑
i=0

5∑
j=0

i+j 6=0

5∑
k=0

i+k 6=0
j+k 6=0

RacingRY OW (i, j, k, 0) (3.8)

RacingP ieces4 =

5∑
i=0

5∑
j=0

i+j 6=0

5∑
k=0

i+k 6=0
j+k 6=0

5∑
l=0

i+l 6=0
j+l 6=0
k+l 6=0

RacingRY OW (i, j, k, l) (3.9)

So far, all possible numbers of pieces on the board are given. The remainder of the pieces has already
been removed. Next, it is required to iterate through all possible distributions of the pieces to be in the
initial or final round (cf. Equation 3.10). A piece that has not crossed the start-finish line is in the initial
round. After crossing the start-finish line, it is in the final round.

RacingRY OW (r, y, o, w) =

r∑
i=0

y∑
j=0

o∑
k=0

w∑
l=0

RacingRoundsRY OW (i, r − i, j, y − j, k, o− k, l, w − l)

(3.10)

There are r0 red pieces in the initial round and r1 red kangaroos in the final round. The same setup
holds for y0, y1, o0, o1 ,w0 and w1 pieces of the yellow, orange and white player. Equation 3.11 computes
all possible distributions of these eight piece types. Table 3.2 presents the complexity in the racing phase
for 2, 3 and 4 players including terminal positions.
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RacingRoundsRY OW (r0, r1, y0, y1, o0, o1, w0, w1) =

(
224

r0

)
(

224− r0
r1

)
(

224− r0 − r1
y0

)
(

224− r0 − r1 − y0
y1

)
(

224− r0 − r1 − y0 − y1
o0

)
(

224− r0 − r1 − y0 − y1 − o0
o1

)
(

224− r0 − r1 − y0 − y1 − o0 − o1
w0

)
(

224− r0 − r1 − y0 − y1 − o0 − o1 − w1

w1

)

(3.11)

Number of players Possible game states
2 18,881,880,068,059,986,775,168 1.89× 1023

3 2,183,106,355,847,003,167,660,811,261,615,232 2.18× 1034

4 224,150,674,783,996,785,413,663,613,941,646,052,458,531,840 2.24× 1045

Table 3.2: Possible game states in racing phase

As previously mentioned, if i, j, k or l is 0 in Equations 3.7, 3.8 or 3.9, the corresponding game state
is a terminal position. Table 3.3 presents the number of terminal states for 2, 3 and 4 players. The total
state-space complexity is the sum of the complexities in the placing and racing phase and is presented in
Table 3.4.

Number of players Terminal states
2 290,851,515,136 2.90× 1012

3 56,645,640,203,307,405,780,096 5.66× 1023

4 8,732,425,423,161,430,109,830,015,423,340,544 8.73× 1034

Table 3.3: Terminal states

Number of players Possible game states
2 18,882,308,878,536,285,707,337 1.89× 1022

3 2,183,107,923,407,067,410,496,014,858,379,697 2.18× 1033

4 224,150,679,872,222,799,057,218,344,978,300,580,965,085,969 2.24× 1045

Table 3.4: Total state-space complexity
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3.2 Game-Tree Complexity

The game-tree complexity of a game is the total number of leaf nodes in the game tree from the initial
position (Allis, 1994). For many games, including Billabong, it is not feasible to compute the exact
game-tree complexity. Instead, the size of the game tree is estimated by the average branching factor b
to the power of the average game length d. The averages for the branching factor and game length are
estimated by performing self-play experiments.

The experiments are performed as described in Section 5.1. In the two-player setup, there are two
players using αβ-search. In the three player setup, there are one player using maxn, one player using
paranoid and one player using BRS. In the four player setup, there are the three players from the three
player setup and an additional player using either maxn, paranoid or BRS. After playing 432 games for
each the two-player to the four-player setup, the estimates of the game-tree complexities are collected in
Table 3.5.

Number of players Branching factor b Game length d Game-Tree Complexity bd

2 64.53 69.33 2.96× 10125

3 68.00 95.00 1.22× 10174

4 69.66 124.15 6.40× 10228

Table 3.5: Game-tree complexity

3.3 Comparison to Other Games

Figure 3.1 compares the complexities of two-player, three-player and four-player Billabong to other board
games. This figure is inspired by Allis (1994) and updated on the basis of the research of Van den Herik,
Uiterwijk, and Van Rijswijck (2002).

This figure shows that the two-player Billabong has a complexity similar to Abalone. Both games
have a state-space complexity that is close to the one of Checkers, but their game-tree complexity is
much higher than in Checkers. Instead, it is between Chess and Havannah. The game of Checkers is
solved (Schaeffer et al., 2007), but because of the high game-tree complexity, it is not possible to solve
the two-player Billabong with current hardware. The state-space complexity for three-player Billabong
is higher than for the two-player variant and comparable to Draughts. Its game-tree complexity is higher
than in Havannah. Four-player Billabong has a state-space complexity comparable to Chess, while the
game-tree complexity is similar to the one of Shogi. It is also not possible to solve the three-player and
the four-player variant of Billabong in the near future.

Figure 3.1: Estimated game complexities
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Chapter 4

Search Techniques

This chapter describes the search techniques and enhancements used in the Billabong program. Sec-
tion 4.1 shows how search can be used to play games. Next, two algorithms for two-player games are
discussed in Section 4.2. Section 4.3 and Section 4.4 explain some enhancements to αβ-Search. The
concept of iterative deepening is presented in Section 4.5. After that, the multi-player search techniques
maxn, paranoid and Best-Reply Search are introduced in Section 4.6. Subsequently, Section 4.7 proposes
and specifies variations of BRS. Finally, the chapter closes with Section 4.8 characterising the heuristic
evaluation for Billabong.

4.1 What is Search?

Imagine someone is playing the game of Billabong. The player is trying to win the game. In other words,
it wants to reach a terminal game state where it is the winning player. In order to find such a game
state, the player is searching the game tree. The game is usually a directed graph represented by a tree
structure. The nodes of the tree correspond to game states and edges to legal moves in that game state.
The root node of the game tree is the initial game state, leaf nodes correspond to terminal states that
cannot be expanded according to the game rules.

Games are complex in the sense that it is often not possible to build the complete game tree in
an acceptable time frame and given limited memory resources. Therefore, search algorithms do not
investigate the entire game tree, but a search tree. The search tree and game tree have the same root
node, but the search tree is limited to a certain depth. The leaf nodes in the search tree are not necessarily
terminal states of the game. A heuristic evaluation function assigns a value to each leaf node. The value
represents the utility of a game state and correlates with the winning possibility and the game-theoretic
score of the player.

The solution of the search is a discrete sequence of actions that lead to the desired state assuming
optimal play of all players. In the context of board games like Billabong the sequence of actions is a
sequence of moves.

4.2 Two-player Search

Searching in two-player games has an additional challenge compared to single-player games. The player
has an opponent which is searching for a terminal game state where the opponent is the winning player.
In many two-player games there is at least one terminal state with exactly one winning and one loosing
player. All remaining leaf nodes in the game tree are a draw for both players. As winning is the
preferable outcome for the player and the opponent, the desired terminal states are not the same. From
the perspective of the searching player, the player itself is the MAX player and its opponent is the MIN
player. The MAX player tries to maximize the evaluation function while the MIN player tries to minimize
it. The distinction between the MAX player and the MIN player is the basis of the minimax algorithm
that is discussed in Subsection 4.2.1. Knuth and Moore (1975) proved that it is possible to prune the
minimax tree using an αβ-search window without affecting the quality of the search. This technique is
described in Subsection 4.2.2
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4.2.1 Minimax

Minimax is a recursive search algorithm (Von Neumann and Morgenstern, 1944). For each child node,
minimax is applied until a leaf node in the search tree has been reached. The evaluation function assigns
a game-theoretic value to the leaf node which is backed up to the parent node. The parent node’s value is
the maximum (minimum) of all its children’s values if it is the MAX (MIN) player’s turn at the current
ply.

Figure 4.1 depicts an example minimax tree. The evaluation function computes the utilities of 8, 3,
4 and 5 for the leaf nodes. Node (b) and (c) are MIN nodes as the MIN player is to move. The MIN
player tries to minimize the game-theoretic value of the tree and therefore chooses 3 and 4 for Node (b)
and (c), respectively. Node (a) is a MAX node as the MAX player is to move. The MAX player tries to
maximize the game-theoretic value of the tree and therefore chooses 4 for Node (a).

Figure 4.1: An example minimax tree

4.2.2 αβ-Search

It is not necessary to investigate all nodes in the search tree. During the search process, it is possible
to eliminate branches of the search tree if it is already clear that an ancestor of a node is considered
as non-optimal and therefore never will be chosen. This type of branch elimination is called pruning.
Pruning allows to reduce the complexity of a search given a fixed search depth. Smaller complexity leads
to faster search and may enable deeper search given the same time frame.

The most famous pruning technique is αβ-pruning (Knuth and Moore, 1975). αβ-pruning updates
the upper and lower bound of each node’s value. For the root node, the initial lower bound (α) is set
to −∞ and the upper bound (β) to ∞. The currently known αβ-window initialises the lower and upper
bound for the search in the subtree. The MAX player updates the lower bound and the MIN player the
upper bound. If α ≥ β, there is a cutoff and the corresponding subtree does not need to be investigated
further.

The pseudo code for αβ-pruning can be found in Appendix A (cf. Algorithm A.2). The initial values
for α and β are set to −∞ and ∞, respectively. An example how the αβ-algorithm prunes is given in
Figure 4.2. After the investigation of Node (c), the αβ-boundaries for Node (b) are set to −∞ and 3. The
values for α and β are propagated to Node (d). Its first child proves that the MAX player can achieve a
score of at least 5 and updates α. As α ≥ β holds, there is a β-cutoff at the MAX node. At Node (c),
the MIN player chooses 3 over ≥ 5.

At Node (e), α and β have the values 3 and ∞, respectively. After the investigation of Node (f), it is
known that the MAX player cannot achieve more than 2 in this branch. β is updated to this value. As
α ≥ β holds, there is an α-cutoff at the MIN node. It is not necessary to check Node (g) and its children.

4.3 Move Ordering

The strength of αβ-search is highly dependent on the move ordering (Marsland, 1986). Searching more
plausible moves first, leads to early cutoffs. In the best case, αβ-pruning can reduce the search from
O(bd) to O(bd/2), where b is the average branching factor of the game and d is equal to the search depth
(Knuth and Moore, 1975).

It is distinguished between static and dynamic move ordering. Static move ordering is often domain
dependent. For instance, in capturing games like Chess, capturing moves are searched at first. Static
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Figure 4.2: An example minimax tree with αβ-pruning

move ordering in Billabong is described in Section 4.3.1. Furthermore, learning techniques can be applied
to improve the static move ordering, e.g. neural networks (Kocsis, Uiterwijk, and Van den Herik, 2001).
Dynamic move ordering relies on knowledge obtained during the search. Two techniques are implemented
for Billabong. The Killer Heuristic is discussed in Subsection 4.3.2. Subsequently, the History Heuristic
is described in Subsection 4.3.3.

4.3.1 Static Move Ordering in the Game of Billabong

Domain dependent move ordering weights moves on their “natural” strength. The situation of the board
is often not considered. A simple mechanism to order moves in Billabong is preferring the jump moves
to the step moves.

Solomon (1984) proposed a technique to compute the angle of a piece on the board. It is used by
his evaluation function (cf. Section 4.8). The angle is measured clockwise from start-finish line to the
straight line from the centre of the billabong to the piece. For each crossing of the start-finish line 360°
is added to the angle. For performance reasons, the angles are stored in a table. Figure 4.3 depicts the
angles of some example tiles.

Inspired by this idea, the following static move ordering is proposed. During the placing phase, the
moves are ordered on the angle of the placing location. During the racing phase, every move has a
start and end position. The moves are arranged according to the difference between the angles of these
positions. Doing so, placing moves close to the start-finish line as well as jump moves that cover a long
distance in the right direction are preferred.

4.3.2 Killer Heuristic

The killer heuristic tries to produce an early cutoff assuming that a move that already caused a cutoff at
some node is likely to cause another cutoff of a different node at the same ply (Akl and Newborn, 1977).
The killer heuristic stores at least one killer move at each ply. Searching a node, the killer moves of the
same ply are investigated first. If a killer move is legal according to the game rules and produces another
cutoff it is not necessary to compute all possible moves for the corresponding game situation. A move
that causes a cutoff is stored as a killer move. The number of killer moves is limited, such that the killer
move that has not been used for the longest time is replaced.

4.3.3 History Heuristic

Schaeffer (1983) proposed the History Heuristic to rank the strength of moves over the whole game.
Unlike the killer heuristic, it keeps a history for every legal move seen in the search tree. If the number
of possible moves is limited, it is possible to preserve the score for each move in a table. For board
games, moves are typically indexed by the coordinates on the board. For instance, the table for Chess
and Checkers consists of 4,096 entries (64 from squares × 64 to squares). The history table reserves
memory for illegal moves as well. This can be a problem for games with a larger dimensionality of moves
(Hartmann, 1988). For Billabong, the number of start-finish line crossing has to be respected for both
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Figure 4.3: Tile angles

the from tiles and the to tiles, such that there are each 432 from and to tiles. Additionally, there are 216
possible placing moves and 432 moves that remove a piece from the board. In total, the table consists
of 187,272 entries. The strength of a move might depend on the player performing it such that history
tables are maintained separately for each player.

After generating all moves in an interior node during the search, the moves with the same priority
according to static move ordering are sorted according to their score in the history table in descending
order. This might cause earlier αβ-cutoffs. Then having investigated all moves in a node, the history
table entry of the best move found is incremented by some value. Like originally proposed, the increment
is 2d in the Billabong program, where d is the search depth of the subtree under the node.

Hartmann (1988) proposed an alternative to the history heuristic to draw attention to the drawback
that the history heuristic assumes that all moves occur equally often. The butterfly heuristic reorders
moves based on their frequency. Instead of incrementing only the best move in the history table, all
moves that are investigated during the search update their score in the butterfly board. This excludes
non-searched moves in case of an αβ-cutoff. The butterfly board is defined in the same way as the history
table. Its inventor assumes the heuristic to be less effective than the history heuristic. The relative
history heuristic proposed by Winands et al. (2006) orders the moves according to the quotient of the
score in history table divided by the move frequency in the butterfly boards. The technique improves
search performance in the games of Lines of Action (LOA) and Go even more.

4.4 Transposition Tables

In Section 4.1, it is mentioned that a game is represented as a tree instead of a directed graph. A tree
structure can be mapped easily into the memory and can be processed fast. In a tree, there is always a
unique path to a node, but in game there might exist several sequences of moves that end in the same
game state. Nodes representing the same search game state are called transpositions. Figure 4.4 depicts
an example transposition in the game of Tic-Tac-Toe. Node (a) and (b) represent the same state although
the sequences of moves are different. A search algorithm that is not able to detect transpositions considers
both subtrees of Node (a) and (b).

Transposition tables are a simple and fast technique to detect transpositions (Greenblatt, Eastlake,
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Figure 4.4: Transposition in Tic-Tac-Toe

and Crocker, 1967). Each game state is mapped to a hash value using some hashing method. The state-
space of many games is too large to maintain each possible position in memory such that a finite hash
table stores a subset of states (Knuth, 1973). If the size of the table holds 2n entries, the n low-ordered
bits of the hash value are used as hash index. The remaining bits are the hash key and identify two states
with the same hash index. A hash table entry typically preserves the following information (Breuker,
1998). The reserved number of bits is domain dependent such that the specification of the Billabong
program is given.

key The hash key distinguishes two states with the same hash index. There are 49 bits reserved for
the hash key.

move The best move found during the search is used for move ordering. There are 27 bits reserved
for the best move.

score The computed utility of the state is preserved. When using αβ-pruning, it can also be a lower
or upper bound. There are 32 bits reserved for the score.

flag The flag indicates whether the score is a lower bound, an upper bound or an exact value. There
are 2 bits reserved for this flag.

depth The depth of the investigated subtree shows how deep the position has been searched. There
are 8 bits reserved for the depth.

A hash table entry in Billabong has a total size of 15 bytes. When preserving 224 = 16, 777, 216
positions, 240 mega bytes memory are reserved for a transposition table.

For computing the hash value of a game state in Billabong, Zobrist (1970) hashing is applied. Each
piece can have 432 different positions on the board, e.g. a1 with no start-finish line crossings or j10 with
one start-finish line crossing as well as 2 positions not on the board where it has not yet been placed or
has already been removed. In the four-player version, there are 20 pieces participating such that there
434× 20 = 8, 680 features. As the game state should also contain some information about which player
to move, there are 4 additional features indicating if Player 1, 2, 3 and 4 is to move. There are as many
random numbers required as there are features. Any game state can be described by the subset of the
features which hold in that state. The hash value of that state is equal to the result of the corresponding
subset of random numbers after applying the XOR operation.

Before searching a node, it is looked up in the transposition table. If there is an entry that matches the
current position, a transposition encounters. If the search depth in the transposition table is sufficiently
high (≥ remaining search depth), the preserved score either is returned as exact value without further
investigation or is used to update the αβ-window depending on the stored flag. If no cutoff occurs or
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the search depth is too small, it is checked whether the preserved move in the table causes a cutoff.
Otherwise, the moves of the player have to be generated and the search continues normally.

After the investigation of all children, the best move in this situation and its utility are known. The
obtained information might be used to update the transposition table. As the table is limited in size, not
all positions with the same hash index can be stored. A replacement scheme decides whether to preserve
or to overwrite the previous situation (Breuker, Uiterwijk, and Van den Herik, 1994; Breuker, Uiterwijk,
and Van den Herik, 1996). The following replacement schemes are implemented.

Old Always keep the first situation.

New Overwriting is preferred to keeping a value.

Deep The situation with the most deeply searched subtree is preserved in the table.

Two-Deep Two situations with the same index are preserved. One is updated according to Deep and
the other one according to New.

The relation game state to hash value is non-injective. Different positions might have the same hash
value. This might cause a serious error, the type-1 error (Breuker, 1998). As it is hardly detectable,
the search result can be affected by incorrect information. The probability of a type-1 error is given in
Equation 4.1, where N is the number of distinguishable nodes and M is the number of different nodes
which have to be stored in a transposition table.

P (Type-1 error) ≈ 1− e−M2

2N (4.1)

The Billabong program searches about 500,000 positions a second. If it plays for a total of two hours
think time, it investigates 3,600,000,000 nodes. As leaf nodes are not stored, it is assumed that for about
30% of the nodes, an attempt is made to store them in the transposition table (Breuker, 1998). These
are 1,200,000,000 nodes in total. The hash value consists of 73 bits (49 for hash key; 24 for the hash
index) such that the error probability is:

1− e−
(1.2×109)2

2×273 ≈ 7.6× 10−5 (4.2)

It is possible to reduce probability of a type-1 error by checking if the stored move is legal in the
current position. If it is not legal, a type-1 error is detected and avoided. Although the probability of
a type-1 error is low, the Billabong program verifies the preserved move to be legal. As the program
assumes that only legal moves are applied, illegal moves can corrupt the representation of the board in
memory. A type-2 error, also called collision, occurs when two positions share the same hash index but
have different hash values. The positions can be distinguished by the hash key such that the collision is
handled without errors.

4.5 Iterative Deepening

The αβ-algorithm investigates a search tree up to a predefined depth. However, it is difficult to predict
the runtime of the search. The required time depends on the branching factor which usually varies during
the game. Finding the best move in an arbitrary situation is a real-time problem with time constraints.
Iterative deepening is a possibility to dynamically adapt the search depth. Therefore the search tree
is investigated multiple times with increasing search depth starting with a depth of 1. If a search is
aborted due to a time-out, the best move of previous iteration is performed. Researching the tree with
increasing search depth causes overhead compared to a fixed-depth search. When searching a tree with a
branching factor of 40 up to a depth of 5, it is required to investigate 40 + 1, 600 + 64, 000 + 2, 560, 000 +
102, 400, 000 = 105, 025, 640 nodes. A fixed-depth search considers 102, 400, 000 nodes. The overhead
for iterative deepening is about 2.6%. However, obtained knowledge from previous iterations can reduce
the amount of nodes to be searched in next iteration as the quality of history heuristic, killer heuristic
and transposition tables improves (Slate and Atkin, 1977). Furthermore, iterative deepening finds the
shortest path to a win if several paths exist. After completing an iteration, it is checked whether the
game-theoretic value of the current game state indicates a win for the searching player. If yes, the search
is stopped. If the player searched deeper, it would be possible to find more winning positions that are
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deeper in the search tree. Such a situation might lead to never ending game. For instance, the player
always prefers a win in three moves to a win in the next move.

4.6 Multi-player Search

Having a strong evaluation function, choosing minimax with αβ-pruning as search technique is a straight-
forward decision for deterministic perfect-information two-player games because the strategy of the op-
ponent is clear. It wants to optimize its situation in comparison to its opponent. For multi-player games,
the opponents’ strategy may vary as they are able to form coalitions. It is distinguished between co-
operative and non-cooperative games (Osborne and Rubinstein, 1994). For cooperative games usually
holds that two or more players can form a coalition and by this achieve higher scores than by playing
individually. For non-cooperative games the property can hold as well, but at the end of the game all
players prefer winning solely to drawing the game. Therefore, coalitions are only temporary. It is usually
unknown which players are in a coalition. It is even possible that player A assumes to be in a coalition
with player B, but player B prefers to play solely. Billabong is a non-cooperative game. The players
forming a coalition can help its members to perform long jump moves instead of e.g. moving the pivot
away.

The two main search algorithms for non-cooperative multi-player games are maxn (Luckhardt and
Irani, 1986) and paranoid (Sturtevant and Korf, 2000). Maxn assumes that every player tries to maximize
its own score while paranoid assumes that all opponents form a coalition against the root player. Schadd
and Winands (2011) have recently proposed Best-Reply Search (BRS) as an alternative search technique.
It assumes that only the opponent with the best move against the root player is allowed to move. These
three search techniques are discussed in the following subsections in more detail.

4.6.1 Maxn

When performing maxn search (Luckhardt and Irani, 1986), n-tuples are generated for all leaf nodes,
where every entry is set to the score that the corresponding player can achieve. At internal nodes, the
player to move chooses the child node with the highest score for itself. An example maxn tree is shown
in Figure 4.5.

Figure 4.5: An example maxn tree for three players

At Node (b), the second player is to move and prefers (9, 5, 9) over (6, 3, 9) as the first child maximizes
its score. At Node (c), both children are equally good and therefore none of them is preferable. Player 2
chooses the left child. At Node (a), Player 1 performs the second move as it will achieve a score of 12.

There can exist several multiple equilibrium points for multi-player games. It has been proven by
Luckhardt and Irani (1986) that maxn finds one equilibrium point. Which one is dependent on the tie-
breaking rule (Sturtevant, 2003a). In the example at Node (c), the left-most child node has been chosen
in case of a tie. If preferring the state in which the root player scores less, like it is implemented in the
Billabong program, Player 2 chooses the right child at Node (c) and therefore Player 1 prefers Node (b)
over (c). The found equilibrium point changes from (12, 5, 13) to (8, 5, 3).

Maxn has a small lookahead as due to lack of pruning (Sturtevant, 2003b). Deep pruning can incor-
rectly affect the value of the search tree and is therefore not applicable. Shallow pruning is possible if
there is an upper bound for the sum of all players’ scores (Korf, 1991).
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Depending on the game, coalition forming is a natural behaviour for a player. In this case the
general assumption of maxn is unrealistic and too optimistic, resulting in weak play. Several variations
of the algorithm try to overcome one or both conceptual drawbacks, e.g. Careful maxn (Lorenz and
Tscheuschner, 2006) and soft-maxn (Sturtevant and Bowling, 2006). Constructing an evaluation function
that respects possible coalition forming is another possibility to let maxn play more carefully.

4.6.2 Paranoid

The paranoid algorithm (Sturtevant and Korf, 2000) reduces any n-player game to a two-player game.
According to the algorithm’s general assumption, all opponents form a coalition against the root player.
In contrast to maxn, paranoid search allows αβ-pruning. An example paranoid tree is depicted in Figure
4.6.

Figure 4.6: An example paranoid tree for three players

In this three-player setup both opponents behave as MIN players trying to minimize the score of the
root player, the only MAX player. At Node (b), the second player has two moves leading to Node (d)
and Node (e). The third player has two moves at both nodes. As both opponents are MIN players, Node
(b) has a value of −5. After searching the first child of Node (c), all remaining children can be safely
pruned. Therefore, Node (a) has a value of −5.

In best case, pruning reduces the search complexity to O(bd×(n−1)/n) (Sturtevant and Korf, 2000).
This usually leads to higher search depth and therefore paranoid search might outperform maxn, e.g. in
Chinese Checkers, Hearts (Sturtevant, 2003a), Focus and Rolit (Schadd and Winands, 2011). The main
drawback of paranoid search is that the paranoid assumption is unrealistic and often leads to defensive
play. Furthermore, given sufficient search time the algorithm might find out that the current position is a
loss because it is usually not possible to win against cooperating opponents. In this case, the player starts
to play weak. Designing an evaluation function that emphasizes coalition forming less is a possibility to
let paranoid play less defensively.

4.6.3 Best-Reply Search

As seen in the previous subsections, both paranoid and maxn search have conceptual weaknesses. Schadd
and Winands (2011) have proposed Best-Reply Search (BRS) as an alternative search technique. Instead
of letting all opponents move, only the opponent with the strongest move against root player is allowed
to move. Afterwards, the root player is to move again. An example Best-Reply Search tree for three
players is depicted in Figure 4.7.

At Node (a), the root player has two options to move. The first option leads to Node (b), a MIN
node having four children. Its edges are labelled indicating the player performing a move. Player 2 can
perform two different moves. Although it is the second player’s turn, the moves of the third player are
considered as well. At Node (b), Player 3 has also two options to move and its second move minimizes
the utility. At Node (c), the second move of the second player, which is the third child node, causes a
β-cutoff. It is notable that move ordering allows to mix the opponents’ moves. This is important as the
branching factor of a uniform game tree is (n− 1)-times larger at MIN nodes than at MAX nodes, where
n is the number of players.
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Figure 4.7: An example BRS tree for three players

Best-Reply Search has two advantages compared to maxn and paranoid. In both maxn and paranoid
search, a MAX node occurs at every nth ply. This allows only short-term planning when playing against
many opponents as only one own turn might be considered. In Best-Reply Search every second node
along the search path is a MAX node which enables more long-term planning. Best-Reply Search does
not depend on unrealistic coalition assumptions like maxn and paranoid. In contrast to maxn, Best-Reply

Search allows deep pruning. In the best case, O
(

(b× (n− 1))d
2×d
n e/2

)
nodes are explored (Schadd and

Winands, 2011). Best-Reply Search also has two drawbacks. First, illegal game states and unreachable
game states are investigated during the search. For example in trick-based card games like Hearts and
Spades, the investigated states can be considerably different from legal game states, such that Best-Reply
Search performs weak. Second, Best-Reply Search does not consider coalitions that are beneficial for the
root player.

4.7 Variations of Best-Reply Search

To overcome the conceptual drawbacks of BRS, two ideas are proposed. First, instead of just performing
the best move against the root player, all remaining opponents perform the best move according to the
static move ordering as well. As a consequence, only legal positions are searched. Second, instead of
just applying one move against root player, all opponents except one are allowed to search for a strong
move. The two concepts can be combined such that three variations of Best-Reply Search are proposed.
The following subsections will discuss the variations BRS1,C−1 (Subsection 4.7.1), BRSC−1,0 (Subsection
4.7.2) and BRSC−1,1 (Subsection 4.7.3). The indices indicate the number of opponents searching for the
best counter move, followed by the number of opponents performing the best move according to the static
move ordering. C is the number of all competitors.1 For instance, BRS can also be noted as BRS1,0.

4.7.1 BRS1,C−1

The first variation of BRS is BRS1,C−1. Instead of not letting the opponents move, they are allowed to
perform the best move according to the static move ordering. First, the general concept of the algorithm
is explained. Therefore a game with n players is considered. After applying one of the MAX player’s
moves, all moves of the first opponent are generated and ordered first. They are first performed on the
board. Afterwards the best move ordering moves (BMOM) are applied for the remaining n−2 opponents
one after another. The next node would be then a MAX node. After the moves of the first opponent
have been explored, the BMOM of the first opponent is selected and applied. All moves for the second
opponent are generated. Each of them is applied and afterwards the BMOMs for the remaining n − 3
opponents are performed one after another, respectively. Again, the next node is then a MAX node. This
is repeated (n− 1)-times so that every opponent’s moves have been searched once. An example tree for
three players is depicted in Figure 4.8.

At Node (a), which is a MAX node, all moves of the root player are generated. Node (b) is a MIN
node and the second player has two moves. The first move leads to Node (d) and second move leads to
Node (e). At both nodes, the third player only performs the BMOM. The values of the leaf nodes, which
in this example are MAX nodes, are back propagated to update the αβ-window at Node (b). After that,

1In order to resolve ambiguities, the term competitor C is used instead of opponent O. Both terms are equivalent.
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Figure 4.8: Concept of BRS1,C−1 for three players

the second player performs its BMOM. At Node (f), the third player has to two options to move and
chooses -5. At Node (c), a cutoff occurs after checking the first move of the second player and the BMOM
of the third player.

If it is assumed that the first move investigated is the one preferred by the static move ordering,
Node (g) and (h) are transpositions. The edges from (b) to (d) and from (b) to (f) as well as from (d)
to (g) and (f) to (h) represent the same moves. In order to avoid researching transpositions, a different
implementation of the algorithm is used. Again, a game with n players is considered. After applying one
of the MAX players moves, all moves of the first opponent are generated and searched. If the just applied
move is the BMOM, the next opponent continues searching. Otherwise, the BMOMs for the remaining
opponents are selected. As all opponents have moved, the next node is a MAX node again. The adapted
example of the BRS1,C−1 tree for three players is depicted in Figure 4.9.

Figure 4.9: Optimized BRS1,C−1 tree for three players

This variation of BRS does not generate illegal positions as all players move according to the rules.
Combining the MIN nodes of a branch to a merged MIN node, the effective branching factor of a merged
MIN node increases almost linearly with the number of opponents instead of exponentially like in maxn

and paranoid search assuming a uniform game tree. At a MIN node, only one child is expanded completely
and for b − 1 children BMOMs are generated. The number of MAX nodes followed by a merged MIN
node is given in Equation 4.3. As b = 2 and n = 3 holds in the example tree in Figure 4.9, there are 3
MAX nodes at the left branch.
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NMAX(n) =

{
(b− 1) +NMAX(n− 1) if n > 2

b if n = 2

= (b− 1) + (b− 1) + · · ·+ (b− 1)︸ ︷︷ ︸
(n−2)-times

+b

= (b− 1)× (n− 2) + b

= (b− 1)× (n− 1)− (b− 1) + b

= (b− 1)× (n− 1) + 1

(4.3)

As the effective branching factor at merged MIN nodes is smaller than the one of maxn and paranoid, it
is possible to have more long-term planning like in the standard version of BRS. Furthermore, it is neither
too optimistic like maxn nor too pessimistic like paranoid. It also has three drawbacks. First, BRS1,C−1
works similarly to paranoid search, where not all opponents’ moves are considered, and therefore it is
still not aware of coalitions that might help the root player like in paranoid and BRS. Second, generating
BMOMs often requires computing all moves which is computationally expensive and causes overhead
at the non-expanded MIN nodes. Third, when applying dynamic move ordering techniques like killer
moves which are designed to produce a cutoff before generating the moves, it is not known whether the
stored moves are equal to the best move according to static move ordering. If stable search is preferred,
it is required to generate and order the moves before searching them at MIN nodes otherwise the search
becomes unstable. In a two-player game, the algorithm behaves like minimax search.

The transposition tables can only be used at MAX nodes and at MIN nodes that are expanded.
Assume that Node (d,f) and (e) of the example tree (Figure 4.9) are transpositions. Node (d,f) is fully
expanded, but at Node (e) only the best move ordering move is considered. Therefore, Node (d,f) has a
value of −5 while Node (e) has a value of −4. As the data in transposition tables are independent from
the search path, it is not known whether the stored node is completely expanded or not.

Computational Overhead of BRS1,C−1

As previously pointed out, generating the BMOMs causes computational overhead. At each expanded
MIN node, (b − 1) moves are not the best according to the move ordering. For each of those moves a
sequence of BMOMs to the next MAX node has to be computed. The number of additionally generated
BMOMs per merged MIN node in the uniform search tree is given in Equation 4.4. Thus, its complexity
is O(b× n2).

NAdd.BMOMs(n) =

{
(n− 2)× (b− 1) +NAdd.BMOMs(n− 1) if n > 2

0 if n = 2

= (n− 2)× (b− 1) + (n− 3)× (b− 1) + · · ·+ (n− (n− 2 + 1))(b− 1)︸ ︷︷ ︸
(n−2)-times

+0

=

n−2∑
i=1

i(b− 1)

= (b− 1)

n−2∑
i=1

i

= (b− 1)
(n− 1)(n− 2)

2

(4.4)

Best-Case Analysis of BRS1,C−1

This best-case analysis calculates the minimum number of leaf nodes to be examined within the game
tree. Therefore, a strategy for the MIN and MAX player is needed. Analogous to the best case analysis
for the BRS tree (Schadd and Winands, 2011), the search depth d reduces to d 2×dn e because the layers
of n successive players are reduced to 2 layers, the MAX layer and the MIN layer (between two MAX
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nodes). For finding a strategy for the MAX player, 1 node has to be searched at a MAX layer and

(b− 1)× (n− 1) + 1 merged MIN nodes at a MIN layer, resulting in ((b− 1)× (n− 1) + 1)d
2×d
n e/2 nodes.

For finding a strategy for the MIN player, b nodes have to be searched at a MAX layer and 1 merged

MIN node at a MIN layer, resulting in bd
2×d
n e/2 nodes. Therefore, the total number of leaf nodes for both

the MIN and MAX player is ((b− 1)× (n− 1) + 1)d
2×d
n e/2 + bd

2×d
n e/2 nodes. Thus, BRS1,C−1 explores in

the best case O
(

((b− 1)× (n− 1) + 1)d
2×d
n e/2

)
leaf nodes.

With respect to the computational overhead, the total number of MIN nodes in a merged MIN node
is computed as well. The first MIN node has b− 1 successors where n− 2 BMOMs are applied until the
next MAX node is reached and 1 successor that expands similarly to the first MIN node. Therefore, the
number MIN nodes in a merged node is computed recursively (cf. Equation 4.5).

NMIN (n) =

{
1 + (b− 1)× (n− 2) +NMIN (n− 1) if n > 2

1 if n = 2

= 1 + (b− 1)× (n− 2) + 1 + (b− 1)× (n− 3) + · · ·+ (b− 1)× (n− (n− 2 + 1))︸ ︷︷ ︸
(n−2)-times

+0

= (n− 1) + (b− 1)×
n−1∑
i=2

(n− i)

= (n− 1) + (b− 1)×

(
n−1∑
i=2

n−
n−1∑
i=2

i

)

= (n− 1) + (b− 1)×

(
(n− 1− 2 + 1)× n−

n−1∑
i=1

i+ 1

)

= (n− 1) + (b− 1)×
(

(n− 2)× n− (n− 1)(n)

2
+ 1

)
= (n− 1) + (b− 1)×

(
2n2 − 4n− n2 + n

2
+ 1

)
= (n− 1) + (b− 1)×

(
n2 − 3n

2
+ 1

)

(4.5)

The effective branching factor of BRS1,C−1 is smaller than the one of BRS, but the number of nodes
that are combined to a merged MIN node is higher than in BRS. Considering the overhead, BRS1,C−1

has a complexity of O
(

(n− 1)× ((b− 1)× (n− 1) + 1)d
2×d
n e/2

)
in the best case as for every expanded

MIN node at most n− 2 moves are generated.

4.7.2 BRSC−1,0

The second variation of Best-Reply Search is BRSC−1,0. Instead of letting only one opponent move
between two MAX nodes along the search path, all opponents move except one. For instance in a four-
player game, the move sequences where only Opponent 1 and Opponent 2 move are searched first. After
that, the move sequences where Opponent 1 and Opponent 3 move are investigated. Finally, the moves
of Opponent 2 and Opponent 3 are considered. An example BRSC−1,0 tree for four players is depicted
in Figure 4.10.

For simplicity reasons, the MAX player has only one move at Node (a). At Node (b), the second
player considers two moves leading to Node (d) and (e). At Node (d), the third player has two possible
moves. Both moves are connected to a MAX node as the moves of player 4 are ignored. When skipping
the moves of the third player at Node (d), there are two moves for the fourth player. Player 3 chooses
left child having a value of 3. At Node (e), there are two moves when skipping the fourth player and also
two moves when skipping the third player. The value 1 is back propagated to its parent node. When
skipping the moves of the second player at Node (b), there are two moves for the third player, that lead
to Node (f) and (g). At both nodes, the left child is chosen.
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Figure 4.10: An example BRSC−1,0 tree for four players

BRSC−1,0 is a more paranoid variation of BRS having similar properties. On the one hand, the
occurrence of MAX nodes is higher than for traditional search methods as every (n− 1)th node along the
search path is a MAX node. On other hand, the effective branching factor at a MIN node is bigger. The
first MIN node has b children where the first opponent is skipped and therefore no other opponent will
be ignored until the next MAX node is reached. Furthermore, it has b children which are of a similar
type as first MIN node because the first opponent performs a move. Thus, the effective branching factor
is 2b if no opponent has been skipped, otherwise it is b. The number of MAX nodes followed by a merged
MIN node is given in Equation 4.6.

NMAX(n) =

{
bn−2 + b×NMAX(n− 1) if n > 3

2b if n = 3

= bn−2 + b× bn−3 + · · ·+ bn−2 × bn−(n−3+1)−2︸ ︷︷ ︸
(n−3)-times

+bn−3 × 2b

= (n− 3)× bn−2 + bn−3 × 2b = (n− 3)× bn−2 + 2bn−2

= (n− 1)× bn−2

(4.6)

Its general assumption is less paranoid compared to paranoid search as fewer opponents move against
the root player. Furthermore, it has the same drawbacks as Best-Reply Search. It is still not possible to
consider opponents’ moves that are beneficial for the root player and illegal positions are searched. The
usage of transposition tables is limited. At MIN nodes, the transposition tables can only be used if no
player has been skipped so far. Without this limitation, a lookup can incorrectly affect the search tree
as in one case the next player is allowed to perform another move and the second case it is skipped. In a
three-player game, BRSC−1,0 behaves exactly as the standard version of BRS. In a two-player game, the
single opponent is not skipped and therefore BRSC−1,0 becomes a standard minimax search.

Best-Case Analysis of BRSC−1,0

To calculate the minimum number of leaf nodes to be examined within the game tree, a strategy for the
MIN and MAX player is needed. Again, the search depth d reduced to d 2×dn e because the layers of n
successive players are reduced to a MAX layer and a MIN layer. For finding a strategy for the MAX
player, 1 node has to be searched at a MAX layer and (n − 1) × bn−2 merged nodes at a MIN layer,

resulting in ((n − 1) × bn−2)d
2×d
n e/2 nodes. For finding a strategy for the MIN player, b nodes have to

be searched at a MAX layer and 1 merged node at a MIN layer, resulting in bd
2×d
n e/2 nodes. Therefore,

the total number of leaf nodes for both the MIN and MAX player is ((n − 1) × bn−2)d
2×d
n e/2 + bd

2×d
n e/2

nodes. Thus, BRSC−1,0 explores in the best case O
(

((n− 1)× bn−2)d
2×d
n e/2

)
leaf nodes.
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4.7.3 BRSC−1,1

BRSC−1,1 combines the ideas of the variants BRS1,C−1 and BRSC−1,0. Similar to BRSC−1,0, all opponents
moves are searched except one. Instead of ignoring that move, the best move ordering move is performed
like in BRS1,C−1. An example tree for four players is depicted in Figure 4.11.

Figure 4.11: Concept of BRSC−1,1 for four players

For simplicity reasons, the MAX player has only one move at Node (a). The game tree where Node
(b) is the root node is uniform with a branching factor of 2. However the search tree looks differently.
At Node (b), the second player has two moves leading to Node (c) and Node (d). At Node (c), the third
player has also two moves leading to Node (f) and (g). At Node (f), the fourth player is only allowed to
perform its BMOM as the MIN nodes of the second and the third player are completely expanded. The
same holds for Node (g). At Node (c), it is also considered to perform the BMOM of the third player
such that all moves of the fourth player are investigated at Node (h). The search at Node (d) behaves
similarly. Both, Node (c) and Node (d) have a value of 3. Going back to Node (b), it is also considered
that the second player is only allowed to apply its BMOM such that both the third and the fourth player
are completely expanded, resulting in Node (e) having a value of 2.

In this conceptual tree, many transpositions occur while searching although the game tree has none.
Next to the values inside the nodes, a capital letter labels the corresponding game state. The game states
A, C, E, F, G and I occur two times and the game states B and D are visited even three times. Again,
a different implementation can avoid these transpositions. A standard paranoid search is performed but
the last MIN node before a MAX node is only expanded when at least one of the previous MIN players
performed a best move ordering move. The adapted example of the BRSC−1,1 tree for four players is
depicted in Figure 4.12. The dashed edges show which paths are not searched in BRSC−1,1, but in
paranoid search.

BRSC−1,1 is the most paranoid variation of BRS among our proposals. Except for ignoring the paths
where not at least one player performs a BMOM, the complete game tree is searched. This reduces the
number of the MIN nodes between two MAX nodes from bn−1 to n×bn−2 in the conceptual tree and even
to bn−1 − (b− 1)n−1 in the optimized one, where b is the average branching factor and n is the number
of players (cf. Section B.1). If the game tree is uniform, the BRSC−1,1 tree is a paranoid tree reduced by
second paranoid tree with b′ = b− 1, which is the number of Non-BMOMs. In contrast to the standard
version of BRS only legal states are searched. Therefore, it is required to generate BMOMs which causes
more overhead. Like in BRS1,C−1, the preference of stable search might requires to generate all moves
before applying killer moves. Furthermore, transposition tables can only be used at MAX nodes and
expanded MIN nodes like in BRS1,C−1. In a three-player game, BRSC−1,1 behaves exactly as BRS1,C−1.
In a two-player game, the algorithm behaves like minimax search.
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Figure 4.12: Optimized BRSC−1,1 tree for four players

Computational Overhead of BRSC−1,1

As previously pointed out, generating the BMOMs causes computational overhead. At each expanded
MIN node, (b− 1) moves are not optimal according to the move ordering. There are (b− 1)n−2 last MIN
nodes before a MAX node, where it is required to generate one additional BMOM. Thus, the number
of additionally generated BMOMs in uniform search tree per merged MIN node is also (b − 1)n−2. The
resulting complexity is O(b× n).

Best-Case Analysis of BRSC−1,1

To calculate the minimum number of leaf nodes to be examined within the game tree, a strategy for the
MIN and MAX player is needed. The search depth d reduces to d 2×dn e like in BRS1,C−1 and BRSC−1,0.
For finding a strategy for the MAX player, 1 node has to be searched at a MAX layer and bn−1 −
(b − 1)n−1 merged nodes at a MIN layer, resulting in (bn−1 − (b − 1)n−1)d

2×d
n e/2 nodes. For finding

a strategy for the MIN player, b nodes have to be searched at a MAX layer and 1 merged node at a

MIN layer, resulting in bd
2×d
n e/2 nodes. Therefore, the total number of leaf nodes for both the MIN and

MAX player is (bn−1 − (b − 1)n−1)d
2×d
n e/2 + bd

2×d
n e/2 nodes. Thus, BRSC−1,1 explores in the best case

O
(

(bn−1 − (b− 1)n−1)d
2×d
n e/2

)
leaf nodes.

With respect to the computational overhead, the total number of MIN nodes in a merged MIN node
is computed as well. The BRSC−1,1 tree is a reduced paranoid tree. The standard paranoid tree has bn−1

MAX nodes followed by a merged MIN node. As the number of internal nodes is equal to the number of
external nodes, there are 2bn−1 nodes in total. The number of leaf nodes of a paranoid tree with b′ = b−1
is subtracted. The total number of MIN nodes combined in a merged MIN node is 2bn−1 − (b − 1)n−1.

Considering the overhead, the complexity of BRSC−1,1 is O
(

(bn−1 − (b− 1)n−1)d
2×d
n e/2

)
in the best

case. For every expanded MIN node, it is not required to generate more than one BMOM such that the
complexity increases by a constant.

4.8 Evaluation Function

The αβ-based search algorithms require an evaluation function to assign a utility to a leaf node in the
search tree. The utility of a game state correlates with the winning possibility and game-theoretic value
of the player. If the game ends at a leaf node the utility indicates whether the player has won the game
or not. When using maxn search, every player’s utility is computed, otherwise, only the position of the
root player is evaluated. The evaluation function can either be dynamic or static. An dynamic evaluation
function gathers statistics for the current state. For instance, Monte Carlo Evaluation simulates multiple
games (semi-)randomly until a terminal node is reached (Abramson, 1990). The state utility is set
to the average of the simulated scores. Just as in Monte-Carlo Tree Search (Kocsis and Szepesvári,
2006; Coulom, 2007), the strength of this technique depend on the quality of the (semi-)randomly chosen
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moves. A heuristic evaluation function usually consists of several features. The importance of these
features differs such that each feature is weighted. As the game of Billabong is a multi-player game,
each feature belongs to a player. The sum of all weighted features belonging to a player represents the
progress of this particular player ignoring the progress of the other players (cf. Equation 4.7). Finally,
the utility of the game state is the progress of the evaluating player minus the sum of all opponents’
progresses multiplied by a factor c (cf. Equation 4.8). The factor, so called Player-Opponent-Balance,
influences whether the own strength is preferred to the opponents’ weaknesses.

Progress(playerId) =
∑
i

wi × fi (4.7)

Utility(playerId) = Progress(playerId)− c×
numPlayers∑

i=1
i6=playerId

Progress(i) (4.8)

For the game of Billabong the following features can be evaluated for each player.

Total Angle The total angle shows the covered distance by all pieces and is the sum of
the angles of the pieces of one player that are on the board. The angle is
computed as described in Subsection 4.3.1.

Removed Pieces The number of pieces that have been removed from the board is taken into
account.

Angle of the Last Piece The angle of the last piece adds a penalty of letting a piece behind. As
described in Section 2.3, it is usually difficult to close a large gap to the
peloton.

Long jump The long jump rates the strongest jump possibility for all pieces. It is
computed by summing up the static move ordering score of the long jump
move for every piece (cf. Subsection 4.3.1).

The first three features were proposed by Solomon (1984). He combined the total-angle and the removed-
pieces features with an additional weighting, such that for each piece that is removed from the board the
value 4× 360° = 1440 is added to the total angle. Therefore, he used the formula X2 + 2X to compute
the round of a piece, where X = −1 indicates that a piece has not crossed the start-finish line yet. The
evaluation function that is used in this thesis emphasizes removing a piece more if the corresponding
weight is greater than 1. The computation of the long jump is computationally expensive as all moves
need to be generated. This reduces the search depth. Finally, the utility of the state is randomly increased
or decreased by up to 5%. Randomness leads to safer play. The player is more likely to prefer a state
where it has multiple options to perform a strong move (Beal and Smith, 1994). The specific weights
were not given by Solomon, such that they are determined experimentally in Section 5.2.



Chapter 5

Experiments & Results

In this chapter, the experiments performed are described and analysed. First, Section 5.1 introduces
the experimental setup. Next, Section 5.2 compares the performance of different configurations of the
evaluation function. The strength of the move ordering techniques is evaluated in Section 5.3. Afterwards,
the average search depth that the different search algorithms are able to achieve is shown in Section 5.4.
Subsequently, Section 5.5 matches the performance of BRS, BRS1,C−1, BRSC−1,0 and BRSC−1,1 with
maxn and paranoid. Finally, the four BRS versions, BRS and its variations, directly compete each other
in different experiments described in Section 5.6.

5.1 Experimental Setup

The experiments that are described in the following sections are performed in self-play. Therefore, a
Billabong program is developed in Java 6. Sequentially, the algorithms to be matched search for the
best move in the current board situation given a thinking time of 5 seconds if not specified differently.
Each algorithm uses the evaluation function and the enhancements which are considered to be optimal
according to the results of Section 5.2 and 5.3. The tests are performed on a 64-bit Linux machine with
2.4GHz.

When matching m algorithms in an n-player game, it is required to test different configurations.
Further, as it is unknown whether the winning possibilities depend on being the first, second, third or
fourth player, these configurations are tested in all possible orders. Table 5.1 lists all tested configurations
with algorithms A, B, C and D. For all experiments consisting of at least 200 games, the winning
percentage and the 95%-confidence interval are given.

5.2 Evaluation Function

Section 4.8 described the different features of the evaluation function. The first experiment finds the best
configuration of its weights. Therefore, the five configurations shown in Table 5.2 are tested. The five
evaluation functions are tested in subsets of four. For each subset, e.g. Configuration 1, 2, 4 and 5, 432
games are simulated in total. The tests are performed for all six search algorithms such that 72 games are
simulated for each search algorithm. As the influence of the search algorithm itself has to be as small as
possible, the search algorithms are not mixed in the games such that e.g. maxn is just matched against
maxn.

Configuration 1 and 2 are the strongest configurations. Configuration 4 is comparatively good and
Configuration 3 and 5 perform weak. The total angle and the angle of the last piece are important features.
The long jump might improve the strength of the evaluation function but its merit does not outperform
a deeper search. A search that does not analyse the long jump is about one ply deeper. When putting
too much weight on this feature, the player performs weak. The player prefers positions where it is able
to do a long jump move to positions where it performed them already. Further, the opponents’ strength
is less important than the progress of the player itself such that a high weight decreases performance. As
Configuration 1 has the highest win ratio, it is used for all following experiments.
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Players Search Algorithms Configurations

3
2 6:

(A A B); (A B A); (B A A);
(A B B); (B A B); (B B A)

3 6:
(A B C); (A C B); (B A C);
(B C A); (C A B); (C B A)

4
2 14:

(A A A B); (A A B A); (A B A A); (B A A A);
(A A B B); (A B A B); (A B B A);
(B A A B); (B A B A); (B B A A);

(A B B B); (B A B B); (B B A B) (B B B A)

3 36:

(A A B C); (A A C B); (A B A C); (A C A B);
(A B C A); (A C B A); (B A A C); (C A A B);
(B A C A); (C A B A); (B C A A); (C B A A);
(B B A C); (B B C A); (B A B C); (B C B A);
(B A C B); (B C A B); (A B B C); (C B B A);
(A B C B); (C B A B); (A C B B); (C A B B);
(C C B A); (C C A B); (C B C A); (C A C B);
(C B A C); (C A B C); (B C C A); (A C C B);
(B C A C); (A C B C); (B A C C); (A B C C)

4 24:

(A B C D); (A B D C); (A C B D); (A C D B);
(A D B C); (A D C B); (B A C D); (B B D C);
(B C A D); (B C D A); (B D A C); (B D C A);
(C A B D); (C A D B); (C B A D); (C B D A);
(C D A B); (C D B A); (D A B C); (D A C B);
(D B A C); (D B C A); (D C A B); (D C B A)

Table 5.1: Overview of test configurations

Features
Configuration

1 2 3 4 5

Total Angle 1 1 1 1 1
Removed Pieces 1 1.2 1 1.2 1

Angle of the Last Piece 3 6 3 3 3
Long Jump 0 0.2 0.7 0.4 0

Player-Opponent-Balance 0.2 0.1 0.2 0.2 1.0

search depth 5.2 4.2 4.1 4.2 5.0
winning percentage 39.7 (±2.31) 39.1 (±2.30) 4.1 (±0.93) 34.4 (±2.24) 7.8 (±1.26)

Table 5.2: Winning percentage for different weighting configurations for the used evaluation function

5.3 Move Ordering

The search algorithms maxn, paranoid, BRS, BRS1,C−1, BRSC−1,0 and BRSC−1,1 as well as possible
enhancements like the transposition tables, the killer and the history heuristics were discussed in Chap-
ter 4. Given a set of 125 board positions for four players that were randomly selected from self-play
experiments, the number of nodes to be searched given a fixed depth are compared. This shows how
effective the technique can be applied in the game of Billabong. The fewer nodes have to be searched
given a fixed depth the deeper an algorithm can search given the same the computation time. All tests
use iterative deepening and Configuration 1 as evaluation function (cf. Section 4.8). The randomness in
the evaluation function is disabled such that the same search trees are investigated.

Table 5.3 presents the numbers of nodes for the five different algorithms paranoid, BRS, BRS1,C−1,
BRSC−1,0 and BRSC−1,1. For each algorithm, the full and the αβ-pruned trees are investigated. Except
for αβ-pruning and static move ordering, there are no enhancements applied. The static move ordering is
strong for all algorithms as least 89.9% and up to 99.9% of the nodes are pruned. As there are no pruning
techniques for maxn, it investigates the same number of nodes as the non-pruning version of paranoid.
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Depth
Paranoid BRS BRS1,C−1 BRSC−1,0 BRSC−1,1

full αβ-pruned full αβ-pruned full αβ-pruned full αβ-pruned full αβ-pruned

2 1,736 160 (90.2%) 5,120 275 (94.6%) 1,736 160 (90.8%) 3,446 292 (91.5%) 1,736 160 (90.8%)
3 89,027 5,046 (94.3%) 282,401 3,170 (98.9%) 6,748 595 (91.2%) 266,028 23,677 (91.1%) 89,027 5,046 (94.3%)
4 5,094,052 337,456 (93.4%) 47,614,714 57,894 (99.9%) 16,706 1,703 (89.8%) 16,025,835 79,353 (99.5%) 431,512 35,739 (91.7%)
5 - 1,130,163 - 382,401 298,548 6,689 (97.8%) - 2,516,949 16,172,459 107,205 (99.3%)
6 - 21,226,842 - 10,105,757 15,723,237 56,158 (99.6%) - 194,938,281 - 1,909,668
7 - - - - 61,625,460 215,181 (99.7%) - - - 83,107,057
8 - - - - - 533,565 - - - -
9 - - - - - 1,471,080 - - - -

10 - - - - - 15,015,015 - - - -

Table 5.3: Nodes to be searched with and without αβ-pruning

When searching up to a depth of 4 in a four-player game, the leaf nodes in paranoid are MAX nodes.
The same holds for BRS1,C−1 and BRSC−1,1 as both are sparse versions of paranoid search. For BRS,
it is only required to search up to a depth of 2 and for BRSC−1,0 up to a depth of 3, respectively.
Considering the full trees explored up to the first MAX node after the root node, BRS investigates 5,120
nodes, BRS1,C−1 investigates 16,706 nodes, BRSC−1,0 investigates 266,028 nodes, BRSC−1,1 investigates
431,512 nodes and paranoid investigates 5,094,052 nodes. Therefore, BRS has the largest lookahead.

The potential of transposition tables is shown in Tables 5.4, 5.5, 5.6, 5.7 and 5.8. The transposition
tables can store 224 = 16, 777, 216 positions requiring 240 mega bytes memory. The current node is looked
up in the transposition table before generating the moves. As stable search is preferred, the BMOM is
determined using static move ordering. For all search algorithms, transposition tables perform well. As
expected, the replacement scheme Old performs worst. Once the transposition table is full, it is not
possible to use its data as the board states will not occur anymore. Two-Deep and Deep are similarly
good. There is a tendency to consider Deep to be the best scheme when exploring up to 2,500,000 nodes
which can be searched within five seconds computation time. In this setup, it is possible to reduce the
number of nodes to be searched up to 49.1% for BRS1,C−1. This algorithm benefits most from the usage
of transposition tables. For paranoid, BRS and BRSC−1,1 the amount of nodes reduces about 30%.
As BRSC−1,0 cannot apply transposition tables at every MIN node, the technique can only reduce the
number of nodes by 21.5%.

Depth
Paranoid

Without TT Two-Deep Deep New Old

2 160 155 (3.0%) 155 (3.0%) 155 (3.0%) 155 (3.0%)
3 5,046 4,581 (9.2%) 4,581 (9.2%) 4,581 (9.2%) 4,833 (4.2%)
4 337,456 146,582 (56.6%) 146,272 (56.7%) 272,529 (19.2%) 334,679 (0.8%)
5 1,130,163 810,317 (28.3%) 760,383 (32.7%) 999,794 (11.5%) 1,121,278 (0.8%)
6 21,226,842 13,283,194 (37.4%) 14,145,574 (33.4%) 18,788,420 (11.5%) 21,297,621 (-0.3%)

Table 5.4: Nodes to be searched using transposition tables in paranoid

Depth
BRS

Without TT Two-Deep Deep New Old

2 275 263 (4.7%) 263 (4.7%) 263 (4.7%) 263 (4.7%)
3 3,170 2,916 (8.0%) 2,911 (8.2%) 2,911 (8.2%) 2,930 (7.6%)
4 57,894 39,185 (32.3%) 38,941 (32.7%) 39,291 (32.1%) 48,613 (16.0%)
5 382,401 252,191 (34.1%) 246,908 (35.4%) 277,123 (27.5%) 313,661 (18.0%)
6 10,105,757 5,490,533 (45.7%) 5,446,893 (46.1%) 6,825,400 (32.5%) 9,020,974 (10.7%)

Table 5.5: Nodes to be searched using transposition tables in BRS
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Depth
BRS1,C−1

Without TT Two-Deep Deep New Old

2 160 155 (3.0%) 155 (3.0%) 155 (3.0%) 155 (3.0%)
3 595 558 (6.2%) 558 (6.2%) 558 (6.2%) 571 (3.9%)
4 1,703 1,280 (24.9%) 1,280 (24.9%) 1,281 (24.8%) 1,647 (3.3%)
5 6,689 5,047 (24.5%) 5,045 (24.6%) 5,099 (23.8%) 6,492 (3.0%)
6 56,158 26,670 (52.5%) 26,376 (53.0%) 32,661 (41.8%) 53,283 (5.1%)
7 215,181 106,683 (50.4%) 101,158 (53.0%) 144,389 (32.9%) 201,310 (6.4%)
8 533,565 249,436 (53.3%) 235,436 (55.9%) 375,326 (29.7%) 496,729 (6.9%)
9 1,471,080 782,176 (46.8%) 748,859 (49.1%) 1,171,140 (20.4%) 1,339,545 (8.9%)

10 15,015,015 5,835,126 (61.1%) 5,646,455 (62.4%) 11,910,998 (20.7%) 13,702,448 (8.7%)

Table 5.6: Nodes to be searched using transposition tables in BRS1,C−1

Depth
BRSC−1,0

Without TT Two-Deep Deep New Old

2 292 284 (3.0%) 284 (3.0%) 284 (3.0%) 284 (3.0%)
3 23,677 18,816 (20.5%) 18,800 (20.6%) 18,800 (20.6%) 19,358 (18.2%)
4 79,353 51,968 (34.5%) 51,505 (35.1%) 67,652 (14.7%) 52,031 (34.4%)
5 2,516,949 1,983,709 (21.2%) 1,975,930 (21.5%) 2,133,236 (15.2%) 1,828,496 (27.4%)
6 194,938,281 153,397,072 (21.3%) 153,028,306 (21.5%) 162,860,932 (16.5%) 178,978,501 (8.2%)

Table 5.7: Nodes to be searched using transposition tables in BRSC−1,0

Depth
BRSC−1,1

Without TT Two-Deep Deep New Old

2 160 155 (3.0%) 155 (3.0%) 155 (3.0%) 155 (3.0%)
3 5,046 4,581 (9.2%) 4,581 (9.2%) 4,581 (9.2%) 4,833 (4.2%)
4 35,739 18,694 (47.7%) 18,645 (47.8%) 20,867 (41.6%) 34,899 (2.4%)
5 107,205 55,863 (47.9%) 55,172 (48.5%) 85,608 (20.1%) 105,054 (2.0%)
6 1,909,668 1,393,334 (27.0%) 1,391,218 (27.1%) 1,706,110 (10.7%) 1,892,278 (0.9%)
7 83,107,057 46,758,250 (43.7%) 46,678,605 (43.8%) 71,571,946 (13.9%) 81,475,247 (2.0%)

Table 5.8: Nodes to be searched using transposition tables in BRSC−1,1

The benefit of history heuristics and killer moves combined with transposition tables using the Deep
scheme is shown in Tables 5.9, 5.10, 5.11, 5.12 and 5.13. First, the current node is looked up in the
transposition table. If possible, the preserved move is investigated. Second, the killer moves are applied.
Finally, the remaining moves are ordered according to the static move ordering. If several moves are
equally preferred, history heuristics are applied. For all search algorithms, neither history heuristics nor
relative history heuristics improve playing performance a lot. In the best case, it is possible to reduce the
number of nodes by 3.6%, but in the worst case the number of nodes even increases by 0.5%. Furthermore,
there is no preference for using history heuristics or relative history heuristics. As the static move ordering
already distinguishes many categories of moves, it is less likely that the static ordering of the moves is
different from the one enhanced with the history heuristics.

The usage of killer moves has a higher impact on the search performance. For all algorithms, there
is no significant difference between the application of one or two killer moves. Their potential highly
depends on the reached search depth. For instance, killer moves improve a 5-ply paranoid search about
37% while a one ply deeper search gains only 16% to 20%. In BRS, killer moves reduce the number of
nodes by 18% (5-ply) and 10% (6-ply). For BRS1,C−1, killer moves reduce the number of nodes about
30% to 35% (9-ply and 10-ply). In BRSC−1,0, killer moves increase the number of nodes about 7% to
9% in a 4-ply deep search and reduce the number of nodes by 7% to 14% in 5-ply or 6-ply deep search.
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Killer moves are powerful in BRSC−1,1 as they are able to reduce the number of nodes to be searched in
a 6-ply search by 49%.

The previous tests have shown that the number of nodes is minimal for these 125 board positions
when using transposition tables combined with relative history heuristics and two killer moves. The
transposition tables are updated according to the Deep scheme. The dynamic move ordering techniques
are combined with the proposed static move ordering.

Depth
Paranoid

HH: no; KM: 0 HH: rel.; KM: 0 HH: abs.; KM: 0 HH: rel.; KM: 1 HH: abs.; KM: 1 HH: rel.; KM: 2 HH: abs.; KM: 2

3 4,581 4,579 (0.1%) 4,579 (0.1%) 2,545 (44.4%) 2,545 (44.4%) 2,462 (46.3%) 2,462 (46.3%)
4 146,272 146,001 (0.2%) 146,001 (0.2%) 134,944 (7.7%) 134,944 (7.7%) 139,259 (4.8%) 139,259 (4.8%)
5 760,383 760,051 (0.0%) 760,069 (0.0%) 484,303 (36.3%) 484,308 (36.3%) 475,204 (37.5%) 475,223 (37.5%)
6 14,145,574 14,152,935 (-0.1%) 14,153,268 (-0.1%) 11,788,956 (16.7%) 11,782,162 (16.7%) 11,335,546 (19.9%) 11,319,253 (20.0%)

Table 5.9: Nodes to be searched using dynamic move ordering in paranoid

Depth
BRS

HH: no; KM: 0 HH: rel.; KM: 0 HH: abs.; KM: 0 HH: rel.; KM: 1 HH: abs.; KM: 1 HH: rel.; KM: 2 HH: abs.; KM: 2

3 2,911 2,908 (0.1%) 2,908 (0.1%) 2,711 (6.8%) 2,708 (7.0%) 2,728 (6.3%) 2,727 (6.3%)
4 38,941 38,793 (0.4%) 38,797 (0.4%) 30,900 (20.6%) 30,897 (20.7%) 31,524 (19.0%) 31,546 (19.0%)
5 246,908 242,502 (1.8%) 242,675 (1.7%) 200,953 (18.6%) 200,484 (18.8%) 201,271 (18.5%) 201,591 (18.4%)
6 5,446,893 5,433,474 (0.2%) 5,427,531 (0.4%) 4,891,384 (10.2%) 4,884,633 (10.3%) 4,909,677 (9.9%) 4,912,311 (9.8%)

Table 5.10: Nodes to be searched using dynamic move ordering in BRS

Depth
BRS1,C−1

HH: no; KM: 0 HH: rel.; KM: 0 HH: abs.; KM: 0 HH: rel.; KM: 1 HH: abs.; KM: 1 HH: rel.; KM: 2 HH: abs.; KM: 2

3 558 557 (0.1%) 557 (0.1%) 460 (17.6%) 460 (17.6%) 439 (21.3%) 439 (21.3%)
4 1,280 1,279 (0.1%) 1,279 (0.1%) 1,073 (16.1%) 1,073 (16.1%) 1,078 (15.7%) 1,078 (15.7%)
5 5,045 5,041 (0.1%) 5,043 (0.0%) 4,581 (9.2%) 4,583 (9.2%) 4,700 (6.8%) 47,00 (6.8%)
6 26,376 26,334 (0.2%) 26,344 (0.1%) 23,691 (10.2%) 23,695 (10.2%) 23,139 (12.3%) 23,138 (12.3%)
7 101,158 100,947 (0.2%) 101,104 (0.1%) 76,827 (24.1%) 76,726 (24.2%) 75,470 (25.4%) 75,482 (25.4%)
8 235,436 234,128 (0.6%) 234,758 (0.3%) 170,552 (27.6%) 170,502 (27.6%) 169,600 (28.0%) 169,739 (27.9%)
9 748,859 751,074 (-0.3%) 752,903 (-0.5%) 519,202 (30.7%) 519,533 (30.6%) 507,387 (32.2%) 508,594 (32.1%)

10 5,646,455 5,445,954 (3.6%) 5,454,479 (3.4%) 3,766,654 (33.3%) 3,756,615 (33.5%) 3,702,217 (34.4%) 3,666,676 (35.1%)

Table 5.11: Nodes to be searched using dynamic move ordering in BRS1,C−1

Depth
BRSC−1,0

HH: no; KM: 0 HH: rel.; KM: 0 HH: abs.; KM: 0 HH: rel.; KM: 1 HH: abs.; KM: 1 HH: rel.; KM: 2 HH: abs.; KM: 2

3 18,800 18,790 (0.1%) 18,790 (0.1%) 17,007 (9.5%) 17,007 (9.5%) 17,204 (8.5%) 17,204 (8.5%)
4 51,505 51,458 (0.1%) 51,458 (0.1%) 55,495 (-7.7%) 55,495 (-7.7%) 56,420 (-9.5%) 56,411 (-9.5%)
5 1,975,930 1,975,231 (0.0%) 1,975,394 (0.0%) 1,682,937 (14.8%) 1,683,031 (14.8%) 1,677,484 (15.1%) 1,676,993 (15.1%)
6 153,028,306 153,175,499 (-0.1%) 153,187,693 (-0.1%) 142,590,553 (6.8%) 142,607,682 (6.8%) 141,404,552 (7.6%) 141,854,490 (7.3%)

Table 5.12: Nodes to be searched using dynamic move ordering in BRSC−1,0

Depth
BRSC−1,1

HH: no; KM: 0 HH: rel.; KM: 0 HH: abs.; KM: 0 HH: rel.; KM: 1 HH: abs.; KM: 1 HH: rel.; KM: 2 HH: abs.; KM: 2

3 4,581 4,579 (0.1%) 4,579 (0.1%) 2,545 (44.4%) 2,545 (44.4%) 2,462 (46.3%) 2,462 (46.3%)
4 18,645 18,611 (0.2%) 18,611 (0.2%) 14,895 (20.1%) 14,895 (20.1%) 16,648 (10.7%) 16,648 (10.7%)
5 55,172 55,112 (0.1%) 55,129 (0.1%) 47,628 (13.7%) 47,627 (13.7%) 48,928 (11.3%) 48,928 (11.3%)
6 1,391,218 1,391,649 (0.0%) 1,391,171 (0.0%) 707,988 (49.1%) 707,849 (49.1%) 713,726 (48.7%) 712,748 (48.8%)
7 46,678,605 46,691,593 (0.0%) 46,706,990 (-0.1%) 39,986,494 (14.3%) 39,953,028 (14.4%) 38,453,235 (17.6%) 38,200,710 (18.2%)

Table 5.13: Nodes to be searched using dynamic move ordering in BRSC−1,1
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5.4 Average Search Depth

Table 5.14 shows the average search depths that can be achieved in 5 seconds. These statistics are
collected from all experiments discussed in the following sections. On average, BRS searches up to a
depth of 5.6 for three players and up to a depth of 5.1 for four players. The MAX player can plan a
sequence of three or four of its own moves. In the three-player setup, BRS1,C−1 can plan a sequence of
three moves of the MAX player as it achieves a search depth of 7.6. In the four-player setup, BRS1,C−1
can just visit two or three MAX nodes, although the average search depth is higher. BRSC−1,0 and
BRSC−1,1 just visit two MAX nodes achieving an average search depth of 4.7 and 6.0. For maxn, the
average search depth is 3.5 for three players and 3.6 for four players. In a three-player setup, maxn can
sometimes plan two owns moves in a row. In a four-player setup, it usually cannot investigate two own
moves in a row. Paranoid achieves a depth of 5.4 for three players and 5.1 for four players. On average,
it searches two moves of the MAX player.

BRS has the largest long-term planning. The MAX player can plan up to four moves in sequence.
BRS1,C−1 is close to that performance as it visits three MAX nodes in sequence. BRSC−1,0, BRSC−1,1
and paranoid search two moves of the MAX player, but BRSC−1,0 and BRSC−1,1 usually investigate
more MIN nodes. Maxn has the smallest lookahead. These observations are consistent with the theoretic
analyses in Chapter 4.

Players BRS BRS1,C−1 BRSC−1,0 BRSC−1,1 Maxn Paranoid

3 5.6 7.6 - - 3.5 5.4
4 5.1 8.7 4.7 6.0 3.6 5.1

Table 5.14: Average Search Depth for BRS, BRS1,C−1, BRSC−1,0, BRSC−1,1, maxn and paranoid

5.5 Best-Reply Search and Variations Compared to Traditional
Methods

After selecting the best evaluation function and verifying the strength of the search enhancements, the
traditional search methods, maxn and paranoid are matched against BRS and its variations first. As all
search algorithms reduce to αβ-search in a two-player game, only the three-player and four-player setups
are examined. Further, as BRSC−1,0 and BRSC−1,1 reduce to BRS and BRS1,C−1 in a three-player setup,
there are no experiments performed for BRSC−1,0 and BRSC−1,1 in this setup.

5.5.1 BRS and Variations vs. Maxn or Paranoid

The first experiment matches each BRS version against maxn or paranoid in a two-algorithm setup (cf.
Table 5.1). Table 5.15 shows that all BRS versions play strong against maxn and win at least 89% of the
games. BRS and BRS1,C−1 also perform well against paranoid winning about 60% to 70% of the games.
Their performance increases with the number of players as paranoid becomes more pessimistic. When
playing against maxn, the performance of BRS decreases with the number of players because the illegal
board positions cause more errors. The performance of BRS1,C−1 decreases as it is more likely to find
an overestimated branch. A branch might be overestimated if the performed BMOM is also improving
the position of the root player in a situation where the opponents have the possibility to weaken the root
player. Nevertheless, both search algorithms still perform impressively. BRS and BRS1,C−1 are equally
strong. BRSC−1,0 and BRSC−1,1 perform a bit better than paranoid winning at least 56% of the games
because they are less pessimistic than paranoid.

5.5.2 BRS and Variations vs. Maxn and Paranoid

In this experiment, BRS or one of its variations is matched against maxn and paranoid in a three-
algorithm setup (cf. Table 5.16). If all three search algorithms were equally strong, a winning percentage
of 33.3% would be expected. In the three-player setup, both BRS and BRS1,C−1 win the majority of
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Players Search Algorithm Maxn Paranoid

3
BRS 95.4 (±2.81) 63.2 (±4.55)

BRS1,C−1 97.7 (±2.01) 60.4 (±4.62)

4

BRS 89.8 (±4.04) 68.9 (±4.25)
BRS1,C−1 89.4 (±4.12) 69.7 (±4.22)
BRSC−1,0 94.0 (±3.18) 57.3 (±3.81)
BRSC−1,1 90.3 (±3.96) 56.2 (±3.82)

Table 5.15: Winning percentage of BRS, BRS1,C−1, BRSC−1,0 and BRSC−1,1 against maxn or paranoid

the games. Maxn performs weak, just winning 1% of the games. BRS wins more games against maxn

and paranoid as BRS1,C−1 does. Paranoid is better in exploiting the maxn player when playing against
BRS1,C−1 than when playing against BRS. The same holds for the four-player setup. Paranoid is more
pessimistic and therefore wins fewer games than in the three-player setup. However, it is still better in
exploiting the maxn player than when playing against BRS1,C−1. Furthermore, as paranoid becomes
weaker, maxn wins 2% of the games. Compared to the results of Table 5.15, BRSC−1,0 performs better
against paranoid if there is an additional maxn player while BRSC−1,1 performs worse. This indicates
that BRSC−1,0 is stronger in exploiting weaknesses of maxn than the paranoid algorithm. BRSC−1,1 is
less effective in exploiting the maxn player.

Players BRS Maxn Paranoid
3 63.9 (±3.70) 1.1 (±0.80) 35.0 (±3.68)
4 72.5 (±3.11) 1.5 (±0.85) 26.0 (±3.06)

Players BRS1,C−1 Maxn Paranoid
3 58.6 (±3.79) 0.9 (±0.74) 40.4 (±3.78)
4 63.2 (±3.47) 2.7 (±1.16) 34.1 (±3.41)

Players BRSC−1,0 Maxn Paranoid
4 61.1 (±5.04) 2.2 (±1.52) 36.7 (±4.98)

Players BRSC−1,1 Maxn Paranoid
4 52.8 (±5.16) 3.3 (±1.86) 43.9 (±5.13)

Table 5.16: Winning percentage of BRS, BRS1,C−1, BRSC−1,0 and BRSC−1,1 against maxn and paranoid

5.6 Best-Reply Search and Variations Compared to Each Other

In this section, BRS and its variations are directly matched against each other. First, only two algorithms
compete in a three- and four-player setup. Second, two BRS-based search algorithms are matched with
a maxn and a paranoid player in a four-player setup. Finally, all BRS versions play against each other
in the same experiment.

5.6.1 Two BRS-Based Algorithms

Table 5.17 matches each BRS version against all other versions in a two-algorithm setup. In the three-
player setup, BRS is a bit stronger than BRS1,C−1. In the four-player setup, BRS outperforms all
variations. BRS1,C−1 is as strong as BRSC−1,0 and is significantly better than BRSC−1,1. BRSC−1,0
might be a little stronger than BRSC−1,1.

The next experiment measures the performance of BRS against BRS1,C−1 in the four-player setup for
different time settings. Table 5.18 shows the results for 2, 5 and 10 seconds thinking time per move. As
the performance does not change significantly, BRS is always stronger than BRS1,C−1 in this setup.
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Players Search Algorithm BRS BRS1,C−1 BRSC−1,0 BRSC−1,1

3
BRS 51.6 (±4.72) - - -

BRS1,C−1 - 48.4 (±4.72) - -

4

BRS - 61.0 (±5.05) 65.7 (±6.34) 70.4 (±6.10)
BRS1,C−1 39.0 (±5.05) - 49.5 (±6.68) 62.5 (±6.34)
BRSC−1,0 34.3 (±6.34) 50.5 (±6.68) - 52.8 (±6.67)
BRSC−1,1 29.6 (±6.10) 37.5 (±6.34) 47.2 (±6.67) -

Table 5.17: Winning percentage of BRS, BRS1,C−1, BRSC−1,0 and BRSC−1,1 against each other in a
two-algorithm setup

Experiment BRS BRS1,C−1

BRS vs. BRS1,C−1 (2 seconds) 61.3 (±4.60) 38.7 (±4.60)
BRS vs. BRS1,C−1 (5 seconds) 61.0 (±5.05) 39.0 (±5.05)
BRS vs. BRS1,C−1 (10 seconds) 63.0 (±4.56) 37.0 (±4.56)

Table 5.18: Winning percentage of BRS and BRS1,C−1 with different time settings in a four-player setup

5.6.2 Two BRS-Based Algorithms with Maxn and Paranoid

Table 5.19 shows the results of six experiments in the four-algorithm setup. In each experiment, two
BRS-based search algorithms are matched against each other when a maxn player and a paranoid player
are participating additionally. The experiments confirm the results of the previous experiments. BRS
wins the majority of the games against all search algorithms. BRS1,C−1 outperforms BRSC−1,0 and
BRSC−1,1. BRSC−1,0 is stronger than BRSC−1,1. Furthermore, all BRS versions outperform maxn and
paranoid significantly.

Experiment BRS BRS1,C−1 BRSC−1,0 BRSC−1,1 Maxn Paranoid

BRS, BRS1,C−1, Maxn, Paranoid 50.0 (±5.78) 29.5 (±5.28) - - 3.1 (±2.01) 17.4 (±4.38)
BRS, BRSC−1,0, Maxn, Paranoid 52.4 (±5.78) - 26.0 (±5.08) - 0.7 (±0.96) 20.8 (±4.70)
BRS, BRSC−1,1, Maxn, Paranoid 54.5 (±5.76) - - 28.5 (±5.22) 0.7 (±0.96) 16.3 (±4.28)

BRS1,C−1, BRSC−1,0, Maxn, Paranoid - 43.7 (±5.76) 32.6 (±5.42) - 1.4 (±1.35) 22.2 (±4.81)
BRS1,C−1, BRSC−1,1, Maxn, Paranoid - 39.6 (±5.66) - 33.0 (±5.44) 2.1 (±1.65) 25.3 (±5.03)
BRSC−1,0, BRSC−1,1, Maxn, Paranoid - - 42.0 (±5.71) 31.9 (±5.39) 1.4 (±1.35) 24.7 (±4.99)

Table 5.19: Winning percentage of BRS, BRS1,C−1, BRSC−1,0 and BRSC−1,1 against maxn and paranoid
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5.6.3 All BRS-Based Algorithms Against Each Other

In the next experiments, the performance of all BRS version is measured when there are three or four
different BRS-based algorithms competing. As BRSC−1,0 and BRSC−1,1 reduce to BRS and BRS1,C−1
in a three-player game, the experiments are performed in a four-player setup. Table 5.20 shows the
results for the three-algorithm setup. BRS is the strongest algorithm winning about 50% of the games
in all experiments. BRS1,C−1, BRSC−1,0 and BRSC−1,1 are comparatively strong when there is a player
participating using BRS. BRS1,C−1 is the strongest algorithm among the proposed variations as it wins
38.7% of the games against BRSC−1,0 and BRSC−1,1. In this setup, BRSC−1,0 is stronger than BRSC−1,1.

Experiment BRS BRS1,C−1 BRSC−1,0 BRSC−1,1

BRS, BRS1,C−1, BRSC−1,0 46.5 (±4.02) 28.4 (±3.63) 25.2 (±3.50) -
BRS, BRS1,C−1, BRSC−1,1 50.8 (±3.49) 25.4 (±3.04) - 23.8 (±2.97)
BRS, BRSC−1,0, BRSC−1,1 51.0 (±2.89) - 23.2 (±2.44) 25.8 (±2.53)

BRS1,C−1, BRSC−1,0, BRSC−1,1 - 38.7 (±2.81) 32.6 (±2.71) 28.7 (±2.61)

Table 5.20: Winning percentage of BRS, BRS1,C−1, BRSC−1,0 and BRSC−1,1 against each other in a
three-algorithm setup

Table 5.21 shows the result of the last experiment. In this experiment, all BRS versions are matched
against each other in the four-algorithm setup. BRS wins 39% of the games. BRS1,C−1 is the second
strongest search algorithm winning about 23% of the games. BRSC−1,0 and BRSC−1,1 are comparatively
strong as each just wins about 19%. This result is expected as it is in line the findings of the previous
experiments.

Experiment BRS BRS1,C−1 BRSC−1,0 BRSC−1,1

BRS, BRS1,C−1, BRSC−1,0, BRSC−1,1 39.4 (±3.82) 23.1 (±3.29) 18.4 (±3.03) 19.1 (±3.07)

Table 5.21: Winning percentage of BRS, BRS1,C−1, BRSC−1,0 and BRSC−1,1 against each other in a
four-algorithm setup
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Chapter 6

Conclusion & Future Research

This chapter presents the final conclusions of the research. First, Section 6.1 revisits the research questions
and Section 6.2 answers the problem statement. Finally, Section 6.3 gives some recommendations for
future research.

6.1 Answering the Research Questions

In Section 1.3, three research questions were derived from the problem statement. In this section, the
answers given in previous chapters are revisited.

1. What is the complexity of Billabong?

This research question has been answered in Chapter 3. The state-space as well as the game-tree com-
plexity for the two-, three- and four-player version of Billabong was computed. It was possible to give the
exact state-space complexity while the game-tree complexity was determined by self-play experiments.
For two, three and four players, Billabong has state-space complexities of 1022, 1033 or 1045, respectively.
The state-space complexities are respectively comparable to Checkers, Draughts and Chess. Billabong’s
game-tree complexities of 10125, 10174 and 10228 are considerably high as the ratios of game-tree to state-
space complexity are higher than for many other games. The game-tree complexities are comparable to
Abalone, Havannah and Shogi, respectively.

2. How strong is Best-Reply Search in Billabong?

Chapter 5 has answered this research question. BRS was matched against the traditional search algo-
rithms maxn and paranoid in a three- and a four-player experimental setup. BRS is the strongest search
technique among those three algorithms. It outperforms maxn impressively with a win ratio of 89.8%
for three players and 95.4% for four players. The lookahead of maxn is too small as the reached depth is
about 3.5 while BRS reaches a search depth of 5.6. Further, it is also significantly stronger than paranoid,
winning about 64.8% and 69.9% of the games for three and four players, respectively. In general, paranoid
is weaker in the four-player game than in the three-player game as it is too pessimistic.

3. How can Best-Reply Search be improved for a given domain?

As Best-Reply Search has some conceptual drawbacks, two ideas to overcome these drawbacks were
proposed in Chapter 4. The three proposed algorithms BRS1,C−1, BRSC−1,0 and BRSC−1,1 were matched
in Chapter 5. BRS1,C−1 is the strongest algorithm among of the proposed algorithms. Its performance
is comparable to the one of BRS when playing against maxn and paranoid. BRSC−1,0 and BRSC−1,1 are
only a bit stronger than paranoid but outperform maxn. When matching BRS against BRS1,C−1, BRS
outperforms BRS1,C−1 significantly. There may be three reasons why BRS1,C−1 does not perform that
well. (1) BRS1,C−1 has an additional overhead to avoid illegal positions and therefore cannot search as
many MAX nodes in sequence as BRS given the same time frame. It depends on the game whether the
concept of avoiding illegal states by applying BMOMs is worth its overhead. (2) The game of Billabong



44 Conclusion & Future Research

is resistant to the negative effect illegal positions as the board usually does not change too much after
a move. (3) The static move ordering in the game of Billabong is a maxn move ordering that favours
moves that advances the current player as much as possible, independently to the fact whether the move
might help other players as well. Therefore, it can happen that BRS1,C−1 overestimates certain branches
in the tree. Unfortunately, there is no paranoid move ordering in the game of Billabong that prefers
strong moves against the root player. For instance in capturing games like multi-player Chess (Esser,
2012), the best move according to a paranoid move ordering is usually weakening the position of the
root player. This reduces the probability of overestimating a branch in the search tree. The concept
of ignoring only one opponent implemented in BRSC−1,0 and BRSC−1,1 does not pay off well, but it is
better than paranoid as it is less pessimistic than paranoid.

6.2 Answering the Problem Statement

As the research questions have been revisited, an answer to the problem statement can be formulated.

How can one use search for the game of Billabong in order to improve playing performance?

During this research, BRS turned out to be the best evaluation function-based search algorithm. In spite
of its weaknesses it has been able to outperform traditional search algorithms as well as the just proposed
variations. The most promising variation of BRS is BRS1,C−1 which is a comparatively strong algorithm
against maxn and paranoid. Due to computational overhead it investigates fewer nodes than BRS and
therefore plays weaker in a direct comparison. Furthermore as there is no paranoid move ordering in
the game of Billabong, BRS1,C−1 might overestimate branches in the search tree. Transposition tables
and the killer heuristic combined with the proposed static move ordering reduce the number of nodes
significantly and enable deeper search given the same time resources.

6.3 Future Research

There are two areas for potential future research. First, it is interesting whether it is possible to further
improve the playing performance of search techniques in the game of Billabong. This can be done by
finding a better evaluation function for αβ-search respecting more features and / or using better weights
for the existing ones. For instance, a mobility feature counting the number of moves could improve
the quality of the evaluation function. Furthermore, given a good static move ordering, Monte-Carlo
Tree Search might be a strong search technique, too. Therefore, the strength of a Monte-Carlo Tree
Search has to matched against BRS. Second, it is interesting to investigate whether there are more games
like multi-player Chess where the computational overhead of BRS1,C−1 is worth the effort. The search
in Billabong is relatively independent from the moves of the opponents. Schadd and Winands (2011)
doubt that BRS is an appropriate method in trick-based card games, like Hearts or Spades. It would be
interesting to see how BRS1,C−1 performs in these domains. Further, it is possible to modify the selection
of the BMOM. For instance, BRS1,C−1 chooses the best move according to dynamic move ordering or
selects several BMOMs instead of only one such that multiple BMOM branches are investigated at a non-
expanded node. Searching multiple BMOM branches reduces the probability of overestimating branches
at non-expanded nodes but requires more computation time.
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Appendix A

Pseudocode for Search Algorithms

A.1 Minimax

1 double minimax ( depth , isMaxNode ) {
2 i f ( depth == 0 | | i sTermina l ( ) ) {
3 return eva luate ( board ) ;
4 }
5 else i f ( isMaxNode ) {
6 maxScore = −Inf inity ;
7 foreach (Move aMove in generateAl lMoves ( ) )
8 {
9 board . doMove(aMove ) ;

10 double curScore = minimax ( depth−1, fa l se ) ;
11 board . undoMove(aMove ) ;
12
13 i f ( curScore > maxScore ) {
14 bestMove = aMove ;
15 maxScore = curScore ;
16 }
17 }
18 return maxScore ;
19 }
20 else {
21 minScore = +Inf inity ;
22 foreach (Move aMove in generateAl lMoves ( ) )
23 {
24 board . doMove(aMove ) ;
25 curScore = minimax ( depth−1, true ) ;
26 board . undoMove(aMove ) ;
27
28 i f ( curScore < minScore ) {
29 bestMove = aMove ;
30 minScore = curScore ;
31 }
32 }
33 return minScore ;
34 }
35 }

Algorithm A.1: Pseudocode for Minimax
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A.2 αβ-Search

1 double alphabeta ( depth , isMaxNode , alpha , beta ) {
2 i f ( depth == 0 | | i sTermina l ( ) ) {
3 return eva luate ( board ) ;
4 }
5 else i f ( isMaxNode ) {
6 maxScore = −Inf inity ;
7 foreach (Move aMove in generateAl lMoves ( ) )
8 {
9 board . doMove(aMove ) ;

10 curScore = alphabeta ( depth−1, false , alpha , beta ) ;
11 board . undoMove(aMove ) ;
12
13 i f ( curScore > maxScore ) {
14 bestMove = aMove ;
15 maxScore = curScore ;
16 }
17 i f ( maxScore > alpha ) {
18 alpha = maxScore ;
19 }
20 i f ( alpha >= beta ) {
21 break ; // be ta c u t o f f
22 }
23 }
24 return maxScore ;
25 }
26 else {
27 minScore = +Inf inity ;
28 foreach (Move aMove in generateAl lMoves ( ) )
29 {
30 board . doMove(aMove ) ;
31 curScore = alphabeta ( depth−1, true , alpha , beta ) ;
32 board . undoMove(aMove ) ;
33
34 i f ( curScore < minScore ) {
35 bestMove = aMove ;
36 minScore = curScore ;
37 }
38 i f ( minScore < beta ) {
39 beta = minScore ;
40 }
41 i f ( beta <= alpha ) {
42 break ; // alpha c u t o f f
43 }
44 }
45 return minScore ;
46 }
47 }

Algorithm A.2: Pseudocode for αβ-Search
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A.3 Maxn

1 double [ ] maxn( depth ) {
2 i f ( depth == 0 | | i sTermina l ( ) ) {
3 double scoreTuple [ numPlayers ] ;
4 for ( int iP l aye r =0; iP l aye r !=numPlayers ; ++iP laye r ) {
5 scoreTuple [ iP l aye r ] = eva luate ( board , iP l aye r ) ;
6 }
7 return scoreTuple ;
8 }
9 else {

10 maxScoreTuple = [ Infinity , Infinity , . . . ] ;
11 maxScoreTuple [ curPlayer Id ] = −Inf inity ;
12
13 foreach (Move aMove in generateAl lMoves ( ) )
14 {
15 board . doMove(aMove ) ;
16 scoreTuple = maxn( depth −1);
17 board . undoMove(aMove ) ;
18
19 i f ( scoreTuple [ curPlayer Id ] > maxScoreTuple [ curPlayer Id ] )
20 {
21 bestMove = aMove ;
22 maxScoreTuple = scoreTuple ;
23 }
24 else i f ( scoreTuple [ curPlayer Id ] == maxScoreTuple [ curPlayer Id ]
25 && scoreTuple [ roo tP laye r Id ] < maxScoreTuple [ roo tP laye r Id ] )
26 {
27 // t i e break ing
28 bestMove = aMove ;
29 maxScoreTuple = scoreTuple ;
30 }
31 }
32 return maxScoreTuple ;
33 }
34 }

Algorithm A.3: Pseudocode for Maxn
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A.4 Paranoid

1 double paranoid ( depth , nextMaxNodeCount , alpha , beta ){
2 i f ( depth == 0 | | i sTermina l ( ) ) {
3 return eva luate ( board ) ;
4 }
5 else i f ( nextMaxNodeCount == 0)
6 {
7 // max node
8 maxScore = −Inf inity ;
9 foreach (Move aMove in generateAl lMoves ( ) )

10 {
11 board . doMove(aMove ) ;
12 curScore = paranoid ( depth−1, numPlayers−1, alpha , beta ) ;
13 board . undoMove(aMove ) ;
14
15 i f ( curScore > maxScore ) {
16 bestMove = aMove ;
17 maxScore = curScore ;
18 }
19 i f ( maxScore > alpha ) {
20 alpha = maxScore ;
21 }
22 i f ( alpha >= beta ) {
23 break ; // be ta c u t o f f
24 }
25 }
26 return maxScore ;
27 }
28 else {
29 // min node
30 minScore = +Inf inity ;
31 foreach (Move aMove in generateAl lMoves ( ) )
32 {
33 board . doMove(aMove ) ;
34 curScore = paranoid ( depth−1, nextMaxNodeCount−1, alpha , beta ) ;
35 board . undoMove(aMove ) ;
36
37 i f ( curScore < minScore ) {
38 bestMove = aMove ;
39 minScore = curScore ;
40 }
41 i f ( minScore < beta ) {
42 beta = minScore ;
43 }
44 i f ( beta <= alpha ) {
45 break ; // alpha c u t o f f
46 }
47 }
48 return minScore ;
49 }
50 }

Algorithm A.4: Pseudocode for Paranoid
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A.5 Best-Reply Search

1 double BRS( depth , isMaxNode , alpha , beta ){
2 i f ( depth == 0 | | i sTermina l ( ) ) {
3 return eva luate ( board ) ;
4 }
5 else i f ( isMaxNode )
6 {
7 maxScore = −Inf inity ;
8 foreach (Move aMove in generateAl lMoves ( ) )
9 {

10 board . doMove(aMove ) ;
11 curScore = BRS( depth−1, false , alpha , beta ) ;
12 board . undoMove(aMove ) ;
13
14 i f ( curScore > maxScore ) {
15 bestMove = aMove ;
16 maxScore = curScore ;
17 }
18 i f ( maxScore > alpha ) {
19 alpha = maxScore ;
20 }
21 i f ( alpha >= beta ) {
22 break ; // be ta c u t o f f
23 }
24 }
25 return maxScore ;
26 }
27 else {
28 foreach ( Opponent anOpponent ) {
29 moveList += generateAl lMoves ( )
30 }
31
32 minScore = +Inf inity ;
33 foreach (Move aMove in moveList )
34 {
35 board . doMove(aMove ) ;
36 curScore = BRS( depth−1, true , alpha , beta ) ;
37 board . undoMove(aMove ) ;
38
39 i f ( curScore < minScore ) {
40 bestMove = aMove ;
41 minScore = curScore ;
42 }
43 i f ( minScore < beta ) {
44 beta = minScore ;
45 }
46 i f ( beta <= alpha ) {
47 break ; // alpha c u t o f f
48 }
49 }
50 return minScore ;
51 }
52 }

Algorithm A.5: Pseudocode for Best-Reply Search
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A.6 BRS1,C−1

1 double BRS 1 C1 ( depth , nextMaxNodeCount , onBestMoveOrderingPath , alpha , beta ) {
2 i f ( depth == 0 | | i sTermina l ( ) ) {
3 return eva luate ( board ) ;
4 }
5 else i f ( nextMaxNodeCount == 0) {
6 // max node
7 maxScore = −Inf inity ;
8 foreach (Move aMove in generateAl lMoves ( ) )
9 {

10 board . doMove(aMove ) ;
11 curScore = BRS 1 C1 ( depth−1, numPlayers−1, true , alpha , beta ) ;
12 board . undoMove(aMove ) ;
13
14 i f ( curScore > maxScore ) {
15 bestMove = aMove ;
16 maxScore = curScore ;
17 }
18 i f ( maxScore > alpha ) {
19 alpha = maxScore ;
20 }
21 i f ( alpha >= beta ) {
22 break ; // be ta c u t o f f
23 }
24 }
25 return maxScore ;
26 }
27 else i f ( onBestMoveOrderingPath ) {
28 // standard min node
29 minScore = +Inf inity ;
30 foreach (Move aMove in generateAl lMoves ( ) )
31 {
32 board . doMove(aMove ) ;
33 curScore = BRS 1 C1 ( depth−1, nextMaxNodeCount−1,
34 aMove == bestMoveOrderingMove , alpha , beta ) ;
35 board . undoMove(aMove ) ;
36
37 i f ( curScore < minScore ) {
38 bestMove = aMove ;
39 minScore = curScore ;
40 }
41 i f ( minScore < beta ) {
42 beta = minScore ;
43 }
44 i f ( beta <= alpha ) {
45 break ; // alpha c u t o f f
46 }
47 }
48 return minScore ;
49 }
50 else {
51 // min node , but only b e s t move order ing move to check
52 board . doMove( bestMoveOrderingMove ) ;
53 curScore = BRS 1 C1 ( depth−1, numPlayers−1, false , alpha , beta ) ;
54 board . undoMove( bestMoveOrderingMove ) ;
55 }
56 }

Algorithm A.6: Pseudocode for BRS1,C−1
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A.7 BRSC−1,0

1 double BRS C1 0 ( depth , nextMaxNodeCount , sk ippedPlayer , alpha , beta ) {
2 i f ( depth == 0 | | i sTermina l ( ) ) {
3 return eva luate ( board ) ;
4 }
5 else i f ( nextMaxNodeCount == 0) {
6 // max node
7 maxScore = −Inf inity ;
8 foreach (Move aMove in generateAl lMoves ( ) ) {
9 board . doMove(aMove ) ;

10 curScore = BRS C1 0 ( depth−1, numPlayers−2, true , alpha , beta ) ;
11 board . undoMove(aMove ) ;
12 i f ( curScore > maxScore ) {
13 bestMove = aMove ;
14 maxScore = curScore ;
15 }
16 i f ( maxScore > alpha ) {
17 alpha = maxScore ;
18 }
19 i f ( alpha >= beta ) {
20 break ; // be ta c u t o f f
21 }
22 }
23 return maxScore ;
24 }
25 else {
26 // min node : i n i t i a l i s e sub tree , where current p l ayer i s sk ipped
27 minScore = +Inf inity ;
28 i f ( ! skippedAPlayerAlready ) {
29 f loat curScore = BRS C1 0 ( depth , nextMaxNodeCount , true , alpha , beta ) ;
30 i f ( curScore < minScore ) {
31 bestMove = aMove ;
32 minScore = curScore ;
33 }
34 i f ( minScore < beta ) {
35 beta = minScore ;
36 }
37 i f ( beta <= alpha ) {
38 break ; // alpha c u t o f f
39 }
40 }
41 // min node : don ’ t s k i p p layer
42 i f ( ! c u t o f f ) {
43 foreach (Move aMove in generateAl lMoves ( ) ) {
44 board . doMove(aMove ) ;
45 curScore = BRS C1 0 ( depth−1, nextMaxNodeCount−1,
46 skippedPlayer , alpha , beta ) ;
47 board . undoMove(aMove ) ;
48 i f ( curScore < minScore ) {
49 bestMove = aMove ;
50 minScore = curScore ;
51 }
52 i f ( minScore < beta ) {
53 beta = minScore ;
54 }
55 i f ( beta <= alpha ) {
56 break ; // alpha c u t o f f
57 }
58 }
59 }
60 return minScore ;
61 }
62 }

Algorithm A.7: Pseudocode for BRSC−1,0



56 Appendix A: Pseudocode for Search Algorithms

1 double BRS C1 1 ( depth , nextMaxNodeCount , appliedBMOMAlready , alpha , beta ) {
2 i f ( depth == 0 | | i sTermina l ( ) ) {
3 return eva luate ( board ) ;
4 }
5 else i f ( nextMaxNodeCount == 0) {
6 // max node
7 maxScore = −Inf inity ;
8 foreach (Move aMove in generateAl lMoves ( ) )
9 {

10 board . doMove(aMove ) ;
11 curScore = BRS C1 1 ( depth−1, numPlayers−1, false , alpha , beta ) ;
12 board . undoMove(aMove ) ;
13
14 i f ( curScore > maxScore ) {
15 bestMove = aMove ;
16 maxScore = curScore ;
17 }
18 i f ( maxScore > alpha ) {
19 alpha = maxScore ;
20 }
21 i f ( alpha >= beta ) {
22 break ; // be ta c u t o f f
23 }
24 }
25 return maxScore ;
26 }
27 else i f ( ( curDepth + 1) % numplayers != 0 | | appliedBMOMAlready ) {
28 // standard min node
29 minScore = +Inf inity ;
30 foreach (Move aMove in generateAl lMoves ( ) )
31 {
32 board . doMove(aMove ) ;
33 curScore = BRS C1 1 ( depth−1, nextMaxNodeCount−1,
34 appliedBMOMAlready | (aMove == bestMoveOrderingMove ) ,
35 alpha , beta ) ;
36 board . undoMove(aMove ) ;
37
38 i f ( curScore < minScore ) {
39 bestMove = aMove ;
40 minScore = curScore ;
41 }
42 i f ( minScore < beta ) {
43 beta = minScore ;
44 }
45 i f ( beta <= alpha ) {
46 break ; // alpha c u t o f f
47 }
48 }
49 return minScore ;
50 }
51 else {
52 // min node , but only b e s t move order ing move to check
53 board . doMove( bestMoveOrderingMove ) ;
54 curScore = BRS C1 1 ( depth−1, numPlayers−1, false , alpha , beta , true ) ;
55 board . undoMove( bestMoveOrderingMove ) ;
56 }
57 }

Algorithm A.8: Pseudocode for BRSC−1,1
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Mathematical proves

B.1 Complexity of BRSC−1,1

Proposition: For all n ≥ 3 the following is true

bn−1 − (b− 1)n−1 ≤ nbn−2; b ≥ 1 (B.1)

Base case: For n = 3 the following statement holds.

b2 − (b− 1)2 ≤ 3b

b2 − b2 + 2b− 1 ≤ 3b

2b− 1 ≤ 3b

b ≥ −1

Induction step: Assume that the statement holds for n = k

bk−1 − (b− 1)k−1 ≤ kbk−2 (B.2)

such that it is also true for n = k + 1

bk − (b− 1)k ≤ (k + 1)bk−1

bk − (b− 1)k = b× bk−1 − (b− 1)× (b− 1)k−1

= b× bk−1 − b× (b− 1)k−1 + (b− 1)k−1

= b× (bk−1 − (b− 1)k−1) + (b− 1)k−1

B.2
≤ b× (kbk−2) + (b− 1)k−1

= kbk−1 + (b− 1)k−1

≤ kbk−1 + bk−1

= (k + 1)bk−1


