
Monte-Carlo Search Techniques in the Modern Board
Game Thurn and Taxis

Frederik Christiaan Schadd

Master Thesis DKE 09-29

THESIS SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE OF ARTIFICIAL INTELLIGENCE
IN THE DEPARTMENT OF KNOWLEDGE ENGINEERING

OF MAASTRICHT UNIVERSITY

Thesis committee:

dr.ir. J.W.H.M. Uiterwijk
dr. M.H.M. Winands

dr. F. Thuijsman
J.A.M. Nijssen, M.Sc.

Maastricht University
Department of Knowledge Engineering

Maastricht, The Netherlands
December 20, 2009

Preface

The report you are reading is my master thesis, performed at the Department
of Knowledge Engineering of Maastricht University in the field of Artificial In-
telligence. The main subject of the thesis is the investigation of Monte-Carlo
techniques when applied to the modern board game Thurn and Taxis, which is
a non-deterministic board game with imperfect information for 2 to 4 players.

Several people have made this thesis possible to whom I wish to express my
gratitude. First and foremost, I wish to thank my supervisor, dr. ir. Jos Uiter-
wijk, for his constant support during the entire research and his lectures during
my studies. I also wish to thank prof. dr. Jaap van den Herik, dr. Mark
Winands and Jahn-Takeshi Saito, MSc., for their lectures during the course of
Intelligent Search Techniques. Additionally, I wish to thank my brother Maarten
Schadd, MSc., for introducing me to the game Thurn and Taxis and competing
against my AI. And last but not least, I wish to thank you for reading my mas-
ter thesis.

Frederik Schadd
Maastricht, December 2009

iii

Abstract

Modern board games present a new and challenging field when researching
search techniques in the field of Artificial Intelligence. These games differ to
classic board games, such as chess, in that they can be non-deterministic, have
imperfect information or more than two players. While tree-search approaches,
such as alpha-beta pruning, have been quite successful in playing classic board
games, by for instance defeating the then reigning world champion Gary Kas-
parov in Chess, these techniques are not as effective when applied to modern
board games.

This thesis investigates the effectiveness of Monte-Carlo Tree Search when ap-
plied to a modern board game, for which the board game Thurn and Taxis
was used. This is a non-deterministic modern board game with imperfect in-
formation that can be played with more than 2 players, and is hence suitable
for research. First, the state-space and game-tree complexities of this game are
computed, from which the conclusion can be drawn that the two-player version
of the game has a complexity similar to the game Shogi. Several techniques are
investigated in order to improve the sampling process, for instance by adding
domain knowledge.

Given the results of the experiments, one can conclude that Monte-Carlo Tree
Search gives a slight performance increase over standard Monte-Carlo search.
In addition, the most effective improvements appeared to be the application of
pseudo-random simulations and limiting simulation lengths, while other tech-
niques have been shown to be less effective or even ineffective. Overall, when
applying the best performing techniques, an AI with advanced playing strength
has been created, such that further research is likely to push this performance
to a strength of expert level.

v

Contents

Preface iii

Abstract v

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 History of Computer-Games Research 1
1.2 Developments in Research on Modern Board Games 2
1.3 Problem Statement and Research Questions 4
1.4 Overview of the thesis . 4

2 Thurn and Taxis 7
2.1 Origin of the Game . 7
2.2 Rules of the Game . 9

2.2.1 Structure of a Turn . 9
2.2.2 Ending Conditions . 9
2.2.3 Drawing Cards . 9
2.2.4 Constructing Routes . 10
2.2.5 Assistants . 11
2.2.6 Closing Routes . 11
2.2.7 Carriages . 12
2.2.8 End of the Game . 13

3 Analysis of the Game 15
3.1 State-Space Complexity . 15
3.2 Game-Tree Complexity . 20
3.3 Comparison to other Games . 25

vii

viii CONTENTS

4 Search Techniques 27
4.1 Monte-Carlo Search . 27
4.2 Monte-Carlo Tree Search . 29

4.2.1 Selection . 29
4.2.2 Expansion . 30
4.2.3 Simulation . 31
4.2.4 Backpropagation . 31
4.2.5 Final Move Selection . 33
4.2.6 MCTS with Imperfect Information and the Element of

Chance . 34
4.3 UCT Selection Strategy . 34
4.4 Heuristic Enhancements . 36

4.4.1 Limiting Simulation Lengths 36
4.4.2 Game-Progression-based Simulation Cuts 39
4.4.3 Pseudo-Random Simulations 39
4.4.4 Mechanisms for Pseudo-Random Simulations realized us-

ing Binary Heuristics . 42
4.4.5 Hybrid Simulations . 44

5 Experiments 47
5.1 Monte-Carlo Search and Enhancements 47

5.1.1 MC Search . 47
5.1.2 Limited Simulation Lengths 48
5.1.3 Game-Progression-based Simulation Cuts 50
5.1.4 Pseudo-Random Simulations 50
5.1.5 Mechanisms for Pseudo-Random Simulations 52
5.1.6 Hybrid Simulations . 54

5.2 MCTS and Enhancements . 55
5.2.1 MCTS Parameters . 56
5.2.2 Final Move Selection . 57
5.2.3 Limited Simulation Lengths 57
5.2.4 Game-Progression-based Simulation Cuts 59
5.2.5 Pseudo-Random Simulations 61
5.2.6 Mechanisms for Pseudo-Random Simulations 62
5.2.7 Hybrid Simulations . 62

5.3 Comparison between Monte-Carlo Search and MCTS 65
5.4 MCTS against Human Players 67

6 Conclusions and Future Research 73
6.1 Problem Statement and Research Questions Revisited 73

6.1.1 Research Questions Revisited 73
6.1.2 Problem Statement Revisited 74

6.2 Future Work . 75

Bibliography 77

List of Figures

2.1 The board of the game Thurn and Taxis. 8
2.2 An example route of a player. 10
2.3 All the available carriage cards in ascending order. 13

3.1 Frequency of branching factors recorded in 900 test games, played
by a random AI in self-play. 22

3.2 Frequency of branching factors recorded in 900 test games, played
by a MC-AI in self-play. 23

3.3 Frequency of branching factors recorded in 700 test games, played
by a MCTS-AI in self-play. 24

4.1 Illustration of the Monte-Carlo search process in a game with
imperfect information. 29

4.2 Illustration of the selection step in an example Monte-Carlo search
tree . 30

4.3 Illustration of the expansion step in an example Monte-Carlo
search tree. 31

4.4 Illustration of the simulation step in an example Monte-Carlo
search tree. 32

4.5 Illustration of the backpropagation step in an example Monte-
Carlo search tree. 33

4.6 Illustration of a MCTS tree which incorporates hidden informa-
tion and the element of chance 35

ix

List of Tables

3.1 Amount of possible card distributions in the game for each possi-
ble amount of cards of the same type, excluding the display and
the player’s routes. 18

3.2 Average game lengths for three different AIs, measured during
self-play in 900 test games for the Random and MC AI and 700
test games for the MCTS AI. 21

3.3 Average branching factors for three different AIs, measured dur-
ing self-play in 900 test games for the Random and MC AI and
700 test games for the MCTS AI. 23

3.4 State-space complexities and game-tree complexities of various
games and Thurn and Taxis. 26

5.1 Results of a standard Monte-Carlo AI versus a random AI. Values
are percentages of total games played. 48

5.2 Breakdown of card-attach moves per game of a MC AI compared
to a random AI. 48

5.3 Results of various MC AIs with different simulations lengths play-
ing against a MC AI with a standard simulation length of 100
turns. Values are percentages of total games played. 49

5.4 Results of MC AIs with simulations lengths of 25 and 5 turns
playing against a MC AI with a simulation length of 10 turns.
Values are percentages of total games played. 49

5.5 Results of a MC AI using SimCut against a normal MC AI, both
using random simulations. Values are percentages of total games
played. 50

5.6 Results of a MC AI using pseudo-random simulations against a
MC AI using random simulations. Values are percentages of total
games played. 51

5.7 Average amount of routes closed during a game of Thurn and
Taxis of two AIs using different simulation methods. 51

5.8 Results of a MC AI using SimCut against a normal MC AI, both
using pseudo-random simulations. Values are percentages of total
games played. 52

xi

xii LIST OF TABLES

5.9 Results of a MC AI using a pseudo-random simulation mecha-
nism against a MC AI using random simulations. Values are
percentages of total games played. 53

5.10 Results of a MC AI using a pseudo-random simulation mechanism
against a MC AI using pseudo-random simulations. Values are
percentages of total games played. 53

5.11 Results of a MC AI using an enhanced pseudo-random simulation
mechanism against a MC AI using pseudo-random simulations.
Values are percentages of total games played. 54

5.12 Results of a MC AI using hybrid random simulations against a
MC AI using pseudo-random simulations. Values are percentages
of total games played. 54

5.13 Results of a MC AI using hybrid simulations with pseudo-random
mechanisms against a MC AI using pseudo-random simulations.
Values are percentages of total games played. 55

5.14 Results of a MC AI using hybrid simulations with pure heuristic
simulations against a MC AI using pseudo-random simulations.
Values are percentages of total games played. 56

5.15 Results of various values for C for the selection method of UCT.
Tested against a MC AI with both AIs using random simulations.
Values are percentages of total games played. 56

5.16 Results of various values for T for the selection method of UCT.
Tested against a MC AI with both AIs using random simulations.
Values are percentages of total games played. 57

5.17 Results of two different final-move-selection methods. Tested
against a MC AI with both AIs using random simulations. Values
are percentages of total games played. 58

5.18 Results of a MCTS AI utilizing several simulation-length limits
applied to random simulations playing against a MCTS AI using
a simulation-length limit of 10. Values are percentages of total
games played. 58

5.19 Results of a MCTS AI utilizing several simulation-length limits
applied to pseudo-random simulations playing against a MCTS
AI using a simulation-length limit of 10. Values are percentages
of total games played. 59

5.20 Results of a MCTS AI applying SimCut on random simulations
against a MCTS AI using random simulations. Values are per-
centages of total games played. 59

5.21 Average amount of simulations per second for two different sim-
ulation methods with and without SimCut. 60

5.22 Average amount of simulations per second for a MCTS-AI ap-
plying pseudo-random simulations at different simulation-length
limits with and without SimCut. 60

5.23 Results of a MCTS AI applying pseudo-random simulations in
self-play with one AI applying SimCut. Values are percentages
of total games played. 61

LIST OF TABLES xiii

5.24 Results of a MCTS AI applying pseudo-random simulations against
a MCTS AI using random simulations. Values are percentages of
total games played. 61

5.25 Results of a MCTS AI applying a pseudo-random mechanism
against a MCTS AI using pseudo-random simulations. Values
are percentages of total games played. 62

5.26 Results of a MCTS AI using hybrid random simulations against
a MCTS AI using pseudo-random simulations. Values are per-
centages of total games played. 63

5.27 Results of a MCTS AI using hybrid simulations applying the
pseudo-random mechanism against a MCTS AI using pseudo-
random simulations. Values are percentages of total games played. 64

5.28 Results of a MCTS AI using hybrid simulations with pure heuris-
tic simulations against a MCTS AI using pseudo-random simula-
tions. Values are percentages of total games played. 64

5.29 Results of a MC AI playing against a MCTS AI. Both AIs ap-
plied pseudo-random simulations. Values are percentages of total
games played. 65

5.30 Average amount of routes of specific lengths closed during a game
of Thurn and Taxis of a MC AI and a MCTS AI. 66

5.31 Average amount of times each assistant has been selected during
a game for a MC and MCTS AI. 66

5.32 Results of a MCTS AI playing 20 matches against an expert
human player. 67

5.33 Scores of a MCTS AI competing in a best-of-five match against
a human player at champion level. 68

5.34 Average number per game of closed routes of specific lengths by
the MCTS-AI, an expert and champion-level human player. . . . 68

5.35 Breakdown of chosen assistants per game of the MCTS-AI, an
expert and champion-level human player. 69

5.36 Breakdown of card-attach moves per game of the MCTS-AI, and
expert and champion-level human player. 70

5.37 Average amount of times a card will be selected per game, by the
MCTS-AI, an expert and champion-level human player. 71

Chapter 1

Introduction

Decision making is a challenging branch of research in the area of artificial in-
telligence (AI). Ever since the development of the computer, researchers strived
to find ways that enable computers to make smart decisions when faced with
complex problems. It is common to use simplified versions of existing problems
in order to develop approaches that can solve these problems. An example is
the traveling salesman problem [18], which is commonly used as benchmark for
developed search or optimization techniques. For many of these problems, one
can prove that they are NP-Complete [21]. Most of these problems, however,
are not quickly solvable, or with current state-of-the-art technology not solvable
at all. It is then necessary to apply methods that compute a solution that is
as good as possible within computational time constraints. A field where these
methods are vividly researched is the field of board games. Board games such
as Chess or Go have a high complexity [23] such that computing an optimal
response during a game is infeasible.

In this chapter, we will give a brief overview of the history of computer-games
research in section 1.1. Next we will explore current developments in the field
of modern board games in section 1.2. In section 1.3 we give the problem state-
ment and the research questions of the thesis. Finally, in section 1.4 we will
provide an overview of the thesis.

1.1 History of Computer-Games Research

Research in the field of game AI started in the mid 1940’s with mostly theories
how a computer might be able to play a game of chess. Alan Turing was the first
to write a computer program that was able to play a full game [32], though it
never actually did run on a computer but was executed manually. He described
the principle of Minimax search, though this method can be traced back to a
paper published in 1912 by Ernst Zermelo [26]. After this humble start, many
researchers devoted their time to the development of search techniques, of which

1

2 CHAPTER 1. INTRODUCTION

a large proportion have been incorporated into chess-playing AIs. The most well
known technique in this area is Alpha-Beta pruning [26]. Consequently, numer-
ous other games have been investigated by researchers as well, which lead the
development of other search techniques, such as Expectimax search [19, 26],
Proof-Number search [33] and Monte-Carlo search techniques [11].

Eventually, advances in both techniques and computer hardware allowed com-
puter programs to play at a very high level. In 1997 a long set milestone has
been achieved when the chess computer Deep Blue defeated the then reigning
world champion Gari Kasparov [9]. However, there are still challenges that re-
main, since the applied techniques do not work equally well for every game. For
instance, the game of Go still remains a challenge due to its high complexity
and the fact that it is difficult to create an evaluation function for this game.

1.2 Developments in Research on Modern Board
Games

The field of modern board games unfortunately is not as heavily researched as
the field of classic board games, let alone the game of chess. The game of Go
has received notable attention from researchers. Though Go might not be a
modern board game, the research performed in this field regarding Monte-Carlo
(MC) search has lead to techniques which in turn can be applied to modern
board games. Many of the current developments are not based on the stan-
dard Monte-Carlo Search, but rather on Monte-Carlo Tree Search (MCTS) [11].
This search technique combines Monte-Carlo sampling with the construction of
a search tree, in order to gain the advantages of both techniques. Building on
the success of MCTS, researchers investigated ways how to improve the sam-
pling process. By combining elements of the multi-armed bandit problem [20],
researchers were able to incorporate the exploration-exploitation aspect of this
problem into the MCTS technique. This lead to the development of the pop-
ular UCT-search (Upper Confidence bounds applied to Trees) by Kocsis and
Szepesvári [22]. In 2008, a computer player based on this approach managed
for the first time ever to beat a world class Go player in a handicap match [13].

During the past years, many improvements have been developed for the UCT
search and Monte-Carlo method in general. For instance, Chen and Zhang [15]
assessed how adding domain knowledge to the sampling process can result in
a much stronger AI. Chaslot et al. [12] described progressive strategies regard-
ing how domain knowledge can also be added to the selection mechanism of
the UCT algorithm. Using this approach, the UCT algorithm not only selects
promising moves based on previous search results, but also based on domain
knowledge. Their paper also assessed how progressive unpruning can help a
MC player perform well under severe computational time constrains. For the
game of Go there also exists a multi-player version, for which several algorithms

1.2. DEVELOPMENTS IN RESEARCH ON MODERN BOARD GAMES 3

are applicable, including UCT [10]. However, an increasing amount of improve-
ments for Monte-Carlo search methods also implies an increasing amount of
parameters, such that the tuning of these parameters is crucial for the perfor-
mance of the AI. While some parameters can be set using expert knowledge,
the majority of the used parameters needs to be optimized using some Machine-
Learning approach. However, calculating the fitness of a set of parameters in
the field of game research is done by having the AI compete a set number of
times and investigating how often the AI has won. This implies that learning
approaches which utilize the gradient of an analytic expression cannot be used.
Chaslot et al. [14] suggested applying the Cross-Entropy method in order to
learn important parameters. Applying this method to their Go AI Mango, they
observed that this approach indeed increased the performance of their AI.

The game of Poker has also received considerable attention. Poker is a non-
deterministic multi-player game with imperfect information. While classic search
techniques failed to competitively play Poker, it was shown that Monte-Carlo
techniques did have potential to play Poker well [4]. In 2002, a strong Poker
player was created by Billings et al. [5], though world-class level play has yet to
be achieved. An important aspect which arises in games where estimating the
imperfect information is crucial, like Poker, is opponent modeling. By model-
ing the behavior of the opponent, one can use this information to estimate the
hidden information of the opponent. In Poker, this can be done by statistical
weighting after each action [3]. With increasing amounts of stochastic elements
in games, it becomes more and more difficult to evaluate whether a certain
move was actually a good move in order to assess the strength of a player. This
problem can be tackled by applying perfect-information hindsight analysis [2].

Apart from the previously mentioned games, unfortunately only few modern
board games have been investigated. Using simulation-based move evaluations
and a trained rack evaluator, Sheppard [28] has shown that it is possible to
create a world-class Scrabble player. The principle of learning also received
some attention in game research. The game of Backgammon can be played at a
world-class level by self-teaching neural networks [31]. The board game Settlers
of Catan is a modern board game, which has been approached in various ways
in the past. Szita et al. [30] concluded that MCTS can be used to create a
strong Settlers of Catan player. Reinforcement Learning can also be applied
to learn basic strategies for this game [25], resulting in a performance that is
comparable to a human player. Another approach which has been investigated
in Settlers of Catan is a task-based multi-agent-based system. Utilizing this
approach, Branca and Johansson [8] created an AI that demonstrated strategic
game play promising enough to encourage further research.

4 CHAPTER 1. INTRODUCTION

1.3 Problem Statement and Research Questions

Monte-Carlo techniques have been shown to be quite successful when applied
to certain classic board games, such as Go [15] and games with chance, such
as Poker [5]. This thesis will investigate its application potential in the field of
modern non-deterministic board games. Hence, the problem statement of this
thesis is the following:

To what extent can Monte-Carlo techniques be applied in order to create a com-
petitive AI for modern non-deterministic board games with imperfect informa-
tion?

In order to give a conclusive answer, several research questions will be investi-
gated. The first research question considers the game used for this research:

What is the game complexity of the game Thurn and Taxis?

To answer this question, the complexity of the game Thurn and Taxis needs
to be computed or estimated.

The second research question is the following:

To what extent is it possible to use domain knowledge in order to improve the
Monte-Carlo sampling process?

To answer this question, several techniques to incorporate game knowledge into
the Monte-Carlo method will be investigated regarding their effectivity and ef-
ficiency.

The third research question of this thesis is:

To what extent does the addition of constructing a search tree contribute to
the strength of a Monte-Carlo AI?

To answer this question, Monte-Carlo Tree Search will be investigated and its
strength including several enhancements will be evaluated.

1.4 Overview of the thesis

The general outline of this thesis is structured as follows:

- Chapter 1: This chapter provides an introduction to the research field of
artificial-intelligence techniques applied to classic and modern board
games. Additionally, the problem statement and research questions
will be given.

1.4. OVERVIEW OF THE THESIS 5

- Chapter 2: This chapter provides an introduction to the board game
Thurn and Taxis and its historical origin.

- Chapter 3: The game of Thurn and Taxis will be analyzed in this chap-
ter. Both the state-space complexity and the game-tree complexity
will be calculated as accurate as possible and the resulting values
are compared to the complexities of other games.

- Chapter 4: This chapter describes the applied search techniques and pos-
sible improvements.

- Chapter 5: In this chapter, the results of the performed experiments will
be presented and evaluated.

- Chapter 6: This chapter presents the conclusion of this research and
answers the previously stated research questions and problem state-
ment. Additionally, several suggestions for future research will be
given.

Chapter 2

Thurn and Taxis

In this chapter, we will provide a summary of the origin of the game Thurn und
Taxis in subsection 2.1 and provide an explanation of the rules of the game in
subsection 2.2.

2.1 Origin of the Game

Thurn and Taxis is a board game published by the German publisher Hans
im Glück in 2006, which won the critics award ‘Game of the Year’ in 2006.
The game is named and themed after the princely house of ‘Thurn und Taxis’,
which is the known founder of the modern postal service. The rise of this house
came when in 1490 a man named Francesco Tasso was tasked by Emperor
Maximillian I. to create a steady postal route between Brussels and Innsbruck
[1]. As gratitude, Francesco Tasso was granted the noble status of the German
‘Reichsadel’ in 1512, and was from then on known as Franz von Taxis. The
continuous expansion of the postal network led to a remarkable reach across
Western Europe, such that at the end of the 17th century the postal network
of the then known ‘Thurn und Taxis’ family reached across 200,000 km2. With
the expansion of the postal network also followed an increase of social status
of the family, causing the family to raise to the status of princedom, issued
by Emperor Franz I. The fall of the Holy Roman Empire in 1806 also caused
the cease of the ‘Thurn und Taxis’ postal system, however in 1815 during the
Congress of Vienna the family was granted postal jurisdictions for some parts
of Germany again. This lasted until 1867, when Reich Chancellor Bismarck
initiated a transition, such that the ‘Thurn und Taxis’ postal service became a
federal service in 1871, marking the end of the ‘Thurn und Taxis’ postal service.

7

8 CHAPTER 2. THURN AND TAXIS

The game board consists of a map featuring the general area of Bavaria,
stretching from Austria and Switzerland in the south to the northern border of
Bavaria, which can be seen in figure 2.1. All visible cities are connected to each
other via roads. Left of the map is a display of six spots on which cards are
placed. When a player picks a card, a new card is placed onto that position from
a shuffled stack, giving the game non-deterministic traits. Also, the hand of a
player is not visible to other players, thus making this a game with imperfect
information. However, most of the missing information can be approximated
by simply remembering the cards that another player picked up, a task which
is easily performed by a computer. There is a possibility in the game however
to draw a random card from the stack, meaning that a randomly drawn card
is not known to any opponent. Up to 4 players can play this game. For this
research we will restrict ourselves to 2 players in order to prevent unnecessary
complications. In the course of the game, points can be earned in various ways
and the player who has the most points in the end wins the game.

Figure 2.1: The board of the game Thurn and Taxis.

2.2. RULES OF THE GAME 9

2.2 Rules of the Game

In this section, we will describe the rules of the game Thurn and Taxis.

2.2.1 Structure of a Turn

During his turn, a player needs to perform two mandatory actions and can do
one optional action as well:

• A player must draw a card.

• A player must attach a card to his route. (see 2.2.4)

• A player may close his route and start a new one.

In addition to these actions, a player may choose one of four assistants,
which each improve one of the other three actions. The official rules state that
an assistant is chosen during the turn of the player, however due to design
reasons this rule was altered such that a player may choose an assistant only
at the beginning of his turn. The primary reason for this alteration is that
it allows equal computation time for assessing the feasibility of each assistant.
However, the alteration of this rule does not substantially change the game play,
since, regarding the outcome of a turn, there is no difference between choosing
an assistant at the moment he is needed or at the beginning of a turn.

2.2.2 Ending Conditions

The game has two ending conditions. Once one of these conditions is met by a
player, each other player who did not play a move during the current round is
allowed one last turn after which the game ends. One winning condition is the
consumption of houses of a player. Each player has access to 20 houses, which
he places on the board by closing routes. Once a player has used all his houses
the game ends. The other winning condition is the carriage of a player. Each
player has a carriage, which is essentially a status symbol of a player. When a
player closes a route, it is possible to upgrade his current carriage to the next
level, which in turn makes the carriage worth more points for the player. Once
a carriage has reached its maximum level, the game ends as well.

2.2.3 Drawing Cards

Next to the game board, there is a special display on to which 6 cards are openly
placed. At the beginning of his turn, after choosing an assistant, a player must
either pick one of these cards from the display, or choose to draw a random card
from the stack instead. If a player chooses to draw a card from the display, then
this card is immediately replaced by another card from the stack. There are
only 3 cards of each city in the game and once the stack is empty, the discard
pile is shuffled and becomes the new stack.

10 CHAPTER 2. THURN AND TAXIS

2.2.4 Constructing Routes

The essence of the game is the construction and completion of routes, where a
route is represented as a series of cards in a specific order. During the game,
a player draws cards that all represent certain cities to fill up his hand, from
which he can choose a card to attach to his current route. The route is laid
openly in a sequential order on the table, so any player can see what a certain
player is constructing at the moment. When a player wants to attach a card to
his route, he must place the card to the left or right end of his current route,
meaning he is not allowed to insert a card in between two already played cards.
A player must also keep in mind the connections of the city to which he is at-
taching a new city card. Each city has a certain series of connections to other
cities, which are all visible on the game board as roads. Hence, a player can
only attach city A to city B, if there is a direct connection between A and B. It
is also not allowed to use any city twice when constructing a route, prohibiting
the construction of cycles and branching routes.

Let us view an example for route construction. Suppose a player has a route
consisting of the three adjacent cards in figure 2.2 and wishes to connect the
card Stuttgart to this route.

Figure 2.2: An example route of a player.

When inspecting the connections of the cities, depicted in figure 2.1, one can
see that there is a road directly connecting Mannheim with Stuttgart. Hence
the player would be allowed to attach this card to the card Mannheim. However,
there is no direct connection between Freiburg and Stuttgart, meaning that the
player would not be allowed to attach Stuttgart to Freiburg.

2.2. RULES OF THE GAME 11

If there is no card present in a player’s route, then he can simply play any
card in order to start a new one. Also, if the player has no card in his hand that
he can attach to his current route, he must scrap his route and start a new one.
This means that all the cards in the current route are discarded and placed on
the discard pile. The scrapping of a route does not allow the player to place
houses to the board, nor does it allow an upgrade of the carriage. Hence it is
important to avoid scrapping of one’s own route as much as possible, in order
to avoid wasting the played cards.

2.2.5 Assistants

There are four assistants in the game which a player can choose to enlist during
his turn, with each assistant having a different function:

Postal Carrier: Instead of only adding one card to his route, a player may
add two cards instead.

Postmaster: Instead of drawing one card, a player may draw two cards in-
stead. After the first card is drawn, a new card is placed in its position
before the second one is drawn. If a player has no cards on his hand at
the beginning of his turn, he must enlist the assistance of the Postmaster.

Administrator: A player may remove the 6 cards, which are currently on the
display, and replace them by 6 new random cards from the stack.

Cartwright: A player may upgrade his carriage, even if the length of his closed
route is up to 2 cities short of the necessary length.

Enlisting an assistant is not mandatory, hence a player may opt not to enlist
any assistant as well.

2.2.6 Closing Routes

Once a player has constructed a route of length 3 or higher, he may choose
to close his route. Closing a route causes the removal of the current route,
which is subsequently placed on the discard pile. It however enables the player
to distribute houses on to the cities that were enclosed in the route. Special
rules apply when selecting the cities which are to receive a house, making it
difficult for a player to construct a route that allows each city within the route
to receive a house. Hence, if the route in its entity does not fulfil these rules,
the player cannot place a house on each city of his route and hence must make
a strategic decision, choosing which of the cities receive a house and which do
not. Every city in the game has a color, which corresponds with the colored
region where the city is located in. The selection of cities must fulfil one of two
criteria regarding their colors:

• The selected cities must all be of the same color.

• The selected cities must all be of a different color.

12 CHAPTER 2. THURN AND TAXIS

Once the houses are placed, the player checks if he is eligible for points, for
which he was not eligible before. First, the player checks, whether he managed
to put a house on each city of the predetermined colored areas. These areas
consist of the multi-colored regions light and dark green, light and dark blue,
orange and red and two mono-colored regions grey and purple. If this is the case
then he receives points from the stack of the corresponding region. There also
exists a colored region that does not have a corresponding point stack, which
has the color black. The point stacks of the different regions contain points in
decreasing order, meaning the player to first place a house on each city of a
region will receive more points than the second player that does so. The second
player receives more than the third player and so on until the stack is empty. A
player can only receive points for completing a certain region once.

Other than for completing a region, a player also receives points if his finished
route had a length of 5 or greater. For the lengths 5, 6 and 7 there are three
different stacks and if a player completes a route of one of these three lengths,
then he receives points from the corresponding stack. Unlike the region stacks,
it is possible here to receive points from the same stack multiple times. If a stack
is emptied and a player should receive points from the emptied stack, then he
receives points from the next lower grade stack instead.

There are also two special ways to receive points. One is by causing an ending
condition of the game. The player who does this receives a bonus point for
doing so. The other way is by receiving points from a special stack. A player
is eligible for points of this stack if he manages to put at least one house in all
the differently colored regions of the board. Like the region stacks, a player can
only receive points from this stack once.

2.2.7 Carriages

Each player acquires and upgrades a carriage during the course of the game. A
carriage is worth points for the player and also serves as ending condition, if
a player manages to upgrade his carriage to the highest possible level. There
are five different levels of a carriage, with their costs ranging from 3 to 7. If a
finished route of a player is longer than the cost of his current carriage, then
he can upgrade his carriage to the next higher level, yielding a carriage that is
worth more points for the player than his previous carriage. Each player starts
the game with no carriage. Since each route must have a length of at least
3, the first route that a player completes in a game immediately yields him a
carriage of cost 3. However, as the costs of the subsequent carriages increases,
it becomes increasingly difficult to upgrade one’s carriage. Figure 2.3 displays
all the available carriage cards in ascending order. For each card, the required
minimum route length is depicted in the top right corner and the amount of
points which the card is worth is depicted in the lower left corner.

2.2. RULES OF THE GAME 13

Figure 2.3: All the available carriage cards in ascending order.

2.2.8 End of the Game

Once the last turn has been played, all players count the points that they have
received. The final score of a player p can be obtained in the following way,
where cp is the value of the carriage of player p, np is the total amount of points
player p received from all the stacks in the game and hp is the amount of houses
that player p did not use:

scorep = cp + np − hp (2.1)

The player with the highest score wins the game.

Chapter 3

Analysis of the Game

When performing research on a game, it is good to estimate the difficulty of
the game by calculating its complexity as accurately as possible. The most
common applied complexity measures are the state-space complexity and game-
tree complexity. In section 3.1 the state-space complexity of the game Thurn
and Taxis will be computed. The computation of the game-tree complexity will
be presented in section 3.2. Finally, in section 3.3 the computed complexities of
Thurn and Taxis will be compared to the complexities of other games.

3.1 State-Space Complexity

The state-space complexity of a game indicates the total amount of unique board
positions possible for the game in question. If a game has a small state-space
complexity, then over the course of multiple games it is more likely that a cer-
tain state is visited more than once. Encountering already visited game states
gives the advantage that a player, be it human or computer, can use the gained
knowledge of the previous visits to make better decisions. For instance, if at
a position a certain move leads to a loss, then this knowledge can be used to,
for instance, avoid this move for future revisits of this position. In the extreme
case, if the state-space complexity is small enough, game knowledge or even a
best response can be stored for each position of the game. However, for most
classic and modern board games this is not possible due to their state-space
complexities being too large.

Calculating the exact state-space complexity of the two-player variant of the
game Thurn and Taxis is very complicated. Hence, an upper bound of the state-
space complexity will be computed instead. The game of Thurn and Taxis can
be separated into three components which determine the state-space complex-
ity. First, there is the board itself encompassing all options to place houses on
it. The second component consists of the cards and all possibilities in which
these cards can be distributed amongst the players, the stack, the discard pile

15

16 CHAPTER 3. ANALYSIS OF THE GAME

and the display. Last, the point stacks and carriages need to be considered.
However, the states of some point stacks are directly dependent on the board
position of the houses. Hence, the calculation of the amount of possible states
of these stacks is incorporated into the calculation of all possible house positions.

In a two-player game, a city on the board can have 4 different states. There can
be no house on it, only a house of the first player, only a house of the second
player or a house from both players. A quick estimate of all possible house
positions would hence be 422 = 1.7592 × 1013, where 22 is the total amount of
cities in the game. When wanting to incorporate the dependent point stacks
into this calculation, it becomes necessary to separate this calculation according
to the different dependent point stacks. For almost all house states of a given
area on the board, there is only one possible state for its corresponding point
stack. If none of the players is eligible for points of this area, then there is only
one legal state of the points stack, being the state where all the points are still
on the stack. Likewise, if only one player is eligible for points of this stack, then
there is only one state possible as well, where the eligible player has received the
highest amount of points from the stack with the remaining points still located
on the stack. The only exception here is if more than one player are eligible for
points of the stack, in which case either the first or second player could have
received points from the stack first, which means that his opponent received less
points from the stack than himself. Inspecting the board in figure 2.1, one can
see the differently colored areas and their corresponding point stacks. There are
3 point stacks in the game which require houses on 3 cities, which can be of a
different color, one stack which requires houses on 4 cities and one stack which
requires as much as 8 houses. For each of these stacks, there is only one partial
board position where the corresponding point stack can have different states,
the position where both players have houses on all the necessary cities. Thus,
the amount of possible house positions ph including dependent point stacks can
be computed as follows:

ph = (43 + 1)3 × (44 + 1)× (48 + 1)× 4 = 1.8502× 1013 (3.1)

Note that the multiplication by 4 in the end is necessary, since this repre-
sents the different states of the black region, which does not have a corresponding
point stack and consists only of one city (Lodz). Also this calculation includes
positions, where players have placed more than 20 houses on to the board, which
is illegal. It is possible to adjust the calculated value by subtracting the amount
of illegal house positions pi from the calculated value. This value can be calcu-
lated in the following way. Let H(x) denote the set of all possible house placing
possibilities of one player on the entire board using exactly x houses, Q(a, b)
the amount of different positions possible with respect to the point stacks, given

3.1. STATE-SPACE COMPLEXITY 17

the house placements a and b and let E(n, S) be the n’th element of the set S,
then pi can be calculated as follows :

pi = 2×
22∑
a=21

|H(a)|∑
b=0

22∑
x=0

|H(x)|∑
y=0

Q(E(b,H(a), E(y,H(x)))−

22∑
α=21

|H(α)|∑
β=0

22∑
γ=21

|H(γ)|∑
y=δ

Q(E(β,H(α), E(δ,H(γ)))

= 276880008 (3.2)

The first term of this equation calculates all positions where at least one
player has too many houses on the board. Multiplying this by 2 results in the
total amount of illegal positions, where all positions where both players have too
many houses on the board are counted double. Hence the second term is needed,
which subtracts all positions where both players have an illegal position from the
first term again, resulting in the total number of illegal positions. Subtracting
the amount of illegal house positions from the amount of total possible positions,
the new value for ph becomes:

ph = (43 + 1)3 × (44 + 1)× (48 + 1)× 4− pi
= 1.85017× 1013 (3.3)

Next, it is necessary to calculate the number of possibilities in which all the
cards can be distributed among the game. There are 66 cards in the game of
Thurn and Taxis, three for each city. These cards can be located on the stack,
the discard pile, the display or in the hand or route of one of the players. There
are however limits to these distribution possibilities. First, the display can only
have 6 cards placed on it. Also a route of a player can only have at most one card
per city in it. However, given a set of unique cards, it is possible for some sets of
cards that there are more than one permutations of this set, which comprise a
legal route. For instance, if there is a legal route with the cards A,B,C,D, then
there is also a legal route D,C,B,A which is a mirror of that route. Also, given
a set of cards, it is possible to form different routes which are not mirrors of
each other. If a route A,B,C,D is possible then, due to the irregular connection
between the cities, this does not mean that a route B,A,D,C is not possible.
Hence, one should not inspect a set of cards and compute whether a route is
possible, but rather compute all possibilities of a given set.

Utilizing a tree-search algorithm, for each set of cards the total amount of pos-
sible routes has been computed. Calculating the sum of all these values thus

18 CHAPTER 3. ANALYSIS OF THE GAME

yields the total amount of legal routes possible for a player, which is 23274077.
One can calculate the amount of possible card distributions by inspecting each
possible state of the display and calculating the amount of possibilities in which
the remaining cards can be distributed amongst the stack, discard pile and the
hands of the players, and multiplying this by the total amount of legal routes
possible for each player. This calculation is an overestimation, since it does
not consider the cards already in the routes of the players when calculating the
remaining distribution possibilities. Ideally, one would want to traverse all com-
binations of displays and legal routes of the players and then for each of these
combinations calculate how the remaining cards can be distributed amongst the
rest of the game. This is unfortunately a very computationally expensive pro-
cess which would require a massive amount of computational power in order to
perform this calculation. However, the proposed overestimation should give a
decent indication of what the real complexity of this component is.

The permutations of the cards, when distributing a set amount of cards over
the remaining 4 locations, do not matter. A player can arrange the cards in
his hand at will and the only moment when the discard pile is used is when
the cards are reshuffled into the stack. Also, the state of the stack is hidden,
since the cards are supposed to be drawn at random. The different amounts of
possible distributions for each legal amount of cards of a single type over the
remaining 4 locations in a two player game can be seen in table 3.1.

Cards Possibilities
0 1
1 4
2 10
3 20

Table 3.1: Amount of possible card distributions in the game for each possible
amount of cards of the same type, excluding the display and the player’s routes.

Let c denote a vector, where cx is the amount of cards of type x which need
to be distributed. Let D be the set of unique vectors of length 22,which is the
total amount of cities in the game, where for each vector the sum of all elements
inside this vector is exactly 60, and each element of this vector has an integer
value larger than or equal to 0 and smaller than or equal to 3. These vectors
represent all the different card combinations which still need to be placed, after
6 cards have been located on the display. Note that the permutation of the
cards on the display does not matter, as it has no effect on the game. Thus
|D| denotes the total amount of states in which the display can be in. Also, let
W (y) denote the amount of unique possibilities in which y cards of the same
type can be placed in the game, as seen in table 3.1 and let E(n, S) be the n’th
element of the set S. Then the total amount of possibilities pc in which all cards

3.1. STATE-SPACE COMPLEXITY 19

can be placed in the game for two players can be computed as follows:

pc = 232740772 ×
|D|∑
d=1

22∏
y=1

W (Ey(d,D)) = 7.9351× 1046 (3.4)

Last, there are still point stacks and the carriages remaining, which can all
have different states as well. The different states that a carriage can be in are
fairly simple to deduct. There exist 5 different types of carriages, ranging from
level 3 to 7. Also, there can be no carriage at all, which is the initial state
of the carriage for each player. Hence, a carriage can have 6 different states,
yielding 62 different states for a two-player game. Next, there are the point
stacks which reward players for completing routes of certain lengths. There are
different stacks for routes of lengths 5, 6 and 7, where a player can receive points
from the stack for routes of length 7 at most four times, for 6 at most three
times and for routes of length 5 only at most two times. Since a player can
receive points from these stacks more than once during the game, the amount
of different states a route stack can be in, where x is the maximum amount
of times a player can receive points from this stack before it is empty, can be
computed as follows:

x∑
a=0

2a = 2x+1 − 1 (3.5)

Taking into account the lengths of the three route-point stacks, the total num-
ber of different states that these three stacks can be in is:

(22+1 − 1)× (23+1 − 1)× (24+1 − 1) = 3255 (3.6)

The last two remaining point stacks, which need to be accounted for are the
point stack for having a house in each colored area of the game and the point
stack for causing the ending condition. For both of these stacks a player can only
receive points from them at most once during the game. The stack containing
points for having a house on all the different colored regions can have 5 different
states. There is one state, where no player has received points and all the points
are still located on the stack. Then there are two states where only one player
has received points from this stack, one for each player. If points have been
distributed from this stack two times, then there can only be two states as well,
since a player can only receive points once. Hence the second player to receive
points must be the opponent of the player who received points first, yielding a
total of 5 states of this stack. Note that the state where first player one, then
player two received points and the state where first player two, then player one

20 CHAPTER 3. ANALYSIS OF THE GAME

received points are different, since the player who first receives points from the
stack gets more points than his opponent who subsequently does so. The stack
for causing the ending condition has the additional limitation, that there is only
one point to distribute. Hence, this point can either still be on the stack, or in
the possession of player one or two, yielding a total of 3 different states.

Note that simply multiplying the state-space complexity by the amount of states
that these last two stacks can be in is an overestimation, since this for instance
counts states where a player received points for having houses in each colored
region, while not actually having done so.

Now that the complexities of all the components have been determined, one
can obtain a good estimate of the state-space complexity by multiplying these
with each other.

ph × pc × 62 × (22+1 − 1)× (23+1 − 1)× (24+1 − 1)× 5× 3 =

1.85017× 1013 × 7.9351× 1046 × 36× 3255× 5× 3 =

2.5805× 1066 (3.7)

Given this approximation of the state-space it becomes clear, that Thurn and
Taxis has a considerable complexity.

3.2 Game-Tree Complexity

The game-tree complexity of a game is defined as the number of visited leaf
nodes if one were to determine the value of the initial game position with a full-
width tree search. This amount corresponds with the total amount of different
games which can be played. In general, it is very hard to accurately estimate
this complexity, let alone to specifically compute it. However, the general per-
formed practice is to compute a rough estimate, by determining the average
game length d and the average branching factor b of the game in question. A
good estimate of the game-tree complexity of the game is then given by bd.

For the game Thurn and Taxis, the average game length can be determined by
playing a set of test games and record the game lengths of each game. Unlike
other games however, the length of a game of Thurn and Taxis is proportionate
with the playing strengths of the players. This is visible when inspecting the
average game lengths of three different AIs engaged in self-play, displayed in
figure 3.2. The random AI as well as the MC AI played 900 games in self play,
where as the MCTS AI performed 700 self-play games.

3.2. GAME-TREE COMPLEXITY 21

AI Simulation Technique Average game length
Random - 846.9

MC Random 67.8
MCTS Pseudo-Random 56.1

Table 3.2: Average game lengths for three different AIs, measured during self-
play in 900 test games for the Random and MC AI and 700 test games for the
MCTS AI.

First it is notable that games performed with randomly playing AIs have an
extremely high average game length. This is due to the fact that it is possible
to play Thurn and Taxis for an infinite amount of turns, if both players play
bad enough. If, for instance, a player constantly scraps his own route, either
deliberately or by being forced to due to bad card-drawing choices, then he will
never close a route, and hence never cause the ending condition by either up-
grading his carriage or placing all his houses on to the board. This peculiarity
will be further discussed in subsection 4.4.1. An AI using standard MC -search
has a significantly shorter average game length. Playing mainly routes of length
3, the AI plays in a very greedy way, looking for short-term point gains. This,
however, leads to few carriage upgrades, causing the game to end via the ending
condition of placing all one’s houses on the board. This condition is in general
harder to achieve than upgrading one’s carriage to the maximum level. The
AI using MCTS does not look only for short-term gains, playing longer routes
in order to upgrade its own carriage and possibly receiving points for playing
routes of length 5 or longer. Even though its goals are more long-term oriented,
this playing-style allows the AI to finish the game earlier by upgrading the car-
riage to the maximum level.

Determining the average branching factor for the game of Thurn and Taxis
is more complicated than for a classic board game, since here a turn of a player
does not consist of a single decision, where one can simply record the average
complexity of this decision, but rather of a series of decisions that a player has
to make. These decisions, for instance the selection of an assistant, do often not
seem complex to a player, but combined still create a vast amount of possibili-
ties in which a turn can end. Figures 3.1, 3.2 and 3.3 display the frequencies of
recorded branching factors for the performed self-play games of a random AI,
MC-AI and MCTS-AI, respectively.

It is clear that Thurn and Taxis is game with a quite irregular branching fac-
tor. While positions with a branching factor ranging from 10 to as much as 1000
are the most common, positions with a branching factor well above that have
been recorded occasionally as well. Also, the occurrences of measured branching
factors spike whenever it is a multiple of 30 or 35. This can be attributed to
the structure of the game. Since a player commonly has 5 assistant-selection

22 CHAPTER 3. ANALYSIS OF THE GAME

Figure 3.1: Frequency of branching factors recorded in 900 test games, played
by a random AI in self-play.

options, consisting of the 4 assistants and the option of not choosing an as-
sistant at all, and 7 card-selection options, consisting of the 6 cards on the
display and the options of choosing a random card, then the total amount of
different choices that the player can make in this turn will be a multitude of
35. Branching factors of a multitude of 30 are common as well, since it is a
regular occurrence that a display contains two cards of the same type, yielding
only 6 card selection options instead of 7. Branching factors which are not a
multitude of 30 or 35 occur less frequent, since these require less common game
states to occur, for instance a display containing only 3 different card types, or
only having one assistant-selection option, due to the fact that the player has
no cards in his hand. The complexity of a turn increases considerably, if the
Postmaster is chosen, since then a player has to select a second card to draw,
which again multiplies the amount of different outcomes of a turn by a factor
of up to 7. After a player has done these selections, he must still attach a card
to his route and choose whether or not to close his route. If his route is too
small to be closed, then there usually are few options to choose from. However,
the amount of available options quickly becomes larger if a player can close his
route, considering the different house-placement options and the possibilities in
which a player has to discard a set amount of cards from his hand. All these
factors considered, the complete branching factor of a turn can get very large.

The different recorded average branching factors for the three AIs can be seen
in table 3.3.

3.2. GAME-TREE COMPLEXITY 23

Figure 3.2: Frequency of branching factors recorded in 900 test games, played
by a MC-AI in self-play.

AI Simulation Technique Average branching factor
Random - 495.5

MC Random 207.9
MCTS Pseudo-Random 879.3

Table 3.3: Average branching factors for three different AIs, measured during
self-play in 900 test games for the Random and MC AI and 700 test games for
the MCTS AI.

It is notable that for each of the three AIs a considerable average branching
factor has been measured during the test games. However, for the MC AI the
average branching factor is actually significantly lower than for the other two
AIs. This can be attributed to the playing-style of the AI, caused by the fact
that it applied random simulations, which makes the AI play in a greedy way.
Since the AI mostly closes its route at its shortest length, the AI is faced less
frequently with positions where closing its route is a legal option. For instance,
assuming that per turn only one card is added to a route each turn, then the
MC AI will be faced with a position where it can close its route at most each
third turn, since a route needs to be at least three cities long so it can be closed.
The MCTS AI, however, prefers to play longer routes and hence does not al-
ways immediately close its route when presented with this possibility. Thus, it
will have the option to close its route more frequently and hence be faced with
positions which have a higher branching factor more frequently as well. The
randomly playing AI is faced with a situation where it can close its route even
less frequent. However, since it plays randomly, it can encounter very complex

24 CHAPTER 3. ANALYSIS OF THE GAME

Figure 3.3: Frequency of branching factors recorded in 700 test games, played
by a MCTS-AI in self-play.

situations which the other AIs avoid. This can be seen in figure 3.1, where
positions with a low branching factor are the most common, but positions with
an extremely high branching factor have been recorded as well. A more detailed
analysis of the playing-styles of the different techniques can be viewed in sec-
tions 5.1 and 5.2.

Since MCTS is the strongest performing approach, its results are more likely
to represent the actual decision complexity of the game. Hence, these values
will be used for the estimation of the game-tree complexity of Thurn and Taxis.
However, given the current available values, one can only estimate the game-
tree complexity if Thurn and Taxis were a non-deterministic perfect information
game. Hence, an additional measure is needed such that the estimation incor-
porates the elements of chance and hidden information as well. The component
which makes Thurn and Taxis a non-deterministic game with imperfect infor-
mation is the stack, due to the fact that its state is hidden. If one were to know
the state of the stack, then one would know at each position which cards would
be placed on to the display if a player draws a card or chooses the Administra-
tor. One would also know the hidden information of the game, since if a player
draws a random card from the stack and one knows the state of the stack, then
one would essentially know which card the player receives. Thus, in order to
determine the game-theoretical value of the root of the game, one would need
to determine it for each state which the stack can have.

Thurn and Taxis contains 66 cards, 3 of each type. Thus, it is necessary to
determine all the possible arrangements of these cards inside the stack. This
is essentially a problem of determining all possible permutations with limited

3.3. COMPARISON TO OTHER GAMES 25

repetition of each type. For the game of Thurn and Taxis, this amount can be
calculated as follows.

22∏
x=1

(
(22− x+ 1)× 3

3

)
= 4.1357× 1075 (3.8)

Now that the amount of initial states which the stack can have is known, the
game tree complexity of Thurn and Taxis can be estimated as follows.

4.1357× 1075 × 879.356.1 = 6.0623× 10240 (3.9)

3.3 Comparison to other Games

In order to gain some perspective in how complex Thurn and Taxis is, one can
compare its state-space complexity and game-tree complexity to the complexi-
ties of other games [34] [27] [24]. These can be viewed in table 3.4.

Given the complexities of the different games displayed in table 3.4, one can
conclude that in terms of complexities the 2-player version of Thurn and Taxis
is the most similar to the game Shogi. Given these dimensions, it is likely that
the game-tree complexities of the 3- and 4-player versions of Thurn and Taxis
lie in a range similar to the game Go. Note that the computed state-space com-
plexity of Thurn and Taxis is an overestimation and that the true state-space
complexity is likely a few powers of 10 smaller than the current overestimation.
Since its complexities are vastly higher than the game of Chess one can con-
clude that it is not possible to solve the game Thurn and Taxis within the next
decade.

26 CHAPTER 3. ANALYSIS OF THE GAME

Game State-Space Complexity Game-Tree Complexity
Awari 1012 1032

Checkers 1021 1031

Chess 1046 10123

Chinese Chess 1048 10150

Connect-Four 1014 1021

Dakon-6 1015 1033

Domineering (8x8) 1015 1027

Draughts 1030 1054

Fanorona 1021 1046

Go (19x19) 10172 10360

Go-Moku (15x15) 10105 1070

Hex (11x11) 1057 1098

Kalah(6,4) 1013 1018

Khet 1048 10125

Nine Men’s Morris 1010 1050

Othello 1028 1058

Pentominoes 1012 1018

Qubic 1030 1034

Renju (15x15) 10105 1070

Shogi 1071 10226

Thurn and Taxis (2-Players) 1066 10240

Table 3.4: State-space complexities and game-tree complexities of various games
and Thurn and Taxis.

Chapter 4

Search Techniques

In this chapter, we will explain the investigated search methods that have been
applied. In section 4.1 the basic principle of MC search is explained. Section
4.2 will cover the MCTS approach and its advantages over standard MC search.
The UCT enhancement will be explained in section 4.3. Finally, we will cover
all heuristical enhancements and applications of domain knowledge in section
4.4.

4.1 Monte-Carlo Search

The Monte-Carlo method relies on extensive random sampling inside some do-
main. After the sampling process is completed, some sort of computation is
performed on the set of samples, such that an estimate of the desired result
is computed. The more samples are drawn, the more accurate the result will
become. Monte-Carlo methods are well suited in environments which include
uncertainty and chance, since they rely on random sampling.

One can for instance use Monte-Carlo methods in order to compute the sur-
face of a circle. By defining a square, such that the circle is located inside the
square, one can then draw many random points from inside this square. An es-
timate of the surface can be obtained, by multiplying the surface of the square
with the fraction of random points which were located inside the circle.

When applied to games, the Monte-Carlo method samples randomly played
out games for each move that is possible at the current state. Then, the game
results are computed for each sample and the move which produced the highest
average game score amongst its samples is selected as the best move. The result
of such a game can have different representations. For instance, the result for
many classic board games can be represented as a zero-sum result. For other
games, which can have various degrees of victory such as Thurn and Taxis,
a different system of result representation might be more appropriate. Since

27

28 CHAPTER 4. SEARCH TECHNIQUES

the result of a game of Thurn and Taxis is point-based, one might just pro-
vide these results instead. Subsection 4.2.4 contains further explanation why
a point-based result representation is more advantageous and contains the de-
scription of the applied method, which is used to represent results of simulated
games for both MC Search and MCTS. MC Search has several distinct advan-
tages over standard tree search. First, MC Search only requires the rules of
the game, which includes a way of computing the result of the game. These
rules are already defined by the game itself and only need to be implemented.
Tree-search methods however require extensive domain knowledge such that an
estimate of a mid-game position can be computed. Additionally, tree-search
methods perform increasingly worse if there are random or unknown elements
present in the game, since these elements increase the search depth that one
must search, in order to reach a set amount of turns. Another advantage is that
tree-search methods do not perform well with games that have a large branching
factor, since it becomes very computationally expensive if one wants to reach
appropriate search depths. While an increasingly large branching factor also
hinders the MC Search, the MC Search is not as gravely affected as tree-search
methods. MC Search methods can easily cope with large branching factors by
just increasing the amount of sampling, or applying some domain knowledge
during the sampling process.

MC Search, however, does have a disadvantage when compared to tree-search
methods. This severe disadvantage is that MC Search lacks the tactical insight
which a search tree possesses. Assume a move, which would lead to a certain
win if the game would be continued in a special way. A search tree would recog-
nize this move as a good move and probably play it. The MC Search, however,
does not see this advantage, since the score of this move would be comprised
of the random playouts of bad and good moves, thus obfuscating the potential
that this move possesses.

After a move has been selected to be simulated, another step needs to be
performed before this can be done. Thurn and Taxis is a game of imperfect
information, thus it is necessary to take this into account. The basic way to
deal with this problem is to inspect all possible states of this hidden information
according to their probability of occurrence, such that the score of the move is
the average over all simulations performed for each possible state of the imper-
fect information. Figure 4.1 shows an illustration of the Monte-Carlo search
process when incorporating imperfect information.

There exist ways to improve this method. For instance one can use opponent
modeling [3] in order to only simulate perfect information game states which
are likely to occur according to the opponent model.

4.2. MONTE-CARLO TREE SEARCH 29

Figure 4.1: Illustration of the Monte-Carlo search process in a game with im-
perfect information.

4.2 Monte-Carlo Tree Search

Due to the lack of tactical insight of MC Search, discussed in section 4.1, a
way was needed to resolve this issue. MCTS [11] combines the advantages of
standard MC search with a search tree. Since Monte-Carlo sampling is still
the essence of this search method, no heuristical board evaluation methods
are required. However, the samples are used to construct a search tree, such
that after sufficient samples have been drawn a tactical decision can be made.
The basic algorithm of MCTS can be divided into four different steps, called
selection, expansion, simulation and backpropagation. These tasks are carried
out repeatedly until there is no more search time available. Then the final move
needs to be selected based upon the result of the constructed search tree. In
the following subsections, the different tasks will be explained.

4.2.1 Selection

During selection the search tree is traversed until a leaf node is reached. This
task controls to what extent promising moves are investigated more extensively
than less promising moves, similar to Variable Depth Search [17]. Figure 4.2
displays an example of such a traversal of a search tree.

30 CHAPTER 4. SEARCH TECHNIQUES

In essence, this part of the algorithm controls the balance between exploration
and exploitation. Exploration is the task of investigating nodes, which are barely
visited and possibly have a bad score from previous simulations. The goal of
explorations is to find unknown nodes, which potentially have a high value for
the player. On the contrary, exploitation is the task of investigating nodes which
already have been visited and have received an at least promising score. This
is to approximate the true value of this node better, such that eventually the
best node can be selected. How to handle the trade-off between exploration and
exploitation will be further explained in section 4.3.

Figure 4.2: Illustration of the selection step in an example Monte-Carlo search
tree

4.2.2 Expansion

The expansion task has the responsibility of expanding the search tree. Given
the node which has been selected during the selection task a certain amount
of child nodes are added to it. Figure 4.3 shows an example of the expansion
process.

Several ways exist how to tackle this task. The most commonly used way
is to create a single node during each expansion step. A good strategy is also
to fully expand a given node, if it has been visited a set amount of times. This
strategy has been used for instance in the Go program Mango [12].

4.2. MONTE-CARLO TREE SEARCH 31

Figure 4.3: Illustration of the expansion step in an example Monte-Carlo search
tree.

4.2.3 Simulation

Simulation is the task of finishing the game from the current node using self-
play. This task is similar to the simulations performed during standard MC
Search. Figure 4.4 shows an example of the simulation step.

The move selection during the simulation step is as in standard Monte-Carlo
search completely random. It is possible to improve this task by choosing moves
during the simulation according to a pseudo-random distribution or selecting
moves using heuristics. The advantages and disadvantages of these improve-
ments will be discussed in subsection 4.4.3.

4.2.4 Backpropagation

After the results of a simulation have been obtained, these have to be forwarded
through the search tree to the top. This process is called backpropagation.
Whenever a simulated game k of leaf node L is finished, its result Rk is added
to the total result count of that leaf node and each node which was traversed
in order to reach it. Figure 4.5 shows an example of the backpropagation step.

For zero-sum games like Chess, the result R of a game is represented by the
numbers 1, 0 and −1, where 1 means a win, 0 a draw and −1 a loss. If nL is
the amount of times node L has been visited, the value vL of node L can be
computed by taking the average outcome of all simulations that traversed this
node:

32 CHAPTER 4. SEARCH TECHNIQUES

Figure 4.4: Illustration of the simulation step in an example Monte-Carlo search
tree.

vL = (
∑
k

Rk)/nL (4.1)

However, this representation of a score is not suited for non-zero-sum games,
like Thurn and Taxis. In the game of Chess a win through the use of a certain
move has the same value as a win through a different one. Since the win evalu-
ation of Thurn and Taxis is point based, however, two moves leading to a win
can have different values, since a win with a lead of 10 points is more worth
than a win with a lead of only 1 point. Hence, it would be better if the AI could
differentiate between these moves. Problems with this representation also arise
in multiplayer games. Due to the zero-sum representation of a result, the AI
would assume that every opponent is trying to minimize the score of the AI,
resulting in the investigation of moves during the selection step which possibly
are unlikely to be played. This in essence leads to an unintentional paranoid
assumption [29] during the search.

Rather than propagating zero-sum results through the tree, it would be bet-
ter suited for this game to use the actual point-based results instead. That way
one can decide, based upon the scores of the game, how the tree is traversed.
Hence the results of a simulated game k are represented as the set {pεP : Rk,p},
where P is the set of players and Rk,p the score of player p at the end of game

4.2. MONTE-CARLO TREE SEARCH 33

Figure 4.5: Illustration of the backpropagation step in an example Monte-Carlo
search tree.

k. This set is then propagated through each node that was traversed in order
to reach the current leaf node.

Next, a way is needed to calculate the value of a node. However, since Thurn
and Taxis is a multiplayer game, there cannot be a single value for a node, but
rather a value for each player. One can represent the value of a node for a player
simply as his average score for each playthrough, but that would likely cause
the AI to ignore moves which might not be so beneficial for the player himself,
but rather devastating for his opponents. A better way to represent the value
of the node is by the score difference between the player and the highest-scored
opponent. When given this representation, moves that lead to a high value can
either be moves that benefit the player or hinder the opponents. Hence, for
this game, if nL is the amount of times node L has been visited, Rp,L the total
amount of points accumulated by player p over all simulations which traversed
node L and Op the set of opponents of player p, the value vp,L of node L for
player p is defined as:

vp,L = min
oεOp

(
Rp,L
nL
− Ro,L

nL
) (4.2)

This equation in essence calculates the average score difference between the
player and his highest-scored opponent.

4.2.5 Final Move Selection

Eventually, when there is not enough search time available, a move correspond-
ing to a child of the root needs to be selected, which is considered the best

34 CHAPTER 4. SEARCH TECHNIQUES

possible child according to some criteria based upon the search results. There
exist several criteria [12] which can be applied when selecting the child which is
to be selected:

Max child: Select the child with the highest value.

Robust child: Select the child with the highest visit count.

Max-Robust child: Select the child which has both the highest visit count
and the highest value. If there is no max-robust child at the moment, it
is better to continue the search until a max-robust child is found rather
than returning a child with a low visit count [16].

Secure child: Select the child which maximizes a lower confidence bound.

4.2.6 MCTS with Imperfect Information and the Element
of Chance

Standard, MCTS is unable to cope with games that contain imperfect infor-
mation or the element of chance. Hence, an adjustment needs to be made in
order to make this possible. Similar to Expectimax search [26], this can be
done by adding chance nodes to the search tree. During the selection step, this
node would select a child not according to the selection method used elsewhere
in the tree, but randomly according to the chance of occurrence of each child
node. Likewise, when the expansion step is performed on this node, the new
child nodes are created at random and not according to the standard expansion
strategy. Figure 4.6 displays an example tree which utilizes chance nodes.

4.3 UCT Selection Strategy

When selecting a child from a node to investigate, one is basically faced with a
resource-allocation problem. Ideally, one would only want to investigate promis-
ing nodes. But one can only identify promising nodes without using heuristics,
by investigating these while their values are still unknown. So in essence, one
would want to invest enough computational resources in unknown child nodes,
such that one can see which nodes are worth additional resource investments.
This problem is very similar to the Multi-Armed Bandit (MAB) problem. In
the MAB problem, a person is faced with a set of MAB’s, which are gambling
devices, and is tasked to maximize the reward he receives from those machines
with a set amount of money. Each of these machines follows a set stochas-
tic distribution when calculating the reward of one activation, such to identify
the machine with the highest expected reward and invest as much money as
possible into this machine. These two contradicting actions are known as the
exploration-exploitation dilemma. While exploiting the most promising options,
one basically wants to invest into lesser promising options as well, ensuring that
no possibly better option is missed.

4.3. UCT SELECTION STRATEGY 35

Figure 4.6: Illustration of a MCTS tree which incorporates hidden information
and the element of chance

Inspired by this problem, Kocsis and Szepesvári [22] developed the UCT se-
lection strategy, which has been very popular amongst researchers since its
development. If I is the set of child nodes reachable from node p, vi the value
of node i, ni the visit count of node i and np the visit count of node p, then the
UCT selection strategy selects the node k that satisfies the following equation:

k = arg max
iεI

(vi + C ∗
√

lnnp
ni

) (4.3)

Here, C is a constant, which needs to be tuned manually. Additionally, it is
common in practice not to apply the UCT selection until a node has been
visited a set amount of times T [16], where the value T needs to be determined
manually as well. If a node has a lower visit count than this threshold, then
a node is selected according to the simulation strategy. Note, that this is the
definition for two-player games. However, since in multi-player games a node
cannot have a single value, an adaption to the selection strategy is needed.
Using the definition of the value of a node presented in equation 4.2, the UCT
selection strategy can be adapted in the following way in order to cope with the
multi-player environment: If I is the set of child nodes reachable from node p,
qp the player that has to move at node p, vqp,i the value of node i for player qp,
ni the visit count of node i and np the visit count of node p, then the adapted
UCT selection strategy selects the node k that satisfies the following equation:

36 CHAPTER 4. SEARCH TECHNIQUES

k = arg max
iεI

(vqp,i + C ×
√

lnnp
ni

) (4.4)

4.4 Heuristic Enhancements

In this section, several enhancements for both the MC Search and MCTS will
be investigated.

4.4.1 Limiting Simulation Lengths

Monte-Carlo techniques heavily rely on the sampling process. The most straight-
forward way to improve a Monte-Carlo based AI is simply enabling it to draw
more samples by some means. One way of doing so is by limiting the amount
of turns which are played during the simulations. The idea behind this tech-
nique is, that the additional samples more than make up for the loss of quality,
which the samples suffer when being cut down. Tree searches cannot search to
such extents which Monte-Carlo techniques are able to simulate, for instance
full games. If they were able to do so, then this would correspond to playing
optimal and further research would not be necessary. Hence, tree-search ap-
proaches look for advantageous positions as far ahead as possible. Even though
this limitation exists, tree-search approaches have been shown to be able to play
at master level for many games [7]. Thus, if tree-search approaches are able to
play at master level given their limited hindsight, then the gain of extra sim-
ulations probably outweighs the degradation that the samples suffer given the
shortened simulation lengths.

While limiting simulation lengths may only be optional for some games, for
other games this technique can be a necessity. Take for instance the game of
Go. Even if one were to play completely random, the game length does not
substantially increase. For games like Thurn and Taxis, however, it is possible
to play in such a way that the game never ends. For this game, the game length
increases if a player plays poorly. While a game of two average human players
can take as long as 70 turns, early experiments have shown that games played
by two random players can last as long as a thousand turns. With such an
increase of game length, it becomes infeasible to perform random simulations
with no restrictions. This issue raises the question why random play-outs re-
quire so much time compared to games played by human players. The cause
of this issue lies within the way the game progresses. The progression of the
game Thurn and Taxis depends on the players playing good moves, or at least
avoiding bad moves. In order for a carriage to increase in its level and eventually
trigger the ending condition, a player must finish a route of certain length in
order to upgrade his carriage. In the game of Chess, if for instance the queen
of the opponent has no cover, then the good move of capturing the queen only
depends on a single decision that needs to be made. However, for Thurn and
Taxis a good move depends not on a single decision, but on a series of decisions

4.4. HEURISTIC ENHANCEMENTS 37

split over several turns which all need to be made correctly in order for a good
move to emerge.

Let us investigate an example in order to demonstrate how unlikely it is that
a good move is played through random decisions in Thurn and Taxis. Assume
that it is the goal of the random AI to play any route of length 3. Also, assume
that on average there are two cards on the display which are of use and the
player has no cards in his hand. Then the chance of playing this route depends
on several factors. First, the AI needs to randomly pick three cards which can
be connected into a route. Since it is assumed that on average two of the six
cards on the display are of use and the drawn cards are immediately replaced by
a new random card, the chance of picking three cards which are of use is (1

3)3 or
1
27 . Second, the AI needs to correctly attach the three cards while not choosing
to scrap the current route. The first card can be played with no problem since it
is assumed that the route of the AI is empty. The second card can be attached
to either side of the first one. However, if the AI randomly chooses to scrap
the current route, then the first card will be removed and the route cannot be
finished using the three cards of this example. Thus, there is only a 1/2 chance
that a random AI will successfully attach the second card. The third card, in
most cases, can only be attached to one of the two played out cards. So the AI
must attach the third card at the correct end of the route and also choose to
close the route in order to achieve its goal. It is of course possible to continue
expanding the route, but this will likely lead to the random AI scrapping it
later on. Hence, the AI has the choice between attaching the third card to the
incorrect side and scrapping his route, attaching it to the correct side while not
closing the route and attaching it to the correct side while closing the route.
Thus, the chance of successfully attaching the third card and closing the route
is 1/3. Taking all these factors into consideration, one can estimate the chance
c of completing a route of length 3 as the following:

c =
1
27
× 1× 1

2
× 1

3
=

1
162

(4.5)

Note that there are other factors, which can decrease the chance of randomly
playing a good move as well. First, the assistants have an influence on the
chance of successfully constructing a route. The Administrator, for example,
can be a necessity or liability, depending on the game state. If, for instance,
there are cards which are of use on the display, then it would be bad to choose
the Administrator, since this may result in a display with no usable cards at
all. If this would be the case and the AI has no other usable cards in his hand,
then it would be forced to scrap its current route. On the contrary, if there
are no usable cards on the display to begin with, then the AI must choose the
Administrator in the hope that there are usable cards among the new display.
Choosing the Postal Carrier can be a bad choice, too. If a player cannot accu-
mulate two attachable cards after choosing the Postal Carrier during his turn,
then he would be forced to scrap his current route as well, since he cannot attach

38 CHAPTER 4. SEARCH TECHNIQUES

at least one card to his route. The opponent(s) can also be an influence. Since
in order to complete any route at least two turns are required, any opponent
can hinder the player in between his turns by drawing the cards that the player
needs himself, or by replacing the display using the Administrator.

One can conclude that the chance of completing any route of length 3 using
random play is very small. In order for the game to progress and eventually
finish, however, longer routes with at least one with length of at least 5 in con-
junction with the Cartwright are required, in order to cause the game to end
via the carriage ending condition. It is easy to deduce that the chance of such
a move occurring using random play will be exceptionally small. Such a move
may not be necessary, however, since it also possible to cause the game to end by
consuming all houses which are available. This can even be achieved by solely
playing routes of length 3. Attempting to end the game this way using random
play will be increasingly unlikely, however, the further the game progresses. If,
for instance, the random AI needs to place one last house to cause the game
to end, then playing any route will not suffice to cause the game to end. The
AI must play a route that incorporates at least one of the cities, which do not
have a house yet. The chance of this occurring is a fraction of the chance of any
route being completed.

It is evident that the chance of randomly playing a move which causes the
game Thurn and Taxis to end is exceptionally small. Hence, random playouts
during the simulation take a very long time to finish, causing a severe lack of
samples for a Monte-Carlo based AI. Therefore, limiting the simulation length
is necessary in order to accumulate a sufficient amount of samples.

The execution of this technique is fairly straightforward. When performing
a simulation, a turn-limit is given, indicating the amount of turns which are to
be simulated. After this amount has been reached, the simulation is aborted.
However, since the game has been stopped before the ending condition has been
reached, it is not possible anymore to return zero-sum results. Hence, a differ-
ent measure needs to be supplied, like a heuristic evaluation of the game-state.
Fortunately, this is not an issue for the game Thurn and Taxis, since it is not a
zero-sum game due to its point-based scoring system. Hence, when a simulation
has ended, a point-based result is returned which is based on the score of the AI
and its opponent(s). How this value is calculated can be seen in equation 4.2.
In order to avoid simulations that run extremely or even indefinitely long, one
should apply this technique as well, albeit with a generous limit such that the
simulations are at least as long as the average game length. For this research, a
maximum length of 100 turns is applied globally, which is well above the average
game length, estimated in subsection 3.2, ensuring that samples are generated
at a consistent rate.

4.4. HEURISTIC ENHANCEMENTS 39

4.4.2 Game-Progression-based Simulation Cuts

Another way of gaining more samples when simulating games is to stop the
simulation, if a player has a sufficiently large advantage over his opponents. For
many games, it is possible to estimate with a high certainty that one player is
winning, even though the game has not ended yet. Many professional board
game players forfeit the match, if they are certain that they cannot win the
match anymore, figuring that continuing the game is a futile effort. The same
principle can be applied to the simulation process as well. If it is certain that a
simulated match is won by a player, then one might as well stop the simulation
at this point and start a new one. However, one cannot simply use the current
score of the game to achieve this, since simulations which start with an already
advantageous position would be stopped immediately, effectively leading to the
AI making random decisions. Hence one should consider relative advantages
with respect to the initial position of the simulation instead. This approach
should result in an increase of samples. However, this approach requires some
form of heuristic which estimates whether a player has a significant lead over
his opponents or not. The applied heuristics should not be too computationally
intensive, else they would cause the simulations to slow down to such an extent
that the sample gain is nullified.

The difficulty of estimating a mid-game position entirely depends on the game
itself. For the game of Chess, one can easily make a simple estimation of a po-
sition by looking at how many pieces of which type a player has left compared
to his opponent. One can of course make this estimate more sophisticated by
taking into account aspects, such as positioning, cover or threat, but adding
complicated features will likely decrease the simulation speed too much. On the
other hand, for the game of Go for instance it is very hard to estimate a position
in general. Therefore, including this heuristic in order to gain simulation cuts
may be so computationally intensive, that one would end up with fewer samples
than without it. Finally, for the game of Thurn and Taxis it is fairly easy to
make a reasonable estimate of a player’s advantage. One can simply inspect the
amount of points each player has accumulated so far and see if any player has
a significant lead over his opponents. Since points are the essence of this game,
the amount of points which a player has so far is the most crucial attribute of
a player’s position. It is possible to add other features to the heuristic, such as
the current route and hand of the player, but is unlikely that the small quality
gain of the heuristic would make up for the increased computation time.

4.4.3 Pseudo-Random Simulations

A different way of increasing the strength of a Monte-Carlo AI is to increase the
quality of the drawn samples. From all the drawn random samples, only few
are likely to represent games which would actually be played by skilled players.
Though random selfplay has the advantage that it is fast and has the potential
to reach the entire search space, a pure random simulation, however, is unlikely

40 CHAPTER 4. SEARCH TECHNIQUES

to result in a value close to the real value of the node, since it will also choose
bad moves which might turn the game in favor of a different player. Hence,
all other samples can be seen as noise, which either cause the AI to over- or
underestimate a move. If the ratio between good samples compared to bad
ones would be higher, then this should lead to an increase in strength of the
AI. Rather than utilizing random selfplay, one can simulate games by selecting
moves through the application of heuristics. This would increase the quality of
the drawn samples. A problem which arises when using solely heuristics when
simulating games, is that the search space is limited by the heuristics. This
means that potentially good moves can be ignored if the heuristic does not es-
timate this move correctly. Additionally, if there is more than one good move
available to choose from, a purely heuristic selection will likely only choose the
same move. An additional disadvantage of applying heuristics is that the con-
stant application of heuristics slows the simulation process down by a significant
amount.

Bouzy [6] proposed a compromise between random simulations and heuristic
simulations. This compromise is based on selecting moves according a pseudo-
random probability distribution. In this distribution, the probability of each
move being chosen corresponds to a score calculated by a heuristic. This ap-
proach prevents the same move from constantly being selected when faced with
the same situation, but rather allows different moves to be investigated as well.
This includes moves which are bad according to the heuristic as well, although
only with a small probability. Hence, the entire search space is available using
this approach. The application of pseudo-random simulation has been shown
to increase the strength of an AI compared to an AI using standard random
simulations [6].

The Applied Heuristics

For many classic board games, a turn of a player only consists of making a single
choice between a set of moves. For the game of Thurn and Taxis, however, a
turn consists of several different actions. Hence, an appropriate heuristic func-
tion needs to be applied to each of these different actions. One can separate
these actions into three types. First, a player needs to choose one of the four
available assistants or opt not to choose any. Second, a player needs to draw
a card. This action can be performed twice if the player has chosen the Post-
master during his turn. Last, a player needs to attach one or two cards to his
route, depending on the choice of his assistant, and decide if he wants to close
his route. If he chooses to close his route, then this action must also include a
choice of cities on to which houses are placed and a selection of cards which he
needs to discard, provided he has too many on his hand. The reason for this
separation is, that between each of these three actions an element of chance can
occur. For example, if a player draws a card from the display, a new randomly

4.4. HEURISTIC ENHANCEMENTS 41

drawn card is placed on the empty position. Or if the player chooses the admin-
istrator, then the display is replaced with six new randomly drawn cards. The
actions of attaching a card to a route and closing the route can be combined
into one large action, since the outcome of both actions are deterministic.

When calculating the usefulness of an assistant, each assistant needs to be as-
sessed by a different criterion, since each assistant affects the game in a different
way. The choice of not enlisting the help of any assistant always receives a low
score, since it is always better to choose the Postmaster or Cartwright instead
due to neither of the two assistants having a potential disadvantage. In order
to assess the Postal Carrier, one needs to look at the hand of the player and
the display. The Postal Carrier is only useful if a player can actually attach two
cards two his route. If this is not the case, then the player would be forced to
scrap his route. Hence, if the player can attach two cards to his route by using
two cards which he already has on his hand, or using one card from his hand and
one card from the display which he can draw during this turn, the Postal Carrier
receives a high score. If this is not the case, then the Postal Carrier receives a
low score. Calculating the score of the Postmaster is rather straightforward. By
standard, this assistant receives a high score since it is always good in this game
to draw more cards. Even if there is only one useful card to the player himself,
he can always draw a card which one of his opponents needed, thus hindering
their progress. The Administrator only receives a high score, if there are no use-
ful cards for the player on the display. Else, the player would risk removing the
useful cards on the display and not getting any useful cards in return. Hence, if
there is at least one useful card on the display, the administrator receives a low
score. The Cartwright also only receives a high score if a special condition is
met. This condition takes into account the length of the current route and the
size of the carriage, which the player has. The Cartwright only receives a high
score if the Cartwright would cause an upgrade of the carriage of the player,
whereas the lack of the Cartwright would not cause the carriage to upgrade, if
the player were to close his route this turn. In every other case, the Cartwright
receives a low score.

When faced with the task of drawing a card, each card on the display is scored
by its usefulness to the player. If he can attach this card directly to his route,
then the card receives a high score. If the card cannot be attached to the route,
but to a card on the player’s hand instead, the card receives a medium score.
Else, the card is not useful for the player at all and hence receives a low score.
The option of drawing a random card from the stack instead needs to be judged
differently. Drawing a random card from the stack is usually a desperate move,
only chosen when there are no better options to choose from, since it will only
yield a useful card with a low chance. Hence, if none of the cards on the display
have received an at least medium score, the move of choosing a random card is
assigned a high score. Else, it is assigned a low score.

One can separate the third type of actions into three different subgroups. The

42 CHAPTER 4. SEARCH TECHNIQUES

first consists of moves, which cause the current move to be scrapped. Moves
which attach one or two cards to the route without closing it can be grouped
into the second subgroup and moves which attach one or two cards and close the
route can be put into the third. It is evident that moves of the first and second
subgroup can easily be assessed. Scrapping the current route is hardly ever a
good action, since this would mean that the effort of constructing that route
has been wasted. Thus, a move which caused the route to be scrapped always
receives a low score. Extending the current route is the basic action performed
during the game of Thurn and Taxis, and thus always receives a medium score.
Moves which cause the route to be closed require more attention. If the closing
of the route would cause the carriage to be upgraded, then the move receives
a high score. Else, the score of the move is proportionate to the amount of
houses placed on to the field. In a regular game of Thurn and Taxis, not every
closed route causes a carriage upgrade due to varying reasons. However, the
more houses are placed on to the field, the more points that move yields, since
each placed house is one penalty point less during the calculation of the final
scores. Plus, every placed house makes it easier to be eligible for points later in
the game.

4.4.4 Mechanisms for Pseudo-Random Simulations real-
ized using Binary Heuristics

While Pseudo-Random simulations do increase the strength of a Monte-Carlo
based AI, there is still a problem that remains with this approach. When cal-
culating which move to select at a certain position during the simulation, it is
necessary to first generate all possible moves at this position and then apply
a heuristic function for each of these moves. Thus, compared to random se-
lections, this method requires a considerable amount of resources in order to
select a move. Hence, when utilizing pseudo-random simulations, the AI can
only draw significantly fewer samples when compared to random simulations.

Ideally, one would want to draw samples at the same speed as done during
random simulations, but with the samples being of the same quality than the
samples drawn during the pseudo-random simulations. For this to happen, it
is necessary to somehow reduce the time needed to select a move. Standard
pseudo-random simulations compute the heuristic value for each move, includ-
ing moves which are unlikely to be selected anyway. This basically is quite a
redundant operation, but one cannot avoid computing the heuristic value of a
bad move, since in order to skip the move, it is necessary to know its value.

It is evident that one cannot reduce the computation time for generating a
pseudo-random move by skipping bad moves. Hence, a different way is needed
to speed up the selection process. Rather than having to compute an entire
probability distribution, it would be much more efficient to generate moves
according to some mechanism from which a pseudo-random probability distri-
bution emerges. If such a mechanism consumes less computation time than the

4.4. HEURISTIC ENHANCEMENTS 43

generation and evaluation of every possible move at some position, then such
an approach should increase the simulation speed.

An example of such a mechanism would be to generate a random move and
to replace this move with a new random move if the first move is not ade-
quate according to some heuristic. This method requires a binary heuristic,
that judges whether a randomly drawn move is kept and played, or whether a
new random move should be generated instead. It is evident that moves which
are adequate according to the heuristic are more likely to be played than the
remaining moves, thus moves are pseudo-randomly selected. One can also show
that this method requires less computation time in most circumstances than the
standard pseudo-random move selection. Assume that g is the cost to generate
any move, h is the cost to apply a heuristic function to any move and np is the
number of legal moves which can be played from a certain position p. In order
to apply the standard pseudo-random move selection, all possible moves need
to be computed and evaluated. Thus the required computational costs c can be
described as:

c = np × g + np × h (4.6)

When using the proposed mechanism, assuming that the worst case scenario
always occurs, every randomly drawn move would need to be first evaluated
and redrawn. Hence, the cost c to generate a move according to the proposed
mechanic can be described as:

c = 2× g + h (4.7)

While, for standard pseudo-random generation, the computation costs increase
if np increases, the costs of applying the proposed mechanism stay constant.
One can easily see that the only time that pseudo-random move generation is
faster, is when np = 1, which would result in a computational cost of g + h.
However, if np has the value 2 or greater, the proposed mechanism is faster.
Having np = 1 in essence corresponds to an exceptional situation, namely be-
ing forced into a single legal move by the opponent. Consequently, unless the
game in question incorporates heavy aspects of such situations, one can safely
assume that the proposed mechanism will be faster overall than the standard
pseudo-random approach.

Note that this mechanism lacks the fine-tunability compared to standard pseudo-
random selection. If, for instance, a certain move is slightly better than a dif-
ferent one, then the pseudo-random selection can select the better move with a
slightly higher chance than the other move, corresponding to the difference in
their heuristic value. On the contrary, when selecting moves using the pseudo-
random mechanism, two moves, which are good enough that they will be kept

44 CHAPTER 4. SEARCH TECHNIQUES

when evaluated by the binary heuristic, will have the same chance to be se-
lected. Here, the chance for a move to be selected depends on several factors.
Not only does the chance depends on whether the move is evaluated positively
by the heuristic or not, but also on how many other moves are evaluated pos-
itively when inspected as well. The higher the ratio between bad moves and
total moves available, the more likely it becomes that any good move is se-
lected. Given any game position, if b is the amount of bad moves, according
to the heuristic, possible at this position, n the total amount of moves possible
and r the number of times a randomly chosen move is redrawn if it is not good
according to the heuristic, then the chance of any good move being selected can
be calculated as follows:

r∑
x=0

bx

nx+1
(4.8)

Also, given the same definitions, the chance of any bad move being selected can
be calculated as follows:

br

nr+1
(4.9)

It is evident that, the higher the amount of redraws r is, the more likely it is
that good moves are being selected and bad ones being avoided. Of course,
increasing r means an increase of computation time as well, since the heuristics
need to be applied more often for each position.

4.4.5 Hybrid Simulations

As mentioned in subsection 4.4.3, one reason to choose pseudo-random move se-
lections over pure heuristics is to ensure that the entire search tree is explored.
Inevitably, the simulation will eventually reach a point where it is extremely
unlikely that the current position will be simulated again. Thus, it then be-
comes unnecessary to ensure that each part of the sub-tree can be visited, since
it is likely that this particular sub-tree will be examined only once. This means,
that at this point during the simulation, the computationally expensive pseudo-
random move selection can be substituted by a different, preferably faster, se-
lection method. Several options present themselves when choosing a second
simulation method. One can opt for a fast simulation method, for instance
random simulations, to generate a larger amount of samples. On the other
hand one can choose simulations which generate samples of the same quality as
pseudo-random simulations at a faster rate. Since ensuring that the complete
search space is explored is not necessary at this point, these simulations can be
done by pseudo-random mechanisms or even by pure heuristics.

Since it is uncertain which approach will be more successful, all the proposed
hybrid simulations will be tested. Additionally, since it is uncertain at which

4.4. HEURISTIC ENHANCEMENTS 45

stage of the simulation it is necessary to switch to the second simulation method,
different simulation distributions between the two simulation methods will be
tested as well.

Chapter 5

Experiments

In this chapter, the results of the performed experiments for all investigated
approaches will be presented. First, in section 5.1 the experiments considering
standard Monte-Carlo Search and the investigated enhancements will be pre-
sented. Next, in section 5.2 the experiments to test the performance of MCTS
and the effects of the investigated enhancements on MCTS will be presented.
For each experiment, each AI received a total of three minutes of computation
time to finish a single game. For the experiment of standard MC search against
a random AI, only 50 test games needed to be performed until a conclusion
could be drawn, with the AI utilizing MC Search playing 25 games as player
1 and 25 times as player 2. For every other experiment, 300 test games were
conducted with each AI playing 150 games as player 1 and 150 games as player
2. Each AI uses a maximum simulation length of 100 turns, which is well above
the average game length of Thurn and Taxis, unless otherwise specified.

5.1 Monte-Carlo Search and Enhancements

First, to establish a reference point for further experiments, an AI using MC
Search has been tested against a randomly playing AI, with the results shown
in subsection 5.1.1. Next, the effects of limiting simulation lengths are shown
in subsection 5.1.2. Subsection 5.1.3 addresses the effects of game-progression
based simulation cuts. Subsection 5.1.4 shows the results of utilizing pseudo-
random simulations and subsection 5.1.5 shows the effects of mechanisms for
pseudo-random simulations. Finally, subsection 5.1.6 addresses the effects of
using hybrid simulations.

5.1.1 MC Search

For the first experiment, an AI using MC Search without any improvements has
been matched against a randomly playing AI in 50 experimental games. The
results of this experiment can be seen in table 5.1.

47

48 CHAPTER 5. EXPERIMENTS

MC Search
As Player 1 As Player 2

win 100 100
draw 0 0
loss 0 0

Table 5.1: Results of a standard Monte-Carlo AI versus a random AI. Values
are percentages of total games played.

As can be seen, the Monte-Carlo AI won every single game. However, this
result emerged not because of the possibly good performance of the standard
Monte-Carlo AI, but more due to the extremely bad performance of the random
AI, as discussed in subsection 4.4.1. In order to illustrate the difference of play
quality between the two AIs, table 5.2 shows the move breakdown of choices
each AI made when attaching a card to its route. As discussed in the end of
subsection 4.4.3, a move at this stage of a turn can have three different general
outcomes: the current route is scrapped, a new card is attached to the route
while not closing it and the current route is closed in addition to adding a card
to the route.

MC Random
Route scrapped 54.5% 79.7%
Card attached 28.3% 15.6%
Route closed 17.1% 4.6%

Table 5.2: Breakdown of card-attach moves per game of a MC AI compared to
a random AI.

Scrapping your own route is a move which is to be avoided as much as
possible in the game of Thurn and Taxis. The random AI, however, spends
almost 80% of its turns scrapping its current route, either by being forced to
due to bad card choices, or by just randomly selecting to scrap its current route.
The MC AI does on average scrap its current route significantly less than the
random AI, however it does not show signs of strong play, since scrapping its
current route more than every second turn is still a sign of weak performance.

5.1.2 Limited Simulation Lengths

To test the effect of limiting the amount of played turns during simulation,
standard MC AIs with varying smaller simulation limits have all been matched
against a MC AI with the standard simulation limit of 100 turns. An AI with

5.1. MONTE-CARLO SEARCH AND ENHANCEMENTS 49

a simulation length of 100 turns can on average draw approximately 1000 sam-
ples per second on a 2.4GHz processor when using random simulations. The
amount of drawn samples per second linearly increases, as the simulation length
decreases. The results of this experiment can be seen in table 5.3.

Simulation
length limit 75 50 25 10 5
As Player 1 2 1 2 1 2 1 2 1 2

win 57.3 54.6 85.3 79.3 97.3 98.0 100 100 100 100
draw 4.0 3.3 2.0 1.3 0.0 0.6 0 0 0 0
loss 38.6 42.0 12.6 19.3 2.6 1.3 0 0 0 0

Table 5.3: Results of various MC AIs with different simulations lengths playing
against a MC AI with a standard simulation length of 100 turns. Values are
percentages of total games played.

One can see that shortening the simulation lengths in favor of more samples
greatly increases the performance of the MC AI. For the very short simulation
limits of only 10 and 5 turns, the MC AI even won every single game against
the standard AI. It is notable that there is a tendency that an AI plays slightly
better when it is the first player. The most likely reason for this is that the game
favors the player who has to move first, since he can choose the most promising
cards from the display at the very first turn, possibly leaving the opponent with
sub-standard options to choose from. In order to further investigate the perfor-
mance of the AIs with a low simulation length, a further experiment has been
conducted. Here, an MC AI using a simulation length of only 10 turns has been
matched against AIs using simulation lengths of 25 and 5 turns. The results of
this experiment can be seen in table 5.4.

Simulation-length limit 25 5
As Player 1 2 1 2

win 17.3 10.6 50.0 49.3
draw 2.0 1.3 1.3 3.3
loss 80.6 88.0 48.6 47.3

Table 5.4: Results of MC AIs with simulations lengths of 25 and 5 turns playing
against a MC AI with a simulation length of 10 turns. Values are percentages
of total games played.

As can be seen, the AI with a simulation length of 25 turns performed
considerably worse than the AI with a simulation length of 10 turns, having
lost more than 80% of the games. However, reducing the simulation length
from 10 to 5 turns only produced a negligible gain. Further experimental runs

50 CHAPTER 5. EXPERIMENTS

would be required in order to be able to rule out random fluctuations as cause
of this slight difference in the outcome of the experiment. Hence, for further
experiments a simulation limit of 10 turns is applied in order to enable a larger
hindsight for the AI.

5.1.3 Game-Progression-based Simulation Cuts

To test the effectiveness of game-progression based simulation cuts, for the rest
of this thesis referred to as ‘SimCut’, two MC AIs using a simulation length
of 10 turns have been matched against each other, with only one of these AIs
using SimCut. For this experiment, simulations were aborted when one player
gained a lead of at least 5 points over his opponent, representing a value of ap-
proximately a fifth of the total points accumulated during a game of Thurn and
Taxis. This value is of course still subject to optimization. Table 5.5 displays
the result of this experiment.

SimCut
As Player 1 2

won 52.6 41.3
draw 4.0 6.6
loss 43.3 52.0

Table 5.5: Results of a MC AI using SimCut against a normal MC AI, both
using random simulations. Values are percentages of total games played.

It is evident that both AIs performed approximately equal to each other.
Even when using a generous score difference of 5 points, the AI using SimCut did
not manage to draw significantly more samples than the standard AI, drawing
approximately 12628 and 12771 samples per second respectively. Since both
AIs are already drawing samples at approximately the same rate, testing higher
values of the score difference threshold would be futile. A higher threshold
would lead to fewer samples drawn per second, due to the higher computational
overhead combined with a decreased amount of simulation cuts occurring. It is
questionable whether this approach is causing any simulation cuts at all, since
random simulations take a long time to cause any significant changes on the
board due to the bad level of play, as discussed in section 4.4.1. Section 5.1.4
will examine, whether a simulation approach which is more likely to encounter
different game positions has any effect on SimCut.

5.1.4 Pseudo-Random Simulations

For the experiment regarding pseudo-random simulations, two MC AIs with a
simulation length limit of 10 turns have been matched against each other, where
one AI uses random simulations and the other uses pseudo-random simulations.
The results of this experiment can be seen in table 5.6.

5.1. MONTE-CARLO SEARCH AND ENHANCEMENTS 51

Pseudo-Random
As Player 1 2

won 96.0 95.3
draw 2.0 2.0
loss 2.0 2.6

Table 5.6: Results of a MC AI using pseudo-random simulations against a MC
AI using random simulations. Values are percentages of total games played.

As can be seen, the inclusion of pseudo-random simulations vastly increased
the performance of the AI. Even though it was only able to draw significantly
fewer samples per second than the AI using random simulations, sampling 1972
samples per second using pseudo-random simulation has shown that the increase
of quality of the samples more than made up for the loss of quantity.

It is also interesting, that the application of pseudo-random simulations greatly
altered the playing style of the AI. To illustrate this change, table 5.7 displays
the average amount of routes, which each AI closed during a game, divided into
their respective lengths.

Route length Random Pseudo-Random
3 8.386 6.616
4 0.206 0.810
5 0.016 0.900
6 0.000 0.316
≥ 7 0.000 0.040

Table 5.7: Average amount of routes closed during a game of Thurn and Taxis
of two AIs using different simulation methods.

It is apparent that an AI using random simulations focuses on playing routes
with length 3 and rarely plays a route of greater length. Hence, its way of trig-
gering the end condition of the game is to consume all its available houses.
Since it hardly plays routes of length 5 or greater, the AI is extremely unlikely
to upgrade its carriage to its maximum level. This behavior is likely caused by
the simulations hardly playing longer routes and hence causing the AI to choose
moves that will win the game by playing shorter routes.

On the other hand, the AI using pseudo-random simulations has a larger em-
phasis on longer routes, which in turn leads to more carriage upgrades. Since
on average it only plays 0.04 routes of length 7 or greater, it mostly upgrades its
carriage to the maximum level by closing a shorter route in combination with
the Cartwright, which is the easiest way to do so.

52 CHAPTER 5. EXPERIMENTS

Since pseudo-random simulations select more knowledgeable moves than just
random simulations, it is likely that the application of SimCut would result
in more simulations cuts, generating an increase in generated samples per sec-
ond. To test this, an experiment has been performed, matching an AI using
pseudo-random simulations against an AI using pseudo-random simulations ap-
plying SimCut with a generous threshold of 5 points score difference to cause a
simulation cut. The results of this experiment can be seen in table 5.8.

SimCut
As Player 1 2

won 47.3 48.6
draw 1.3 7.3
loss 51.3 44.0

Table 5.8: Results of a MC AI using SimCut against a normal MC AI, both
using pseudo-random simulations. Values are percentages of total games played.

Just as in section 5.1.3, the addition of SimCut only leads to an insignificant
gain of simulations per second, 2183 per second with SimCut as opposed to
2090 without, causing the AIs to play at an approximately equal level. Since
the AI applying SimCut using a low score-difference threshold, with the inten-
tion of causing many simulation cuts, did not draw significantly more samples,
experiments using higher thresholds can be omitted, since an AI applying Sim-
Cut with a more general threshold will only be able to draw fewer samples per
second, due to the overhead calculations that SimCut generates.

5.1.5 Mechanisms for Pseudo-Random Simulations

In order to test the effectiveness of this improvement, an experiment has been
performed with an AI using a pseudo-random simulation mechanism competed
against an AI using random simulations. Both AIs used a simulation-length
limit of 10 turns and the AI using a pseudo-random simulation mechanism only
redrew a move once if it was not suitable according to its used heuristics. Table
5.9 displays the result of this experiment.

The experiment has shown, that the AI using a pseudo-random simulation
mechanism is superior to the AI using only random simulations. However, com-
paring the results of table 5.9 with the results of table 5.6 reveals, that this ap-
proach did not create results superior to the results of standard pseudo-random
simulations.

To verify this, an experiment has been performed with an AI using a pseudo-
random simulation mechanism playing against an AI using standard pseudo-
random simulations. The results of this experiment can be seen in table 5.10.

5.1. MONTE-CARLO SEARCH AND ENHANCEMENTS 53

Mechanism
As Player 1 2

won 64.6 58.6
draw 2.6 2.6
loss 32.6 38.6

Table 5.9: Results of a MC AI using a pseudo-random simulation mechanism
against a MC AI using random simulations. Values are percentages of total
games played.

Mechanism
As Player 1 2

won 20.0 29.3
draw 3.3 4.0
loss 76.6 66.6

Table 5.10: Results of a MC AI using a pseudo-random simulation mechanism
against a MC AI using pseudo-random simulations. Values are percentages of
total games played.

This experiment verifies, that the application of a pseudo-random simula-
tion mechanism did not have the desired effect. While, with on average 4844
simulations per second, the AI was able to draw significantly more samples than
the AI using standard pseudo-random simulations, drawing only 1972 samples
per second on average, it still lost most of the games. The only explanation
for this is, that the quality of the drawn samples is inferior to the quality of
samples generated by pseudo-random simulation to such an extent, that even
the superior quantity of samples could not compensate for the loss in quality.

This of course raises the question why the quality of samples is reduced. The
cause of this problem is most likely, that the emergent distributions of move
probabilities do not sufficiently resemble the probability distributions of stan-
dard pseudo-random simulations. Thus, bad moves are chosen more often during
the simulation, which in turn degrades the quality of the samples. It is possible
to improve the emergent distributions, by increasing the amount of times a ran-
domly chosen bad move is being redrawn. Hence, an additional test has been
performed, where the mechanism would redraw a randomly chosen move up to
two times instead of one. Table 5.11 displays the results of this test.

Surprisingly, enabling the simulation to redraw a bad move twice actually
decreased the performance of the AI. With on average 3719 samples per second

54 CHAPTER 5. EXPERIMENTS

Mechanism-2 Redraws
As Player 1 2

won 10.0 9.3
draw 2.0 0.6
loss 88.8 90.0

Table 5.11: Results of a MC AI using an enhanced pseudo-random simulation
mechanism against a MC AI using pseudo-random simulations. Values are per-
centages of total games played.

the pseudo-random mechanism drew approximately 1100 samples per second
less than the mechanism using only one redraw. It still drew significantly more
samples than an AI using pseudo-random simulations.

5.1.6 Hybrid Simulations

When performing a hybrid simulation, combining two different simulation tech-
niques, then one has to consider the percentage of assigned simulation turns
which each technique is allowed to simulate. For the experiments, three dif-
ferent distributions have been examined, assigning the first simulation method
80%, 50% and 20% of the total amount of turns to be simulated, leaving the
other method with the remaining turns. First hybrid simulations, where the
second part of the simulations where performed at random have been tested,
where each simulation had a total length of 10 turns. The results of this test
can be seen in table 5.12.

Hybrid-Random
Pseudo-Random
turn percentage 80% 50% 20%

As Player 1 2 1 2 1 2
won 38.6 48.0 32.0 30.0 5.3 9.3
draw 4.6 4.0 4.0 1.3 1.3 2.6
loss 56.6 48.0 64.0 68.6 93.3 88.0

Table 5.12: Results of a MC AI using hybrid random simulations against a MC
AI using pseudo-random simulations. Values are percentages of total games
played.

While the hybrid simulations with a large percentage performed comparably
to its opponent which used strictly pseudo-random simulations, none of hybrid-
random simulations displayed any performance gain, leading to the conclusion
that using random simulations are not a viable option for hybrid simulations.

5.2. MCTS AND ENHANCEMENTS 55

Next, a test using the same setup and hybrid simulations using pseudo-random
mechanisms, using only one redraw of the randomly drawn move, as second
simulation method has been performed. Table 5.13 displays the results of this
experiment.

Hybrid-Mechanism
Pseudo-Random
turn percentage 80% 50% 20%

As Player 1 2 1 2 1 2
won 44.6 43.3 37.3 30.0 17.3 11.3
draw 2.6 2.6 2.6 1.3 2.6 2.0
loss 52.6 54.0 60.0 68.6 80.0 86.6

Table 5.13: Results of a MC AI using hybrid simulations with pseudo-random
mechanisms against a MC AI using pseudo-random simulations. Values are
percentages of total games played.

Just like Hybrid-Random simulations, none of the variations were able to
outperform the AI using pseudo-random simulations. Both hybrid approaches,
using random moves or pseudo-random mechanisms for simulations display a
similar pattern regarding their performance. Both play almost on par with the
opponent if the second simulation method is only executed a small amount of
times, while the performances of both AIs decrease as the assigned turn per-
centage for the second simulation method increases.

As last experiment, a hybrid simulation method was tested which used pure
heuristic move selection as second simulation method. Table 5.14 displays the
result of this experiment.

From the experiment it becomes evident that none of the variations managed
to outperform the AI using pseudo-random simulations.

5.2 MCTS and Enhancements

This section will tackle all experiments which were performed regarding the
effectiveness of MCTS. Subsection 5.2.1 contains the brief experiments, which
were run to find suitable parameter values for C and T. In subsection 5.2.3
the results of the experiments regarding Limited Simulation Lengths will be
presented and subsection 5.2.4 presents the effects of using game-progression
based simulation cuts. The effects of using pseudo-random simulations and
mechanisms for pseudo-random simulations will be displayed in subsection 5.2.5

56 CHAPTER 5. EXPERIMENTS

Hybrid-Heuristic
Pseudo-Random
turn percentage 80% 50% 20%

As Player 1 2 1 2 1 2
won 40.6 44.6 28.0 30.0 7.3 10.0
draw 3.3 2.6 1.3 1.3 1.3 2.6
loss 56.0 52.6 70.6 68.6 91.3 87.3

Table 5.14: Results of a MC AI using hybrid simulations with pure heuristic
simulations against a MC AI using pseudo-random simulations. Values are
percentages of total games played.

and 5.2.6 respectively. Last, subsection 5.2.7 presents the effects of using various
types of hybrid simulations.

5.2.1 MCTS Parameters

MCTS uses two parameters, C and T. C is a mandatory parameter, describing
how much the selection strategy should emphasize exploration or exploitation.
The full expansion threshold T, however, is not a mandatory parameter for the
expansion strategy, but it is applied in most applications of MCTS [12].

For each parameter, three rough values were examined to gain insight at what
range of values the optimal values of C and T could lie. First, an experiment
has been performed using three different values for C : 0.5, 1.5 and 2.5 using
an initial value 10 for T. Note that values larger than 1 are necessary to be
examined, since Thurn and Taxis is not a zero-sum game, meaning the value of
a node can be bigger than 1 or lesser than −1. For each of these values, 50 test
games have been performed against a standard Monte-Carlo AI, with both AIs
using random simulations. The results of the experiment can be seen in table
5.15.

C 0.5 1.5 2.5
As Player 1 2 1 2 1 2

won 36.0 40.0 32.0 16.0 38.7 54.8
draw 4.0 0.0 8.0 0.0 3.2 12.9
loss 60.0 60.0 60.0 84.0 58.1 32.3

Table 5.15: Results of various values for C for the selection method of UCT.
Tested against a MC AI with both AIs using random simulations. Values are
percentages of total games played.

5.2. MCTS AND ENHANCEMENTS 57

One can see from table 5.15 that the AI using MCTS played the strongest
with a high value for C, allowing more exploration than the other values.

Next, for C =2.5, three different values for T were tested: 5, 10 and 15. For each
of these values, an AI using MCTS was matched in 50 test games against an AI
using standard Monte-Carlo search, with both AIs using random simulations.
The results of these tests can be seen in table 5.16.

T 5 10 15
As Player 1 2 1 2 1 2

won 43.3 50.0 38.7 54.8 40.0 46.6
draw 0.0 0.0 3.2 12.9 6.6 3.3
loss 56.6 50.0 58.1 32.3 53.3 50.0

Table 5.16: Results of various values for T for the selection method of UCT.
Tested against a MC AI with both AIs using random simulations. Values are
percentages of total games played.

The performed experiments, that different values of T do only slightly alter
the performance of the AI. Overall, it appears that for T=5 the AI has per-
formed the strongest.

For the subsequential experiments, the values C =2.5 and T=5 have been ap-
plied.

5.2.2 Final Move Selection

There exist different strategies for a MCTS AI, when selecting the final move
4.2.5. For the course of this research, the two basic methods have been investi-
gated: Max Child and Robust Child. Both approaches were matched against a
standard MC AI, with both AIs using random simulations. The results of this
experiment can be viewed in table 5.17.

It is evident from the experiment that the Robust-Child selection method
outperforms the Max-Child method by a small margin. Hence, this selection
method was used for the remainder of this research.

5.2.3 Limited Simulation Lengths

This subsection discusses the effects of limiting simulation lengths during MCTS.
Several limits have been investigated and compared against an AI using the most
effective limit of 10 turns from subsection 5.1.2. For each investigated limit 300

58 CHAPTER 5. EXPERIMENTS

Selection Method Max Child Robust Child
As Player 1 2 1 2

won 36.6 46.6 43.3 50.0
draw 5.6 6.6 0.0 0.0
loss 56.6 46.6 56.6 50.0

Table 5.17: Results of two different final-move-selection methods. Tested against
a MC AI with both AIs using random simulations. Values are percentages of
total games played.

test games have been played.

Simulation-length Limit 5 25 50
As Player 1 2 1 2 1 2

won 66.1 61.1 18.6 20.6 11.3 7.3
draw 2.8 3.9 2.0 0.6 0.6 0.6
loss 31.1 35.0 79.3 78.6 88.0 92.0

Table 5.18: Results of a MCTS AI utilizing several simulation-length limits
applied to random simulations playing against a MCTS AI using a simulation-
length limit of 10. Values are percentages of total games played.

While for higher limits similar trends are visible compared to the results in
subsection 5.1.2, there is a difference regarding the performance of the simu-
lation limits 5 and 10. For standard MC Search both AIs indicated an equal
playing strength, however, there is a significant difference in performance when
applied to MCTS. Here, a simulation limit of 5 turns outperforms a limit of
10 turns. This is can be explained by the fact that a shorter simulation length
produces more results, which in turn allows the MCTS to further converge to a
better solution. Hence, the extra amount of samples is better utilized than in a
standard MC Search.

While for random simulation an extremely short simulation-length limit pro-
duced the best results, a slightly different result was apparent when examining
different simulation lengths when applied to pseudo-random simulations. The
results of the experiment can be viewed in table 5.19.

While limiting simulation lengths is also successful when applied to pseudo-
random simulations, it is notable that this approach causes the AI to perform
weaker if the simulations are shortened to an extensive level.

5.2. MCTS AND ENHANCEMENTS 59

Simulation Limit 5 25
As Player 1 2 1 2

won 31.8 18.1 6.0 13.6
draw 4.5 4.5 0.0 1.5
loss 63.6 77.2 94.0 84.8

Table 5.19: Results of a MCTS AI utilizing several simulation-length limits
applied to pseudo-random simulations playing against a MCTS AI using a
simulation-length limit of 10. Values are percentages of total games played.

Given these results, the remaining experiments utilizing MCTS applied a simu-
lation limit of 5 turns for random simulations and 10 turns for pseudo-random
simulations, unless specified otherwise.

5.2.4 Game-Progression-based Simulation Cuts

To test the effectiveness of Game-Progression-based Simulation Cuts (SimCut)
on MCTS, an experiment has been performed in which an MCTS AI applying
SimCut with a score difference threshold of 5 points on random simulations
played against a MCTS AI using just random simulations. The results of this
experiment can be seen in table 5.20.

SimCut
As Player 1 2

won 44.6 44.0
draw 5.3 1.3
loss 50.0 54.6

Table 5.20: Results of a MCTS AI applying SimCut on random simulations
against a MCTS AI using random simulations. Values are percentages of total
games played.

Similar to the results of the experiment in subsection 5.1.3, the application of
SimCut did not enable the AI to draw significantly more samples, with both AIs
drawing approximately 6460 samples per second. It is apparent that the sam-
ple gain, caused by aborting simulations which are in advantageous positions,
only manages to compensate for the computational costs invested in monitoring
the game progression. One needs to consider, that with a shortened simulation
length of only 5 turns and the application of random simulations, it is unlikely
that an advantageous position will be simulated. To investigate these possible
reasons, a second experiment has been performed, where both AIs have a signif-
icantly higher simulation-length limit. An experiment has been performed, in

60 CHAPTER 5. EXPERIMENTS

which an MCTS AI using both random and pseudo-random simulations played
an AI of the same configuration, with the only difference being that one of the
playing AIs applied SimCut. Every AI applied a simulation-length limit of 50
turns, giving the simulations ample room to reach an advantageous game state
for any player in order to achieve the SimCut threshold. The average amount
of simulations per second have been recorded during the performed test game,
visible in table 5.21.

Simulation Method No SimCut SimCut Sample Gain
Random 1905.3 1935.2 1.57%

Pseudo-Random 182.1 260.5 43.1%

Table 5.21: Average amount of simulations per second for two different simula-
tion methods with and without SimCut.

It appears that even with a very high simulation-length limit, SimCut only
generates an insignificant increase of generated samples. However, when applied
to pseudo-random simulations, SimCut generated an increase of generated sam-
ples of 43.1%. It is notable that the AI applying pseudo-random simulations
and applying SimCut performed stronger than its counterpart without applying
SimCut, which can be attributed to the fact that at such high simulation-length
limits either of the two AIs only draw few samples such that any sample gain
leads to an increase in playing strength.

To investigate whether SimCut also causes a sample gain at lower simulation
lengths when applied to pseudo-random simulations, an experiment has been
performed under lower simulation lengths, measuring the average amount of
drawn samples of a MCTS-AI with and without applying SimCut. The results
of this experiment can be seen in table 5.22 and 5.23.

Simulation-length Limit No SimCut SimCut Sample Gain
25 turns 358.5 463.3 29.23%
10 turns 1253.9 1369.9 9.25%

Table 5.22: Average amount of simulations per second for a MCTS-AI apply-
ing pseudo-random simulations at different simulation-length limits with and
without SimCut.

It appears that the more strict the simulation limit is, the less effective Sim-
Cut becomes, leading to an increase of only 9.25% more samples per second at
a simulation-length limit of 10 turns. Even though there still exists an advan-

5.2. MCTS AND ENHANCEMENTS 61

Simulation Length 25-SimCut 10-SimCut
As Player 1 2 1 2

won 71.1 60.0 52.2 37.7
draw 2.2 2.2 5.6 2.2
loss 26.7 37.8 42.2 60.0

Table 5.23: Results of a MCTS AI applying pseudo-random simulations in self-
play with one AI applying SimCut. Values are percentages of total games played.

tage in drawn samples per second at low simulation-length limits when applying
SimCut, it appears that the actual performance of the AI degrades when doing
so. When applied to longer simulations, SimCut leads to a larger increase in
drawn samples per second, as well as an increase in playing strength. The latter
can be substantiated by the fact that at these simulation-length limits, only
relatively few samples are drawn and hence any increase in samples is likely to
increase the playing strength as well.

Overall, one can conclude that SimCut is ineffective when applied to random
simulations. When applied to pseudo-random simulations, SimCut does pro-
duce an increase in drawn samples per second, however this effect diminishes
with further limited simulation lengths, to the extent that it only has little ef-
fect under the best found simulation-length limit. Additionally, when applied
under the best found simulation length, SimCut actually appeared to decrease
the playing strength of the AI.

5.2.5 Pseudo-Random Simulations

This subsection discusses the effect of applying pseudo-random simulations on
MCTS. For this experiment two MCTS AIs played against each other in 300 test
games, one AI using pseudo-random simulations and the other using random
simulations. Table 5.24 displays the results of this experiment.

Pseudo-Random
As Player 1 2

won 98.0 97.4
draw 0.6 0.0
loss 1.3 2.6

Table 5.24: Results of a MCTS AI applying pseudo-random simulations against
a MCTS AI using random simulations. Values are percentages of total games
played.

62 CHAPTER 5. EXPERIMENTS

The results indicate that also when applied to MCTS, pseudo-random sim-
ulations clearly outperform random simulations. This means that MCTS using
pseudo-random simulations converges faster to a good solution than MCTS us-
ing random simulations, even though it can only draw significantly fewer sam-
ples.

5.2.6 Mechanisms for Pseudo-Random Simulations

In order to test the effect of mechanisms for pseudo-random simulations on
MCTS, several settings regarding the amount of redraws of randomly chosen
moves for the proposed mechanism have been investigated. For each investi-
gated setting, an AI applying the proposed mechanism played an MCTS AI
using pseudo-random simulations. The results of this experiment can be seen
in table 5.25:

Number of redraws 1 2 3
As Player 1 2 1 2 1 2

won 8.6 9.3 13.3 16.0 16.6 20.0
draw 2.0 1.3 2.0 1.3 2.0 4.6
loss 89.3 89.3 84.6 82.6 81.3 75.3

Table 5.25: Results of a MCTS AI applying a pseudo-random mechanism against
a MCTS AI using pseudo-random simulations. Values are percentages of total
games played.

It is evident from table 5.25, that the AI applying the mechanism for pseudo-
random simulations cannot match the performance of the AI using pseudo-
random simulations. Comparing its performance to table 5.24 one can see that
this approach performed better than the AI applying simple random simula-
tions. Additionally, one can see that increasing the number or redraws of random
samples increases the performance of this approach, contrary to the results in
subsection 5.1.5, where an increase of redraws led to a decreased performance
of the AI. However, this increase in performance is not significant enough to
compete with the performance of the AI using pseudo-random simulations. De-
spite the lesser performance of this approach, one can conclude from this and
previous experiments that sacrificing sample quantities in favor of adding do-
main knowledge to the simulations is a superior approach when compared to
simulation techniques which draw many samples, but only apply little to no
domain knowledge, like for instance random simulations.

5.2.7 Hybrid Simulations

This section describes the effects that hybrid simulations have on MCTS. To
investigate this approach, several experiments have been performed, matching

5.2. MCTS AND ENHANCEMENTS 63

the different proposed approaches for hybrid simulations against an AI applying
pseudo-random simulations. The first performed experiment matched an MCTS
AI applying hybrid random simulation against an MCTS AI applying pseudo-
random simulations. Various turn percentages for the hybrid simulations have
been investigated. The results of this experiment can be seen in table 5.26.

Random
Pseudo-Random
turn percentage 80% 50% 20%

As Player 1 2 1 2 1 2
won 27.3 42.0 14.6 21.3 32.3 32.7
draw 7.3 4.0 0.6 2.0 2.7 2.0
loss 65.3 54.0 84.6 76.7 66.0 65.3

Table 5.26: Results of a MCTS AI using hybrid random simulations against a
MCTS AI using pseudo-random simulations. Values are percentages of total
games played.

As one can see, at a setting where only few turns are played via random
simulations, the AI performs the strongest, albeit still weaker than the oppo-
nent applying pseudo-random simulations. Also, it is notable that at a low
pseudo-random turn percentage, the performance of the AI is better than when
applying a medium percentage, indicating that at this point the quantity of the
samples starts to compensate for the loss of quality. However, this compensa-
tion is not sufficient for the AI to outperform its opponent, but almost causes
the AI to perform similar to the AI applying hybrid random simulations with a
high pseudo-random turn percentage.

Next, an experiment has been performed regarding the performance of hybrid
simulations applying the proposed mechanism for pseudo-random simulations.
For the mechanism, a maximum of 3 redraws has been applied, following the re-
sults of subsection 5.2.6. Again, different pseudo-random turn percentages have
been investigated. The results of this experiment can be seen in table 5.27.

The results of the experiment show that applying the proposed pseudo-
random mechanism to hybrid simulations instead of random simulations did
not lead to a significant change in the performance of the AI. Like the previous
experiment, the AI with the highest pseudo-random turn percentage had the
highest performance among the explored percentages.

In the third experiment, an approach to hybrid simulations has been used, in
which the simulations were finished by pure heuristic move selection. Different

64 CHAPTER 5. EXPERIMENTS

Hybrid-Mechanism
Pseudo-Random
turn percentage 80% 50% 20%

As Player 1 2 1 2 1 2
won 37.1 37.1 27.3 29.3 20.0 28.7
draw 3.8 1.3 4.0 2.7 1.3 2.0
loss 59.1 61.6 68.7 68.0 78.7 69.3

Table 5.27: Results of a MCTS AI using hybrid simulations applying the pseudo-
random mechanism against a MCTS AI using pseudo-random simulations. Val-
ues are percentages of total games played.

hybrid turn percentages have been examined, while playing against an MCTS
AI applying pseudo-random simulations. The results of this experiment can be
seen in table 5.28.

Hybrid-Heuristic
Pseudo-Random
turn percentage 80% 50% 20%

As Player 1 2 1 2 1 2
won 37.3 56.0 23.3 34.7 6.2 14.8
draw 2.0 4.7 0.7 3.3 0.0 3.1
loss 60.7 39.3 76.0 62.0 93.8 82.1

Table 5.28: Results of a MCTS AI using hybrid simulations with pure heuristic
simulations against a MCTS AI using pseudo-random simulations. Values are
percentages of total games played.

While most of the results are similar to those of the previous experiments,
it is notable that with a high pseudo-random turn percentage the AI managed
to slightly outperform its opponent while playing as player 2. However, given
the performance of the AI as player 1, one can conclude that this simulation
approach performs weaker than pseudo-random simulations, albeit only by a
small margin. Additionally, the performance drops drastically when the pseudo-
random turn percentage reaches a low level, indicating that the few turns which
are simulation using pseudo-random simulations are not sufficient to ensure that
the entire search spaced is explored, leading to a biased search.

Overall, one can conclude that the examined hybrid simulation approaches are
inferior to pseudo-random simulations. However, given the right configuration
this approach can deliver a performance almost on par with pseudo-random
simulations.

5.3. COMPARISON BETWEEN MONTE-CARLO SEARCH AND MCTS 65

5.3 Comparison between Monte-Carlo Search and
MCTS

After investigating both MC Search and MCTS and the effects of various tech-
niques to improve both approaches, an evaluation is needed to assess whether
the addition of a search tree to the Monte-Carlo approach has indeed resulted
in an improvement of performance. In order to achieve this, an experiment has
been performed where the highest performing configuration of a MC AI has been
matched against the highest performing configuration of a MCTS AI. Both AIs
applied pseudo-random simulations with a simulation-length limit of 10 turns
and a total of 800 test games have been played. The results of this experiment
can be seen in table 5.29.

MCTS
As Player 1 2

won 54.8 52.2
draw 3.6 2.2
loss 41.6 45.6

Table 5.29: Results of a MC AI playing against a MCTS AI. Both AIs applied
pseudo-random simulations. Values are percentages of total games played.

The results indicate that the addition of a search tree to the Monte-Carlo
approach indeed leads to an increase in performance, albeit only by a small
margin. The fact that the performance increase is only small can have several
reasons. First, one reason could be the fact that Thurn and Taxis is a non-
deterministic game with imperfect information. Hence, it is likely that MCTS
needs considerably more search time in order to converge to the best move.
Second, even if a move, which has been determined to be the best move in
some position, is played, the resulting position might be not advantageous at
all, due to the non-deterministic elements of the game. Even if the said move
is optimal, the outcome of the non-deterministic elements can still render the
outcome of this move to the disadvantage of the player who played it. This
means that even though an AI makes better decisions than some other AI, the
overall playing strength would not increase as significantly as with for example
non-deterministic perfect-information games.

While it is now established that MCTS performs better, an interesting insight
would also be how it played better. For this several game specific elements
have been analyzed. First, figure 5.30 displays the average amount of routes of
different lengths which each AI closed during a game.

66 CHAPTER 5. EXPERIMENTS

Route length MC MCTS
3 6.322 6.288
4 0.750 0.857
5 0.681 0.671
6 0.338 0.397
≥ 7 0.050 0.054

Table 5.30: Average amount of routes of specific lengths closed during a game
of Thurn and Taxis of a MC AI and a MCTS AI.

With the exception of routes of length 5, the analysis indicates that the
MCTS AI prefers routes of longer length slightly more than the MC AI does.
While playing routes of a longer length are potentially worth more points, es-
pecially at lengths 5 or longer, longer routes are also more risky to construct
since one might run out of cards to attach while constructing it, thus forcing
oneself to scrap the incomplete route. However, given the fact that the MCTS
AI actually did close more routes of larger lengths indicates that it managed to
cope with this risk better than the MC AI does.

Another indication of playing strength is the choices a player makes, when se-
lecting an assistant. To illustrate this, figure 5.31 displays the average amount
each assistant has been chosen during a game for both AIs.

Assistant MC MCTS
None 1.67 1.51

Postal Carrier 5.05 5.48
Postmaster 9.19 10.77

Administrator 7.24 5.61
Cartwright 3.73 3.51

Table 5.31: Average amount of times each assistant has been selected during a
game for a MC and MCTS AI.

It is noteworthy that the MC player on average chooses the Administrator
more than the MCTS player. The Administrator is commonly used as last resort
if there are no usable cards on the display, meaning that a lower average number
of uses means that the AI anticipated possible future cards on the display better,
and hence had to resort to the Administrator less often. The Administrator can
also be used as a disruptive measure, ensuring that an opponent cannot draw
cards on the display which might be to critical importance to him. Hence, this
assistant still has a potential use, even if the upcoming cards are adequately
anticipated. The fact that the administrator has been selected less by the MCTS

5.4. MCTS AGAINST HUMAN PLAYERS 67

player means, that it could select other assistants more often, helping the player
to progress more quickly through the game. It was able to draw more cards due
to a higher use of the Postmaster, but also was able to lay these cards quicker
on the board due to a slightly more frequent use of the Postal Carrier. However,
there likely remains room for improvement, since the MCTS player on average
selected no assistant 1.51 times during a game. It remains highly doubtful
whether choosing no assistant is a good move at all, since one might as well
choose the Postmaster instead to draw one extra card, be it just to ensure that
the opponent is unable to draw it.

5.4 MCTS against Human Players

In order to gain some perspective how well a MCTS AI actually plays the game
Thurn and Taxis, a comparison is needed against an already established player,
which can be both human or AI. To establish the playing strength of the de-
veloped AI, it has been matched against two human players. The first tested
human player, the experimenter himself, plays Thurn and Taxis on and expert
level. The second test against a human player has been performed against cur-
rent reigning Dutch board game champion Maarten Schadd, which enables the
comparison against a player at champion level. 20 matches were played against
the expert player, while the AI competed in a best-of-five challenge against M.
Schadd. The overall results of the matches against the expert player can be
seen in table 5.32 while the detailed result of the three challenge games can be
seen in table 5.33.

MCTS
As Player 1 2

won 0 0
draw 0 0
loss 10 10

average score difference 12.8 11.6

Table 5.32: Results of a MCTS AI playing 20 matches against an expert human
player.

The results indicate that the AI neither plays at champion nor expert level,
having lost every game. However, the result of the second game against the
champion player, a loss with a difference of only one point, indicates that the
AI had good chances to win against the champion player, suggesting an at least
advanced playing strength of the AI. A similar conclusion can be drawn when
inspecting the results against the expert player. The AI lost with an average
score difference of roughly 12 points, from which one can conclude that the AI

68 CHAPTER 5. EXPERIMENTS

As Player Match 1 Match 2 Match 3
1 Champion 37 MCTS 24 Champion 34
2 MCTS 16 Champion 25 MCTS 17

Table 5.33: Scores of a MCTS AI competing in a best-of-five match against a
human player at champion level.

did not play at the same level as the expert, but not significantly weaker as
well. The average score differences against the expert player indicate the same
playing strength. Overall, the average game length of these experimental games
was approximately 45 turns, which in comparison to the measured average game
length of 56.1 turns means that the human players needed roughly 5 turns less
to cause the ending condition. A 5 turn difference can be equated roughly to a
difference of needing one route less to finish the game.

Several game-specific tendencies can be analyzed in order to investigate to what
extent the playing style of the AI is similar to that of the human competitors.
First, there is the breakdown of the number of closed routes, viewable in table
5.34.

Route length MCTS Expert Champion
3 5.65 2.75 1.3
4 0.75 1.65 0.6
5 0.60 0.7 1.0
6 0.20 0.5 1.0
≥ 7 0.1 0.7 1.3

Table 5.34: Average number per game of closed routes of specific lengths by the
MCTS-AI, an expert and champion-level human player.

Several trends are noticeable when inspecting the average route lengths.
First, the breakdown of the expert and champion-level human player differ con-
siderably, indicating that there are several successful strategies to play Thurn
and Taxis. The champion player mostly played longer routes, indicating a ten-
dency towards receiving points for closing routes of a certain length, while the
expert player has an emphasis on shorter routes, indicating a quick playing
style. The breakdown of the AI however has a comparatively quite large focus
on small routes with only little focus on playing long routes, where as even the
expert player has a tendency to play at least one large route during a game on
average. Also noticeable is a small increase in routes of length 7 as opposed to
routes of length 6 for both human players. The most likely reason for this is
that if a player has already invested 6 cards in a route, he might as well attach a

5.4. MCTS AGAINST HUMAN PLAYERS 69

seventh card in order to get points from the more lucrative point stack for routes
of length 7. However, the MCTS-AI fails to exhibit this behavior. Overall, the
playing style of the AI vaguely resembles the style of the expert player, with a
lacking tendency towards longer routes.

Next, the average assistant selection of the AI and the human players will be
displayed in table 5.35.

Assistant MCTS Expert Champion
None 0.65 0.25 0.3

Postal Carrier 5.25 4.6 4.3
Postmaster 10.05 9.1 8.0

Administrator 4.0 6.85 9.3
Cartwright 2.77 1.9 1.0

Table 5.35: Breakdown of chosen assistants per game of the MCTS-AI, an expert
and champion-level human player.

Here, unlike the average route lengths, there is a stronger resemblance of
the MCTS-AI with one of the playing styles of the human players, in this case
the expert player. Both have the tendency to pick the Postmaster significantly
more often than other assistants and both choose the Postal Carrier and the
Administrator on a regular basis, albeit with a small difference in preference
between these two assistants. Unlike the MCTS-AI or the expert player, the
champion player actually has a large tendency towards the Administrator, a
playing style which increases the chances that a player can draw the cards he
needs, so that he can play long routes. Even though the strongest preference
of the champion-level player is towards the Administrator, a strong preference
towards the Postmaster exists as well, confirming that the Postmaster is indeed
a strong assistant. It is also noteworthy that both the expert and champion
player chose to not select any assistant only on rare occasions, indicating that
this option only rarely is useful to the player. The AI exhibited a similar be-
havior to that of the human players in this regard, having selected no assistant
only 0.65 times per game on average.

Other similarities in playing style can be seen as well when inspecting the break-
down of card-attach moves of the different players, displayed in table 5.36.

It is notable that in this comparison, the playing style of the AI only barely
differs from the styles of the human competitors. The most notable difference
is that the AI on average scrapped at least one route per game, where as both
humans managed to avoid route scrapping better, with the champion player not

70 CHAPTER 5. EXPERIMENTS

MCTS Expert Champion
Route scrapped 1.6 0.6 0.0
Card attached 13.7 15.8 17.6
Route closed 7.3 6.3 5.3

Table 5.36: Breakdown of card-attach moves per game of the MCTS-AI, and
expert and champion-level human player.

having scrapped a single route at all.

One last difference which is worth investigating is the difference between the
players considering how often they select specific cards on average, viewable in
table 5.37. While the most cards get drawn approximately once per game on
average, with a few cards being drawn more often due to their strategic po-
sition, there is one striking difference between the AI and the human players,
which can give an indication to why the AI performs weaker and the reason
behind this. This difference concerns the card Lodz, which is rarely drawn by
the AI. As a reminder, Lodz is the only city in the black colored region, and
hence crucial in order to receive points for having a city in each colored region.
In addition, Lodz is a difficult city to access, since it only has one connection.
However, the black region in itself is not worth any points, making Lodz a city
with only a long term gain, since placing a house in each colored region is usu-
ally accomplished at a later stage in the game. If one were to perform a search
to determine whether drawing Lodz is the best move at a certain position, then
this can only be determined if the search is deep enough. Having barely drawn
Lodz at all, one can conclude that the AI did not recognize the long-term gain
of Lodz, and thus regularly failed to receive points for having a house in each
region. This in turn gave a regular lead of 6 points for the human players, who
mostly did accomplish the placement of a house in each region.

The factor which is most likely to be responsible for the failure of detecting
moves with only long-term rewards is the limiting of the simulation lengths.
While this technique did increase the strength of MC Search and MCTS con-
siderably, by drastically increasing the amount of drawn samples, it also caused
simulations to stop before the benefits of long-term gains could be detected.
Hence, only moves with short and mid-term gains are selected, leaving the op-
ponent to freely benefit from long-term prosperous moves. Due to the high
branching factor of the game, it is extremely unlikely that a tree-search ap-
proach would detect the advantage of these moves. Hence, an obvious solution
to this problem would be to increase the simulation length combined with some
way to compensate for the loss of drawn samples per second, for instance in-
creasing the allowed computation time for the AI.

Overall, one can conclude that the AI played the game Thurn and Taxis at

5.4. MCTS AGAINST HUMAN PLAYERS 71

an advanced level, being similar in many aspects to expert and champion-level
human players, while still having some shortcomings.

Player MCTS Expert Champion
Random Card 3.7 3.7 3.0
Mannheim 1.1 1.1 1.0
Carlsruhe 1.25 1.0 0.6
Freiburg 1.3 1.35 2.0
Basel 0.65 1.2 1.0
Zuerich 1.1 1.45 1.3
Stuttgart 2.0 1.2 2.3
Ulm 1.6 1.45 1.0
Sigmaningen 1.75 1.45 1.0
Innsbruck 1.0 1.2 1.6
Wuerzburg 1.1 0.95 1.6
Nuernberg 1.6 1.7 0.6
Ingolstadt 2.25 1.1 1.6
Augsburg 1.4 1.15 0.6
Kempten 1.5 1.45 1.0
Regensburg 1.65 1.5 2.3
Passau 1.2 1.35 2.0
Muenchen 2.1 1.15 1.0
Salzburg 1.3 1.35 1.3
Linz 1.1 1.1 0.6
Budweis 0.7 1.1 0.6
Pilsen 1.05 1.55 1.3
Lodz 0.35 1.25 1.0

Table 5.37: Average amount of times a card will be selected per game, by the
MCTS-AI, an expert and champion-level human player.

Chapter 6

Conclusions and Future
Research

In this chapter, the conclusions of this research will be presented. Section 6.1
contains the answers to the research questions and problem statement, which
have been stated in section 1.3. Section 6.2 discusses the possibilities of further
research, which can be conducted in this area.

6.1 Problem Statement and Research Questions
Revisited

This section will discuss the answers to the problem statement and research
questions. First, the research questions will be answered in subsection 6.1.1.
Then, these will be used in order to answer the problem statement of this thesis
in subsection 6.1.2.

6.1.1 Research Questions Revisited

What is the game complexity of the game Thurn and Taxis?

The answer to this research question was the subject of chapter 3. The state-
space complexity of the 2-player version of Thurn and Taxis has been determined
to be approximately 1066 and the game-tree complexity has been estimated at
10240 using the analysis of a large amount of test games, played by a MCTS-AI
in self-play. Note that the state-space complexity is an overestimation, with the
precise complexity likely being a few powers of 10 smaller.

Given these results, one can see that the complexities of the 2-player version
of Thurn and Taxis are similar to those of the game of Shogi. Hence, one can
conclude that it is unlikely that the 2-player version of Thurn and Taxis will

73

74 CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

be solved within the next decade. However, creating a competent AI player for
this game should still be possible.

To what extent is it possible to use domain knowledge in order to improve the
Monte-Carlo sampling process?

In section 4.4, several techniques have been investigated to improve either the
sample quality through the application of domain knowledge, or to increase
the quantity of drawn samples. Two techniques were proposed to increase the
sample quantity, being limiting simulation lengths and game-progression-based
simulation cuts. Game-progression-based simulation cuts have been shown to
be ineffective when applied to random simulations and only to have limited
effects when applied to other simulation techniques. The technique is also in-
effective when combined with limited simulation lengths. Limited simulation
lengths proved to be an effective technique. However, as the results against
human players indicate, this technique also restricts the hindsight of the AI,
causing it to ignore moves which only have long-term gains.

Several techniques have been investigated to increase sample quality, being
pseudo-random simulations, a mechanism for pseudo-random simulations us-
ing binary heuristics, and hybrid simulations. Each of these techniques have
been shown to significantly increase the playing-strength compared to random
simulations, with pseudo-random simulations being the strongest performing
approach.

To what extent does the addition of constructing a search tree contribute to
the strength of a Monte-Carlo AI?

The addition of a search tree, explained in section 4.2, appeared to give a small
increase to the strength of a Monte-Carlo AI according to the results of section
5.3. While the addition of a tree search to the Monte-Carlo approach has been
known to grant significant increases of playing strength in classic games, such
as Go, in Thurn and Taxis the observed difference is small likely due to the fact
that the game incorporates hidden information and elements of chance.

6.1.2 Problem Statement Revisited

Now that all the research questions have been addressed, an answer to the prob-
lem statement can be given.

To what extent can Monte-Carlo techniques be applied in order to create a com-
petitive AI for modern non-deterministic board games with imperfect informa-
tion?

It is possible to utilize Monte-Carlo techniques in order to create a competi-
tive AI for the game Thurn and Taxis. Since during the course of this research

6.2. FUTURE WORK 75

an AI of advanced strength has been created in a relatively short time frame,
we feel it is possible that an AI using Monte-Carlo techniques can achieve an
expert level or higher as well.

Monte-Carlo Tree Search utilizing the UCT selection strategy has been shown
to perform stronger than standard Monte-Carlo search, albeit with a small dif-
ference. Amongst the different investigated improvements, limiting simulation
lengths and pseudo-random simulations were the most promising ones.

6.2 Future Work

To this day, only little research has been done in the field of modern board
games, with this thesis being the first research conducted for the game Thurn
and Taxis. Hence, many areas remain where further research is due.

First, this thesis only addressed the 2-player version of the game. Hence, one
area of further research would be the investigation of the 3- or 4-player version of
Thurn and Taxis. There, it would be interesting to investigate whether MCTS
and the possible improvements are as effective in a multi-player environment as
in a 2-player one. Also, the game complexities of these multi-player variants
would be needed to be determined, as the likely higher complexities will make
it more difficult for an AI to perform well.

While there are likely more possible ways to add domain knowledge to the sim-
ulation process, another area which has been untouched in this research was the
addition of domain knowledge to the selection step of the MCTS approach, by
for instance progressive pruning [12]. Another issue that requires more research
is the fact that moves which have only long-term rewards are not recognized as
potential good moves, when the technique of limited simulation lengths is ap-
plied. This is a crucial element to be addressed in order to push the performance
of an AI to expert level.

Bibliography

[1] W. Behringer. Thurn und Taxis, Die Geschichte ihrer Post und ihrer Un-
ternehmen. Piper, 1990.

[2] D. Billings and M. Kan. A tool for the direct assessment of Poker decisions.
ICGA, 29(3):119–142, 2006.

[3] D. Billings, D. Papp, J. Schaeffer, and D. Szafron. Opponent modeling in
Poker. In Proceedings of the 15th International Conference on Artificial
Intelligence, pages 493–499, 1998.

[4] D. Billings, L. Pena, J. Schaeffer, and D. Szafron. Using probabilistic knowl-
edge and simulation to play Poker. In Proceedings of the 16th International
Conference on Artificial Intelligence, pages 697–703, 1999.

[5] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The challenge of
Poker. Artificial Intelligence, 134(1–2):201–240, 2002.

[6] B. Bouzy. Associating domain-dependent knowledge and Monte Carlo ap-
proaches within a Go program. Information Sciences, Heuristic Search and
Computer Game Playing IV, 175(4):247–257, 2005.

[7] B. Bouzy and T. Cazenave. Computer Go: an AI oriented survey. Artificial
Intelligence:, 132(1), 2001.

[8] L. Branca and S. J. Johansson. Using multi-agent system technologies in
Settlers of Catan bots. In Agent-based Systems for Human Learning and
Entertainment. Blekinge Institute of Technology, 2007.

[9] M. Campbell, A. J. Hoane Jr., and F. H. Hsu. Deep Blue. Artificial
Intelligence, 134(1-2):57–83, 2002.

[10] T. Cazenave. Multi-player go. In H. Jaap van den Herik, editor, Proceedings
of the 6th International Conference on Computers and Games, pages 50–60.
Springer, 2008.

[11] T. Cazenave and B. Helmstetter. Combining tactical search and Monte-
Carlo in the game of Go. In In Symposium on Computational Intelligence
and Games, pages 171–175. IEEE, 2005.

77

78 BIBLIOGRAPHY

[12] G. M. J-B. Chaslot, M. H. M. Winands, J. W. H. M. Uiterwijk, H. J.
van den Herik, and B. Bouzy. Progressive strategies for Monte-Carlo tree
search. In P. Wang, editor, Proceedings of the 10th Joint Conference on
Information Sciences (JCIS). World Scientific Publishing Co. Pte. Ltd.,
2007.

[13] G. M. J-B. Chaslot, J-B. Hoock, A. Rimmel, O. Teytaud, C-S. Lee, M-W.
Wang, S-R. Tsai, and S-C Hsu. Human-computer revolution 2008. ICGA,
31(3):179–185, 2008.

[14] G. M. J-B. Chaslot, M. H. M. Winands, I. Szita, and H. J. van den Herik.
Cross-entropy for Monte-Carlo tree research. ICGA, 31(3):145–156, 2008.

[15] K-H. Chen and P. Zhang. Monte-Carlo Go with knowledge-guided simula-
tions. ICGA, 31(2):67–76, 2008.

[16] R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree
search. In H. J. van den Herik, P. Ciancarini, and H. H. L. M. Donkers,
editors, Proceedings of the 5th International Conference on Computer and
Games, volume 4630 of Lecture Notes in Computer Science (LNCS), pages
72–83. Springer, 2007.

[17] R. Grimbergen. A survey of Tsume Shogi programs using variable depth
search. In Computers and Games: Proceedings CG’98. LNCS 1558, pages
300–317. Springer Verlag, 1998.

[18] G. Gutin and A. P. Punnen. The traveling salesman problem and its vari-
ations, volume 12 of Combinatorial Optimization. Springer, 2007.

[19] T. Hauk, M. Buro, and J. Schaeffer. Rediscovering *-minimax search. In
H.J. van den Herik, editor, Computers and Games, pages 36–50. Springer
Science & Business, 2004.

[20] M. N. Katehakis and A. F. Veinott Jr. The multi-armed bandit problem:
Decomposition and computation. In Mathematics of Operations Research,
volume 12, pages 262–268. INFORMS, 1987.

[21] G. Kendall, A. Parkes, and K. Spoerer. A survey of NP-complete puzzles.
ICGA, 31(1):13–35, 2008.

[22] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In 15th
European Conference on Machine Learning, pages 282–293, 2006.

[23] H. Matsubara, H. Iida, and R. Grimbergen. Natural developments in game
research. ICGA Journal, 19(2):103–112.

[24] J.A.M. Nijssen. Using intelligent search techniques to play the game Khet.
Master thesis, Maastricht University, 2009.

BIBLIOGRAPHY 79

[25] M. Pfeiffer. Reinforcement learning of strategies for Settlers of Catan. In
Proceedings of the International Conference on Computer Games: Artificial
Intelligence, Design and Education, 2004.

[26] S. Russel and P. Norwig. Artificial Intelligence. Pearson Education Inter-
national, second edition, 2003.

[27] M. P. D. Schadd, M. H. M. Winands, J. W. H. M. Uiterwijk, H. J. van den
Herik, and M. H. J. Bergsma. Best Play in Fanorona leads to Draw. New
Mathematics and Natural Computation 4, (3):369–387, 2008.

[28] B. Sheppard. World-championship-caliber Scrabble. Artificial Intelligence,
134(1–2):241–275, 2002.

[29] N. Sturtevant. Multi-Player Games: Algorithms and Approaches. PhD
thesis, University of California, 2003.

[30] I. Szita, G. M. J-B. Chaslot, and P. Spronck. Monte-Carlo tree search in
Settlers of Catan. In Proceedings of the 12th Advances in Computer Games,
2009.

[31] G. Tesauro. Programming Backgammon using self-teaching neural nets.
Artificial Intelligence, 134:181–199, 2002.

[32] A. M. Turing, C. Strachey, M. A. Bates, and B. V. Bowden. Digital com-
puters applied to games. In B. V. Bowden, editor, Faster Than Thought,
pages 286–310. Pitman, London, 1953.

[33] H. J. van den Herik and M. H. M. Winands. Proof-number search and
its variants. In H. R. Tizhoosh and M. Ventresca, editors, Oppositional
Concepts in Computational Intelligence, chapter 6, pages 90–118. Springer,
2008.

[34] H. J. van den Herik, J. W. H. M. Uiterwijk, and J. van Rijswijck. Games
solved: now and in the future. Artificial Intelligence, 134(1-2), 2002.

