DEVELOPMENT OF SEARCH-BASED
AGENTS FOR THE PHYSICS-BASED
SIMULATION GAME GEOMETRY FRIENDS

Daniel Fischer

Master Thesis DKE 15-03

THESIS SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE OF ARTIFICIAL INTELLIGENCE
AT THE FACULTY OF HUMANITIES AND SCIENCES
OF MAASTRICHT UNIVERSITY

Thesis committee:

Dr. M. H. M. Winands
Dr. ir. J. W. H. M. Uiterwijk

Maastricht University
Department of Knowledge Engineering
Maastricht, The Netherlands
March 30, 2015

Summary

Geometry Friends is a platform video game like the first Donkey Kong game. It has simulated physics
and takes place in a 2D environment. In the rectangular track of the competition a rectangle is con-
trolled, which can move sideways and resize. The objective of the game is to collect all diamonds in the
environment in the least amount of time. In 2013 and 2014 there were Geometry Friends competitions
at the IEEE Conference on Computational Intelligence and Games. This master thesis focuses on the
development of agents for the game Geometry Friends. The thesis gives first an overview of the properties
of physics-based simulation games and requirements of the agents for these games. The search techniques
Monte-Carlo Tree Search (MCTS) and A* are investigated for Geometry Friends. MCTS is able to find
the most promising action with random samples. A* searches the minimum-cost path. To find a route in
a level collecting all diamonds, the search techniques need an abstraction of this level. The abstraction
is based on a directed graph with nodes and edges. For example, nodes are the ends of obstacles and
diamonds in the level. Edges represent the shape in which the rectangle reaches a node from another.
Four A* versions, MCTS, and a combination of MCTS and A* are investigated as search techniques to
calculate a route of nodes to collect the diamonds of a level. Subgoal A* is one of these A* versions. It
searches for a minimum-cost route where all diamonds can be collected. If a time limit is reached or no
route is found, the number of diamonds to collect is reduced by one. The calculated route is used by the
driver. The driver is rule-based and follows the route node by node. It returns the actions to perform.
The different search techniques with different properties are compared to each other in the levels for the
2013 and 2014 competitions. The techniques are also compared to the best agent of the competitions.
Also 10 new difficult levels are created for a larger and more challenging test set. It is discussed why and
which search technique is either more or less effective than the others. The search technique Subgoal A*
was concluded as best search technique for Geometry Friends with a 81% and 32% higher score for the
2013 and 2014 competitions, respectively, than the best agent for the 2013 and 2014 competitions.

Contents

Summary

Contents

1

Introduction

1.1 Alin Games
1.2 Physics-Based Simulation
1.3 Search

GaINeS . . . o o e e e e e e

1.3.1 Monte-Carlo Tree Search
1.3.2 A% e
1.3.3 Abstraction
1.4 Problem Statement & Research Questions
1.5 Thesis Outline e

Geometry Friends

2.1 Game Environment e e

2.2 Players and Actions

2.3 Development Environment

2.4 Uncertainty o e e e

Abstraction

3.1 Nodes o e e

3.2 Edges e

Search

4.1 AR Versions e e
4.1.1 A%
4.1.2 Greedy Goal A* e
4.1.3 Y-Heuristic A*
4.1.4 Permutation A*
4.1.5 Subgoal A*

4.2 Monte-Carlo Tree Search

4.3 Monte-Carlo Tree Search & A*

Driver

5.1 General Procedure

5.2 Rules.

Experiments and Results

6.1 Setup e

6.2 Performance
6.2.1 Best Agent 2013/2014
6.2.2 Abstraction e

6.2.3 Search Techniques
6.3 Discussion

e
(=13
e

<

=W W NN N

~ =3 Ot Ut Ot

—_
(e INoN)

17
17
17
18
18
20
20
22
26

vi Contents

7 Conclusions 51
7.1 Conclusion o 51
7.2 Future Work 52

References 55

Appendices

A New Levels 57

Chapter 1

Introduction

In Artificial Intelligence (AI), games are important since its origin. Games are a challenging benchmark
to test the performance of different techniques. This master thesis is about how to develop an intelligent
agent for the game Geometry Friends. Geometry Friends is a platform video game like the first Donkey
Kong game, it has simulated physics and takes place in a 2D environment. The objective of the game is
to collect all diamonds in the environment in the least amount of time. One of two search techniques is
Monte-Carlo Tree Search (MCTS), which is used because it gets more and more interesting in the last
years because of its successful application. The second search technique is A*. This thesis explains how the
abstraction is performed, how MCTS and A* are implemented, and how the player is controlled through
the level. It describes what are the problems and how they can be solved with which improvements. At
the end, different methods and improvements are compared to each other to demonstrate, which are best
for Geometry Friends. The next sections explain the meaning of Al in games (1.1), what are the properties
of physics-based simulation games (1.2), MCTS (1.3.1), A* (1.3.2), the abstraction in general (1.3.3), the
problem statement and research questions (1.4), and an outline of the thesis (1.5) are described.

1.1 Al in Games

Game Al started with classic board games. In 1950, as computers became available, Shannon (1950) and
Turing (1953) proposed ideas for chess programs. Samuel (1959) of IBM developed a checkers-playing
program, which was characterized as tricky but beatable by strong amateur opponents (Barto, 1998).
The program learned by playing against itself. To choose chess or checkers was a logical choice because
these are games of perfect information so that the computer has access to the entire state of the game.
Furthermore, the rule set is limited and the game is deterministic. With faster computer hardware and
better search techniques even expert players were beaten. The machine Deep Blue developed by IBM
won the second six-game match against world chess champion Garry Kasparov in 1997.

In the past decades, video games started with simple 2D games like Pong and Pac-Man and now
are 3D real-time games with sophisticated graphics and physics. For video games, which getting more
and more complex, also designing a game-playing agent is more challenging. The complexity of these
games offers a range of excellent testbeds for Al research. In the 1980s role-playing games and turn-based
strategy games were developed but they had not a sophisticated AI, usually it was a simple rule-based
system. In 1992, with the game Dune II, a new genre of computer games was introduced: real-time
strategy (RTS). This RTS genre requires the use of efficient Al techniques because a player can perform
an action anytime. Until today, new genres and features of games are one reason for the development
of new Al techniques or enhance existing techniques. The next section continues with Al in games with
looking at physics-based simulation games in combination with the real-time property.

1.2 Physics-Based Simulation Games
In the past few years, physics-based simulation games such as Angry Birds or Computational Pool have

become popular. The agent has to be adapted to handle the physics, otherwise the player loses interest
because the agent’s performance is insufficient to be a competitive opponent. All game objects of the

2 Introduction

game world have physical properties. The physics simulator of these games has complete information
about these properties. The physics simulator simulates and displays each action and its consequences.
A result of the physics and real-time property is that there is a very large or potentially infinite number
of possible actions, which is difficult to handle for an agent. To predict an action is quite difficult because
noise is added to the simulator. The actions are non-deterministic. If the exact physical properties or
the behavior of the simulator are unknown, it is even more challenging. This can be handled by learning
through observation. An intelligent agent should be able to (1) determine or at least approximate the
outcome of actions, (2) plan the best action or actions in sequence in a given situation, (3) handle
uncertainty, (4) and combine reasoning and simulation. There are several Al competitions of physics-
based simulation games, such as Angry Birds, the Physical Traveling Salesman Problem and Geometry
Friends, to foster research in this area.

1.3 Search

To find the most promising route to solve a level of Geometry Friends a search technique is required. Two
search techniques are selected, MCTS and A*. This section explains how MCTS and A* work and which
properties they have. To use a search technique an abstraction of the game is required. This section
describes which properties are important for an abstraction and why the abstraction can be difficult.

1.3.1 Monte-Carlo Tree Search

In 2006, Monte-Carlo Tree Search (MCTS) had its breakthrough with its good performance in the game
Go (Kocsis and Szepesvéri, 2006; Coulom, 2007). Since that time, MCTS has become more and more in
focus of Game AT research (Browne et al., 2012). With random samples the algorithm is able to find the
most promising action in a given domain. In general, MCTS can be divided into four steps (Chaslot et al.,
2008). In the first step, selection, a special selection policy is used to selected nodes of the built tree
until it reaches a leaf node. If it is the first time, simply the root node is selected. If a leaf node of the
tree is selected, the play-out step starts. In the play-out step a random or special play-out policy is used
to determine an action. After this action a next action is selected until a given depth or the end state
is reached. Action means some kind of action, which leads from one state to another. In the expansion
step the node reached by the first action of the play-out is selected and added to the tree. In the last
step the play-out result is backpropagated through the nodes selected in the selection step and the new
node. This means statistics are updated. The play-out is discarded. This process with all four steps is
performed for a certain amount of time. With the statistics of the nodes the most promising action can
be determined.

MCTS has two properties that makes it quite interesting. There is no domain knowledge required and
the algorithm can be stopped any time and the result can be used. The second property is important in
a real-time game like Geometry Friends.

The Physical Traveling Salesman Problem (PTSP) is a real-time game where MCTS performs suc-
cessfully (Perez et al., 2013). In the PTSP the environment is a maze with waypoints scattered around.
The player governs a spaceship and has to collect all waypoints in the least amount of time. It consists
of a route planner, which computes the order of collecting the waypoints before the game starts. Because
this computation has a time limit, it is not possible to compute the complete route. The driver controls
the spaceship in real-time and has a time limit of 40 ms to response an action. If the precomputed route
ends, the driver computes the waypoint to reach next. In the route planner and in the driver MCTS is
used.

1.3.2 A*

A* is selected as second search technique, which is a widely used pathfinding algorithm to find the shortest
route (Hart, Nilsson, and Raphael, 1968). It finds the minimum-cost path given a start node and an end
node. A* follows a route of the lowest expected total costs while it traverses the route. To select the
most promising node, a function f(z) is required, which computes the expected costs of a known node.
The costs are computed by Equation 1.1.

f(x) = g(x) + h(z) (1.1)

1.4 — Problem Statement & Research Questions 3

g(x) are the true costs from the initial node to node = and h(z) are the estimated costs from node = to
the goal node. h(z) is computed by an admissible heuristic.

Starting from the initial node, for all successor nodes the costs are computed and added to a list.
Next the node with the lowest expected costs of the list is selected and visited next. Again the costs of
all successor nodes are computed and added to the list. This is performed until A* finds the shortest
route. The single steps are not explained in detail in this section but it gives a brief introduction.

1.3.3 Abstraction

Abstraction is a method to represent the level of the game so that search can be used. At first a general
explanation about abstraction is described and then a brief introduction of the selected approach is given.

One of two general approaches is to group together actions. The result of grouping together more or
less similar actions is that the branching factor decreases and therefore the complexity of the search tree
decreases. The abstraction of the upper tree should be smarter and maybe more time-consuming than
the lower part of the three because in the upper part a wrong decision can lead to a non-optimal action.
In the lower part, the play-out, a high number of simulations is wanted so that the abstraction is less
sophisticated. Weinstein, Mansley, and Littman (2010) use an extension called Hierarchical Optimistic
Optimization applied to Trees (HOOT) to overcome the discrete actions limitation of UCT with replacing
the action selection policy. Bellemare, Veness, and Bowling (2013) proposed an interesting approach with
image-based factored environment recognition for a collection of 20 Atari 2600 games. Jiang, Singh, and
Lewis (2014) showed an approach finding local abstractions in layered directed acyclic graphs in Markov
decision processes and local and approximate homomorphisms, which increases the performance of MCTS
in Othello.

In the second approach a sequence of actions is abstracted to a high-level task. With fewer actions
the depth of the tree decreases and this increases the forward planning of MCTS. These sequences of
actions are called macro-actions and are successfully used in Ms Pac-Man (Pepels and Winands, 2012)
and in the Physical Traveling Salesman Problem (Perez et al., 2013).

A quite interesting abstraction for Geometry Friends is given by Kim, Yoon, and Kim (2014). A
directed graph is built with nodes and one/two-way edges. For example, nodes are at the ends of an
obstacle, at a narrow alley or at the point where the player will fall down. The edges describe how node
B can be reached by node A if there is an arrow from node A to B. Within this graph building process
physical constraints are taken into account but the physical properties of Geometry Friends are unknown.
This approach can be assigned to the second abstraction approach because the edges abstract a sequence
of actions to one action. In addition it is a domain dependent approach for Geometry Friends and not
directly applicable to other games.

1.4 Problem Statement & Research Questions

Geometry Friends is a real-time physics-based simulation game (Rocha, 2009). The aim of the thesis is
to develop agents, which can solve the competition levels of this game. The representation of the levels is
done by an abstraction, which cannot represent the world without missing information. For the rectangle
and circle players the abstraction has to be different because they have different actions. There is no
information about the physics, which makes the abstraction more inaccurate. A* is a common search
technique to find the shortest route in a relatively short amount of time, but in Geometry Friends the
shortest route is not the best route. The best route is the one where all the diamonds can be collected.
Physical conditions are the reason why the shortest route is not the best route. MCTS has the properties
that it can be stopped any time and no domain knowledge is necessary. It can be that MCTS is not
optimal because of short calculation periods or problems with action or state space. The part which
controls the player has to take into account the physics and it can have problems because the abstraction
is not perfect.

As a result the problem statement is as follows:

e How can we develop an agent for Geometry Friends?

The following four research questions can be derived:

4 Introduction

e How can the game world be abstracted by taking into account physics?

A graph is built for each game level with nodes for obstacles and diamonds. The physics con-
ditions are taken into account in the edges between the nodes.

e How can A* be incorporated in Geometry Friends?

A* uses the abstraction to calculate a route. There are several A* versions proposed in this thesis,
Greedy Goal A* Y-Heuristic A*, Permutation A* and Subgoal A*.

e How can MCTS be integrated in Geometry Friends?

MCTS also uses the abstraction to calculate a route. In addition, a combination of MCTS and
A* is presented.

e How can the driver take into account the physics and missing information due to abstraction?

The driver is rule-based and follows the route node by node. The physics is taken into account
by the driver, which accelerates, decelerates or does not move. It is also taken into account in the
route because of the abstraction. Missing information is not taken into account.

1.5 Thesis Outline

This section provides a brief overview of all following chapters of the thesis. First, Chapter 2 is about
the game Geometry Friends where the game environment, possible actions of the player, the development
environment, and uncertainty of the game are explained. Chapter 3 describes the abstraction, what is
represented by the nodes and edges, and how they are created. In Chapter 4 the search techniques A*
and MCTS, and a combination of MCTS and A* are explained in detail. For A* there are four A*
versions with different approaches. Chapter 5 explains the rule-based driver. All rules are described and
in what situations which rule is applied. All experiments and results are shown in Chapter 6. The setup
of the experiments, the performances of the best agent in the Geometry Friends 2013/2014 Competition,
the abstraction computation and all different search approaches are presented. In the discussion, it is
explained why an approach is either more or less effective than others. Finally, Chapter 7 concludes the
thesis. The thesis is summarized, the research questions are answered and an outlook for possible future
extensions is given.

Chapter 2

Geometry Friends

The physics-based simulation game Geometry Friends was developed originally for the Wii in 2009. It
is the result of a master thesis that had as goal to create a collaborative gameplay experience (Rocha,
2009). The vision is that human and agent players play in cooperation. Since 2013 there is an official
Geometry Friends Competition of the IEEE Conference on Computational Intelligence in Games (CIG).
In August 2015 the competition will run again. The goal in this platform game is to collect all diamonds
in the environment in the least amount of time. To show the challenge of the goal in this chapter the
game environment (2.1), the different players and actions (2.2), the development environment (2.3), and
uncertainty in the game (2.4) are described.

2.1 Game Environment

Geometry Friends takes place in a 2D environment with simulated physics, gravity and friction. The
physics model is unknown (i.e., there is no forward model). There are 30 different levels in the 2013
competition. 10 levels for each track with different properties, 5 public levels and 5 private levels. The
2014 competition has the same public levels but some private levels changed. There is the rectangle
track for the rectangle player, the circle track for the circle player, and the cooperation track for both
players. The differences of the players and their actions are described in the next section. In Figure 2.1
the rectangle public level 5 is shown. The green block is the rectangle player. The black objects are
simple obstacles. The purple objects are the diamonds to collect. Sometimes a diamond is also called
collectible. The layout of the obstacles, the initial position of players and the place of diamonds is static
but different in each level. Figure 2.2 shows a more complex level of the cooperation track. A special
yellow obstacle can be seen, which is an obstacle for the green rectangle player but not for the yellow
circle player. This obstacle exists also in green where it is an obstacle for the yellow player but not for
the green one.

In the competition there is a time limit, a completion bonus and a collectible unit value, which vary for
each level for the 2013 competition. The 2014 competition has the same completion bonus and collectible
unit value for each level. The formula of the score is shown in Equation 2.1. The score is calculated by
Vcompieted, which is the completion bonus, multiplied by maxTime minus agentTime, which is the time
limit and the time the agent needed, divided by mazTime. At least Viooyeer, the collectible unit value,
is multiplied by N¢oiject, the number of collected diamonds, and added to the score.

(maxTime — agentTime)

ScoreRun = VCompleted X + (VCollect X NCollect) (21)

maxTime

2.2 Players and Actions

Geometry Friends has two types of players, the green rectangle and the yellow circle with different
abilities. In Figure 2.3 the different actions can be seen. The green rectangle can slide sideways, resize
from a square to a vertical or horizontal rectangle with no mass change. In any case, the surface is always
the same for any shape. The yellow circle can roll sideways, jump and resize the radius/mass. When
the square or the circle player moves sideways they accelerate and decelerate. For example, if the player

6 Geometry Friends

Figure 2.1: Rectangle Level 5

fps: 95 Caught: 0

Figure 2.2: Cooperation Level 8

2.3 — Development Environment 7

rTT T 1
1

ﬁ 150x200 pixel]
1

Jump JPEE
- ~
. (N
7 \

’ Pl \
1 4 \\ \
1 4 \

’ AT
| 1 \ I
\\ I 1]
'y
v 1,
ANAY ’,
N ’,
SN v

Sideway roll Resize with mass change

Figure 2.3: Actions of the players

moves left and the move left action is performed, the player accelerates, if the player moves left and the
move right action is performed, the player decelerates.

The levels have a different walkthrough for each player. For the rectangle player it is a challenge in
puzzle solving. Platform construction and the order of collecting diamonds are difficult. The circle player
also has some puzzles but the main part is the actuation. Here, puzzles require precise skills and timing.
The cooperation track combines both challenges.

2.3 Development Environment

Geometry Friends is developed in C#, Microsoft’s Visual Studio is therefore required. On the wiki
page' of the project it is written how the project has to be configured and for each player a sample
agent is described, which is already implemented. All agent files are kept in the main project folder
GeometryFriendsAgents with the sample agent classes BallAgent and SquareAgent. Before running the
executable file to start the game, the project has to be built. The game automatically loads the agent
files once a specific level is picked in the level overview.

There are three methods given, which are important for development of an agent. The Setup method
is called once a level is started and gives the following information:

1. Number of obstacles, green obstacles, yellow obstacles and collectibles
2. Square z/y position, x/y velocity and height

3. Circle z/y position, z/y velocity and radius

4. Of all the obstacles x/y position, height and width

5. Collectible x/y position

Position means the center point of an object. The full level screen has a width of 1280 pixels and a height
of 800 pixels. The UpdateSensors method updates the number of collectibles, square information, circle
information and collectible coordinates. At each time step (~10ms depending on the hardware) an action
can be executed in the Update method with SetAction.

2.4 Uncertainty

Geometry Friends has some noise and bugs. For example, the first noise factor is that the player runs
into a hidden pixel on a flat obstacle and jumps in the air or it gets interrupted by a hidden pixel at an
edge of an obstacle. Another noise factor is that the rectangle player information x/y position, velocity
and height have noise of about plus/minus one pixel.

1Link to the wiki page: http://gaips.inesc-id.pt:8081/geometryfriends-wiki/doku.php

8 Geometry Friends

fps: 70 Caught: 1 Time: 22

Figure 2.4: Rectangle player gets stuck in an obstacle

Now the bugs of the game are described. The given rectangle player information about the height is
reversed with the width if the height of the rectangle is lower than 158 pixels and the rectangle overturns
on another obstacle. If this happens and the rectangle morphs up or down, the second bug is triggered.
The rectangle gets stuck in the obstacle and cannot move anymore. The player can also get stuck in an
obstacle during morphing in a gap. Figure 2.4 shows the rectangle player in an obstacle.

The game has a timer, which starts when the player can move and stops if all obstacles are collected.
The third bug is that the game and also the timer freeze during calculations. That means the timer
does not take into account different calculation times. The time is a factor of the competition score so
this timer bug is quite a problem. The noise and the bugs have to be taken into account during the
development of the agents.

Chapter 3

Abstraction

The abstraction represents the structure of a level and possible actions of Geometry Friends. This is the
foundation to compute routes with both search techniques, A* and MCTS. This abstraction takes into
account the rectangle player and its abilities. For the circle player the basics could be the same but the
movement and thus the physical conditions are different. The approach of the abstraction is based on
the following two articles. The article by Kim et al. (2014) describes a directed graph abstraction for
Geometry Friends. The graph consists of nodes and one/two-way edges. For example, nodes are at the
ends of an obstacle, at a narrow alley or at the point where the player falls down. The edges describe
how node B can be reached by node A if there is an arrow from node A to B. For instance, the rectangle
player has three different edges for a “Square”, “Horizontal rectangle” and “Vertical rectangle” action.
Within this graph building process physical constraints are taken into account but the paper does not
explain it and the physical properties of the game Geometry Friends are unknown. Next, the article by
Perez et al. (2013) describes an abstraction for the Physical Traveling Salesman Problem, which uses
only the collectables. The approach of an own abstraction is to combine everything, the nodes given by
the obstacles, create nodes for the collectables and take into account the physics of the game.

The abstraction is computed when a level starts. Looking back at Section 2.3 it means the implemen-
tation is in the class SquareAgent. The abstraction is performed at the first call of the Update method.
At this step all information is given. A first simple representation of the level is required to compute the
nodes and edges of the abstraction. This representation is built by the given obstacle information. In a
boolean matrix all obstacles are set as true and the free space is set as false. With this matrix the nodes
(3.1) and edges (3.2) can be calculated in the next sections.

3.1 Nodes

Nodes are key pixels in the level to follow a route. They have special attributes which are:
e 1 coordinate
e y coordinate

Attribute to know if the node is a diamond or not

e Attribute to know if the node leads to a fall-down node

Attribute to know if it is a pseudo node

The z and y coordinates and whether the object is a diamond are obvious attributes. The other two
attributes are important and explained further in Chapter 5. The nodes are based on the initial position
of the player, obstacles and diamonds. All nodes are one pixel above an obstacle except high diamond
nodes, which are at the center of the diamond.

Figure 3.1 shows the nodes of rectangle level 5 to explain all types of nodes. The initial position node
is the center point of the player and can be seen in Figure 3.1 labeled as node 1. An ordinary obstacle
has two nodes at the left and right corner, each one pixel above and one pixel to the left/right (similar
to Kim et al. (2014))(e.g. node 2 and 3). If the obstacle is next to another obstacle, which obstructs

10 Abstraction

‘ fps: 93 Caught: 0 Time: 0

()) @
Y (3)

Figure 3.1: Nodes of rectangle level 5

the direction, the node is placed in front of the other obstacle (e.g. node 4). If the obstacle is next to
an obstacle with the same height level there is no node. If there is an obstacle completely on another
obstacle, the lower obstacle has no nodes (e.g. obstacle A). If there is free space next to the obstacle,
a fall-down node is created at the ground one pixel to the left/right and straight down until another
obstacle is reached (similar to Kim et al. (2014))(e.g. node 5). For each diamond a straight fall-down
node is created (e.g. node 6). If the diamond is more than 80 pixels above the obstacle below, the center
of the diamond is a node and marked as diamond (e.g. node 7). If the diamond is below the threshold
of 80 pixels, the fall-down node of the diamond is marked as diamond and no other node is created (e.g.
node 8).

3.2 Edges

The edges between two nodes describe the action the player has to perform to get from one node to
another one. The edges are represented in an adjacency matrix with numbers from 0 to 3. The number 1
implies an action as a square, 2 an action as a horizontal rectangle, and 3 an action as a vertical rectangle.
The number 0 implies there is no edge between the nodes. Another important piece of information is
the direction the player has to follow to reach the goal node using the given action of the adjacency
matrix. The direction is also stored in a matrix with the same size as the adjacency matrix. There are
eight different directions from 0 to 7, from right to upper right, clockwise (Figure 3.2). The last piece of
information, for later calculations, are the distances between nodes with an edge. The distances are also
stored in a matrix. To compute the distance the Euclidean distance is used.

The edge process starts with comparing each node to all the other nodes. The direction and the
distance are computed with delta x and delta y. If one or both nodes are diamond nodes and the
direction between the nodes is 1 (lower right), 3 (lower left), 5 (upper left) or 7 (upper right), this edge
is not taken into account. These directions are not taken into account because diagonal lines are more
prone to error than driving over vertical or horizontal obstacles. If an error occurs while collecting a
diamond, for instance, in direction 1 (lower right), this is much worse than not reaching a non-diamond
node. Because of this edges incident to one or two diamond nodes are only allowed for straight vertical

3.2 — Edges 11

>

=0&deltay>0

6 : up, delta x

<

>

X B}jap ‘ UMOp : g J

0>Ae)ep R0

v

Figure 3.2: Definition of all directions

12 Abstraction

or horizontal lines and not for diagonal lines. In general, direction 5 (upper left) and 7 (upper right)
are not taken into account to calculate the edges because it is not necessary. If one of the following
three conditions holds, there is no edge between two nodes and the corresponding entry is set to 0 in the
adjacency matrix:

e Ay > 200 & Ax =0, the rectangle cannot jump and its maximum height is 200 pixels
e Ay > 50 & Ax # 0, the targeted platform is too high

e direction = 6 & (Ay <200 & >75) & node2 # diamond, it is not necessary to continue in up
direction if the second node is not a diamond because the rectangle player could not move along,
the node is too high

Otherwise, the algorithm continues with shifting the three different shapes of the rectangle (square,
horizontal rectangle and vertical rectangle) pixel by pixel along the straight vertical, horizontal or diagonal
line, depending on the direction.

The straight vertical or horizontal lines are straightforward to identify but for the diagonal lines Bre-
senham’s line algorithm is used (Bresenham, 1965). The algorithm is developed in the field of computer
graphics and determines the points of a n-dimensional raster that should be selected in order to form a
close approximation to a straight line between two points. Algorithm 1 shows the implemented Bresen-
ham’s line algorithm. The start point and goal point coordinates x0, y0 and z1, y1 are required to start
the algorithm. Also the matrix obstacleOpenSpace with all obstacle and open space pixels was computed
before. At the beginning delta x and delta y are computed and sz and sy define the working octant. In
Bresenham’s algorithm the xy-symmetry is used for the octants. There are also two error variables err
and e2. A while loop starts and if the current point (20, y0) is an obstacle, null is returned. Else the
point is added to the line variable. The line variable is a list of all points of the straight diagonal line
between the nodes. If the start point is the goal point, the algorithm is finished and the complete line
is returned. Else e2 is defined as 2xerr. If e2 is higher than delta y, delta y is added to err and x0 is
shifted +1 pixel in z direction, depending on the octant (sx). If €2 is lower than delta x, delta z is added
to err and y0 is shifted +1 pixel in y direction, depending on the octant (sy). With the new 20 and 30
values the next iteration starts. Summarizing Bresenham’s line algorithm shifts the start point pixel by
pixel in x and y direction depending on the octant and error value in the goal point direction.

If in any direction a selected pixel of the shifting process of the rectangle is an obstacle pixel, the
entry in the adjacency matrix is set to 0. It is also set to 0 if in direction O (right) or 4 (left) there is
no obstacle in between the nodes for a distance of 200 pixels or more because the rectangle would fall
down. In Figure 3.3 the nodes and edges of rectangle level 5 can be seen and Figure 3.3 helps to explain
the different types of edges. In direction 0 (right) or 4 (left) the shifting is from the start node to the
end node in z direction and from the start node, the height of the rectangle along the y direction. An
edge example of a square edge in direction 0 (right) or 4 (left) is labeled as edge 1 in Figure 3.3. Edge 2
of Figure 3.3 is a horizontal rectangle edge in direction 0 (right) or 4 (left). For direction 2 (down) and
6 (up) the shifting is from the start node to the end node in y direction and to left and right the width
of the rectangle along the z direction. At least one of both z directions has to be successful. In Figure
3.3 a square edge in direction 2 (down) is edge 3, a vertical rectangle edge in direction 2 (down) is edge 4
and a vertical rectangle edge in direction 6 (up) is edge 5. The shifting of direction 1 (lower right) and 3
(lower left) is different. For each pixel of the diagonal line from top to down, the shifting starts from the
pixel of the diagonal line, the width of the rectangle along the z direction to the right. If it gets stuck
and the shifting is not finished the rectangle is shifted the missing width from the pixel of the diagonal
line to the left. An example of a square edge in direction 1 (lower right) is edge 6.

After the calculation of the edges there are two more steps. The first step is executed if an edge exists
between two nodes with the following three properties:

e Both nodes lead to a fall-down node
e Direction 1 (lower right) or 3 (lower left)
e Distance lower than 150 pixels

Then the edge is set to 0 because the rectangle could get stuck in a gap. The second step is performed
if there is a diamond without any edge so that it is unreachable. If this is the case, the edge calculation

3.2 — Edges 13

Algorithm 1 Bresenham’s line algorithm

Require: Start point with z0 and y0, goal point with z1 and y1, obstacleOpenSpace is given
1: List pixels < @
2: int dx = abs(x1 - x0)
$intsx =x0<x171:-1
4: int dy = abs(y1 - y0)
5 intsy=y0<yl?1:-1
6: int err = dx + dy;
7: int €2 < 0;
8: while true do

9: if obstacleOpenSpace[y0,x0] = true then

10: return null

11: end if

12: pixels.Add(Array + x0, y0)

13: if x0 = x1 and y0 = y1 then

14: break

15: end if

16: €2 =2 X err

17 if 2 > dy then

18: err += dy;

19: x0 += sx;

20: end if

21: if €2 < dx then
22: err += dx;

23: y0 += sy;

24: end if

25: end while
26: return pixels

fps: 93 Caught: 0

A —

4

O =Q=Q=9

I8 ol

0 =@==Q=@

Figure 3.3: Nodes and edges of rectangle level 5

14 Abstraction

1 2 3 1 2 3 1 2 3
1 0 0 1 1 0 7 0 1 0 | 484 | 63
2 0 0 3 2 3 0 2 2 484 | 0 | 480
3 1 0 0 3 4 6 0 3 63 (480 | O
(a) Actions (b) Directions (c) Distances

Figure 3.4: Examples of three matrices

is performed again but the diamond is set to an ordinary node for the calculation process so that more
edges are calculated this time.

Algorithm 2 shows the edge calculation. Algorithm 3 shows a method performed in Algorithm 2 called
CheckEdge, which calculates the directions, distances and shifts different rectangle sizes.

Algorithm 2 Calculation of edges

1: 2D Array adjacencyMatrix < @
2: 2D Array directionMap < @

3: 2D Array distanceMap < ©

4: for all nl € Nodes do

5: for all n2 € Nodes do

6 if n1 =n2 then

7: continue

8 end if

9 Array actionDirectionDistance = CheckEdge(nl, n2)

10: adjacencyMatrix[nl index, n2 index] = actionDirectionDistance|0]
11: directionMap[nl index, n2 index] = actionDirectionDistance[1]

12: distanceMap[nl index, n2 index] = actionDirectionDistance|2]

13: if actionDirectionDistance[1] = Direction.Down and actionDirectionDistance[0] # 0 then
14: nl.setLeadsToFallDown(true)

15: end if

16: end for

17: end for

A simple example of the result of the calculation is given with Figure 3.4, which shows three matrices.
In general, the node number of real Geometry Friends levels is between 10 and 30 nodes so that the
matrices have a dimension of 10x10 to 30x30. This example has only three nodes. Figure 3.4 (a) is the
adjacency matrix with all actions, Figure 3.4 (b) is the direction matrix and Figure 3.4 (c) shows the
distance matrix. All diagonal fields are set to 0 because the node is not compared with itself. Field 3:1 in
Figure (a) has value 1, which means the square player can reach node 3 from node 1. Field 3:1 in Figure
(b) has value 0, which means the square has to go in direction right. Field 3:1 in Figure (c) has value 63,
which means the distance between the nodes is 63 pixels. For Field 1:3 this is vice versa.

In Field 3:2 of Figure (a) the value is 3, which means the vertical rectangle player can reach node 3
from node 2. Field 3:2 in Figure (b) has value 2, which means the vertical rectangle has to go in direction
down. Field 3:2 in Figure (c) has value 480, which means the distance between the nodes is 480 pixels. In
this case it is not vice versa. There is no edge from node 3 to node 2. Direction 6 (up) and the distance
of 480 pixels imply why. Because of the physical constraints it is not possible.

3.2 — Edges 15

Algorithm 3 Calculation of directions, distances and shifts different rectangle sizes: CheckEdge(Node
nl, Node n2)

1. int Az = nl.getX() - n2.getX()

2: int Ay = nl.getY() - n2.getY()

3: int edge < 0

4: int direction - 0

5: int distance < 0

6: if Ax < 0 and Ay = 0 then

7. direction = Direction.Right

8 distance = Az x -1

9: end if

10: if Az < 0 and Ay < 0 and not(nl.isDiamond() or n2.isDiamond()) then
11: direction = Direction.RightDown

12: distance = /(Az)? 4 (Ay)?

13: end if

14: For all other directions the if cases are similar and skipped

15: if Ay > 200 and Az = 0 or Ay > 50 and Az # 0 or direction = 6 and (Ay < 200 and > 75) and

not(n2.isDiamond()) then
16: bool obstacle = checkSquareSize(squareSize, direction, nl, n2)
17: if not(obstacle) then

18: return Array < 1, direction, distance

19: else

20: obstacle = checkSquareSize(horizontalRectangleSize, direction, nl, n2)
21: end if

22: if not(obstacle) then

23: return Array < 2, direction, distance

24: else

25: obstacle = checkSquareSize(verticalRectangleSize, direction, nl, n2)
26: end if

27: if not(obstacle) then

28: return Array < 3, direction, distance

29: end if

30: end if

31: return Array < edge, direction, distance

16

Abstraction

Chapter 4

Search

After building the abstraction a search technique is used to calculate the most sophisticated route. This
includes to collect all diamonds of a level in the least amount of time. It is more important collecting
all diamonds than make a mistake while collecting because of driving too fast. The order of collecting is
important because of the physics. If a diamond is at a high obstacle and the player starts at this obstacle,
it has to collect this diamond first because if it falls down, it cannot reach the high diamond anymore.
There are two different search techniques. A* and MCTS have been introduced in Section 1.3 and are
now explained in detail. There is also an approach of combining both search techniques. The first section
of this chapter (4.1) is about A* with different adaptations. It is explained how A* works in detail and
which different node orders and heuristics are used. In Section 4.2 MCTS is explained in detail with its
policies. Section 4.3 describes how and why both techniques are combined.

4.1 A* Versions

A* is able to find the minimum-cost route given a start and a goal node. In Geometry Friends the number
of diamonds is between two and five so that there is not only one start and one goal node. Also the order
of collecting the diamonds is important. Each adapted A* approach uses a different order of diamonds
but the A* algorithm to calculate the route for a node pair is the same. Therefore A* is explained in
detail at the beginning. Then the different A* versions are described.

4.1.1 A*

A* uses the node list and the distance map of the abstraction. It starts with a calculation of the f score
of the given start node. The f score is calculated by the g score, the true costs, from the initial node
to the current node and adding the heuristic value h, the estimated costs, from the current node to the
goal node. The heuristic, which is admissible, is computed by the Euclidean distance. The triple of node
index, f score and g score is stored in a so-called open list. The open list includes all triples, which could
be part of the shortest route while searching for the minimal route and have to be checked. The new
current node is the node of the open list with the lowest f score. The node with the lowest f score is
added to the closed list, which means that there exists no shorter route for this node. Next all neighbors
of the current node are selected. If the neighbor is already in the closed list, the next neighbor is selected.
Then the g score of the neighbor is calculated by the g score of the current node and the distance between
the current node and the neighbor. A* finds the distance in the distance map. If the neighbor exists
already in the open list, this instance of the neighbor is also selected. If the neighbor does not exist in the
open list or the existing instance has a higher g score, there are more steps. It is stored that the neighbor
was reached by the current node, the neighbor’s f score is calculated and the triple of the neighbor is
stored in the open list or updated if it already exists. This all is performed until the open list is empty
or the selected node of the open list with the lowest f score is the goal node. The segment of selecting
the first entry of the open list until it is empty or the goal node is reached is shown in Algorithm 4. The
complete route can be rebuilt by searching for each reached by node starting with the goal node. A*
has the property to calculate the same route for the same level and A* is not optimal. It searches for

18 Search

the minimum-cost route but this is not the best route to collect all diamonds in a level. There are levels
where it is not possible to collect all diamonds with the shortest route between the diamonds.

Algorithm 4 A* part of selecting the node with the lowest f score and calculating new f scores to
determine the route
Require: start and goal node is set and start node with f and g score is added to open list

1: while openList.Count > 0 do

2: Array current = LowestFScore();

3: if current[0] = goal then

4 return Route(current[0])

5. end if

6: closedList.Add(current)

7. List neighbors = Neighbors(current[0])

8 for all neighbor € neighbors do

9 if GetOfList(closedList, neighbor) # null then

10: continue

11: end if

12: int gScore = current[2] + distanceMap|current[0], neighbor]
13: Array neighborInList = GetOfList(openlist, neighbor)

14: if neighborInList = null or gScore < neighborInList[2] then
15: cameFrom[neighbor] = current[0] {cameFrom is an array with the size of the number of nodes}
16: int fScore = gScore + HeuristicValue(neighbor, goal)

17: if neighborInList = null then

18: openList.Add(Array < neighbor, fScore, gScore)

19: else

20: ReplaceInOpenList(neighbor, fScore, gScore)

21: end if

22: end if

23: end for
24: end while

4.1.2 Greedy Goal A*

Greedy Goal A* searches the shortest route for one diamond each time. This means to start from the
initial node and select the shortest reachable diamond. Then from this diamond again search for the
shortest reachable diamond until all diamonds are selected. The problem with this approach is that
this greedy route is not always the best route where all diamonds can be collected. Figure 4.1 shows
an example where Greedy Goal A* cannot collect the last diamond labeled as 3 because it starts with
diamond 1 at the bottom and then the rectangle cannot get up to diamond 3 anymore. Algorithm 5
shows the Greedy Goal A*. It starts with adding all diamond indices to a list. While this list is not
empty, A* is used to calculate the route between the start index, which is 0 at the beginning, and all
other diamond nodes. Each route and its complete distance are stored. Then the shortest of these routes
is selected and added to a list of the complete route. The start index is set to the goal node of the selected
shortest route, the collected diamond is removed from the diamond indices list. The while loop continues
if the diamond indices list is not empty. After the while loop, the individual routes are merged to one
route. If there exists no route, an empty route is returned.

4.1.3 Y-Heuristic A*

To handle the issue of the Greedy Goal A* a heuristic is used, which takes the physics into account. The
diamond with the highest y coordinate is the first diamond to collect. Next are those diamonds with
the next highest y coordinates. The x coordinate is not taken into account. Because of the y coordinate
heuristic this adapted A* is called Y-Heuristic A*. It is a reasonable heuristic and approach because the
rectangle player has to start at the highest reachable diamond else he cannot reach it anymore. Having
this diamond order, A* calculates the shortest route between two nodes pair by pair and all results are

4.1 — A* Versions

19

Algorithm 5 Greedy Goal A*

1:
2:

o

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

List diamondIndex < ©
for int n = 0 to nodes.Count n++ do
if nodes[n].isDiamond() then
diamondIndex.Add(n)
end if
end for
int startIndex < 0
List queueList <+ ©
while diamondIndex.Count > 0 do
List queueListTemp < @
List queueDistanceListTemp < ©
AStar astar
for int i = 0 to diamondIndex.Count , i++ do
astar < AStar(startIndex, diamondIndex[i])
queueList Temp.Add(astar.Run())
queueDistanceList Temp.Add(astar. GetCompleteDistance())
end for
int shortest «— queueDistanceList Temp]0]
for int i = 1 to queueDistanceList Temp.Count , i++ do
if queueDistanceListTemp[i] < shortest then
shortest = queueDistanceListTempli;
end if
end for
if shortest # int.MaxValue then
int shortestIndex < queueDistanceList Temp.IndexOf(shortest)
queueList. Add(queueList Temp[shortestIndex])
startIndex = diamondIndex|[shortestIndex]
diamondIndex.Remove(startIndex)
end if
end while
if queueList.Count = 0 or queueList[0] = null then
return Queue + @
end if
List completeList < @
completeList. AddRange(queueList[0]. ToList())
for int i = 1 to queueList.Count , i++ do
List temp + queueList[i]. ToList()
temp.RemoveAt(0)
completeList. AddRange(temp)
end for
Queue completeQueue +— @
for int i = 0 to completeList.Count , i++ do
completeQueue.Enqueue(completeList][i])
end for
return completeQueue

20 Search

fps: 100 Caught. 0

Figure 4.1: Rectangle level 7 with Greedy Goal A*

merged together. Figure 4.2 shows the calculated route of Y-Heuristic A* in rectangle level 5. Y-Heuristic
A* has a similar problem like Greedy Goal A*. There may be levels, which the heuristic cannot solve. The
algorithm of Y-Heuristic A* is not shown because it is similar to Greedy Goal A* except the calculation
of the diamond order in descending y coordinate order. For these diamonds A* calculates the route for
each two diamonds in a row. At the end all routes are merged together. If there exists no route for a
node pair this route is skipped. If there exists no complete route an empty route is returned.

4.1.4 Permutation A¥*

Another approach is to search the shortest route where the most diamonds can be collected over all
partial permutations without repetition of the diamonds. This approach is called Permutation A*. For
instance, if there are 5 diamonds in the level and all permutations are calculated, first the routes for all
permutations with 5 diamonds are calculated with A*. Then the shortest route of all calculated routes is
selected. It is possible that there are no routes to collect all 5 diamonds. Then the algorithm continues
with all permutations with 4 diamonds and searches also for the shortest route if at least 1 route with 4
diamonds can be found. Otherwise, the algorithm continues with 3 diamonds. This approach ensures that
the most diamonds with the shortest route are collected if the calculation time is not limited. Equation
4.1 shows the number of permutations for 5 diamonds.

> 5! 5! 5! 5! 5!

n!
;;(n—k)! TG0 G2 T Go3 G5-al G-

=325 (4.1)

For 5 diamonds with k=1 to k=5 and n=5 the result is 325 permutations. For the current maximum
number of 5 diamonds the calculation time is acceptable but with more diamonds the calculation time
would be insufficient.

4.1.5 Subgoal A*

The last approach of A* does not use any predefined diamond order. It is an adapted A* algorithm
where the A* node has a new property and the heuristic is set to 0. The property stores the collected

4.1 — A* Versions 21

fps: 93 Caught: 0

Figure 4.3: Subgoal A* graph example

diamonds and the order of the diamonds for each node. It is used to search for all diamonds with the
ordinary A* pathfinding. An example is given with Figure 4.3. There are five nodes and two of them
are diamond nodes. Without the new property A* cannot find both diamonds and would return only the
route A, B, C or A, D, E, depending on which diamond will be collected last. With the new property
there are different states of B, for instance, B without a diamond. B with diamond collected at C. B
with diamond collected at E. These collected diamonds are stored in the new property. This means, if
A* searches from A to B to C, A* will not stop but searches again back to B because the first B state
does not contain the diamond collected at C' and in the current state the diamond was collected at C.
This is equal for all other states so that A* will lead to the diamond at E and returns a complete route
from A to B to C to B to A to D to E. For complex levels it is possible that the search time is high
so that the given number of diamonds to collect is decreased by one for instance every two seconds. It
is also possible that in less than two seconds A* already finishes the search for all diamonds but could
not find a route. Then the number of diamonds is also decreased by one and the algorithm starts again.
Because this algorithm allows more than one goal node it is called Subgoal A*.

22 Search

Repeated X times J

Selection Play-out Expansion Backpropagation

The selection strategy is One simulated One node is added The result of this game
applied recursively until an game is played to the tree is backpropagated in
unknown position is reached the tree

Figure 4.4: Four steps of Monte-Carlo Tree Search

4.2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) (Coulom, 2007) determines the most promising action in four steps,
which were explained in general in Subsection 1.3.1 and are shown in Figure 4.4.

MCTS uses the node list, the adjacency matrix with all actions and the number of diamonds of the
level. A MCTS node has the following attributes:

Array with its children

Its parent node

Attribute to count how often the node was visited

A quality measurement value of the node

The number of collected diamonds so far

Attribute to know if the node is a diamond or not

e Attribute to know if the node is a terminal state or not

The algorithm starts from the root node and uses the selection policy until a leaf node is reached. Every
time the child, which has the highest UCT value, is taken.

UCT means Upper Confidence Bound for Trees, which is the most popular selection policy algorithm
(Kocsis and Szepesvéri, 2006). The formula of UCT can be seen in Equation 4.2.

In(ny)

UCT =X, +C (4.2)

N

In the equation a child c is selected to maximize the value. n, describes the number of times the parent
has been visited, n. is the number of times the child has been visited and C' is a constant. The second
term describes the exploration. X, is the average reward of child ¢, it can have a range of [0,1] and is
the exploitation part.

Equation 4.3 shows the implemented and adapted UCT algorithm of the selection policy. The problem
of the selection is to find a good ratio of exploration and exploitation. The algorithm ensures that all

unvisited children are at least visited once before any child is investigated further.

AccRewardVal,. n In(n, +1)
Ne + € Ne + €

UCT = + (random(1) x €) (4.3)

4.2 — Monte-Carlo Tree Search 23

AccRewardV al, is the current accumulated reward value of the child, which is given by the backpropaga-
tion, n. is the number of times the child was visited and n, is the number of times the parent was visited.
The random value is between zero and one, and ¢ is used to add a random property for the selection of
new children. It is also used to avoid divisions by zero visits at new children. € has a value of 0.01. X of
the general UCT equation is replaced by the accumulated reward value of the child divided by the sum
of the visits of the child and e. The constant C' of the general UCT equation is set to 1. The exploitation
part % in the adapted UCT equation is not between 0 and 1 but this is not necessary.

Now back to MCTS and the selected leaf node. If the leaf node is a terminal state the algorithm stops.
Otherwise the leaf node is expanded. The expansion means to create all children of the leaf node by using
the actions of the adjacency matrix of the abstraction. For every child it is set whether it is a diamond
and a terminal state. If it is a diamond, the number of collected diamonds is increased. Then one of
the new children is selected by the play-out policy and the play-out starts. This policy chooses actions
randomly. In the play-out actions are selected according to this policy. This selection is performed until
a terminal state is reached or the length of the path in the play-out is higher than 10 times the number of

nodes of the level. At the end of the play-out the value is calculated by Equation 4.4 (Kim et al., 2014).

(NCollect + 001) X VCollect X avg(VCompleted)
length

(4.4)

Neotiect 18 the number of collected diamonds. Viepeer describes the points given for each collected
diamond. Vgompietea is the bonus for collecting all diamonds of a level. The length is the length of the
path in the play-out, which is used to penalize a route with a longer path.

After calculating the value it is checked whether a new best route was found. Best route means a route
where the most diamonds are collected or when the diamond number not changed and the calculated
value is higher. For this a bestCollected and bestValue attribute was set to 0 at the beginning of MCTS.
If the state at the end of the play-out has a higher number of collected diamonds than bestCollected, or a
higher value than bestValue was calculated if the number of collected diamonds is equal to bestCollected,
a new best route is found. The best route is calculated by selecting always the parent of each node
until there is no parent. Also both attributes are set if a new best route is found. The last step is
to backpropagate the calculated value and to increase the number of visits by one for all visited nodes
except those of the play-out step. The complete process from the selection policy at the root node to the
backpropagation is performed for a predetermined time. Algorithms 6 to 9 show the main process, the
selection, the expansion and the play-out.

Algorithm 6 MCTS main algorithm

: LinkedList visited < @

: MCTSNode current ¢ this

. visited.addLast (this)

: while not current.isLeaf() do

current = current.select()

visited.addLast(current)

: end while

. if current.endState then

return

: end if

: current.expand|()

: MCTSNode newNode = current.select()

. visited.addLast(newNode)

: double value = playOut(newNode)

: for all node € visited do
node.updateStats(value)

: end for

© 0 N U W N

e T e
N O Ut R W N = O

Figure 4.5 shows the calculated route of MCTS in rectangle level 5. It is not the complete route of
MCTS, the route is truncated. MCTS returns a lot more nodes than needed. A method called ClearRoute
truncates all parts of the route where in between the same node there is no diamond (Algorithm 10). It

24

Search

Algorithm 7 MCTS selection process: select()

=
=

© X NP TR W

: MCTSNode selected < @
: double bestValue = -00
: for all child € children do
double uctValue = Equation 4.3
if uctValue > bestValue then
selected = child
bestValue = uctValue
end if
end for
return selected

Algorithm 8 MCTS expansion process: expand()

1
2

3:

4
5:
6

-3

8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21

: List childIndex < @
: for int i = 0 to Nodes.Count , i++ do
if adjacencyMatrix[this, i] # 0 then
childIndex.add(i);
end if
: end for
: Array children < @
: for int i = 0 to childIndex.Count , i++ do
MCTSNode child = «+ ©
child.diamond = Nodes|child].isDiamond()
child.collected = collected
if child.isDiamond() then
if not visited.Contains(child) then
child.collected++
if child.collected = number of all diamonds then
child.endState = true;
end if
end if
end if
childrenl[i] = child
: end for

Algorithm 9 MCTS play-out process: playOut(MCTS node)

—_
=

11:
12:
13:
14:
15:

double value « 0
int counter + 1
while not node.endState and counter < Nodes.Count x 10 do
node.expand()
MCTSNode randomNode = node.select()
node = randomNode
counter+-+
end while
value = Equation 4.4
if MCTS.bestCollected < node.collected or (MCTS.bestValue < value and MCTS.bestCollected =
node.collected) then
MCTS.SetBestRoute(node);
MCTS.bestCollected = node.collected;
MCTS.bestValue = value;
end if

return value

4.2 — Monte-Carlo Tree Search 25

‘ fps: 93 Caught: 0 Time: 0

Figure 4.5: Calculated route of MCTS in yellow

is a simple but effective method to reduce the nodes of the route, for instance, in a complex level from
148 to 32. The benefit is different for each level and for every MCTS run. MCTS has the property to
calculate similar but different routes for the same level.

Algorithm 10 Truncate method for MCTS: ClearRoute(routeNodes)

1: Queue shortRoute + ©

2: List visitedDiamond + ©

3: for int i = 0 to routeNodes.Length , i+4+ do
4: shortRoute.Enqueue(routeNodes[i])

5: int index < 0

6: for int j + i+1 to routeNodes.Length , j++ do

7: if routeNodes[j].isDiamond() and not visitedDiamond.Contains(routeNodes[j]) then
8: break

9: end if

10: if routeNodes[i]. Equals(routeNodes|[j]) then

11: index = j

12: end if

13: end for
14: if index # 0 then

15: i = index
16: end if
17: end for

18: return shortRoute

26 Search

4.3 Monte-Carlo Tree Search & A*

While A* has the property to calculate the same route for the same level, which can be positive if it is a
efficient route but really bad if it is a weak route. A weak route means a route where not all diamonds
can be collected. MCTS has the property to calculate a similar but different route for the same level,
which is positive in the way that it is unlikely to calculate a weak route every time but it is also unlikely
to calculate a perfect route every time. This means MCTS is robust. Also MCTS has the problem of
long routes, which can be solved by A*. Because of this situation when playing a level several times
MCTS calculates the route, which guarantees that the order of diamonds takes into account physics with
a possible different order and A* calculates the path between the diamonds, which resolves the problem
of long routes. Algorithm 11 shows the combination of MCTS and A* and in Figure 4.6 the calculated
route of MCTS & A* can be seen. The algorithm starts with performing MCTS and getting the long
route. Then ClearRoute is used to truncate the long route into a shorter one. The route is converted
from a Queue to a List to use a loop. A List is created to store the diamond nodes. For each node of
the route it is checked whether it is a diamond. If the node is a diamond it is added to the diamond
node list. At the end of the loop the diamond node list has all diamond nodes in the calculated order
by MCTS. With A* a new route is calculated with the diamond node list, node pair by node pair. The
route is calculated like in the A* adaptations with a given node ordering.

Algorithm 11 Combination of MCTS & A*

MCTS mcts = MCTS(nodes, direction, distance)

Queue route = mcts.Run()

route = ClearRoute(route)

Array routeAsArray = route.ToArray()

List diamondNodes < @

for int n = 0 to routeAsArray.Length n++ do
if routeAsArray[n].isDiamond() then

diamondNodes.add(routeAsArray|[n])

end if

end for

: route = calcShortestRouteWithDiamondOrder AStar(diamondNodes)

=
= o

4.3 — Monte-Carlo Tree Search & A* 27

Figure 4.6: Calculated route of MCTS A* in yellow

28

Search

Chapter 5

Driver

After calculating the route with the search algorithm the driver is required to follow this route in the

level.

The driver is created after the abstraction calculation and search. It needs the nodes, adjacency

matrix, direction map of the abstraction and the route of the search technique. Looking back at Section
2.3, the GetAction method of the driver is performed in the Update method in the SquareAgent class.
The rectangle executes the actions, which the driver returns. GetAction needs the current position of the
rectangle and is called each time step (40 ms). Rules are used to check, which action should be executed
next or whether a next node of the route is reached. The current position of the rectangle, the previous
and next nodes, the previous and next actions, the previous and next directions, and the distance are
variables to check which rule is applicable. In the next sections the general procedure (Section 5.1) and
all rules of the driver (Section 5.2) are explained.

5.1

General Procedure

Before describing the procedure of the driver the following attributes of the driver are shown:

Previous node, the node the driver started from

Next node, the node the driver tries to reach

Next node 2, the node the driver tries to reach after next node

Previous direction, the direction, which was used to reach the previous node
Direction, the direction to reach the next node

Direction 2, the direction to reach the next node 2 from next node

Previous action, the action, which was used to reach the previous node
Action, the action to reach the next node

Action 2, the action to reach the next node 2 from next node

Distance, the distance between the current position of the rectangle and the next node
Distance list, stores up to the last 40 distances

Run algorithm, between 0 and 4 and determines, which algorithm is used for the recalculation of
the route

Height of rectangle
Width of rectangle
Bottom y coordinate of rectangle

Center x coordinate of rectangle

30 Driver

e Velocity in y direction
o Velocity in x direction

When the driver is created it starts with setting the initial nodes, actions and directions attributes. The
main method GetAction starts with setting the width, height, z and y coordinate, and x and y velocity
of the rectangle. Next, the distance is calculated by the Euclidean distance and added to the distance
list. If the distance list has a length of 40 and the first entry of the list is the same as the last entry of the
list, the driver has gotten stuck somehow for 1.6 seconds. If the driver has gotten stuck, it recalculates
the complete route by one of the following search techniques:

e 0 = MCTS and A*

1 = MCTS

e 2 = Y-Heuristic A*
e 3 = Greedy Goal A*
e 4 = Permutation A*
e 5 = Subgoal A*

The run algorithm attribute is set before starting the game. To recalculate the route the driver performs
the same methods like described in Chapter 4 but beforehand the new initial rectangle position is set and
the collected diamonds are set to non-diamond nodes. With the new route the new initial nodes, actions
and directions attributes are set. The distance list is cleared if the length is 40.

The next step is to check whether the next node is reached. This is the case if:

e The distance is lower than the half width and the next node is not a pseudo node or
e The direction is 6 (up) and the distance is lower than the half height or

e The direction is 1 (lower right), 2 (down) or 3 (lower left) and the rectangle is at the y coordinate
of the next node and the distance is lower than 3 times the width or

e The next node is a pseudo node and the distance is lower than 3

If any of these conditions hold, the nodes, actions, directions and distance attributes are updated. If
the new next node does not exist, the route is recalculated. If the new direction is 2 (down), this is a
special case. The problem is that there is no sophisticated way to fall down through a gap with the given
abstraction. At each obstacle’s edge of the gap a node leads to a fall-down node in direction 2 (down).
With the given abstraction the rectangle can only cross the gap and falls down somehow. The best way
to fall down through a gap is to drive in the middle of the gap and then to resize. In the abstraction
there is no node in the middle of a gap so a pseudo node is created in the middle of the gap. If the
rectangle reaches the pseudo node, it resizes to a vertical rectangle and falls down. In order to prevent
the rectangle to fall down before reaching the pseudo node, action 2 (horizontal rectangle) is used to
reach the pseudo node.

After checking if the next node is reached there are different rules for different circumstances, which
return a matching action to execute. These rules are explained in the next section.

5.2 Rules

A rule-based approach is used to return a matching action. This means there are many if else cases where
different combinations of attributes hold and one of the rectangle’s action is returned. The following rules
describe which combination of attributes must hold and which action is executed then. It is also explained
why a rule is used:

5.2 — Rules 31

Figure 5.1: Get stuck at a gap

Figure 5.2: Get stuck in a diagonal position

e Rule 1 of the driver is to let the rectangle drive back if it gets stuck while driving to the pseudo
node to fall down through a gap. Figure 5.1 shows the rectangle, which gets stuck. Rule 1 is used
if the next node is a pseudo node and the first entry of the distance list and tenth entry of the
distance list is the same. If the direction is to the right and the distance is lower than 200, to
accelerate in direction left is returned. If the direction is to the left and the distance is lower than
200, to accelerate in direction right is returned.

e Rule 2 is to accelerate randomly to the left or right if the rectangle get stuck for 600 ms in a
diagonal position. An example is shown in Figure 5.2. The diagonal position is checked by the
method IsDiagonalOrientation.

e Rule 3 is to morph up the rectangle if it is in front of a higher obstacle. Then the rectangle can
overturn to the higher obstacle if it drives in the direction of the higher obstacle (Figure 5.3). This
rule is used if the previous direction is up, the direction is right or left and the difference between
the y coordinate of the previous node and the rectangle’s y coordinate is higher than 4, which
means the rectangle is not on the higher obstacle. To morph up is returned if the height is lower
than 160 and morphing up is possible without morph into an obstacle. Otherwise, if the direction is
right, to accelerate in direction right is returned or if the direction is left, to accelerate in direction

32

Driver

Figure 5.3: Overturn to a higher obstacle

left is returned.

Rule 4 returns to morph down if the action is 1 (square), the height is higher than 102 and the
direction is not up.

Rule 5 returns to morph up if the action is 1 (square), the height is lower than 98 and it is possible
to morph up.

Rule 6 returns to morph down if the action is 2 (horizontal rectangle) and the height is higher than
52.

Rule 7 holds if the action is 3 (vertical rectangle), the direction is not up, the height is lower than
194, morph up is possible, the rectangle is not in a diagonal position and the velocity in y direction
is lower than 5. It returns to morph up.

Rule 8 is to accelerate the rectangle in direction right. It decelerates if it is too fast. It also takes
into account the pseudo node to stop at the pseudo node. At first the direction has to be right,
upper right or lower right. Then it returns to accelerate in the left direction to decelerate if the
distance is lower than 110 and the velocity in z direction is higher than 50 and direction2 is not
right (drives not in right direction after reaching the next node). It also decelerates if the velocity
in z direction is higher than 200. Otherwise, it returns to accelerate in direction left if the next
node is a pseudo node, the distance is lower than 12 and the velocity in x direction is higher than
2. If the next node is a pseudo node, the distance is lower than 6 and the velocity in z direction is
between 2 and -2, the rule returns to do nothing. If both pseudo node cases are false, it is returned
to accelerate in direction right.

Rule 9 is the opposite of Rule 8 but for the left direction.

Rule 10 is for the up direction. If the height is lower than 194 and morph up is possible, to morph
up is returned. Otherwise, if the difference of the x coordinate of the next node and the rectangle’s z
coordinate is higher than the half width of the rectangle, the rule returns to accelerate in direction
right if the difference is lower than 0. If the difference is equal to 0 or higher, to accelerate in
direction left is returned. It is possible that the rectangle morphs up and does not reach the next
node because the rectangle is too far away from the node. If this is the case, the rectangle has to
drive in the direction of the next node.

Rule 11. After the rectangle drives to the pseudo node and morphs up it falls down. It is possible
that there is another gap under the first gap. Rule 11 ensures that the rectangle will not fall through

5.2 — Rules 33

Figure 5.4: Morph down before fall through a second gap

the second gap because the rectangle morphs down if it is above the next node (Figure 5.4). In
detail, morph down is returned if the direction is down, the next node leads to a fall-down node, the
difference between the rectangle’s y coordinate and the previous node’s y coordinate is higher than
width - 15, and the difference of the previous node’s y coordinate and the next node’s y coordinate
is higher than 200. It also holds if the difference between the rectangle’s y coordinate and the
previous node’s y coordinate is higher than width - 45, and the difference of the previous node’s
y coordinate and the next node’s y coordinate is lower or equal 200. The difference is that for a
longer fall down the rectangle morphs down later and for a short fall down the rectangle morphs
down earlier.

e Rule 12 is to drive slowly right or left if the rectangle gets stuck at an edge of an obstacle. This
can happen if the rectangle, for instance, drives to the left to an edge, reaches the next node and
then decelerates. The next direction is down but the rectangle does not drive to the left anymore
(Figure 5.5). The slowly driving is also used if the rectangle cannot reach the next node because he
cannot morph up (Figure 5.5). In detail, rule 12 holds if the previous node is not a pseudo node,
direction is down, previous direction is right or left, and the difference between the y coordinate
of the rectangle and the y coordinate of the previous node is lower than 5. It also holds if the
previous direction is right or left and morph up is not possible. Then if the previous direction is
right and the velocity in z direction is lower than 40, accelerate in direction right is returned. If
the previous direction is left and the velocity in z direction is lower than -40, accelerate in direction
left is returned.

e Rule 13 is to prevent the rectangle to get stuck in a small gap between an edge of an obstacle and
a wall (high obstacle) at the other side (Figure 5.6). Rule 13 holds if the previous node leads to
a fall-down node, the previous node is not a pseudo node, the direction is lower right or down or
lower left, morph up is possible, and the velocity in z direction is higher than 50 or lower than -50.

34 Driver

Figure 5.5: Two situations where the driver continued driving slowly

Then if the distance between the previous node and the wall is lower or equal to 125, morph up is
returned. This leads to switching between morph up and down, which result is that the rectangle
not gets stuck.

5.2 — Rules

Figure 5.6: Get stuck between an edge of an obstacle and a wall

35

36

Driver

Chapter 6

Experiments and Results

After explaining all the techniques this chapter is about the experiments and their results. All techniques
are tested in the given levels of the 2013 and 2014 competitions. Also new levels are created (See Appendix
A) to have a more complex test set and for a better differentiation. The new levels are to challenge the
weak spots of the different techniques. First the setup of the experiments is described (6.1). Then
the results of the best agent of the 2013 and 2014 competitions (6.2.1), the results of the abstraction
calculation (6.2.2) and the results of all techniques are explained (6.2.3). Finally, a discussion is provided
(6.3).

6.1 Setup

The setup describes which techniques are used with which properties in which test set. For the experi-
ments the following techniques are used and once more briefly summarized:

e Greedy Goal A*: A* is used to search for the nearest diamond and then from this diamond to
the next nearest diamond step by step until all diamonds are found. The route of each node pair is
merged together to one route.

e Y-Heuristic A*: The diamond order is given by the decreasing y coordinate and A* searches for
the route of each node pair. The route is merged together.

e Permutation A*: All permutations are calculated and it starts with searching for the shortest
route of all permutations with all diamonds. If this route does not exist, it continues with the
permutations with the diamond number decreased by one. For each route of a permutation A* is
used for each node pair and the complete route is merged together.

e Subgoal A*: An extra property is added to the A* node to store the number and order of collected
diamonds. This technique uses A* to search for the complete route with all diamonds or decreases
the number of diamonds to find a route with fewer diamonds.

e MCTS: Uses Monte-Carlo Tree Search to find the best route.

e MCTS & A*: Uses Monte-Carlo Tree Search to have the diamond order and calculates the route
for each node pair with A* and merges the route together.

The test set consists of 22 levels. 10 levels of the Geometry Friends 2013 Competition, 2 new levels of the
Geometry Friends 2014 Competition and 10 new levels. For the 2013 and 2014 competitions a formula
(Chapter 2.1, Equation 2.1) is given to calculate a value, which describes the quality of a technique.
In 2013 the completion bonus and the bonus for each collected diamond is different for each level. In
more complex levels each diamond and the completion bonus is a higher value. In 2014 the completion
bonus is 1000 and the bonus for each diamond is 100 for all levels. For the new levels only the collected
diamonds and the run time is compared without calculating a quality measurement value. The new levels
are created by taking into account the different weaknesses of the different techniques.

For MCTS and all four A* techniques the search time of a route is set to 2 seconds. MCTS stops the
computation after 2 seconds but is also tested with 1000 iterations without a time limit. A* decreases

38 Ezperiments and Results

the number of diamonds to collect by one every 2 seconds. For Greedy Goal A*, Y-Heuristic A* and
Permutation A* that means there is a time limit for each A* search but there is no time limit to find an
order of the diamonds.

A problem is that while the calculation of the abstraction and route is running the timer of the game
freezes and therefore the calculation time is not included in the time given by the game. So the calculation
time of the abstraction and the search time to determine the route is measured separately. The actual
idea was to create automatic test runs and a script was created but the given console start of the game
has a different game behavior. Two levels could not be solved in several runs with the console start.
With the start in Visual Studio there are no problems and the levels can be solved every time. But the
console run has also the problem that it does not store how many diamonds are collected if not all are
collected. For these reasons it is tested manually in Visual Studio and all levels are tested five times.
Manual testing was rather time consuming and took 30 hours.

6.2 Performance

After the explanation of the setup this section is about the performance. The results of the best agent of
the 2013 and 2014 competitions are described and the score of other participants in the 2014 competition
are shown to see how well the best 2013/2014 competition agent performs. Then the focus is on the
abstraction. The time of the calculation, the number of nodes and the number of diamonds are described
for each level. At last, the results of all different search techniques are explained. The completed runs,
the collected diamonds, the time to solve the level, the search time and the score of the competitions are
shown for each competition level. For the new levels the completed runs, the collected diamonds, the
time to solve a level and the search time are shown. Furthermore, an overview of all search techniques
in all levels can be seen.

6.2.1 Best Agent 2013/2014

Now the results of the best agent (CIBot) in the 2013 and 2014 competitions are described to give an
overview of its performance. In Table 6.1 the results of the 2013 competition of CIBot are shown. It was
the only participant in 2013 and can solve the first 5 levels. It cannot solve the last 5 levels once. CIBot
reaches a total score of 5741 in the Geometry Friends 2013 Competition.

Table 6.1: Best 2013 (CIBot) results for all 2013 competition levels

Level | Completed Runs \ Diamonds (Max) \ Time (Limit) - sec \ Score 2013

1 10 2.02) 11.4(40) 686
2 10 2.0(2) 8.9(25) 411
3 8 2.6(3) 35.7(80) 1705
4 7 1.4(2) 12.4(20) 108
5 7 4.4(5) 51.4(90) 1636
6 0 2.0(3) 60.0(60) 400
7 0 1.8(3) 35.0(35) 198
8 0 0.2(3) 65.0(65) 64
9 0 0.0(2) 60.0(60) 0
10 0 1.3(4) 85.0(85) 533
’ Total Score 2013 \ \ 5741

The CIBot team is also a participant in the 2014 competition. The improved 2014 CIBot version wins
the competition of 2014 against two other participants. The 2014 agent can solve the first 6 and the last
level successfully. 3 levels it cannot solve even once (Table 6.2). This time it reaches a score of 6466 but
with other completion and diamond bonus so that it is not comparable to 2013.

Table 6.3 shows all three participants of the 2014 competition, CIBot, OPU_SCOM and KUAS-IS
Lab. CIBot has 69 complete runs with an collecting average of 2.3 out of 2.9 diamonds. The n