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Markus Esser
Maastricht, July 2012





Abstract

Computers have been used to play board games, especially Chess, since their earliest days. Researchers
mainly concentrated on building strong programs for playing two-player games. Therefore much research
can still be done in the area of multi-player games. This thesis is about search algorithms in multi-player
games. A program for playing multi-player Chess is build as a test domain to perform research on it.
Multi-player Chess is a Chess variant for four players. As regular Chess, multi-player Chess is a capture
game with perfect information. Although Monte-Carlo Tree Search nowadays has become popular in the
area of games, this thesis focusses on evaluation function based search. Recently, a new promising search
algorithm for multi-player games, called best-reply search, was proposed by Schadd and Winands (2011).
In this algorithm, only the opponent with the strongest counter-move is allowed to play a move. The other
opponents pass their turn. Although best-reply performs well in the games tested so far, it has conceptual
drawbacks. The main drawback of best-reply search is that the search can lead to officially unreachable
and sometimes illegal board positions. The concern of this thesis is to overcome these drawbacks and
thus, to improve the performance of best-reply search. Therefore the problem statement is:
How can the best-reply search be modified to outperform the paranoid algorithm in complex (capturing)
multi-player games?
To introduce the test domain in which the research is performed, this thesis starts with an explanation of
the rules of multi-player Chess. Afterwards, the existing search algorithms and their enhancements are
described. Next, new search algorithms based on the best-reply search are proposed. These algorithms are
explained and analyzed. The main idea to overcome the drawbacks of best-reply is to let the opponents
play the best move regarding the static move ordering instead of passing as done in best-reply search.
After a description of the evaluation function, which is required to gain reasonable play in the area of
multi-player Chess, the proposed algorithms are tested against the existing ones. The experiments show
that one of the proposed algorithms, namely BRS1,C−1, is able to outperform the existing algorithms
in the domain of multi-player Chess. In BRS1,C−1, the opponent with the strongest counter-move is
allowed to perform a search while the other opponents play the best move regarding the static move
ordering. Because of the strong performance in multi-player Chess, BRS1,C−1 is a promising search
algorithm. Further tests have to be performed to detect whether it also works well in other domains than
multi-player Chess.
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Chapter 1

Introduction

This chapter first gives a brief overview about games and Artificial Intelligence (AI) in Section 1.1. An
introduction to AI in multi-player games is given in Section 1.2. The problem statement and research
questions of this thesis are introduced in Section 1.3. Finally, an outline of the thesis is given in Section
1.4.

1.1 Games and Artificial Intelligence (AI)

Costikyan (1994) defined a game as “a form of art in which participants, termed players, make decisions
in order to manage resources through game tokens in the pursuit of a goal”. The players in a game can
have perfect information like in Chess or imperfect information like in card games (e.g., Poker), where
the players cannot see the cards of their opponents. Another important feature to categorize games is
whether there is chance involved, e.g., rolling a dice, or not. In all games, the players have to make
optimal decisions to win the game. This thesis is about search algorithms for making optimal decisions in
multi-player Chess. Multi-player Chess is a multi-player game with perfect information without chance.
Since the earliest days of computers, they have been used to play board games, especially Chess (Shannon,
1950; Turing, 1953). Board games have a special interest for researchers because the rules are well defined
and therefore can easily be modelled in a computer program. In quite some two-player games, e.g., Chess
(Hsu, 2002) and Checkers (Schaeffer and Lake, 1996), programs are nowadays able to play successfully
against the best human players. Research has been mainly concentrated on two-player games and thus
much progress can be made in the area of multi-player games.

1.2 AI in Multi-Player Games

Multi-player games are designed to be played by more than two players. Nevertheless some multi-player
games can also be played by two players, like Poker or Chinese Checkers. Multi-player games can be
cooperative. This means that players form groups, called coalitions. The game is a competition between
these coalitions instead of a competition between individual players. Multi-player Chess is one of the
games which can be played cooperative or non-cooperative. In this thesis, the non-cooperative version is
used, which means that all players play against each other.
There exist several approaches to create a strong AI for multi-player games. Schadd (2011) gives a good
summarization of these approaches. Tree-search methods for coalition forming (Sturtevant and Korf,
2000) and Monte-Carlo methods (Sturtevant, 2008) have been applied to Chinese Checkers. For the
well-known game Monopoly1, Markov chains (Ash and Bishop, 1972) can be applied and for learning
strategies in this game, evolutionary algorithms can be used (Frayn, 2005). For other games, Bayesian
networks can be useful. In games like Poker, opponent modelling is quite important to build a strong
program (Billings et al., 1998).
The program in this thesis makes decisions by searching. It builds a tree structure where the edges
represent the moves and the nodes represent the board positions. In general, the search can be based

1MonopolyR© is a registered trademark of Hasbro, Inc. All rights reserved.
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on an evaluation function, as explained in Subsection 1.2.1, or on randomized explorations of the search
space, explained in Subsection 1.2.2. Only the first approach is used in this thesis.

1.2.1 Evaluation Function Based Search

In a search based on an evaluation function, the AI requires a decision rule (Chapter 3) and an evaluation
function (Chapter 5) to find a good move in the game tree. In the following, three decision rules for multi-
player games are briefly introduced. These decision rules are used in this thesis and are explained in more
detail in Subsection 3.3.1 (maxn), 3.3.2 (paranoid) and 3.3.3 (best-reply).

• Maxn

In maxn (Luckhart and Irani, 1986), the root player assumes that each player tries to maximize his
own score.

• Paranoid
In paranoid (Sturtevant and Korf, 2000), the root player assumes that all his opponents build a
coalition against him. Therefore this player assumes that each opponent in the search tries to
minimize the value of the root player. For the most multi-player games, paranoid outperforms
maxn, because the pruning techniques available for paranoid are much more effective. Nevertheless,
the paranoid decision rule has two disadvantages.

1. It is not possible to explore many moves of the root player in a complex multi-player game
and thus, there is no long-term planning (Schadd and Winands, 2011). This problem is even
larger for maxn where pruning is not as powerful as the αβ-pruning for paranoid.

2. Because of the unrealistic assumption that all opponent players form a coalition against the
root player, suboptimal play can occur (Sturtevant and Korf, 2000).

• Best-Reply
Best-reply search (Schadd and Winands, 2011) only allows the opponent with the strongest counter
move to perform a move. The other opponents pass their move.

1.2.2 Monte-Carlo Tree Search (MCTS)

Monte-Carlo Tree Search (MCTS) (Coulom, 2007; Kocsis and Szepesvári, 2006) does not build a game
tree of a fixed depth and does not use an evaluation function to assign values to the leaf nodes as the
previous search algorithms. Instead, it is a best-first algorithm based on randomized explorations of the
search space (Chaslot et al., 2008a). “Using the results of previous explorations, the algorithm gradually
grows a game tree in memory, and successively becomes better at accurately estimating the values of the
most promising moves” (Chaslot, Winands, and Van den Herik, 2008b). Figure 1.1 illustrates the four
phases of MCTS.

1. Selection
In this phase, the tree is traversed from the root node until it selects a node not added to the tree
so far.

2. Expansion
In this phase, the node selected in the previous phase is added to the tree.

3. Simulation
In this phase, moves are played until the end of the game is reached. The result of this search can
be a win, a draw or a loss for the root player.

4. Backpropagation
In this phase, the result of the simulation is propagated through the tree.

MCTS has become popular in the area of games (Browne et al., 2012). Examples for two-player games
where it has successfully been applied are Go (Chaslot et al., 2008a; Coulom, 2007), Amazons (Lorentz,
2008), Lines of Action (Winands and Björnsson, 2010) and Hex (Cazenave and Saffidine, 2009). In the
multi-player games Chinese Checkers (Sturtevant, 2008), multi-player Go (Cazenave, 2008) and Focus
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Figure 1.1: Four phases of MCTS; Figure taken from Chaslot et al. (2008a)

(Nijssen and Winands, 2011), MCTS was also applied successfully. In Chess and other games with short
tactical goals, a traditional minimax based approach equipped with an evaluation function is still more
successful than MCTS. Ramanujan, Sabharwal, and Selman (2010) pointed out that MCTS is not able to
detect traps. The presence or absence of traps in a game is an indication whether MCTS can successfully
be applied or not. It can happen that MCTS plays bad moves in such games because it often assigns a
value to a trap move that is quite close to the value assigned to the best move. In general, traps often occur
in games where wins and losses are defined through a sudden-death property (Ramanujan et al., 2010).
A sudden-death is an abrupt end of a game by the creation of one of a predefined set of patterns (Allis,
1994). In the domain of multi-player Chess, the capture of the King is such a sudden-death property and
therefore MCTS is not expected to perform as good as the minimax-based search algorithms equipped
with an evaluation function. Thus, MCTS is not considered in this thesis.

1.3 Problem Statement and Research Questions

There is a requirement for a new search algorithm because the well-known paranoid algorithm (Sturtevant
and Korf, 2000) for multi-player games has two known disadvantages, the absence of long-term planning
and the unrealistic assumption that everybody is against you. Thus, the goal of this thesis is to improve
the idea of the best-reply search (Schadd and Winands, 2011). This is tested in the domain of multi-player
Chess, a perfect information multi-player game.
The problem statement is:

How can the best-reply search be modified to outperform the
paranoid algorithm in complex (capturing) multi-player games?

The following two research questions to answer this problem are:

1. Is the best-reply search better than the well-known paranoid and
maxn algorithms in the domain of non-cooperative multi-player Chess?

The first step to answer this question is to implement an efficient framework for playing multi-player
Chess. Three search algorithms for multi-player games, namely maxn, paranoid and best-reply, have to
be implemented with all the known search enhancements like pruning, move ordering etc. (see Chapter
3). To let the players play on a high level, an evaluation function has to be implemented (Chapter 5).
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Finally, the developed framework can be used to check the performance of the best-reply search against
the two other algorithms.

2. Can we find variants of the best-reply search that are even better?

To answer this question first the weaknesses of the best-reply search has to be discussed. Ideas to over-
come these weaknesses are proposed (see Chapter 4) and implemented. The main idea proposed in this
thesis is to let the passing opponents play the best move from the static move ordering. Further, the
number of searching players can be varied. Finally, experiments have to be executed to find out which
variant of the best-reply search is the strongest one and how does it perform against the paranoid and
maxn algorithms in the domain of multi-player Chess.

1.4 Outline of the Thesis

Here a brief outline of the thesis is given.

• Chapter 1 gives an introduction to artificial intelligence in multi-player games. Further, the problem
statement and research questions are stated.

• Chapter 2 describes the game of multi-player Chess.

• Chapter 3 explains the search techniques used in the program.

• Chapter 4 describes the proposed best-reply search variants.

• Chapter 5 discusses the evaluation function required to assign values to the leaf nodes of the game
tree.

• Chapter 6 explains the performed experiments and presents the corresponding results.

• Chapter 7 presents the conclusion of this thesis and the future research.



Chapter 2

Multi-Player Chess

This chapter describes the game of multi-player Chess which is used as test domain in this thesis. Section
2.1 gives an introduction to regular Chess. Section 2.2 explains multi-player Chess itself. In Section 2.3,
the complexity of multi-player Chess is computed.

2.1 Two-Player Chess

An insight into the history of Chess is given in Subsection 2.1.1. The rules of regular Chess are explained
from Subsection 2.1.2 through to 2.1.5

2.1.1 History

The earliest predecessors of Chess originated before the 6th century in India. From India, the game
spread to Persia where they started calling “Shāh!” (Persian for “King!”) when threaten the opponent’s
King, and “Shāh Māt” (Persian for “the King is helpless”) when the King can not escape from attack.
These exclamations persisted in Chess, e.g., nowadays in Germany the exclamations are still “Schach!”
and “Schach Matt!”. When the Arabs conquered Persia, Chess was taken up by the Muslim world and
subsequently spread to Europe and Russia at the end of the first millennium. In the 15th century, the
Bishop’s and Queen’s moves were changed and Chess became close to its current form. Also the first
writings about the theory of playing Chess appeared in that century. In the 19th century many Chess
clubs, Chess books and Chess journals appeared and the first modern Chess tournament play began. The
first World Chess Championship was held in 1886. Position analysis became also popular during this
time.

2.1.2 Board and Initial Position

Figure 2.1: Initial Position in Chess

Chess is played on an 8 × 8 board. The players are called
White and Black. Both players start with 16 pieces as shown
in Figure 2.1. Each player has eight Pawns , two Rooks ,
two Knights , two Bishops , one Queen and one King

.

2.1.3 Movement

The players move alternately, starting with White. Moving
means that the player moves one of his pieces to an empty
square or a square with an opponent piece on it. If the square
has an opponent’s piece on it, this piece gets removed from the
board. In general it is not allowed to jump over other pieces.
Only the Knight is allowed to do this. Each kind of piece has its
own rules how it is allowed to move. These individual moving
rules are as follows.
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(a) Movement of all
white Pawns

(b) Rook’s movement (c) Knight’s movement

(d) Bishop’s movement (e) Queen’s movement (f) King’s movement

Figure 2.2: Movement of all different pieces in Chess

Pawn

A Pawn has two options to make a move. The first option is to move straight forward to the next square
if this square is empty. The second option is to capture an opponent’s piece with a diagonally forward
move. When a Pawn has not been moved yet in the game, it is allowed to move two squares forward if
not obstructed. All these movements are illustrated in Figure 2.2(a).

Rook

The Rook can move orthogonally as far as possible (see Figure 2.2(b)).

Knight

The Knight is allowed to jump over other pieces regardless whether it is an own or an opponent’s
piece. The moves shown in 2.2(c) are jumps two squares in one direction and one square in one of the
perpendicular directions.

Bishop

The Bishop is allowed to move in each diagonal direction as far as possible. This can be seen in Figure
2.2(d).

Queen

The Queen is allowed to move in any direction as far as possible as demonstrated in Figure 2.2(e).
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(a) A black Pawn (upper
part) reaches the oppo-
site of the board and
promotes to a Queen
(lower part)

(b) Castling, upper row: position before castling, mid-
dle row: position after long castling, lower row:
position after short castling

(c) En Passant Move; position before
double step, position after double
step,position after en-passant move

Figure 2.3: The three special moves in Chess

King

The King is allowed to make a move to every adjacent square as Figure 2.2(f) shows.

2.1.4 Special Moves

Additionally to the regular movement rules there are three special moves, called promotion, castling and
en-passant.

Promotion

A Pawn promotes if it reaches the opposite side of the board. Promotion means that the Pawn gets
replaced by a Rook, a Bishop, a Knight or a Queen. The player can choose to which of these pieces the
Pawn promotes. The choice is not limited to the previously captured pieces (e.g., it is allowed to have

two Queens on the board). A promotion to a black Queen is depicted in Figure 2.3(a).

Castling

The castling move is the only move where two own pieces are moved simultaneously, the King and a Rook.
The King is allowed to move two squares towards the Rook. At the same time the Rook moves towards
the King and jumps over him so that his position is next to the King. Figure 2.3(b) demonstrates this.
The upper row in the figure shows the situation before the castling move is performed. In the middle
row the situation after a long castling is mapped. This move is called long castling because the Rook

moves three squares while in a short castling illustrated in the lower row the Rook only moves two
squares. A castling move can only be made when the following three conditions are met:

1. Neither the King nor the Rook has been moved in the whole game.

2. Every square between the King and the Rook is empty.

3. Neither the Kings square nor any other square the King passes or ends up in can be reached by an
opponent’s move.

En-Passant

En-passant is a special Pawn capture which can only occur immediately after a player moves a Pawn
two squares forward from its starting position. If an opponent’s Pawn is next to the moved Pawn, the
opponent has the option of capturing the Pawn “en passant” as if the moved Pawn had only moved one
square. This special move is illustrated in Figure 2.3(c).
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2.1.5 End of the Game

The sole objective of the game is to capture the opponent’s King. A move that threatens to capture the
King is called a check move. The opponent has to react to this move. If the opponent cannot play a
move to prevent his King from being captured, he is checkmate and loses the game. The game can also
end in a draw when one of the following three conditions are met:

1. No progression, which means that no piece has been captured and no Pawn has been moved in the
last 50 moves.

2. An identical position, including the player on turn, occurs for the third time.

3. The player on turn has no legal move and is not in check. This situation is called Stalemate.

2.2 Multi-Player Chess

In this section the history of multi-player Chess is outlined in Subsection 2.2.1. The supplemental rules
are revealed from Subsection 2.2.2 through to 2.2.7. The multi-player Chess rules used in this thesis are
taken over from Tscheuschner (2005).

2.2.1 History

Chess variants for more than two players have been invented for more than two hundred years. The board
size was increased, depending on the variant by adding two to four rows to each side. The pieces used
for each player are in nearly all variants the same as for regular Chess. But there are many different rule
variations of multi-player Chess. The most common form of play is cooperative (two vs. two) in which
allied pieces cannot eliminate each other. The game is over when both opposing Kings are checkmated.
Playing non-cooperative is generally regarded more difficult than team play. Each player can attack any
of the other three players and vice versa. Once a player is checkmated, depending on the variant either
the pieces of the checkmated player gets removed from the board, or the player that checkmated can use
the remaining pieces during his turn. For more information about multi-player Chess variants and Chess
variants in general see Pritchard (2001). Non-cooperative play with removing the pieces of the defeated
opponent is used in this thesis.

2.2.2 Board and Initial Position

The multi-player board (Figure 2.4) used in this thesis consists of the same board as the original Chess
board with additionally three rows on each side of the board. The pieces are placed as in two-player Chess
with one exception. The King is always placed right of the Queen. The order of moving is clockwise
beginning with White.

2.2.3 Bending Off

In multi-player Chess, it is possible to change the direction of a Pawn. This happens on the main
diagonals. There, the player has the choice to either keep the Pawns direction or to change the direction
in a way that the number of moves to promote stays the same. A Pawn can promote at each of a
opponent’s side. Figure 2.5(a) demonstrates the two possibilities the white Pawn on K4 has. In this
case, it is not allowed to change the direction to the East because the number of moves to promote would
decrease.

Figure 2.5(b) depicts all the possible capturing moves a Pawn can have. As in Figure 2.5(a), the white

Pawn on K4 can keep its direction by moving forward or change its direction by moving west. In this
situation the white Pawn on K4 has three additional possibilities to move by capturing an opponent’s
piece. At the upper right board the white Pawn has captured the blue Pawn on L5 and has kept
its direction. In the lower left board the white Pawn has captured the black Bishop on J3 and has
changed its direction to West. When the white Pawn captures the red Queen on J5 as shown at the
lower right board the player can still decide which direction the Pawn has. The white Pawn could
capture the red Queen by keeping its direction. Therefore the decision whether the Pawn bends off
is delayed to its next movement.
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Figure 2.4: Initial Position in Four-Player Chess. The main diagonals, where the Pawns are allowed to bend
off, run from D4 to K11 and from D11 to K4.

(a) The Pawn can keep its direction or change it. (b) The Pawn has three possible capturing moves in
this situation.

Figure 2.5: The Pawn’s possibilities to bend off
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Figure 2.6: When the Pawn makes an en-passant move and there is a piece on the destination square, the
Pawn can decide whether it only captures the piece on the destination square or also the Pawn.

2.2.4 En-Passant

The en-passant move can be made against any opponent player. Figure 2.6 shows a special case of the
en-passant move in multi-player Chess. The red Pawn on B7 moves two squares ahead. The black
player is on turn and moves the Rook from C9 to C7 which has been passed by the Pawns double
step. The blue player can now capture the black Rook on C7. If the Rook would not have been
moved to that square the blue Pawn could make an en-passant move against the red Pawn . Because
of this, Blue can decide if the capturing move against the Rook is a normal capturing move or also an
en-passant move. If he decides that it is an en-passant move then he captures additionally the red Pawn

on D7. Therefore it is possible to capture two opponents’ pieces with one move.

2.2.5 Elimination

When a player is defeated, all of his pieces are removed from the board and the remaining players continue
play. The winner gets one point. If the game is drawn all remaining players share one point, e.g., if two
players are left both get half a point.

2.2.6 Hanging King

Figure 2.7: Hanging King

In addition to a checkmate, there exists another way to defeat an oppo-
nent. In multi-player Chess, the player on turn can be able to capture
an opponent’s King without setting the King in check. This occurs
when another opponent moved an interposed piece away. This is illus-
trated in Figure 2.7 and is called Hanging King. In the example it is
White’s turn. If White moves his Bishop , the red Queen can di-
rectly attack the black King . Black is defeated directly after White’s
turn. The red Queen does not have to move to the Kings square to
defeat Black.

2.2.7 Passing

If there are more than two players left and the player on turn has no legal move he forfeits his turn. If
there are only two players left and the player on turn has no legal move, the game is drawn.
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2.3 Complexity

This section determines the complexity of multi-player Chess. First, the state-space complexity is cal-
culated in Subsection 2.3.1. The game-tree complexity is computed in Subsection 2.3.2 and finally a
comparison to other games is given in Subsection 2.3.3.

2.3.1 State-Space Complexity

The number of legal game positions reachable from the initial position is called state-space complexity
(Allis, 1994). It is often hard to calculate this number and for simplicity an upper bound is computed.
Shannon (1950) used the formula

64!

32!(8!)2(2!)6
= 4.6347267× 1042

to estimate the number of possible positions in regular Chess. The numerator is the number of squares
on the board (8 × 8). The first number of the denominator, 32, is the number of empty squares if all
pieces are placed on the board. For each player there are 8 Pawns on the board. Switching two Pawns
of the same colour do not change the board and so the number of possible position has to be divided by
8! for each player. The same counts for the Bishop, the Rook and the Knight. Therefore the number of
possible positions has to be divided by 2!6. Adapting this formula to multi-player Chess results in

160!

96!(8!)4(2!)12
= 4.39181006× 10112.

In comparison to regular Chess the size of the board is bigger (14× 14− 4× 3× 3 = 160) and there are
more empty squares on the board (160 − 4 × 16 = 96). This shows that the state-space complexity of
multi-player Chess is approximately 1070 times more complex than of regular Chess.

2.3.2 Game-Tree Complexity

The average branching factor to the power of the average game length is called game-tree complexity
(Allis, 1994). To obtain the average branching factor and the average game length, 200 games with
the paranoid, maxn and the best-reply algorithms were simulated with a thinking time of 5 seconds for
each move. The 200 games contains games where only one of the three algorithms were used, games
where two algorithms were used and also games were all three algorithms played against each other. The
average branching factor of these 200 games is 37.3 and the average game length is 558.34. Therefore the
game-tree complexity of multi-player Chess is 37.3558.34 = 3.5× 10878.

2.3.3 Comparison to Other Games

In this subsection, the state-space complexity calculated in Subsection 2.3.1 and the game-tree complexity
computed in Subsection 2.3.2 are compared to other games. The information about the other games are
taken from Van den Herik, Uiterwijk, and Van Rijswijck (2002). Figure 2.8 illustrates that only Go
(19 × 19) of the chosen games has a larger state-space complexity than multi-player Chess. Moreover,
multi-player Chess has the largest game-tree complexity. In conclusion, multi-player Chess has a quite
high complexity.
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Figure 2.8: The state-space and game-tree complexity of different games



Chapter 3

Search Techniques

As explained in Subsection 2.3.1, multi-player Chess is quite complex and therefore it is not possible
to assign a decision to each possible board position. An evaluation function (described in Chapter 5) is
regarded to assign a value to each leaf node in the game tree (see Section 1.2). Moreover, a decision rule is
required which defines how the values of the leaf nodes are propagated up the game tree. The evaluation
function and the decision rule dictate the strategy of a player (Sturtevant, 2003a). Evaluation functions
are domain dependent which means that an evaluation function for e.g., Chess cannot be reused for other
games. But the generic decision rules can be used for many games. First in this chapter, a decision rule
called minimax for two-player games is explained in Section 3.1. Enhancements of this decision rule are
explained in Section 3.2. Decision rules for multi-player games are explained in Section 3.3 and quiescence
search is described in Section 3.4.

3.1 Two-Player Search Algorithms

In the following, the most popular algorithm for two-player games, called minimax, is described. Further,
αβ-pruning is explained.

3.1.1 Minimax

The powerful minimax algorithm (von Neumann, 1928) can be applied to two-player games in which both
players play against each other. The player on turn is called max-player because he tries to maximize
his value and by this his chance to win. The other player, called min-player, tries to minimize the max-
player’s value which results in maximizing his own chance to win. This simple but successful decision
rule is illustrated in Figure 3.1. There the player on turn has two possible moves (Move m1 and Move
m2 ) and his opponent has two possible moves for each of the current player’s moves (Moves m3-m6 ).
The max-player has to make the decision which move he considers best. This player knows that the
opponent wants to minimize the value. Therefore he expects the min-player to play Move m4 after Move
m1 and Move m6 after Move m2. The max-player can decide between the value 1 and 3, and chooses to
play Move m2. Thus, 3 is the minimax value of this simple game tree. The values of the leaf nodes are
normally determined by an evaluation function which is explained in Chapter 5 for multi-player Chess.

Figure 3.1: Simple minimax tree with the minimax value of the nodes in the corresponding boxes
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The values of the other nodes are propagated up the tree as explained above. The pseudo-code for this
algorithm can be seen in Algorithm 3.1.1. Usually, it is not possible to search the complete game tree
and therefore a parameter defines the search depth of the algorithm.

Algorithm 3.1.1 Pseudo-code for the minimax-algorithm

1: function minimax(node, depth)
2: if (depth == 0 or node is terminal)
3: return evaluate(node)
4:

5: if (node is max-node)
6: maxValue = −∞
7: ForEach (child of node)
8: maxValue = max(maxValue, minimax(child, depth-1))
9: return maxValue

10:

11: if (node is min-node)
12: minValue = ∞
13: ForEach (child of node)
14: minValue = min(minValue, minimax(child, depth-1))
15: return minValue
16:

17: end function

αβ-Pruning

The game tree usually grows exponentially in depth and therefore it is not possible to reach a high
search depth with the simple minimax algorithm. But the deeper the search goes, the more accurate
the calculated value is. The minimax algorithm can be enhanced by cutting off branches of the tree
without losing information. This technique is called pruning. Pruning is quite important for the minimax
algorithm because it is possible to reach a higher search depth by reducing the size of the tree. The most
successful pruning technique for the minimax algorithm is called αβ-pruning (Knuth and Moore, 1975).
“It is based on a window of values between which a player’s score is guaranteed to fall” (Sturtevant,
2003a). The lower value, called α, is the minimal minimax value of the tree and the upper value, called
β, is the maximal minimax value of the tree. At the beginning of the search α is set to -∞ and β is
set to ∞. During the search the max-player updates the lower bound of the nodes and the min-player
updates the upper bound. If the bounds are changed in a way that α is greater or equal then β, the
corresponding subtree can be pruned because the players would never choose to play the moves which
lead to this subtree. The pseudo-code of the algorithm can be found in Appendix A.1.1.
Figure 3.2 illustrates the αβ-pruning with a search depth of 3. Minimax is a depth-first search. First,
the two lower left nodes are evaluated. In this case, the max-player at Node (c) can choose between
the values 3 and 4. As he wants to maximize the value, he chooses to play Move m7. Therefore, the
min-player knows at Node (b) that the value is 4 if he chooses to play Move m3. The min-player tries
to minimize the value and so it is known that the value of the corresponding node never becomes higher
than 4. The evaluation function assigns the value 8 to the Node (g) and therefore the value at Node (d)
will be at least 8. However, it is known that the min player at Node (b) chooses a move which at most
gives the value 4. This value is used as β-value at Node (d). At Node (d), α is 8 and β is 4. As α ≥ β
holds, the other three nodes do not have to be investigated because no matter which value they get, the
players will never choose a move combination which would lead to these nodes. After searching the left
subtree, the max-player at Node (a) knows that he will at least achieve the value 4. The α value of Node
(a) becomes 4 and the window of possible values is now (4, ∞). After investigating the left subtree of
Node (l), the node can at most get the value 2. Because it is known that the value of Node (a) is at least
4, the max-player at the root node will never choose to play Move m2. Thus, the complete right subtree
of Node (l) can be pruned.
This example of a simple tree shows the importance of the αβ-framework. Considering a game with
an average branching factor larger than 37 as explained in Subsection 2.3.2, the framework saves much
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Figure 3.2: Minimax tree with αβ-pruning

computation time by simply passing around the two values α and β. The simple minimax algorithm
investigates bd nodes, where b is the average branching factor and d the search depth. Using αβ-pruning,
the number of nodes can be reduced to bd/2 in the best case (Knuth and Moore, 1975).

3.2 Search Enhancements for Improving Performance

The number of nodes pruned by the αβ-framework can be increased by using some additional techniques.
In this section, the techniques used in the program are reported.

3.2.1 Move Ordering

As explained in Subsection 3.1.1, αβ-pruning has a best case of bd/2. Move ordering is a good way to
push the αβ-framework towards the best case. Figure 3.3 reveals this behaviour. In the left tree no
pruning is possible. If the moves are ordered optimally, as seen in the right tree, many cutoffs can be
performed.
There are two ways to order the moves, static move ordering and dynamic move ordering. Domain
knowledge is required for static move ordering. In the program, the static move ordering orders the
moves in such a way that capturing moves are considered first and non-capturing moves afterwards.
The capturing moves themselves are ordered regarding the value of the captured piece (see Subsection
5.1.1). Additionally to the static move ordering, three techniques for dynamic move ordering are used in
the program. Transposition tables are described in Subsection 3.2.2, the killer heuristic is explained in
Subsection 3.2.3 and finally the history heuristic is described in Subsection 3.2.4.

3.2.2 Transposition Tables

A transposition table (Greenblatt, Eastlake, and Crocker, 1967) is an important technique to improve the
performance of the αβ-framework. Most games are graphs instead of game trees. Thus, there are positions
that can be reached by more than one path. These repeated positions are called transpositions. It is
advantageous to detect these transpositions to avoid redundant searches (Breuker, 1998). A transposition
table is a hash table that stores the results of previously performed searches. When the search encounters
a position, it first checks whether the information about this position is stored in the transposition table.
In the program, the following information about a position is stored in the table.
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Figure 3.3: Improved pruning by move ordering

• The search depth of the subtree
The search depth of the subtree is regarded to decide how the information from the table can be
used. If the search depth is equal or larger than the depth the program wants to perform at this
position, the best move and the corresponding values can simply be returned without any further
search at this subtree (if the value is the real value and no upper or lower bound). If the depth of
the table entry is not sufficient, or does not contain the right bound for a cutoff, the stored move
can be put in the first position of the move ordering.

• The best move found
The best move is the move which the player on turn considers best or the move which leads to a
cut-off. If the search depth was sufficient, the search algorithm can simply return the best move
and the corresponding values. In that case the move generator does not have to create all possible
moves which saves a lot of time.

• The values of best move found
The values the evaluation function (see Chapter 5) and decision rule have assigned to each player
have also to be stored.

• The flag
The flag defines if the stored values are exact values of the search or just lower or upper bounds
which led to a cutoff. If the values are not exact values and they do not lead to a cutoff in the
current search, then the subtree has to be searched again even if the search depth was sufficiently
large.

• The move counter
The move counter is required for the replacement scheme explained below. It stores the number of
moves made so far in the game.

• Hash key
To store the board in the transposition table first a unique hash value of it has to be created. Then
a part of it is used as an index of the table. Some different board position has the same index but a
different hash value. Therefore this value has to be stored to be sure that the board position found
in the table is really the same board position as the current one.

The number of positions searched in a game exceeds the memory constraints of the system it runs on.
So not all positions can be stored. One transposition in the program needs 80 bytes memory space. Each
player has its own transposition table. If each of the four players store one transposition in the table,
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320 Bytes memory is required. In the program each player is allowed to store 219 = 524288 entries in his
table. Therefore, the maximum space for the transposition tables is roughly 170 MB. To store the values,
the board position has to be transformed into a hash value, in the program a value of 64 bits. The last
19 bits are used as the index of the hash table. Zobrist hashing (Zobrist, 1970) is used to calculate this
value. With Zobrist hashing it is possible to update the hash value incrementally which makes it fast.
If a new position is reached in the game and the last 19 bits of the hash value of this board is already
used as index in the transposition table, then a replacement strategy is needed to decide which of the
board position should be stored in the table. Therefore the move counter is stored in the transposition
table. Even if the board stored in the transposition table has a larger search depth than the current
board position, the current board position can replace the old one when the old position occurred in a
previous search. In this thesis, the new value is stored if the length of the path leading to the position
plus the depth of the subtree is bigger or equal than the corresponding value of the stored position.
There exists one problem in the application of transposition tables for some games - also regular Chess
and multi-player Chess - called Graph-History-Interaction Problem (Campbell, 1985) which was solved
by Kishimoto and Müller (2004). This problem occurs when the position is evaluated differently when
reached via different paths. In multi-player Chess, there is a problem regarding the rule explained in
Subsection 2.1.5 that the game is over if a board has repeated for the third time. The transposition
table is in general not able to detect how often a position occurred and so a player in a winning position
could play the best move stored in the transposition table even if this move would lead to a draw. In the
program the problem is tackled by also using the number of same board positions so far to calculate the
hash key of the position.

3.2.3 Killer Heuristic

The killer heuristic (Akl and Newborn, 1977) is a dynamic move ordering technique that improves the
efficiency of αβ-pruning. Killer moves rely on the assumption that most moves do not change the board
position too much. The killer heuristic tries to produce an early cutoff by first considering a legal move
that led to a cutoff in another branch of the tree at the same depth. In the program, three moves per
ply are stored as killer moves. If a non-killer move leads to a cutoff, it replaces the oldest killer move of
that ply and becomes the killer move considered first at the next search of that ply. It is good to have
more than one killer move per ply because it prevents from forgetting a good killer move to early.

3.2.4 History Heuristic

The dynamic move ordering technique called history heuristic was invented by Schaeffer (1983). At the
beginning of a game, a table of all possible moves in the game has to be created. In multi-player Chess,
there are 160 squares on the board and therefore a table of size 160× 160 is required to store one value
for each possible move. The piece type making the move is not considered. All values of the table are
set to 0 at the beginning. At every internal node, the table entry for the best move found at that node
gets incremented by a value. The added value can freely be chosen but typically it depends on the depth
of the subtree because the deeper the search depth is, the more accurate the best move is. Two popular
approaches are to use 2depth or depth2. In the program the last version is used and the values from the
table are used to order the non-capturing moves. The values in the table can be maintained over the
whole game. Each time a player has to make a new move the scores in the table are decremented by
a factor. In the program the values are divided by 10. The history heuristic has some disadvantages.
One of them is that the history heuristic is biased towards moves that occur more often in a game than
others (Hartmann, 1988). To overcome this disadvantage, a relative history heuristic can be applied
(Winands et al., 2006).

3.2.5 Iterative Deepening

Iterative deepening (De Groot, 1965) breaks the search process into multiple iterations. Each iteration
searches to a greater depth than the previous iteration (Russell and Norvig, 2010). Iterative deepening is
used as a time management strategy. Each player in the game gets an amount of time for finding a move
instead of a searching to a fixed depth. This is quite important for comparing the strength of different
decision rules like maxn (see Subsection 3.3.1) and paranoid (Subsection 3.3.2). It was shown that this
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technique is also beneficial in the αβ-framework because the result of the last iteration can be used for
the dynamic move ordering in the new iteration which often leads to an early cutoff. When the time for
searching is over, the algorithm stops the search at the current depth. In this thesis, the best move from
the previous search depth is played. In general, it is also possible to use the information gained from the
partial search at the current depth. The best move from the previous depth is searched first and thus,
the value of this move is known first. When another move results in a higher value, it can replace the
best move and be played when the time for searching is over.

3.3 Multi-Player Search Algorithms

In this section the decision rules for deterministic multi-player games with perfect information are de-
scribed. First maxn is described in Subsection 3.3.1, then paranoid is described in Subsection 3.3.2 and
finally best-reply search is explained in Subsection 3.3.3.

3.3.1 Maxn

Maxn (Luckhart and Irani, 1986) is the generalization of the minimax algorithm for multi-player games
with n players (Sturtevant, 2003a). The root player assumes that each player tries to maximize his own
score. The leaf nodes of the tree have n instead of just one value, where the ith value represents the score
of the ith player. The pseudo-code can be seen in Algorithm 3.3.1.

Algorithm 3.3.1 Pseudo-code for the maxn-algorithm

1: function maxN(node, depth)
2: if (depth == 0 or node is terminal)
3: return evaluate(node)
4: maxValues = maxN(firstChild, depth-1)
5: ForEach (child of node)
6: values = maxN(child, depth-1)
7: if (values[playerOnTurn] > maxValues[playerOnTurn])
8: maxValues = values
9:

10: return maxValues
11: end function

Figure 3.4 illustrates a tree in a four-player game. At Node (d) the third player is on turn and has
the choice between the values (1,2,3,4) and (4,3,2,1). As this player wants to maximize his own value,
he chooses the first values and gets the value 3 instead of 2. When this decision rule is applied to the
whole tree, the values of this game tree are (2,3,3,2). In the program a paranoid tie-breaking rule is used.
When there exists one node in the tree where a player has the choice between two moves equally good
for him, he selects the move that minimizes the value of the root player.

Shallow Pruning

One of the disadvantages of maxn is that only shallow pruning is possible without speculation (Sturtevant,
2003a). Shallow pruning is illustrated at Node (o) in Figure 3.4. After searching the left subtree of Node
(c), the second player knows that he will at least get the value 4 at Node (c). After searching Node (n)
the third player knows that he will get at least the value 7 at Node (g). In the given tree, the sum of
all players is always 10. When Player 3 gets the value 7 at Node (g), Player 2 will never play the move
leading to this node, because he knows that the maximum value he can reach at that node is 10− 7 = 3.
He knows that by playing the move leading to Node (f) he will get the value 4 which is bigger than the
maximum value he can reach at Node (g) and so Node (o) can be pruned. Shallow pruning is not as
powerful as αβ-pruning. In the best case, it converges to b0.5d as b becomes large. But in the average
case, no asymptotic gain can be expected (Korf, 1991). The main problem of this pruning is that only
the values of 2 out of n players gets compared and thus it is unlikely that the sum of 2 players exceed
the maximum sum available in this game. Therefore the lookahead is limited compared to the paranoid
algorithm. The pseudo-code of the maxn algorithm with shallow pruning can be found in Appendix A.2.1.
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Figure 3.4: The maxn decision rule applied to a tree

3.3.2 Paranoid

The paranoid decision rule (Sturtevant and Korf, 2000) reduces the game to a two-player game and thus
the αβ-framework can be applied. The root player assumes that all the opponents build a coalition
against him. The root player is the only max-player and all the other players are min-players which
try to minimize the value of the root player. This is depicted in Figure 3.5. There, all the players in
the left subtree of Node (a) want to minimize the value and therefore the lowest value of this subtree is
propagated to the root node. After investigating the left subtree, the max-player knows that he will at
least get a value of 5. The first investigated leaf node of the right subtree has the value 2. The max-player
will never play the move leading to this subtree and therefore all the other nodes of this subtree can be
pruned. Beside this strength in pruning, the paranoid algorithm has one big weakness. Because of the
unrealistic assumption that all opponent players form a coalition against the root player, suboptimal play
can occur (Sturtevant and Korf, 2000). The pseudo-code of the paranoid algorithm is exactly the same
as for the minimax algorithm (see Algorithm 3.1.1 and Algorithm A.1.1).

3.3.3 Best-Reply Search

Best-reply search (Schadd and Winands, 2011) allows only the opponent with the strongest counter move
to play a move. The other opponents pass their move. Algorithm 3.3.2 presents the pseudo-code. The
underlying assumption is that not all opponents try to minimize the value of the root player like the
paranoid decision rule described in Subsection 3.3.2 does. The passing is one of the disadvantages of
the algorithm because in some games it can lead to illegal positions. The advantage is that long-term
planning can be done compared to the other multi-player decision rules. This can be seen in Figure 3.6.
The max-player is again on turn after one opponents move and so more max-nodes are visited. In this
figure, there are three min-players, each of them has two legal moves in each position. The prunings in
the right subtree shows that αβ-pruning can be applied. Another advantage of this decision rule is that
the playing style is less cautious compared to the paranoid decision rule (Schadd and Winands, 2011).
At the same time, it has the disadvantage that opponent moves beneficial for the root player are not
considered. The pseudo-code for the best-reply search with αβ-pruning is given in Algorithm A.3.1.
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Figure 3.5: The paranoid decision rule applied to a tree

Algorithm 3.3.2 Pseudo-code for the best-reply search

1: function bestReply(node, depth, maxPlayer)
2: if (depth == 0 or node is terminal)
3: return evaluate(node)
4:

5: if (maxPlayer)
6: maxValue = −∞
7: ForEach (child of node)
8: maxValue = max(maxValue, bestReply(child, depth-1, false))
9: return maxValue

10:

11: if (not maxPlayer)
12: minValue = ∞
13: children = getChildrenOfAllMinPlayers(node)
14: ForEach (children)
15: minValue = min(minValue, bestReply(child, depth-1, true))
16: return minValue
17:

18: end function
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Figure 3.6: The best-reply decision rule applied to a tree

3.4 Quiescence Search

Quiescence search (Greenblatt et al., 1967) is an additional search at a leaf node to dilute the horizon
effect. Consider a Queen capturing a Pawn. If this move leads to a leaf node, the player thinks that it
is a rather good move. But he does not consider if the opponent can capture his Queen with the next
move. In that case, it is a bad move. The quiescence search is able to detect such bad moves by doing an
additional search at the leaf nodes of the main search. In this additional search, fewer moves than in the
main search are considered. In the program only capturing moves, promotion moves and checking moves
are used in the quiescence search. The search terminates when the next player on turn does not have
such a move. To terminate the quiescence search faster, checking moves are only considered in the first
four plies. For more information about pruning techniques in the quiescence search and a more detailed
explanation of quiescence search in general see Schrüfer (1989). The disadvantage of the quiescence search
is that it cost additional computation time at the leaf nodes which can lead to a lower search depth in
the given amount of time.
In the program, each kind of player uses the corresponding version of the quiescence search. The maxn

search considers opponents capturing moves against all other players. The paranoid search considers only
opponents capturing moves against the root player and the best-reply search does it similar, but considers
all opponents as one player.
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Chapter 4

Best-Reply Variants

In this chapter, first the weaknesses of best-reply are described in Section 4.1. Subsequently, ideas to
overcome these weaknesses are presented in Section 4.2. The resulting search algorithms are described in
Section 4.3. Section 4.4 gives an analysis of the complexity of the proposed algorithms and afterwards,
the complexity of these algorithms in the domain of multi-player Chess is discussed in Section 4.4.6.

4.1 Weaknesses of the Best-Reply Search

Schadd and Winands (2011) mentioned two weaknesses of the best-reply search. First, passing can lead to
illegal board positions, especially in card games. In the domain of multi-player Chess passing by choice
is not allowed but passing does not lead to illegal board positions. If, for example, a player is in check
and the best-reply search let this player pass, then it is no illegal board position because this position will
be treated like a Hanging King as explained in Subsection 2.2.6. This is illustrated in Figure 4.1. White
is the root player and moves his Queen to C9 as first step in the search, depicted in the left part of
the figure. Both opponents’ Kings are in check but only one is allowed to move in the best-reply search.
In this case, the red King moves to A8. After that, White is on turn and so Black has a Hanging
King and is defeated. Therefore, this is no illegal board position. Nevertheless, the illustrated position
is another implicit weakness of the best-reply search. Passing leads to unreachable positions. The white
player thinks he defeats one opponent by moving to square C9. But both opponents have to move out of
check and therefore no player will be defeated. In such situations, the root player will probably do such
moves although there might be better ones. During the experiments with the best-reply search, it was
observed that the player often set an opponent in check when one of his pieces is threatened. Subfigure
4.2(a) depicts this. Black is on turn and moves his Knight from C10 to E9 and threatens the white

Queen . The white Queen could easily be saved by moving to another square. But White moves the
Knight to C6 and threatens the red King . In this position, he expected moving the red King out
of check to be the strongest counter move and therefore his Queen to be safe. But after Red moves
out of check, the black Knight will capture the white Queen . Thus, the best-reply search will make
a bad move. In summary, the first weakness of the best-reply search in the domain of multi-player Chess
which has to be tackled is the emergency of unreachable board positions.
The second weakness of the best-reply search is that opponents’ moves beneficial for the root-player are
not considered. In the domain of multi-player Chess this is in particular important when one player

Figure 4.1: Hanging King in the best-reply search
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(a) Attacking King instead of saving Queen (b) The White best-reply search
will not play a move which en-
ables Red to checkmate Black

Figure 4.2: Weaknesses of the best-reply search

can be checkmated by a coalition of two opponents. One simple example of such a position is given in
Subfigure 4.2(b) where White is to move. Black could be checkmated if the white Rook moves to E13

followed by the red Rook moving to I14. White will not consider Red to move the Rook to I14
and will probably not move his Rook to E13. Maxn and paranoid are able to detect such moves. But
in the in the most cases, the paranoid player does not expect the opponent to do such moves because
defeating one opponent will usually increase the root players value.

4.2 Ideas to Address the Weaknesses

The first weakness demonstrated in Section 4.1 can be eliminated by letting the passing opponents play
a move. The first idea investigated in this thesis is to let these opponents play the best move ordering
move (BMOM). This also solves the problem of illegal positions in other games. Two questions regarding
the move ordering of those opponents arise:

1. Is it better to use a paranoid or a maxn move ordering strategy?
To use a paranoid move ordering, which means the opponents will always capture a piece of the
root player if possible, can be too pessimistic. The more realistic assumption that the opponents
use a maxn move ordering strategy and therefore capture the most valuable piece, has also one
disadvantage. If the first opponent can capture a second opponent’s Rook, the root-player can
capture a covered piece of the first opponent with his Bishop without expecting a recapturing.
When the second opponent’s Rook is covered and the own Bishop not, the first opponent will
probably capture the Bishop. Therefore maxn move ordering can lead to bad moves. Both variants
are tested in the experiments (see Subsection 6.4.1).

2. Is it better to use only static or also dynamic move ordering techniques?
The static move ordering used in this thesis is based on capturing pieces. If no piece can be captured,
the opponent explores the first move generated. There exist two ways to overcome this drawback.
The first one is a better static move ordering (see Experiments in Subsection 6.4.2). The second
one is to use dynamic move ordering, which can be smarter than a static move ordering but makes
the search unstable.
Applying the first technique for dynamic move ordering, transposition tables (see Subsection 3.2.2),
is more complicated than in the other search algorithms. The transposition cannot be stored at each
min-node. Consider the example that one opponent is searching and one is playing the BMOM.
First, the first opponent searches the best move and the second opponent plays the BMOM. Storing
that the BMOM is the best possible move in this position is simply wrong. When the first opponent
plays the BMOM in the second phase of the search, the position will be detected in the transposition
table and the BMOM would be considered as the best move without letting the second opponent
search for it. Thus, the information about a position cannot be stored at each min-node. But if a
position is stored in the transposition table, it can be used for the move ordering at each min-node.
Using the killer move heuristic explained in Subsection 3.2.3 can also increase the strength of the
best-reply variants. The advantage of using killer moves is that not only capturing moves but also
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tactical moves can be considered for the BMOM. At the same time, this can be a disadvantage
because tactical moves can be bad moves in another branch of the tree.
History heuristic, explained in Subsection 3.2.4, can also be able to gain a better move ordering.
It can especially be useful in positions where one opponent has only non-capturing moves. History
heuristics will prevent that always the first generated move is played as the BMOM in such a
position.
All dynamic move ordering techniques are tested in the experiments (see Subsection 6.4.3) to find
out which of them improves the proposed algorithms.

Let the non-searching opponents play a static move is only one idea. In this thesis, other variants, where
all opponents play a move, are also investigated. These variants emerge from varying the number of
opponents searching. Considering multi-player Chess with four players, when all three opponents search
it is simply the paranoid algorithm. Let one opponent search is the proposed variant of the best-reply
search. It can be a good idea to combine these both algorithms by let two opponents search. This idea
is described in Subsection 4.3.2. Another approach, described in Subsection 4.3.3, is to let the third
opponent pass instead of playing a move from the move ordering. The big advantage of the best-reply
search is the long-term planning. Therefore, it is also interesting to see what happens if all opponents
play a move from the static move ordering and only the root player is allowed to search (Schadd and
Winands, 2011). This idea is described in Subsection 4.3.4. For all of the variants, the two questions
mentioned above have to be answered by performing experiments.
The second weakness explained in Section 4.1 that opponents’ moves beneficial for the root player are
not considered, will not be resolved. Using a maxn move ordering for the opponents not searching may
diminish it, but it will not solve the problem illustrated in Figure 4.2(b). This problem can be solved by
considering checking moves in the static move ordering. The move generator used in this thesis does not
detect whether moves are checking moves because of performance issues.

4.3 Best-Reply Variants

In this section, the proposed variants of the best-reply search are presented. The short form of the al-
gorithm’s name is given in the brackets in the title of the subsections. The indices indicate the number
of the root player’s competitors searching for the best move, followed by the number of the root player’s
competitors playing the BMOM, where C is the number of all root player’s competitors. The short form
is often used in Chapter 6.
In the program, for BRS1,C−1 only search depths are considered for iterative deepening where all oppo-
nents has played the same number of moves. In the case of four players left in the game, search depths
2,3,6,7, etc. are skipped. Experiments had shown that this increases the strength of the algorithm. The
other proposed algorithms perform better when no search depth is skipped.

4.3.1 One Opponent Searches (BRS1,C−1)

The search for the strongest counter move combination of the opponents where only one opponent is
allowed to search, can be divided into n-1 phases, where n is the number of players in the game. In each
of those phases, another opponent is allowed to search for the best move. Figure 4.3 illustrates a search
for a four-player game. The three phases, after the root player’s move, are as follows:

1. First opponent searching
The first opponent searches the move he considers best and the other opponents play the best move
ordering move (BMOM).

2. Second opponent searching
The first opponent plays the BMOM. The second opponent searches the best move and the third
opponent plays again the BMOM.

3. Third opponent searching
The first opponent plays the BMOM as in the second phase of the search. The second opponent
plays the BMOM and the third opponent searches for the best move.
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Figure 4.3: One opponent searching, two opponents play a move from the move ordering (MO)

The pseudo-code of the best-reply search where the non-searching opponents play the BMOM can be
seen in Algorithm 4.3.1. This code is generic and so it can also be used for the other variants. For
variants where the non-searching opponents pass, lines 24 and 36 have to be changed. The given code is
a simplification of the real code. It builds a larger tree as illustrated in Figure 4.3 because in the code
the n-1 phases of the search are completely separated. Thus, in the case of four players, the move of the
first opponent, leading to Node (a) and (b) in Figure 4.3, will be computed in the second and in the third
phase of the search instead of only once.

4.3.2 Two Opponents Search (BRS2,C−2)

The next algorithm proposed in this thesis let two opponents search and the other opponents play the
BMOM. For four players, this is depicted in Figure 4.4 and can also be divided into three phases after
the root player’s move.

1. First and second opponent searching
The first and the second opponent search for the best move, the third player plays the BMOM.

2. First and third opponent searching
The first opponent searches for the best move as in the first phase of the search. The second
opponent plays the BMOM and the third opponent searches for the best move.

3. Second and third opponent searching
The first opponent plays the BMOM and the other opponents search for the best move.

Algorithm 4.3.1 is a simplification of the code which would build a larger tree than necessary because the
n-1 phases are completely separated.
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Algorithm 4.3.1 Pseudo-code for BRS1,C−1

1: function bestReplyWithStaticMoves(node, depth)
2: if (depth == 0 or node is terminal)
3: return evaluate(node)
4:

5: if (node is max-node)
6: searchPhase = null
7: maxValue = −∞
8: ForEach (child of node)
9: maxValue = max(maxValue, bestReplyWithStaticMoves(child, depth-1))

10: return maxValue
11:

12: if (node is min-node)
13: comment: first Node after maxNode
14: if (searchPhase == null)
15: minValue = ∞
16: ForEach (phase of the search)
17: searchPhase = currentPhase;
18: if (isSearchMove)
19: comment: standard search
20: ForEach (child of node)
21: minValue = min(minValue, bestReplyWithStaticMoves(child, depth-1))
22:

23: else
24: minValue = min(minValue, bestReplyWithStaticMoves(firstChild, depth-1))
25:

26: return minValue
27: else
28: comment: searchPhase != null => second or third opponent
29: minValue = ∞
30: if (isSearchMove)
31: comment: standard search
32: ForEach (child of node)
33: minValue = min(minValue, bestReplyWithStaticMoves(child, depth-1))
34:

35: else
36: minValue = min(minValue, bestReplyWithStaticMoves(firstChild, depth-1))
37: return minValue
38:

39:

40: end function
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Figure 4.4: Two opponents searching, one opponent plays a move from the move ordering (MO)

4.3.3 Two Opponents Search, Remaining Opponents Pass (BRS2,0)

This algorithm works similar as the algorithm proposed in Subsection 4.3.2. Again, two opponents search
for the best move. The difference is, that the other opponents pass. Therefore the tree is smaller (see
Figure 4.5). The disadvantages of this algorithm are the same as explained in Section 4.1.

4.3.4 No Opponent Search (BRS0,C)

The last algorithm proposed in this thesis is illustrated for four players in Figure 4.6. In this search, all
opponents play the BMOM. Therefore the tree is quite small which leads to a long-term planning of the
root-player. Schadd and Winands (2011) already mentioned that it would be interesting to see how such
an algorithm performs.

4.3.5 Importance of the Static Move Ordering

The static move ordering is already important for the paranoid and maxn algorithms. The better the
move ordering is, the more efficient the pruning techniques are. For all the proposed best-reply variants
except for BRS2,0 (see Subsection 4.3.3), the move ordering is even more important. The BMOM is the
root player’s expectation of the move played by some or all of the opponents, depending on the best-reply
variant. Therefore a bad static move ordering causes that the root player performs weak moves. Many
experiments, described in Section 6.4, are performed to find a good move ordering.

4.4 Best-Case Analysis

In this section the best-case analysis of the algorithms is presented. First, the already analyzed best-case
for paranoid and best-reply is stated in Subsection 4.4.1. The performed analysis of BRS1,C−1 is described
in Subsection 4.4.2 and the analysis of BRS2,0 is given in Subsection 4.4.3. BRS2,C−2 is analyzed in
Subsection 4.4.4 and BRS0,C is analyzed in Subsection 4.4.5. In the following, b is the average branching
factor of the tree, d is the search depth and n is the number of players.
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Figure 4.5: Two opponent searching, one opponent passes

Figure 4.6: All opponents play the best move from the static move ordering
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4.4.1 Paranoid and Best-Reply

Sturtevant (2003b) proofed the best-case performance of the paranoid algorithm as

O(bd×(n−1)/n).

In this algorithm, the max-player knows his strategy and has therefore only to explore 1 node at a max-
node. At each min-node, all b moves have to be investigated to find the best move. Therefore, the base
of the formula is b. The exponent is d × n−1

n because for all of the n − 1 opponents, a search has to be
performed.
The best-case analysis of the best-reply search, done by Schadd and Winands (2011), results in the
following:

O((b× (n− 1))d
2×d
n e/2).

The branching factor is b× (n− 1) because the moves of all n− 1 min-players has to be investigated at
the min-layer. The search depth is reduced, because all min-players are considered as one player. Thus,
the tree has two instead of n layers.
The explanation of the two formulas is simplified. The strategy for the min-player has also to be examined.
But in both cases the complexity of the max-player’s strategy exceeds to complexity of the min-player’s
strategy. A more detailed explanation of the formulas can be found in Sturtevant (2003b) respectively
Schadd and Winands (2011).

4.4.2 BRS1,C−1

The best-case analysis of BRS1,C−1 (see Subsection 4.3.1) is accomplished for the minimal tree, depicted
in Figure 4.7(a). The tree in the figure has a branching factor of four at each node.
Theorem:
The number of nodes explored by BRS1,C−1 in the best-case is:

O((n− 1)× (b + (n− 2)× (b− 1))d
2×d
n e/2)

Proof:
The min-player is considered as a combination of the n − 1 opponents. The search depth is reduced to
d 2×dn e because the layers of n players are reduced to two layers. Analogous to the proof of Sturtevant
(2003b) and Schadd and Winands (2011), a strategy is required to calculate the minimum number of
nodes. The strategy for the max-player is as follows. This player knows his own strategy and has
therefore only one move to search at a max-node. The number of explored leaf nodes for a min-player is
b+(n−2)×(b−1). This can be seen in Figure 4.7(a). There are b leaf nodes in the most left subtree. For
each of the other n − 2 opponents, there are b-1 leaf nodes. Calculating the strategy for the min-player
is similar. The min-player knows his strategy and thus, only one move has to be searched at a min-node.
At a max-node, all b children has to be searched. The total number of leaf nodes for the min-player and
the max-player is

(b + (n− 2)× (b− 1))d
2×d
n e/2 + bd

2×d
n e/2.

Thus, in the best-case BRS1,C−1 explores O((b + (n− 2)× (b− 1))d
2×d
n e/2) leaf nodes.

There are fewer leaf nodes than in best-reply. But as Figure 4.7 depicts, there are more internal nodes.
The number of additional internal nodes is larger than the number of saved leaf nodes. To indicate this
computational overhead, the coefficient n − 1 can be multiplied to the derived formula. The factor is
n− 1 because there are at most n− 2 internal nodes per leaf node. Summing up the n− 2 internal nodes
and the leaf node itself leads to n − 2 + 1 = n − 1. Thus, the following formula is an estimation of the
number of nodes in a BRS1,C−1 tree.

O((n− 1)× (b + (n− 2)× (b− 1))d
2×d
n e/2)

For two players, the algorithm works identically to paranoid. Inserting n=2 to the formula leads to O(b
d
2 ),

which is also the best-case of a two-player paranoid search.
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(a) Nodes in a BRS1,C−1 tree (b) Nodes in a BRS tree

Figure 4.7: Comparison of a BRS1,C−1 and a BRS tree

4.4.3 BRS2,0

The best-case analysis for BRS2,0, described in Subsection 4.3.3, is quite easy.
Theorem:
The number of nodes explored by BRS2,0 in the best-case is:

O(BRS2,0(b, d,n)) =

 O(( b2×(n−1)×(n−2)
2 )d

2×d
n e/2), if n > 3

O(bd×(n−1)/n), if n ≤ 3

Proof:
For two and three players, the algorithm works exactly as paranoid. Therefore the best-case analysis
from paranoid can be used for n ≤ 3. To calculate the number of nodes for more than 3 players, all
the min-players are considered as one player and therefore the exponent is d 2×dn e. The strategy for the
min-player is the same as for BRS1,C−1. The min-player knows his strategy and has therefore only to
examine one node at a min-node. At a max-node, b nodes have to be explored. Again, the strategy
of the min-player is not important to calculate the complexity because the strategy of the max-player
is much more complex. The max-player has to explore 1 node at a max-node. At a min-node, the
calculation of the number of paths leading to leaf nodes is the well-known urn problem (Johnson and
Kotz, 1977; Papula, 2001). 2 out of the n − 1 opponents play a move, the other opponents pass. The
order does not matter. For instance, Opponent 1 playing a move followed by Opponent 3 playing the
move is considered as the same as Opponent 3 playing a move followed by Opponent 1 playing a move
because only the first way is allowed in the proposed algorithm. Therefore,(

n− 1

2

)
=

(n− 1)!

2!× (n− 3)!
=

(n− 1)× (n− 2)

2

paths lead to leaf nodes. Each path leads to b2 leaf nodes. There are much fewer internal nodes than
leaf nodes. Thus, they can be neglected. In conclusion, the number of nodes in BRS2,0 for more than 3
players are:

O((
b2 × (n− 1)× (n− 2)

2
)d

2×d
n e/2)

4.4.4 BRS2,C−2

In this subsection, the best-case analysis of BRS2,C−2, explained in Subsection 4.3.2, is given.
Theorem:
The number of nodes explored by BRS2,C−2 in the best-case is:

O(BRS2,C−2(b, d,n)) =

 O((n− 2)× ( b2×(n−1)×(n−2)
2 )d

2×d
n e/2), if n > 3

O(bd×(n−1)/n), if n ≤ 3

Proof:
The formula to calculate the number of nodes for BRS2,C−2 is similar to the formula for BRS2,0. The
number of leaf nodes are exactly the same. But BRS2,C−2 has more internal nodes. To indicate this
computational overhead, n− 2 can be multiplied to the number of leaf nodes.
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Table 4.1: Comparison of the complexity of different algorithms

d n b BRS0,C BRS BRS1,C−1 BRS2,0 BRS2,C−2 Paranoid
3 3 37.3 37 75 147 1,391 1,391 1,391
4 3 37.3 227 644 1,263 15,532 15,532 15,532
5 3 37.3 1,391 5,565 10,834 173,392 173,392 173,392
6 3 37.3 1,391 5,565 10,834 1,935,688 1,935,688 1,935,688
7 3 37.3 8,497 48,067 92,945 21,609,326 21,609,326 21,609,326
8 3 37.3 51,895 415,161 797,377 241,238,769 241,238,769 241,238,769
9 3 37.3 51,895 415,161 797,377 2,693,103,168 2,693,103,168 2,693,103,168
4 4 37.3 37 112 330 4,174 8,347 51,895
5 4 37.3 228 1,184 3,456 269,654 539,309 783,264
6 4 37.3 228 1,184 3,456 269,654 539,309 11,821,967
7 4 37.3 1,391 12,522 36,234 17,421,191 34,842,382 178,431,435
8 4 37.3 1,391 12,522 36,234 17,421,191 34,842,382 2,693,103,168
9 4 37.3 8,497 132,457 379,852 1,125,504,656 2,251,009,312 40,647,572,534

4.4.5 BRS0,C

The best-case analysis of the last proposed algorithm, BRS0,C (see Subsection 4.3.4), is given in the
following.
Theorem:
The number of nodes explored by BRS0,C in the best-case is:

O(bd
d
n e)

Proof:
This algorithm reduces the search to a single-player game because no opponent performs a search. The
exponent is d dne because the opponents’ layer are removed. In each layer, the player has the choice
between the b moves.

4.4.6 Multi-Player Chess Analysis

Table 4.1 presents the estimated number of nodes in multi-player Chess for the given search depth d
and number of players. The average branching factor b in multi-player Chess is 37.3 (see Subsection
2.3.2). The algorithms are ordered with regard to their long-term planning. BRS0,C needs to explore the
fewest number of nodes to reach a given search depth, while paranoid needs the most. If, for instance,
4 players participate, BRS1,C−1 needs to explore 379,852 nodes to have a lookahead of 3 own moves
(search depth 9), while paranoid is only able to compute 4 depths completely with the same number of
nodes and thus, has just a lookahead of 1 own move. The experiments in Chapter 6 will show whether
the better long-term planning of the best-reply variants, especially of BRS0,C and BRS1,C−1, is sufficient
to outperform paranoid.



Chapter 5

Evaluation Function

In this chapter, the heuristic evaluation function is explained. First, the general features of the evaluation
function are described in Section 5.1. Then, two features which are used in the opening are explained
in Section 5.2. At the end of this chapter, the concept of “lazy evaluation” and how it is used in the
program is explained in Section 5.3.

5.1 General Features

In most game programs an evaluation function is a linear combination of different evaluation features.
The features of the evaluation function explained in this section are mainly based on the evaluation
function of the two-player Chess program REBEL (Schröder, 2007). They are adapted in a way that
they can be used for multi-player Chess. For an efficient implementation of an evaluation function in
the domain of Chess, it is absolute necessary to use piece-square tables. These tables are used to store
fixed values for each square. Thus, the value from this table can be used to evaluate a position instead
of recalculating it each time. A good example for the piece-square table used in this thesis is the table
for calculating the value of a Knight as explained in Subsection 5.1.3.
In the program, the values of all features for one player are summed up. In the end, the value for each
player is divided by the sum of the values of all players. Therefore, each player has a value between 0
and 1, which indicates the probability to win. The values of all players sum up to 1.

5.1.1 Piece Value

The most important feature of the evaluation function is the value of the pieces. The values used in
the program are given in Table 5.1. In the most two-player Chess programs, the King has the value ∞
because when the King is defeated, the game is over. In multi-player Chess this value leads to a quite
aggressive behaviour and thus to bad moves. The players try to defeat one opponent, without considering
how many own pieces are captured. Some values for the King were tested. A value of 3 leads to reasonable
play.

5.1.2 En Prise

The second most important feature of the evaluation function is called En Prise (French for “in danger”).
En Prise are pieces which are defended insufficiently. For example in two-player Chess, a Rook which
can be captured by an opponent’s Bishop is not defended sufficiently even if it is covered. The Rook’s
value is higher than the Bishop’s value (see Table 5.1) and therefore the opponent will probably capture

Table 5.1: The values of the pieces in multi-player chess

Queen Rook Bishop Knight King Pawn
10 5 3 3 3 1
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(a) An example for En Prise (b) The Bishop does not bring the Queen
in a dangerous position

Figure 5.1: En Prise

Table 5.2: The relative value of a Knight

Number of possible moves 2 3 4 5 6 7 8
Relative value 2.82 2.85 2.88 2.91 2.94 2.97 3.00

the Rook. This is more complicated when the attacking piece has a higher value than the defending
piece. Subfigure 5.1(a) illustrates such an example. The white Rook on F1 will capture the black

Knight on H1. Subsequently, the black Bishop on I2 captures the white Rook . Then, the white
Queen capture the black Bishop . White will start this capturing sequence because Black loses more
valuable pieces. Therefore, the black Knight is in a dangerous position, called En Prise. The value of
pieces which are in a dangerous position get decreased. In multi-player Chess, it is more complicated to
use the En Prise feature. Given the position illustrated in Figure 5.1(a) with four players, White will not
start the capturing sequence. The probability to win the game will decrease for both involved players
because their pieces get captured while the other players do not lose a piece. In this thesis, the value
of pieces from the root player get decreased by 5

6 of its value if they are in a dangerous position (e.g, a
Pawn in a dangerous position has the value 1

6 ). Thus, the root player will avoid to move pieces into a
dangerous position. The value of the opponents is decreased by the factor 1

6 . An opponent’s Pawn in a
dangerous position has the value 5

6 . If the factor would be higher, the root player will seldom capture an
opponent’s piece. If only one opponent’s piece is able to attack a root player’s piece and the root player
is on turn before the capturing can happen, the value of the root player’s piece is not decreased (see line
8 of Algorithm 5.1.1). In such a situation, the root player can move this piece before it gets captured.
This prevents the root player to be even more pessimistic. Subfigure 5.1(b) illustrates such a position.

Red is on turn and the search depth is 3. If the red Queen on B9 captures the black Pawn on
D11, Red expects Blue to move the Bishop to E12 or F9 to bring the red Queen in a “dangerous”
position, but the red Queen can easily escape. The last feature helps to detect such position as not
dangerous. Therefore Red would not be too pessimistic and be able to capture the black Pawn . To
evaluate whether a piece is in a dangerous position, a static exchange evaluator (SEE) (Reul, 2010) is
used. The pseudo-code of the SEE — which returns the value by which the value of the given piece gets
decreased — used in the program can be seen in Algorithm 5.1.1.

5.1.3 Knights Position

Knights are more powerful when they are placed near the centre of the board (“a Knight on the rim is
grim”). Therefore, the value of the Knight is decreased if it is placed near the edge of the board. The
number of possible moves if the board would be empty is used in the program to calculate the value.
It would cost too much time to calculate this number each time the evaluation function is invoked and
therefore the values of the Knight are stored in a piece-square table (see Section 5.1). The values used in
the program can be found in Table 5.2.
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Algorithm 5.1.1 Pseudo-code for the en prise feature

1: function getEnPriseValue(defendingPiece)
2: returnValue = defendingPiece.getValue()
3: if (defendingPiece is from root player)
4: returnValue /= 6.0
5: else
6: returnValue /= 1.2
7:

8: if (attackingPieces == 1 AND defending player is earlier on turn than attacker)
9: return 0.0

10: value = 0.0
11: defenderValue = defendingPiece.getValue()
12: attackerValue = 0.0
13: while attackers left do
14: if (value < 0.0)
15: comment: Piece of defender can be captured, but defender already lost more valuable pieces
16: return returnValue
17: value -= defenderValue
18: attackerValue = lowest value of remaining attackers
19: if (value ≥ 0)
20: comment: Defender is on turn, but attacker has already lost more valuable pieces
21: return 0.0
22:

23: if (defender left)
24: value += attackerValue
25: else
26: return returnValue
27: defenderValue = lowest value of remaining defenders
28: end while
29: return 0.0
30: end function
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Figure 5.2: A random factor can change the decision of the root player

5.1.4 Random

A random factor is another feature used in the evaluation function. Beal and Smith (1994) performed
experiments to show that it is beneficial to combine the existing evaluation function with a random
factor. Figure 5.2 demonstrates that a random factor lets the player tend to play a move where the
player has more promising options. In the given tree, without random the player will play the Move
m1. It would probably be a good decision to play Move m2 because all board position reachable after
playing Move m2 are good positions for the root player. A maximum random value of e.g., 10 can lead
to play Move m2 because it is probable that the value of the right tree gets more increased than the
value of the left subtree. The value of the left subtree is min(95 + b; 95 + c), while the value of the right
subtree min(max(94 + d; 94 + e);max(94 + f; 94 + g)) is. The characters indicate the random value of
the corresponding nodes (see Figure 5.2). If one of the Nodes (b) and (c) receive a low random value,
the value of the left subtree is only increased by this low value. In the right subtree, the max-player
can choose the node with the highest random number and therefore not every node needs to get a high
random number to increase the value of the right subtree by a high number.
Calculating random numbers each time the evaluation function is invoked costs some time. In the
program at the beginning of a game 100,000 random numbers are computed and stored in an array to
save computation time.

5.1.5 King Safety

The sole objective of Chess is to capture the opponent’s King. Thus, it is important to evaluate the
pressure on the Kings. Figure 5.3 illustrates which squares are important to measure the pressure on the
King. The important squares are marked with a , a or a . The pressure on the King is measured
in a number, called counter. This counter is initialised with the value 0. In the following, the steps for
computing the king safety is explained for the white King .

1. Evaluating the King’s position
To avoid that the King moves to the centre of the board or even to an opponent’s side, a piece-
square table is used. It is for instance good when the King is placed on a square from E1 to J1.
The further the King is away from these squares, the more unsafe the King is. For a more
detailed explanation of this square table and the king safety in general (for two-player Chess), see
Schröder (2007).

2. Measure the pressure on the squares
For each of the opponents and for each kind of piece it have to be calculated how often the squares
can be reached by the opponent.

3. Measure the pressure on the squares
For the squares, the same computation as for the squares has to be executed. Additionally,
the counter has to be incremented for each opponent who can reach one of the squares. If e.g.,
one opponent is able to reach two squares by its next move and another opponent is able to reach
one squares, the counter gets increased by 3. If the attacked square is not covered by any of the
white pieces, the counter gets incremented a second time.
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Figure 5.3: The squares around the King important for the King Safety

4. Measure the pressure on the squares
The computation is similar to the calculation of the squares. The only difference is that if the
attacked square has no white piece on it, the counter gets additionally increased.

5. Calculate the attack pattern
The result of step 2, 3 and 4 is a counter with a value indicating how much the pressure on the
King is and the knowledge which of the opponents’ pieces are able to attack the squares around
the King. This knowledge is used to calculate a value for the attack pattern each opponent has. In
Subtable 5.4(a), it can be seen which attack pattern is transformed to which value. This value for
each opponent is added to the counter. The number of attackers is also an important factor. Three
attacking opponents give more pressure on the King than only one attacker because they are able
to play three consecutive moves against the defending player. Thus, the counter is increased by 2
if two opponents attack and by 5 if three opponents attack the King. The last step is to use the
counter to decrease the value of the King. The higher the counter, the lower the King’s value. If
there is no pressure on the King the value is the default one. The value is decreased to less than
the value of one Pawn if the pressure on the King is very high. The relative value of the King for
the different values of counter can be seen in Subtable 5.4(b).

5.1.6 Mobility

Mobility is the measurement of the number of moves a player has. This feature is also used in other
domains than Chess. In Chess, a player is checkmated when his King is threatened and he has no legal
moves left. Additionally, the more moves are eligible, the higher the probability is to find a good move.
Thus, mobility can be a useful feature in the domain of multi-player Chess. For regular Chess, Slater
(1988) showed that there is a correlation between a player’s mobility and the probability to win the game
if the material balance of the players is even.
In the program, first the mobility of each player is computed. Afterwards, the rounded average of all play-
ers left in the game is calculated and subtracted from the mobility of each player. Finally, for each player,
a function is used to convert this number into a value which is added to the score of the corresponding
player. The function, which is derived from the mobility feature of REBEL (Schröder, 2007), is as follows:

f(mobility) =



mobility
128 , if |mobility| ≤ 11

2×mobility−11
128 , if 12 ≤ |mobility| ≤ 15

3×mobility−26
128 , if 16 ≤ |mobility| ≤ 19

4×mobility−45
128 , if 20 ≤ |mobility|

The values are precomputed and stored in an array to save computation time.

5.1.7 Pawn Formation

Pawns are generally regarded as stronger if they are connected. Schröder (2007) proposed to evaluate

three different kinds of connections. (1) Pawns side by side (e.g., white Pawn on G4 and H4) get the
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Attacking pieces Value added to counter
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(a) The value of the attack pattern; Bishops and Knights
are treated as the same piece

Counter King’s value
0 3.0
1 2.9921875
2 2.984375
3 2.9765625
4 2.953125
5 2.9296875
6 2.90234375
7 2.85546875
8 2.8046875
9 2.70703125
10 2.609375
11 2.51171875
12 2.4140625
13 2.31640625
14 2.21875
15 2.12109375
16 2.0234375
17 1.92578125
17 1.828125
18 1.73046875
19 1.6328125
20 1.53515625
21 1.4375
22 1.33984375
23 1.2421875
24 1.14453125
25 1.046875
26 0.94921875
27 0.8515625
28 0.75390625
≥ 29 0.65625

(b) Relative values of the King

Figure 5.4: King Safety

highest bonus. (2) If a Pawn has no such connection, it gets a bonus if it is covered by another Pawn. (3)
If it is also not covered, it gets a bonus if it would be covered if another Pawn would move forward. The
bonus for the Pawn depends on its position. Figure 5.7 illustrates the bonus for white Pawns for each
position on the board. Subfigure 5.5(a) depicts the bonus for white Pawns side by side and Subfigure
5.5(b) depicts the bonus for the both other connections. The illustrated numbers are divided by 256.

5.1.8 Bishop Pair

Bishops are more valuable if a player has a Bishop pair instead of a single Bishop. Especially in the
endgame, when only a few pieces are left on the board, Bishops are more valuable than Knights. In the
program, the score of a player gets increased if the player has two Bishops left. The fewer pieces the
opponents have on the board, the higher the bonus is. The bonus consists of two parts. The first one
counts the piece value of all opponents’ Queens, Rooks, Knights and Bishops. This value is converted into
the first part of the player’s bonus by a conversion table (see Subtable 5.6(a)). The second part of the
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(a) Pawn-position values for Pawns side by side (b) Pawn-position values for covered Pawns

Figure 5.5: Pawn Formation; Values have to be divided by 256

Opponents’ pieces value Bonus
0 - 11 0.5
12 - 20 0.375
21 - 26 0.25
27 - 36 0.125
37 - 46 0.0625
≥ 46 0.03125

(a) Bonus for opponents’ piece value

Number opponents’ Pawns Bonus
0 - 3 0.5
4 - 5 0.375
6 - 7 0.25
8 - 9 0.125
10 - 11 0.0625
12 - 15 0.03125
16 - 19 0.015625
20 - 23 0.0078125
24 0

(b) Bonus for opponents’ Pawns

Figure 5.6: Bonus values for the bishop pair feature

bonus takes the number of opponents’ Pawns into account. Subtable 5.6(b) depicts the conversion from
the number of opponents’ Pawns to the bonus value. The two parts of the bonus are summed together
and added to the score of the corresponding player.

5.1.9 Bad Bishop

A bad Bishop is a Bishop blocked by an own Pawn that cannot move easily. Figure 5.7(a) illustrates

such a position. The white Pawn on I3 cannot move easily because the black Pawn on I4 prevents
a forward move. Therefore the white Bishop is quite immobile in the next moves. The value by which
the value of the Bishop is decreased depends on its position and on the blocking piece in front of the
Pawn . If this blocking piece is an own or an opponent’s Pawn the value of the Bishop is decreased by
0.03125. If it is an opponent’s Knight or Bishop the value gets decreased by 0.015625. For other blocking
pieces, the value is decreased by 0.0078125. The position of the Bishop can multiply this value up to
a factor of 4. All of these values are taken from the evaluation function of the regular Chess program
REBEL (Schröder, 2007).

5.1.10 Pins

A pin is a position in which a defending piece cannot move without exposing a more valuable piece. Only
Bishops, Rooks and Queens are able to pin opponent pieces. Figure 5.7(b) illustrates such a position.

If the black Knight on F12 would move, the white Bishop on G11 could capture the black Rook
on D14. The pseudo-code of this feature can be seen in Algorithm 5.1.2. There, the piece which pins

( in Figure 5.7(b)) is called pinner, the pinned piece ( in Figure 5.7(b)) is called pinned and the piece
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(a) The white Bishop is
blocked.

(b) The black Knight is
pinned.

Figure 5.7: Bad bishop and pins

behind the pinned piece ( in Figure 5.7(b)) is called behind. The calculated value is subtracted from
the score of the player with the pinned piece.

Algorithm 5.1.2 Pseudo-code for the pin feature

1: function pinFeature(pinner, pinned, behind, pinnedPlayer)
2: if (behind is Rook, Queen or King)
3:

4: if (pinner is Queen)
5: score[pinnedPlayer] -= 0.0390625
6: return
7:

8: if (pinner is Rook)
9:

10: if (pinned is Queen or King)
11: score[pinnedPlayer] -= 1.0
12: return
13: else
14: score[pinnedPlayer] -= 0.15625
15: return
16:

17:

18: if (pinner is Bishop)
19:

20: if (pinned is Rook, Queen or King)
21: score[pinnedPlayer] -= 1.0
22: return
23:

24: if (behind is Rook or King)
25: score[pinnedPlayer] -= 0.078125
26: return
27: else
28: score[pinnedPlayer] -= 0.05859375
29: return
30:

31:

32:

33: end function
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Figure 5.8: Pawns on the marked positions get a bonus/penalization

5.2 Opening

Two features of the evaluation function are only used in the beginning of a game. The first feature
gives a bonus to Pawns on predefined positions and is described in Subsection 5.2.1. The second feature,
described in Subsection 5.2.2, penalizes pieces in the centre of the board.

5.2.1 Position of the Pawns

In the first 80 moves of the game (20 moves per player if no one is defeated), the position of the Pawns
are evaluated. In the following, this feature is described for White. Figure 5.8 depicts which squares
increase respectively decrease the value of a white Pawn by 0.15. The Pawns on F2 and H2 should
be moved in the beginning because this offers the Queen some possibilities to move. Furthermore, the
Queen pins (see Subsection 5.1.10) the red Pawn on B6 and the blue Pawn on M7 and builds

pressure on the corresponding Kings. The Pawns on G2 and I2 protect the King and therefore it
is a bad decision to move them. The largest weakness of the defence is the square I2. The blue Queen

can easily checkmate White when the square I2 is covered. Thus, it is important to move the Pawn
to J3 to avoid the attack of the blue Queen .

5.2.2 Dangerous Centre

In regular Chess it is important to control the centre of the board. Centre control increases the mobility
(see Subsection 5.1.6) and offers possibilities to attack the opponent. In multi-player Chess it is risky to
move a piece to the centre of the board because this piece can easily be attacked by all three opponent
players. If e.g., White moves a Knight to the centre and the first opponent plays a move which
threaten this Knight , then the other opponents expect White to move the uncovered Knight and
therefore they can attack White’s defence. In the program, the centre is defined as the rectangular area
consisting of the 16 squares from F6 to I9 and the value of a piece in this area gets decreased be 5% if
there are 40 or more pieces on the board.

5.3 Lazy Evaluation

Computing all the features explained in this chapter costs some time. Only the two features piece value
(see Subsection 5.1.1) and en prise (see Subsection 5.1.2) have a large influence on the score of each player.
The value of the other features does not change that much during a move. Thus, the evaluation function
in the program is divided into two stages. In the first stage, only the value of the both mentioned features
are computed. In some positions, this value exceeds β by a given margin or it is lower than α minus the
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Figure 5.9: Lazy evaluation function

margin. In those cases, the second stage of the evaluation function which computes the value of the other
features does not have to be started. Therefore, the lazy evaluation can increase the performance of the
program.
For instance, if a paranoid player searches for the move combination of all opponents which decreases his
value the most, then he does not have to compute the whole position after one opponent has captured
another opponent’s Queen. This capturing will decrease the value of one opponent a lot and therefore
the score of the root player will increase. Figure 5.9 illustrates such a search. Consider all pieces are on
the board (the en prise feature is not considered in this example). In this case, all players have the piece
value of 43. After investigating Node (c), the value of β at Node (b) is 43

43×4 = 0.25. Move m3 captures
an opponent’s Queen. The score of the root player using only the piece value is

43

4× 43− 10
= 0.2654321.

All the other features will decrease the value of the root player at most by a margin, in the program the
value of a Pawn. Therefore the expected value of the root player is at least

43− 1

4× 43− 10− 1
= 0.26087 > 0.25.

The value of this position exceeds β by the given margin and therefore the other features do not have to
be computed. The lazy evaluation can also be used for α-prunings. In this case, the value of a Pawn is
added to the value of the player instead of subtracted.



Chapter 6

Experiments and Results

In this chapter, the experiments performed with the program for playing multi-player Chess, developed
in Java 1.6.0, and the corresponding results are presented. The settings of the experiments are explained
in Section 6.1. The results of the experiments performed to test the quiescence search are shown in
Section 6.2. In Section 6.3, the performance of the three existing algorithms, paranoid, maxn and best-
reply search, are presented. The questions (see Section 4.2) regarding the move ordering in the proposed
best-reply variants are answered by experiments in Section 6.4. Afterwards, the strength of the proposed
best-reply variants are compared in Section 6.5. The strongest of the best-reply variants is compared to
the existing algorithms paranoid, maxn and best-reply in Section 6.6. A conclusion of all the performed
experiments is given in Section 6.7.
For all tables in this chapter, the numbers in the brackets indicate the win ratio, applied with a 95%
confidence interval. The columns labelled with ‘Time’ state the time in milliseconds each player had for
computing the move he considers best and the columns labelled with ‘Games’ indicate how many games
were played.

6.1 Settings

Multi-player Chess is always played with four players. Table 6.1 shows all the possible settings for
comparing two, three and four different algorithms against each other. The position of the players can
influence their strength and therefore all possible combinations have to be used in the experiments to
gain reliable results. For comparing two algorithms against each other, there exist 14 combinations (see
Subtable 6.1(a)). Six of these 14 combinations consist of two players using one algorithm and two players
using another algorithm. The eight remaining combinations consist of one player using one algorithm
against three players using another algorithm. For comparing three algorithms against each other, one of
the algorithms has to be played by two players. There exist 36 combinations as depicted in 6.1(b). The
24 combinations for comparing four algorithms against each other are depicted in 6.1(c).
In the maxn algorithm shallow pruning, described in Subsection 3.3.1, is applied. In all the other algo-
rithms, αβ-pruning (see Subsection 3.1.1) is applied. In all algorithms, the search enhancements described
in Section 3.2 are used for the searching players. To find out whether the transposition tables, killer moves
and history heuristics are also useful for the non-searching opponents, experiments are performed in Sub-
section 6.4.3. All the experiments are performed on 64-Bit Linux machines with a speed of 2.4 GHz.

6.2 Quiescence Search

In this section, the usability of the quiescence search (Section 3.4) is tested for the three search algorithms
paranoid (Subsection 6.2.1), maxn (Subsection 6.2.2) and best-reply (Subsection 6.2.3). Subsection 6.2.4
gives a summarization and an explanation of the results.
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Pos. 1 Pos. 2 Pos. 3 Pos. 4

1 1 2 2
1 2 1 2
1 2 2 1
2 1 1 2
2 1 2 1
2 2 1 1
1 1 1 2
1 1 2 1
1 2 1 1
2 1 1 1
2 2 2 1
2 2 1 2
2 1 2 2
1 2 2 2

(a) Two-algorithm setting

Pos. 1 Pos. 2 Pos. 3 Pos. 4

1 1 2 3
1 1 3 2
1 2 1 3
1 3 1 2
1 2 3 1
1 3 2 1
2 1 1 3
3 1 1 2
2 1 3 1
3 1 2 1
2 3 1 1
3 2 1 1
2 2 1 3
2 2 3 1
2 1 2 3
2 3 2 1
2 1 3 2
2 3 1 2
1 2 2 3
3 2 2 1
1 2 3 2
3 2 1 2
1 3 2 2
3 1 2 2
3 3 2 1
3 3 1 2
3 2 3 1
3 1 3 2
3 2 1 3
3 1 2 3
2 3 3 1
1 3 3 2
2 3 1 3
1 3 2 3
2 1 3 3
1 2 3 3

(b) Three-algorithm setting

Pos. 1 Pos. 2 Pos. 3 Pos. 4

1 2 3 4
1 2 4 3
1 3 2 4
1 3 4 2
1 4 2 3
1 4 3 2
2 1 3 4
2 1 4 3
2 3 1 4
2 3 4 1
2 4 1 3
2 4 3 1
3 1 2 4
3 1 4 2
3 2 1 4
3 2 4 1
3 4 1 2
3 4 2 1
4 1 2 3
4 1 3 2
4 2 1 3
4 2 3 1
4 3 1 2
4 3 2 1

(c) Four-algorithm setting

Figure 6.1: Experiments settings

6.2.1 Paranoid

Table 6.1 presents the results of the experiments performed for paranoid against paranoid enhanced
with the quiescence search. For each of the 14 combinations in a two-algorithm setting, 40 games were
computed for 1 and for 5 seconds thinking time per move. As explained in Section 3.4, opponents’
capturing moves against non-root-players are not considered in the paranoid quiescence search. The
result of this experiment is that using quiescence search does not influence the strength of the paranoid
player. Lorenz and Tscheuschner (2006) also performed experiments with the quiescence search in the
domain of multi-player Chess. Although they used a thinking time of 180 seconds per move, their results
are quite similar. Paranoid without quiescence search won 50.4% of their 93 performed games.
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Table 6.1: Experiments paranoid quiescence search

Time Games Paranoid Paranoid with QS
1000 560 284.500 (50.8% ± 4.2%) 275.500 (49.2% ± 4.2%)
5000 560 277.333 (49.5% ± 4.2%) 282.666 (50.5% ± 4.2%)

6.2.2 Maxn

The result of the experiment performed to find out whether the quiescence search is useful in maxn, is
given in Table 6.2. With a thinking time of 1 second per move, 40 games per combination were performed,
resulting in 560 games. The quiescence search reduced the playing strength significantly. The version
without quiescence search wins more than 93% of all games. The maxn version of the quiescence search is
probably not successful because for each player in the quiescence search, capturing moves against all other
opponents are considered. This can lead to long capturing sequences which cost quite some computation
time and therefore decrease the search depth. Lorenz and Tscheuschner (2006) also performed these
experiments. Their result is that maxn without quiescence search won 69.1% (± 9.6%) of the games
against maxn with quiescence search. They come to the same conclusion that quiescence search is not
successful in maxn. Nevertheless, there is a large difference in the results. In the program used for this
thesis, maxn with quiescence search won 93.3% of the games while in the experiments performed by
Lorenz and Tscheuschner (2006) it won 69.1% of the games. There are three possible explanations for
that difference. (1) Lorenz and Tscheuschner (2006) used a thinking time of 180 seconds per move, while
in this program 1 second were used. (2) Lorenz and Tscheuschner (2006) did not state that they use
different quiescence search versions. It can be assumed that they use the same quiescence search as in the
paranoid algorithm while this program uses a maxn version of the quiescence search (see Section 3.4). (3)
The programs use different evaluation functions. Especially, the en prise feature, which is not used by
Lorenz and Tscheuschner (2006), can have a large influence on the performance of the quiescence search
because it also considers possible capturings of pieces.

Table 6.2: Experiments maxn quiescence search

Time Games Maxn Maxn with QS
1000 560 522.250 (93.3% ± 2.1%) 36.75 (6.7% ± 2.1%)

6.2.3 Best-Reply

Best-reply uses a quiescence search where all min-players are considered as one player. Table 6.3 shows
that the best-reply search is more successful without quiescence search. It won 57.5% of the 1120 games
(80 per combination) against BRS with quiescence search.

Table 6.3: Experiments best-reply quiescence search

Time Games BRS BRS with QS
1000 1120 643.750 (57.5% ± 2.9%) 476.250 (42.5% ± 2.9%)

6.2.4 Results of the Quiescence Search Experiments

As explained in Section 3.4, the quiescence search has one disadvantage and one advantage. The dis-
advantage is the additionally required computation time to assign a value to the leaf nodes of the tree.
This can lead to a lower search depth in the given amount of time. The advantage is the consideration of
capturing sequences in the positions to evaluate and therefore to avoid bad moves. The possible captur-
ings of pieces is also considered by the en prise feature (see Subsection 5.1.2) of the evaluation function.
Therefore the advantage of the quiescence search seems not large enough to accept the drawback of the
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additionally required computation time. The additional computation time needed in the maxn search and
best-reply search is probably higher than for the paranoid search. The reason for that is that the paranoid
quiescence search terminates when the opponent on turn has no capturing move against the root player
while the opponents in the maxn quiescence search consider capturing moves against all other players.
The best-reply quiescence search considers all opponents as one opponent and therefore it is sufficient that
only one of the three opponents has capturing moves against the root player to continue the quiescence
search. In conclusion, the paranoid quiescence search requires probably less additional computation time
than the quiescence search of the other two search algorithms. The results of the experiments give evi-
dence for this hypothesis because they have shown that the quiescence search decreases the strength of
maxn and best-reply while the quiescence search does not influence the strength of paranoid. Therefore,
the quiescence search is not considered in the remaining experiments.

6.3 Performance of the Existing Algorithms

In this section, the performance of the three existing algorithms paranoid, maxn and best-reply search are
tested in the domain of multi-player Chess. First, all three algorithms play against each other, described
in Subsection 6.3.1. Afterwards, two of these algorithms are compared to each other to find out whether
one algorithm is able to exploit the weaknesses of another algorithm. The comparison of paranoid and
best-reply search is described in Subsection 6.3.2, the comparison of paranoid and maxn is described
in Subsection 6.3.3 and the comparison of best-reply search and maxn is described in Subsection 6.3.4.
Finally, Subsection 6.3.5 summarizes the results of the performed experiments.

6.3.1 Paranoid vs. Maxn vs. Best-Reply

The first experiment to compare the strength of the three existing search algorithms in the domain of
multi-player Chess is to let them play against each other in the three player setting (see Section 6.1). 40
games were played for each of the 36 possible combinations. Table 6.4 depicts that maxn performs not as
well as the other two algorithms. As the confidence interval points out, the difference between paranoid
and best-reply is not that large. Paranoid seems to perform best in this setting because it won over 50
games more than best-reply.

Table 6.4: Experiments paranoid vs. maxn vs. best-reply

Time Games Paranoid Maxn BRS
1000 1440 606.000 (42.1% ± 2.6%) 281.666 (19.6% ± 2.1%) 552.333 (38.4% ± 2.6%)

6.3.2 Paranoid vs. Best-Reply

To compare paranoid and best-reply, 40 games for each of the 14 combinations are played. The result is
shown in Table 6.5. Best-reply performs better than paranoid. It won almost 59% of the games. This
result is unexpected because paranoid was better in the three-algorithm setting explained in Subsection
6.3.1. It seems to be that best-reply is able to exploit the weaknesses of paranoid and paranoid is able to
exploit the weaknesses of maxn.

Table 6.5: Experiments paranoid vs. best-reply

Time Games Paranoid BRS
1000 560 230.166 (41.1% ± 4.1%) 329.833 (58.9% ± 4.1%)
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6.3.3 Paranoid vs. Maxn

Table 6.6 presents the results of the games where paranoid played against maxn. Paranoid won 59% of
the 1120 played games (80 games per combination). Lorenz and Tscheuschner (2006) also performed this
experiment in the domain of multi-player Chess. Their result is that paranoid won 89.6% (± 10.4%) of
the games against maxn. Thus, in their implementation paranoid performs much better against maxn

than in this program. One reason for this difference could be the en prise feature (see Subsection 5.1.2).
Lorenz and Tscheuschner (2006) only used piece value, mobility, king safety and piece-square tables as
features of their evaluation function. The en prise feature makes maxn a bit more paranoid because it
sometimes prevents the maxn-player to move a piece to a dangerous position. Experiments performed
with an earlier version of the evaluation function which only consists of the piece value feature achieved
similar results as Lorenz and Tscheuschner (2006). Paranoid won 83.0% (± 6.3%) of the games against
maxn.

Table 6.6: Experiments paranoid vs. maxn

Time Games Paranoid Maxn

1000 1120 660.833 (59.0% ± 2.9%) 459.166 (41.0% ± 2.9%)

6.3.4 Best-Reply vs. Maxn

Table 6.7 shows that the best-reply search performs better than maxn because best-reply won 56% of the
560 (40 per combination) played games. It performs similar as paranoid against maxn.

Table 6.7: Experiments best-reply vs. maxn

Time Games BRS Maxn

1000 560 313.583 (56.0% ± 4.2%) 246.416 (44.0% ± 4.2%)

6.3.5 Results of the Comparison of the Existing Algorithms

The result of the performed experiments is that maxn performs not as well as the both other existing
algorithms. It wins the fewest games in the three-algorithm setting and also win fewer games in a
two-algorithm setting than the other algorithms. Neither of both remaining algorithms is the strongest
one. In a three-algorithm setting where paranoid, maxn and best-reply play against each other, paranoid
performed a bit better than best-reply. But in the direct comparison, best-reply is stronger than paranoid.
A reason for the strong performance of best-reply against paranoid can be that best-reply is able to exploit
the weaknesses of paranoid.

6.4 Move Ordering for the BMOMs in the Best-Reply Variants

In this section, the experiments regarding the move ordering of the non-searching opponents in the search
of the proposed best-reply variants are described. As explained in Subsection 4.3.5, the move ordering
is quite important for the success of the best-reply variants. First, experiments to find out whether it
is more successful to use a paranoid or a maxn static move ordering for the non-searching opponents
are described in Subsection 6.4.1. Subsequently, experiments with small differences in the used domain
knowledge for the static move ordering are described in Subsection 6.4.2. In Subsection 6.4.3, experiments
are performed to find out whether the dynamic move ordering techniques increase the performance of the
best-reply variants. Finally, the results of all the experiments regarding the move ordering are summarized
and the resulting configuration of the best-reply variants for the following experiments are explained in
Subsection 6.4.4.
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6.4.1 Maxn vs. Paranoid Move Ordering

As explained in Section 4.2, a maxn move ordering for the non-searching opponents can lead to bad
moves. The alternative to use a paranoid move ordering can, similar to the paranoid algorithm, be a too
pessimistic assumption. The difference between a maxn and a paranoid move ordering is that the maxn

move ordering assigns a high value to capturing moves against all opponents while the paranoid move
ordering assigns only a high value to capturing moves against the root player. The following experiments
show which of the both move orderings is the better choice for the best-reply variants. The experiments
are performed for BRS0,C , BRS1,C−1 and BRS2,C−2. They cannot be performed for BRS2,0 because in
this variant no opponent plays a BMOM.

BRS0,C

The results of the 560 performed games (40 per combination) for BRS0,C are presented in Table 6.8.
The version with a static maxn move ordering for the non-searching opponents won 39.3% of the games.
Thus, using a paranoid move ordering for the non-searching opponents is stronger for BRS0,C . By using
a maxn move ordering, the root player seems to be too optimistic, leading to bad moves as explained in
Section 4.2.

Table 6.8: Results of the different static move orderings for the BMOM in BRS0,C

Time Games BRS0,C (maxn MO) BRS0,C (paranoid MO)
1000 560 220.333 (39.3% ± 4.1%) 359.666 (60.7% ± 4.1%)

BRS1,C−1

Table 6.9 presents the result of 1120 performed games (80 per combination) where BRS1,C−1 with a static
maxn move ordering for the non-searching opponents played against BRS1,C−1 with a static paranoid
move ordering for the non-searching opponents. The paranoid move ordering is better because it won
almost 58% of all games.

Table 6.9: Results of the different static move orderings for the BMOM in BRS1,C−1

Time Games BRS1,C−1 (maxn MO) BRS1,C−1 (paranoid MO)
1000 1120 474.000 (42.3% ± 2.9%) 646.000 (57.7% ± 2.9%)

BRS2,C−2

Table 6.10 presents the results for BRS2,C−2. The difference between the two move orderings is not
significant. In comparison to the experiments performed withBRS0,C andBRS1,C−1, it is interesting that
the paranoid move ordering for the non-searching opponents does not outperform the maxn counterpart.
One explanation for this could be that the root player in this algorithm is too pessimistic by assuming that
the two searching opponents and also the non-searching opponent play against him. It is more pessimistic
than in the other tested best-reply variants because more opponents perform a paranoid search. Letting
the opponents perform a paranoid search can lead to more pessimistic moves than letting them play the
most pessimistic moves from the move ordering.

Table 6.10: Results of the different static move orderings for the BMOM in BRS2,C−2

Time Games BRS2,C−2 (maxn MO) BRS2,C−2 (paranoid MO)
1000 560 284.500 (50.8% ± 4.2%) 275.500 (49.2% ± 4.2%)
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Conclusion

Using a paranoid move ordering for the non-searching opponents leads to a better performance than using
a maxn counterpart for BRS0,C and BRS1,C−1. For BRS2,C−2 the both ways to order the moves seems
to be equally good. In the following experiments, the paranoid move ordering is used for all best-reply
variants.

6.4.2 Different Static Move Orderings

The static move ordering used in the program only considers the captured piece (see Subsection 3.2.1).
This is sufficient for the existing algorithms because in the most cases, the move ordering only influences
the efficiency of the pruning and not the decision about the best move. In the best-reply variants where
some opponents play a BMOM, the static move ordering defines the BMOM and therefore a different
move ordering can change the decision of the root player. The move ordering is quite important for the
performance of the best-reply variants. Thus, two other move orderings are tested to find out, whether
one of them can increase the performance of the best-reply variants.

Consider Capturing Piece

Only considering the captured piece for the static move ordering has one disadvantage. If two pieces
can attack the same opponent’s piece, the first generated move gets ordered first. If, for instance, a
white Queen and a white Pawn both can attack a black Knight , then the move generated first
is also ordered first, although in the most cases it is better to capture the Knight with the Pawn

because the Knight can be covered and therefore a recapturing could happen. The static move
ordering tested here considers also the value of the capturing piece. If two moves capture a same valued
piece, the lower valued capturing piece gets ordered first. In the experiments presented in Table 6.11,
the old static move ordering played against this new static move ordering. The used algorithm in the
experiment was BRS1,C−1. The new move ordering performs a bit better in the 1120 performed games,
but as the confidence interval indicates, it cannot be said with certainty that the new move ordering is
really stronger.

Table 6.11: Old static move ordering vs. static move ordering considering also the attacking piece

Time Games Captured piece considered Captured and capturing piece considered
1000 1120 531.000 (47.4% ± 3.0%) 589.000 (52.6% ± 3.0%)

Difference Between Captured and Capturing Piece

The drawback of the static move orderings explained so far is that they are not able to detect whether a
piece is covered or not. Thus, a move which captures a Queen gets always ordered before a move which
captures a Rook. The idea of the move ordering presented here is to assume that all pieces are covered
and that the opponent will perform a recapture. Thus, the value of the capturing piece is as important
as the value of the captured piece. The proposal is to use the value of the captured piece minus the
value of the capturing piece to order the moves. Table 6.12 presents the result for BRS1,C−1 where the
proposed static move ordering played against the static move ordering explained in Subsection 6.4.2. It
was sufficient to only perform 280 games (20 per combination) to get the result that using the difference
between the two piece involved in the capturing is not a good way to order the moves. This new static
move ordering won less than 17% of all games. The weakness of this move ordering is that only capturing
moves, where the value of the captured piece is higher than the value of the capturing piece, get a positive
value. A Queen would never be expected to play a capturing move and a Pawn would never be expected
to get captured.
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Table 6.12: Experiment to compare the strength of the new static move orderings.

Time Games Captured and capturing piece considered Difference between both pieces
1000 280 234.416 (83.7% ± 4.4%) 45.583 (16.3% ± 4.4%)

Results of Different Static Move Orderings

The first proposed new static move ordering which also considers the value of the capturing piece seems
to be the strongest static move ordering. It performs a bit better than the static move ordering which
only considers the value of the captured piece. This new static move ordering is used to order the moves
of the non-searching opponents in the following experiments.

6.4.3 Dynamic Move Ordering Techniques

This subsection presents the results of the performed experiments to find out whether the dynamic move
ordering techniques increase the performance of the best-reply variants when they are used to order
the moves of the non-searching opponents. For all the experiments in this subsection, the algorithm
BRS1,C−1 is used and 560 games are played (40 per combination).
Table 6.13 presents that there is no difference in the performance of the algorithm BRS1,C−1 when
transposition tables are used. As Table 6.14 presents, there is also no difference when killer moves are
used. For the history heuristic, there is also no significant difference in the performance, as Table 6.15
presents. All three dynamic move ordering techniques does not significantly influence the strength of
the best-reply variant BRS1,C−1 when they are used to order the moves of the non-searching opponents.
Therefore in all following tests, the dynamic move ordering techniques are not used for the non-searching
opponents.

Table 6.13: Static move ordering against static move ordering plus TT

Time Games BRS1,C−1 (static MO) BRS1,C−1 (static MO + TT)
1000 560 278.000 (49.6% ± 4.2%) 282.000 (50.4% ± 4.2%)

Table 6.14: Static move ordering against static move ordering plus KM

Time Games BRS1,C−1 (static MO) BRS1,C−1 (static MO + KM)
1000 560 284.500 (50.8% ± 4.2%) 275.500 (49.2% ± 4.2%)

Table 6.15: Static move ordering against static move ordering plus HH

Time Games BRS1,C−1 (static MO) BRS1,C−1 (static MO + HH)
1000 560 289.500 (51.7% ± 4.2%) 270.500 (48.3% ± 4.2%)

6.4.4 Results of the Move Ordering Experiments

There are three conclusions of the performed experiments about the move ordering of the non-searching
opponents. (1) The best-reply variants perform better when they use a paranoid instead of a maxn move
ordering for the non-searching opponents. (2) It is also a bit better to consider the capturing piece in
the static move ordering. (3) The dynamic move ordering techniques does not significantly influence the
strength of the player when they are applied to the move ordering of the non-searching opponents.
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6.5 Performance of the Best-Reply Variants

In this section, the proposed best-reply variants are tested against each other to find out which of them is
the strongest one. First, the experiment where all four variants play against each other in a four-algorithm
setting is described in Subsection 6.5.1. Experiments where the algorithms play against each other in a
three-algorithm setting are presented in Subsection 6.5.2. Subsequently, all the proposed algorithms are
directly compared to each other in a two-algorithm setting in Subsection 6.5.3. The conclusion of these
experiments is given in Subsection 6.5.4.

6.5.1 All Variants Against Each Other

Table 6.16 presents the result of 960 performed games (40 per combination) where all the proposed
best-reply variants play against each other in a four-algorithm setting. BRS1,C−1 is the strongest of the
proposed algorithms because it won more than 41% of all games. The second best proposed algorithm is
BRS2,C−2 with a win ratio of 32.5%. BRS2,0 won almost 26% of the played games. The unambiguous
weakest of the proposed algorithms is BRS0,C . It won less than 1% of all games. One explanation for
this poor performance can be that this player does not expect his opponents to play tactical moves.
Therefore, this player is often not able to detect opponents’ moves which will checkmate him.

Table 6.16: BRS1,C−1 vs. BRS0,C vs. BRS2,0 vs. BRS2,C−2

Time Games BRS1,C−1 BRS0,C BRS2,0 BRS2,C−2
1000 960 396 (41.3% ± 3.2%) 6 (0.6% ± 0.5%) 246 (25.6% ± 2.8%) 312 (32.5% ± 3.0%)

6.5.2 Comparison of BRS-Variants in a Three-Algorithm Setting

Table 6.17 presents the results of the experiments performed in a three-algorithm setting. BRS1,C−1 is
the strongest of the proposed algorithms. In each of the three experiments with BRS1,C−1, it has a win
ratio of more than 49%. BRS0,C is clearly the weakest of the proposed algorithms. BRS2,0 performs a
bit better than BRS2,C−2.

Table 6.17: Comparison of the proposed best-reply variants in a three-algorithm setting

Time Games BRS1,C−1 BRS0,C BRS2,0 BRS2,C−2
1000 576 307.000 (53.3% ± 4.1%) 15.500 (2.7% ± 1.4%) 253.500 (44.0% ± 4.1%) -
1000 576 316.500 (54.9% ± 4.1%) 10.000 (1.8% ± 1.1%) - 249.500 (43.3% ± 4.1%)
1000 576 286.000 (49.7% ± 4.1%) - 159.500 (27.7% ± 3.7%) 130.500 (22.7% ± 3.5%)
1000 576 - 7.333 (1.3% ± 1.0%) 298.666 (51.9% ± 4.1%) 270.000 (46.9% ± 4.1%)

6.5.3 Comparison of BRS-Variants in a Two-Algorithm Setting

Experiments in a two-algorithm setting are performed to compare two of the proposed algorithms directly.
The results of all possible experiments to compare the proposed algorithms are presented in Table 6.18.
560 games with thinking time of 1 second were played for each comparison. BRS1,C−1 outperforms all the
other algorithms. It wins 98% of the games against BRS0,C , 67% of the games against BRS2,0 and 62%
of the games against BRS2,C−2. BRS0,C is the weakest of the proposed algorithms with a win ratio of less
than 10% against each of the other algorithms. The comparison of BRS2,C−2 and BRS2,0 is more difficult.
In the direct comparison, they are almost equally strong. Against BRS1,C−1, BRS2,C−2 performs a bit
better than BRS2,0, but against BRS0,C , BRS2,0 performs better than BRS2,C−2. Therefore, BRS2,C−2
and BRS2,0 are almost equally strong in a two-algorithm setting in the domain of multi-player Chess.
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Table 6.18: Comparison of the proposed best-reply variants in a two-algorithm setting

BRS1,C−1 BRS0,C BRS2,0 BRS2,C−2
BRS1,C−1 - 549.333 (98.1% ± 1.2%) 373.500 (66.7% ± 4.0%) 345.333 (61.7% ± 4.1%)
BRS0,C 10.666 (1.9% ± 1.2%) - 33.833 (6.0% ± 2.0%) 50.166 (9.0% ± 2.4%)
BRS2,0 186.500 (33.3% ± 4.0%) 526.166 (94.0% ± 2.0%) - 278.500 (49.8% ± 4.2%)
BRS2,C−2 214.666 (38.3% ± 4.1%) 509.833 (91.0% ± 2.4%) 281.500 (50.2% ± 4.2%) -

6.5.4 Conclusion

BRS1,C−1 is the strongest of the proposed algorithms in the domain of multi-player Chess. It performed
best in a four-algorithm setting against all the other proposed algorithms. In the three-algorithm setting
it was also the strongest algorithm. Additionally, BRS1,C−1 outperforms the other proposed best-reply
variants in the direct comparison. BRS2,C−2 and BRS2,0 are almost equally strong. BRS2,C−2 performed
a bit better in the four-algorithm setting, but in a three-algorithm setting BRS2,0 performed a bit better.
In a two-algorithm setting they seem to be equally strong. The weakest of the proposed best-reply variants
is clearly BRS0,C . Neither in the four-algorithm setting nor in the three- and two-algorithm settings it
won more than 9% of the games.

6.6 BRS1,C−1 Against Existing Algorithms

BRS1,C−1 is the strongest of the proposed best-reply variants. But only the comparison to the existing
algorithms examines whether BRS1,C−1 is a promising algorithm. It is first tested against all the existing
algorithms in a four-algorithm setting in Subsection 6.6.1. In Subsection 6.6.2 the proposed algorithm
is tested in a three-algorithm setting against paranoid and maxn. Afterwards it is tested against all the
existing algorithms in a two-algorithm setting. First, the results of the experiments against paranoid are
presented in Subsection 6.6.3. The experiment against maxn is described in Subsection 6.6.4 and finally,
the experiment against the best-reply search is described in Subsection 6.6.5.

6.6.1 BRS1,C−1 Against All the Existing Algorithms

In the first experiment performed to get an impression about the strength of BRS1,C−1, the existing
algorithms best-reply, maxn, paranoid and the proposed algorithm BRS1,C−1 play against each other in
a four-algorithm setting. For 1 and 5 seconds, 40 games were played per combination, resulting in 960
games. Table 6.19 presents the result of this experiment. BRS1,C−1 performs better than the existing
algorithms. With a computation time of 5 seconds, it won 35.4% of all games. As already mentioned in
Section 6.3, best-reply and paranoid are comparably strong. In the setting with 1 second thinking time,
best-reply performed a bit better, but paranoid performed better in the setting with 5 seconds thinking
time. Best-reply seems to perform worse when the thinking time increases. With a thinking time of
1 second, it won 26.5% of the games while it only won 22.7% of the games with a thinking time of 5
seconds. The weakest of the four algorithms is maxn.

Table 6.19: BRS1,C−1 vs. BRS vs. Maxn vs. Paranoid

Time Games BRS1,C−1 BRS Maxn Paranoid
1000 960 316 (32.9% ± 3.0%) 254.5 (26.5% ± 2.8%) 170 (17.7% ± 2.5%) 219.5 (22.9% ± 2.7%)
5000 960 340 (35.4% ± 3.1%) 218 (22.7% ± 2.7%) 167 (17.4% ± 2.4%) 235 (24.5% ± 2.8%)

6.6.2 BRS1,C−1 vs. Paranoid vs. Maxn

Table 6.20 presents the result of the experiment where BRS1,C−1 plays against paranoid and maxn in a
three-algorithm setting. BRS1,C−1 outperforms the other two algorithms. It won almost every second
game. Paranoid has a win ratio of 33.1% and maxn a win ratio of 17.6%. This experiment can be
compared to the experiment performed in Subsection 6.3.1 where best-reply played against paranoid and
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maxn. In that experiment, best-reply won 38.4% of the games. In conclusion, BRS1,C−1 won exactly
11 percentage points more games against paranoid and maxn than best-reply. Thus, letting the non-
searching opponents play a BMOM instead of passing leads to an considerable gain in performance. It
is remarkable that paranoid wins 8.9 percentage points (from 42% to 33.1%) fewer games than in the
experiment described in Subsection 6.3.1, while maxn only wins 2 percentage points (from 19.6% to 17.6%)
fewer games. Compared to best-reply, BRS1,C−1 seems especially to perform well against paranoid.

Table 6.20: BRS1,C−1 against paranoid against maxn

Time Games BRS1,C−1 Paranoid Maxn

1000 720 355.333 (49.4% ± 3.7%) 238.333 (33.1% ± 3.5%) 126.333 (17.6% ± 2.8%)

6.6.3 BRS1,C−1 vs. Paranoid

Table 6.21 presents the result of the 560 performed games where BRS1,C−1 played against paranoid.
BRS1,C−1 outperforms paranoid with a win ratio of 70%. Best-reply won 59% of the games against
paranoid (see Subsection 6.3.2). This confirms the hypothesis from Subsection 6.6.2 that BRS1,C−1
performs especially well against paranoid.

Table 6.21: BRS1,C−1 against paranoid

Time Games BRS1,C−1 Paranoid
1000 560 391.666 (70.0% ± 3.8%) 168.333 (30.0% ± 3.8%)

6.6.4 BRS1,C−1 vs. Maxn

The result of the 560 performed games BRS1,C−1 against maxn are presented in Table 6.22. BRS1,C−1
wins 64% of all games and is according to that stronger than maxn. BRS1,C−1 performs also better
against maxn than best-reply did. Best-reply won 56% of the games against maxn (see Subsection 6.3.4).

Table 6.22: BRS1,C−1 against maxn

Time Games BRS1,C−1 Maxn

1000 560 360.333 (64.3% ± 4.0%) 199.666 (35.7% ± 4.0%)

6.6.5 BRS1,C−1 vs. BRS

Table 6.23 presents that BRS1,C−1 performs better than best-reply. It won 54.2% of the 1120 performed
games with 1 second thinking time per move. With a thinking time of 5 seconds, it won 57.5% of the
games. As stated in Subsection 6.6.1, best-reply seems to perform worse when the thinking time increases.
The result of these experiments is that letting the non-searching opponents play the BMOM instead of
passing seems to be a good improvement of the best-reply search.

Table 6.23: BRS1,C−1 against BRS

Time Games BRS1,C−1 BRS
1000 1120 607.333 (54.2% ± 3.0%) 512.666 (45.8% ± 3.0%)
5000 560 322.000 (57.5% ± 4.1%) 238.000 (42.5% ± 4.1%)
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6.6.6 Performance of BRS1,C−1 with a Maxn Move Ordering for the BMOMs

The experiment presented in Table 6.9 indicates that BRS1,C−1 with a paranoid move ordering for the
non-searching opponents is stronger than BRS1,C−1 with a maxn move ordering for the non-searching
opponents. In some non-capturing games, it is difficult or not possible to find opponents’ moves bad for
the root player without performing a search. For such games, it has to be ckecked whether BRS1,C−1
is also able to outperform the existing algorithms, especially best-reply. To give an indication how
the proposed algorithm performs in such games, experiments with a maxn move ordering for the non-
searching opponents are performed. The results of these experiments are presented in Table 6.24. For
each comparison, 560 games with a computation time of 1 second per move are performed. The results of
the experiments where BRS1,C−1 with a paranoid move orering for the non-searching opponents played
against the existing algorithms are also presented in this table. The performance of BRS1,C−1 decreases
when using a maxn move ordering for the non-searching opponents. Against paranoid, the win ratio
decreases from 70% to 56.3% and against maxn, it decreases from 64.3% to 59.3%. The win ratio also
decreases from 54.2% to 53.0% against best-reply. Nevertheless, BRS1,C−1 with a maxn move ordering
for the non-searching opponents is still stronger than the existing algorithm. Thus, BRS1,C−1 can also
be a suitable algorithm for domains where it is not possible to find opponents’ moves bad for the root
player without performing a search.

Table 6.24: Comparison of different BRS1,C−1 move ordering variants against existing Algorithms

Paranoid Maxn BRS
BRS1,C−1 maxn BMOMs 56.3% (± 4.2%) 59.3% (± 4.1%) 53.0% (± 4.2%)
BRS1,C−1 paranoid BMOMs 70.0% (± 3.8%) 64.3% (± 4.0%) 54.2% (± 3.0%)

6.6.7 Conclusion of the Comparison to the Existing Algorithms

BRS1,C−1 is a promising algorithm. In a four-algorithm setting against best-reply, paranoid and maxn,
it performs better than the other algorithms. It is also better than each of the existing algorithms in the
direct comparison. It performs especially well against paranoid with a win ratio of 70%.

6.7 Conclusion of the Experiments

The experiments in Section 6.2 pointed out that quiescence search is not useful in the domain of multi-
player Chess. Regarding the move ordering of the non-searching opponents in the proposed best-reply
variants, the experiments in Section 6.4 revealed that it is good to use a paranoid static move ordering.
Applying dynamic move ordering techniques does not influence the strength of the variants. The con-
clusion of Section 6.5 is that BRS1,C−1 is the best of the proposed algorithms and Section 6.6 pointed
out that this algorithm performs better than the existing algorithms. Therefore, the most important
conclusion of the experiments is that the proposed algorithm BRS1,C−1 is a promising algorithm which
outperforms the existing algorithms in the domain of multi-player Chess.



Chapter 7

Conclusions and Future Research

In this chapter, the conclusion of this thesis is given. First, the research questions are answered in Section
7.1. Afterwards the problem statement is answered in Section 7.2. Finally, the future research is given
in Section 7.3.

7.1 Answering the Research Questions

In this section, the two research question stated in Section 1.3 are recalled and answered.

1. Is the best-reply search better than the well-known paranoid and maxn algorithms
in the domain of non-cooperative multi-player Chess?

This questions is answered by the experiments described in Section 6.3. Best-reply performs better than
maxn. It won 56% of the games against maxn in the direct comparison. It also performs better than
maxn in the three-player setting with paranoid as third algorithm. The comparison of the best-reply search
and the paranoid algorithm is more complicated. In the three-player setting mentioned before, paranoid
performs a bit better than best-reply (42% to 38%). In contrast to this result, best-reply performs well
against paranoid in the direct comparison. It wins almost 59% of these games. It is remarkable that
best-reply performs better against paranoid (win ratio 59%) than against maxn (win ratio 56%) in the
direct comparison. In conclusion, best-reply outperforms maxn and has a similar strength as paranoid in
the domain of multi-player Chess.

2. Can we find variants of the best-reply search that are even better?

The conclusion of the experiments performed in Section 6.5 is that BRS1,C−1 is definitely the strongest
of the proposed best-reply variants. Further, BRS1,C−1 also outperforms the existing algorithms in the
domain of multi-player Chess. Against best-reply, it has a win ratio of 54.2% with a thinking time of 1
second and a win ratio of 57.5% with a thinking time of 5 seconds. It has a win ratio of 70% against
paranoid and 64% against maxn. Thus, BRS1,C−1 is a promising algorithm which performs better than
the existing algorithms in the domain of multi-player Chess.

7.2 Answering the Problem Statement

The problem statement of the thesis is answered in this section.

How can the best-reply search be modified to outperform
the paranoid algorithm in complex (capturing) multi-player games?

The most promising modification of best-reply search is to let the non-searching opponents play the
strongest move based on the static move ordering instead of passing. The static move ordering is quite
important for this modification because the best move regarding this move ordering is the root player’s
expectation of the moves played by the non-searching opponents. A bad static move ordering causes
the algorithm to play bad moves. This modification solves the main problem of best-reply that passing
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can lead to officially unreachable and in some domains illegal board positions. The result of the best-
case analysis performed in Section 4.4 is that this modification decreases the number of leaf nodes a bit
while the number of internal nodes increase. In the domain of multi-player Chess, the number of leaf
nodes is more important than the number of internal nodes because the evaluation function is more time
consuming than the move generation.
The experiment performed with the modified algorithm, called BRS1,C−1, indicates that this algorithm
is promising. It outperforms the existing algorithms paranoid, maxn and best-reply. It performs especially
well against paranoid.

7.3 Future Research

In this section suggestions for the future research are given. These suggestions can be categorized into
seven categories.

1. Evaluation function
Additional work can be performed on the evaluation function to increase the playing strength.
Although the evaluation function used in the program has more than 10 features, even more features
can be implemented. For regular Chess there are many features that can be adapted to multi-player
Chess to increase the playing strength. Especially, features representing endgame knowledge can
be beneficial because no such feature is included in the current evaluation function. Additionally,
experts for multi-player Chess can be searched to retrieve domain knowledge that can be used to
add some more features to the evaluation function. Currently, the evaluation function uses two
features for the opening. The performance in this part of the game can be increased by building
and using opening books. The weights of the different features are tuned by hand or by just a few
experiments. Therefore the playing strength can be increased by using machine learning techniques
to tune the existing parameters of the evaluation function.

2. Forward pruning
Forward pruning techniques are not used in the program. In quite some regular Chess programs,
forward pruning techniques are applied. Therefore, it can be investigated whether applying for-
ward pruning techniques like Null Move (Donninger, 1993), ProbCut (Buro, 1995) and MultiCut
(Björnsson and Marsland, 1999) can increase the playing strength.

3. αβ-enhancements
The αβ-framework can be enhanced by several techniques like MTD(f) (Plaat et al., 1995) or Prin-
cipal Variation Search (Fishburn, Finkel, and Lawless, 1980; Marsland and Campbell, 1982)/Ne-
gaScout (Reinefeld, 1983). This can also increase the playing strength.

4. Faster framework
As part of this thesis, a framework was implemented from scratch. This was the first time that the
author of this thesis implemented a framework for playing a multi-player game. A few weeks were
spent to optimize the framework, but nevertheless the framework can be even more efficient by
changing some implementation details like using bitboards (Heinz, 1997; Hyatt, 1999; Reul, 2009)
to represent the board.

5. Static move ordering
As explained in Subsection 4.3.5, the static move ordering is quite important for the performance
of the proposed algorithms. The static more ordering in the program is quite simple. Spending
more time to enhance the static move ordering could even increase the performance of BRS1,C−1.
One improvement can be to consider check moves. This is not considered in the program because
it cost some computation time to identify check moves. But for the static move ordering for the
non-searching opponents, this can be a promising approach to improve the quality of the move
ordering. Another approach to improve the static move ordering can be the use of piece-square
tables. Piece-square tables can be used to evaluate the position of the piece to move with respect
to the kind of the moved piece.

6. Allow non-searching opponents to investigate more than one move
In the proposed algorithm BRS1,C−1 all but one opponents play the best move regarding the static



7.3 — Future Research 63

move ordering. When check moves are also considered in the static move ordering as proposed
above, the question arises whether it is better to expect the opponent to play a good capture move
or a check move. It could be a promising idea to propose an algorithm where the “non-searching
opponents” are allowed to perform a search with a small branching factor like 2 or 3. In such an
algorithm it would be possible to consider check moves and also capture moves for the non-searching
opponents. This modification would increase the complexity of the tree, but it would still be much
smaller than a paranoid -tree. It has to be tested whether the better estimation of the opponents’
moves is worth the higher complexity of the tree.

7. Other domains
The proposed algorithms are only tested in the domain of multi-player Chess. It has to be tested
whether the best of the proposed algorithms, BRS1,C−1, is also able to outperform the existing
algorithms in other domains. The algorithm can be tested in other capture games and also in
non-capture games. Additionally, it can be tested in games with imperfect information. It is from
special interest to see how the properties of the different games have an influence on the performance
of BRS1,C−1. In multi-player Chess, the evaluation function is more time consuming than the move
generation. In other games where the move generation is more complex or the board position is
quite easy to evaluate, the larger number of internal nodes compared to best-reply can be such a
disadvantage that it is not worth to let the non-searching opponents play a move. Moreover, in
multi-player Chess the opponents’ moves have a quite large influence on the position of the root
player. Thus, it is quite important to let each opponent play a move. For other games where the
opponents’ moves does not have such a large influence on the root player’s position, for instance
racing-games, it has to be tested whether BRS1,C−1 is also able to outperform best-reply.
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Appendix A

Algorithms

A.1 Minimax and paranoid with αβ-pruning

The pseudo-code for minimax and paranoid is the same. Therefore it is listed only once.

Algorithm A.1.1 Pseudo-code for the minimax-algorithm with αβ-pruning

1: function alphaBeta(node, depth, alpha, beta)
2: if (depth == 0 or node is terminal)
3: return evaluate(node)
4:

5: if (node is max-node)
6: maxValue = −∞
7: ForEach (child of node)
8: maxValue = max(maxValue, alphaBeta(child, depth-1, alpha, beta))
9: if (maxValue > alpha)

10: alpha = maxValue
11: if (alpha ≥ beta)
12: return maxValue
13:

14:

15: return maxValue
16:

17: if (node is min-node)
18: minValue = ∞
19: ForEach (child of node)
20: minValue = min(minValue, alphaBeta(child, depth-1, alpha, beta))
21: if (minValue < beta)
22: beta = minValue
23: if (alpha ≥ beta)
24: return maxValue
25:

26:

27: return minValue
28:

29: end function
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A.2 Maxn with shallow pruning

The variable maxSum in the pseudo-code is the maximum sum available in this game for all players. In
multi-player Chess the winner gets 1 point, or in case of a draw the 1 point is shared by the remaining
players. Therefore the maxSum in multi-player Chess is 1.

Algorithm A.2.1 Pseudo-code for the maxn-algorithm

1: function maxN(node, depth, pruneValue)
2: if (depth == 0 or node is terminal)
3: return evaluate(node)
4: maxValues = maxN(firstChild, depth-1, −∞)
5: ForEach (child of node)
6: values = maxN(child, depth-1, maxValues[playerOnTurn])
7: if (values[playerOnTurn] > maxValues[playerOnTurn])
8: maxValues = values
9: if (maxValues[playerOnTurn] ≥ maxSum − pruneValue)

10: break
11:

12:

13: return maxValues
14: end function
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A.3 Best-reply search with αβ-prunging

Algorithm A.3.1 Pseudo-code for the best-reply search

1: function bestReply(node, depth, maxPlayer, alpha, beta)
2: if (depth == 0 or node is terminal)
3: return evaluate(node)
4:

5: if (maxPlayer)
6: maxValue = −∞
7: ForEach (child of node)
8: maxValue = max(maxValue, bestReply(child, depth-1, false, alpha, beta))
9: if (maxValue > alpha)

10: alpha = maxValue
11: if (alpha ≥ beta)
12: return maxValue
13:

14:

15: return maxValue
16:

17: if (not maxPlayer)
18: minValue = ∞
19: childs = getChildsOfAllMinPlayers(node)
20: ForEach (childs)
21: minValue = min(minValue, bestReply(child, depth-1, true, alpha, beta))
22: if (minValue < beta)
23: beta = minValue
24: if (alpha ≥ beta)
25: return maxValue
26:

27:

28: return minValue
29:

30: end function


