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Summary

In the last decade, Monte-Carlo methods have considerably increased the playing strength of computer
Go programs. In particular, Monte-Carlo Tree Search algorithms, such as UCT, have enabled significant
advances in this domain. Also the combination of Monte-Carlo methods with domain-specific knowledge
has produced good results. While much research has been done on Go, so far not much work has focussed
on Phantom Go. We asked ourselves how we could apply the existing knowledge about Monte-Carlo
methods to computer Phantom Go in order to produce a strong playing program.

The game of Phantom Go is a variant of Go complicated by the presence of hidden information. The
opponent moves are not given. However, if an illegal move is attempted this is announced and the player
can try to move again. Thus, a player can try to guess the precise location of the unknown opponent
stones. Phantom Go is usually played on a 9× 9 board.

The only work on Phantom Go known to us has been published by Tristan Cazenave in 2006. He used
a very basic Monte-Carlo method. As a sequel to this research we applied three Monte-Carlo approaches
which have been successful in regular Go, viz. (1) all-as first MC, which was used by Cazenave, (2)
simple MC evaluation of moves, and (3) UCT. Moreover, different ways of dealing with the unknown
stones on the board and combinations of algorithms were devised. Two ways of scoring games were
tested. Furthermore, we tried to enhance UCT by integrating domain-specific knowledge. This led to a
total of eight Phantom-Go players.

To our surprise none of the MC methods tried outperformed all-as-first. Simple MC evaluation needed
too much simulated games to produce good play. UCT plays at a comparable level to all-as first. Tree
search does bring an improvement in later stages of the game, but it suffers from a number of drawbacks.
Below we list three of them.

• UCT tends to overestimate the value of a position. This leads to careless play.

• Using the values produced by UCT to account for unknown opponent stones influences the con-
struction of the search tree in such a way that bad moves with an incorrect positive evaluation can
persist.

• UCT plays disconnected moves in the opening stages of a game, thus giving the player a starting
position worse than all-as-first methods, which play strongly connected.

Especially the last problem is a big drawback. We got around this problem by defining a hybrid player,
which starts by using all-as-first evaluation and switches to UCT later. This does produce better play
than pure all-as-first.

When trying to integrate domain-specific knowledge within MC methods, our experiments using
the total gain in influence as a heuristic for Phantom Go were unsuccessful. While our approaches to
combining knowledge with UCT are valid, the heuristic was not good enough to produce better results.

A big improvement over earlier methods was made by exchanging territory scoring of simulated games
by 0/1 scoring. When a game is either valued as a win or a loss, the algorithms tend to focus more on
the moves important to winning the game. This leads to better strategic play. However, it takes longer
for the algorithms to focus on important moves, as there is no clear indication of how good a move is.
When using territory scoring this is much more clearly defined. Thus algorithms using territory scoring
exhibit better tactical play.

In conclusion we may state that while some of our approaches have produced automated players with
a reasonable playing strength, we have not been able to improve the basic method used by Cazenave
significantly. More research will be needed to overcome the difficulties we encountered and produce
stronger Phantom Go-playing programs.
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Samenvatting

In de afgelopen jaren is er door het gebruik van Monte-Carlo methoden veel vooruitgang geboekt in com-
puter Go programma’s. In het bijzonder noemen we de opkomst van Monte-Carlo algoritmen die gebruik
maken van zoekbomen, zoals UCT. Ook de combinatie van Monte-Carlo methoden met domeinspecifieke
kennis heeft tot goede resultaten geleid. Hoewel er veel onderzoek is gedaan naar computer Go, is er tot
nog toe maar weinig aandacht besteed aan Phantom Go. Wij hebben onszelf tot doel gesteld de bestaande
kennis over Monte-Carlo methoden toe te passen op Phantom Go, en een sterk spelend programma te
produceren.

Het spel Phantom Go is een gecompliceerdere variant van Go die met verborgen informatie werkt. De
zetten van de tegenstander worden niet openbaar gemaakt. Echter, wanneer een speler een zet probeert
te doen die niet mogelijk is, wordt dit aan beide spelers kenbaar gemaakt en mag de speler een nieuwe
zet proberen te doen. Zo kan een speler proberen af te leiden waar de stenen van zijn tegenstander zich
bevinden. Phantom Go wordt meestal gespeeld op een bord van 9× 9.

Het enige werk dat wij kennen over Phantom Go is gepubliceerd door Tristan Cazenave in 2006. Hij
gebruikt een vrij algemene Monte-Carlo methode. Als een vervolg op dit onderzoek hebben wij drie
Monte-Carlo benaderingen die succes gehad hebben in Go toegepast op Phantom Go, te weten (1) ‘all-
as-first’ MC evaluatie, gebruikt door Cazenave, (2) MC evaluatie van alle mogelijke zetten, en (3) UCT.
Verschillende manieren om rekening te houden met de onbekende stenen van de tegenstander zijn hiermee
gecombineerd. Ook zijn twee verschillende methoden getest om de waarde van een uitgespeelde positie
te bepalen. Verder hebben we geprobeerd enige van deze methoden te verbeteren door ze te combineren
met domeinspecifieke kennis. Dit leidde tot een totaal van acht Phantom-Go spelers.

Tot onze verassing behaalden geen van de MC methoden een beter resultaat dan all-as-first. MC
evaluatie van alle mogelijke zetten heeft te veel gesimuleerde spellen nodig om tot werkelijk goed spel
te komen. UCT speelt op een vergelijkbaar niveau als all-as-first. Het gebruik van zoekbomen leidt tot
betere zetten later in een partij, maar leidt aan een aantal tekortkomingen. We noemen er drie.

• Zoekboom methoden zoals UCT hebben de neiging de waarde van een positie te hoog in te schatten.
Dit leidt tot een onvoorzichtige stijl van spelen.

• Het gebruik van de evaluatiewaarden van UCT om rekening te houden met de onbekende stenen
bëınvloedt de manier waarop de zoekboom uitgebreid wordt. Dit leidt tot een zoekgedrag waarin
slechte zetten met een, toevallige, goede evaluatie deze onterecht kunnen behouden.

• UCT opent niet sterk. Omdat het uitgaat van een zoekboom waarin stenen altijd verbonden kunnen
worden, speelt het veel losse stenen verspreid over het bord. Dit is geen goede tactiek voor Phantom
Go.

Vooral het laatste probleem leidt tot slechter spel. We hebben dit omzeild door een hybride speler te
introduceren, die eerst all-as-first evaluatie gebruikt en later overgaat op UCT. Dit levert wel betere
resultaten op dan enkel all-as-first.

Bij onze pogingen domeinspecifieke kennis te combineren met MC methoden, zijn onze experimenten
met een heuristiek gebaseerd op ‘influence’ niet succesvol geweest. Hoewel onze benadering wel deed wat
wij verwachtten, was de heuristiek niet goed genoeg om betere resultaten te geven.

Een grote verbetering ten opzichte van eerdere methoden kwam wel toen wij de waarde van een
gesimuleerd spel niet langer lieten afhangen van het aantal bezette punten, maar slechts keken of de
speler gewonnen of verloren had. In dit geval richten de algoritmen zich meer op de zetten die belangrijk
zijn om het spel te winnen. Dit leidt tot beter strategisch spel. Echter, het duurt ook langer voor het
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algoritme doorkrijgt welke zetten belangrijker zijn dan andere. Dit leidt tot enigszins slechter tactisch
spel.

Ter conclusie kunnen we stellen dat hoewel sommige van deze benaderingen programma’s van een
redelijke sterkte hebben opgeleverd, het ons niet gelukt is een veel betere speler te produceren dan met
de methoden die gebruikt werden door Cazenave. Meer onderzoek zal nodig zijn om deze problemen op
te lossen of te omzeilen, en sterkere Phantom Go spelende programma’s te ontwerpen.
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Chapter 1

Introduction

In this chapter we introduce the field of computer game-playing, and give an introduction to methods rele-
vant for this project. We explain why we chose to do research on Phantom Go, and give an overview of the
previous research relevant to this thesis. Finally, we give a problem statement and five research questions.

Chapter contents: Games, Phantom Go, Monte Carlo, Related Work, Problem Statement, Research Questions

1.1 Games and AI

For many years now, board games have been used as a testbed for Artificial Intelligence (Van den Herik,
Uiterwijk, and Van Rijswijck, 2002). Because of the structured and deterministic nature of these games
they are ideal for experiments about reasoning behaviour in machines while they are still complex and
difficult enough to pose continuously new problems. Since in most games a human may challenge a
computer in a one-to-one contest, games have become a test of intelligence between man and machine.

As AI techniques progressed we saw a shift in the kind of games that were studied. No sensible person
will play tic-tac-toe against a computer more than a few times. The kind of games focussed on seems
to increase in complexity. Minimax algorithms combined with good evaluation functions have long been
the dominant method of computer game-playing. The results have been impressive. Chess has been the
holy grail of AI researchers since the 1950’s. With Kasparov’s defeat by Deep Blue, that point seems
passed (Schaeffer and Plaat, 1997). The focus shifted then to games in which minimax algorithms will
not yield very good results. There are two main causes for minimax to fail: complexity and uncertainty.

Complexity comes into play if games have a high branching factor, resulting in large game trees, and
if there is no simple way of determining whether a position reached after a number of moves is a ‘good’
position. In this situation minimax is at a loss because it needs an incredible amount of time before
being able to decide on any ‘good’ move. Go is a notorious example, and even though much research has
been done, and is being done, computers have still not progressed beyond the level of a good amateur.
Humans are much better at this game, as it seems mainly because they recognize patterns in the game
instead of analyzing moves.

Uncertainty is a factor in games in which some information is not disclosed to all players. Card games
such as Bridge and Poker are examples. Kriegspiel, a Chess variant in which the player is not able to see
what the opponent does, is another example. Minimax fails here because if it considers a move, it will
have to consider it for all possible situations, instead of only the ‘real’ situation. Humans think about
these possibilities at a more abstract level, which might not yield perfect play, but provides solutions
which are usually quite good.

New techniques have to be tried to overcome these difficulties. Hence we arrive the topic of this thesis:
Go with uncertainty.

1.2 Go Rules and Terminology

Go is an old Chinese board game. It has been played in China, Japan, and Korea for over 3000 years.
Two players, Black and White, take turns in placing one stone on a cross of lines (an intersection).
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These stones will not be moved again, unless they are captured. It is allowed to pass. Stones need to
be connected, horizontally or vertically, to at least one free position to survive. The stone is then alive.
Completely surrounded stones are taken off the board. They are captured, or dead. Stones of the same
colour that are in adjacent positions, horizontally or vertically, form a chain. The stones in a chain live
and die together. They are alive as long as one of them is adjacent to an empty position. The empty
intersections a chain is connected to are called liberties. When a chain has only one liberty left it is in
atari. This means it could be captured on the next move. It is somewhat similar to ‘check’ in chess.

Suicide is illegal in Go. This means that it is not allowed to play a move if as a result of this move the
stone, or a chain of the player’s own colour, has no liberties left. However, if a move captures opponent
stones they are taken off the board first. The stone will have liberties then, and therefore the move is
legal.

If a move would result in the same board pattern as existed before the opponent made his1 move,
a player has to abstain from that move and should make a move elsewhere. This is called ko and is
necessary to avoid endless repetitions and stalemates.

Chains can also be called dead while they are still on the board. They may technically still be alive,
but it is used to indicate that they will never survive. Chains can also be unconditionally alive. This
means that they can never be taken. To understand this we need to introduce the concept of eyes. While
different definitions of what exactly an eye is are being used, it is essentially an empty intersection that
is surrounded by stones of one colour. An eye that can be threatened by capturing one or more of the
surrounding stones is called a false eye. Correspondingly, an eye that cannot be threatened is called a real
eye. When speaking of eyes, usually real eyes are meant. A chain needs two eyes to be unconditionally
alive. A chain with one eye can be caught by surrounding it completely, and finally playing in the eye. A
chain with two eyes cannot be captured, because to play in one of the eyes would be suicide. The chain
always has the other liberty left.

The game is over when both players pass. The winner is the player that has surrounded and occupied
the most intersections. There are different ways of counting this; we will be using Chinese rules. For
the complete Chinese rules see Davies (1992). According to these rules, all intersections that are either
occupied or completely surrounded by alive chains are counted. Since Black plays first, to White’s score
a certain number of points are added. This is called komi.

1.3 Phantom Go

Phantom Go is a two-player game often played as an entertaining variation by regular Go players. It is
the equivalent of Kriegspiel for Chess.

Phantom Go is a variant of classic Go in which the players do not see the opponent’s moves. Two
players each have their own board, on which only their own stones are visible. A referee is needed. He
has a reference board on which the actual state of the game is maintained. The players communicate
their move decisions to the referee. The referee has the following replies to a suggested move:

• illegal (already occupied, suicide, ko); after which a new move may be suggested.

• legal; the move is played.

• stones taken; the stones taken are removed from the opponent’s board, and the number of taken
stones is announced to the player.

After both players pass, the game ends and the final score is computed on the reference board, according
to Chinese rules. These rules are according to Cazenave (2006). In practice, other sets of rules are used
as well, for instance the reply ‘suicide’ or ‘ko’ in contrast to a ‘normal’ illegal move, or the announcement
‘atari’ when stones are in danger of being captured. Such rules will not be used at this stage.

While the described game may seem absurdly difficult, in practice it is not. Usually the game is
played on smaller boards, 9 × 9 for instance, and much information about the opponent’s position will
turn up during a match. We have also decided to play on a 9 × 9 board. If a move is declared ‘illegal’
by the referee, a player knows something about the position of opponent stones: most probably one of
the opponent stones is on the position he tried. However, blunders will be made, much to the benefit of
spectators of course, who can see the reference board.

1For brevity we use ‘he’ and ‘his’ instead of ‘he or she’ and ‘his or her’.
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1.4 Monte-Carlo Methods

Monte-Carlo (MC) methods are a widely used class of algorithms for simulating the behaviour of various
physical and mathematical systems. They can also be used for other computations. MC methods are
basically a form of statistical sampling. In MC games moves are evaluated by playing games of random
or pseudo-random moves and assigning values to moves according to the results of these games. This
value is usually some sort of mean result. How exactly these values are computed, and which moves to
consider at a particular point of evaluation, are the main differences between different algorithms.

The major advantages of this approach are the fact that very little domain knowledge is needed
for these algorithms, the rules of the game will usually do, and that it is well equipped to deal with
uncertainty. Also, complex games are less of a problem, because not every branch in the game tree has to
be explored in order to evaluate a move. Monte-Carlo methods have also proved very effective in ‘normal’
(complete-information) Go. Therefore, they seem especially suited to the problem of Phantom Go.

1.5 Related Work

In this section we describe existing work on Kriegspiel (Subsection 1.5.1), Phantom Go (Subsection 1.5.2),
and on related subjects such as Monte-Carlo Go (Subsection 1.5.3), knowledge-based approaches to Go
(Subsection 1.5.4), and combining Monte-Carlo and knowledge-based approaches (Subsection 1.5.5).

1.5.1 Kriegspiel

Kriegspiel is a game closely related to Phantom Go. Much research in this area has been about taking
into account all possibilities and still trying to generate optimal play. Working with Metapositions has
been studied for Kriegspiel by Sakuta and Iida (2000), Bolognesi and Ciancarini (2006), and Bolognesi
and Ciancarini (2007). This would be a possible approach for Phantom Go also. However, the drawbacks
of this are substantial: because a node is kept for every possible state of the board, the complexity
explodes. Therefore, work has been focussed on endgame computations. Attempts have been made to
keep the complexity under control, as described in the context of the Darkboard program (Ciancarini
and Favini, 2007) or by the work by Parker, Nau, and Subrahmanian (2005). Darkboard uses many
heuristics and limitations of information that are specific to Kriegspiel. While the approach of Parker et
al. is more easily applicable to other fields, it relies heavily on the use of an evaluation function. While
such approaches are imaginable, it remains to be seen whether this would lead to reasonable play. This
especially holds for Phantom Go, since even for regular Go, good general evaluation functions are still
an open question (Bouzy, 2002).

In essence, most of the work in Kriegspiel has focussed on creating an optimal player in the sense used
by Van Rijswijck and Müller (2001). They make a distinction between an optimal and a maximal player.
The idea here is that maximal players attempt to exploit the opponents’ perceived weaknesses, but in
doing so, become vulnerable to exploitation themselves. In essence a maximal player is the ultimate
greedy player. A game-theoretically optimal player is immune to exploitation, but in turn, also incapable
of inflicting it. In games with much uncertainty this may lead to very careful play, because it always
assumes a worst-case scenario. As shown by Parker, Subrahmanian, and Nau (2006) for Kriegspiel this
may not be the most desirable approach.

1.5.2 Phantom Go

The only work on Phantom Go known to us is done by Cazenave (2006). Also employing MC techniques,
this work proposes a number of approaches to make the game susceptible to the standard ways in which
MC methods are used in games. Most important amongst these are the following.

• If the referee replies ‘illegal’ to a proposed move, put an opponent stone in that position. While
this is not always correct, it is what all human players do, and a reasonably good heuristic.

• Before performing MC evaluation, compute how many of the opponent stones you do not know
about. This is done by subtracting the number of opponent’s stones on your own board from the
number of moves played. These ‘unknown’ stones are then distributed randomly over the board.



4 Introduction

Cazenave (2006) uses an all-as-first MC algorithm. This heuristic means that the value of any move
played during the course of a sample game is updated with the same value. While this approach yields
a large number of values for moves very quickly, which is desirable in MC evaluations, it tends to lead
to selecting moves that are generally a good idea, but not necessarily in the current state of the game.
According to Bouzy and Helmstetter (2004) the reason for this is that the evaluation of a move from a
random game in which it was played at a late stage is less reliable than the evaluation of a move which
is played at an early stage.

1.5.3 Monte-Carlo Go

In this subsection we outline some improvements to Monte-Carlo methods applied to Go. A global
improvement, used in nearly all Go programs, is that during MC evaluation a move is never played in
one’s own eyes. While this is not technically an illegal move (except when it is also a suicide move), it
is usually a very weak move, possibly damaging a player’s own position. One exception to this is the
situation where one or more of the stones surrounding the group are in atari.

To improve on the all-as-first algorithm we could turn to other MC techniques already being employed
in regular Go. Since MC techniques offer a way to perform a global search with very little domain
knowledge, we focus on techniques that do not use any, except what is needed to play and score random
games. How we can improve play by using domain knowledge will be the focus of the next subsection.

One way of dealing with the drawbacks of the all-as-first algorithm would be to use standard Monte-
Carlo evaluation. In this, only the first move of every random game is evaluated. While this does
eliminate the problem that evaluations later in the game are less reliable, it has its own drawback: many
more random games are needed to evaluate a position reliably.

The obvious first approach to deal with the large number of games needed for evaluation is to try to
make the evaluation more effective: spend less time on evaluation of positions that will not end up as the
winning candidate. One way of doing this would be by using pruning techniques as described by Bouzy
(2006a). The idea of these techniques is that as evaluation progresses, certain moves will perform worse
than others. Instead of evaluating these moves until the end, they will get discarded as soon as they
prove suboptimal according to some statistical method. Especially Progressive Pruning (PP) seems to
be yielding good results. There is a trade off here between the speed gained and the chance of deleting
a good move.

A second way of improving MC algorithms is Situated Annealing. This method, adapted from physics,
was first used in Go by Brügmann (1993). A move is played randomly, and kept with a certain probability.
The probabilities change over time, and with the evaluation of the current move, eventually converging
to a maximum. This maximum should then be the best move. However, there is the possibility that this
algorithm converges to a local maximum instead of a global maximum.

As the speed of algorithms progresses, one drawback of all these MC methods still stands. Even if
the iterative process would last for a very long time, the selected move does not necessarily converge to
a game-theoretic optimum. A third approach, which would converge to an optimum, is to construct a
game tree according to the partial results of the evaluation. The way this is usually achieved is by an
algorithm adapted from the UCB1-algorithm originally designed for the Multi-Armed Bandit problem
(Auer, Cesa-Bianchi, and Fischer, 2002a; Auer et al., 2002b). Named UCT by Kocsis and Szepesvári
(2006), this has recently become the dominant algorithm in Go-playing programs. It is being used by
ManGo, MoGo, CrazyStone, and others.

1.5.4 Domain knowledge and heuristics

Many heuristics have been proposed to improve the performance of computer-Go programs. These can
be divided into a few classes. Some try to limit the search space by preprocessing. Others try to improve
results through a better guidance of the search. Evaluation functions can be used to assess the value of
a position. Then local goals can be used instead of the single, global goal of winning a game.

A good overview of techniques is given in Bouzy and Cazenave (2001). Especially important in these
approaches is the concept of a group. A group is not a chain. Instead it is a collection of stones and
chains that live and die together. Two different ways are used to determine what could be a useful move.
Highly specialized searches could be used, that only take into account moves that affect some direct goal,
e.g., the life or death and size of a group or the possibility of connecting groups. The second way of
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dealing with groups are patterns. Patterns are templates of typical Go situations, for which good moves
are already suggested. Patterns and rules can be generated automatically (Cazenave, 2003), or defined
by the designer of the program.

Apart from these local evaluations, a global evaluation function would be a very powerful tool. If
Chinese rules are being used, the evaluation at the end of the game is simple: how much territory has
each player claimed? However, before the game has ended it is very difficult to determine which player
has claimed which places on the board. Bouzy (2002) analyzes some possible functions for small boards
but they cannot simply be extended to larger boards.

Instead of a formal evaluation function a characteristic called influence can be used, which can be
seen as a measure of potential. Though a formal definition is hard to give, different algorithms have been
proposed to compute a value. Bouzy (2003) offers a variation on the classic model of Zobrist (1969).

A more useful variation on influence might be thickness, which does not only take into account the
potential of groups, but their strength as well. However, this has not been widely used in computer Go.
Cazenave (1998) offers an algorithm, which uses the potential value groups could have, multiplied by the
chance a group will survive to the end of the game.

1.5.5 Using domain knowledge in Monte-Carlo evaluation

Knowledge-based approaches to Go and MC methods suffer from different drawbacks. Most knowledge-
based Go programs are quite strong tactically, but have a weak global sense that results from the breaking
up of a whole problem into sub-problems (Bouzy, 2005). MC-based programs are quite strong on a global
scale but are weak tactically (Bouzy and Helmstetter, 2004). Unsurprisingly, programs that are using
both domain-specific knowledge and Monte-Carlo approaches have been developed.

Bouzy (2005) suggests two ways in which MC evaluation could be improved by knowledge. The first is
to replace the random games in the evaluation with pseudo-random games. Instead of generating moves
according to a uniform probability distribution, moves are selected with a certain probability based on
knowledge-based evaluation of that move. Move urgencies are used here, based on chain captures and
3 × 3 patterns. With such knowledge, the games used in the evaluation of moves are more plausible,
thus giving a better approximation of the value of a move. Gelly et al. (2006) also use 3× 3 patterns to
improve random games but combine it with UCT. They further try to make the search more efficient by
reusing information about a node’s parent node in the search tree.

Secondly, before MC evaluation even takes place, a preprocessor can be used. This limits the number
of moves to be evaluated, thus speeding up the selection of a move. As shown by Van der Werf (2005) a
relatively small number of high-ranked moves, selected at this stage, can be enough to play a reasonably
strong game, at least against other computer programs. The program in which these improvements were
made, Olga, is significantly stronger than Indigo2002, Bouzy’s knowledge-based program.

In Bouzy (2006b) these two improvements are used as well, but with different functions to define the
probabilities that a move is selected. A territory heuristic is suggested, setting the urgency of playing
a move according to the probability a position is controlled by the player at the end of the game.
The probability of controlling a position is computed on the outcomes of the random games in MC
evaluation. If the probability is small, the urgency will be high. Bouzy also uses a history heuristic,
originally proposed by Schaeffer (1989), which tries to avoid reanalyzing moves that were also bad moves
in previous evaluations.

Cazenave and Helmstetter (2005) suggest a way of integrating tactical goals within Monte Carlo. In
all-as-first MC Go the means of the random games where an intersection has been played first by a player
are computed for each intersection. This same evaluation can also be done for tactical goals instead of
positions. Thus, the mean value of the games where the goal has been accomplished and the games
where the goal has not been accomplished are compared. Typical goals here are capturing or saving a
chain, connecting or disconnecting two chains, or making an eye. Once a goal has been selected, search
algorithms are used to determine how to accomplish this goal.

Since simply ‘playing first on an intersection’ has also been defined as a goal, it is not always necessary
to pursue a complicated goal. If occupying a position would be the move with the highest expected utility,
it does just that. Therefore it does not lose the way the standard algorithm plays, it simply enhances it
by giving it more choices. One drawback of this approach is that in the process of MC evaluation moves
that could threaten tactical goals are not explicitly taken into account. Because of this it is not always
the case that selected goals can actually be accomplished.
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1.6 Problem Statement and Research Questions

In conclusion of the first chapter, we may state that although much work has been done on Monte-Carlo
methods for computer Go, it is not apparent how to adjust these methods to deal with uncertainty.
So far, only one approach to playing Phantom Go has been published. Thus, we come to our problem
statement.

How can we apply the existing knowledge about Monte-Carlo methods to computer Phantom
Go in order to produce a strong playing program?

So, the research objective is to implement a strong playing program. By a strong playing program we
mean at this moment a program that outperforms the program GoLois by Tristan Cazenave. To achieve
this objective and to answer the problem statement we have formulated five research questions (RQs).

RQ1 Will other Monte-Carlo methods perform better than all-as-first?

While the all-as-first algorithm used by Cazenave (2006) certainly has some advantages we feel
it also has some weak points. One definite advantage is that it generates reasonable values for
many moves very fast. However, there is also the implicit assumption that the order in which these
moves are played does not matter. We feel that in most games the order in which moves are played
are certainly of some value. We will try to use the most simple Monte-Carlo algorithm, in which
only the first moves of the different games are valued, to assess this point. However, this does have
the drawback that many games are necessary to yield reasonable values for every move.

RQ2 How much improvement will tree search produce?

We also use a variation of the UCT algorithm (Kocsis, Szepesvári, and Willemson, 2006) which has
proven to be successful in regular Go, and needs much less simulated games. While we expect this
to perform better than standard MC methods, we want to measure how big this improvement is.

RQ3 Can we improve on standard Monte-Carlo algorithms by integrating domain-specific knowledge?

Some positions are of greater use to the opponent than others. Since there are a number of
unknown stones on the board, these positions may already have been played. This assumption
leads to other questions. What heuristics can be used to assign probabilities to a certain move? If
we have some way of determining these probabilities, what would be the effect of distributing the
number of ‘unknown’ enemy stones according to these probabilities? And what would be the effect
of allowing these probabilities to influence the choice of moves while building a search tree?

RQ4 How big will the drawbacks of our (possibly faulty) evaluation of referee feedback be?

We intend to follow Cazenave (2006), as well as most human players, in the way to deal with
the reply ‘illegal’. Since this reply can have more than one meaning, this may mean that the po-
sition we create on our own board will be faulty. Will this prove to be a big problem or will the
effects it has on the game be minimal?

RQ5 How much information about the opponent’s position is typically uncovered during the game, and
can this information be maximised?

Phantom Go is not only about building your own position. The more information is uncovered
about the opponent’s position, the better you will be able to make your decisions. If more infor-
mation can be uncovered during a game, the chances of winning improve. However, there is a risk
involved here. If a move played for information is legal, the stone will remain in that place, possibly
a position that is not very useful.

RQ6 What will be the impact of the scoring method on the behaviour of the MC methods?

Two different ways of scoring a simulated game can be used. In territory scoring, the value of
a game is the difference in territory between the player and the opponent. In 0/1 scoring, a game
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is either won or lost. Because this influences the basic values with which the MC methods compute
their evaluations, it will be interesting to see how this impacts playing style.

1.7 Thesis Outline

The structure of the remainder of this thesis is as follows. In Chapter 2 we will introduce our application
and the general approach our players should follow. How we deal with referee feedback, relevant to RQ4,
will be the subject of Subsection 2.3.4. After that, a succession of players will be given. Section 2.4
will deal with the different forms of MC evaluation used, relevant to research questions RQ1 and RQ2.
Section 2.5 will explain what heuristics we use, relevant to RQ3. Section 2.6 will explain the different
methods of scoring and their implications, relevant to RQ6.

Chapter 3 will outline our experimental setup, and describe the behaviour and results of our players.
These experiments will attempt to answer the research questions RQ1 (Subsections 3.2.1 and 3.2.4), RQ2
(Subsections 3.2.1, 3.2.2, and 3.2.4), RQ3 (Subsection 3.2.5) and RQ6 (Subsection 3.2.3). We will try to
answer RQ4 and RQ5 based on some general observations about the games played in our experiments,
but no specific experiments have been done to answer these questions.

In Chapter 4 we will draw our conclusions. The research questions will be answered in Section 4.1,
and we will discuss the problem statement in Section 4.2. Section 4.3 discusses what questions remain
for future research.
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Chapter 2

AI for Phantom Go

In this chapter we describe our approach for making a Phantom Go playing program. The structure
of our application (Section 2.1) and our communication protocol (Section 2.2) are given. After that,
we describe the general approach for building players (Section 2.3) and describe what players were im-
plemented (Sections 2.4 and 2.5). Eight players are introduced in order of increasing complexity. The
performance of these players will be described in Chapter 3. Finally we make some observations about
determining the value of a simulated game (Section 2.6) and give a list of all players (Section 2.7).

Chapter contents: Structure, Communication Protocol, General Approach, Monte-Carlo Strategies, Heuris-

tics, Scoring

2.1 Structure of the Application

For implementing Phantom Go playing programs, two different modules are needed. As in the real world,
the main entities of the application are a referee and two players. The program is defined as the entire
package we developed, the player as the process determining which moves to play, i.e., the algorithm
used. The players and the referee are implemented as separate processes and communicate using the
Go Text Protocol (Farnebäck, 2002). Thus, it is clear what information the players have at any given
moment. An advantage of this approach is that it could be used to play games against other Go programs
as well. The game board as it is seen during a game is shown in Figure 2.1.

In order to play against humans and in tournaments, an interface without referee was developed,
which connects to only one program. In this case, the operator has to be the referee. See Figure 2.2. In
order to analyse the search trees produced by the UCT-based algorithm, the VT tree visualisation tool
was used with the implementation.1 An example situation is depicted in Figure 2.3. For the GTP-module
and displaying purposes, we have used classes from the open-source project GoGui.2 Several utilities
from Mark Boon’s open-source library GoTools were used to model Go features.3

2.2 Communication Protocol

Since GTP is designed for regular Go, we need to add a few extra commands. To avoid confusion, we
chose to define our own commands instead of using existing ones in a different way. All our commands
start with the abbreviation PG- (Phantom Go) to avoid conflicts with existing commands. The following
list describes our extension to the GTP protocol.

• PG-SuggestMove The referee asks a player to try playing a move. The player replies, for instance
by sending ‘F5’. If the move is illegal, the referee will use this command again, this time with the
moves the player has already tried (this turn) as arguments:

PG-SuggestMove F5 ... \n

1VT, by Joris Borsboom, available at http://www.cs.unimaas.nl/g.chaslot/.
2Gogui is available at http://gogui.sourceforge.net/.
3GoTools is available at http://www.sente.ch/pub/software/tesuji/.
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Figure 2.1: The game board. The central board is the referee’s board, left and right are the boards as
perceived by the players.

Figure 2.2: The stand-alone board. Referee feedback is given using the buttons below.

• PG-TriedMove Every time a player tries playing a move that turns out to be illegal, this command
is sent to the opponent.

• PG-MovePlayed If a player tries playing a move that is legal, this is sent, without argument, to
the opponent, and, with as argument the played move, to the player trying the move.

• PG-StonesTaken If a move captures stones the opponent is told which of his stones are taken.
This takes as arguments the stones that are being removed from the board:

PG-StonesTaken E4 E3 ... \n

• PG-Caught The player taking the stones will also be told stones are taken, but not which ones.
Argument to this is the number of stones he caught:

PG-Caught 2\n

• PG-BeliefState Utility command, used to display the state the players believe the game to be in.
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Figure 2.3: An example of the search tree as depicted by VT.

2.3 General Approach

The computer algorithms we are using for playing Phantom Go should consist of 4 phases for each of
which different strategies could be applied. This section outlines all four phases.

1. Preprocessing, in which moves to be evaluated are selected.

2. Filling in the opponent’s ‘unknown’ stones.

3. Evaluating selected moves and playing the ‘best’ move.

4. Analyzing feedback from played move and updating the player’s own board state.

2.3.1 Preprocessing

In the preprocessing phase, a selection of moves to be evaluated is made. Because this selection process
is much faster than the evaluation process of phase 3 it will save a significant amount of time if moves
that are clearly suboptimal can be filtered. However, if the move that the evaluation process would have
suggested is removed here, the results will suffer. It is therefore important to be careful at this stage.

Especially in Phantom Go, where parts of the board state are unknown, it is hard to determine which
moves are good or bad at this stage. Since throwing out the wrong moves at this stage could lead to very
bad results, we have decided not to use any preprocessing. We simply evaluate all possible moves.

2.3.2 Filling in the opponent’s unknown stones

Since the number of moves played is known to all players, the number of opponent stones on the board
unknown to the player is easily computed. For practical purposes we ignore the possibility that the
opponent has passed. Then we get the following formula.

Stonesunknown = N − (Stonesknown + Stonestaken)
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N is the number of moves the opponent has made, Stonesknown the number of opponent stones on the
player’s board, and Stonestaken the number of opponent stones the player has taken. For any useful
evaluation of the selected moves, these stones should be taken into account. Of course, there is no certain
way of determining the positions of these stones. However, there are more and less likely positions, and
this may be exploited through the use of heuristics.

2.3.3 Evaluating moves

After phases 1 and 2 a choice has to be made between the moves selected at phase 1. Because of the
high complexity and presence of imperfect information in Phantom Go, Monte-Carlo methods seem the
obvious choice for evaluating moves, as we stated in Section 1.4. Most of the remainder of this Chapter
is about this evaluation process.

When a move is selected, the move is sent to the referee and the player waits for a reply about the
effects of that move.

2.3.4 Feedback and board state

After a move has been played, a response from the referee is given. The different possibilities and
corresponding actions are:

1. Legal: The move is updated on the player’s own board and played on the reference board.

2. Stones captured (n): The move is updated on the board of the player whose stones have been
captured. For the other player the following is done: for all regions enclosed by the playing of this
move (typically only one, but more are possible)

(a) compute the number of empty intersections and opponent stones in each enclosed region,

(b) find all configurations equaling n,

(c) remove all stones in these configurations.

While this never leaves opponent stones on the board that might have been taken, it is also overzeal-
ous. All possible combinations are removed, and thus information is destroyed. How big this draw-
back may prove to be remains to be seen, and perhaps a different way of dealing with situations
like this will have to be devised.

3. Illegal: place a stone of the opponent’s colour on the tried position, start over at phase 1: selecting
moves. This is correct in case a move on an opponent stone has been made. However, if the move
was a suicide or ko move, it is incorrect. Still, we do not expect to win a ko fight in the dark,
and the position will usually be filled by the time we get around to it. One exception may be the
simplest variety of ko, in which case a stone has just been taken. Suicide is a trickier subject as
any algorithm will lose opportunities because a suicide position may become a capture position if
the group is surrounded.

Play continues until the only moves left are either inside one’s own eyes or suicides. Since we are using
Chinese rules, this does not affect the score.

2.4 Monte-Carlo Players

Using the structure described in the previous section, a succession of eight Phantom Go playing methods
has been developed. These all build upon each other and become gradually more and more complex.
They will be introduced over the course of this Section and Section 2.5. For a short list of all players
see Section 2.7. The entire package of methods was named InTheDark and presented as a Phantom
Go playing program. We will first focus on the different forms of MC evaluation used and after that, in
Section 2.5, explore the heuristics that were tried.
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2.4.1 Monte-Carlo evaluation

Monte-Carlo evaluation is used in phase 3 to determine which of the moves selected at phase 1 is chosen.
Random games are played and the move which obtains the best value according to a statistical evalu-
ation of the random games is played. We introduce three different players which use different ways of
determining values for moves.

Before each simulated game, the opponent’s unknown stones are redistributed. This is done to ensure
that a move is evaluated according to a number of possible boards, instead of just one possible board.
Play continues until the only moves left are either inside one’s own eyes or suicides. Since we are using
Chinese rules, this does not affect the score. After that results are stored, a new board is generated and
we start again. This process continues until the time allocated for this process has been fully used.

Random Player Firstly, we define a random player for testing purposes. This player simply plays
a random move anywhere on the board that is not occupied by one of his own stones or a perceived
opponent stone. Additionally, it avoids playing in his own eyes.

Standard Monte Carlo Secondly, we use standard Monte Carlo evaluation of moves. In standard MC
evaluation all selected moves are evaluated in turns. The move is played as the first move of a random
game and the value for that game, the score, is stored in the position for that move. Once all time has
been used, for all selected moves the mean value of the games4 is computed and the move with the highest
value is chosen as the best move. This is a very basic method and will need relatively many random
games to produce good play. For regular Go, this approach has been used by Bouzy and Helmstetter
(2004).

All-as-first Thirdly, we implemented all-as-first evaluation of moves. The all-as-first method of evalu-
ation is used by Cazenave (2006) and dates back to Brügmann (1993). Instead of only assigning a value
to the first move that was played in a game, the value is assigned to all moves mi that were played by the
player before his opponent. Similarly, the value is also added to all moves mi which the opponent played
first. Once time runs out, the value of playing a move mi is determined by computing the mean value
of the games in which mi was played first by the player, subtracted by the mean value of the games in
which mi was first played by the opponent. Thus the program tries to play on the position that is most
beneficial to itself and bad for the opponent.

The advantage of using all-as-first is that it generates data much faster than standard MC. However,
it assumes that the order in which the moves are played does not matter, as long as a move is played
before the opponent played it. Since there are situations in Go where the order in which moves are played
does matter, it might produce some erroneous results.

2.4.2 UCT

Next to the methods described in the previous subsection we are also using a different form of MC
evaluation based on the work of Kocsis et al. (2006). Now becoming more generally known as UCT
(Upper Confidence bounds applied to Trees), the basic idea of this method is to build a tree-structured
search space using random games. Because the results of random games are used to determine which
nodes to expand next, the search here is much more focussed on relevant move sequences than in standard
MC.

UCT explained

UCT is a form of Monte-Carlo Tree Search (MCTS). In general, MCTS repeatedly applies a best-first-
search iteration at the top level. The algorithm runs through four stages iteratively. These stages are
described below, and the actions UCT takes are given.

1. Move selection: Starting from the root, the child with the highest evaluation value is selected.
UCT chooses the child node which maximizes (Black to move) or minimizes (White to move) the
following formula:

4Section 2.6 describes how to determine the value of a game.
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Xi + C

√
ln t(N)
t(Ni)

Xi is the average value of the child node, t(N) the number of times the parent node was visited
and t(Ni) the number of times the child node was visited. C is a constant determining the balance
between exploration and exploitation. This procedure is repeated until a leaf node is reached.

2. Expansion: When a leaf node is reached, a decision is made whether to expand it. To prevent
uncontrolled growth of the tree, and save memory, UCT only expands a leaf node when it is visited
for the second time. All possible moves in this position are stored as child nodes. After a node gets
expanded, one of its children is chosen for evaluation.

3. Leaf-node evaluation: A Monte-Carlo evaluation (simulated game or simulation) is done for the
board position represented by the leaf node. This consists of selecting random moves, playing out
an entire game. The game is then scored, giving an evaluation value.

4. Back propagation: In this stage the evaluation value is backed up through the tree and the values
of the nodes are updated accordingly. We simply add the score to the total score of the node, which
is divided by the number of times it was visited to produce Xi.

This algorithm can be stopped at any time. The node that is played is the child of the root (depth 1)
that was explored most.

Move-filling strategies

When constructing the tree, an obvious question is at which point the unknown opponent stones are
taken into account. Two different strategies are proposed: late random opponent-move guessing and
early probabilistic opponent-move guessing. The combinations of UCT with these strategies become our
fourth and fifth players.

Late random guessing The tree is constructed according to the ordinary UCT algorithm. Once a
leaf node is reached, the unknown opponent moves are filled in randomly and a simulated game is played.
See the left side of Figure 2.4.

While this is clear and simple, there are a few problems with this approach. First, a random distri-
bution of opponent stones might not accurately reflect the game state. Worse, if the unknown moves
are filled in after traversing the tree, potentially fatal opponent stones will be missed because moves will
probably be made on this position. This leads to careless play and an overestimation of the player’s own
chances. To deal with these problems a different strategy is suggested.

Early probabilistic guessing This approach is based on the assumption that promising opponent
moves might already have been played by the opponent. At depth 1, where the player’s own initial move
is considered, the exploration is identical to UCT. At depth 2, however, opponent moves are added to
the game board according to the number of times they have been selected in previous iterations. A move
is selected according to the following probability:

C × t(Ni)
t(N)

× Stonesunknown

In this formula, t(N) is the number of times the parent node was visited, t(Ni) the number of times the
child node was visited, and Stonesunknown is the number of unknown opponent stones. C is a constant
that can be used to place more or fewer stones at this stage, thus leading to more conservative play or
more optimistic play. In our experiments this value has been set to 1, in order not to bias the method.

Moves that are selected are placed on the board. After this, of the child nodes that have not been
placed, the node with the highest UCT-score is selected and explored further. While traversing this
subtree, it is not possible to select nodes that have already been selected at depth 2. Once a leaf node
is reached, any remaining unknown stones will be placed randomly and a simulated game is played. See
the right side of Figure 2.4.
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Figure 2.4: The late random move-filling strategy (left) and the early probabilistic move-filling strategy
(right).

2.5 Heuristics and Knowledge

Up to now, all proposed solutions have been based on evaluation by means of random games. Almost
no knowledge about the game (except for the rules) has been used. We introduce further methods, some
based on knowledge, some on educated guesses, that might help improve the behaviour of our program.

2.5.1 Heuristics in MCTS

One of the drawbacks of UCT and other variants of Monte-Carlo Tree Search when compared to all-as-
first is that it needs more simulated games to produce good results. Whereas all-as-first uses the result of
a game to evaluate all moves in that game, in MCTS the result is used to evaluate only one move. One
way of improving the performance of MCTS is therefore using heuristic guidelines to determine which
moves should be explored more.

One way to do this is described by Chaslot et al. (2007). By adding a progressive bias to the move-
selection criterium of UCT, they obtained a new formula:

Xi + C

√
ln t(N)
t(Ni)

+ f(Ni)

f(Ni) is a function which computes a certain heuristic value for the child node Ni. This way, the search
will start out by trying promising nodes according to f(Ni). As the search runs longer this factor should
decrease, so it does not interfere with the evaluation process too much.

What would be a good value of f(Ni) for Phantom Go? Since a good evaluation function for Go is
a notoriously difficult problem, we use some approximation. For this the concept of influence is used,
which is a measure of potential. It gives an indication how much of the board could be controlled at the
end of the game. We compute influence according to the method as proposed by Zobrist (1969), using an
implementation from Mark Boon’s GoTools. The function returns the influence for each intersection
of the board. We then compute the total figure, by adding up the values of all intersections.
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For each possible move in a certain board position the gain in influence could be computed by sub-
tracting the current influence score from the influence score after the move has been played. Since each
player usually wants to control as much territory as possible, positions which give a bigger increase in
influence are more desirable.

Since computing the influence score is a relatively time-consuming procedure, we chose to compute it
only once for each intersection, right after the player has been asked for a move. While computing it for
each node would give a more accurate figure, the benefits of this will not outweigh its drawback: a loss
in the number of simulated games that can be played in the allocated time. A value for White as well
as a value for Black has to be computed. While this does not strictly speaking give a correct value, it
seems like a good enough approximation of the actual influence value of a certain move.

This leads to the following definition for f(Ni):

f(Ni) =
C√
t(N)

× (infi.move − inf0)

t(N) is the number of times the parent node has been visited. infi.move is the influence score computed
for the move associated with the child node, inf0 is the influence score for the board position at the root
of the tree. C is a constant controlling how much weight should be given to the influence score as opposed
to the normal UCT-evaluation. The combination of UCT with the influence-based bias in move-selection
becomes our sixth player.

2.5.2 Influence-based opponent-move guessing

Apart from using the influence function in the selection of moves, one can also use the influence function
as a heuristic to determine which opponent stones might already have been played. This figure can then
be used to improve the late random opponent-move guessing (see Subsection 2.4.2). By accumulating the
gain in influence for each possible opponent move, a grand total of possible gain is produced: inftotal.
Then the probability that a node will be selected can be set to:

infi.move

inftotal
× Stonesunknown

A new distribution of unknown stones has to be made before each simulated game. The same probabilities
can be used for generating this new distribution though, thus keeping the effort put into this procedure
rather low. The combination of UCT with the influence-based opponent-move guessing becomes our
seventh player.

2.5.3 Hybrid strategies

We have noticed a distinct difference in the way the all-as-first player and the UCT-based players perform
in the opening stages of the game. In these stages there is typically very little information about the
opponent. Where all-as-first usually develops strongly connected groups near the centre of the board,
UCT-based players are much more optimistic and play all over the board, attempting to secure territory
everywhere. The behaviour of the all-as-first player is certainly more desirable here.

However, UCT-based players seem to play better moves in more complex situations, where much
information is already uncovered. Especially in situations where the order in which the moves are played
makes a big difference, all-as-first frequently plays the wrong move first. This leads to the idea of a hybrid
player: the first n moves are played by the all-as-first algorithm to acquire a strong starting position.
After n moves UCT-based players can play out the game. This hybrid player is our eighth type of player.

At the start of the game all-as-first with less time seems to suggest the same moves as all-as-first with
normal time settings. Only when a situation becomes more complex, the number of simulated games
seems to make a real difference. Because of this, an additional heuristic is used in the hybrid players.
This allocates less time to the all-as-first phase of playing, thus saving more time for the UCT phase.

2.5.4 Other heuristics

Some extra heuristics are used by all players except the random player. We describe three of them. The
first one is used to define how much time the selected algorithm receives to determine which move to
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play. The remaining time is simply divided by a constant. Therefore, much time will be spent analyzing
positions at the start of the game and gradually less time will be used as the game progresses. For 9× 9
games this constant has been experimentally set to 20.

Secondly, playing in one’s own eyes is prevented for the player to move as well as any simulated
opponent moves. To play in your own eyes is nearly always a suboptimal move, since it only weakens
your own position without threatening your opponent (Chaslot et al., 2006). This happens both in the
simulated games and in the construction of search trees. Eyes are implemented as intersections which
are completely surrounded by a player’s own stones, unless some of these stones are in atari. If some of
the surrounding stones are in atari, the position is not qualified as an eye, to allow for connecting stones
into groups.

A third heuristic is used to fix a problem that sometimes arises due to the possibly faulty way in which
we handle the reply ‘illegal’. Because suicide positions are treated as if an opponent stone was occupying
that position, those positions will not be played again even if they might have become a killing position.
To deal with this problem a third class of stones has been defined: ‘safe’ opponent stones. If a group
of normal (‘unsafe’) opponent stones has been surrounded completely, all intersections in that group are
tried to see if it might be possible to kill the group. If this behaviour is unsuccessful the stones in the
group are qualified as ‘safe’ stones, and this behaviour will not be applied to this group again. Though
this results in trying many moves, it takes very little time to execute.

2.6 The Effect of the Scoring Method on MC Evaluation

There are two distinct ways of scoring a simulated game. At first we scored the result of a game as the
difference in territory between one player and the other. This usually leads to the move which gives the
biggest gain in territory. Thus, the player’s behaviour is quite greedy and sometimes loses track of the
ultimate goal: controlling more territory than your opponent at the end of the game. We call this a
strategic disadvantage.

In contrast to this, a game can also be evaluated as either a loss or a win. This is referred to as 0/1
scoring, 0 points for a loss, 1 point for a win. Because of this different scoring method, the algorithms tend
to focus on the moves that have a bigger probability of winning the game. This leads to more adequate
risk taking. Because of this, many Go programs5 now use 0/1 scores in their evaluation. A drawback of
this method is that it does not focus on the moves which produce the most gain, thus leading to worse
tactical play. A second drawback may be that because of the presence of hidden opponent stones, a
perceived small win may actually be a small loss.

2.7 List of players

To conclude this Chapter we give a list of the players we introduced in the previous Sections, and the
abbreviations we will be using for them in the next Chapter.

1. Random: Random play

2. MCEstd: Monte-Carlo evaluation with standard sampling

3. MCEall: Monte-Carlo evaluation with all-as-first sampling

4. UCTrand: UCT with late random opponent-move guessing

5. UCTprob: UCT with early probabilistic opponent-move guessing

6. UCTinfmove: UCT with influence-based move selection

7. UCTinffill: UCT with influence-based opponent-move guessing

8. Hybridn: Hybrid player, (n) being the number of moves played with all-as-first evaluation

5For instance, MoGo, ManGo, and CrazyStone use 0/1 scoring.
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Chapter 3

Experiments and Results

In this chapter we describe our experiments. Five different sets of self-play competitions are held, in
an attempt to answer our research questions. The setup of these experiments is described in Section
3.1. Results are given and explained in Section 3.2. In Section 3.3 our participation in the Computer
Olympiad 2007 is described, and an example game is given.

Chapter contents: Experimental Setup, Results, Discussion, Playing Strength

3.1 Experimental Setup

Five different sets of self-play experiments were conducted. Experiments were done on two machines,
both running Linux. Because we have had to use different machines, different time settings were used.
However, all games within one experiment were always conducted on the same machine and with the same
time settings, so this should not mean our results are any less valid. A version of our program without
a graphical user interface and the possibility to play multiple games was used for these experiments. All
games were played using Chinese rules and a komi of 6.5.

In the first set-up, a tournament was held evaluating the different forms of Monte-Carlo evaluation
without domain-specific knowledge. Five players (Random, MCEstd, MCEall, UCTrand, and UCTprob)
played an all-against-all style tournament. This was done in order to explore research questions RQ1 and
RQ2.

In the second set-up, the performance of the hybrid player (Hybridn) was tested, with different settings
for the number of games played with all-as-first (n). It played against the strongest contenders of the first
tournament. This experiment was conducted to test an assumption we made about RQ2, namely that
all-as-first opens stronger, while tree search produces better results in more complex situations where
more information is already uncovered.

In the first two experiments, all algorithms use territory scoring. In a third set-up, the effect of
scoring was evaluated by playing two different versions of the same algorithm against each other, one
with territory scoring and one with 0/1 scoring. This was done in order to answer research question RQ6.

In a fourth set-up, the performances of Monte-Carlo methods were assessed again by playing them
against each other, this time with 0/1 scoring. This was done to ensure that the analysis we made of the
Monte-Carlo methods in the first experiments still holds when using 0/1 scoring.

Finally, in a fifth set-up, the impact of the influence heuristics was assessed, by playing UCTrand

against UCT enhanced with heuristics. These experiments were conducted with research question RQ3
in mind, although we only test methods based on the concept of influence.

The results of these five sets of experiments are given in Subsections 3.2.1 to 3.2.5.

3.2 Results and Discussion

The results of the different series of experiments are given and discussed in this section.



20 Experiments and Results

3.2.1 Monte-Carlo strategies

The results of the tournament comparing Monte-Carlo methods are given in Table 3.1. These experiments
were done by playing 50 games of Phantom Go for each combination of players, alternating Black and
White. The time setting for each match is 10 minutes per game per player. Experiments were carried
out on a computing node with four AMD Opteron 3.4 processors and 32 GB RAM.

Random MCEstd MCEall UCTrand UCTprob total wins wins without Random
Random × 0 0 0 0 0 ×
MCEstd 50 × 14 4 14 82 32
MCEall 50 36 × 28 44 158 108
UCTrand 50 46 22 × 42 160 110
UCTprob 50 36 6 8 × 100 50

Table 3.1: Results of the pairwise comparison between Monte-Carlo methods.

First, we notice that all methods used beat the random player (Random) every time. However, this
is not a very important result, since the level of the random player is very low. More interesting are the
comparisons between the different forms of MC evaluation. In the remainder of this Subsection we do
not take the games against Random into account.

Moreover we see that MCEall (36 victories) outperforms MCEstd (14 victories). Of the two UCT-
based players, the one with late random opponent-move guessing (UCTrand, 42 victories) achieves better
results than the variant with early probabilistic opponent-move guessing (UCTprob, 8 victories). Although
UCTrand scores the highest number of total victories, MCEall beats it by a small margin in the direct
confrontation. Both these players show a comparable number of total victories. MCEstd, being the
simplest method, performs worst.

All-as-first The main reason why MCEall beats MCEstd seems to be that it uses the results of each
simulated game more exhaustively, thus faster increasing the evaluation values of the moves which are
crucial to the outcome of the game. Especially in a situation where much information is unknown, these
are the most important moves. MCEstd performs quite weakly because it needs many simulated games
to produce good evaluation results for all moves.

UCT with late random guessing An advantage of the two UCT-based methods is that they can
reason about move sequences in complex situations. Paradoxically, this is also their weakness as they
tend to overestimate their chances. UCTrand can play very carelessly because by building the game tree
it assumes that it can always reply to an opponent move. The algorithm fails to take into account the
possibility that the opponent move may already have been made or that its reply to that move may not
be possible. This leads to an overestimation of the value of moves. A simplified example is given in Figure
3.1. On the left side a part of the search tree constructed by UCTrand is shown. UCTrand is White. At
the root (depth 0) the player is unaware of the opponent stone at the bottom left. When considering
which move to play (depth 1) UCTrand assumes it can always respond to the opponent attacking its
position (depth 2 and 3). However, as the right side of Figure 3.1 shows, the actual play works out very
differently because of the black stone on the bottom left already in place.

UCT with early probabilistic guessing The weak results of UCTprob are somewhat unexpected.
Because unknown opponent stones are dealt with at depth 2 instead of at the leaf node, we expected it
would not suffer from the same drawback as UCTrand, or at least to a lesser extent. While UCTprob can
still overestimate moves in this way, it does not happen as often. A qualitative analysis shows that there
are two other problems with the early probabilistic opponent-move guessing heuristic.

Firstly, UCTprob can rank weak moves higher than strong moves if the most explored answering moves
of that node are also weak moves. This happens when, in the first few traversions of the node, a number
of weak opponent moves at depth 2 accidentally are valued as strong moves. In other UCT-algorithms
this happens as well. However, because of the early probabilistic opponent-move guessing, two effects
hinder the algorithm from re-evaluating these bad moves and continuing the search by exploring more
promising branches.
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Figure 3.1: A simplified example of the overestimation of a move by UCTrand.

1. Opponent moves which have been traversed many times at depth 2, have a high probability of being
picked to fill the board as unknown stones. Thus, there is a smaller chance of them being chosen
for further exploration. This in turn leads to a situation in which faulty evaluations of weak moves
at depth 2 can endure for a longer time because they are not available for reevaluation.

2. Because in subsequent traversions unknown opponent stones are distributed according to the eval-
uation moves have at depth 2, new evaluations of the move at depth 1 will be carried out with
unknown stones filled in at weaker positions. This leads to a higher evaluation value for the move
at depth 1, and the move chosen for exploration at depth 2.

Especially if a number of weak opponent moves have been valued too high, these effects can strengthen
each other. If one weak move is chosen as an unknown stone, and the other for exploration, the move
chosen for exploration has a bigger chance of getting updated with a higher value because it plays against
a board with weaker opponent stones. Many more simulated games are necessary for the algorithm to
realise it was overevaluating a node compared to, for instance, UCTrand.

In some cases, this behaviour can last until the end of the time allocated for selecting a move. Even
though the rest of the tree is developed as one would expect, ranking the best moves at the top, the move
which was overestimated is still the one that has been traversed most. This results in the return of a
weak move, which is only chosen because of the weak answering moves the algorithm explored at depth
2.

Secondly, UCTprob sometimes decides not to attack a weak group of opponent stones because it
assumes the moves necessary to save it have already been made. Because these moves are typically
ranked as good moves at depth 2, it assumes these moves have already been played. This leads to an
underestimation of its own chances, and in turn to a reluctance to take risks.
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These two problems, persistence of weak moves and an aversion of taking risks in some situations,
produce erratic play, in which good tactical play is interrupted by weak moves and the player sometimes
decides not to pursue what seem like good chances.

UCT vs All-as-first Finally, the best UCT-based player (UCTrand) does not outperform the best
player without tree search (MCEall). Both play roughly at the same level, and suffer from their own
drawbacks. Besides the overestimation of moves and their sometimes careless play, UCT-based players
typically play disjoint stones in the opening phase of the game. Because of the tree-based nature of their
search, they assume that these can be connected at a later stage of the game. MCEall typically plays
strongly connected stones near the centre of the board, which is a much better tactic in the early stages of
a game of Phantom Go. Many human players employ this tactic as well, because it leads to bigger groups
which are harder to kill, and hopefully divides the opponent stones into two or more weaker groups which
cannot be connected.

Once the game progresses, more information about the game is known, and the positions become more
complex, different qualities become more important. Because MCEall lacks a search structure, it cannot
reason about sequences of moves. UCTrand can determine sequences, which leads to better tactical play.
Even though it can play carelessly, this is still a big enough advantage to even the score against MCEall,
which usually has a stronger position after the opening stages of the game.

3.2.2 The performance of the hybrid player

To test the hybrid player it played games in different configurations against the best ‘pure’ methods:
all-as-first evaluation and UCT with late random opponent-move sampling. The hybrid player is a
combination of these two. The results are given in Table 3.2. The Hybrid5, Hybrid15, and Hybrid25

refer to a hybrid player which shifts from all-as-first evaluation to UCT evaluation after 5, 15, and 25
moves, respectively. These experiments were done under the same conditions as in Subsection 3.2.1.

Hybrid5 Hybrid15 Hybrid25 total score
MCEall 23 - 27 25 - 25 18 - 32 66 - 84
UCTrand 14 - 36 20 - 30 18 - 32 52 - 98
total score 37 - 63 45 - 55 36 - 64 118 - 182

Table 3.2: Results of the two best MC methods against hybrid players.

The hybrid player was introduced to make up for some of the disadvantages of the pure algorithms,
mainly the weak opening game of UCTrand and the weak tactical play in complex situations of MCEall.
The hybrid player generally outperforms the pure methods, with a total score over all games of 118 -
182. This indicates that our approach is valid, and does overcome both problems at least somewhat.
However, its victory over MCEall (66 - 84) is less convincing than its victory over UCTrand (52 - 98).
This indicates that of the respective disadvantages, the weak opening of UCTrand is the bigger drawback.

It is hard to draw a conclusion about the ideal point of switching methods from these experiments.
Whereas Hybrid5 and Hybrid25 both win with a similar margin (37 - 63 and 36 - 64), Hybrid15 wins
with a smaller margin (45 - 55). This is somewhat unexpected, because 15 moves are usually enough to
acquire a strong starting position, whereas 5 seems like a small number, and 25 too long. Then again,
complex situations can arise at the start of the game, and disjoint playing can still be a problem in later
stages. Perhaps it would be better to analyse the situation a game is in before deciding whether to switch,
instead of switching after a preset number of moves.

3.2.3 The effect of scoring

To determine the effect of using 0/1 scoring to evaluate the simulated games, all ‘standard’ methods as
used in Subsection 3.2.1 played against themselves, one player with territory scoring, one player with 0/1
scoring. These experiments were done on a computing node with two Pentium III processors. Because less
simulated games can be played in the allocated time, compared to our earlier experiments, two batches
of experiments were done.

In the first round of experiments 50 games were played, switching Black and White. Each player was
allocated 10 minutes for each game. The results of these games are given in Table 3.3. In the second
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round of experiments, only 30 games were played, but each player was allocated 30 minutes for each
game. The results of these games are given in Table 3.4.

Territory scoring 0/1 scoring
MCEstd 23 27
MCEall 11 39
UCTrand 22 28
UCTprob 16 34

Table 3.3: Results of the comparison between MC-methods with territory scoring and 0/1 scoring. This
experiment has been conducted with 10 minutes time for each player.

Territory scoring 0/1 scoring
MCEstd 12 18
MCEall 9 21
UCTrand 7 23
UCTprob 7 23

Table 3.4: Results of the comparison between MC-methods with territory scoring and 0/1 scoring. This
experiment has been conducted with 30 minutes time for each player.

The first major conclusion that can be drawn from these experiments is that 0/1 scoring outperforms
territory scoring. Apparently the strategic advantages of 0/1 scoring outweigh its tactical disadvantages.
When observing the games this becomes quite apparent: while territory-based algorithms try to claim as
much territory as they believe is feasible, 0/1-based algorithms tend to play for a minimal win.

When we look at the first experiment in more detail, especially the result of all-as-first seems spec-
tacular, showing the biggest improvement over its territory-based twin. However, this is mostly an effect
of all-as-first’s ability to accomplish good results with small amounts of information. The results of the
second experiment show that the two UCT-based methods actually show a slightly bigger improvement
over their respective territory-based siblings.

When analyzing the games played between an algorithm with territory scoring and an algorithm
with 0/1 scoring, there is one very distinct difference. While the 0/1-based player does seem to miss
some opportunities to claim more territory, it always tries to consolidate a position in which it can win,
and tries to attack if it is in a position which seems to be lost. This is a major improvement over the
algorithms with territory scoring which sometimes forget to defend a won position while trying to claim
more territory. The inverse can also be a problem: trying to defend territory which will not be enough
to win the game and forgetting to attack.

3.2.4 Monte-Carlo strategies with 0/1 scoring

Since the results of 0/1 scoring are so much better than the results of territory scoring, it was deemed
useful to rerun the tournament of Subsection 3.2.1, this time with 0/1 scoring. This experiment was
conducted using the same settings as the experiments in Subsection 3.2.3. First a tournament amongst
MCEstd, MCEall, UCTrand and UCTprob was held with 10 minutes time per player per game. 50 games
were played between all players. The results are given in Table 3.5.

MCEstd MCEall UCTrand UCTprob total wins
MCEstd × 3 7 7 17
MCEall 47 × 43 40 130
UCTrand 43 7 × 25 75
UCTprob 43 10 25 × 78

Table 3.5: Results of the pairwise comparison between Monte-Carlo methods using 0/1 scoring. Tourna-
ment with 10 minutes time per game per player.

These results reinforce the results of Table 3.3. MCEstd does not improve a great deal, and performs
worse than in the territory-based tournament (see Table 3.1) with only 17 wins now against 32 wins before.
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Notable is also the improvement of UCTprob, which wins 78 games now against 50 before. Apparently it
suffers less from the drawback described in Subsection 3.2.1 when using 0/1 scoring, because the impact of
an erroneous good result is not as big a factor as when using territory scoring. MCEall, which also showed
the biggest improvement in Table 3.3, is the clear winner here. It also showed the biggest improvement
against its territory-based counterpart. However, that effect was less distinct in our experiment with 30
minutes time, and was mostly due to its ability to produce good play with very few simulated games.
Therefore another tournament was played between MCEall, UCTrand and UCTprob with 30 minutes time
per game per player. 32 games were played per match. The results are given in Table 3.6.

MCEall UCTrand UCTprob total wins
MCEall × 22 25 47
UCTrand 10 × 15 25
UCTprob 7 17 × 24

Table 3.6: Results of the pairwise comparison between Monte-Carlo methods using 0/1 scoring. Tourna-
ment with 30 minutes time per game per player.

Both UCTprob and UCTrand show a better result with more time to decide on a move. However,
under these settings they still do not beat MCEall. Apparently UCT needs more time to improve its
performance against all as first when using 0/1 scoring as opposed to territory scoring.

To test this assumption, and to have one final try at beating MCEall, we ran an experiment on
the same computing node as used in Subsection 3.2.1, this time with 20 minutes time per player. In
this MCEall competed against UCTrand, UCTprob, and Hybrid15, all using 0/1 scoring. Each match
consisted of 50 games. The results are given in Table 3.7

MCEall

UCTrand 14 - 36
UCTprob 22 - 28
Hybrid15 28 - 22

Table 3.7: Results of the match between tree-based methods and all-as-first, using 0/1 scoring. Played
with 20 minutes time per game per player.

UCTrand performs similar to the tournament on the slower computing node. Apparently, just more
computing time will not be enough to overcome the disadvantages of overestimation by UCT with late
random opponent-move guessing. Surprisingly, UCTprob performs much better against MCEall than
before. It seems that the disadvantages of the early probabilistic opponent-move guessing, in particular
the persistence of bad moves with good evaluations, can at least be partly overcome by playing more
simulated games.

The hybrid player still beats MCEall, thus reinforcing our earlier conclusion that UCT performs
better at later stages in the game, also when using 0/1 scoring.

3.2.5 The impact of the influence heuristic

To assess the value of the influence heuristic, two different algorithms using influence were implemented.
Both were based on UCT, but enhanced with an influence-based feature. In the first algorithm the total
gain in influence was used to guess the location of the unknown opponent stones (UCTinffill). In the
second the total gain in influence was used to determine which moves should be explored first while
constructing the search tree (UCTinfmove). They were tested against UCT with late random opponent-
move guessing (UCTrand). Experiments were carried out with both territory scoring and 0/1 scoring.

The results of the first algorithm against UCTrand are given in Tables 3.8 and 3.9. The experiments
were carried out on the same computing node and with the same setting as described in Subsection 3.2.3.
Especially in the experiments with 10 minutes time per player, the results of UCT with influence-based
move guessing are worse than those of the random move guessing. The results with 30 minutes per player
are better, but the influence-based algorithm still does not beat UCTrand, although it does produce a tie
in the experiment where 0/1 scoring was used.
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UCTrand UCTinffill

Territory scoring 34 16
0/1 scoring 28 22

Table 3.8: Results of the comparison between UCT with late random opponent-move guessing and UCT
with influence-based opponent-move guessing for territory scoring and 0/1 scoring. This experiment has
been conducted with 10 minutes of time per game per player.

UCTrand UCTinffill

Territory scoring 17 13
0/1 scoring 15 15

Table 3.9: Results of the comparison between UCT with late random opponent-move guessing and UCT
with influence-based opponent-move guessing for territory scoring and 0/1 scoring. This experiment has
been conducted with 30 minutes of time per game per player.

These results seem to indicate that our assumption that the positions which give the biggest increase
in total influence are the positions which are most likely to already have been taken, is incorrect. In
experiments with more time, and the experiments with 0/1 scoring, the results have been somewhat
better because the longer running time and the focus on strategic play diminish the effect of opponent-
stone guessing.

The influence-based move selection heuristic (UCTinfmove) was tested with C set very low, 0.1 for
territory scoring and 0.001 for 0/1 scoring. C is the constant controlling how much weight the influence
score should be given in relation to the normal UCT evaluation of a node. By setting it very low it
essentially functions as a tiebreaker. This does not mean it has very little impact. When exploring the
children of a node for the first time, they all have the same, high score. The influence heuristic decides in
which order they get explored. When using 0/1 scoring it also decides between nodes for which the same
amount of games have been played and which have won the same amount of these games. Since these
situations occur very often, the influence heuristic will still have a big effect on the overall behaviour.
This also holds for the evaluation of nodes at the topmost level, which usually get explored very often, as
the heuristic decides which moves to make further down the tree, and thus affects the evaluation value
which gets backed up the tree. The results of this second algorithm against UCTrand are given in Tables
3.10 and 3.11.

UCTrand UCTinfmove

Territory scoring 20 30
0/1 scoring 30 20

Table 3.10: Results of the comparison between UCT with late random opponent-move guessing and UCT
with influence-based move selection and late random opponent-move guessing for territory scoring and
0/1 scoring. This experiment has been conducted with 10 minutes of time per game per player.

The results in Table 3.10 may seem a little weird. How can the algorithm with influence-based move
guessing perform better with territory scoring and worse with 0/1 scoring? This is caused by the different
ways in which ties can arise, as explained above. In the territory-scoring experiment the heuristic only
decides between nodes which have not been explored yet. This makes the search more directed at the leaf
nodes of the tree. However, as soon as all siblings have been visited at least once, the search is guided by
the scores of the simulated games. Therefore the heuristic does not impact the decisions between inner
nodes of the tree. In the experiment with 0/1 scores, siblings that have been explored the same number
of times and won the same amount of games have the same score. The influence heuristic decides between
these nodes in these cases, thus giving it a longer lasting impact on which nodes are chosen, throughout
the tree. This way the tree is explored much more according to the evaluation of the heuristic. As total
gain in influence is not always a good measure of how good a move is, this leads to worse results than
random tie-breaking.

In the experiment with a longer running time (see Table 3.11) the tree-building algorithm can run
for quite a long time. This means that the initial impact of the influence heuristic gets canceled out
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UCTrand UCTinfmove

Territory scoring 17 13
0/1 scoring 14 16

Table 3.11: Results of the comparison between UCT with late random opponent-move guessing and UCT
with influence-based move selection and late random opponent-move guessing for territory scoring and
0/1 scoring. This experiment has been conducted with 30 minutes of time per game per player.

through the big number of simulated games that get played. A heuristic producing moves that have a
bigger probability of producing a simulated game with a good score would tend to focus the search more.
However, this does not hold for the influence heuristic which ends up exhibiting the same behaviour as
random move selection.

The influence heuristic performs worse than random move-guessing and similar to the move-selection
of standard UCT because it is very one-sided. It usually gives useful values at the start of the game,
when there are still many empty intersections. However, it completely disregards tactical play. The life-
and-death status of a group is never a consideration, so a dead group that is not taken off the board yet
can be evaluated as very useful. When defending territory, the moves with the highest gain in influence
are not the best moves to prevent opponent attacks. Therefore the results in complex situations are often
worse than random, which at least gives equal chances to all moves.

3.3 Playing Strength

Apart from testing the different algorithms against each other, a question we would like to have answered
is what the general level of our program is. How good is it really? We competed in the 2007 Computer
Olympiad, which we describe below. Also, an example game is given to give an idea of the playing style
of the program.

3.3.1 Computer Olympiad

A preliminary version of InTheDark has competed in the 2007 Computer Olympiad in Amsterdam.
InTheDark played against Tristan Cazenave’s GoLois. This is the follow-up of the program described
by Cazenave (2006). The match was played under slightly different rules, as referee feedback now also
included which opponent stones were caught, instead of only the number. The time setting for the
matches was 30 minutes each. InTheDark lost the match 6 - 0.

The version of InTheDark that competed was a hybrid of the all-as-first algorithm, which played
the first 15 moves, and UCT with early probabilistic opponent-move guessing. It used territory scoring
to value the simulated games. Both early probabilistic move guessing and territory scoring have since
been evaluated as suboptimal (see Section 3.2). However, at the time our research was still focussed on
producing good tactical play with a limited number of simulated games. In difficult situations, these
settings produce relatively good moves, but overall strategical play is weak.

The version of GoLois that we played against had changed from the program described by Cazenave
(2006) in a few ways. Firstly, it no longer employed all-as-first, but standard Monte-Carlo evaluation of
moves. Secondly, it did not use territory scoring but 0/1 scoring. And lastly, it ran on 24 parallel CPU’s,
thus analyzing on average 300,000 simulated games per move. InTheDark played on one desktop
machine, analyzing 80,000 simulated games for the first move. This number decreased as the game
progressed.

As a positive remark, in many games InTheDark has been in pretty good positions, and had the
possibility to win. It lost the games because of overconfidence, and a tendency to make the wrong strategic
choices, most notably trying to claim more territory instead of defending a position which would have
won the game. After the match, we adjusted the direction of our research and are hoping to have a
rematch in the future. A few examples of the games played at the Computer Olympiad can be found in
Appendix B.
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3.3.2 An example game

In order to have a better insight into the level of the program we analyze an example game from our
experiments. It is between Hybrid15 (Black) and MCall (White), both using 0/1 scoring. It was played
on an AMD Opteron 3.4 processor with 20 minutes time for each player.

There are more example games in Appendix B.

b: E5 w: D5
b: (D5) E6 w: (E5 E6) E4
b: (E4) F4 w: (F4) D6
b: (D6) D4 w: (D4) E3
b: (E3) E7 w: (E7) D3
b: (D3) C4 w: (C4) C3
b: (C3) B4 w: (B4) D7
b: (D7) B3 w: D8
b: F5 w: (B3) B2
b: F3 w: C2
b: (D8 B2 C2) E8 w: (E8 F3) E2

The current position of the board and the belief states are shown in Figure 3.2. Both players are playing
strongly connected groups, trying to divide the opponent’s stones and possibly kill some. In this game
the players have almost full information about each others position, which is rare. Because the players
are still both using the all-as-first algorithm at this phase of the game and have had pretty much the
same information throughout the game, they will often value the same positions highly. In this way they
will keep playing on the same positions as their opponent, and thus still have much information.

Figure 3.2: The reference board (middle), belief state of Black (left) and White (right) after move 22.

b: (E2) B6 w: (B6 F5) B7
b: (B7) C8 w: C7
b: (C7) B8 w: A7
b: D9 w: A2
b: (A7) C9 w: (D9 C9) E9
b: (E9) A8 w: B9

The current position of the board and the belief states are shown in Figure 3.3. The black player, by now
using the UCT algorithm with late random opponent-move guessing, realises that just holding on to the
right side of the board is not going to be enough to win. He tries to claim more territory in the upper
left corner, also threatening the group there. White tries to guard that corner with moves at E9 and B9,
but does not realise how big the group there already is.

b: F9 w: F2
b: (F2) G2 w: (A8 B8 C8 G2) G3
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Figure 3.3: The reference board (middle), belief state of Black (left) and White (right) after move 34.

b: (G3) H2 w: (H2) H3
b: (H3) A6 w: J3
b: G4 w: (A6) C5
b: H4 w: B5
b: J2 w: A4

The current position of the board and the belief states are shown in Figure 3.4. White realises it has
lost the upper left corner and now tries to claim the bottom right. Black is ignoring its chances to kill
the upper left white group to prevent this. However, after White plays J3 it assumes the group is safe
for at least a few moves, and goes back to saving his upper left group. Black concentrates on the bottom
right corner and takes the group.

Figure 3.4: The reference board (middle), belief state of Black (left) and White (right) after move 48.

b: (J3) J4 w: J1
b: (C5 B5 J1) H1 w: G8
b: (G8) F8 w: H7
b: G7 w: J8
b: (H7) G9 w: H9
b: H8 w: (G8) J7
b: (J8 H9) G8

The current position of the board and the belief states are shown in Figure 3.5. After the bottom
right corner has fallen to Black, the only way White can win is by claiming territory inside Black’s upper
right corner. It tries to do so, but Black defends. After move 61, the game is won for Black. The rest
of the game is given below, although it essentially consists of random moves. Black knows it has won,
White knows it has lost.

The remainder of the game went as follows. The reference boards after moves 79, 88, and 105 are
given in Figure 3.6.
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Figure 3.5: The reference board (middle), belief state of Black (left) and White (right) after move 61.

Figure 3.6: The reference boards after moves 79, 88, and 105.

w: F7
b: B1 w: A5
b: C1 w: C6
b: B6 w: G1
b: (A3) A1 w: F1
b: H3 w: F6
b: J5 w: (J3) A3
b: A9 w: J9
b: E1 w: (E1 J5) J6
b: G6 w: H6
b: D1 w: H5
b: (A2) C4 w: B3
b: (D2 B3 J6 G1) D4 w: (B1 D1 C4 C1 A1 D4 H3) A6
b: (F1) G5 w: F6
b: (F6) H5 w: (H5) H6
b: (H6) J6 w: H7
b: F7 w: H9
b: J8 w: (J9 J8 J6) B4
b: C4 w: (C4) D2
b: A1 w: (A1) B1
b: C1 w: (C1) D1
b: (H7) J7 w: H6
b: (H6 H9) H7 w: D4
b: J9 w: PASS
b: PASS
score game : 2.5
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Chapter 4

Conclusions and Future Research

In this chapter we return to our research questions, and draw conclusions (Section 4.1). Then we give an
answer to the initial problem statement (Section 4.2). Finally, we suggest possibilities for future research
(Section 4.3).

Chapter contents: Conclusions, Research Questions, Problem Statement, Future Research

4.1 Answers to the Research Questions

In drawing our conclusions we will address our research questions as stated in Section 1.6. After this,
our problem statement will be addressed.

4.1.1 Monte-Carlo methods

Our first research question was as follows.

RQ1: Will other Monte-Carlo methods perform better than all-as-first?

We compared four Monte-Carlo methods for Phantom Go: (1) Monte-Carlo evaluation with standard
sampling, (2) Monte-Carlo evaluation with all-as-first sampling, (3) UCT with late random opponent-
move guessing, and (4) UCT with early probabilistic opponent-move guessing. The empirical finding by
Cazenave (2006) that Monte-Carlo evaluation with all-as-first sampling yields a reasonable Phantom-Go
player was reproduced.

The experimental results described in Subsection 3.2.1 show that Monte-Carlo evaluation with all-
as-first sampling outperforms both Monte-Carlo evaluation with standard sampling and UCT with early
probabilistic opponent-move guessing. While it does not outperform UCT with late random opponent-
move guessing, it does play at a comparable level.

Therefore, the answer to our first research question is negative: of the three other Monte-Carlo
methods investigated, none performs better than all-as-first. Of course, this does not imply that other
MC-methods might not yield better results (see Section 4.3).

4.1.2 Tree search

The second research question was as follows.

RQ2: How much improvement will tree search produce?

Surprisingly, our experiments showed that players based on UCT could not outperform the best player
based on Monte-Carlo evaluation although a UCT-based player can reach a comparable level of play. The
reason for this is that UCT is considerably weaker in the early stages of a game. However, UCT-based
methods certainly did improve play at later stages in the game when situations become more complex.
As our experiments with hybrid players showed, MCTS will produce better moves when used at that
stage of the game.
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There are still some problems when applying tree search to Phantom Go which hold for all com-
plex games with uncertainty about the opponent’s position. These originate from the overestimation of
the value of a move because of unknown opponent stones. Two ways of dealing with these unknown
stones in MCTS were suggested: (1) late random opponent-move guessing and (2) early probabilistic
opponent-move guessing. However, these have not been able to make an improvement significant enough
to outperform Monte-Carlo evaluation with all-as-first sampling.

4.1.3 Integrating domain-specific knowledge

Our third research question was as follows.

RQ3: Can we improve on standard Monte-Carlo algorithms by integrating domain-specific
knowledge?

There are two ways in which we tried to improve on the basic Monte-Carlo algorithms. We attempted
to increase the accuracy of the unknown opponent stones and we tried to select better moves while
traversing the search tree. The heuristic we used for both approaches was based on the concept of
influence. However, the total gain in influence did not turn out to be a very good heuristic to predict the
most important moves.

Our results indicate that the approaches of using domain knowledge to improve the moves selected in
the tree and the unknown opponent stones is valid. Moves with a higher evaluation by our heuristic got
played, or selected as unknown stone, more often. It is necessary to be careful when choosing a heuristic
though, because as our experiments have shown a bad heuristic will produce results worse than, or at
best equal to, those of random selection.

4.1.4 The evaluation of referee feedback

Our fourth research question was as follows.

RQ4: How big will the drawbacks of our (possibly faulty) evaluation of referee feedback be?

Since our approach to deal with referee feedback can give an incorrect board position, we had to deter-
mine whether this leads to a decrease in playing strength. A partial solution to this problem has been
implemented in our program. The player tries to kill completely surrounded groups. While this does lead
to some successful captures, the behaviour is often invoked too late. Especially in the case in which part
of what appears to be a solid group could have been caught, this behaviour is often not triggered until
after the opponent has solved the problem.

However, in by far the most cases, our approach does generate a useful board position. While oc-
casional mistakes are inconvenient, they do not prevent the program from playing a reasonably strong
game. In some cases misinterpretations may lead to losing a game. Mistakes that could prove disastrous
are a mistaken belief an opponent group could be killed (see for instance Appendix B.2) or an adversity
to fill one’s eyes until it is proven that stones are in atari (see for instance Appendix B.3). These mis-
takes only turn up in a small percentage of the games though, so in conclusion we may state that the
drawbacks of our evalation of referee feedback are not very big. However, a better way of determining
which intersections might not actually be occupied could still bring improvement, as less games will be
lost due to mistakes. See Section 4.3 for further suggestions.

4.1.5 Uncovering information

The fifth research question was as follows.

RQ5: How much information about the opponent’s position is typically uncovered during the
game, and can this information be maximised?

In uncovering information during the game a certain amount of luck is involved. Especially in the early
stages trying to play on an occupied intersection or playing just beside it is less a matter of good play
than plain luck. One effect is definitely clear though: the more information is uncovered, the bigger
the chances are of more illegal moves. This is so because once some opponent stones are known, the
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intersections near those stones will become good moves to play. They are also more likely to be occupied
by an opponent stone.

Even though this indicates the importance of acquiring information, we have not tried to include a
separate heuristic trying to to find out more about the opponent’s position. There are two reasons for
this:

1. The intersections that are of the biggest interest to the player are usually the moves that get the
best Monte-Carlo evaluation. Therefore the player often tries to play on these intersections anyway.
A separate behaviour would be a waste of time.

2. Trying to play on an intersection with the intention of acquiring information, i.e., hoping for the
referee to say ‘illegal’, might conflict with the more important goal of playing good moves. If a
move turns out to be legal after all, the player might end up with a useless stone.

The question of uncovering information is second to the question of dealing with unknown stones during
Monte-Carlo evaluation. One exception to this could be a behaviour which ‘guards your back’, trying to
make sure the opponent does not try to build groups in territory the player regards as unthreatened.

4.1.6 Scoring methods

The last research question was as follows.

RQ6: What will be the impact of the scoring method on the behaviour of the MC methods?

In answer to this last question we can be clear. The Monte-Carlo methods all accomplish better results
when using 0/1 scoring as opposed to territory scoring. This is mainly due to the fact that they focus on
winning the game, instead of focussing on claiming territory, which is merely the means towards winning
the game. Strategically, 0/1 scoring is to be preferred.

Having said that, 0/1 scoring does seem to need much more simulated games than territory scoring
to converge to the optimal tactical moves. Especially in UCT-based methods, the search will not focus
on moves which are important to the outcome of the tree search as fast as when using territory scoring.
Perhaps we should not abolish territory scoring altogether just yet.

4.2 Problem Statement Revisited

In Chapter 1, we stated our problem as:

How can we apply the existing knowledge about Monte-Carlo methods to computer Phantom
Go in order to produce a strong playing program?

After having answered the research questions in the previous section, we believe to have achieved more
insight into the ways MC methods can be applied to Phantom Go and, more generally, to problems with
uncertainty. However, our research objective was not met. At the Computer Olympiad, we lost to GoLois
and our methods do not significantly improve on the methods used by Cazenave (2006). Obviously, more
research is needed to reliably apply Monte-Carlo approaches to domains with uncertainty.

4.3 Future Research

A number of directions for future research in Phantom Go come to mind. We describe eight of them.

1. One idea is to see whether applying grouping nodes for UCT in Phantom Go as was tested for regular
Go by Saito et al. (2007) is feasible. This approach could counterbalance the overestimation-effect
explained in Subsection 3.2.1.

2. While our experiments with the total gain in influence as a heuristic were unsuccessful, other
heuristics can be thought of. Better heuristics can, and should, be searched for.
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3. Much research has been done on patterns in regular Go. Especially the work of Gelly et al. (2006)
on the use of patterns in UCT-based algorithms seems a viable approach to build better search
trees. This approach might work for Phantom Go too. Apart from this, these patterns might also
be used to guess the unknown opponent stones, based on the stones that are already known.

4. Small tactical searches which do account for all configurations of opponent stones could be incorpo-
rated into the Monte-Carlo approaches. While Parker et al. (2006) showed that in complex games
with partial information overconfidence outperforms paranoia, overconfidence about the strength
of one’s own groups is still a big problem in automated players. A mechanism to evaluate the
life-or-death status of a group could improve our performance. This could be implemented like
the Metapositions explored by Sakuta and Iida (2000). While this approach seems infeasible for a
complete game of Phantom Go, it would offer a way of determining whether groups can be caught
or not.

5. In out experiments with early probabilistic opponent-move guessing we tried to exploit some of
the information already produced by the UCT-algorithm. The way in which we decided to use it
influenced the search itself, leading to worse results. However, this does not negate the fact that
there is much useful information in the search tree. Especially in situations dealing with uncertainty
it could give a major improvement if we could exploit this information. More research will be needed
to see whether a way of using information already available in the search tree can be devised that
does not interfere with the search itself. One idea here would be to use the average territory score
of a node as a tiebreaker, while using 0/1 scoring as the main valuating method.

6. Recently, a new approach to combine all-as-first evaluation and UCT has been proposed by Gelly
and Silver (2007). The results of this approach in regular Go are promising. Gelly and Silver use
a gradual shift from all-as-first to UCT, using the values determined by all-as-first in constructing
their search tree. This seems like a much more graceful solution than our hybrid methods, and we
would like to see what results this approach brings in Phantom Go.

7. As shown in Chapter 3, the result of tree-based search methods improves when more time for sim-
ulating games is available. Research into parallelization like the work by Cazenave and Jouandeau
(2007) and the use of faster machines will probably also improve the performance of MCTS for
Phantom Go.

8. Finally, it would be interesting to see if a different way of dealing with perceived opponent stones
can be devised. Especially in the case of former suicide positions, our current approach sometimes
misses opportunities. An interesting idea in this is to assign a certain belief value to intersections
not occupied by the own stones, instead of the all-or-nothing approach of placing an opponent stone
or not. Finding out how to work with these belief values in Monte-Carlo evaluation is a promising
research objective.

In conclusion: many items can and should still be investigated to improve the level of Phantom Go
programs.
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Appendix A

Algorithms

Our main algorithms are given in (Java-style) pseudocode.

A.1 Standard Monte-Carlo Evaluation

function suggestmove
{
double[][] results;
while(currenttime - starttime < timeLeft / timeFactor)
{
for(i = 0; i < boardSize; i++)
{
for(k = 0; k < boardSize; k++)
{
if(board(i+1, k+1) == EMPTY &&
!eye(i+1, k+1))
{
clone = clonedadmin();
clone.play(i+1, k+1)
clone.fillUnknownOpponent();
score = simGame(clone);
results[i][k] += score;
}

}
}
}
if(color == BLACK)
{
return index of argmax(results);
}
else if(color == WHITE)
{
return index of argmin(results);
}

}

function simgame(clone)
{
possibles = get empty positions(clone);
while(!bothpassed)
{
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move = randomNoEye(possibles);
if(move < 0)
{
if(onePassed)
{
bothPassed = true;

}
else
{
onePassed = true;
changeColor();

}
else
{
onePassed = false;
taken = clone.playmove(move);
possibles.add(taken);
changeColor();

}
}
if(use01)
{
return Utils.score01(clone);
}
return Utils.score(clone);
}

}

A.2 All-as-First Monte-Carlo Evaluation

function suggestmove
{
double[][] results;
int[][] games;
double[][] oppResults;
int[][] oppGames;

while(currenttime - starttime < timeLeft / timeFactor)
{
clone = clonedadmin();
clone.fillUnknownOpponent();
score = simGame(clone);
moves = getMoveStack();
colors = getMoveColors();
playedpositions;
for(i = 0; i < moves; i++)
{
if(moves[i] ! member of playedpositions)
{
playedpositions.add(moves[i]);
if(colors[i] == color)
{
results[getX(moves[i])][getY(moves[i])] += score;
games[getX(moves[i])][getY(moves[i])]++;
}
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else
{
oppResults[getX(moves[i])][getY(moves[i])] += score;
oppGames[getX(moves[i])][getY(moves[i])]++;
}

}
}
}
if(color == BLACK)
{
return index of argmax(results/games - oppresults/oppgames);
}
else if(color == WHITE)
{
return index of argmin(results/games - oppresults/oppgames);
}

}

A.3 UCT with Late Random Opponent-Move Guessing

function suggestmove
{
tree = initiateTree();
while(currenttime - starttime < timeLeft / timeFactor)
{
visitedNodes;
clone = clonedadmin();
currentNode = tree.root;
visitedNodes.add(currentNode);
while(currentNode.hasChild)
{
if(blacktomove)
{
currentNode = argmax(currentnode.children.uctscore)

}
else
{
currentNode = argmin(currentnode.children.uctscore)

}
clone.play(currentNode.move);
vistitedNodes.add(currentNode);
}
if(currentNode.visited > 0)
{
expandNode(currentNode);
if(blacktomove)
{
currentNode = argmax(currentnode.children.uctscore)

}
else
{
currentNode = argmin(currentnode.children.uctscore)

}
clone.play(currentNode.move);
vistitedNodes.add(currentNode);
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}
clone.fillUnknownOpponent();
score = simGame(clone);
for(i = 0; i < visitedNodes; i++)
{
visitedNodes[i].value += score;
visitedNodes[i].visited ++;
}
}
return index of argmax(tree.root.children.visited);

}

A.4 UCT with Early Probabilistic Opponent-Move Guessing

function suggestmove
{
tree = initiateTree();
while(currenttime - starttime < timeLeft / timeFactor)
{
visitedNodes;
clone = clonedadmin();
currentNode = tree.root;
visitedNodes.add(currentNode);
while(currentNode.hasChild)
{
if(blacktomove)
{
if(depth == 2)
{
fillWithProb(clone);
}
currentNode = argmax(currentnode.children.uctscore) && currentNode.move == EMPTY

}
else
{
if(depth == 2)
{
fillWithProb(clone);
}
currentNode = argmin(currentnode.children.uctscore) && currentNode.move == EMPTY

}
clone.play(currentNode.move);
vistitedNodes.add(currentNode);
}
if(currentNode.visited > 0)
{
expandNode(currentNode);
if(blacktomove)
{
currentNode = argmax(currentnode.children.uctscore) && currentNode.move == EMPTY

}
else
{
currentNode = argmin(currentnode.children.uctscore) && currentNode.move == EMPTY

}
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clone.play(currentNode.move);
vistitedNodes.add(currentNode);
}
clone.fillUnknownOpponent();
score = simGame(clone);
for(int i = 0; i < visitedNodes; i++)
{
visitedNodes[i].value += score;
visitedNodes[i].visited ++;
}
}
return index of argmax(tree.root.children.visited);

}

function fillWithProb(clone)
{
for(i = 0; i < currentNode.children; i++)
{
random = randomNumber[0, 1];
if((C * (children[i].visited * currentNode.visited) * unknownstones) > random)
{
clone.play(children[i].move, opposingColor);
}
}

A.5 The Influence Heuristic

The influence heuristic is used in two ways. Subsection A.5.1 describes the heuristic itself. Subsection
A.5.2 describes how it is used to guess opponent stones. Subsection A.5.3 describes how it is used to
determine which node to explore during tree construction.

A.5.1 Computing the total gain in influence

function computeInfluences
{
totalInf = getTotalInfluence(board)
int[][] ownInf;
int[][] opponentInf;
for(i = 0; i < possibles; i++)
{
board.change(i.move, ownColor);
ownInf[getX(i.move)][getY(i.move)] = getTotalInfluence(board);
board.change(i.move, oppColor);
opponentInf[getX(i.move)][getY(i.move)] = getTotalInfluence(board);
board.change(i.move, EMPTY);
}

}

function getTotalInfluence(board)
{
infboard = computeInfluences(board)
totalInf = 0;
for{i = 1; i < boardsize; i++)
{
for{k = 1; k < boardsize; k++)
{
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totalInf += infBoard[i][k];
}
}
return totalInf;

}

A.5.2 Influence-based opponent-move guessing

function fillWithInf(clone)
{
totalDif = 0;
for(i = 1; i <= boardSize; i++)
{
for(k = 1; k <= boardSize; k++)
{
if(clone[i][k] == EMPTY)
{
if(!eye && !suicide && !ko)
{
totalDif += opponentInf[i][k];
}

}
}
}
loop1: for(loopno = 0; loopno < stonesMiss; loopno++)
{
double pick = random[0, 1];
tot = 0;
loop2: for(i = 0; i < opponentInf; i++)
{
for(k = 0; k < opponentInf; k++)
{
if(cloned.getBoardPoint((i+1), (k+1)) == EMPTY)
{
if(!eye && !suicide && !ko)
{
tot += opponentInf[i][k];
if((tot / totalDif) > pick)
{
clone.playMove(i+1, k+1, opponentColor);
totalDif -= opponentInf[i][k];
break loop2;

}
}
}

}
}
}
return clone;

}
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A.5.3 Influence-based move selection

This function is called from the UCT algorithm instead of the function uctScore.

function infUctScore(node)
{
uctS = uctScore(node);
if(colorToMove == ownColor)
{
dif = ownInf[getX(node.move)][getY(node.move)] - totalInf;
}
if(colorToMove == oppColor)
{
dif = opponentInf[getX(node.move)][getY(node.move)] - totalInf;
}
if(parent.visited == 0)
{
return uctS + (infFactor * dif);
}
double infS = (infFactor / sqrt(parent.visited)) * infDif;
return uctS + infS;

}
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Appendix B

Example games

B.1 InTheDark - GoLois, Game 2

Figure B.1: The reference boards during the game.

Game 2 of the match was a pretty straightforward game, good for explaining the basics. The reference
boards after moves 41, 61, and 70 are given in Figure B.1.

InTheDark (black) GoLois (white)
b: E4 w: D2
b: F6 w: B5
b: E5 w: E3
b: (E3) D3 w: D5
b: D4 w: D7
b: (D2) C2 w: F3
b: C3 w: (E4) C4
b: F7 w: G5
b: F8 w: B6

InTheDark, using MCall at this stage, is playing strongly connected stones in the opening stages of
this game. GoLois is playing much more unconnected stones.

b: (F3 G5) F4 w: (C3) C5
b: G4 w: (E5 C2) F4
b: H4 w: E6

InTheDark Is trying to divide the board into three separate areas, thus making it hard for GoLois to
make living groups. However, it does not realise that F6, F7 and F8 are already cut off from the rest
of its stones. It is playing too confidently because the UCTprob algorithm assumes, wrongly, that it can
always react to a move at F5 or E6 by connecting at the other position.
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b: B7 w: G3
b: C7 w: (D3 F6) G6
b: (D7) C6 w: (F7 F4 G4) G7
b: J4 w: (F8) D6
b: J8 w: H8
b: (C4) C8 w: G8
b: E2 w: F8
b: B1 w: (C7) E8
b: (D5) D8

Now we arrive at the position as shown in the left board of Figure B.1. The belief states of InTheDark
and GoLois are shown in Figure B.2. As you can see, GoLois has much information about opponent
stones, where InTheDark has discovered very few opponent stones. This is a big disadvantage here,
because it has never realised that the stones at F6, F7 and F8 are threatened.

Figure B.2: The board as perceived by InTheDark (left) and GoLois (right) after move 41.

w: E7
b: (D6 C5) H5 w: (B7) A5
b: A2 w: D9
b: B4 w: A8
b: (B5) B3 w: (J8) H8
b: (A8) H6 w: A7
b: J3 w: C9
b: J2 w: B9
b: H7 w: A9
b: F7 w: J9
b: F6

Now we arrive at the position as shown in the middle board of Figure B.1. The belief states of InTheDark
and GoLois are shown in Figure B.3. After the capture at move 42, InTheDark still could have won
the game by making a living group in the top left corner and defending its territory at the bottom of the
board. However, since it did not fully realise these positions were threatened it chose to do something
else. Because UCTprob is using territory scoring here, instead of consolidating a potentially won position,
it tries to claim more territory by venturing into the upper right corner. GoLois plays this much better,
because it realizes that it can win the game by holding on to the territory it already controls. By making
sure there can never be a living group in the top left corner, even though it does not know how many
stones are already there, it effectively wins the game.

w: B8
b: D2 w: C8
b: J7 w: F8
b: A4 w: B7
b: (J9 H9 A5) C6 w: C7
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Figure B.3: The board as perceived by InTheDark (left) and GoLois (right) after move 61.

Game over, White wins by 2.5.

B.2 InTheDark - GoLois, Game 6

Figure B.4: The reference boards during the game.

Game 6 was something like a comedy of errors and misinterpretations. The reference boards after
moves 28 and 72 are given in Figure B.4.

InTheDark (black) GoLois (white)
b: E6 w: F4
b: D4 w: E5
b: (E5) D5 w: D6
b: (D6) C6 w: E7
b: D7 w: F6
b: (F6) E4 w: D6
b: (F4 E6) F3

An opening in which both players are fighting over control of the middle of the board. A bug causes
InTheDark to play on a position it knows is forbidden because of ko (E6). After this it fills the position
with an opponent stone. While this may seem like an innocent mistake, the consequences of this will
become apparent in the rest of the game.

w: (D4 E4 F3) C7
b: C5 w: D8
b: G4 w: G5
b: B7 w: G3
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b: (G3) F5 w: (F4) B6

Apparently GoLois is suffering from a similar bug. F4 is also a move forbidden because of ko.

b: G6 w: (C5) H5
b: (G5) F4 w: (G6) G7
b: (G7) H6 w: (H6) H7

InTheDark can capture at E6, but does not realise this because of the mistake it made earlier. It also
does not realise its stones at G6 and H6 are in atari, so it continues to try and capture the white stones
at G5 and H5. See Figure B.5.

Figure B.5: The board as perceived by InTheDark after move 28.

b: (H5) H4 w: J6
b: C8 w: (B7) B8
b: D7 w: (C7 H4) F2
b: H3 w: (H3) C2
b: C7 w: B2
b: G8 w: E2
b: (E2 F2) G6 w: D2
b: C3 w: F8
b: C9 w: G2
b: A4 w: H2
b: (F7) J4 w: H6
b: D3 w: E8
b: F9 w: J2
b: H8 w: E6
b: J8 w: A2
b: (D2 E8 C2 G2 F8) B3 w: B1
b: D9 w: (D9) E9

Because of a misrepresentation of enemy stones, InTheDark believes it can kill the white group in the
top right corner. However, this group is unconditionally alive. While putting its efforts into this futile
attempt, it does not realise GoLois is building a group inside territory it believes it controls. See Figure
B.6.

b: (E9 A2 B2 H2) B4 w: A9
b: J5 w: B9
b: J7 w: (C9 F9) J9
b: (G6 ....) H9 w: A8
b: (B8) H1 w: (G8) G9

At the move (G6 ....) InTheDark tried to find a killing position for the top right white group by playing
every possible position. None existed. This meant it had lost the game. White wins by 17.5 points.
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Figure B.6: The board as perceived by InTheDark after move 61.

B.3 UCTrand - UCTprob

A game between two MCTS methods, UCT with late random opponent-move guessing and UCT with
early probabilistic opponent-move guessing. This game was played on a Pentium III processor with 30
minutes time per player.

b: E5 w: B2
b: G3 w: (E5) H6
b: G4 w: D6
b: C6 w: E6
b: D4 w: D5
b: (H6 E6 D5 D6) C5 w: (D4) F5
b: C7 w: B4
b: F6 w: E4
b: G5 w: C4
b: E3 w: (G4) F3
b: (C4) D3 w: (D3 G5) G6
b: C3 w: (F6) F7
b: G2 w: H3
b: (B4) F4 w: C8

The reference board and belief states for this position are shown in Figure B.7. Remarkable in this
position is the discrepancy in the amount of information the players have about the opponent stones.
While Black knows nearly everything, White has very little information. This shows that taking opponent
stones also has a drawback: your opponent gets more information.

Figure B.7: The reference board (centre) and the belief-states of Black (left) and White (right) after
move 28.
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b: (C8) B5 w: D2
b: B3 w: (E3 G3 C3 B3) B7
b: A4 w: (F4 G2) J6
b: B8 w: (C6) D7
b: H5 w: E5
b: F1 w: (C7 H5) J5
b: (B7) D8 w: (B8) B9
b: (D7) A8 w: H2
b: (J5) C9 w: F2
b: (F3 F2) E2

The reference board and belief states for this position are shown in Figure B.8. After the capturing moves
at E4, C9, and E2 White has much information about the opponent as well. It urgently needs to secure
some territory though.

Figure B.8: The reference board (centre) and the belief-states of Black (left) and White (right) after
move 47.

w: E8
b: F2 w: B1
b: A6 w: (F2) H4
b: D9 w: C2
b: (B1) B4 w: A2
b: A9 w: D1
b: (D2 D1 A2 B2 C2) J4 w: (J4) J3
b: H1 w: F8
b: (J6 E8 H2 E5) B6 w: (H1) F9

The reference board and belief states for this position are shown in Figure B.9. Black thought it was
ahead, but White has managed to form a small living group in the left bottom corner before Black found
out about it. White now has a good chance of winning the game. Black attacked at J4, but that stone
was taken.

b: (F8) G7 w: (A8 C4 G7) H7
b: J2 w: (D9) A3
b: G8 w: H8
b: (H8) J7 w: G9
b: E9 w: (A5) G7
b: (H3) J4 w: J3
b: H3

The reference board and belief states for this position are shown in Figure B.10. White should have
connected the stones in the left bottom corner with the rest of its stones. However, the heuristic which
prevents playing in its own eyes prevented that. It would not allow that move until the group is in atari.
White never realised it was in atari. By losing the group, it lost the game. Black defends well by playing
H3. The last few moves were played as follows.
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Figure B.9: The reference board (centre) and the belief-states of Black (left) and White (right) after
move 64.

Figure B.10: The reference board (centre) and the belief-states of Black (left) and White (right) after
move 77.

w: (A7 A6) E1
b: (E1 A3) A7 w: (J7) J8
b: (G7 F9) J9 w: (E9) H9
b: PASS w: PASS
score: 2.5

Black wins by 2.5 points.

B.4 UCTprob - MCall

This is a game played during our experiments. It is between UCTprob (Black) and MCall (White), both
using 0/1 scoring. It was played on an AMD Opteron 3.4 processor with 20 minutes time for each player.

b: E7 w: E5
b: E6 w: E4
b: (E5) D5 w: (E6) F6
b: (E4) D3 w: F5
b: E3 w: F7
b: F3 w: (E3 D3 F3) D4
b: D6 w: C4
b: (D4 C4 F6 F5) E8 w: C3
b: (C3) C2 w: (C2) B3
b: B5 w: F8
b: C5 w: G4
b: B2 w: G3
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b: B4 w: G2
b: (G4 B3 G3) A3 w: G5
b: (F7 G2) F2

The reference board and belief states for this position are shown in Figure B.11. Black is defending here,
but also has much more information. The all-as-first algorithm (White) tries to divide the board into
smaller pieces. However, it does not close the last intersections on the edge. This is a drawback of the
all-as-first algorithm. Since there are always multiple ways in which you can connect the string to the
edge of the board, the importance of doing this is overlooked by the algorithm. Thus these moves are
not seen as very urgent. This allows Black to play at A3 and connect its two groups.

Figure B.11: The reference board (centre) and the belief-states of Black (left) and White (right) after
move 29.

w: (B2 F2) F9
b: (F8) G1 w: (G1) H2
b: E9 w: (B5) H6
b: A2 w: H1
b: F1 w: H7
b: (F9 H1 H2) D2 w: G7
b: F4

The reference board and belief states for this position are shown in Figure B.12. The Black move at F4
wins the game. Black has now 0.5 point more than White. While the White moves at G7, H7, and H6
were good moves for defending the territory, they were not the most important moves. White did not
realise this because it has very little information about the opponent’s position, and thinks it can easily
claim some more territory. At the next move White will realise it has a problem.

Figure B.12: The reference board (centre) and the belief-states of Black (left) and White (right) after
move 41.
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w: (C5 E7 E8 E9 A3 D5 F4 B4 F1
D2 D6 A2) A4

b: C8 w: (C8) C7
b: (C7) D8 w: (D8) B8
b: (A4 B8) A5 w: B6
b: C9 w: A6
b: (A6 B6) B9 w: (B9 C9) A8

The reference board and belief states for this position are shown in Figure B.13. White realised it had to
try something, and attempted to form a group in the upper left corner. After the Black move at B9 this
is no longer possible and the game is over. The moves played until the board was filled are given below.

Figure B.13: The reference board (centre) and the belief-states of Black (left) and White (right) after
move 52.

b: J1 w: A1
b: A7 w: C6
b: H3 w: B1
b: J3 w: C1
b: J5 w: D1
b: G8 w: E1
b: J8 w: B7
b: E2 w: E1
b: B1 w: D1
b: C1 w: E1
b: H4 w: (B1 J8) H8
b: D1 w: D7
b: J2 w: A9
b: (G6 C6 G5) H5 w: G9
b: J6 w: (J1) J9
b: (H6 D7) H9 w: (J6 J9 J5 J3 H3 H5) J7
b: (J7 H7 G8 J7 F9 G9 H8 G8 F8 F7 G7

H7 H6 G6 F6 B3 C3 C4 D4 E4 E5 F5
G5 G4 G3 G2 H2 H1 A9) A7 w: (H9) J9

b: A8 w: H9
b: B6 w: J8
b: B7 w: (A6) D7
b: C6 w: (A9 A8 B8 B7 B6 C6 H4 J2) J4
b: J1 w: H3
b: C7 w: H4
b: J5 w: H5
b: J2 w: (J1 J2 J5) J3
b: J2 w: J1
b: (H3 H5) PASS w: J6
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b: PASS w: PASS
score : 0.5

Black wins by 0.5 point.


