
The Cross-Entropy Method Applied to SameGame

M.J.W. Tak

June 21, 2010

Abstract

This paper improves a Single-Player Monte-
Carlo Tree Search (SP-MCTS) SameGame pro-
gram by tuning its parameters with the Cross-
Entropy Method (CEM). SP-MCTS can be
used in two ways: (1) constructing one tree
for the whole game and (2) constructing a tree
for each move. Both approaches in combi-
nation with several simulation strategies were
tuned by CEM. Constructing a tree for each
move in combination with parameters tuned by
CEM resulted in the best performance. With
this setup, it was possible to obtain a score of
78,012 on the standardized test set of 20 po-
sitions. This is 4,014 points more than the
manually tuned SameGame program that con-
structs one tree for the whole game. A disad-
vantage of CEM is its long training time. This
paper proposes two procedures, called Simple-
Cut and ConfidenceCut, to improve the conver-
gence rate. The best procedure, Confidence-
Cut, reduces the training time of CEM by ap-
proximately 40%. Keywords: Cross-Entropy
Method, Monte-Carlo Tree Search, SameGame

1 Introduction
The performance of a search algorithm typically depends
on some set of parameters. Therefore, it is important to
find those parameters that give the best performance.
There are often several dependencies involved, which
makes it difficult to find the optimal parameter setting
manually.

Monte-Carlo Tree Search (MCTS) is an example of
such a search algorithm [4, 6, 9]. Nowadays it is of-
ten used to determine the best moves in games, such
as Go [6]. A main difference between Monte-Carlo Tree
Search and other search techniques such as αβ is that
game dependent knowledge is not necessary. Therefore,
it is well suited for games for which it is difficult to de-
termine an evaluation function. Two examples of such
games are Go and SameGame.

In the last few years several papers have been
published about applying Monte-Carlo techniques to

SameGame. Within these papers, the developed algo-
rithms are evaluated on a predefined test set of 20 po-
sitions [12]. In 2008 Schadd et al. [16] were able to
score 73,998 on this test set by using a method called
Single-Player Monte-Carlo Tree Search (SP-MCTS). In
2009 Takes and Kosters [17] introduced a new simula-
tion strategy with which a score of 76,764 is obtained.
In the same year Cazenave applied nested Monte-Carlo
Search which led to an even higher score of 77,934 [2].
Till 2010 the top score on this set was 84,414, held by the
program “spurious ai”. Not much is known about how
this score is obtained. In 2010 this record was claimed to
be broken with 84,718 points by using a method called
Heuristically Guided Swarm Tree Search [8].

The topic of this paper is tuning the parameters of
a SameGame program that uses SP-MCTS as described
in [16]. Currently, the parameters are tuned by hand.
Therefore, by applying machine-learning methods to find
the optimal parameter setting it is expected that the
score of 73,998 can be increased.

This paper answers the main research question: How
to use the Cross-Entropy Method in order to improve the
SP-MCTS SameGame program?

The Cross-Entropy Method (CEM) [15] is chosen,
because it has been successfully applied in parameter
tuning for a MCTS Go program [3]. It is an evolu-
tionary optimization method, related to Estimation-of-
Distribution Algorithms (EDAs) [14]. Like in EDAs the
range of possible solutions is represented with a proba-
bility distribution.

Besides the main research question, the following five
questions are posed:

1. Currently the SameGame program constructs one
large Monte-Carlo Search Tree for the whole game.
Can the program be improved by constructing a
smaller tree for each move?

2. Can the existing SameGame program be improved
by CEM?

3. Currently the SameGame program applies a sim-
ulation strategy called TabuColorRandom. Can
the program be improved by using other simulation
strategies and by tuning their parameters?

4. What is the influence of the time limit during tuning

M.J.W. Tak

on the parameters found by CEM?

5. CEM may require quite some training time. Is it
possible to reduce the training time?

This paper is organized as follows. First, Section 2 in-
troduces CEM. Within Section 3 the rules of SameGame
are explained. Then Section 4 describes SP-MCTS and
its parameters to tune. Subsequently, Section 5 describes
the main setup of the experiments and Section 6 handles
the experiments in more detail. Finally, Section 7 con-
tains the conclusions of this paper.

2 Cross-Entropy Method
The Cross-Entropy Method (CEM) [15] is an evolu-
tionary optimization method, related to Estimation-of-
Distribution Algorithms (EDAs) [14]. Like EDAs it is
model based, because it represents its range of possible
solutions with a parameterized probability distribution.
CEM is often compared with genetic algorithms, because
they are both evolutionary methods. However, the meth-
ods are not the same. A main difference between these
methods is that genetic algorithms are not model based,
but population based. Instead of using a model to repre-
sent their range of possible solutions, genetic algorithms
maintain a concrete set of solution candidates [5].

CEM converges to a solution by iteratively chang-
ing the parameters of the probability distribution that
represents the range of possible solutions. An iteration
consists of three main steps. First, a set S of samples is
drawn from the probability distribution. In the second
step, each sample is evaluated and gets assigned a fitness
value. A fixed amount of samples within S having the
highest fitness are called the elite samples. In the third
step, the elite samples are used to update the parameters
of the probability distribution. After these steps, a new
iteration begins which uses the updated distribution.

The updated distribution is the parameterized distri-
bution having the smallest distance to the uniform dis-
tribution over the elite samples [3]. Applying this proce-
dure, the probability of generating more or less the same
elite samples the next iteration increases. To measure
the distance between two probability density functions
u(y) and v(y) the cross-entropy distance is used:

D =

∫
u(y) ln

u(y)

v(y)
dy (1)

Below it is outlined how to find the updated distribution
in the case of a Gaussian distribution [3, 10]. Symbols
written in bold refer to vectors. Let El be the set of elite
samples of the current iteration. Each elite sample eεEl
is a vector containing values for each parameter to be
optimized. For each of these parameters under consid-
eration, a separate, independent, Gaussian distribution
is maintained. CEM keeps track of these distributions

with a vector µ containing the means of these distribu-
tions and a vector σ2 containing the variances of these
distributions. It turns out that µelite and σ2

elite as de-
fined by the Equations 2 and 3 describe the Gaussian
distribution having the smallest distance to the uniform
distribution over the elite samples.

µelite =

∑
eεEl e

|El|
(2)

σ2
elite =

∑
eεEl (e− µelite)

T · (e− µelite)

|El|
(3)

Therefore, in the case of Gaussian distributions, the up-
dated distributions have means equal to µelite and vari-
ances equal to σ2

elite. This can easily be calculated with
the equations above. Often a smoothing factor α is used
to make smaller steps into the direction of the updated
distributions. With a small enough α there is a high
probability of finding the optimal solution [5].

Before CEM can start, the vectors µ and σ2 need
to be initialized. In this paper the same initialization as
described in [3] is used. For each parameter, the mean
of the corresponding distribution is equal to the average
of the lower bound and upper bound of that parameter.
The standard deviation is equal to a half of the difference
between the lower bound and upper bound. The pseudo
code of CEM is shown in Algorithm 1.

3 SameGame
SameGame originates from a game called Chain Shot
that is invented around 1985 by Kuniaki Moribe [13]. In
1992 the game was released again under several different
names, each referring to slightly different rules. Exam-
ples are: Bubble Breaker, Clickomania and SameGame.
This section outlines the rules of SameGame [16].

SameGame is played by one player on a rectangular
board of 15×15 squares, initially filled with pieces of five
colors at random. A group refers to at least two pieces of
the same color that are orthogonally adjacent. A move
consists of selecting a group to remove from the board.
Removing groups gives the player points according to
(n − 2)2 where n refers to the size of the group. When
groups are removed from the board the board position
is updated according to the following rules:

• Pieces having an empty cell below them fall down
till they hit another piece or the bottom of the rect-
angular board.

• If a column is empty, all columns to the right of it
shift one column to the left.

If the board is empty an additional 1,000 points are
added to score of the player. If the board is not empty
and there are no moves possible, the game ends and
points are deducted. The amount of points to deduct

(p.2)

M.J.W. Tak

Algorithm 1 CEM in the case of Gaussian distributions

Require: Population size N
Require: Number of elite samples E
Require: Number of iterations T
Require: Smoothing factor α
Require: Initial vector µ containing the means of the

(Gaussian) parameter distributions
Require: Initial vector σ2 containing the variances of

the (Gaussian) parameter distributions
1: for i← 0 to T do
2: S ← ∅
3: for v ← 0 to N do
4: draw a random sample sv of parameter values

from the parameter distributions with means µ
and variances σ2

5: Add the vector sv to the set S containing the
drawn samples

6: f(v)← fitness(sv)
7: end for
8: El ← {the samples svεS ‖f(v) belongs to the

highest E fitness values of f}9:

µelite ←
∑

eεEl e

|El|

σ2
elite ←

∑
eεEl (e− µelite)

T · (e− µelite)

|El|

µ← α · µelite + (1− α) · µ
σ ← α · σelite + (1− α) · σ

10: end for

is calculated by applying (n− 2)2 to the pieces still left
on the board where it is assumed that pieces of the same
color are connected.

4 SP-MCTS and its Parameters
This section explains Monte-Carlo Tree Search
(MCTS) [4, 6, 9] and the Single-Player Monte-Carlo
Tree Search (SP-MCTS) as used in [16]. Parameters to
tune by CEM are written in bold.

4.1 MCTS

MCTS is a best-first search technique in which board po-
sitions are not evaluated with an evaluation function but
by playing random games (Monte-Carlo simulations).
Each node in the tree corresponds to a board position.
Furthermore, each node stores its visit count and its
value. MCTS consists of four phases: selection, simu-
lation, expansion and backpropagation [4]. These phases
are repeated till time is up. The move to play is the child
of the root with the highest value.

The selection strategy determines how to traverse the
tree from the root to a leaf node. It should balance the
exploitation of successful moves with the exploration of
new moves. A strategy used in many programs is Upper
Confidence bounds applied to Trees (UCT) [9].

When the selection strategy has reached a leaf node,
the simulation phase starts. Within this phase, a ran-
dom game is played. The starting point is the board
position stored at the leaf node. Often a simulation
strategy plays knowledge-based pseudo-random moves,
which are better than real random moves.

The expansion phase adds one or more nodes to the
tree. In [6] it is proposed to add one node to the tree per
simulation. The node to add is the first board position
encountered during the simulation that is currently not
stored in the tree. Moreover, when the visit count of a
node passes a certain threshold all the remaining children
are added.

The backpropagation phase propagates the results of
the game (won or loss) backwards from the leaf node to
all nodes that are on the path from the root to this leaf
node. The value of a node is the average of these results.

4.2 SP-MCTS

This subsection explains SP-MCTS [16] and how it is
implemented in the SameGame program.

Selection strategy

As selection strategy a modified version of the UCT for-
mula is used:

X̄ + C ·

√
ln t(N)

t(Ni)
+

√∑
x2 − t(Ni) · X̄2 +D

t(Ni)
(4)

At a node N , the child Ni is selected that maximizes
this formula. The first two terms correspond to the orig-
inal UCT formula. Within these terms, the function t(n)
returns the visit count for a given node n, X̄ is the av-
erage game value and C is called the UCTConstant.
The third term is added to represent a possible deviation
of the child node.

∑
x2 is the sum of squared results ob-

tained in the child node so far. This is corrected by the
expected results given by t(Ni) · X̄2. The Deviation-
Constant D is added to make sure that nodes, which
have a high potential, are preferred.

An important difference between a two-player game
and a one-player game like SameGame is that in the
latter there is a much larger range of game values. For
two-player games possible values are 0 for a draw, 1 for
a win and -1 for a loss. In SameGame, arbitrary scores
can be obtained. To correct for this, the constants C
and D should be set such that they are feasible for this
larger range of values.

(p.3)

M.J.W. Tak

Simulation strategies
The original SameGame program contains four simula-
tion strategies:

• The TabuColorRandom strategy determines at the
beginning of a simulation the most prominent color.
During the rest of the simulation this color can only
be played with a small probability determined by
the parameter ChanceChosenColor or when no
other moves are possible. The result is that large
groups of this color are formed.

• The TabuRandom strategy works almost the same,
but the color that is not allowed to be played is
chosen randomly.

• The ConnectionMaximization strategy does a
search of 1-ply deep. Each connection between two
pieces within the same group is counted. The move
to play maximizes the total number of connections.

• The Random strategy plays plain randomly.

TabuColorRandom has been successfully applied [2, 8,
16]. Still, it could be that a mix of strategies is bet-
ter than playing only one strategy. To apply a mix of
strategies a couple of other parameters are introduced.

The parameter ChanceSameStrategy determines
the probability that within one single simulation the
strategy chosen at the beginning is used till the end
of this single simulation. To determine which strat-
egy to play, each strategy has a corresponding strat-
egy weight. A roulette-wheel selection mechanism uses
these weights to determine which strategy to play next.

Another simulation strategy called Monte-Carlo with
Roulette-Wheel Selection (MC-RWS) is proposed in [17].
A modified version of this strategy is added to the
SameGame program in order to tune its parameters with
CEM. The only modification made is leaving out the pa-
rameter θ. In the original version, θ is used to prevent
problems with large values. However, when using dou-
bles instead of integers data types these problems do not
occur. Within this modified version, the probability of
playing a certain color is defined as:

P (χi) =
1

χ− 1
·
(

1− g(χi)
α∑χ

k=1 g(χk)α

)
where α = 1 + (β/N) ·

χ∑
k=1

g(χk)

(5)

N refers to the initial amount of pieces, χ refers to the
number of different colors and the function g(χk) returns
the amount of pieces left of color χk. β is a constant
which defines how much the focus is on creating larger
groups. The idea behind this simulation strategy is that
for several colors large groups are created. This is in con-
trast with the TabuColorRandom strategy which focuses
only on creating large groups of one color.

Expansion

The expansion phase works as described in Section 4.1.
The parameter VisitsBeforeExpand determines the
minimum number of visits that are needed before all
children of a node are added.

Backpropagation

In SP-MCTS a node not only keeps track of the average
score, but also of the top score obtained when that node
is visited. This is needed because the value of a node is
calculated as the plain average of the results combined
with the top score. The parameter TopScoreWeight
determines the weight the top score has on this value.

Determining the move to play

For a one-player game there is no uncertainty about the
opponent moves. Therefore, one large tree for the whole
game can be constructed [16]. When time is up, the
game is played from beginning till the end by using the
moves leading to the top score in the tree.

A different way to determine the way of play is to
construct a (smaller) tree for each move. After a tree
is constructed for the first move, the sequence of moves
leading to the top score found with this tree is stored
and only the initial move of this sequence is played. To
determine the next move, a new tree is constructed. The
root corresponds to the new board position reached by
the last move and its children are copied from the pre-
vious tree. SP-MCTS starts after this initial tree is con-
structed. If it finds a new top score, the sequence of
moves leading to the new top score is stored and the
first move of this sequence is played. However, it is pos-
sible that SP-MCTS does not find a better score than the
current top score found in a previous constructed tree.
If that happens, the first unplayed move of the stored
sequence leading to this top score is played.

It is expected that the second search approach leads
to higher scores, because for each move approximately
the same amount of simulation time is used. This is
in contrast with the first approach where the moves at a
later stage of the game get less simulation time compared
with the moves at the beginning of the game. This may
result in suboptimal play at the end of the game.

5 Setup of the Experiments
This section presents the settings of CEM and the pa-
rameters to tune for each of the simulation strategies.
Furthermore, it explains how the parameters found by
CEM are evaluated.

5.1 Settings of CEM

In each experiment, the following settings are used. The
sample size is equal to 100, the number of elite samples
is equal to 10 and α is set to 0.6. These values are based

(p.4)

M.J.W. Tak

Parameters Range
Tabu-

Mix
MC-

Color RWS
UCTConstant [0.1;10] x x x
DeviationConstant [0.1;20,000] x x x
VisitsBeforeExpand [2;20] x x x
TopScoreWeight [0;1] x x x
ChanceSameStrategy [0;1] x
ChanceChosenColor [0;1] x
β as in MC-RWS [1;20] x
Strategy weights [0;1,000] x

Table 1: Parameters to tune for each simulation strategy.

on recommendations made in [7] and [11]. Unless stated
otherwise, each sample is evaluated by playing 30 games.
The fitness of a sample is calculated as the sum of the
scores of these games. 30 is chosen, because that allows
most of the experiments to finish within one week. Each
new iteration a new set of positions is created randomly
which prevents over fitting on a certain training set.

For a puzzle such as SameGame, playing a game just
means a search for the best moves. Therefore, a stopping
criteria for this search is needed. This is either a time
limit, or a limit on the number of nodes in the tree.

5.2 Simulation Strategies

In total three different simulation strategy setups are
tuned by CEM. The first setting is TabuColor which
only plays the TabuColorRandom strategy. The sec-
ond setting is called Mix, because it plays four differ-
ent strategies: Random, TabuColorRandom, TabuRan-
dom and ConnectionMaximization. The third setting is
called MC-RWS and plays only the modified version
of Monte-Carlo with Roulette-Wheel Selection. Table 1
shows the parameters to tune and their ranges for each
of the different settings.

5.3 Evaluating parameters

To determine the performance of the parameters found
by CEM an independent test set of 250 randomly created
positions is used. Average scores on this test set are
obtained for five different time limits: 5, 10, 20, 30 and
60 seconds per position. As explained in Section 4.2 it
is possible to construct a tree for each move. In that
case, a time limit per move should be set. In order to
use the above mentioned time limits per position, the
time limits per move are obtained by dividing the time
limits per position by 65, because 65 is a rough average of
the number of moves per game. In [16] it is determined
experimentally that the average number of moves is 64.4.

6 Experiments
For both search approaches explained in Section 4.2 pa-
rameters are tuned by CEM. Table 2 shows the perfor-
mance of the parameters found by CEM when one tree is

constructed per game. Table 3 shows the performance of
the parameters when for each move a tree is constructed.

Sections 6.1 till 6.4 discuss the results shown in these
tables. Subsequently, in Section 6.5 it is investigated
whether the training time of CEM can be reduced by
cutting of samples. Finally, Section 6.6 shows whether
the score on the standardized test set can be increased
when parameters are tuned by CEM [12].

6.1 A Tree per Move Compared with a
Tree per Game

This section gives an answer to the research question:
Can the SameGame program be improved by constructing
a tree for each move? To answer this question, the two
different search approaches described in Section 4.2 are
compared for the strategies TabuColor and MC-RWS.

For both strategies the scores in Table 3 are higher
than in Table 2. For example, at a time setting of 5
seconds the tuned TabuColor has a score of 2,405 in Ta-
ble 2, while Table 3 shows a score of 2,652. This is an
increase of 10.2% which is statistically significant at a
level of 0.01. This means that the SameGame program
performs better when for each move a tree is constructed
than when one tree is constructed for the whole game.

Therefore, the expectations mentioned in Section 4.2
are confirmed. It seems indeed better to construct a
tree for each move instead of one large search tree. An
explanation for this result is that in the former case for
each move approximately the same simulation time is
used, while in the latter case moves done near the end of
the game get less simulation time compared with moves
done at the beginning of the game. This could lead to
suboptimal play at the end of the game.

6.2 Tuned TabuColor Compared with
the Manually Tuned Parameters

In this section the manually tuned TabuColor is com-
pared with the TabuColor tuned by CEM in order to an-
swer the research question: Can the existing SameGame
program be improved by CEM?

In Table 2 the scores of TabuColor tuned by CEM are
higher than the scores of the manually tuned TabuColor.
For the first four time settings, the differences in score
are significant at a level of 0.05. For a time setting of
60 seconds per position the difference is no longer signif-
icant. Due to this long time setting the average score of
the manually tuned TabuColor is already relatively high
which makes it more difficult to improve upon that.

The results in Table 3 are similar to the results in
Table 2. However, in Table 3 the differences between the
manually tuned TabuColor and the TabuColor tuned by
CEM are smaller. They are only significant for the time
limits 10 seconds and 20 seconds per position.

(p.5)

M.J.W. Tak

TabuColor
TabuColor Mix MC-RWS

tuned manually

Stopping criteria per position during tuning: - 105 nodes 10 s 5 s 10 s 20 s

Time limit per position: 5 s

Avg. score 2,223 2,405 2,374 2,162 2,157 2,165

Standard deviation 466 509 496 457 495 520

Avg. generated nodes 172,280 101,973 75,697 34,572 31,674 38,092

Time limit per position: 10 s

Avg. score 2,342 2,493 2,491 2,293 2,269 2,256

Standard deviation 484 506 484 479 467 502

Avg. generated nodes 337,801 197,461 150,698 71,312 63,371 78,008

Time limit per position: 20 s

Avg. score 2,493 2,598 2,613 2,448 2,417 2,432

Standard deviation 541 481 473 526 509 518

Avg. generated nodes 648,117 359,927 297,853 141,586 131,111 160,832

Time limit per position: 30 s

Avg. score 2,555 2,734 2,706 2,498 2,512 2,533

Standard deviation 521 492 498 533 503 526

Avg. generated nodes 933,778 567,749 442,078 208,657 208,505 249,893

Time limit per position: 60 s

Avg. score 2,750 2,804 2,790 2,651 2,649 2,694

Standard deviation 560 481 488 494 512 505

Avg. generated nodes 1,643,233 1,130,711 848,898 444,679 435,312 514,648

Table 2: Comparison of the tuned strategies with the manually tuned TabuColor when only one tree is constructed.

TabuColor
TabuColor MC-RWS

tuned manually

Stopping criteria per position during tuning: - 1s per move 10 s per move 1 s per move

Time limit per move: 76 ms
(± 5 s per position)

Avg. score 2,588 2,614 2,652 2,361

Standard deviation 551 566 554 578

Avg. generated nodes 319,644 290,187 404,639 133,622

Time limit per move: 153 ms
(± 10 s per position)

Avg. score 2,644 2,723 2,749 2,453

Standard deviation 520 532 544 591

Avg. generated nodes 580,093 547,169 636,911 206,608

Time limit per move: 307 ms
(± 20 s per position)

Avg. score 2,742 2,797 2,856 2,548

Standard deviation 554 522 543 552

Avg. generated nodes 999,169 1,002,271 1,117,380 403,384

Time limit per move: 461 ms
(± 30 s per position)

Avg. score 2,822 2,858 2,876 2,577

Standard deviation 545 497 510 538

Avg. generated nodes 1,441,959 1,401,971 1,551,133 545,323

Time limit per move: 923 ms
(± 60 s per position)

Avg. score 2,880 2,919 2,913 2,714

Standard deviation 515 472 473 542

Avg. generated nodes 2,739,923 2,568,111 2,747,464 1,128,896

Table 3: Comparison of the tuned strategies with the manually tuned TabuColor when per move a tree is constructed.

(p.6)

M.J.W. Tak

Parameter
Tuned

CEM
manually

UCTConstant 0.1 5.96
DeviationConstant 32 67.98
VisitsBeforeExpand 10 13
TopScoreWeight 0.02 0.49
ChanceChosenColor 0.003 0.0007

Table 4: The manually tuned parameters for TabuColor
compared with the parameters found by CEM.

It can be concluded that CEM is indeed able to im-
prove the SameGame program. The improvement by
CEM is highest when one tree per game is constructed.
Less improvement over the manually tuned TabuColor is
gained when per move a tree is constructed. There are
two reasons why there is less improvement in the second
case by CEM than in the first case. The first reason is
that when per move a tree is constructed the scores ob-
tained by manual tuning are quite high making it more
difficult to improve upon that. The second reason is that
per move the time spent in the tree is small. Even on a
time setting of 60 seconds per game, the time per move
is still less than 1 second. This means that, compared
with constructing one tree per game, the importance of
finding a good move quickly increases. Therefore, the re-
sults of the random simulations become more important,
while constructing the tree in an optimal way becomes
less important. This makes the parameters, which de-
termine how to construct the tree, also less important.

Table 4 shows the parameters in the case of con-
structing one tree per game. It is clear that the pa-
rameters found by CEM differ from the manually tuned
parameters.

6.3 Simulation Strategies Compared

The original SameGame program applies the TabuColor
strategy. This section answers the question: Can the
SameGame program be improved by using other simula-
tion strategies and by tuning their parameters?

Table 2 shows that the differences between Tabu-
Color tuned by CEM and the strategy Mix are small.
Therefore, using a mix of strategies does not lead to
any improvement over a tuned TabuColor strategy. Also
MC-RWS does not lead to any improvement, because it
scores even lower than the manually tuned TabuColor.

These results are unexpected, because MC-RWS fo-
cuses on creating several large groups for different colors.
In contrast, TabuColor creates only large groups for one
color. The main reason why TabuColor performs better
is that it is computationally much faster than the other
strategies. In the same amount of time TabuColor can
do more simulations which leads to higher scores. Ta-
ble 2 confirms this, because it shows that for each time
setting TabuColor generates more nodes than the other
simulation strategies do for the same time setting.

Time limit per
position during tuning

Parameter 5 s 10 s 20 s
UCTConstant 5.97 5.81 6.95
DeviationConstant 40.49 50.37 36.58
VisitsBeforeExpand 9 9 8
TopScoreWeight 0.34 0.55 0.33
β as in MC-RWS 16.57 17.14 16.67

Table 5: Parameters found by CEM for MC-RWS.

6.4 The Influence of Time Limits
To reduce the training time of CEM, the time limit of the
games played in the evaluation phase of a sample should
be limited. Therefore, the following question needs to be
answered: What is the influence of the time limit during
tuning on the parameters found by CEM?

Two experiments are conducted. In the first exper-
iment MC-RWS is tuned for constructing one tree for
the whole game. In the second experiment TabuColor is
tuned for constructing a tree per move. These experi-
ments are chosen to be completely different with respect
to the search approach and simulation strategy in order
to investigate whether the influence of the time limit is
independent of the search approach and strategy.

In the first experiment, MC-RWS is tuned with three
different time settings: 5, 10 and 20 seconds per posi-
tion. Table 2 shows that there is not much difference
in performance between the three different tuning set-
tings. Table 5 indicates that the resulting parameters of
the three different settings are close to each other which
explains why the performance is more or less the same.

The second experiment is of the same kind, but now
for each move a tree is constructed and the TabuColor
strategy is used. The results are shown in Table 3. In
this experiment the TabuColor strategy is tuned with
two different time settings: 1 second and 10 seconds per
move. For the case of 1 second, only 10 games are played
per sample and in the case of 10 seconds only 1 game is
played per sample. Less games are played, because with
this setup the training time is already two weeks.

Table 3 shows that the differences between 1 second
and 10 seconds are not significant. The reason is that
the parameters found by CEM are close to each other.
They are shown in Table 6.

Both experiments indicate that the time limit during
tuning has not much influence on the parameters found
by CEM. Therefore, it is possible to use a shorter time
limit in order to reduce training time.

6.5 Reducing the Training Time
Most of the experiments took around one week to com-
plete, due to the long evaluation phase of a sample.
Therefore, this section answers the question: Is it pos-
sible to reduce the training time? It is suggested in [3]
that a large reduction in training time should be possible

(p.7)

M.J.W. Tak

Time limit per
move during tuning

Parameter 1 s 10 s
UCTConstant 4.10 4.31
DeviationConstant 80.99 96.67
VisitsBeforeExpand 14 11
TopScoreWeight 0.34 0.28

Table 6: Parameters found by CEM for TabuColor.

by cutting of samples in their evaluation phase when it
is already clear that they will not become elite samples.
Cutting off a sample means that the remaining positions
in the evaluation phase of the sample are not played and
that the sample is treated as being non-elite.

Procedure to cut off samples

The method to cut off samples works as follows. It keeps
track of the elite samples (El) of the current iteration.
During the evaluation phase of a sample, it is checked
after each played game whether it is likely that the sam-
ple becomes an elite sample. In order to become an elite
sample, the fitness should become at least as high as that
of the worst elite sample. If during the evaluation phase
it is expected that this is no longer possible, the sample
is cut off. The expected fitness of a sample is based on
the scores of the positions that are already played and
on approximated scores for the unplayed positions. Two
different approximation procedures are implemented:

SimpleCut Approximate the score of an unplayed po-
sition with the maximum score for that position ob-
tained in previous samples of the current iteration.

ConfidenceCut Approximate the score of an unplayed
position i according to Equation 6.

scorePositioni = averagePositioni + S i · t (6)

In this equation, averagePositioni represents the
average score on position i and S i is an approxi-
mation of the standard deviation for that position.
Both statistics are based on the scores for position
i obtained in previous samples of the current itera-
tion. With the variable t it can be tuned how easily
samples are cut off. This approximation procedure
has similarities with ProbCut [1], a forward pruning
method used in αβ search.

The expected fitness of the sample is the scores of the
played positions added to the approximated scores for
the unplayed positions. If this sum is below the fitness
of the worst elite sample, the sample is cut off.

The first |El| samples of each iteration are not al-
lowed to be cut off. They are needed to gather infor-
mation about the maximum scores, average scores and
standard deviations. Furthermore, a lower bound on the
unplayed position scores is set to prevent problems when
the first |El| samples are not performing well.

SimpleCut ConfidenceCut
Stopping criteria

105 105 105
per position
during tuning: nodes nodes nodes
t value - 1.0 0.5
Time limit
per position: 5 s
Avg. score 2,422 2,396 2,376
Standard deviation 476 485 495
Avg. generated nodes 112,467 107,788 113,180
Time limit
per position: 10 s
Avg. score 2,510 2,527 2,486
Standard deviation 495 466 501
Avg. generated nodes 218,434 203,710 201,338
Time limit
per position: 20 s
Avg. score 2,626 2,650 2,641
Standard deviation 492 483 470
Avg. generated nodes 419,502 383,340 431,282
Time limit
per position: 30 s
Avg. score 2,735 2,709 2,698
Standard deviation 477 484 463
Avg. generated nodes 625,386 540,521 634,444
Time limit
per position: 60 s
Avg. score 2,835 2,813 2,810
Standard deviation 485 467 476
Avg. generated nodes 1,173,835 1,056,520 1,229,736

Table 7: Performance of the parameters found by CEM
when samples are cut off and only one tree is constructed.

Results

In the experiments parameters for TabuColor are tuned
by CEM where the above cut-off procedure is used. For
ConfidenceCut two different t values are tested: 1.0 and
0.5. In the experiments one tree is constructed for the
whole game, because constructing a tree per move would
take too much time. In the latter case, with a tuning
limit of 1 second per move and playing 10 games in the
evaluation phase the training time is already two weeks.

In Table 7 the performance of the resulting parame-
ters on the test set of 250 positions is shown. There are
no statistically significant differences between the scores
in this table and the scores in Table 2 of the tuned Tabu-
Color that is not using the cut-off procedure. Therefore,
it is possible to cut off samples without harming the per-
formance of the parameters found by CEM.

Figure 1 shows the average score of the elite sam-
ples depending on the total number of games played. It
is clear from this figure that the average score of the
elite samples converges slowest when no cut-off proce-
dure is used. ConfidenceCut with a t equal to 0.5 leads
to the fastest convergence. The reason is that according
to Figure 2 this method cuts off the most positions per
iteration. Apparently the elite samples are not cut off,
because otherwise the average score of the elite samples
would not converge so fast. This again confirms that it

(p.8)

M.J.W. Tak

Figure 1: Average score of the elite samples depending
on the number of games played.

Figure 2: Positions cut off per iteration (in %).

is possible to cut off samples without harming the per-
formance of the resulting parameters.

Figure 2 shows that the overall trend for the cut-off
methods is that the number of positions that are cut off
per iteration decreases. The reason is that the standard
deviations of the parameters tuned by CEM, in the long
run, go to 0. Therefore, within later iterations the gener-
ated samples have their parameter values closer to each
other. This leads to less differences between the position
scores of the samples which makes it more difficult to
determine whether a sample should be cut off or not.

In total 40% of the positions can be cut off with Con-
fidenceCut and a t equal to 0.5. This reduces the training
time of CEM by approximately 40%, because almost all
time is spent in the evaluation phase of the samples.

6.6 Standardized Test Set

This section investigates whether the score of 73,998
found by Schadd et al. [16] on the predefined test set
of 20 positions [12] can be increased by CEM.

Section 6.1 reveals that it is best to construct a tree
per move. However, the score of 73,998 was obtained by
constructing one tree per game. Therefore, to make a
fair comparison between the manually tuned parameters
and the tuned parameters by CEM two experiments are

Position Tuned Tuned Tuned Tuned
manually by CEM manually by CEM

1 2,969 2,919 11 3,013 3,259
2 3,777 3,797 12 3,239 3,245
3 3,425 3,243 13 3,159 3,211
4 3,651 3,687 14 2,923 2,937
5 3,867 4,067 15 3,295 3,343
6 4,115 4,269 16 4,913 5,117
7 2,957 2,949 17 4,687 4,959
8 3,805 4,043 18 4,883 5,151
9 4,735 4,769 19 4,685 4,803
10 3,255 3,245 20 4,999 4,999
Total: 76,352 78,012

Table 8: Performance on the standardized test set [12].

conducted. The first experiment uses parameters tuned
manually by Schadd et al. [16] which are shown in Ta-
ble 4. The second experiment uses parameters found by
CEM, these are shown in the last column of Table 6.

The setup of the experiments is as follows. For each
of the first 30 moves a tree is constructed with a time
limit of 10 seconds per move. The remaining moves are
played according to the best move sequence found till
then. The reason to stop searching after 30 moves is that
the current best move sequence barely changes after the
30th move. Moreover, a meta search [16] of 480 is used.
This means that each position is played 480 times and
the top score found is the final score for that position.
On a cluster with 20 cores, this setup leads to a similar
time setting as used by Schadd et al. [16] of 2 to 3 hours
per position. Furthermore, the same simulation strategy,
TabuColorRandom, is applied.

The results shown in Table 8 confirm two of the con-
clusions drawn earlier. First, CEM is indeed able to
improve the SameGame program, because the tuned pa-
rameters obtain 1,660 points more than the manually
tuned parameters. Second, it again shows that con-
structing a tree per move is better than constructing one
large search tree, because the score of 76,352 is higher
than the original score of 73,998.

To conclude, using CEM and constructing a tree per
move leads to 78,012 points which is even more than the
77,934 points obtained by Cazenave [2].

7 Conclusions
This paper answered the question: How to use CEM in
order to improve the SP-MCTS SameGame program?

SP-MCTS can be used in two ways: (1) constructing
one tree for the whole game and (2) constructing a tree
for each move. Both search approaches in combination
with different simulation strategies were tuned by CEM.
Experiments showed that constructing a tree per move
performs better than constructing a tree per game.

The manually tuned parameters for the TabuColor-
Random strategy were compared with the parameters
found by CEM. For both search approaches the parame-

(p.9)

M.J.W. Tak

ters found by CEM obtained higher scores on the test set
of 250 positions than the manually tuned parameters.

The experiments revealed that the strategies Mix
and MC-RWS tuned by CEM did not improve the
SameGame program. The strategy Mix performed al-
most equally as the TabuColorRandom strategy. MC-
RWS performed even worse. The main reason is that
MC-RWS is computationally more intensive.

A disadvantage of CEM is its long training time.
Two methods were presented to decrease the training
time. The first method is to reduce the time limit of the
games played in the evaluation phase of a sample. The
experiments indicated that this time limit has not much
influence on the parameters found by CEM which makes
it possible to reduce it. The second method is to cut off
samples in their evaluation phase when it is already clear
that they will not become elite samples. Two procedures
were proposed to cut off samples, namely SimpleCut and
ConfidenceCut. The latter performed best and reduces
the training time of CEM by approximately 40%.

In the last experiment it is shown that by construct-
ing a tree for each move and using parameters tuned
by CEM it is possible to obtain a score of 78,012 on the
standardized test set. This is 4,014 points more than the
manually tuned SameGame program that constructs one
tree for the whole game.

Based on all the results in this paper it is clear that
CEM can be used to significantly increase the playing
strength of the SP-MCTS SameGame program.

As future research, other ways to determine the fit-
ness of a sample can be investigated. One suggestion is
to incorporate the maximum score in the fitness. This
could be beneficial, because in a meta search the maxi-
mum score is more important than the average. Another
suggestion is to use a meta search in the evaluation phase
of a sample. This increases the training time, but that
can be limited with the ConfidenceCut procedure.

References
[1] Buro, M. (1995). Probcut: An effective selective ex-

tension of the alpha-beta algorithm. ICCA Journal,
Vol. 18, No. 2, pp. 71–76.

[2] Cazenave, T. (2009). Nested Monte-Carlo search. IJ-
CAI’09, pp. 456–461, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[3] Chaslot, G.M.J-B., Winands, M.H.M., Szita, I., and
Herik, H.J. van den (2008a). Cross-Entropy for
Monte-Carlo Tree Search. ICGA Journal, Vol. 31,
No. 3, pp. 145–156.

[4] Chaslot, G.M.J-B., Winands, M.H.M., Uiterwijk,
J.W.H.M., Herik, H.J. van den, and Bouzy, B.
(2008b). Progressive strategies for Monte-Carlo Tree
Search. New Mathematics and Natural Computation,
Vol. 4, No. 3, pp. 343–357.

[5] Costa, A., Jones, O.D., and Kroese, D.P. (2007). Con-
vergence properties of the Cross-Entropy method for
discrete optimization. Operations Research Letters,
Vol. 35, No. 5, pp. 573–580.

[6] Coulom, R. (2006). Efficient selectivity and backup
operators in Monte-Carlo Tree Search. CG2006 (eds.
H.J. van den Herik, P. Ciancarini, and H.H.L.M.
Donkers), Vol. 4630 of LNCS, pp. 72–83, Springer-
Verlag, Heidelberg, Germany.

[7] Boer, P.-T. de, Kroese, D.P., Mannor, S., and Rubin-
stein, R.Y. (2005). A tutorial on the Cross-Entropy
method. Annals of Operations Research, Vol. 134,
No. 1, pp. 19–67.

[8] Edelkamp, S., Kissmann, P., Sulewski, D., and
Messerschmidt, H. (2010). Finding the needle in the
haystack with heuristically guided swarm tree search.
Multikonferenz Wirtschaftsinformatik 2010 (eds. M.
Schumann, L.M. Kolbe, M.H. Breitner, and A.
Frerichs), pp. 2295–2308, Universitätsverlag Göttin-
gen, Göttingen, Germany.

[9] Kocsis, L. and Szepesvári, C. (2006). Bandit
based Monte-Carlo planning. Proceedings of the
EMCL 2006 (eds. J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou), Vol. 4212 of LNCS, pp. 282–293,
Springer-Verlag, Heidelberg, Germany.

[10] Kroese, D.P., Rubinstein, R.Y., and Porotsky, S.
(2006). The Cross-Entropy method for continuous
multiextremal optimization. Methodology and Com-
puting in Applied Probability, Vol. 8, No. 3, pp. 383–
407.

[11] Mannor, S., Peleg, D., and Rubinstein, R. (2005). The
Cross Entropy method for classification. ICML ’05:
Proceedings of the 22nd international conference on
Machine learning, pp. 561–568, ACM, New York, NY.

[12] Misch, S. and Schulze, A. (2007). Js-games.de.
www.js-games.de/eng/games/samegame.

[13] Moribe, K. (1985). Chain shot! Gekkan ASCII. In
Japanese.

[14] Mühlenbein, H. (1997). The equation for response
to selection and its use for prediction. Evolutionary
Computation, Vol. 5, No. 3, pp. 303–346.

[15] Rubinstein, R.Y. (1999). The Cross-Entropy
method for combinatorial and continuous optimiza-
tion. Methodology and Computing in Applied Prob-
ability, Vol. 1, No. 2, pp. 127–190.

[16] Schadd, M.P.D., Winands, M.H.M., Herik, H.J.
van den, Chaslot, G.M.J-B., and Uiterwijk, J.W.H.M.
(2008). Single-Player Monte-Carlo Tree Search.
CG2008 (eds. H.J. van den Herik, X. Xu, Z. Ma,
and M.H.M. Winands), Vol. 5131 of LNCS, pp. 1–12,
Springer.

[17] Takes, F.W. and Kosters, W.A. (2009). Solving
SameGame and its chessboard variant. BNAIC
2009 (eds. T. Calders, K. Tuyls, and M. Pechenizkiy),
pp. 249–256, Eindhoven, The Netherlands.

(p.10)

