
Hierarchical Opponent Models for Real-Time Strategy Games

F.C. Schadd

June 13, 2007

Abstract
Real-time strategy games compose a large part of
modern game industry. Simulating human behav-
ior is a crucial aspect for the artificial opponents
of these games, in order to provide a good experi-
ence for the user. To achieve this, the AI should
ideally be able to recognize the strategy of the hu-
man player and adapt to it. This concept is known
as opponent modeling. This paper describes an
approach of opponent modeling using hierarchical
structured models. As classifiers, two different ap-
proaches have been used for the different hierarchi-
cal levels, in order to test the effectiveness of this
approach. The first classifier uses fuzzy models
whereas the second classifier is a modification of
the concept of discounted rewards from game the-
ory. It is observed that the fuzzy classifier shows a
stable convergence to a correct classification with
high confidence rating. The experiments regarding
the discounted reward approach revealed, that for
some sub-models this approach showed a similar
well conversion as the fuzzy classifier. However,
for other sub-models only mediocre results were
achieved with a late and unstable convergence. We
conclude that this approach is suitable for real-time
strategy games and can be reliable for each sub-
model with further research.

1 Introduction
Computer games are a popular branch of software develop-
ment. One part of this branch consists of real-time strategy
(RTS) games. In these kind of games, the player needs to
construct a base and build units for the purpose of destroying
the opponent. The other player can be also human or an AI.
The goal of the game is to destroy the base of the opponent.
All units have strengths and weaknesses, so it is crucial to
choose the right units in order to have better chances of win-
ning. Since the chosen type of units is very important, we can
define a strategy as the chosen type of built units combined
with how the player operates these units.
An important factor that influences the choice of strategy is
the strategy of the opponent. If one knows what types of
units the opponent has, then typically one would choose to

build units that are strong versus those from the opponent. A
method of representing information of the enemy is known
as opponent modeling. A model of the opponent is a general-
ization of his strategy. While strategies can have many small
variances, they can be generalized into a small amount of rep-
resentative strategies, which are referred to as player models.
These player models are constructed and matched against the
in-game data of the opponent. The model that has the largest
resemblance of the behavior of the opponent is chosen as the
actual model of the opponent. The AI can now develop a
counter-strategy based on the confidence levels of the various
player models.
A problem with creating opponent models in RTS games is
the amount of available information. In classical board games
the entire board is visible to every player. Thus a player can
always observe the actions of his opponent and predict his
strategy. RTS games, however, only provide imperfect in-
formation [2] to the player. Though it is common to have
complete knowledge about the structure of the battlefield, a
player can only observe that battlefield within a certain vis-
ibility range of its own units. If the units of the opponent
are outside this range, then these units are not visible to the
player. Hence constructing opponent models in an imperfect
information RTS game is a difficult task.
This paper examines the following research question:

To what extent can opponent modeling be applied in order to
predict player strategies for modern real-time strategy

games with imperfect information?

The outline of this paper is as follows. In section 2 the prin-
ciple of hierarchical opponent models and the applied classi-
fiers for the different hierarchical levels will explained. Sec-
tion 3 presents the performed experiments and their results.
Section 4 discusses the strengths and weaknesses of the cho-
sen approach and possible improvements. The conclusions
are presented in section 5.

1.1 Background
Opponent modeling can be seen as a classification problem,
where data that is collected during the game is classified as
one of the available opponent models. Therefore it is possible
to apply standard machine-learning techniques such as Neural
Networks. However, a limiting condition is the fact that these
calculations have to be performed in real-time, while many
other computations, like the rendering of the game graphics,



F.C. Schadd Hierarchical Opponent Models for Real-Time Strategy Games

have to be performed simultaniously. This limits the amount
of available computing resources, which is why many ma-
chine learning techniques are not suitable for this problem.
A basic issue with opponent modeling is the structure of the
models. An initial idea of a structuring would be enlisting all
the possible models and calculate all the confidence levels.
However, a hierarchical way of ordering [4] is also possible.
This approach is used within this research and details about
this will be explained later on.
Another way of matching in-game data to models is by a pref-
erence based approach [1]. Such an approach identifies the
model of a player by analyzing the player’s choices in impor-
tant game states, which can yield a lot of information about
the opponent. However, in a real-time strategy game it is hard
to define a state since the game field can be different each time
the game is played. Also, due to the visibility limitations in
RTS games, it is possible, that the reaction of a player in a
certain state cannot be observed.
As experimental game, the game Total Annihilation: Spring
has been chosen due to several reasons. Firstly since it
contains the key elements of every RTS game: base con-
struction with base defenses, land, sea, air units and super
weapons. Secondly it has been chosen since it is completely
open source, which makes implementing additional features
very convenient. A screenshot displaying a typical game situ-
ation is shown in figure 1. In order to collect typical in-game
information, an AI basis was needed. For this purpose, the
’AAI’-AI [6] has been used.

Figure 1: Screenshot of the RTS game Total Annihilation:
Spring.

2 Approach
This section explains the applied concept of hierarchical op-
ponent models and the specific implementations. In section
2.1 the general concept of hierarchical opponent models will
be explained. Section 2.2 describes the used approach of the

top level classifier and section 2.3 explains the applied bottom
level classifier.

2.1 General Concept
The first decision that needed to be made was how to struc-
ture the models. Here a hierarchical ordering [4] was cho-
sen, as this allowed the division of the general classification
problem into sub-problems. Additionally it allows the usage
of various and more appropriate classification methods in the
different hierarchical levels.
In order to define the models of the opponent one must first
define what a strategy is. An appropriate definition of a strat-
egy for RTS games is: ‘A strategy is the combination of the
general play style of the player combined with his choice of
built units’. With this definition in mind, it is logical to place
the general play styles at the top of the hierarchy since this is
the most crucial attitude of an opponent. For example, if one
knows that an opponent has shown aggressive behavior, then
it is logical to improve ones own base defenses as it relatively
unimportant with which units exactly he will attack. The type
of units, that the opponent uses in order to attack will only in-
fluence the type of defenses which is to be constructed, but
will not influence the choice of constructing defenses itself.
The general play styles here are ’aggressive’ and ’defensive’,
where each style has its own subcategories. Figure 2 shows
the chosen hierarchy of the player models. We will now pro-
vide a short description for each of the different considered
strategies:

Figure 2: Hierarchy of the considered player models

• Aggressive→Robots - The opponent will attack early
and often using robots, also referred to as K-Bots

• Aggressive→Tanks - The opponent will attack early and
often using tanks

• Aggressive→Air - The opponent will attack early and
often using airplanes

(v. June 13, 2007, p.2)



Hierarchical Opponent Models for Real-Time Strategy Games F.C. Schadd

• Aggressive→Sea - The opponent will attack early and
often using ships

• Defensive→Super weapon - The opponent will attempt
to construct a super weapon (such as an atomic bomb)

• Defensive→Tech - The opponent will attempt to reach
a high technology level in order to have quick access to
superior units

• Defensive→Bunker - The opponent constructs a massive
wall of defensive towers around his base so that he has
time to construct an army

2.2 Top Level Classifier
A crucial aspect when choosing a classification method here
is speed. The AI must be able to perform the classification
in real-time leaving enough system resources for other sub-
systems. A fast way of performing classifications is using
fuzzy models [7], which is the approach that has been used
during this research for the top level classifier. Fuzzy mod-
els create the models of the several classes based on a sin-
gle numerical feature. The choice of the numerical feature is
crucial. In general, one should be able to define the several
classes using this feature.

Figure 3: An example of a fuzzy model with 2 classes

Figure 3 shows an example of a fuzzy model. The gen-
eral concept of the classes ’aggressive’ and ’defensive’ are
how often an opponent attacks. An aggressive player would
attack early and often, in order to put pressure on the oppo-
nent and disrupt him. A defensive player on the other hand
would attack in a later stage of the game, concentrating his
energies into one single attack. Hence a defensive player will
rarely initiate an attack. As a result, a feature representing
the frequency of attacks is an appropriate choice. An initial
idea of such a feature would be the average amount of at-
tacks per minute. However, using this feature would result
into an update of the confidence rates only once a minute. A
better feature which has been chosen was the relative amount
of game time, that the opponent spent attacking, which can
be updated constantly. An aggressive player will spend a
large part of game time attacking. A defensive player on the
other hand uses most time preparing an army and only needs
a small amount of time for the actual attack.

For our research, we define an attack by the loss of ones own
units. Usually an attack should be defined as a movement of
an enemy group of units towards the own base. Such a de-
tection, however, would require perfect information, which is
not available. Instead the purpose of an attack has been ap-
plied as a definition, which is the destruction of enemy units.
Hence, when a loss of units is detected, then the time span
around this loss can be viewed as an attack. This is a logical
choice of definition, easy to implement and moreover is suit-
able in imperfect information environments where data about
the own units is always available. Therefor this approach to
detect an attack was chosen.
The implemented AI registers all visible units each five sec-
onds. The algorithm scans a time frame for lost units and if
the final amount is above a certain threshold, then each dis-
crete time moment inside the analyzed time frame is labeled
as a moment in time, which the opponent spend attacking.
This time window is shifted forward through the observation
until each discrete time moment is labeled. The sensitivities

Figure 4: Constructed Player Models from 100 Example
Games per Model

of the threshold and the size of the time frame are discussed
in section 3. In the end, the percentage of time moments that
are labeled as an attack moment is used to construct the mod-
els. Figure 4 shows the constructed models using data of 100
recorded matches against an aggressive and defensive player
each.

2.3 Bottom Level Classifier

For the lower-level classifier, it would be necessary that it
somehow emphasizes recent events more than past ones,
since if recent observations change with respect to past ones,
then this could mean a change in strategy which needs to be
accounted for. Therefore a modification of the principle of
discounted rewards [3] has been applied.

(v. June 13, 2007, p.3)



F.C. Schadd Hierarchical Opponent Models for Real-Time Strategy Games

Theoretical Background
The concept of discounted rewards origins from the princi-
ple of repeated matrix-games [3]. There, a player can make a
choice between several actions and depending on the choice
of the opponent a reward is received. Choosing strategies and
evaluating if a deviation from the original strategy is needed
are important calculations in this field. A strategy in matrix
games can be a simple sequence of actions, which is repeat-
edly played. It can also include certain rules for cases that
take the actions of the enemy into consideration. In order to
determine whether a deviation from the original strategy is
feasible, the expected rewards of the game with and without
deviation are calculated. Here the discount factor is applied,
since a player would prefer receiving a reward early in time
rather than in the distant future. Hence, rewards in the future
are valued less. This valuation is expressed by multiplying
the future reward with the discount factor. The more distant
the reward is, the more often it is multiplied with the discount
factor. If δ is the discount factor and πt is the reward re-
ceived at time t, then the expected reward can be computed
as follows[3]:

(1− δ) ∗
∞∑

i=1

πi ∗ δi−1 (1)

When the two expected rewards are known then according to
those rewards it is decided whether the player should deviate
from his original strategy.

Applied Modification
For opponent models it is not necessary to calculate some
form of expected reward, but a confidence value. Hence not
the rewards when using different strategies are calculated, but
their confidence values. Basically, this calculation iterates
through certain events in time and multiplies a value with
the discount factor. In classical matrix games such an event
would be one move of both players. Since RTS games do not
operate in moves, the term of an event must be redefined. For
aggressive opponents an attack would be an appropriate event
since the player can then observe the army of the opponent.
For defensive opponents, however, this would be an inappro-
priate choice since defensive players rarely attack and hence
not many observations can be made. Additionally, waiting for
an attack of a defensive player only to find out what strategy
he uses, is most likely a fatal decision, since that particular
attack will defeat the AI. Therefore an attack event alone is
not sufficient, which is why some new event must be added.
Naturally, if one discovers that the opponent is playing defen-
sively, then it is logical to scout the actions of the opponent.
This action is also implemented by the modified AI, so that
we can choose a scout-event as additional event.
Even though we are not computing rewards in the classical
matrix games context, one should not discard the idea of a
reward. Whenever a event is registered and new confidence
values are computed, it is necessary to detect what strategy
the opponent seems to be using at this time. That strategy

should be rewarded with an increase of confidence rating. If
δ is the discount factor, ψs,t the belief that the opponent uses
strategy s at event t, ranging between 0 and 1, π the total re-
ward added at each event and i the most recent event, then the
confidence cs that the opponent uses strategy s is computed
as follows:

cs =
0∑

t=i

ψs,t ∗ π ∗ δi−t (2)

The parameter ψs,t is acquired by inspecting all visible
units and structures during event t. Each unit or structure
has a value representing a tendency to a certain strategy. For
example does a super weapon-building have a high tendency
rating towards the defensive-super-weapon strategy, while
a small defensive tower shows a small tendency towards an
opponent using the defensive bunkering strategy. When all
tendency values are collected, they are normalized to 1 so
that the confidence reward can be distributed respectively.
In order to cope with the start phase of the game, where
no events are registered yet, a default event is added at the
beginning of the game, giving each strategy the same belief.
This should represent the lack of information at this stage
of the game such that each strategy has the same confidence
rating.
Attack events are registered the same way as they are by
the approach described in section 2.2. However, it remains
arguable how to detect a scout event. It is possible to define
a scout event by simply detecting sudden visibility gains.
This would allow the use of data which is not collected by
scout units, but also by other units that achieve visibility on
to enemy structures. A more natural way would be to let the
AI trigger such an event when it sends out a scout unit. That
way, it would not be necessary to design an algorithm that
detects a scout action of the own AI. For the duration of the
research, the latter approach has been chosen.

3 Experiments
This section will cover the performed experiments with the
discussed approach. Section 3.1 will cover a brief sensitivity
analysis in order to find reasonable parameters for the top-
level classifier. Section 3.2 contains the evaluation of a broad
experiment with the top-level classifier using the best found
parameters in Section 3.1 and Section 3.3 will cover all the
experiments using the bottom-level classifier.

3.1 Sensitivity Analysis
As discussed in section 2.2, there are two crucial parameters
influencing the attack detection algorithm. The first parame-
ter is the time window size which is shifted through the time
frames. The second parameter is the unit threshold, which
is a percentage value. If the percentage of lost units in the
considered time frame is above this threshold, then each time

(v. June 13, 2007, p.4)



Hierarchical Opponent Models for Real-Time Strategy Games F.C. Schadd

frame inside the analyzed time window is considered an at-
tack frame. For the time window, the sizes of 20, 30 and 40
seconds have been considered. For the unit threshold the per-
centages with value 10% and 15% were tested. The fuzzy
models were constructed each match using the same parame-
ters.
For each possible configuration, the AI was matched 10 times
against an aggressively playing AI and 10 times against a de-
fensive playing AI. As opponent representing both the ag-
gressive and defensive player, the ’NTAI’-AI [5] was chosen,
since it very simple to implement one’s own strategy into this
AI. This makes this AI ideal to test out this opponent mod-
eling approach. Hence, for the matches where an aggressive
opponent is required, the ’NTAI’-AI was configured with an
aggressive strategy. Similarly, for the matches where a de-
fensive player is represented, the AI was configured with a
defensive strategy.
For each match played, the aggressive and defensive confi-
dence values were recorded at each time point. After the
match, the average confidence values of the entire match were
calculated. However due to a weakness of the approach,
which will be discussed in section 4, the information of the
first 5 minutes will not be taken into account. This is due to
the fact that in the first minutes of the game it is barely possi-
ble to perform any action that would reveal one’s own tactic
to the opposing player. This influences the test results nega-
tively.
Table 1 shows the aggressive confidence values of matches
against against an aggressive opponent and table 2 shows the
defensive confidence values of matches against an defensive
opponent.

Time Window
Threshold 20 seconds 30 seconds 40 seconds
10% 45.10261 76.27533 57.83488
15% 33.18209 52.74819 53.14834

Table 1: Average aggressive confidence values against an ag-
gressive opponent

Time Window
Threshold 20 seconds 30 seconds 40 seconds
10% 94,92166 99,2271 93,64321
15% 99,99083 99,57988 96,22472

Table 2: Average defensive confidence values against an de-
fensive opponent

As can be seen from table 2 all configurations of the fuzzy
classifier perform very well when recognizing defensive play-
ers. However, their performance drastically differs when rec-
ognizing aggressive players. Only one configuration showed
an acceptable performance when recognizing aggressive op-

ponents, which had a units-lost threshold of 10% and a time
window of 30 seconds. Hence this configuration was chosen
for further analysis for the top level classifier.

3.2 Top Level Experiment
In this section, a similar test as in section 3.1 is performed,
however only the resulting best configuration from section
3.1 is used. The AI is matched 50 times against an aggres-
sive and 50 times against a defensive AI. Like in section
3.1, the ’NTAI’-AI was used to oppose the AI. Throughout
each match, the computed aggressive and defensive confi-
dence values have been recorded at each time. In order to
analyze the development of the confidences during the game,
the average confidence values of all test games over time have
been computed, displayed in figure 5 for an aggressive oppo-
nent.

Figure 5: Average Confidence Value over Time against an
aggressive opponent

As can be observed, the average confidence value is very
low in the beginning of the match. This is due to the fact, that
the enemy is hardly able to attack at this stage of the fight,
since he needs to construct a base first. Therefor one should
disregard the confidence values of the beginning of the game.
After roughly 7 minutes of game time, the average confidence
value drastically increases until it stabilizes at a confidence
value of approximately 85%.
A similar, but reversed effect can be observed when examin-
ing average confidence value over time of the matches against
a defensive opponent, displayed in figure 6. During the initial
game stage, the confidence values are close to 100%. This
is because the enemy does not attack in the beginning of
the game. Therefore the fuzzy models will respond with the
maximum defensive confidence value during this game stage.
However you can see that after 6 minutes of game time, the
average confidence value descends until it stabilizes between
96% and 97%.
From this test we can conclude that, given sufficient game

(v. June 13, 2007, p.5)



F.C. Schadd Hierarchical Opponent Models for Real-Time Strategy Games

time, the confidence values will stabilize at proper values.

Figure 6: Average Confidence Value over Time against an
defensive opponent

3.3 Bottom Level Experiment
For this experiment, the ’NTAI’-AI has been configured such
that it resembles each of the specific aggressive player mod-
els. However, since the NTAI was unable to play the defen-
sive strategies up to the desired standard, a human opponent
was chosen to play against the ’AAI’-AI using the defensive
strategies. For each player model, 10 experimental matches
have been performed, during which at each time step all the
confidence values have been recorded. A correct classifica-
tion of the top-level classifier is assumed for this experiment.
For the duration of the experiment, the parameters δ = 20%
and π = 0.8 have been chosen. The experimentally deter-
mined unit tendency values used to construct the parameter
ψs,t in formula 2 are presented in appendix A. As you can
see in appendix A, the belief values of the aggressive sub-
models barely differ. Thus it is sufficient to only test a part of
all the sub-models to see, whether this approach can classify
the aggressive sub-models. The defensive sub-models how-
ever each require testing. Figure 7 shows the average k-bot
confidence over time of an opponent using the aggressive k-
bot strategy as well as the average tank confidence over time
of an opponent using the aggressive tank strategy.

As can be observed do both confidence values approxi-
mate a value near 90% after sufficient time. However, it is
noticable that the average confidence of the aggressive tank-
strategy increases more slowly and at a later stage than the
average confidence of the aggressive kbot-strategy. This is
due to the fact that tanks cost more ressources to produce.
Because of that the opponent needs more time before he can
attack.
For the defensive player models, each model is analyzed sep-
arately. Figure 8 displays the development of the different
confidence values against an opponent using the defensive
bunker-strategy. Here we see that the bunker confidence rat-
ing increases rapidly after approximately 5 minutes of game-

Figure 7: Average Confidence Value over Time for the ag-
gressive sub-models.

time. For the majority of the game the confidence rating sta-
bilizes at a value of roughly 65%. The instabilities occuring
after 35 minutes of game-time indicate that at this time period
the AI discovers structures that are also used by an opponent
using the tech-strategy. However the value stabilizes again at
approximately 40 minutes of game time.

Figure 8: Average Confidence Value over Time for an oppo-
nent using the defensive bunker-strategy.

Figure 9 shows the development of the different confi-
dence values of the test games against an opponent, that uses
the tech-strategy. Here, the confidence value of the bunker-
strategy does dominate during the majority of the game with
a value of approximately 65%, whereas the confidence value
of the tech strategy remains mostly at 20%. This can be ex-
plained by two circumstances. The first is that the AI is un-
able to penetrate the base defenses of its opponent with its
scout-units in order to observe the enemy base, which results
in only defensive facilities being observed. The second is
that the high level units and structures that define the tech-
strategy can only be constructed in later stages of the game.
This means that in the earlier stages only structures that be-

(v. June 13, 2007, p.6)



Hierarchical Opponent Models for Real-Time Strategy Games F.C. Schadd

Figure 9: Average Confidence Value over Time for an oppo-
nent using the defensive tech-strategy.

long to a different strategy can be observed. You can see that
after approximately 25 minutes of game time, the confidence
value of the tech-strategy and the bunker-strategy becomy
unstable. Moreover does the tech-strategy confidence value
slowly start to increase. Likewise does the bunker-strategy
confidence value drop at the same time. This means that at
this stage of the game the AI is able to observe structures
that clearly belong to a player using the tech-strategy, which
results in the slow ascendance of the tech-confidence value.
Also we can observe that the game ends with a high, but un-
stable tech-confidence value of roughly 65%.
Figure 10 shows the confidence development of the last ex-
periment, which is against an opponent using the defensive
Super-Weapon-strategy.

Figure 10: Average Confidence Value over Time for an oppo-
nent using the defensive Super-Weapon-strategy.

A similar development as in figure 9 can be observed
in figure 10. Here, the bunker-strategy confidence value is
also high during the first stages of the game, which is due
to the same reasons that were explained earlier. At roughly
25 minutes of game-time, the super-weapon confidence value

starts to increase. However, after a peak at approximately
40 minutes of game-time the confidence value starts to de-
scend until it is roughly equal to the confidence value of the
bunker-strategy. This can be explained by the dynamics of
the discounted reward-approach. If at this stage of the game
only defensive structures are observed, then it is logical that
the bunker-strategy confidence value starts to increase while
the super-weapon confidence value drops. However, we can
observe that the experimental games ended with an average
super-weapon confidence rating of approximately 75%.
We can conclude from the performed experiments, that the
tested approach performs well on the aggressive sub-models,
but rather mediocre on certain defensive sub-models. The fact
that the opponent is classified correctly at the end of the game
is not sufficient for an opponent modeling approach, since it
would not allow the AI to react upon the classification. A
correct classification must occur in earlier game stages, such
that there is enough time for the AI to develop and execute a
counter strategy.

4 Discussion
We have seen good results when testing the fuzzy models for
the top level classifier. However there are also weaknesses, of
which some got discovered during the experiments. For one,
the fuzzy classifier is unable to cope with the lack of infor-
mation during the beginning of the game, which resulted in
a 0% confidence value for an aggressive player and a 100%
confidence value for a defensive player during the beginning
of each game. Secondly, the way how attacks are registered
has a theoretical weakness, that can cause false positives as
well as false negatives. If for example the opponent would
attack and the AI would apprehend the attack without loosing
many units or structures, then this attack might not be classi-
fied as an attack since the amount of lost units did not reach
the threshold of lost units. As example for the false positives,
we have the AI itself that attacks. If the AI looses too many
units during an attack, then this time period may be classi-
fied as an attack of the opponent, even though he was only
defending his base during this time period.
As further improvements for the fuzzy classifier, we suggest
to apply some kind of system that copes with the lack of in-
formation during the beginning of a match. Additionally, the
attack detection algorithm needs to be changed, such that it
registers attacks as a group movement of enemy units towards
the enemy base instead of a loss of units.
The evaluation of the experimental games testing the low-
level classifier revealed that for certain sub-models the ap-
proach worked well. For other sub-models a misclassifica-
tion during the majority of the match can be observed. Un-
like the top-level classifier, no sensitivity analysis regarding
the unit tendency values or the parameters δ and π have been
performed. Therefor, it is possible that better results can be
achieved using a different set of parameters. As another fu-

(v. June 13, 2007, p.7)



F.C. Schadd Hierarchical Opponent Models for Real-Time Strategy Games

ture improvement we suggest, that the classification of the
top-level classifier should influence the scouting behavior of
the AI. For both the aggressive and defensive opponent the
AI, in its current status, applies the same scouting behavior.
However it would be necessary that the AI would scout more
aggressively if a defensive opponent is recognized. With a
more aggressive scouting behavior it would be possible to
classify the defensive sub-models correctly at earlier stages
of the game. A more aggressive scouting behavior, however,
does not guarantee that during each scout event every crucial
structure can be observed, since scout units can always be de-
stroyed before reaching the center of the enemy base. This
means, that the essential strategy defining structures can only
be observed during a part of the scout events, which is the rea-
son for the instability of the confidence values at later stages
of the game. As future improvement we suggest to emphasize
those scout events during which the essential structures are
observed, so that the confidence value of the correct model
does not descend rapidly after a few failed scouting attempts.

5 Conclusion
This paper concludes that hierarchical opponent model can be
applied to RTS-games. It is observed during the experiments
that, after sufficient game-time, the fuzzy classifier correctly
classifies the opponent with a high and stable confidence rat-
ing. Regarding the modified approach of discounted rewards,
that is used as low-level classifier, different results are ob-
served for each sub-model. For all the aggressive sub-models
and one defensive sub-model an early and stable convergence
towards a correct classification with high confidence rating
can be observed. The remaining sub-models however only
converge at late game-stages to a correct classification in an
unstable way, while during the game-time before the conver-
gence the opponent is classified wrongly. After all, the used
approach for the bottom level classifier did show potential and
can be developed into a more reliable approach with more re-
search.

6 Acknowledgments
We would like to thank Pieter Spronck, Jos Uiterwijk and
Sander Bakkes for their support during this research. We
would also like to thank Sander Bakkes for providing his
modification of the ’AAI’-AI on which we based our re-
search. Additionally we would like to thank Marcel Ludwig
and Alexander Miesen for being the human opponent for half
of experimental games testing the defensive sub-models.

References
[1] Donkers, J. and Spronck, P. (2006). Preference-based

player modeling. AI Programming Wisdom 3 (ed.
S. Rabin), Chapter 8.4, pp. 647–659. Charles River
Media, 25 Thomson Place, Boston, Massachusetts
02210.

[2] Gibbons, R. (1992a). A Primer in Game Theory,
Chapter 2.3B. Pearson Education Limited, Eding-
burgh Gate, Harlow, Essex CM20 2JE, England.

[3] Gibbons, R. (1992b). A Primer in Game Theory,
Chapter 2. Pearson Education Limited, Edingburgh
Gate, Harlow, Essex CM20 2JE, England.

[4] Houlete, R. (2004). Player modeling for adaptive
games. AI Programming Wisdom 2 (ed. S. Rabin),
Chapter 10.1, pp. 557–566. Charles River Media, 10
Downer Avenue, Hingham, Massachusetts 02043.

[5] Nowell, T. (2007). Ai:ntai. Creator of the game AI
’NTAI’, http://spring.clan-sy.com/wiki/AI:NTAI.

[6] Seizinger, A. (2006). Ai:aai. Creator of the game AI
’AAI’, http://spring.clan-sy.com/wiki/AI:AAI.

[7] Zarozinski, M. (2002). An open-fuzzy logic library.
AI Programming Wisdom (ed. S. Rabin), Chapter
2.8, pp. 90–101. Charles River Media, 20 Downer
Avenue, Suite 3, Hingham, Massachusetts 02043.

(v. June 13, 2007, p.8)



Hierarchical Opponent Models for Real-Time Strategy Games F.C. Schadd

A Unit Tendency Values

Model Tendency Model Tendency
Unit Name K-Bot Tank Air Ship Unit Name K-Bot Tank Air Ship
Eagle 1 Flea 1
Brawler 1 Fark 1
Liche 1 Zipper 1
Dragonfly 1 Zeus 1
Freedom Fighter 1 Maverick 1
Hawk 1 Fido 1
Banshee 1 Sharpshooter 1
Lancet 1 Fatboy 1
Peeper 1 Archangel 1
Phoenix 1 Invader 1
Sabre 1 Scarab 1
Tsunami 1 Eraser 1
Albatross 1 Bantha 1
Tornado 1 Razorback 1
Thunder 1 Marauder 1 1
Blade 1 Vanguard 1
Stiletto 1 Podger 1
Archer 1 Jeffy 1
Millenium 1 Flash 1
Conqueror 1 Pincer 1 1
Skeeter 1 Stumpy 1
Crusader 1 Shellshocker 1
Epoch 1 Janus 1
Decade 1 Samson 1
Lurker 1 Triton 1 1
Piranha 1 Panther 1
Serpent 1 Bulldog 1
Swatter 1 1 Gremlin 1
Pelican 1 1 Luger 1
Anaconda 1 1 Merl 1
Wombat 1 1 Penetrator 1
Bear 1 1 Phalanx 1
Skimmer 1 1 Seer 1
Peewee 1 Hammer 1
Rocko 1 Warrior 1
Jethro 1

Table 3: Unit tendency values for the aggressive sub-models

(v. June 13, 2007, p.9)



F.C. Schadd Hierarchical Opponent Models for Real-Time Strategy Games

Model Tendency
Structure Name Tech Super-Weapon Bunker
Retaliator 100
Big Bertha 100
Vulcan Canon 100
Experimental Gantry 150
Bantha 100
Vanguard 100
Marauder 100
Razorback 100
Adv. Aircraft Plant 25
Adv. Vehicle Plant 25
Adv. K-bot Lab 25
Adv. Shipyard 25
Nano Turret 5
Dragon’s Eye 1
Dragon’s Teeth 1
Dragon’s Claw 1
Light Laser Tower 1
Beamer 1
Sentinel 1
Guardian 1
Defender 1
Pack0 1
Chainsaw 1
Keeper 1
Ambusher 1
Pit Bull 1
Annihilator 1
Flakker NS 1
Mercury 1
Protector 1

Table 4: Unit tendency values for the defensive sub-models

(v. June 13, 2007, p.10)


