
Monte Carlo Tree Search in a Modern Board Game Framework

G.J.B. Roelofs

Januari 25, 2012

Abstract

This article describes the abstraction required
for a framework capable of playing multiple
complex modern board games, and provides a
proof-of-concept implementation of Settlers of
Catan within said framework. Monte Carlo Tree
Search (MCTS) is chosen as the basis for our
framework, because of its lack of reliance on
domain knowledge. The domain implementa-
tion is validated, and used to experiment on
two proposed structure changes to MCTS for
non-deterministic games with a high branching
factor. The first technique proposed is a sim-
plification of the Chance Node model as seen
in Expectimax. The second technique outlines
the introduction of move groups within the tree
structure of MCTS to significantly reduce its
branching factor. We conclude that both tech-
niques are equivalent to MCTS in terms of play-
ing strength when a sufficient amount of simu-
lations can be guaranteed.

1 Introduction
Traditionally, the focus of games research has been on de-
terministic games with perfect information. However, as
the field progressed and games have become increasingly
complex, this focus has started to shift towards games
with different features, such as non-determinism and im-
perfect information.

Another avenue of research that has seen recent activ-
ity is General Game Playing (GGP). The goal of GGP is
to construct an algorithm which is capable of expertly
playing previously unknown games of a wide variety,
without being given any domain knowledge in advance.
This is in contrast with traditional game play algorithms,
which are designed to play one particular game well.

To further research in GGP, the Game Description
Language (GDL) was created, a language in which to de-
scribe different kinds of deterministic, perfect information
games. [12]
Effort was recently made to extend the GDL to cope with
imperfect, non-deterministic games. [16] However, so far
there have been no successful implementations of complex
modern board games within GDL.

By analysing the set of actions available in many
board games, abstract actions can be defined which are
powerful enough to completely describe each domain. As
such we propose a framework which implements these ab-
stract actions and the underlying logic to support them.
By adhering the domain implementation to this abstrac-
tion layer, experiments are no longer restricted to a sin-
gular domain, further bridging the gap between the cur-

rent GDL specification and custom, domain-specific im-
plementations. One of the challenges faced will be to
provide an implementation of this abstraction layer that
is extensive enough to describe multiple games, but effi-
cient enough to still use as a basis for experimentation.

Monte-Carlo Tree Search (MCTS) [5, 10] has been
shown to be a strong search algorithm for cases where
little to no domain knowledge is known [1]. As the frame-
work will eventually be used to implement different game
domains, MCTS is chosen as the primary search tech-
nique to be explored.

A prime example of a modern board game, is the pop-
ular Settlers of Catan. Due to its complexity, it is
ideally suited to prove the validity of the framework and
as such, was chosen as the domain for this article.

Research has already been done in comparing MCTS
against traditional search techniques and rule-based
heuristic play for Settlers of Catan [15]. The goal
of this article is to investigate the application of MCTS
in our framework and propose two novel general-purpose
techniques to augment MCTS.

One of the problems introduced by the selection
strategies in MCTS is that a high branching factor can
hide obvious replies [1]. One aspect that will be explored
therefore is how this branching factor could be reduced
through the use of move groups [13, 18].

A new model for chance nodes is outlined, we call
Grouped Chance Nodes. In Grouped Chance Nodes the
strength of MCTS, the repeated playouts, is used to con-
verge to the equivalent of chance nodes.

2 Framework
In modern board games abstract tasks can be identified
that alter the game state, independent of the game do-
main. These abstract tasks will be termed Actions. By
separating them from the context of the game, a list of
actions can be provided to an algorithm, independent of
the game domain.

As a detailed description of the framework is beyond
the scope of this article, an overview and description of
the crucial aspects is given.

The basis of the framework is a state machine sup-
ported by an event-driven graph structure to represent
the board upon which pieces (called Placeables) can be
placed.

The state machine has multiple State Cycles, each
containing one or more Game States representing the
phases of the turn of a player. Each State Cycle rep-
resents a different state of the game.

State Cycles have an Activation and Deactivation
Predicate associated with them which will be checked on
the move to a new Game State. Whenever both the De-
activation Predicate of the current and Activation of the



G.J.B. Roelofs

next State Cycle are met, the state machine will move to
the next State Cycle.

All possible Actions defined by the framework should
provide two variants; one defined as to be called by the
user, requiring input, and one defined as an automated
function. The framework will provide all legal options
for an action, each option accompanied by the chance of
occurrence, and a unique identifier.

A distinction must be made between the abstract ac-
tions a player is allowed to perform, termed Actions, and
specialized functions of game logic specific to a game do-
main, termed Game Logic. The distinction being that
Actions could specify that a Game Logic may be played,
while the Game Logic specifies how the gamestate is al-
tered.

An example of specifying a game domain using these
concepts with regards to the domain of Settlers of

Catan can be found in Appendix A.

2.1 State Cycle

The State Cycle possesses one or more Game States,
and describes a phase in the game. It keeps track of
the current player, round and current Game State. If a
player tries to move to a new Game State, and none are
available, the next player is given a turn. If each player
has had their turn, the round number is increased. A
State Cycle has multiple triggers to which further logic
may be bound:

On Activation On Deactivation

2.2 Game State

The Game State describes the phase of a players turn,
and has multiple triggers to which further logic may be
bound:

On Activation On Deactivation

2.3 Placeable

A Placeable is an object that can be placed on a given
type of element (Vertex, Edge or Area) of the Board
according to a Placement Predicate, and bought if a
Cost Predicate is satisfied. A Placeable has multiple
triggers, to which further logic may be bound:

On Place On Place Neighbour

On Remove On Remove Neighbour

On Activation On Deactivation

On Ownership Change

2.4 Game Logic

An Game Logic is a specialised function of game logic,
normally restricted to a specific game domain, acquirable
and playable by either player. Furthermore, an Game
Logic has an Activation Predicate associated with it,
which is initialized upon acquirement of the Game Logic
by the player, and must be met before the Game Logic
can be played. An Action has multiple triggers, to which
further logic may be bound:

On Activation On Ownership Change

2.5 Action

Actions are defined as the abstract actions a player is
allowed to do. The list of Actions which may be exposed
to the algorithm as possible actions, is as follows:

Place Placeable

Places a Placeable on the graph given a target lo-
cation, after checking whether the Placeable can be
placed on the given target. If no target element is
given, the player is asked for a selection out of a
list of targets, generated according to the Placement
Predicate.

Remove Placeable

Removes a Placeable from the graph and the game.

Acquire Placeable

Gives a Placeable to a target player, and then calls
Place Placeable.

Purchase Placeable

Checks whether a Placeable can be bought according
to its Cost Predicate, deducts the costs if so, and
calls Acquire Placeable, followed by Place Placeable.

Acquire Action

Gives an Action to the target player.

Purchase Action

Checks whether an Action can be bought according
to its Cost Predicate, deducts the costs if so, and
calls Acquire Action.

Remove Action

Removes an Action from player possession.

Play Action

Executes the specialised game logic associated with
the Action if the Activation Predicate of the Action
is met.

Offer Trade Player

Sets the current trade offer of the Player for trading
between Players.

Accept Trade Player

Accepts a offer from another player, if both players
accept the trade, the trade is executed.

Accept Trade Bank

Accepts and initiates a trade with the bank, cancels
any active trade offers.

Cancel Trade

Cancels a trade offer from the player.

Next Game State

Attempts to move the game to the next state. De-
pending on a given variable, the game will also at-
tempt to move to the next state cycle.

Modify Resource

Modifies the resource of a player.

3 Settlers of Catan
Settlers of Catan is a 2-6 player board game designed
by Klaus Teuber and first published in 1995, after which
several extensions were released. This paper will focus on
the core ruleset for 4 players. The goal of this game is to
be the first to achieve at least 10 victory points.

The game board consists of 16 hexagonal tiles, each
representing either:

(v. April 10, 2012, p.2)



G.J.B. Roelofs

Figure 1: An example board setup of Settlers of Catan

• One of five resources: wood, stone, sheep, wheat and
ore;

• A non-producing type desert, or sea;

• Or a port, a tile which gives a bonus to the trade
ratio.

Each resource based tile has a number ranging from 2 to
12 associated with it.

The turn of a player consists of two phases. In the
initial phase, called the production phases, a player must
roll two dice, the sum of which determines which resource
tiles are activated. Upon activation, any player owning
either a Settlement or City adjacent to the tile is given
one or two of the resource according to the type of the tile.
On a dice roll of 7, any player in possession of more than
7 resources must discard half of them (rounded down).
The current player then moves the robber, a piece which
blocks the field it is placed on from activation in the pro-
duction phase. The current player is then allowed to steal
a random resource of any player in possession of a con-
struction adjacent to the blocked tile.

In the second phase a player may, but is not required
to, trade resources; build a construction; buy a Develop-
ment Card or play a single Development Card.

The player is allowed to trade resources with his oppo-
nents, or the bank according to a given trade ratio. The
default trade ratio is 4 similar resources to a resource of
choice. By building a settlement at one of the port tiles,
these trade ratios are adjusted according to the rules of
the port.

A player is allowed to purchase the following construc-
tions: Road, Settlement and City. The Road costs 1 Stone
and Wood, and can be placed on any Edge adjacent to
any Construction in possession of the Player. The Settle-
ment costs 1 Stone, Wood, Wool and Grain and can be
placed on any Vertex which is adjacent to a Road owned
by the Player, and respecting the distance rule: No other
settlement may be placed within a 2 Edge distance of
an existing settlement or city. The City costs 3 Ore and
2 Wheat and replaces any existing settlement owned by
the player. No construction may be built on an already
occupied location.

The player is also allowed to draw a random Develop-
ment Card for 1 Ore, Grain and Wool. The Development
Cards are: Victory Point Card; which gives the player a

Figure 2: Outline of the Monte-Carlo Tree Search [19].

hidden victory point, Knight Card; which activates the
Robber, 2 Free Roads, 2 Resources of Choice or Monopoly
which steals all resources of a type from all other players.
A Development Card, with exception of the VP Card,
may not be used in the round it was purchased, and are
discarded after use.

Players gain 1 victory point per Settlement, and 2
victory points per City owned. The Victory Point De-
velopment Card gives the player 1 hidden victory point.
The player who has played the Knight Development card
the most, with a minimum of 3 times, receives 2 vic-
tory points. The player with the longest unbroken link
of roads, with a minimum of 5, also receives 2 victory
points.

Two pure strategies exist for Settlers of Catan,
the Ore-Grain strategy, and the Stone-Wood strategy. As
indicated by its name, the Ore-Grain strategy focusses on
acquiring the Ore and Grain resource, building Cities and
purchasing Development Cards. The Stone-Wood strat-
egy in contrast focuses on building Roads and Settlements
[15].

3.1 Rule Changes

Several simplifications suggested by Szita, 2010 [15] deal
with aspects of the game which are non-trivial in imple-
mentation, but do not change the core game-play itself.
No trading between players is allowed, and all imperfect
information (which development cards are bought, which
resources are stolen) is removed from the game. The re-
moval of these aspects of imperfect information do not
alter the game play, as they are usually quickly revealed
or inferred to be victory points.

4 Monte Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [5, 10], is a search
technique in which a tree is iteratively built consisting
of nodes representing board states. These nodes are eval-
uated using the outcome of playouts, the winning ratio.
The end result is a search technique that relies on long-
term effect of moves rather than a value determined by a
heuristic state-based evaluation function.

Because of this feature, MCTS is qualified to han-
dle modern board games for which long-term planning
is crucial, and it is difficult to find a good performing
evaluation function [6, 15].

MCTS consists of four phases which are repeated in
succession until a computational constraint is reached,
commonly being the computation time [4]. For an outline
of these phases, see Figure 2

(v. April 10, 2012, p.3)



G.J.B. Roelofs

Selection In the selection phase, starting from the root
node, a child node is recursively selected according to
selection a strategy Ss until a leaf node s is reached.

Playouts Starting from leaf node s, the game is simu-
lated in self-play according to some playout strategy
Sp until the cut-off strategy Sc decides to stop the
simulation, traditionally until a player has won the
game. A completed game is called a playout.

Expansion In the expansion phase, the expansion strat-
egy Se is applied to the selected node s.

Backpropagation In this phase the results from the
simulation game are propagated backwards from leaf
node p to the nodes that were traversed to reach p

according to a back-propagation strategy Sb.

After the cut-off point is reached, one of the child nodes
of the root is selected according to a final node selection
strategy Sf .

4.1 Selection Strategy

The main aspect of MCTS is the balance between ex-

ploration and exploitation. Exploration governs the
aspect of the search in which unpromising nodes must be
expanded or revisited due to uncertainty in the evalua-
tion. Exploitation, governs the aspect of search where
promising nodes are visited again.

Out of several selection strategies (OMC, PBBM,
UCT, UCB1-Tuned, MOSS, HOO) [10, 8], UCT is by
far the most widely applied [14], and will be used as a
base for the experiments.

UCT: In MCTS each node i has a value Vi, and visit
count Ni. In UCT the child of a node p with children i

is chosen that maximizes the following formula:

Vi + C ×

√

lnNp

Ni

C is a coefficient that will have to be tuned experi-
mentally. An additional parameter T proposed by 2007,
Coulom [5], introduces a minimum threshold before UCT
takes effect. If node p has not been visited a minimum of
T times, the playout strategy is used to select the node.

4.2 Expansion Strategy

Traditionally the expansion strategy of MCTS consists
of expanding node s and selecting a node randomly from
among children of s. This node is then returned as node
p, which is used for the playout phase.

4.3 Playout Strategy

A playout strategy is subject to two tradeoffs [4], the
first being the tradeoff between search and knowledge.
In normal circumstances, knowledge increases playing
strength, but decreases playout speed. The second trade-
off is the ratio between exploration and exploitation. If
the strategy is too explorative, the playing strength can
decrease, while if it is too exploitative, the search will
become too selective.

Random play is the most basic playout strategy avail-
able, and can be augmented with domain knowledge by

adjusting the distribution by which moves are chosen ap-
propriately. While the use of an adequate heuristic play-
out strategy has shown to improve level of play signifi-
cantly [2], the aim of this article is to analyse the effects
of changes to MCTS for the sake of general gameplay.
Therefore, no domain knowledge was added and random
play was chosen as the primary playout strategy.

4.4 Backpropagation Strategy

Out of the several backpropagation strategies (Max,
Average, Informed Average, Mix) existing for MCTS,
the general conclusion is that Average performs best
[5] and as such, will be used as a base for the experiments.

Traditionally, the winrate of a node is the only metric
used to evaluate the effectiveness of a node. To augment
this, we added a single metric which takes into account
the relative performance of player with regards to the
best performing player:

Vi = X ×Op + Y ×

VPp

VPmax

where X = 1, Y = 1. Op designates the outcome of a
playout for player p, 1 for a win, 0 for a draw or loss,
V Pp the amount of victory points achieved by the player,
and V Pmax the maximum score achieved by any player.

4.5 Final Node Selection Strategy

Previous research has shown that little difference in qual-
ity exists in the Final Node Selection strategies, given
that a sufficient number of playouts per move was played
[4].

However, given the computational complexity and
therefore low expected number of simulations [15], we
investigate the performance of the following 4 strategies:

Max Child The child which maximizes Vi

Ni

is chosen.

Robust Child The child which maximizes Ni is chosen.

Robust Max Child The child which maximizes both
Vi

Ni

and Ni is chosen.

Secure Child The child which maximizes a lower confi-
dence bound, Vi

Ni

+ A
√

Ni

in which is A is a parameter

set to 1, is chosen. [3]

5 MCTS in Non-Deterministic

Games
Traditionally, implementation of MCTS in non-
deterministic games is handled in a straight forward way
by integrating chance nodes as outlined in Expectimax

into MCTS whenever actions governed by a stochastic
process occur. [9, 17, 15] An example structure of chance
nodes is shown in Figure 3.

The backpropagation function of the Chance Node is
then replaced by the function:

Vc =

n
∑

i=1

CiVi

where Vc is the value for the Chance Node, n the number
of children, Ci the chance of the associated action of the
child node, and Vi the value of the child node.

(v. April 10, 2012, p.4)



G.J.B. Roelofs

Figure 3: Structure of Chance Node Model [9].

5.1 Grouped Chance Model

An alternative chance model, Grouped Chance Model
(GCM), is proposed in which the Chance Node and its
children are combined into a single node. The resulting
change in structure can be compared in Figure 4 and
5. The advantage of this model is that by combining
the results of similar moves, the node converges faster
to the expected average of a move. The disadvantage
of this model is that by combining the moves across
the different probability events, situations can occur
where moves which give a non-expected high reward for
a specific chance event may be masked and not explored
by UCT. This phenomena can be seen in the comparison
of Figure 4 and 5. In these figures, the paths chosen
by UCT are represented by the continuous black edges.
From the figures it is clear that action B would be
chosen in the occurrence of the 0.10 event with Chance
Nodes, while action B would not be considered with the
Grouped Chance Model.

During backpropagation the value of the GCM node
is determined by the following formula:

Vi = C × Vb

, where C is the probability of the action that occurred
when the GCM Node was applied during initial traversal.
Vb is the value given by the backpropagation function. If
a node is guaranteed to be traversed a sufficient number
of times, this model can even be discarded as the value of
a normal node trivially converges to the value of a GCM
node.

82

90

0.9

100

0.1

A: 90 B: 10 A: 10 B: 100

Figure 4: Chance Nodes

6 Move Groups
In MCTS, all moves are added as direct descendants upon
expansion of a node. There exist domains, like Settler

of Catan, where both the branching factor of the tree,

82

A: 82 B: 19

Figure 5: Grouped Chance Model

group group

action action action

group group

action action action

root

Figure 6: Move Group Tree Structure

and the time needed to compute new valid moves are
high. In these domains it could be of interest to use a
technique which reduces the branching factor of the tree,
thereby reducing the amount of time spent in the selec-
tion and expansion phase of MCTS [11]. The grouping of
nodes has shown to lead to an increase in playing strength
for games such as Amazons and Go [13, 18]. A model is
proposed which alters the structure of the tree by defin-
ing groups for moves. This structure is shown in Figure
6 [18].

The framework provides an ideal abstraction for cat-
egories; namely the action type layer provided for the
algorithm. (Buy Placable, Do Next Gamestate, ...) Be-
cause a group node is not guaranteed to have any legal
action node as children, the selection phase may never
end in a group node. Upon applying a group node, it
must be expanded to check the game is not in a terminal
state. If no legal move exists, the algorithm must return
to the parent and remove the group node from its chil-
dren. Another selection may then take place from among
the remaining children. Preliminary results indicate that
this model significantly speeds up the selection and ex-
pansion phase of MCTS.

This model also provides a natural entry point for on-
line learning techniques such as RAVE [7] and Progres-
sive Bias [3]. As actions are already divided into cate-
gories, the move space required could be reduced to these
groups.

7 Experiments
All experiments, where applicable, were run with no cut-
off in the playouts and 2,000 ms computation time per
move, using the core ruleset of Settler of Catan with
the added changes as suggested by Szita, 2010 [15].

Through experimentation it was found that the aver-
age number of rounds per game varies greatly between
algorithms, and is a good indicator of playing strength.

(v. April 10, 2012, p.5)



G.J.B. Roelofs

On average, a single game takes between 20 to 30 rounds,
each player taking approximately 2.4 moves per turn.
This results in a running time of approximately 10 min-
utes per game. To overcome this computational hurdle,
all experiments were divided among a computing grid of
38 relatively homogeneous clients with Core2Duo E6750
(2.66Ghz Dual Core) CPU’s.

The time restraint of 2,000 ms per move resulted in
approximately 1,300 playouts per second. On equivalent
hardware, other implementations note simulation speed
of around 300 playouts per second. [15] The primary
source of performance increase can be contributed to
caching techniques with regards to the game logic used
for placing and removing objects from the graph, which
account for the gross of the computation time.

The seating arrangement of algorithms has a signifi-
cant impact on their overall performance [15]. To exclude
this factor from the experiments, all experiments are run
such that all permutations of seating arrangements are
simulated and uniformly distributed within the experi-
ment. To further analyse the effect of the seating ar-
rangement, their results are displayed where appropriate.

The main acronyms used in these experiments will be:
Monte Carlo Tree Search (MCTS), Chance Nodes (CN),
Move Groups (G-MCTS) and Grouped Chance Model
(GCM), Average Win Rate (Avg. WR), Average Vic-
tory Points (Avg. VP) and Average Rounds per Game
(Avg. R/G).

7.1 Game Analysis

Model Validation

In this experiment we validate the underlying framework
by comparing the results of random play (800.000 games)
versus the one found in 2007, Szita (400 games) [15].

Figure 7: Self Play, Random Play, 800.000 games.

The overall structure of the graph, Figure 7, is approx-
imately the same as the one found in [2007, Szita et al.]
[15], with any discrepancies explained by the difference
of population size from which the results were drawn.
The similarity in overall victory division and rate of vic-
tory point acquirement indicate that, for random play,
the models used are approximately the same. As no men-
tion is made on the definitive configuration [15] of the
MCTS player, no comparison can be made on its results.

Seat Analysis

In this experiment the advantage of seats for games of
different length using random play is analysed. Each case

is run for 250.000 games, ensuring that all results found
are statistically significant, giving a margin of error of
0.196% with 95% confidence. The game is cut-off after x
rounds have been played, and the player having the most
victory points is declared the winner.

Turn 60 40 20 10

Seat 1 25.44% 24.99% 24.57% 24.36%
Seat 2 25.00% 25.07% 24.90% 24.77%
Seat 3 24.88% 25.04% 25.19% 25.20%
Seat 4 24.67% 24.91% 25.34% 25.64%

Table 1: The effects of preset game length on random
play.

Table 1 shows that as the length of the game is short-
ened, the advantage of the 4th seat becomes apparent.
This effect can be explained by the fact that the 4th
seat, on average, has the most resources available in his
first turn as there have been 3 preceding dice rolls and
the income generated by the placement of the initial
settlement. This statement is confirmed by the fact that
upon inspection the 4th seat tends to be the first player
to place a new construction in random play.

Preliminary experiments run on cutting off the play-
outs after X rounds after the start of the playout showed
no improvement of playing strength, although a slight in-
crease in playout speed was gained. Playing strength de-
clined minimally for both Move Groups and traditional
MCTS, for X = 20, 30, 40. This could be because the
metric used to declare the winner (highest victory points)
is not a good indicator of the actual winner if the game
were to continue.

7.2 UCT Tuning

In this experiment the C-parameter is tuned by first test-
ing a broad range of suggested variables [10]. The local
maxima found are then fine tuned by inspecting the range
around them. This experiment is run for Move Groups,
and traditional MCTS, both with Chance Nodes.

It has been shown that Move Groups in conjunction
with UCT could benefit from tuning of the T parameter.
[18] Preliminary experiments have however shown no in-
crease for any algorithm, which could be caused by the
relatively low branching factor of the domain Settlers

of Catan, compared to the domains explored in the ar-
ticle. The only gain that could be found was when T was
used as requirement for the minimum number of visits
per child node, in contrast to minimum number of visits
per parent node. Simply ensuring a minimum visits of 1
per child node seemed to increase performance the most,
but only barely (1.47%).

In the initial experiment each test case consists of
three different UCT C-parameter algorithms compared
against MCTS without UCT. In this experiment all 16
permutations of the seating order are uniformly dis-
tributed in the experiment. For each case 900 games are
played. In the fine-tuning of the C parameter, the tuned
parameter is compared against MCTS without UCT, the
win rate shown is the rate of victory of the tuned UCT
agent. For each case 3,600 games are played, giving a
margin of error of 1.6% with 95% confidence.

(v. April 10, 2012, p.6)



G.J.B. Roelofs

C-parameter Tuning

C MCTS G-MCTS

0.2 0.00% 0.00%
0.5 25.63% 19.84%
0.75 31.62% 23.65%
1.0 24.70% 22.12%
1.25 27.07% 24.32%
1.5 35.61% 26.30%
2 21.82% 23.70%
4 29.65% 27.31%
8 32.45% 29.31%
16 28.42% 25.21%
32 29.35% 26.59%
64 31.62% 27.51%

Table 2: The effect of coarse tuning the C parameter
on MCTS and G-MCTS.

Table 2 shows the local maxima found in the initial
tuning stage, namely 0.75, 1.5 and 8. Upon inspection of
the low valued C-parameter, it is observed that during
the setup phase of the game the algorithm chooses an ex-
tremely poor starting location, which results in extremely
poor overall play. This choice can be explained by the
fact that in this phase, the initial playouts base results
on almost pure random play. Due to the ”greediness” of
the low valued C-parameter, this leads to premature se-
lection and therefore exclusion of vital moves. Which in
turn also confirms the strategic importance of the starting
location. While MCTS seems to receive a larger perfor-
mance gain from UCT, these values primarily result from
play against other UCT algorithms; therefore we cannot
directly compare the performance of MCTS against G-
MCTS.

C-parameter Fine Tuning

C MCTS G-MCTS

0.6 20.82% 23.81%
0.7 23.88% 26.90%
0.8 21.73% 25.24%
0.9 22.15% 27.16%

1.35 21.74% 29.29%
1.45 27.31% 30.00%
1.55 25.95% 31.80%
1.65 25.23% 29.86%
1.75 28.31% 33.42%

6 25.97% 35.41%
7 28.86% 35.95%
9 28.73% 34.00%
10 28.57% 33.42%

Table 3: Fine tuning of C for the earlier found local
maxima.

As Table 3 shows, a performance gain is shown for
both Move Groups and traditional MCTS. While the net
gain of performance for the Grouped MCTS algorithm
is much higher than that of the MCTS algorithm, both
algorithms seem to react approximately the same to

the tuning of the C-parameter, with C = 7 being the
optimum found.

Upon inspection of the play style of both the MCTS
and G-MCTS algorithms, two differing strategies seem
to occur. The G-MCTS algorithm seems to prefer the
Grain-Ore strategy, in which emphasis is placed on the
acquirement of Development Cards and the building of
Cities. The MCTS algorithm however focusses on a
mixed strategy, with a slight tendency towards the Stone-
Wood strategy, in which the acquirement of Stone and
Wood are central and the focus lies on the construction
of settlements and roads.

7.3 Final Node Selection

In this experiment the effect of differing the Final Node
Selection strategy on both Move Groups and traditional
MCTS combined with UCT (C = 7, T = 30), and Chance
Nodes is analysed. In each experiment the new strategy
is compared to the baseline strategy, Secure Child (SC).
For all cases, 900 games were played, giving a margin of
error of 3.26% with 95% confidence.

MCTS G-MCTS

MC SC MC SC

Seat 1 19.00% 15.89% 23.81% 16.19%
Seat 2 16.20% 24.75% 23.33% 14.29%
Seat 3 25.24% 31.73% 29.05% 26.19%
Seat 4 30.58% 37.02% 30.48% 36.67%

Avg. VP. 6.54 6.74 7.28 7.03
Avg. WR. 22.72% 27.29% 26.67% 23.33%

Avg. R./G. 21.79 24.75

Table 4: Max Child (MC) vs. Secure Child (SC)

MC is suggested to be the worst possible Sf [3], which
seems confirmed by the observation that the best per-
forming algorithm, MCTS, performs worse by using MC,
as seen in Table 4. However, G-MCTS seems to improve
its performance when combined with MC. This could be
due to the fact that the abstraction layer provided by the
move groups already provides a measure of the security
Secure Child normally introduces. The overhead of the
”security” variable introduced by SC could mask better
options, which explains the reduced performance when
used by G-MCTS.

While the difference in seating outcomes could ar-
guably be contributed by noise, it must be noted that
the percentages shown are for a 4 player setup. A differ-
ence of 5% would indicate a 10% difference in a 2 player
setup.

Table 5 indicates that RC is detrimental to perfor-
mance for MCTS, but indicates an indifference in quality
for G-MCTS which could be explained by the fact that
SC already seems to weaken the search. The grouping of
the nodes also ensures that fewer children exist among
which the number of visits can be divided. Of note is
that a sharp drop in performance is seen for SC for the
third seat, suggesting the strategy played is inferior for
this seat against RC. This performance drop is not shown
by G-MCTS however.

(v. April 10, 2012, p.7)



G.J.B. Roelofs

Table 6 shows that the overall performance of MCTS
is relatively unaffected by RMC, however a clear differ-
ence is seen in per-seat play performance. However per-
formance with RMC drops for G-MCTS, which seems to
concur with the findings for RC. The earlier weak play of
the third seat by MCTS reoccurs for RMC.

7.4 Computation Time Analysis

In this experiment we compare the performance im-
pact of calculation time on the variations of the pro-
posed MCTS augmentations: Move Groups and Grouped
Chance Model. These experiments are done in self-play.
As data points, 2,000 ms, 5,000 ms and 15,000 ms were
chosen, as these represent both a slight and large increase
in simulation time.

In this setup, UCT with C = 7 was used for all vari-
ations of the algorithm. For all cases, 600 games were
played, giving a margin of error of 4% with 95% confi-
dence.

Each table compares the relative winning percent-
age of each seat to visualise changes in overall strat-
egy; average victory points and average rounds per game
are shown to visualize the change in play strength. A
decrease in rounds per game generally correlates with
stronger play.

The expected correlation between computation time
and playing strength is clearly shown for all variations of
the algorithm. Of interest however is that all algorithms
seem to indicate a clear advantage of seat 2 and 4 over
the rest of the players. This could indicate that a similar
strategy is used by the different algorithms, or a general
weakness for seat 1 and 3 is found. The MCTS algorithm
seems to benefit the most from both the small and large
increase in computation time.

MCTS G-MCTS

RC SC RC SC

Seat 1 16.32% 17.82% 21.43% 15.71%
Seat 2 17.89% 28.22% 26.19% 29.52%
Seat 3 23.36% 19.66% 22.86% 22.38%
Seat 4 35.26% 40.59% 28.57% 33.33%

Avg. VP. 6.65 6.69 6.98 7.06
Avg. WR. 23.21% 26.79% 24.76% 25.24%

Avg. R./G. 22.42 23.88

Table 5: Robust Child (RC) vs. Secure Child (SC)

MCTS G-MCTS

RMC SC RMC SC

Seat 1 20.76% 12.28% 15.71% 22.12%
Seat 2 24.77% 26.03% 12.98% 26.19%
Seat 3 24.17% 19.64% 32.69% 32.86%
Seat 4 31.74% 40.17% 28.10% 29.33%

Avg. VP. 6.61 6.63 6.99 7.17
Avg. WR. 25.32% 24.68% 22.37% 27.63%

Avg. R./G. 22.10 24.33

Table 6: Robust Max Child (RMC) vs. Secure Child
(SC)

Time 2 s 5 s 15 s

Seat 1 16.67% 19.07% 10.81%
Seat 2 17.24% 24.74% 33.78%
Seat 3 33.91% 30.93% 21.62%
Seat 4 32.18% 25.26% 33.78%

Avg. VP. 6.99 6.93 6.82
Avg. R./G. 23.97 21.47 20.11

Table 7: Effect of computation time for
MCTS.

Time 2 s 5 s 15 s

Seat 1 21.51% 16.90% 12.51%
Seat 2 21.51% 19.37% 34.13%
Seat 3 30.23% 28.52% 21.15%
Seat 4 26.74% 35.21% 32.21%

Avg. VP. 6.92 6.95 6.62
Avg. R/.G. 24.55 23.01 20.05

Table 8: Effect of computation time for
MCTS,GCM.

Time 2 s 5 s 15 s

Seat 1 20.39% 24.39% 16.67%
Seat 2 21.71% 18.29% 31.94%
Seat 3 25.66% 25.00% 16.67%
Seat 4 32.24% 32.32% 34.72%

Avg. VP. 6.91 7.22 6.81
Avg. R./G. 24.82 24.26 20.39

Table 9: Effect of computation time for
G-MCTS.

Time 2 s 5 s 15 s

Seat 1 18.94% 22.60% 17.57%
Seat 2 27.27% 31.25% 39.19%
Seat 3 24.24% 25.48% 13.51%
Seat 4 29.55% 20.67% 29.73%

Avg. VP. 7.07 7.00 7.03
Avg. R./G. 25.83 22.91 21.5

Table 10: Effect of computation time for
G-MCTS,GCM.

However, it seems that the strength of play of GCM
becomes equivalent to CN when enough simulations are
run, as both algorithms seem to need an equivalent num-
ber of rounds to finish their game.

7.5 Algorithm Analysis

In this experiment we analyse the playing strength of
all proposed augmentations on MCTS, with Secure Child
and Max Child as Final Node Selection strategy. For
every case, 1,200 games were played to further reduce
the amount of noise in the end result, giving a margin of
error of 2.83% with 95% confidence.
The label on the arrow indicates the win rate of the origin
algorithm over the target.

(v. April 10, 2012, p.8)



G.J.B. Roelofs

MCTS

27.83%

ww

28.78%

((

29.72%

��

GCM

27.10%

''

G−MCTS

25.69%

vv

G−MCTS,GCM

Figure 8: Algorithm comparison with Secure Child

MCTS

27.12%

ww

27.66%

((

29.97%

��

GCM

26.70%

''

G−MCTS

26.43%

vv

G−MCTS,GCM

Figure 9: Algorithm comparison with Max Child

Figure 8 and 9 both show that the main observation
that can be made is that G-MCTS as well as GCM are
slightly weaker to performance for both Secure Child and
Max Child. The previous observation of stronger play
by G-MCTS under Max Child is proven yet again by the
decrease of win rate of MCTS over G-MCTS in Figure
9. However this does not seem to result in a stronger
play by (G-MCTS,GCM) versus MCTS, which in turn is
probably caused by the inherent weakness of GCM given
a lack of sufficient simulations.

7.6 Backpropagation Strategy

In this experiment the effect of the two different met-
rics used in the evaluation of the nodes will be analysed
by setting the factor of one metric to 0. The effect is
compared for traditional MCTS and Move Groups, both
with Chance Nodes. The altered evaluation function is
compared to the non-altered version. For each case, 600
games are played, giving a margin of error of 4% with
95% confidence.

G-MCTS MCTS

Disabled Normal Disabled Normal

Seat 1 31.33% 18.33% 25.17% 17.67%
Seat 2 28.67% 20.33% 27.67% 20.81%
Seat 3 30.33% 17.00% 32.89% 22.33%
Seat 4 28.33% 25.67% 29.33% 24.16%

Avg. WR. 29.67% 20.33% 28.76% 21.24%
Avg. VP. 6.97 6.91 6.96 6.90

Table 11: Disabling Victory Point Ratio
Avg. Rounds / Game: 22.69 vs. 21.83

G-MCTS MCTS

Disabled Normal Disabled Normal

Seat 1 19.93% 18.67% 18.12% 14.67%
Seat 2 26.33% 22.97% 24.33% 25.50%
Seat 3 38.26% 23.83% 34.56% 23.00%
Seat 4 27.85% 22.15% 27.33% 32.55%

Avg. WR. 28.10% 21.90% 26.09% 23.91%
Avg. VP. 7.33 7.00 7.25 6.92

Table 12: Disabling Win Ratio
Avg. Rounds / Game: 24.24 vs. 23.07

Comparing Figures 11 and 12, disabling the victory
point ratio seems to give the greatest boost in perfor-
mance, and benefits G-MCTS the most. However, look-
ing at the average number of rounds required to win the
game, the increase in performance is not enough to match
MCTS. Peculiar though is the fact that disabling either
ratio gives a boost in performance. This could be ex-
plained by the occurrence where states occur in which
the algorithm is presented with two moves, one in which
the chance to win is lower, but a high victory point ra-
tio is guaranteed; and one for which the chance to win
is higher, but a lower victory point ratio exists, e.g. risk
must be taken to achieve the win. In these circumstance,
the overall value of the first node could be higher.

8 Conclusion

In this article a implementation for the game Set-

tlers of Catan is presented and validated, using an
abstract framework capable of describing multiple non-
deterministic imperfect information board games. As
MCTS will serve as an AI framework for future implemen-
tations within this framework, several general enhance-
ments were suggested and tested. These enhancements
were tested using multiple variations for the Final Node
Selection Strategy, Node Selection Strategy and compu-
tation time to evaluate their performance and more im-
portantly, robustness.

The proposed Grouped Chance Model enhancement
displayed slightly weaker performance for all tested
MCTS variations when a sufficient amount of simulations
could not be guaranteed.

The Move Groups Model as implemented in this arti-
cle displayed a slight decrease in performance in all test
cases compared to traditional MCTS. The main benefit of
the Move Groups, a decrease in move generation time, is
apparent but insignificant when compared to the compu-
tation time required by the playouts. Better results will
probably be achieved in a domain where the computation
time of move generation is more apparent.

The choice of groups could be a factor which con-
tributed to the outcome, and should be investigated. Of
note however is the fact that the model performed better
with the Max Child selection strategy over Secure Child,
while traditional MCTS performed better using Secure
Child.

Tuning of the C parameter in the UCT-model revealed
a local maxima at 7 for both MCTS and Move Groups.
It should be noted that this tuning should probably be
performed again for computation times other than 2,000

(v. April 10, 2012, p.9)



G.J.B. Roelofs

ms.
The weak playing strength of the low value C param-

eter, coupled with the observance of a weak play in the
starting phase, could indicate that different values for
the C parameter could increase performance in varying
phases of the game.

While independent tuning of the T parameter in UCT
had no effect, a different model could be of interest; mak-
ing T dependent on the number of children in a node,
instead of a fixed constant. This could enhance perfor-
mance, as many complex board games have varying de-
grees of branching throughout the tree.

Increasing the computation time increased the playing
strength of all models, and showed a supremacy over the
other players by the second and fourth seat. However,
different models showed varying playing strengths on the
different seats before converging; this could indicate that
the different seats require differing strategies for optimum
play.

Experiments in random play on seating order have
shown that the seating arrangement only has a small im-
pact on the outcome of a game, caused by a advantage
for the last seats on initial setup. Playing by strategy
however, fully negates this effect. Further experiments
showed a advantage for seat 3 and 4, when a little com-
putation time was given, and shifted to a superiority of
seat 2 and 4 as computation time increased. The author
suspects this to be linked to the tournament board used
in the experiments.

Adjusting the parameters of the evaluation function
greatly affected performance, and the win ratio seemed to
be the most sensitive metric with regards to performance.

As neither metric of the evaluation function seemed
detrimental to the performance of either algorithm, and
adjusting the constants which governed them positively
affected performance; it is highly suggested to search for
a optimum combination of both parameters.

While the Move Groups model performed slightly
weaker than traditional MCTS, one important aspect was
not researched; learning, be it offline or online. It is sus-
pected that online learning models like RAVE [7] will
enhance the performance of move groups [18], and could
even be used to steer the playout strategy of MCTS.

As the per seat performance seemed to variate with
different models and strategies, it could be of interest to
explore a learning algorithm which tunes the parameters
to a specified seat.

The random strategy used as the playout strategy
should be constrained or guided in some way as pure ran-
dom play results in poor performance and unnecessarily
long playouts.

References

[1] Bjornsson, Y. and Finnsson, H. (2009). Ca-
diaplayer: A Simulation-Based General Game
Player. Computational Intelligence and AI in
Games, IEEE Transactions on, Vol. 1, No. 1, pp.
4–15.

[2] Bouzy, B. (2005). Associating Domain-Dependent
Knowledge and Monte Carlo approaches within
a Go program. Information Sciences, Vol. 175,
No. 4, pp. 247–257.

[3] Chaslot, G.M.J-B., Winands, M.H.M., Herik, H.,
Uiterwijk, J., and Bouzy, B. (2008). Progressive
strategies for Monte-Carlo tree search. New Math-
ematics and Natural Computation, Vol. 4, No. 3,
p. 343.

[4] Chaslot, G.M.J-B. (2010). Monte-Carlo Tree
Search. Ph.D. thesis, Department of Knowledge
Engineering, Maastricht University, Maastricht,
The Netherlands.

[5] Coulom, R. (2007). Efficient Selectivity and
Backup Operators in Monte-Carlo Tree Search.
Computers and Games (CG 2006), Vol. 4630 of
Lecture Notes in Computer Science (LNCS), pp.
72–83.

[6] Fossel, JD (2010). Monte-Carlo Tree Search Ap-
plied to the Game of Havannah. B.Sc. thesis,
Maastricht University.

[7] Gelly, S. and Silver, D. (2011). Monte-Carlo Tree
Search and Rapid Action Value Estimation in
computer Go. Artificial Intelligence.

[8] Gelly, S., Wang, Y., Munos, R., Teytaud, O., et al.
(2006). Modification of UCT with Patterns in
Monte-Carlo Go.

[9] Hauk, T.G. (2004). Search in Trees with Chance
Nodes. M.Sc. thesis, Edmonton University.

[10] Kocsis, L. and Szepesvári, C. (2006). Bandit
Based Monte-Carlo Planning. Machine Learning:
ECML 2006, pp. 282–293.

[11] Lorentz, R. (2008). Amazons discover Monte-
Carlo. Springer.

[12] Love, N., Hinrichs, T., Haley, D., Schkufza, E.,
and Genesereth, M. (2006). General Game Play-
ing: Game Description Language Specification.
Technical report, Technical Report LG-2006-01,
Stanford Logic Group.

[13] Saito, J.T., Winands, M.H.M., Uiterwijk,
J.W.H.M., and Herik, HJ (2007). Grouping nodes
for Monte-Carlo tree search. BNAIC 2007: The
19th Belgian-Dutch conference on artificial intel-
ligence, Utrecht, 5-6 November, 2007, Vol. 19, pp.
276–283, Utrecht University.

[14] Schadd, M.P.D. (2011). Selective Search in Games
of Different Complexity. Maastricht University.

[15] Szita, I., Chaslot, G.M.J-B., and Spronck, P.
(2010). Monte-Carlo Tree Search in Settlers of
Catan. Advances in Computer Games (eds. H.J.
van den Herik and P. Spronck), Vol. 6048 of
Lecture Notes in Computer Science, pp. 21–32.
Springer Berlin / Heidelberg.

[16] Thielscher, M. (2010). A General Game Descrip-
tion Language for Incomplete Information Games.
Proceedings of AAAI, pp. 994–999.

[17] Broeck, G. Van den, Driessens, K., and Ramon,
J. (2009). Monte-Carlo Tree Search in Poker us-
ing Expected Reward Distributions. Advances in
Machine Learning, pp. 367–381.

[18] Van Eyck, G. and Müller, M. (2012). Revisiting
Move Groups in Monte Carlo Tree Search.

(v. April 10, 2012, p.10)



G.J.B. Roelofs

[19] Winands, HM, Bjornsson, Y., and Saito, J. (2010).
Monte-Carlo Tree Search in Lines of Action. Com-
putational Intelligence and AI in Games, IEEE
Transactions on, , No. 99, pp. 1–1.

A Settlers of Catan

Implementation
Starting with the State Cycles, Settlers of Catan can
be divided into three phases: Setup, Main Game, Victory.

The Placables defined in the game are the City, Set-
tlement, Road, Robber and Tiles. For the City and Settle-
ment, the Ownership Change event adjusts the amount
of victory points of the player. The Activation event of
the Robber checks whether any player is over the resource
limit, and asks them to hand in resources. The On Place
event describes the blocking of a tile, and the stealing of
a resource. The Activation event of the Tiles define the
resource income logic.

The Game Logic defined correspond with the Devel-
opment Cards; Knight, Harvest, Monopoly, Construction
and Victory Point. Each with a default Activation Predi-
cate which prevents them from being played in the round
they were acquired.

The Setup can be divided into a single Game State, in
which the only two actions allowed are Acquire Placable;
which gives the player a road or settlement, and Next
Gamestate; which moves to the next player if both a road
and settlement are built. The Setup phase ends when all
players have built 2 Settlements and Roads.

The Main Game can be divided into two states, Pre
Income, and Post Income. The Pre Income state defines a
single action, Next Game State, which triggers the Deac-
tivation of Pre Income, which in turn handles the dice roll
and Activation of the appropriate Tiles. The Post Income
state defines multiple actions: Acquire Placable; either a
City, Settlement or Road, Buy Action; a randomly cho-
sen Action is given, Play Action; which allows the player
to play an Action in his possession, Trade Start Bank ;
which allows the player to trade with the bank, and Next
Gamestate; which ends a players turn and checks whether
any player has the appropriate amount of victory points,
and if so, moves the game to the Victory phase.

(v. April 10, 2012, p.11)


