
Playing Othello Using Monte Carlo

J.A.M. Nijssen

June 22, 2007

Abstract

This paper deals with the construction of an AI
player to play the game Othello. A lot of tech-
niques are already known to let AI players play
the game Othello. Some of these techniques
even allow current AI players to beat even the
best human Othello players. These players use
very complicated deterministic algorithms to
play the game. We will not try to improve
on these techniques, but to use a completely
different and very simple approach to play the
game. This paper shows how a stochastic algo-
rithm, namely the Monte Carlo algorithm, can
be used to play the game. It also shows how
the algorithm can be improved using domain
knowledge and structural enhancements.

1 Introduction
In this section, we will give some background information
on Artificial Intelligence, Othello and the Monte Carlo
algorithm. Also, the problem statement and the research
questions are given. Finally an overview of the paper is
presented.

1.1 Background

Artificial Intelligence (AI) is a term that was first in-
troduced in 1956 at the Dartmouth College (see [6], pp.
17-18) and since then it denotes a separate scientific field.
The first work in AI however started more than 10 years
before the Dartmouth conference and was done by War-
ren McCulloch and Walter Pitts in 1943 (see [6], pp.
16-17).

One of the first tasks undertaken in AI was game
playing. Already in 1950, chess was tackled by Konrad
Zuse, Claude Shannon, Norbert Wiener and Alan Tur-
ing. In 1956, Arthur Samuel demonstrated a checkers
program that was able to play at a strong amateur level,
being able to beat its creator.

Nowadays, a lot of AI players have been created for
different games that are able to beat even human world
champions. Some games are even solved, like Connect-
Four, Nine Men’s Morris and Awari [8]. One game that

is able to be played on a super human level is Othello.1

The game Othello was introduced in 1975 [5]. The
game is very similar to a game invented around 1880,
called Reversi. Reversi was created by Lewis Waterman
and John W. Mollett. At the end of the 19th century it
gained a lot of popularity in England and in 1898, games
publisher Ravensburger started producing the game as
one of its first titles [12].

In our research, we developed an AI player that is ca-
pable of playing the game Othello. As already explained
above, the best AI Othello players are able to beat the
human world champions. We did not try to improve on
the existing techniques, but investigated a different ap-
proach to play Othello. This different approach is the
Monte Carlo (MC) algorithm. An advantage of the MC
algorithm is that it is fast and does not use any domain
knowledge (strategical knowledge about the game). We
will explain more about the basic Monte Carlo algorithm
in section 3.1.

The MC algorithm has many applications, also in the
game field. For example, the algorithm has been used to
play the game Go [2]. Go is a very complex game that is
very hard to tackle in AI. MoGo, one of the strongest AI
Go players, uses the Monte Carlo technique as a basis
[9, 10].

1.2 Problem statement and research
questions

In this paper, we will discuss how the Monte Carlo algo-
rithm can be used to play Othello, what improvements
can be made and how strongly it can play by comparing
it to existing AI Othello players. This leads to the fol-
lowing problem statement: “How can the Monte Carlo
search technique be used to play the game Othello, and
how does it compare to other methods?” To answer this
question, we define three research questions:

1. What improvements can be made on the Monte
Carlo algorithm to make it stronger?

2. How does the algorithm need to be tuned to play as
strongly as possible?

1Othello is a Registered Trademark, Licensed by Anjar Co., All
Rights Reserved



J.A.M. Nijssen Playing Othello Using Monte Carlo

Figure 1: The initial position.

3. How strongly can Othello be played by a Monte
Carlo-based AI player?

After showing how the Monte Carlo algorithm is imple-
mented, we will show which improvements can be made.
During the experiments, we will show how strongly the
MC-based player plays with different settings, by letting
it play against a player based on another algorithm. Fi-
nally, we will show how a Monte Carlo-based AI Othello
player plays against the computer program WZebra,
which is a strong and popular AI Othello player, and
against an experienced human Othello player.

1.3 Overview

In section 2, a description of the game Othello is given.
We will give the rules and some well-known strategies.
In section 3, we will discuss the workings of the Monte
Carlo algorithm and the improvements. Section 4 shows
the experiments performed and discusses the results of
those experiments. The conclusions that can be drawn
from these experimental results are stated in section 5,
as well as an outlook to future research.

2 The Game Othello
This section describes the game Othello. First, it gives
the rules of the game. Next, it shows some strategies
that are commonly known to more advanced players.

2.1 The rules

Othello is played by two players, Black and White, on
an 8×8 board. On this board, so-called discs are placed.
Discs have two different sides: a black one and a white
one. If a disc on the board has its black side flipped up,
it is owned by player Black and if it has its white side
up, it belongs to player White. The game starts with
four discs on the board, as shown in figure 1.

Black always starts the game, and the players make
moves alternately. When it is a player’s turn he has to
place a disc on the board in such a way that he captures
at least one of the opponent’s discs. A disc is captured
when it lies on a straight line between the placed disc

and another disc of the player making the move. Such a
straight line may not be interrupted by an empty square
or a disc of the player making the move. All captured
discs are flipped and the turn goes to the other player.

If a player cannot make a legal move, he has to pass.
If both players have to pass, the game is over. The player
who has the most discs with his color flipped up, wins
the game.

2.2 Strategies

Othello is considered to be a game that is ‘a minute
to learn, a lifetime to master’. This slogan accurately
captures the game, because the rules of the game are
very simple, but playing the game well is very difficult.

For a computer player, it is important that it has
some strategic knowledge about the game. In section 3.2,
we will describe how some of this domain knowledge
is implemented, but first we describe some commonly
known strategies that are used by virtually every ad-
vanced Othello player.

Corners and stable discs
During a game some discs, especially those in the middle,
are flipped a lot of times. Discs that still can be flipped
during the current game are called unstable discs. Stable
discs, on the other hand, cannot be flipped anymore dur-
ing the current game. This means that players owning
stable discs cannot lose them anymore.

Discs placed in the corners of the board are always
stable. Discs that are adjacent to stable discs can also be
stable. This makes corners strategically very important.
In the example in Figure 2, the dark shaded squares
indicate the stable discs for Black.

Figure 2: Stable discs for Black.

Location
An Othello board consists of 64 squares. Strategically,
each of those squares has a certain importance. As ex-
plained above, the four corner squares are very impor-
tant.

To make strategic discussions easier, most squares on
an Othello board are given names. Besides the corners,

(v. June 22, 2007, p.2)



Playing Othello Using Monte Carlo J.A.M. Nijssen

an Othello board contains X-, A-, B-, and C-squares and
the Sweet 16. In figure 3, the locations of these squares
are shown. The 16 dark-shaded squares in the middle of
the board belong to the Sweet 16.

Figure 3: Types of squares on an Othello board.

Typically, playing X-squares or, to a lesser extent,
C-squares are considered to be strategically bad moves.
If a player owns such a square, he risks losing the corner.

Placing a disc in the Sweet 16, however, often does
not bear any serious risks and is often a good move.

Mobility and frontiers
Each player is obliged, if possible, to play a move. Be-
cause of this rule, it is possible to force the opponent
to make bad moves. This can be achieved by limiting
the number of moves the opponent can do. Advanced
players can place their discs in such a way to limit the
possible moves of the opponent to only bad ones.

One way to increase your own and limit the oppo-
nent’s mobility is to make your frontier as small as pos-
sible. All discs that are adjacent to at least one empty
square belong to the frontier. A large frontier often
means a large number of possible moves for the oppo-
nent, whereas a small frontier limits this number.

Parity
Playing the last move in a game is generally a major
advantage. Discs that are flipped during the last move
cannot be lost anymore and this feature gives the player
doing the last move a considerable advantage. Typically,
because Black begins the game, White can make the last
move. However, when someone has to pass, the parity
changes from one player to the other. So, in order to
make the last move, Black should try to force an odd
number of passes in the game to ‘win parity’. White,
on the other hand, tries to either avoid any passes or to
force an even number of passes in the game.

3 The Monte Carlo Algorithm
This section describes the Monte Carlo algorithm. First,
it shows how the basic algorithm works. Second, we show
how the algorithm can be improved by applying domain

knowledge. Third, a possible structural enhancement to
the algorithm is described.

3.1 The basic algorithm

When a player wants to make a move, he should first
know which moves are legal. These moves are called the
candidate moves. If there are no candidate moves, then
he has to pass. If there is only one candidate move, then
this move is by definition the best one. If there is more
than one candidate move, he has to make a decision.
This decision is made by the Monte Carlo algorithm.

The algorithm is run for a fixed number of times.
This number is indicated by the variable Np. These
runs are equally divided among the candidate moves.
During each run, the algorithm first plays the candidate
move and then continues playing the game completely
randomly, until the game is over.

When all runs of a candidate move are done, the
average result is computed. This average result can be
computed in two ways: either by calculating the percent-
age of won games, or by calculating the average number
of discs owned by the player at the end of a game. In
our algorithm, we use percentage of won games, as it is
more important to try to win the game than to try to
have on average many discs. The average result gives
an indication of whether the candidate move was a good
one or not.

When all runs are done, the candidate move with the
highest average result is considered to be the best move
and is eventually played.

3.2 Applying domain knowledge

The basic Monte Carlo algorithm does not use any do-
main knowledge at all. The advantage of this is that
the algorithm is very easy to implement and works faster
than algorithms that do use domain knowledge. The dis-
advantage is that, because of the lack of strategic knowl-
edge, the algorithm does not play very strongly. This
will be explained further in section 4.

To improve the algorithm, domain knowledge can be
applied in two ways. The first one is to use domain
knowledge to create a preprocessor. The second is to in-
corporate domain knowledge into the algorithm to ‘steer
the algorithm in the right direction’. This technique is
called pseudo-random move generation [1].

Preprocessing
In the basic Monte Carlo algorithm, all candidate moves
are played an equal number of times, including the
strategically bad ones. The preprocessor analyzes all
candidate moves and rewards each move with a score.
The higher the score, the better the move. This score
is based on the strategic points explained in section 2.2.
There are two types of preprocessors.

(v. June 22, 2007, p.3)



J.A.M. Nijssen Playing Othello Using Monte Carlo

The first one selects a fixed number of moves. We
call this preprocessor the Fixed Selectivity Preproces-
sor (FSP). After the scoring procedure, the FSP selects
the Ns moves with the highest score. Ns is a param-
eter that can be tuned (see section 4). These moves
are then passed on to the Monte Carlo algorithm. The
other moves are eliminated and are not considered any-
more. This way, the strategically bad moves are filtered
out and only the strategically most promising moves are
considered.

The second type of preprocessor selects a variable
number of moves. This preprocessor is called the Vari-
able Selectivity Preprocessor (VSP). The VSP selects
moves by comparing their scores to the average score of
all candidate moves. If the score of a candidate move
is at least a given percentage, called ps, of the average
score, it passes the preprocessor. Otherwise, it is filtered
out. By lowering the value of ps, more moves pass the
preprocessor.

Pseudo-random move generation
In the basic Monte Carlo algorithm, after playing the
first move, the game is finished by playing each move
with an equal probability. This means that the moves
are drawn from a uniform distribution.

When applying pseudo-random move generation,
moves are not drawn from a uniform distribution, but
they are chosen with a given preference. This preference
is determined by the domain knowledge. Each move is
scored in the same way as with the preprocessor. The
higher the score, the more the move is preferred to be
played. The advantage of this is that the more likely
game progressions are played more often than the less
likely ones. The disadvantage is that computing the
scores for each move in each game takes a lot of time.

In order to limit the time spent on scoring the moves,
the game is not completely played using pseudo-random
move generation, but only during the first Nd moves.
After that, the moves are drawn using the uniform dis-
tribution. The larger the value of Nd, the more time is
spent on scoring, meaning that less games can be played.
In section 4, results for different values of Nd are shown.

3.3 Implementing structural
enhancements

The Monte Carlo algorithm can be improved by adding
domain knowledge, but it is also possible to apply struc-
tural enhancements. Such enhancements make the algo-
rithm work more efficiently, without adding any domain
knowledge to the algorithm. One of these techniques,
called tournament play, is explained below.

Tournament play
As explained in section 3.1, all runs are equally divided
among the candidate moves. In order to improve the

Square type Owner
alpha-beta opponent

Corner +5 -5
X-square -2 +2
C-square -1 +1
Sweet 16 +2 -2
Others +1 -1

Table 1: Score awarded to a disc based on its owner and
location.

accuracy of the algorithm, tournaments can be played.
First, the candidate moves are being played a number of
times. After analysis, the move with the lowest average
result is eliminated and the remaining moves are being
played again a number of times. This process is repeated
until two candidate moves are left and the best one is
chosen. The advantage is that the last moves are played
more often, meaning that their results are more accurate.
A possible downside is that moves that are eliminated
during the first rounds might not have been evaluated
often enough to be sure that they really are bad moves.

4 Experiments
In order to answer the second and the third research
question stated in the introduction, we needed to execute
a number of experiments. Based on these experiments,
we can define the settings for the Monte Carlo algorithm
and its improvements to play as strongly as possible. In
this section, we will show how the experiments are set up
and what the outcomes of the experiments are. At the
end of this section, we will show how the MC algorithm
plays against other Othello players.

The conclusions that can be derived from these ex-
perimental results are described in section 5.

4.1 The alpha-beta player

In order to see how strongly the MC-based player plays,
we decided to let it play against an AI player based
on another algorithm, namely the alpha-beta algorithm.
This algorithm is easy to implement and is able to play
the game pretty well, even without too much domain
knowledge.

The depth of the search tree of the alpha-beta al-
gorithm is, during our research, limited to 7. This lets
the algorithm search deep enough to play a decent game,
without having a too large computing time.

At the leaves of the search tree at depth 7, the board
is evaluated and returns a score. The alpha-beta player
tries to maximize this score. Each disc on the board is
awarded a score. This score is based on the owner of the
disc and its location on the board. Table 1 shows how
the scores for each disc are determined.

(v. June 22, 2007, p.4)



Playing Othello Using Monte Carlo J.A.M. Nijssen

Np wins average average com-
(%) score puting time (ms)

0 0 4.65 0.74
100 17 14.52 21.78
250 23 17.84 49.70
500 27 19.06 107.47
1000 36 22.43 208.21
2500 40 25.22 515.22
5000 51 26.25 1017.08
10000 52 28.09 2037.96

Table 2: Experimental results for different values of Np

without a preprocessor and Nd = 0.

If at a leaf the game is finished, 1000 points are
awarded if the alpha-beta player has won, and -1000
points if it has lost.

4.2 Variable tweaking

As explained in section 3, the Monte Carlo algorithm
contains a number of variables that can be tuned to
change the way the algorithm works. To summarize,
there are three variables that can be set: the number of
games played (Np), the maximum number of moves that
are allowed to pass the preprocessor (Ns or ps, based
on the type of preprocessor) and the maximum depth
at which domain knowledge is used to steer the Monte
Carlo algorithm (Nd). Besides these three variables, the
use of tournament play can be toggled on or off. This
section will show how the MC player plays against the
alpha-beta player described above with different variable
settings.

Number of plays
The Monte Carlo algorithm plays each move a given
number of times. The larger the number of plays, the
more reliable the results will be. But simulating more
games also takes a longer time. The first set of exper-
iments is conducted to investigate the influence of the
number of games that are simulated on the strength of
the player. We let the MC player play 100 games for
each setting against the alpha-beta player. The results
for different values of Np against the alpha-beta player
are displayed in Table 2.

For these experiments, we did not use a preprocessor
and we set Nd = 0, meaning that no domain knowledge
is used in the simulations of the Monte Carlo algorithm.
Note that for Np = 0, no games are simulated, so the
algorithm chooses one move completely randomly.

Preprocessor
In the second set of experiments, the influence of the
preprocessor on the performance of the MC algorithm is
investigated.

Ns wins average average com-
(%) score puting time (ms)

2 45 26.25 535.33
3 40 25.46 515.60
4 51 29.08 511.13
5 48 27.31 526.17
6 41 22.49 517.65
7 42 22.39 537.70
8 45 24.88 537.22
9 46 26.35 539.20
10 40 24.21 542.33

Table 3: Experimental results for the FSP for different
values of Ns with Np = 2500 and Nd = 0.

ps wins average average com-
(%) score puting time (ms)

100% 32 22.33 488.89
90% 34 23.64 492.21
80% 48 25.53 488.22
70% 52 27.88 482.56
60% 43 25.41 493.44
50% 47 26.46 508.93
40% 47 27.14 476.27
30% 44 25.17 500.51
20% 38 23.11 489.88
10% 40 24.89 493.61

Table 4: Experimental results for the VSP for different
values of ps with Np = 2500 and Nd = 0.

In this set of experiments, we set the number of sim-
ulated games of the Monte Carlo algorithm to a fixed
number, namely Np = 2500. During the simulation pro-
cess of the Monte Carlo algorithm, no domain knowledge
is used, so Nd = 0. The only domain knowledge is used
in the preprocessor. For each setting, again 100 games
are played against the alpha-beta player with a maxi-
mum depth of 7. As explained in section 3.2, we can use
two different preprocessors.

Table 3 shows the experimental results for the FSP
for various values of Ns. Please note that for Ns = 1 no
experiments are conducted. This is because if Ns = 1,
only one move passes the preprocessor, meaning that the
Monte Carlo algorithm is not used to determine which
move is played.

In Table 4 the experimental results for the VSP are
displayed for various values of ps.

Domain knowledge in the Monte Carlo
algorithm
As explained in section 3.2, domain knowledge can be
used to give strategically better moves a higher prefer-
ence to be played during the Monte Carlo simulation.
In the third set of experiments, we investigate the influ-

(v. June 22, 2007, p.5)



J.A.M. Nijssen Playing Othello Using Monte Carlo

Nd wins average average com-
(%) score puting time (ms)

0 40 25.22 515.22
2 51 27.49 755.35
5 49 26.67 1414.57
7 51 27.66 1887.92
10 55 28.90 2504.83
12 62 29.77 2959.58
15 55 27.83 3585.34
17 52 27.94 4057.45
20 60 30.44 4666.17

Table 5: Experimental results for different values of Nd

with Np = 2500 and Ns = 99.

Np wins average average com-
(%) score puting time (ms)

0 0 4.65 0.74
100 14 14.66 18.50
250 24 18.61 47.85
500 38 23.03 97.08
1000 36 23.68 193.72
2500 46 26.72 478.88
5000 45 24.27 964.54
10000 50 27.89 1895.88

Table 6: Experimental results for different values of Np

using tournament play, with Ns = 99 and Nd = 0.

ence of the amount of domain knowledge on the perfor-
mance of the algorithm. During these experiments, we
let the value of Nd vary to discover the effects of domain
knowledge when applied in the Monte Carlo algorithm
on its overall performance. As in the second set of exper-
iments, we use Np = 2500. To fully observe the effect of
domain knowledge used in the MC algorithm, we disable
the preprocessor. Again, we let the MC player play 100
games at each setting against alpha-beta with a max-
imum depth of 7. In Table 5, the results for different
values of Nd are displayed.

Tournament play
If tournaments are used, bad moves are eliminated early
on, while good moves are played more often. In this
set of experiments, we use the same setup as in the first
set of experiments, but now with tournaments instead of
without. Table 6 shows the results retrieved from these
experiments.

4.3 Performance against other players
In the second part of the problem statement, we ask
how strongly the algorithm plays against other players.
Therefore, we have created a Monte Carlo-based AI Oth-
ello player, named Monthello. For Monthello, we
set Np = 5000 and Nd = 10. We chose to use the FSP

Opponent plays wins average
score

Alpha-beta 100 62 31.25
WZebra (depth = 1) 10 6 29.60
WZebra (depth = 4) 10 0 10.60

Human 10 1 15.30

Table 7: Results of Monthello against various players.

and set Ns = 5. Finally, Monthello does use tour-
nament play. In section 5.1, we will show that these
settings will provide the best results.

There are three opponents for Monthello to play
against: the alpha-beta player, which was used to tweak
the variables, WZebra, a strong and popular AI player,
and an experienced human player, namely the developer
of the program and the writer of this paper.

First, we let Monthello play against the alpha-beta
player. It turns out that Monthello is able to win the
majority of the games. Out of 100 games, Monthello
wins 62 times and loses 38 times.

Second, we let our program play against WZebra.
It is possible to manually set the strength of this pro-
gram. We let our program play against two different
levels. First, we set the strength as low as possible, with
a search depth of 1, no use of opening books and small
randomness during the mid game. With these settings,
Monthello manages to win 6 out of 10 games. If we
increase the strength of WZebra by setting the search
depth to 4 and toggling the use of opening books on,
WZebra easily wins all 10 games.

Finally, we let Monthello play against an expe-
rienced human player. Out of 10 games, Monthello
manages to win one of them in a pretty strong game. It
loses all nine other games, however.

The results are summarized in Table 7.

5 Conclusions
In the introductory chapter of this paper, we have given a
problem statement and three research questions. In this
section, we will summarize some key points of this pa-
per while answering the research questions. After that,
we will use these answers to give a concluding answer
to the problem statement. Finally, we will give some
suggestions for future research.

5.1 Answering the research questions

In this section, we will give an answer to the research
questions.

Improvements
The first research question was how the MC algorithm
could be improved.

(v. June 22, 2007, p.6)



Playing Othello Using Monte Carlo J.A.M. Nijssen

In section 3, we have proposed some improvements.
Domain knowledge can be used as a preprocessor to fil-
ter out bad candidate moves and only consider the best
ones, and as a basis for a pseudo-random move genera-
tor, where, during the simulations, better moves have a
higher priority to be played than bad moves. One way
to structurally improve the algorithm is by implementing
tournaments, so that better candidate moves are played
more often than bad ones.

Tuning
The second research question was how the parameters
need to be tuned to make the algorithm work as strong
as possible.

As the results in Table 2 show, the strength of the al-
gorithm strongly depends on the number of games that
are simulated. Starting at Np = 0, where no games
are won, the strength of the algorithm quickly increases
as Np increases. However, starting at Np = 5000,
the strength algorithm seems to stabilize, so it seems
unnecessary to simulate more games, because they do
not really improve the strength of the algorithm, while
they do increase the computing time considerably. So,
Ns = 5000 seems to give the best balance between per-
formance and speed.

Table 3 shows the experimental results for the FSP
for various values of Ns. The best results are achieved
with Ns = 4 and Ns = 5. Apparently, if Ns is lower than
4, the preprocessor sometimes filters out good moves.
This is because the evaluation function does not reward
those moves with an appropriate score. We will explain
more about this in section 5.3. If Ns is larger than 5, the
performance is also lower. This is because more moves
pass the preprocessor, including bad ones. The higher
Ns, the more often it happens that the preprocessor does
not filter out any move, making the effect of the prepro-
cessor smaller. The fluctuation of the win rate can be
attributed to the randomness of the Monte Carlo algo-
rithm.

Basically, the same goes for the results for the VSP.
As can be seen in Table 4, if the preprocessor is too strict,
good moves are filtered out too often. If the value of ps

drops, however, the effect of the preprocessor diminishes
because bad moves also often pass the preprocessor. The
VSP seems gives the best results for ps = 70%.

Both preprocessors seem to be equally strong if their
parameters are set optimally.

Table 5 shows the influence of domain knowledge on
the performance of the MC algorithm. It shows that
even a little domain knowledge (Nd = 2) considerably
improves the performance of the algorithm. Adding do-
main knowledge to a deeper level improves the algo-
rithm, but it also makes it significantly slower. Adding
domain knowledge up to a depth of 20 makes the algo-

rithm about ten times as slow as without domain knowl-
edge. So, domain knowledge effectively increases the
strength of the algorithm, but it is also very time con-
suming. Because of the fluctuation in the results, it is
hard to determine the best value for Nd. It is best to
set Nd not too high, because the processing time greatly
increases if Nd becomes larger. Nd = 10 adds enough
domain knowledge to the MC algorithm to make it work
better, while the computation time is not too large.

The results of the fourth set of experiments, which
investigates how the performance of the MC algorithm
changes if tournament play is applied, are shown in Ta-
ble 6. To see how the tournaments influence the average
outcome, the results need to be compared with those
in Table 2. As these tables show, adding tournaments
does not significantly improve the algorithm. If Np gets
larger, tournament play makes the algorithm work a lit-
tle bit better. The only significant different occurs for
Np = 500. In this case, the algorithm is able to work
pretty well already without tournaments. However, if
tournament play is used, the number of simulations dur-
ing the first rounds is way too small. This means that
it happens often that good moves are eliminated during
the first rounds.

Strength
From the final set experiments, we can conclude that
Monthello is able to play well against simple AI play-
ers, but it barely stands a chance against an experienced
human player or a strong AI player.

Evaluation of the played games shows that one of
the biggest problems is still that Monthello sometimes
plays a really bad move. Figure 4 shows one of those
moves. Monthello, playing black, plays on square H2,
giving away corner H1. During the simulation, however,
Monthello wins the majority of the games, because if
the games are solved pseudo-randomly, it happens more
often that Black takes corner H8 than that White takes
corner H1. This is because Black can make less moves
than White, and therefore has a higher chance of taking
the corner.

5.2 Answering the problem statement
In the introduction we asked how the Monte Carlo al-
gorithm can be used to play the game Othello and how
strongly it plays. In this paper, we have shown that
the basic MC algorithm is sufficient to play the game.
The performance, however, is poor. Therefore, improve-
ments are absolutely necessary to let the algorithm play
at a higher level. In the previous section, we have shown
what improvements can be made and how they need to
be tuned to play as good as possible, while still being
fast.

Monthello turns out to be a decent Othello player.
Sometimes it gives away a game because of a bad move.

(v. June 22, 2007, p.7)



J.A.M. Nijssen Playing Othello Using Monte Carlo

Figure 4: A situation which occurred during one of the
games against the human player. Monthello (black)
plays H2.

Domain knowledge helps to minimize the amount of bad
moves, but they still occur because of the stochastic na-
ture of the Monte Carlo algorithm. Still, for experienced
players and strong AI players it is not too difficult to beat
Monthello, even if it does not make any bad moves.

Our research shows that the Monte Carlo algorithm
can also be used to play other games than Go. As in-
dicated in the introduction of this paper, MoGo is one
of the strongest AI Go players around. However, MoGo
currently plays at a strength of 4 kyu [11], which stands
for an intermediate amateur. Also Monthello does
not seem to be able to play at a level higher than am-
ateur. There are some improvements that can be made
to Monthello, which will be discussed in section 5.3,
and while they will make the program stronger, it is not
likely that they will make the program play at world
champion level.

It turns out that Monte Carlo is a simple algorithm
that can be used to play strategically complex games
pretty well, but not on a very high level.

5.3 Future work

In our research, we incorporated a couple of improve-
ments to make the algorithm work better. Naturally,
there are many more improvements that could be made
that were not covered in our research.

For instance, one way to structurally improve the
Monte Carlo algorithm is the implementation of Monte
Carlo Tree Search [3]. Another is the implementation
of Upper Confidence bounds applied to Trees (UCT).
UCT is an often-used technique to structurally improve
the MC algorithm without adding new domain knowl-
edge [4]. Starting from the current state of the game,
UCT selects a path of moves through a search tree by
computing a value for each candidate move based on the
average outcome of the move and how many times the
move has been played, as well as how many times the po-
sition has been visited. Based on this value, each move
is assigned a preference to be played. If there are chil-

dren to a node that have not been visited yet, then one
of those moves is selected at random [7].

Another way to improve the performance of the algo-
rithm is improving the domain knowledge. For instance,
sometimes the preprocessor filters out good moves be-
cause these moves were not rewarded appropriately by
the evaluation function. Making a good evaluation func-
tion for Othello is difficult, because it is a strategically
very difficult game. Some easier things however could be
implemented in the future, like detecting wedges (plac-
ing a disc on an edge between two opponent discs).

The algorithm could also be improved by learning
common openings. This way, for instance bad moves in
the early game can be eliminated. A good opening also
gives a player a considerable advantage in the rest of the
game.

References
[1] Bouzy, B. (2005). Associating domain-dependent

knowledge and Monte Carlo approaches within
a Go program. Information Sciences, Heuristic
Search and Computer Game Playing IV, Vol. 175,
pp. 247–257.

[2] Brugmann, B. (1993). Monte Carlo Go.

[3] Chaslot, G., Saito, J.-T., Bouzy, B., Uiter-
wijk, J.W.H.M., and Herik, H.J. van den
(2006). Monte-Carlo Strategies for Computer
Go. BNAIC06: Proceedings of the 18th Belgium-
Netherlands Conference on Artificial Intelligence,
pp. 83–90.

[4] Kocsis, L. and Szepesvri, C. (2006). Bandit based
Monte-Carlo planning. European Conference on
Machine Learning.

[5] Othello University (2007). Othello history.
http://home.nc.rr.com/othello/history/.

[6] Russell, S. and Norvig, P. (2003). Artificial In-
telligence, A Modern Approach, Second Edition.
Prentice Hall, New Jersey.

[7] Sensei’s Library (2007). UCT for Monte Carlo
computer Go. http://senseis.xmp.net/?UCT.

[8] Herik, H.J. van den, Uiterwijk, J.W.H.M., and
Rijswijck, J. van (2002). Games solved: Now and
in the future. Artificial Intelligence, Vol. 134, pp.
277–311.

[9] Wedd, N. (2007a). Computer Go - past events.
http://www.computer-go.info/events/
index.html.

[10] Wedd, N. (2007b). Detais of program:
Mogo. http://www.computer-go.info/db/
oprog.php?a=Mogo.

(v. June 22, 2007, p.8)



Playing Othello Using Monte Carlo J.A.M. Nijssen

[11] Wikipedia (2007a). Computer Go.
http://en.wikipedia.org/wiki/Computer Go.

[12] Wikipedia (2007b). Reversi.
http://en.wikipedia.org/wiki/Reversi.

(v. June 22, 2007, p.9)


