
A Quoridor-playing Agent

P.J.C. Mertens

June 21, 2006

Abstract

This paper deals with the construction of
a Quoridor-playing software agent. Because
Quoridor is a rather new game, research about
the game is still on a low level. Therefore the
complexities of the game are calculated, where-
after depending on the complexities a suitable
algorithm is chosen as a base for the Quoridor-
playing agent. This algorithm is extended with
some basic heuristics. Though these heuristics
do not lead to spectacular results a better in-
sight in Quoridor is gained from these heuris-
tics.

1 Introduction
Since the early beginning men played games for practice
of hunting and fighting skills. Later on games were be-
ing played for fun. Ever since people always want to be
the best in these games, to gain respect. For example,
in medieval times warlords participated in sword fight-
ing to show both their strength and courage. In times
where intelligence gained importance over power, games
like chess got more popular to show mental skills. The
invention of the micro-processor changed things in game-
playing competitions. Some people did not want to be
the best themselves anymore but wanted to create a soft-
ware agent which would beat the best human player in
the world or even solve the game. Today many games
are being studied or studying has already stopped be-
cause the game is solved. One game that is not solved
and has hardly been studied so far is Quoridor.

Quoridor is a 2-player board game, played on a 9x9
board. Each player has one pawn and 10 fences. At each
turn, the player has to choose either to:

1. move his pawn to one of the neighboring squares.

2. place a fence on the board to facilitate his progress
or to impede that of his opponent.

Quoridor was invented in 1997 by Gigamic. Compared
to well-known games like chess and go, Quoridor is a
relatively new game. Not much investigation is done
and few specific information can be found about winning
strategies. Research about strategies will be done in this

thesis. The problem statement can be formulated as
follows:

What algorithms and heuristics can be used to
develop a strong Quoridor-playing agent?

This leads to the following research questions:

1. What is Quoridor’s state-space complexity
and game-tree complexity?

2. Depending on these complexities, which al-
gorithms are the most promising to de-
velop a software agent that is capable of
playing Quoridor?

3. What adjustments and extensions of these
algorithms make the agent more ad-
vanced?

The reminder of this paper is structured as follows.
Section 2 describes the little amount of research that is
already done on this topic. This section also includes
the pre-investigation. Some complexities of the game
are measured here and depending on these complexities
the type of algorithm that will be used is chosen. The
experimental setup is described in section 3. Implemen-
tation choices are also being explained here. In section 4
the results of the tests performed are discussed. Section
5 gives the results of the experiments. Finally, conclu-
sions are drawn and possible future work is discussed in
section 6.

2 Background
First the rules of Quoridor will be specified. Then we
will investigate the game’s complexities, and an answer
to the first and second research question will be given.
Thereafter the related research will be described.

2.1 Rules of the game

The start position is depicted in figure 1. The objective
of the game is to be the first to reach the other side of
the 9x9 board. Each player starts at the center of his
base line. A draw will determine who starts.

Each player in turn chooses to move his pawn or to
put one of his 10 fences on the board. When a player
runs out of fences, the player must move his pawn. The
pawns are moved one square at a time, horizontally or



P.J.C. Mertens A Quoridor-playing Agent

Figure 1: Quoridor board at the start.

vertically, forwards or backwards. The pawns must get
around the fences, jumps are not allowed. The fences
must be placed between 2 sets of 2 squares. They can
be used to facilitate the players progress or to impede
that of the opponent. However, at least one access to
the goal line must always be left open. When two pawns
face each other on the neighboring squares which are
not separated by a fence, the player whose turn it is can
jump the opponent’s pawn (and place himself behind
him), thus advancing an extra square (see figure 2).

Figure 2: Allowed moves of the lower pawn.

If there is a fence behind the opposing pawn, the
player can place his pawn to the left or the right of the
other pawn (see figure 3), unless there is a fence beside
the opposing pawn (see figure 4). The first player who
reaches one of the 9 squares of his opponent’s base line
is the winner.

Figure 3: Allowed moves of the lower pawn.

Figure 4: Allowed moves of the lower pawn.

2.2 Complexity of the game

Before developing a Quoridor-playing agent, few things
about the game have to be known to start investigat-
ing in the right direction. Two things we want to know
are the state-space and the game-tree complexity. The
state-space complexity is the number of different possi-
ble positions that may arise in the game. The game-tree
complexity is the size of the game tree, i.e., the total
number of possible games that can be played. The game
can then be mapped on one of four categories. The cat-
egories are shown in figure 5.

Figure 5: Categories of complexity.

The first category exists of solvable games like tic-
tac-toe. These games have both a small game-tree and
state-space complexity. Games in category II are games
with a high game-tree complexity but a small state-space
complexity. Brute-force algorithms are commonly used
for this kind of games [9]. This is exactly the opposite of
games in category III where the state space is too large
to use brute-force methods but the game-tree complexity
small enough to perform tree search. Most algorithms in
this category are knowledge based. In category IV are
games like chess and Go, with both a high state-space
and game-tree complexity and therefore hard to master.

The state-space complexity is the number of possible
positions (states) of the game. In Quoridor this is the
number of ways to place the pawns multiplied by the
number of ways to place the fences. However, since the
number of illegal positions is hard to calculate, an upper
bound will be estimated. There are 81 squares to place

(v. June 21, 2006, p.2)



A Quoridor-playing Agent P.J.C. Mertens

the 1st pawn on, 80 squares are left to place the sec-
ond. So the total number of positions Sp with 2 pawns,
disregarding fences, is given by eq. (1).

Sp = 81 ∗ 80 = 6480 (1)

To calculate the total number of states obtained by
the fences, the number of ways to put one fence on the
board has to be known. Since each fence has a length of
2 squares, there are 8 ways to place a fence in one row.
Given that there are 8 rows, there are 64 positions to put
a fence horizontally on the board. And because there are
as much rows as columns, one fence can be put on 128
(64+64) different ways. But one fence occupies 4 fence
positions (with exception to squares on the border). This
can be seen in figure 6.

Figure 6: Occupation by a fence.

So the total possible number of positions of fences Sf

can be estimated by equation (2).

Sf =
20∑

i=0

i∏

j=0

(128− 4i) = 6.1582 1038 (2)

To get an estimation of the size of the state space,
this number has to be multiplied with the number of
pawn positions Sp, so the total state-space complexity S
is given by equation (3).

S = Sp ∗ Sf = 6480 ∗ 6.1582 1038 = 3.9905 1042 (3)

The game-tree complexity is estimated by raising the
average branching factor by the power of the average
number of plies. The branching factor is the number of
branches a node in the game tree has. A ply is a move by
one player, so the total number of plies is the sum of the
number of steps made by both players together. Accord-
ing to Glendenning [2] the average branching factor can
be estimated as 60.4. Also according to Glendenning,
the average game length is 91.1. Now the game-tree
complexity G can be estimated by equation (4).

G = 60.491.1 = 1.7884 10162 (4)

Now we have found the answer to the first research
question. The state-space and game-tree complexity of

Quoridor can be compared with complexities of well-
known games, see table 1 [10]. From table 1 we can con-
clude that Quoridor has a similar state-space complexity
as Chess and even a higher game-tree complexity, hence
Quoridor belongs to the difficult games of category IV.

Game log(state-space) log(game-tree)
Tic-tac-toe 3 5
Nine Men’s Morris 10 50
Awari/Oware 16 32
Pentominoes 12 18
Connect Four 14 21
Checkers 33 50
Lines of Action 24 56
Othello 28 58
Backgammon 20 144
Quoridor 42 162
Chess 46 123
Xiangqi 52 150
Arimaa 42 190
Shogi 71 226
Connect6 172 140
Go 172 360

Table 1: Game complexities.

2.3 Algorithms and Heuristics

In the previous section, the complexity of the game was
measured. Now the object, as stated in research question
2, is to find algorithms that fit well, given the complexi-
ties. An algorithm that is often used is MiniMax search
with Alpha-Beta pruning [7]. However, the game tree
is too large to perform a MiniMax search all the way
down to the leaves of the game tree. Yet, the algorithm
is not useless. The problem of the large game tree can
be tackled by limiting the depth of the MiniMax search.
When this is done, a function to determine the value of a
position has to be used. This kind of functions are called
evaluation functions. The value returned by the evalua-
tion function is the sum of weighted values obtained by
several evaluation features (see eq. (5))[7].

Eval(s) = w1f1(s) + · · ·+ wnfn(s) =
n∑

i=1

wifi(s) (5)

Since not much research is done on Quoridor, there is
not much known about evaluation features that perform
well. Glendenning [2] proposed some evaluation features.
Most of these features use the distance to the goal as an
estimator.

(v. June 21, 2006, p.3)



P.J.C. Mertens A Quoridor-playing Agent

3 Experimental setup
This section describes how the simulation environment,
built in Java 2 Standard Edition 1.5.0, is set up. Also
some evaluation features will be proposed. With these
evaluation features, we will try to answer research ques-
tion 3.

3.1 Simulation environment

One of the first decisions to be made was the represen-
tation of the Quoridor position. The most natural way
to represent the board is to represent it as an undirected
graph [1]. The squares on the board are vertices and
the borders of two squares are edges (see figure 7). With
these vertices and edges, it is easy to construct a graph of
a Quoridor board. The graph datatype [3] makes it very
easy to add and remove vertices/edges. This graph is the
base of the QuoridorBoard object, which allows users to
move their pawn and to place fences. The graph has to
be built in the following way:

• Construct 81 vertices and add them to the graph.

• Add edges between each neighboring pair of ver-
tices.

• Delete 2 edges, for each fence that is placed.

• Add temporary edges, and remove one edge tem-
porarily, when the pawns are facing.

Figure 7: Quoridor graph for the start position.

When a move is to be made, the board checks
whether this move is possible by searching the corre-
sponding edge in the graph. If this edge is an element
of the graph, the move is legal. The same holds when
a fence is to be placed. The board will search for those
two neighboring edges which are to be deleted. If these
edges are an element of the graph and there is still a
route left for the opponent to his goal, the fence move is

legal. When the fence move is legal, the board will ad-
just the graph by deleting the two corresponding edges.
After several steps, the board may look like figure 8. The
corresponding graph of the board in figure 8 looks like
figure 9.

Figure 8: An example Quoridor board.

Figure 9: Quoridor graph corresponding to figure8.

One of the advantages of the graph datatype is that
this datatype makes it easy to perform graph search.
These search algorithms are used for two reasons. First,
depth-first search [8], is used to check whether there is
a route to the goal left when a fence is placed. Sec-
ond, search algorithms are used to determine the short-
est route to the goal from the pawn’s position.

As mentioned earlier, MiniMax with Alpha-Beta
pruning [7] is used to determine the move. Minimax uses
a tree datatype. A tree consists of a list of nodes. These
nodes keep track of their relationship (parent, child) to
other nodes. Because MiniMax builds up a tree during
search, the most important features of a tree are:

• Constructed nodes are added to the tree.

(v. June 21, 2006, p.4)



A Quoridor-playing Agent P.J.C. Mertens

• Each node knows the position of both his parent
and children in the tree.

• The tree takes care of the relationship between each
node.

Finally there are the agents. Each type of agent is
another object. An agent can only do one of two things,
i.e., move his pawn or place a fence. The best move is
obtained by applying MiniMax search on the game tree.
Except when all fences are placed, the agent will auto-
matically search for the shortest route to the goal. For
this the agent uses a Breadth-First Search [8]. However,
before the agent object can be used, the following things
have to be done:

• activate one or more evaluation features.

• set weights for the activated evaluation features.

Next the evaluation features will be described.

3.2 Evaluation functions
One of the simplest evaluation features is the number of
columns that the pawn is away from his base line column.
We call this the position feature. So if the pawn is on
his base line, the value is 0. If the pawn is on the goal
line, the value is 8. This can easily be seen in figure 10.

Figure 10: Position evaluation feature.

The next feature does not differ much from the previ-
ous one. This feature returns the difference between the
position feature of the Max player and the position fea-
ture of the Min player. It actually indicates how good
your progress is compared to the opponent’s progress.
This feature is called positionDifference.

When playing a game, each player will try to place
fences in such a way that his opponent has to take as
many steps as possible to get to his goal. To achieve
this, the fences have to be placed so that the opponent
has to move up and down the board. A feature derived

from this fact is the movesToNextColumn feature. This
feature calculates the minimum number of steps that
have to be taken to reach the next column. For exam-
ple, the pawn in figure 11a has to take at least 4 steps
to reach the next column.

Figure 11: MovesToNextColumn evaluation feature.

This feature can also be used for the Max player. The
Max player wants to minimize the maximum number of
steps he has to take to the next column. Figure 11b
shows that by placing the horizontal fence, the player
is guaranteed a minimum of 3 steps to the next column.
The Max player wants to minimize this distance. A small
amount of steps has to give a higher evaluation. So the
number of steps, of the Max player to the next column,
is raised by the power of −1.

3.3 Test setup
To test which feature is better, the different features have
to be tested against each other. However, because there
is no variation in the MiniMax algorithm, the game will
always run the same way. To bring some variation in the
game, a random number [6], from the uniform distribu-
tion on the interval [0,1] (denoted U(0,1)), will be added
to the evaluation value. The evaluation function is given
in eq. (6)

Eval(s) =
n∑

i=1

wifi(s) + U(0, 1) (6)

There are 4 features to test, namely:

• position feature (f1)

• position difference feature (f2)

• Max-player’s moves to next column (f3)

• Min-player’s moves to next column (f4)

(v. June 21, 2006, p.5)



P.J.C. Mertens A Quoridor-playing Agent

Because testing each combination of features against
each other combination would take too much time, the
features are tested as follows.

• f1 + f2 + f4 vs f1 + f2 + f3 (c1 vs c2)

• f2 + f3 + f4 vs f1 + f3 + f4 (c3 vs c4)

• The best of the second match will be tested against
all features c5.

This test setup is chosen to get a view on the dif-
ference between f1 and f2 on the one hand and the dif-
ference between f3 and f4 on the other hand. The last
match is played to know the performance of the agent
when all features are used. To get a good view on the
performance of the features, each of the 3 test matches
is done 100 times.

4 Results
In this section the results of the earlier described test
matches will be given. Next, the results will be discussed.

4.1 Test results

In each test, 100 games were played. Normally a draw
decides which player will start, however in these tests
each player started 50 times. This way the importance
of the starting position can be derived. Also, each game
with more then 300 plies was not taken into account
since it will probably never stop. Games not taken into
account do not influence the average game length.

For all tests, the search depth of the MiniMax algo-
rithm was set at 2. After some preliminary experiments
the feature weights were set as in table 2.

Feature: Weight:
f1 w1 0.6
f2 w2 0.6001
f3 w3 14.45
f4 w4 6.52

Table 2: Feature weights.

The results of the 3 test matches, are given in table
3.

4.2 Discussion of the results

Given the results of match 1.1 and 1.2, it is clear that
the combination f1 + f2 + f3 (c2) is better than combi-
nation f1 + f2 + f4 (c1). The reason for this is that c2

has the feature f3. Feature f3 is an attacking feature
since it is used to minimize the number of steps to the
next column. This is the opposite of feature f4 which is
a defending feature because it is used to maximize the
minimum number of steps to the next column for the

Match 1.1 Wins (on 50 played): Av. plies
f1 + f2 + f4 (c1) 27 98.70
f1 + f2 + f3 (c2) 23
Match 1.2
f1 + f2 + f3 (c2) 49 76.60
f1 + f2 + f4 (c1) 1
Match 2.1 Wins (on 50 played): Av. plies
f2 + f3 + f4 (c3) 24 110.00
f1 + f3 + f4 (c4) 26
Match 2.2
f1 + f3 + f4 (c4) 2 89.64
f2 + f3 + f4 (c3) 48
Match 3.1 Wins (on 50 played): Av. plies
f2 + f3 + f4 (c3) 37 113.94
f1 + f2 + f3 + f4 (c5) 13
Match 3.2
f1 + f2 + f3 + f4 (c5) 9 92.82
f2 + f3 + f4 (c3) 41

Table 3: Test Results.

opponent. So we can say that f4 keeps track of the op-
ponent’s progress rather than taking care of the player’s
progress. This also explains the small win of combina-
tion c1 in match 1.1. Combination c1 will probably al-
ways start defending because the opponent’s number of
steps to next column at the start is 1, which is obviously
the smallest number of steps. Also combination c2 will
defend less, because of f3, and use its fences to facilitate
its own progress.

Combination f2 + f3 + f4 (c3) is the overall winner
of matches 2.1 and 2.2. Combination f1 + f3 + f4 (c4)
equals c3 in match 2.1 but only wins 4% in match 2.2.
Since c3 is the starting player in match 2.1, c3 will al-
ways have a small lead regarding to c4. Because c3 has
got 2 defensive features, f2 and f4, c3 is a more defending
player compared to c4. However the defensive nature of
c3 disappears when moving first. This is probably why
c4 has more wins in match 2.1. Now it is clear that the
defensive nature of c3 is of at most importance in match
2.2, when playing second. Combination c3 defends bet-
ter and therefore has more wins in match 2.2.

From matches 3.1 and 3.2 we can see that combina-
tion c3 achieves more wins in both matches 3.1 and 3.2.
In match 3.2, c3 has even more wins than in match 3.1.
The reason for this is the same as for which c3 has more
wins in match 2.2 than in match 2.1, which is mentioned
above. Another fact that can be derived from match 3.1
and 3.2 is that combination f1 + f2 + f3 + f4 (c5) wins
more matches when not being the starting player. The
reason for this fact is the same reason why c4 has more
wins in 2.1 than in 2.2. This is also mentioned above.

Another remarkable fact is the importance of being

(v. June 21, 2006, p.6)



A Quoridor-playing Agent P.J.C. Mertens

the starting player or not. A defensive combination like
c3 seems to have an advantage when being the second to
move. On the other hand, a more attacking combination
as c2 has an advantage when being the first player.

Finally, we can confirm that the average number of
plies is around 91 (96.85 from our results) as stated by
Glendenning [2].

5 Discussion
In this section, two issues will be treated. First we will
go into detail on the use of features and second the op-
timization of the weights will be discussed.

5.1 Features
The use of features in the evaluation function is quite
simple. However, finding a good feature is not that sim-
ple. A good feature is a feature that tells the player how
well he is performing and how big his chances are to win
from the current position. Also, the calculation of the
feature values must not take too much time since other-
wise it is better to raise the search depth. So the features
have to catch the lack of search depth of the MiniMax al-
gorithm. Therefore features should tell more about how
well the player will perform further in the game rather
than telling how well the current performance is.

5.2 Optimizing weights
One of the major problems is the setting of the weights.
The difficulty lies in the fact that it is hard to estimate
the importance of each feature. A rough estimation can
be made but an exact setting is very hard. Therefore a
function to optimize the weights should be used.

6 Conclusions
In this section conclusions based on the results will be
drawn. Also the future research will be discussed.

6.1 General conclusions
The extensions of the MiniMax algorithm, namely the
proposed features, do not lead to a strong Quoridor-
playing agent. The level that is reached by these heuris-
tics is an amateur level. One of the reasons for this is the
low depth used in the MiniMax search. Deeper search
would have led to better moves and thus better results.

Another reason for the fact that no higher level is
reached is the adjustment of the weights. However, with
the weights that were used, it is clear that feature f1

is a weak feature since combinations with f1 only won
28% of the games played against combinations without
f1. The problem with feature f1 is that it tries to force
a step forward, even if this step is not on the shortest
route to the goal or worse if this step leads to a dead end.
Feature f2 also has this characteristic but less than f1.

This is why combination c3 is better than combination
c4.

Features f3 and f4 performed well but could perform
better if they represented the shortest distance to the
goal and not the shortest distance to the next column
because the shortest route to the next column is not
always on the shortest route to the goal. However this
would cause a time penalty because generally finding the
shortest route to the goal takes more time than finding
the shortest route to the next column. We can say that
features f3 and f4 are efficient in time usage, but they
have a lack in their effectiveness.

The simplicity of the proposed features can be as-
cribed to the fact that research in Quoridor is still in its
infancy. And hopefully the research that is done imparts
to a better insight in the game.

6.2 Future research
One of the major problems is the lack of good features.
So in future research, better features must be found. One
possible method for new features is pattern recognition.
A pattern can be derived from the position of the fences
on the board and the positions of the pawns. Hebbian
learning [4] can then be used to train the linear associa-
tor perceptron. The output of the perceptron will then
indicate how good the pattern is and so give an estima-
tion of how well the player is performing. The use of
a hard limit perceptron can be considered. The output
would then indicate if the pattern is a winning or los-
ing configuration. This would be very useful since, as
mentioned in the discussion, this is one of the important
tasks of a feature. Another advantage of the perceptron
is the few computational time it needs to evaluate the
pattern since the perceptron is based on simple matrix
calculations.

Another possibility for future research is the use of
evolutionary algorithms for weight optimization. Glen-
denning [2] also used evolutionary algorithms to set the
feature weights.

Of course the use of a fast computer is strongly ad-
vised. Game computers like Deep Blue [5] are able to
explore 200.000.000 positions per second, which means
they are able to search very deep in the game tree.

(v. June 21, 2006, p.7)



P.J.C. Mertens A Quoridor-playing Agent

References
[1] Buckley, F. and Lewinter, M. (2003). A friendly

introduction to Graph Theory. Prentice Hall,
New Jersey.

[2] Glendenning, L. (2002). Mastering quoridor. B.
Sc. thesis, University of New Mexico.

[3] Goodrich, M.T. and Tamassia, R. (2002). Algo-
rithm design, pp. 288–308. Wiley, New Jersey.

[4] Hagan, M.T., Demuth, H.B., and Beale, M.
(1996). Neural Network Design, pp. 7.1–7.31.
PWS Publishing, Boston.

[5] IBM (2006). Deep blue. http://www.research
.ibm.com/deepblue/meet/html/d.3.shtml.

[6] Law, A.M. and Kelton, W.D. (2000). Simulation
modeling and analysis, pp. 402–403. Mc Graw-
Hill, Singapore.

[7] Russel, S. and Norvig, P. (1995a). Artificial Intel-
ligence, a modern approach, pp. 161–167. Pren-
tice Hall, New Jersey.

[8] Russel, S. and Norvig, P. (1995b). Artificial Intel-
ligence, a modern approach, p. 75. Prentice Hall,
New Jersey.

[9] Herik, H.J. van den, Uiterwijk, J.W.H.M., and
Rijswijck, J. van (2002). Games solved: Now and
in the future. Artificial Intelligence, Vol. 134, pp.
277–311.

[10] Wikipedia (2006). Game-tree complexity. http:
//en.wikipedia.org/Game-tree complexity.

(v. June 21, 2006, p.8)


