
Constructing an Abalone Game-Playing Agent

N.P.P.M. Lemmens

18th June 2005

Abstract

This paper will deal with the complexity of the
game Abalone1 and depending on this complex-
ity, will explore techniques that are useful for
constructing an Abalone game-playing agent.
It turns out that the complexity of Abalone is
comparable to the complexity of Xiangqi and
Shogi. Further, some basic heuristics and pos-
sible extensions to these basic heuristics are de-
scribed. With these extensions the agent did
not even loose once in the test-games played
against third-party implementations although
it only played at a search depth of 2. So these
heuristic extensions turn out to be a valuable
tool with which the Abalone agent will play
more advanced.

1 Introduction
With the rise of computers and techniques to automate
processes, mankind has taken on the challenge to con-
struct machines that act like humans do. The reasons
for this is the lack of human presence or the inability for
humans to be present to perform tasks. Mankind has
thus started to examine how to make machines intelli-
gent. One of the major problems in this area is how to
make machines choose from an enormous amount of pos-
sibilities and decisions. In what way should a machine
act in a certain situation?

In computer game playing, specifically board games,
the same problems arise. The computer has to decide
what action in a given situation has to be made. The
games can be divided into four categories. These cat-
egories are characterized by two features, namely the
state-space complexity and the game-tree complexity.
These two features will be explained in section 4. In
figure 1 these four categories are graphically presented.
The figure also shows the meaning of being in a specific
category. Especially the fourth category (large state-
space complexity and high game-tree complexity) is a
typical example of a hard to tackle problem for comput-
ers. Games like Go and Chess are games belonging to
this category.

1Abalone is a registered trademark of Abalone S.A. - France.

Figure 1: Game Categories [11].

In 1988 Abalone was introduced to the world.
This perfect information game, which is based on the
Japanese Sumo wrestling, is expected to reside in the
same category as Go and Chess. Our goal is to make
an Abalone game-playing agent. The following problem
statement is formulated for this paper:

What algorithms and heuristics are valuable for the
construction of an Abalone game-playing agent?

In this paper the following research questions will be
answered:

• What is Abalone’s state-space complexity and game-
tree complexity?

• Depending on these complexities, which algorithms
are the most promising to develop a computer agent
that is capable of playing Abalone?

• What adjustments and extensions of these algo-
rithms make the agent more advanced?

In the next section some basic approaches for play-
ing computer games will be illustrated. In section 3 the
Abalone game will be described. Section 4 will present
the complexity for the game Abalone. The Abalone
agent and its approaches for playing the game are ex-
plained in section 5. In section 6 the performance of the
various approaches are evaluated and results of playing
against other Abalone implementations are given. The
conclusions will be provided in section 7. Finally, in sec-
tion 8, future research will be presented.



N.P.P.M. Lemmens Constructing an Abalone Game-Playing Agent

2 Basic Approaches
This section gives a short overview of the basic algo-
rithms used to develop an Abalone-playing agent. In sec-
tion 2.1 the basic Minimax algorithm will be described.
In section 2.2 an extension of this Minimax algorithm,
namely the Alpha-Beta algorithm, will be explained.

2.1 Minimax
As Abalone is a two-player, perfect-information game, no
randomness (like chance) is involved. When playing, the
two players are in fact trying to respectively maximize
and minimize the score function from the first player’s
view. Thus the ‘maximizing player’ (i.e., the first player)
will try to determine a move which will give him/her the
maximum score while giving the other player the min-
imum score. Given a search tree (for an impression of
how a Minimax search tree looks like, see figure 2), the
search proceeds as follows: the branches at the root of
the tree represent all possible moves for the MAX player,
each leading to a new game position. The branches at
each node of one of these branches represent again all
possible moves, but now for the MIN player, and so on.
Supposing that both players are playing optimally then
the best move for MAX will be one where the lowest score
reachable by MIN is as high as possible. At the end of
the tree (the leaves) the score function is calculated for
the corresponding game positions. The algorithm uses a
simple recursive computation of the minimax values of
each successor state, directly implementing the defining
equations. The recursion proceeds all the way down to
the leaves of the tree, and then the minimax values are
backed up through the tree as the recursion unwinds.
The minimax algorithm performs a complete depth-first
exploration of the search tree [9]. In figure 2 Minimax
search leads to a best move with value 3. The algorithm’s
complexity is bd, where b stands for the average branch-
ing factor and d stands for the depth of the search tree.

Figure 2: Minimax search tree [9].

2.2 Alpha-Beta
The main problem with Minimax search is that the num-
ber of game states it has to examine is exponential in the

number of moves. As is noted in section 2.1 Minimax’s
complexity is bd. By using the Alpha-Beta algorithm
(provided it uses optimal move ordering) it is possible
to reduce the complexity effectively to b

d
2 . Alpha-Beta

search is an extension of the Minimax algorithm. The al-
gorithm computes the correct Minimax decision without
looking at every node in the game tree. The algorithm
uses pruning in order to eliminate large parts of the tree
from consideration. Essentially, it detects nodes which
can be skipped without loss of any information. For the

Figure 3: Alpha-Beta search tree [9].

example search tree given in figure 3, the algorithm pro-
ceeds as follows: After examining the first move of MAX
it is known that the player can do a move with a value of
at least 3. When the MAX player tries its second move
it detects that the MIN player has a move leading to a
score of 2 on its first move. Now it can be concluded
that there is no need to explore the rest of the subtree
because if there are moves exceeding 2, the MIN player
is expected not to make them. So the best the MAX
player can get out of this subtree is the move with score
2. This move will eventually be ignored since the MAX
player already has a move with a value of 3.

Generally speaking the algorithm proceeds as follows:
consider a node n somewhere in the tree, such that the
player has a choice of moving to that node. If the player
has a better choice m either at the parent node of n or at
any choice point further up, then n will never be reached
in actual play. So once we have found sufficient informa-
tion about n (by examining some of its decendants) to
reach this conclusion, we can prune it [9].

Alpha-beta search gets its name from the following
two parameters that describe bounds on the backed-up
values that appear anywhere along the path. The first
one is α, which is the best score that can be forced.
Anything worth less than this is of no use, because there
is a strategy that is known to result in a score of α.
Anything less than or equal to α is no improvement.
The second is β. β is the worst-case scenario for the
opponent. It is the worst thing that the opponent has to
endure, because it is known that there is a way for the
opponent to force a situation no worse than β, from the

(v. 18th June 2005, p.2)



Constructing an Abalone Game-Playing Agent N.P.P.M. Lemmens

opponent’s point of view. If the search finds something
that returns a score of β or better, it is too good, so
the side to move is not going to get a chance to use this
strategy [6].

3 The Game Abalone
Abalone is a strategy board-game comparable to Chess
and Go. Since its introduction in 1988 it has grown in
popularity. It has been sold over 4 million times in 30
countries and has over 12 million players. In 1998 the
game was ranked ‘Game of the Decade’ at the Interna-
tional Game Festival [1].

Abalone is a game on a hexagonal board on which
two groups of 14 marbles oppose each other. The game
rules are simple. The player who first pushes off 6 of
his/her opponents marbles wins. Players move in turn.
After tossing for colours, black plays first. In section 3.1
the move rules will be given. Section 3.2 will give some
insight in possible dead-end situations.

3.1 Moves

Figure 4 shows the game’s start position. At a player’s
turn, one, two or three marbles (of the player’s own
color) together may be pushed in any of the six possible
directions. That is, provided there is either an adjacent
free space behind the group or a ‘sumito’ situation (see
below). When two or three marbles of the same colour

Figure 4: Abalone’s start position [4].

are pushed together, they all must be moved in the same
direction. A move can be either broadside or inline. See
figures 5 and 6.

Moving more than three marbles of the same colour
in one turn is not allowed. One, two, or three marbles
of the same colour, which are part of a larger row, may
be separated from the row played.

To push the opponent’s marbles the player has to
construct a so called ‘sumito’ situation. A ‘sumito’ situ-
ation is one of the three superiority positions. A ‘sumito’
situation occurs when the player’s marbles outnumber
the opponents marbles, i.e., 3-to-2, 3-to-1, 2-to-1. See
figure 7. The opponent’s marbles may only be pushed

Figure 5: Broadside moves [4].

Figure 6: Inline moves [4].

‘inline’, when in contact and only provided there is a
free space behind the attacked marble or group of two
marbles.

In order to score it is necessary to push the oppo-
nent’s marbles over the edge of the board.

Figure 7: Sumito moves [4].

In case of an even-balanced situation no pushing
of opponent’s marbles is allowed. These situations are
called ‘pac’ situations. These occur when the situation
is a 3-to-3, 2-to-2 or 1-to-1 situation. See figure 8. The
‘pac’ situation can be broken along a different line of
action.

Figure 9 shows moves that are not allowed. The up-
per situation, where Black wants to push White to the
right, is not allowed because of the single black marble
to the right of the white group. The middle one, where
Black wishes to push the white marbles, is not allowed
since there is a free space between the (black) pushing
group and the (white) to-be-pushed group. In the lower
situation Black wants to push White around the corner.
As only inline pushes are valid this push is not allowed.
Suicide moves (pushing your own marble off the board)
are not allowed either (not shown in the figure).

(v. 18th June 2005, p.3)



N.P.P.M. Lemmens Constructing an Abalone Game-Playing Agent

Figure 8: Pac situations [4].

Figure 9: Unallowed moves [4].

3.2 Dead-end positions

Dead-end positions are positions that are reachable but
in which no move is possible. See figure 10. To reach

Figure 10: Example of a dead-end position.

these positions the players have to co-operate or play
randomly. It is unlikely that these positions are reached
by normal play. Abalone rules do not mention what
happens when such a dead-end position is reached (i.e.,
does that player lose?). Our agent will gracefully men-
tion that no move can be found and terminate the game.

4 Abalone’s Complexity

The property complexity in relation to games is used
to denote two different measures, which are named the
state-space complexity and the game-tree complexity. In
figure 11 a rough distribution of games based on these
two measures can be seen. In section 4.1 the state-space
complexity definition will be given and the value for
Abalone determined. Section 4.2 will handle the game-
tree complexity definition and the value for Abalone will
be determined.

log log
state-space complexity

6

log log
game-tree complexity

-
1

2

3 4

5 67

8

9

10

11

12
13

14

15

16

17

18

1.5 2 2.5

1

1.5

2

2.5

3

Figure 11: Game distribution based on complexity [11].
Awari (1), Checkers (2), Chess (3), Chinese Chess (4),
Connect-Four (5), Dakon-6 (6), Domineering (8×8) (7),
Draughts (10×10) (8), Go (19×19) (9), Go-Moku (15×
15) (10), Hex (11×11) (11), Kalah(6,4) (12), Nine Men’s
Morris (13), Othello (14), Pentominoes (15), Qubic (16),
Renju (15× 15) (17), Shogi (18).

4.1 State-space complexity

The state-space complexity of a game is defined as the
number of legal game positions reachable from the ini-
tial position of the game [3]. Because calculating the
exact state-space complexity is hardly feasible it is nec-
essary to make an approximation of it. For the upper
bound of Abalone’s state-space complexity one has to
make all possible combinations in each of the legal situ-
ations. All situations where one player has nine marbles
and the other less than eight are illegal (since the game
ends when a player looses the sixth marble). The state-
space complexity can therefore be approximated by the
following formula:

14∑
k=8

14∑
m=9

61!
k!(61− k)!

× (61− k)!
m!((61− k)−m)!

(1)

This approximation has to be corrected for symme-
try. Symmetrical situations can be mirrored and ro-
tated and will therefore occur more than once. The
Abalone game has 6 possible ‘mirrors’ and 6 possible
‘rotations’. So in order to correct the state-space com-
plexity we divide the found state-space complexity by
12. The state-space complexity will then result in ap-
proximately: 6.5× 1023.

4.2 Game-tree complexity

A game tree is a tree whose nodes are positions in a game
and whose branches (edges) are moves. The complete
game tree for a game is the game tree starting at the

(v. 18th June 2005, p.4)



Constructing an Abalone Game-Playing Agent N.P.P.M. Lemmens

initial position and containing all possible moves from
each position.

The number of leaf nodes in the complete game tree
is called the game-tree complexity of the game. It is
the number of possible different ways the game can be
played. The game tree is typically vastly larger than
the state space in many games. For most games it is
usually impossible to work out the size of the game tree
exactly, but a reasonable estimate can be made. In order
to calculate an estimate, two factors have to be known.
These factors are the average branching factor of the tree
and the number of ply (half-moves) of the game.

The branching factor is the number of children of
each node. If this value is not uniform, an average
branching factor can be calculated. In Abalone, if we
consider a ‘node’ to be a legal position, the average
branching factor is about 60. This means that at each
move, on average, a player has about 60 legal moves, and
so, for each legal position (or ‘node’) there are, on aver-
age, 60 positions that can follow (when a move is made).
An exhaustive brute-force search of the tree (i.e., by
following every branch at every node) usually becomes
computationally more expensive the higher the branch-
ing factor, due to the exponentially increasing number of
nodes. For example, if the branching factor is 10, then
there will be 10 nodes one level from the current posi-
tion, 100 nodes two levels down, 1000 three levels down,
and so on. The higher the branching factor, the faster
this ‘explosion’ occurs.

A ply refers to a half-move: one turn of one of the
players. Thus, after 20 moves of an abalone game, 40
ply have been completed, 20 by White and 20 by Black.
One ply corresponds to one level of the game tree.

The game-tree complexity can be estimated by rais-
ing the game’s average branching factor to the power of
the number of ply in an average game.

The average game-length of Abalone is 87 ply. This
is determined with the help of the PBEM-archive which
can be found on the internet [8]. As the average branch-
ing factor is 60 we can calculate the resulting game-
tree complexity: 5.0× 10154. This game-tree complexity
lies between the game-tree complexity of ‘Xiangqi’ and
‘Shogi’ as can be seen in Table 1.

5 The Abalone Agent

This section describes the techniques and algorithms
used to make the basic agent more advanced. The basic
agent resembles the more advanced one with exception
of the heuristic extensions. Both agents use Alpha-Beta
as their main search algorithm. Section 5.1 handles the
algorithm extension ‘Move Ordering’. Section 5.2 han-
dles the algorithm extension ‘Transposition Table’. Fi-
nally section 5.3 presents the ‘Evaluation functions’ or

Game Log(State-Space) Log(Game-Tree)
Tic-Tac-Toe 3 5

Nine Men’s Morris 10 50
Awari 12 32

Pentominoes 12 18
Connect Four 14 21
Backgammon 20 144

Checkers 21 31
Lines of Action 24 56

Othello 28 58
Chess 46 123

Xiangqi 75 150
Shogi 71 226
Go 172 360

Table 1: Complexities of well-known games [5].

heuristics.

5.1 Move Ordering
In order to optimize search speed and efficiency of the
Alpha-Beta search it is practical to order the possible
moves in such a way that the most promising ones are
evaluated first. Knowing that pushing moves are more
worthwhile above, for example, a move of one single mar-
ble, these moves are presented first. Furthermore they
are ordered from large groups to small groups. Another
extension to the order algorithm is evaluating the board
position of the group of marbles. If for example a group
of marbles resides in the start position at the top of the
board it is more efficient to present the moves, which get
the marbles as quick as possible to the center, first.

5.2 Transposition Table
The search cost is one of the big disadvantages of the
Minimax algorithm. Although the search cost is greatly
reduced by the Alpha-Beta extension and the move or-
dering it is still worthwhile to extend the algorithm even
more. Repeated states occur frequently because of trans-
positions. Transpositions are different move sequences
that end up in the same position. It is worthwhile to
store the evaluation of this position in a hash table the
first time it is encountered, so that on a subsequent oc-
curence it does not have to be re-evaluated.

5.3 Evaluation Functions
Game-tree search assumes that the used evaluation func-
tion (or heuristic) will give a good interpretation of the
current position. When it is possible to look deep enough
in the search tree the evaluation function does not have
to be very advanced. For example, if it is possible to
search in the tree (within a reasonable amount of time)
to the end of the game, the evaluation function would
be just a check of who won. However in practice it is
often not possible to search to the end of the game in
the search tree. Thus the evaluation function has to in-
terpret the situation at a certain (non-terminal) depth

(v. 18th June 2005, p.5)



N.P.P.M. Lemmens Constructing an Abalone Game-Playing Agent

of the game tree. The more advanced the evaluation
function is, the less deep the search has to go.

The basic constructed agent uses a simple evaluation
function in that it:

• keeps the marbles around the middle of the board
and forces the opponent to move towards the edges;

• keeps the marbles together as much as possible, to
increase both offensive and defensive power.

As stated in Ozcan and Hulagu [7] these heuristics
perform quite well. In order to further reduce the search
depth these strategies are extended with:

• try to break strong groups of the opponent by push-
ing out the center marble, thus both dividing the
opponent and creating a good defence since the op-
ponent cannot push when its own marbles are in the
way;

• try to push off the opponent’s marbles (and keep
your own on the board) because it weakens the op-
ponent and therefore strengthens your own position;

• strengthen a group when it is in contact with the
opponent.

Depending on the situation on the board the weights
for these strategies are adapted. A rough weight-setting
has been found by trial and error.

At first the constructed agent tries to get to the cen-
ter with an as large as possible cohesion. Once the center
has been reached and the opponent is pushed far enough
out of the center, the agent weakens the will to get to
the center and strengthens the ‘agressive’ strategies (i.e.,
break strong groups and pushing off opponent’s marbles)
while trying to preserve its own cohesion. When the
opponent’s cohesion breaks up the ‘agressive’ strategies
are further strenghtened. In the endgame the extended
agent will almost not care about the center but will try
(as tactically as possible, i.e., without losing own mar-
bles) to push off the opponent’s marbles, giving the op-
ponent no chance to recover.

The evaluation function looks like this:

eval(s) =
5∑

i=1

wi × fi(s)− w6 × f6(s) (2)

Here f1(s) stands for the distance to the center which is
calculated by taking the difference between the Manhat-
tan distances (of each player’s marbles) to the center of
the board (i.e., position e5 on the board) depending on
the state s of the game.

f2(s) is the cohesion strategy. This strategy deter-
mines the number of neighboring teammates of each
marble for each player in state s of the game. After
this the difference between them is calculated.

f3(s) is the ‘break-strong-group’ strategy. This strat-
egy determines how many strong groups are broken by
the player’s marbles in the state s of the game. In order
to determine this value for a player each marble (of that
player) is checked for an opponent marble at one adja-
cent side of the marble and an opponent marble at the
opposing adjacent side. Again the difference between the
values for both players is calculated.

The ‘strengthen-group’ strategy is denoted by f4(s).
This strategy calculates the number of contact positions
by looking at one adjacent side of the player’s marble
for a teammate and on the opposing adjacent side of the
marble for an opponent marble.

f5(s) stands for the ‘number-of-marbles’ strategy.
This strategy calculates the difference between the num-
ber of opponent marbles before the search began and the
number of opponent marbles on the board in gamestate
s.

Finally f6(s) is equal to f5(s) but deals with the
player’s own marbles.

5.4 Evaluation Function Weights

In order to make the strategies work they have to be
played with certain strength. Furthermore it is impor-
tant not to play in the same way all the game. The
extended agent plays therefore in nine different modi.
These modi are delimited by the values of the center
strategy and the cohesion strategy. In Table 2 the con-
ditions and the corresponding strategy’s weight values
can be seen. Table 2 shows the agent plays for the cen-

Modus Center Cohesion w1 w2 w3 w4 w5 w6

1 < 0 NA 3 2 6 1.8 0 50× w5

2 < 5 NA 3.3 2 6 1.8 35 50× w5

3 ≥ 5 0 ≤ x < 4 2.9 2 15 3 4 50× w5

4 ≥ 5 4 ≤ x < 10 2.9 2 15 3 15 50× w5

5 ≥ 5 10 ≤ x < 16 2.8 2.3 25 3 15 50× w5

6 ≥ 5 16 ≤ x < 22 2.8 2.1 25 3 25 50× w5

7 ≥ 5 22 ≤ x < 28 2.7 2.3 25 3 30 50× w5

8 ≥ 5 28 ≤ x < 34 2.4 2.3 25 3 35 50× w5

9 ≥ 5 ≥ 34 2.2 2.3 25 3 40 50× w5

Table 2: Modus conditions and corresponding strategy
weights. NA means ‘not applicable’.

ter at first. As the agent’s cohesion grows with respect
to the opponent’s cohesion it strengthens the ‘agressive’
strategies and weakens the will to own the center while
preserving cautiousness for loosing own marbles.

6 Performance
In this section the performance of the Abalone agent
will be outlined. In order to test the performance of
the agent it had to play against itself (with the basic
heuristic and the extended heuristic) and against third
party (commercial) implementations. In this section the
results of these games will be given. In all games the
black player plays first.

(v. 18th June 2005, p.6)



Constructing an Abalone Game-Playing Agent N.P.P.M. Lemmens

First the results of the encounters between the agents
with basic and extended heuristics will be given. See
Table 3. Note that the agents both play with a search
depth of 2. A reason for this shallow depth will be given
in the ‘Further Research’ section. The column ‘Winner’
indicates the winning agent, or (by mentioning ‘Draw’)
that the game ended since none of the two agents is able
to generate a new move and the game therefore enters
a loop. These results show that the extended heuristics

Game Black Player White Player Score Winner
1 Basic Extended 0-1 Draw
2 Extended Basic 6-0 Extended

Table 3: Results of games between constructed agents
with basic and extended heuristics. ‘Score’ means the
number of captured opponent marbles (an agent needs
six marbles to win the game).

are valuable. The extended player plays more agressively
than the basic one. It sometimes also plays more risky
than the basic player in order to force a breakthrough.

The results against the (commercial) implementa-
tions will be given next. The implementations the agent
played against are:
• Random Soft Abalone (RandomAba)

• Ali Amadi and Ihsan Abalone (AliAba)

• NetAbalone
It should be noted that the ‘Random Soft’ implementa-
tion does not support broadside moves and thus these are
also not available for the extended agent. RandomAba
plays at different difficulty levels. Both medium and high
difficulty are tested. AliAba has just one difficulty level.
NetAbalone has ten different difficulty levels but only
one is available in the freeware version of the game. It
should be stressed that the extended agent plays only
at search depth 2. The results in table 4 show that the

Game Black Player Difficulty White Player Difficulty Score Winner
1 RandomAba M Extended depth 2 0-1 Draw
2 Extended depth 2 RandomAba M 0-2 Draw
3 RandomAba H Extended depth 2 2-1 Draw
4 Extended depth 2 RandomAba H 0-2 Draw
5 AliAba NA Extended depth 2 2-2 Draw
6 Extended depth 2 AliAba NA 6-1 Extended
7 NetAbalone 1 Extended depth 2 0-0 Draw
8 Extended depth 2 NetAbalone 1 0-0 Draw

Table 4: Results of games between extended heuristics
agent and third-party (commercial) implementations.
Again ‘Score’ means the number of captured opponent
marbles (an agent needs six marbles to win the game).

extended agent never loses. It either wins or draws (be-
cause of the inability of both players to come up with
new moves). As can be seen in figures 12, 13 and 14,
where some game positions from drawn games are pre-
sented, the extended player has managed to split up the

opponent and resides itself in the middle. The score is in
favour of the opponent because of the inability of the ex-
tended agent to recognize dangerous situations early on.
It therefore waits too long with taking counteractions.
The same occurs in the Extended - NetAbalone game but
the other way around. The moment the game enters the
‘repeated-move’ loop the score is 0-0. In this game NetA-
balone accomplished to break up the extended agent
but lacked the ability to push off any marbles. In the
NetAbalone - Extended game both players were equally
strong.

Figure 12: End situation in Extended - RandomSoft M.
Black is Extended, White is RandomAba M.

Figure 13: End situation in Extended - RandomSoft H.
Black is Extended, White is RandomAba H.

Figure 14: End situation in RandomSoft H - Extended.
Black is RandomSoft H, White is Extended.

Table 5 shows the moves of a test game between

(v. 18th June 2005, p.7)



N.P.P.M. Lemmens Constructing an Abalone Game-Playing Agent

NetAbalone and the extended agent. The game ended
in a 0-0 draw. This explains the small number of moves
that are made.

Move Nr. Move Move Nr. Move
1 a5b5 25 b1b2
2 i9h8 26 f4e4
3 b5c5 27 b3c3
4 i8h7 28 f3f4
5 a4b4 29 a4b5
6 h9g8 30 g8f7
7 b4c4 31 b4c5
8 i7h7 32 h8g8
9 b3c4 33 a1b1
10 i6h5 34 g8h8
11 a2a3b3 35 b1b2
12 h4g4 36 h8g8
13 b6b5 37 b5c6
14 i5h4 38 g8h8
15 b4c5 39 b2c2
16 h7g6 40 h8g8
17 e6e5 41 b3b2
18 h4h5 42 g8h8
19 b3c4 43 b2c2
20 h7g6 44 h8g8
21 c4d5 45 e2d2
22 h9h8 46 g8h8
23 f7e6 47 b2c2
24 g4f4 48 h8g8

Table 5: Moves of a test game between NetAbalone and
the extended agent. NetAbalone plays the first move.

7 Conclusions
As can be seen in the previous section the extended agent
performs quite good. In this paper no implementation
is able to win from the extended agent. As the game
lengthens it shows that the extended agent nicely breaks
up its opponent. The opponent is scattered alongside
the edges of the board. The agent just lacks the ability
to foresee very bad and good situations, where its own
marbles are in danger near the edge of the board and
where the opponent’s marbles lie helplessly at the edge
of the board, respectively.

NetAbalone plays quite the same as the extended
agent. It also tries to split the strong (i.e., three mar-
bles) groups by pushing out the center but is a little bit
more aggressive in that it tries harder to get and keep
the center. Both NetAbalone and RandomSoft Abalone
probably search deeper in the tree than the constructed
agent does (the extended agent only searches at depth
2). NetAbalone further has probably more fine-tuned
weights for its strategies and therefore performs better
than the other implementations.

Summarizing the results: For an agent playing with
only a search depth of 2, the agent performs quite good.
Due to the search depth it does not always choose the

best possible move as it does not always detect that mar-
bles are in danger. It just evaluates the situation and
picks the best move for that situation at that moment
without looking very far in the future. Even though the
agent has this disadvantage it wins/draws, in this paper,
against every other computer agent found.

An interesting point to note is the game length.
While humans play reasonably ‘fast’ (e.g., on average
87 moves per game) the games between computer play-
ers typically last longer (e.g., on average 130 moves per
game). A reason for this can be found in the fact that
humans are able to play more to the point than com-
puter players do. Computer players tend to be more
conservative while human players are more progressive.

8 Future Research

Due to the generation of valid moves and the time this
takes, the extended Abalone agent can get no further
than two deep in the search tree. Searching deeper in
the tree results in a severe time penalty. By searching
deeper in the tree the agent will probably detect better
moves because it can more exactly predict the outcome
of a certain move. As it is to be expected that searching
deeper in the tree will result in better results it is there-
fore recommended to optimize the generation of valid
moves.

Implementing more optimalizations of the Alpha-
Beta algorithm could also further reduce search time and
deepen the search. ‘Iterative deepening’ could be one of
these optimalizations.

The move ordering could be further extended. This
could be done by applying some additional heuristics,
like the killer-move heuristic [2] or the history heuristic
[10].

The strategy weights for the agent are very rough.
It could increase performance if these weights could be
fine-tuned. Machine-learning techniques could help in
the process.

Pattern-recognition techniques could improve the
‘human’ view of the game, e.g. trapeziums, diamonds
and daisy-forms (pattern of 6 own marbles and in the
middle an opponent marble) are strong groups. It could
further speed up optimal move searching as interrupting
strong groups (i.e., pushing out the middle marble of a
strong group) is a strong strategy.

As Abalone theory matures it should be possible to
construct an opening book. The first moves of the game
are important for the conquering (or first reaching) of the
center. As these moves do not directly involve the oppo-
nent it saves time to have them already in the opening
book.

(v. 18th June 2005, p.8)



Constructing an Abalone Game-Playing Agent N.P.P.M. Lemmens

References
[1] Abalone S.A. (1989-2002). Abalone official site.

http://uk.abalonegames.com/.

[2] Akl, S.G. and Newborn, M.M. (1977). The prin-
cipal continuation and the killer heuristic. ACM
Annual Conference Proceedings, pp. 466–473.

[3] Allis, L.V. (1994). Searching for Solutions in
Games and Artificial Intelligence. Maastricht
University Press, Maastricht.

[4] International, Jumbo (1989). Abalone. Jumbo
International, P.O. Box 1729, 1000 BS, Amster-
dam.

[5] Lockergnome LLC. (2004). Game tree
complexity. http://encyclopedia.lockergnome
.com/Game tree complexity-sb.html.

[6] Moreland, B. (2001). Alpha-beta search.
http://www.seanet.com/∼brucemo/topics/
alphabeta.htm.

[7] Ozcan, E. and Hulagu, B. (2004). A simple intelli-
gent agent for playing abalone game: Abla. Proc.
of the 13th Turkish Symposium on Artificial In-
telligence and Neural Networks, pp. 281–290.

[8] Rognlie, R. (1996). Richard’s play-by-email
server. http://www.gamerz.net/pbmserv/.

[9] Russell, S. and Norvig, P. (2003). Artificial In-
telligence: A Modern Approach. Prentice Hall,
Upper Saddle River, NJ.

[10] Schaeffer, J. (1989). The history heuristic and the
performance of alpha-beta enhancements. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 11, pp. 1203–1212.

[11] Herik, H.J. van den, Uiterwijk, J.W.H.M., and
Rijswijck, J. van (2002). Games solved: Now and
in the future. Artificial Intelligence, Vol. 134, pp.
277–311.

(v. 18th June 2005, p.9)


