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Abstract

Monte-Carlo Tree Search (MCTS) has been suc-
cessfully applied in many games, such as Go and
Hex. Previous work by den Teuling tested the per-
formance of MCTS and various MCTS enhance-
ments in the game of Tron. Tron is a two-player
simultaneous-move game. Results showed that
there was a lot of room for improvement. In this
paper, enhancements for the selection and play-out
phase of MCTS are suggested to increase the play-
ing strength of MCTS in Tron.

Results of the experiments show that both N-
Grams and LGR applied in the play-out phase, are
improvements for the playing strength of MCTS
in Tron. These techniques seem to increase the
playing strength of MCTS equally. A combination
of N-Grams and LGR does not perform well, be-
cause the overhead of these techniques becomes too
large. The UCT-ULM and Progressive Bias (PB)
selection strategies have little to no influence on
the performance of MCTS, due to a low branching
factor of the MCTS tree. The N-Gram and LGR
simulation strategies can also be combined with
MCTS-Solver, which provides a slight improvement
in playing strength if there is no cut-off involved
during the expansion and play-out phase.

1 Introduction

Board games such as Go, Chess, Hex, Checkers, and Ha-
vannah have been popular research topics in the field
of Artificial Intelligence over the past fifty years. Their
simple environment and rules, combined with a large
state space provide an excellent test domain for intel-
ligent search techniques. The challenge of these search
techniques is to find good moves in the large state space.

In the past, αβ-search [10] has proven to be a success-
ful technique for Chess and Checkers. It is a depth-first
search technique that uses an evaluation function which
assigns a score to a leaf node. This technique tries to
improve its performance by pruning branches that can-
not influence the final decision, and therefore reduces the
size of the search tree. However, the evaluation function
is dependent on the context of the game, and therefore
a different evaluation function is required for each game.

Moreover, in games that contain dynamic and fluid po-
sitions, an evaluation function can be quite complex and
hard to develop.

An alternative, called Monte-Carlo Tree Search
(MCTS) [7] [11], has been used for Go and Hex with
promising results. MCTS relies on stochastic simulations
to evaluate the effectiveness of moves. The advantage
of MCTS is that it does not rely on domain-dependent
knowledge to evaluate states, and therefore can be ap-
plied to a broad range of games without any structural
changes aside from the game rules.

MCTS consists of four phases [3] that are repeated
until the time given to compute a move has passed.
These four phases are selection, expansion, play-out and
backpropagation. In the selection phase, the tree is tra-
versed, starting from the root node until a leaf node is
reached. Selection of a node is dependent on the selec-
tion strategy. In the expansion phase, the children of this
leaf node are added to the tree. In the play-out phase,
starting from the state of one of these child nodes, a
game is simulated, in which both players perform moves
until the end of the game is reached, resulting in either
a win, a draw or a loss. During backpropagation, the re-
sult of this simulated game is propagated back through
the previously traversed nodes.

In this paper, enhancements in the selection and
play-out phase of MCTS in the game of Tron are inves-
tigated, continuing on the previous work of Den Teuling
[8] and Samothrakis et al. [16], in which MCTS was used
for Tron with positive results. The focus of this paper is
to enhance the MCTS performance in Tron with domain-
independent heuristic additions to both the selection and
play-out phase of MCTS. The methods investigated in
this paper are N-Grams [19] and the Last-Good-Reply
Policy [9], because both of these methods have previ-
ously shown to improve the performance of MCTS in
other domains. The N-Gram technique has been success-
ful in General Game Playing (GGP) [19] and Havannah
[17]. The Last Good Reply Policy has been successfully
applied in GGP [19], Go [1] and Havannah [17].

The research questions of this paper are:

1. How can the N-Gram and LGR simulation strate-
gies improve the playing strength of MCTS in the
game of Tron?
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2. How can the N-Gram technique improve the selec-
tion strategy of MCTS in the game of Tron?

The outline of this paper is as follows. Section 2
provides a brief introduction to the game of Tron and
MCTS. Section 3 contains the proposed play-out en-
hancements, followed by the selection enhancements dis-
cussed in Section 4. In Section 5, experiments and results
are given. Finally, in Section 6 conclusions are drawn
from the results and future research is suggested.

2 Background
In this section, the rules and important properties of the
game of Tron will be explained. Furthermore, a brief
explanation of Monte-Carlo Tree Search [7] is given.

2.1 The Game of Tron

The game of Tron was first seen in the movie Tron, made
by Walt Disney Studios in 1982. In this game, two play-
ers move in discrete time steps on a m× n grid of cells.
Figure 1 depicts an example of a typical Tron game. The
outer edges of the grid are enclosed by a wall, which is in-
accessible for the players. At each time step, each player
has the choice to go either up, down, left or right. How-
ever, both players leave a solid wall behind them as they
are moving forward, filling up the previous cell they were
located in, and reducing the size of the available area to
move to as the game progresses. Should one of the play-
ers choose a direction that causes them to crash into a
wall, or the edge, then this player loses and the other
player wins. If both players crash at the same time, a
draw occurs. If both players choose moves such that they
both end up in the same position on the board, a draw
occurs as well.

Figure 1: An example of a typical Tron game

Another important property of Tron is that moves are
chosen simultaneously. At each time step, both players
declare their chosen move at the same time. This in-
creases the difficulty of the game, as the effectiveness of
a move depends on the move made by the other player.

The general strategy of playing a Tron game, is to
outlast your opponent such that his options run out and
crashes into a wall. To increase the speed of this process,
it is a good approach to try to limit the available space

of your opponent, by separating the board into multi-
ple parts, without endangering yourself into a vulnera-
ble position on the board. Because boards can contain
obstacles, these can be used as well to block the path
of your opponent. However, these obstacles also make it
more difficult to fill up the available space surrounding
the player. At the start of the game, it is difficult to de-
cide upon which move to make, since the state space is
quite large and predicting the opponent is troublesome.

2.2 Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS) [7] is a best-first
search strategy that builds up a tree in memory by it-
erating through four phases, until it runs out of time
to calculate the next move [5]. Each node in the tree
holds a state of the game, which in this case is the con-
figuration of the board. Edges between nodes represent
the move which, if applied to the board configuration in
the first node, results in the board configuration of the
second node. Furthermore, each node i holds a value
vi and a visit count ni. Nodes that have a higher value
are preferred over nodes with a lower value. These values
are estimates based on the average return of simulations,
also called play-outs.

MCTS starts from the root node, which is the current
state of the game. First, the tree is explored at random,
but as more simulations have been performed, a shift
occurs from random exploration to exploitation of the
most promising nodes.

As was mentioned before, MCTS is divided into four
phases: selection, expansion, play-out and backpropaga-
tion. The phases are explained in detail below. MCTS
iterates through these four phases until the time to com-
pute the next move is up, as is depicted in Figure 2 [5].

Figure 2: The four phases of MCTS [5]

Selection
Starting from the root node of the tree, a child node of
the current node is selected until a leaf node is reached.
These child nodes are selected by a selection strategy,
which can be as simple as selecting a random child, but
can also be more sophisticated strategies such as UCT.
The selection phase is important, since it determines
which node will be evaluated in the play-out phase.

(v. June 19, 2012, p.2)
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Promising moves should be played more often than un-
promising moves, which is called exploitation. However,
to know which moves are promising, unexplored moves
should be taken into consideration as well, for the sake
of discovering new promising moves. This is called ex-
ploration. Therefore, a balance has to be found between
exploring new moves, for which the value is unknown,
and exploitation of moves which are known to be effec-
tive moves in the current state. This is the task of the
selection strategy.

One such selection strategy, called UCT (Upper Con-
fidence bound applied to Trees) [11], takes this balance
into account. UCT selects from node p its child k as
follows:

arg maxi

(
vi + C ×

√
lnnp

ni

)
UCT selects the child of the current node which

maximizes this value. The first term supports the ex-
ploitation of known successful moves, whilst the second
term supports the exploration of new moves. The C
constant can be tuned to change this balance between
exploitation and exploration. As C gets higher, more
exploration takes place, and therefore less exploitation.
Furthermore, if a node has been visited fewer than T
times, the random selection strategy is applied, because
in that case the values of the nodes being evaluated are
not accurate enough.

Expansion
During the expansion phase, all children of the leaf node
k are added to the tree. Since the number of children of
each node is at most 3 in the case of Tron, these children
are all added at once. Then, the selection strategy is
once more applied to the leaf node k, selecting one of
the new children i as the starting point for the next
phase.

Play-out
During the play-out phase, starting from the node
retrieved in the expansion phase, the game is simulated
in self-play, until the game has ended or when the
resulting end can be reliably predicted. During this
play-out phase for Tron, both players move simulta-
neously [8]. The moves chosen during the play-out by
both players can be chosen randomly, but moves can
also be chosen quasi-randomly by using a knowledgeable
simulation strategy. It has been shown that the use of
such a heuristic simulation strategy can improve the
play-out significantly [2], [6]. After a simulation has
been finished, it returns 1, 0 or -1 to the play-out start-
ing node i, according to a win, draw or loss, respectively.

Backpropagation
The result of the play-out that was returned to node

i is backpropagated along the path of nodes traversed
in the selection phase, until the root node is reached,
updating vi of each node with the result of the play-out
along that path, by calculating the new average value.

When the time to search has passed, MCTS stops
the iteration and selects the child of the root node de-
termined by the final selection strategy. In this paper,
the most secure child is chosen [5], which is defined as:

vi + A√
ni

where A is a constant. Based on results of trial-and-
error testing, a value of 1 was used [8].

3 Play-out Enhancements
In this section, two play-out enhancements are discussed
which are used as simulation strategies for the game of
Tron. A good simulation strategy can improve play-outs
significantly [19]. A simulation strategy based on N-
Grams is explained in the first subsection. In the fol-
lowing subsection, a simulation strategy based on the
Last-Good-Reply policy is explained.

3.1 N-Grams
N-Grams originate from the field of statistical natural
language processing [13] and are also used for predict-
ing the next moves of the players in video games [14].
N-Grams contain large sets of move sequences. Each
move sequence S holds an average reward, denoted by
R(S). The higher this reward is, the better the sequence
of moves is. N-Grams offer a simple way of adding con-
text to board configurations, enabling the player to de-
tect critical positions on the board. A correct usage
of N-Grams can also predict player behaviour by us-
ing context [12]. The context is provided by the pre-
viously made moves of the players. Although N-Grams
can provide a fast and simple way of predicting player
behaviour, the execution of long-term plans is difficult,
since N-Grams only take local relationships into account.

The length of the move sequences held by a N-Gram
can vary. N denotes the length of the move sequences
a N-Gram contains. For example, a 3-Gram holds move
sequences of length 3. The moves in such a sequence
are alternating moves from the current player and the
opponent. A sequence of length 1 would consist of just
one move of the current player. A sequence of length
2 would contain a move of the opponent, followed by a
move of the current player. Finally, a move sequence of
length 3 consists of first a move of the current player,
followed by a move of the opponent, and finally another
move of the current player. In all these cases, the current
player is the player for which the N-Grams are consulted.
In the case of Tron, only 2-Grams and 3-Grams are used,
because the 1-Gram provides too little context to be of
any use. N-Grams containing longer move sequences are
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not considered, since the memory requirements would be
too demanding.

In the case of a turn-taking game, a move sequence
consists of moves that were performed consecutively in
alternating fashion between the players. However, Tron
is a simultaneous-move game. A player cannot know
which move the opponent will perform at the current
time step, when choosing a move for itself. Therefore,
move sequences should ignore moves of the opponent
that were made simultaneously. Therefore, the move
made by the other player at the same time step is ig-
nored when move sequences are added to the N-Grams.
Instead, the moves made by both players in previous
time steps are used.

N-Grams can be used for a simulation strategy in the
play-out phase of MCTS as follows [19]. After each play-
out, all move sequences of length 2 and 3 are extracted
from the moves performed in the simulated game. If a
move sequence is extracted that does not yet exist in
the corresponding N-Gram, then this move sequence is
added to the N-Gram with an initial R(S) value equal
to the reward of the play-out for the current player. If
an extracted move sequence already exists in the cor-
responding N-Gram, then the average reward R(S) is
updated by adding the reward of the play-out for the
corresponding player. The process of extracting move
sequences is identical to the method described in [19].

Figure 3 shows an example of extracting move se-
quences from a play-out. For example, the move se-
quence F-G-J consists of move F made by player 2, fol-
lowed by move G of player 1, and finally move J of player
2. Move I is not taken into consideration, because this
move was performed at the same time move J was per-
formed. Therefore, move I cannot be a reaction of player
1 to move J of player 2. Similarly, move J cannot be a
reaction to move I. Move H is not taken into considera-
tion because the presence of moves F and J in the move
sequence imply that move H was performed as well be-
tween those two moves. Because a player in the game
of Tron cannot skip positions, move H becomes obsolete
when moves F and J are included in the move sequence.
This method of move sequence extraction allows the N-
Grams to hold move sequences of length 3 which describe
a longer move sequence than just three moves.

During the play-out phase, the N-Grams can be used
to select which move to perform, depending on the board
configuration. Given a board configuration, the player
determines which sequences S of length 2 and 3 would
occur, considering the previously made moves and the
current legal moves. Since only move sequences of length
two and three are considered, at most two sequences can
occur per legal move. A score for each legal move k
is then calculated, by taking the average of the R(S)
values of the move sequences that contain k as the final

Figure 3: An example of the move sequences generated
from a play-out

move. If none of the move sequences are contained in the
N-Grams, then the default policy is used. The default
policy selects a random move from the legal moves.

The move with the highest score is selected to be
played in the play-out, according to an ε-greedy strat-
egy [18], playing a random move with probability ε, and
the N-Gram based move with probability 1 − ε. In such
a way, the play-out is prevented from becoming too de-
terministic.

3.2 Last-Good-Reply Policy
The Last-Good-Reply Policy (LGR) [1], [9], [17] is some-
what similar to the idea of N-Grams. LGR keeps track
of good replies to the preceding moves of both players.
Instead of keeping track of the effectiveness of multiple
moves, LGR keeps track of only the best reply to the
previous moves. If such a move is not legal, then the
default simulation strategy is used, which in this case
performs a random legal move.

LGR has the advantage of having a smaller memory
footprint than N-Grams, since only one move per move
sequence is stored. Furthermore, LGR does not have to
calculate and keep track of average reward values as the
N-Gram technique does.

LGR holds for each player two separate tables, called
LGR-1 and LGR-2. Similar to the move sequence extrac-
tion process of N-Grams, these tables are updated after
each play-out. In the LGR-1 table, the best reply to the
previous move of the opponent is stored. Because Tron

(v. June 19, 2012, p.4)
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is a simultaneous-move game, the move of the opponent
in the previous time step is used, instead of the oppo-
nent move performed during the current time step. In
the LGR-2 table the last good reply to the two previ-
ous moves is stored. These two previous moves consist
of a move made by the player himself, followed by an
opponent move. Similar to the N-Gram technique, the
previous moves are the moves made in the previous time
step, due to Tron being a simultaneous-move game.

If the reward obtained by the player is at least as
high as the reward of the opponent, it is stored in the
corresponding LGR table. If there already is a reply
known for the given previous moves, then this reply is
overwritten with the new move if it received a higher
reward.

Move sequences can be deleted from the LGR tables
as well. If the reward obtained by the player after a play-
out is lower than the reward of the opponent, then this
move is deleted from the tables as a good reply to the
previous moves. This technique is called forgetting. A
LGR policy with forgetting is commonly abbreviated as
LGRF [1]. By using this technique, the play-out is pre-
vented from becoming too deterministic. Tests showed
that LGRF outperformed LGR in the game of Go [1].
This process of adding and deleting move sequences is
explained in more detail in Figure 4.

Similar to the N-Gram enhancement, the LGR-1 and
LGR-2 tables can be used during the play-out phase to
determine which move to perform, given the previous
moves. First, the LGR-2 table is checked for which move
to choose, since this provides the most context. If the
LGR-2 does not hold a best reply for the previous moves,
then the LGR-1 table is consulted. When the LGR-1
table has no reply as well, the default simulation strategy
is used. This strategy chooses a random move from the
legal moves.

3.3 N-Gram LGR Combination
These two strategies can also be combined as one sim-
ulation strategy [17]. In this case, the LGR tables are
consulted first to decide which move to perform. If the
tables do not hold a best reply, then the N-Grams are
consulted for a move. The LGR tables therefore have a
higher preference for choosing the next move than the N-
Grams. The process of choosing a move with either the
LGR tables or the N-Grams is identical to the technique
described in the previous subsections. If the N-Grams
hold no suitable reply as well, then the default simula-
tion strategy is used. In this case, a random move is
chosen from the legal moves.

4 Selection Enhancements
Similar to the play-out phase, the selection phase can be
enhanced with more sophisticated selection strategies as

well. Section 2.2 already mentioned random selection
and UCT selection. In this section, two additional selec-
tion strategies are discussed: UCT-ULM and Progressive
Bias.

4.1 UCT-ULM

Because MCTS has a limited search time, it is preferred
to spend this time searching in parts of the tree which
contain good move sequences, than searching in parts of
the tree with a neutral or bad move sequence history.
The UCT-ULM selection strategy takes this preference
into account. UCT-ULM applies regular UCT selection
to a node in the MCTS tree when all the children of that
node have been visited before. If this is not the case and
the current node has unvisited legal moves (ULM), then
from the children which are ULM, the child with the
highest heuristic value is chosen. The heuristic value of
a child node is determined by the 2-Gram and 3-Gram
value for the corresponding move sequence, similar to
the way moves are chosen in the play-out phase when
using the N-Gram play-out enhancement.

In the case of a node with ULM, UCT-ULM directs
the tree search to the subtree which is most likely the
best option, according to the average of the move se-
quence evaluations held by the 2-Gram and 3-Gram.
Therefore, good move sequences are preferred over worse
move sequences. Unvisited legal moves that have a lower
heuristic value therefore have a lower priority, because
they might never be selected by UCT-ULM.

However, UCT-ULM has a notable disadvantage.
The preference of certain parts of the MCTS tree over
other parts of the tree depends solely on the judgment of
the N-Grams. There is no smooth transition from a good
move to a bad move. Only one of the three children of
a node can have the highest heuristic value. Moreover,
no additional parameters such as the number of visits
and win count are taken into consideration. Therefore,
UCT-ULM may become too deterministic.

4.2 Progressive Bias

The Progressive Bias (PB) selection technique [5] does
not have the disadvantage of UCT-ULM. Instead of us-
ing UCT and the heuristic value technique separately,
PB combines UCT selection with heuristic knowledge.
The heuristic knowledge is provided by the 2-Gram and
3-Gram in the same way as with the UCT-ULM selection
strategy.

By using a mixture of UCT selection and heuris-
tic knowledge, node selection can be guided in a bet-
ter fashion than with plain UCT selection. However,
because MCTS has a limited amount of time to deter-
mine the next move, there is a trade-off to be made,
between having more play-outs and spending more time
on computing heuristic values. This results in having
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Figure 4: An example of the updating of the LGR tables during 2 consecutive play-outs

more play-outs with possibly less relevance, and having
fewer play-outs with more relevance. The formula of the
PB selection strategy is shown below.

arg maxi

(
vi + C ×

√
lnnp

ni
+ W×Hi

li+1

)
In this formula, the left term is identical to the orig-

inal UCT selection strategy. The right term represents
the progressive bias enhancement. W is a constant set to
10 [8]. Hi is the N-Gram based heuristic value for child i,
based on the move sequence consisting of the child node
i, its parent p and the parent of node p. The heuris-
tic value of node i is divided by the number of losses of
that node, li. Dividing the heuristic value by the num-
ber of losses assures that nodes that do not turn out
well are not biased for too long [15]. When a node has
been visited only a few times, or not at all, the heuristic
knowledge has a major influence on the final decision of
which node to select. Therefore, this heuristic knowledge
stays a major influence as long as the node has proven
to be a good move, and becomes less significant when
the move does not perform too well.

The advantage of PB over UCT-ULM is that it has
the best of both worlds. UCT handles the selection of
moves based on win and loss parameters when these
nodes have been visited sufficiently, and the heuristic
evaluation handles the selection of nodes with heuris-
tic knowledge if the UCT parameters have not settled
yet. Moreover, PB provides a smooth transition between
these two techniques.

5 Experiments & Results
In this section, experiments are conducted to test the
performance of the previously discussed simulation and
selection strategies. In the first subsection the ε param-
eter used by the N-Gram simulation strategy is tuned.
Next, the previously discussed updating process of the
N-Gram tables is compared with a sequential update
method. In the third subsection, the the N-Gram, LGR

and N-Gram LGR Combo strategies are tested. In the
fourth subsection, the UCT, UCT-ULM and PB selec-
tion strategies are tested. The last subsection deals
with the performance of the N-Gram simulation strat-
egy when combined with the MCTS-Solver player, as
described in [20].

The experiments are conducted on a 2.4 GHz AMD
Opteron CPU with 4GB of RAM. Unless noted other-
wise, experiments were conducted on 10 different maps,
shown in Figure 5. Although all the boards are sym-
metric, each player played each color exactly half of the
number of matches played for that map.

Unless stated otherwise, the following settings were
used for each experiment. Each experiment consisted
of 200 games played per map. Every player is given
1 second to decide upon its next move. This process
is approached as if the moves are made simultaneously,
and therefore a player has no knowledge of which move
the opponent will perform. All experiments were exe-
cuted in the framework created by den Teuling [8]. The
simulation and selection enhancements were added to
the MCTS player of this framework, resulting in the en-
hanced player variations used for the experiments. This
original MCTS player of den Teuling uses a C constant
with value 10 and a T constant with value 30 for the
UCT selection strategy. The MCTS player uses a ran-
dom simulation strategy. The final selection strategy for
all the players is the previously discussed secure child
technique.

5.1 Tuning the N-Gram ε parameter

Before any other experiments are conducted, the opti-
mal value for the ε parameter used by the N-Gram sim-
ulation strategy has to be determined. This value was
determined by an experiment in which a MCTS player
with UCT selection and the N-Gram simulation strategy
plays against a MCTS player with UCT selection and a
random simulation strategy. The experiment was con-
ducted on 5 different maps, resulting in a total of 1000

(v. June 19, 2012, p.6)
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Figure 5: The maps used for the experiments

ε/map A D F G I Avg

0.0 58 59 52 48 80 59% ± 2.2%
0.1 64 61 60 41 75 60% ± 2.1%
0.2 73 57 55 46 73 60% ± 2.1%
0.3 70 60 53 64 74 64% ± 2.1%
0.4 73 55 51 70 65 63% ± 2.1%
0.5 72 56 51 81 57 63% ± 2.1%
0.6 80 54 47 82 58 64% ± 2.1%
0.7 78 50 48 75 59 62% ± 2.1%
0.8 76 44 46 73 53 58% ± 2.2%
0.9 77 43 39 64 43 53% ± 2.2%
1.0 56 51 49 51 52 52% ± 2.2%

Table 1: Win rates of MCTS with UCT & N-Gram play-
out with different ε values vs. MCTS with UCT & ran-
dom play-out

games. The win rates for the MCTS N-Gram player per
map and ε value are shown in Table 1. The last col-
umn shows the average win rate per epsilon value over
all maps.

Each map shows an initial rise and latter decline of
the win rates depending on the ε value, indicating that
there is an optimal value. However, the results also show
that the optimal ε of the MCTS N-Gram player varies
per map. Therefore, it seems that optimal ε is map de-
pendent. The last column shows the average win rate
over all maps for each ε. This column clearly shows this
rise and decline in win rates as well, with an ε value of 0.3
as the most probable optimal value. Therefore, for each
following experiment that used the N-Gram strategy, an
ε value of 0.3 was used.

However, a side remark should be made here. At ε
value 1.0, the simulation strategy does not use the N-
Grams during the play-out phase. The simulation strat-
egy is in that case a random simulation strategy. There-
fore, the N-Grams were no longer updated after a sim-
ulation when the ε value was set to 1.0. This explains
the sudden rise and decline in win rates on some maps at
this value, because there no longer is a N-Gram updating
overhead.

5.2 Simultaneous Moves vs. Sequential
Moves

Tron is a simultaneous-move game and therefore the
moves made by the players are chosen simultaneously.
The N-Gram updating process should take this property
into account. In this subsection, two techniques of ex-
tracting move sequences are tested. The simultaneous-
moves-based updating process was discussed in Subsec-
tion 3.1 and Figure 3. This simultaneous updating
process has the possible advantage that move sequences
contain more information than just the three moves it
describes. The second technique updates the N-Grams
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as if the moves made during the play-out phase were
performed sequentially. In other words, the simultane-
ous moves property of Tron is not taken into account
by this sequential-move-based updating process. For
example, from the play-out shown in Figure 3, move
sequences G-H-I and H-I-J would be extracted by this
sequential method. The sequential-moves-based updat-
ing process does not have the possible advantage of the
simultaneous-moves-based updating process. Instead, it
extracts more compact move sequences which describe a
more recent move history.

Two experiments were conducted that show the dif-
ference in performance between these two methods of
updating the N-Grams. In the first experiment, a MCTS
player with UCT selection and the N-Gram simulation
strategy that uses the sequential update method played
against a MCTS player with UCT selection and a ran-
dom simulation strategy. The second experiment con-
sisted of a MCTS player with UCT selection and the N-
Gram simulation strategy that uses the simultaneous up-
date method playing against a MCTS player with UCT
selection and a random simulation strategy. Both of the
experiments were conducted on the maps A, D, F, G and
I. On each board 200 games were played, resulting in a
total of 1000 games. The results of the first experiment
(sequential) are shown in Table 2. The results of the
second experiment (simultaneous) are given in Table 3.

Map A D F G I Avg

% 50 56 48 49 68 54.0% ± 3.1%

Table 2: Win rates of MCTS with UCT & N-Gram play-
out (sequential based) vs. MCTS with UCT & Random
play-out

Map A D F G I Avg

% 70 60 49 64 74 63.4% ± 3.0%

Table 3: Win rates of MCTS with UCT & N-Gram play-
out (simultaneous based) vs. MCTS with UCT & Ran-
dom play-out

The results clearly indicate that the simultaneous
method achieves higher win rates than the sequential
method. The sequential method has an average win
rate of 54.0%, while the simultaneous method has an
average win rate of 63.4%. Moreover, the simultaneous
method performs better than the sequential method on
almost every map. Therefore, the simultaneous method
was used for all the following experiments that used the
N-Gram simulation strategy.

5.3 Play-out Enhancement Experiments

In this subsection, the N-Gram, LGR and the N-Gram
LGR Combo simulation strategies are tested.

MCTS-UCT-N-Gram vs. MCTS-UCT-Random
To proper assess the increase in performance caused by
the N-Gram simulation strategy, an experiment was con-
ducted in which a MCTS player with UCT selection
and the N-Gram simulation strategy played against a
MCTS player with UCT selection and a random simula-
tion strategy. The results are given in Table 4.

Map A B C D E F G H I J Avg

% 70 61 56 60 39 49 64 77 74 53 60.3% ± 2.1%

Table 4: Win rates of MCTS with UCT & N-Gram play-
out vs. MCTS with UCT & Random play-out

The results show a significant increase in perfor-
mance of the MCTS player that used the N-Gram
simulation strategy. An average win rate of 60.3% is
achieved by using the N-Gram simulation strategy.
Although most maps show close to a 60% or even
higher win rate, maps E, F and J have a lower win
rate. As was mentioned before, the performance of the
N-Gram simulation strategy can vary per map because
the optimal value of the ε parameter can differ greatly
for each map.

MCTS-UCT-LGR vs. MCTS-UCT-Random
The next experiment was conducted to show the increase
in performance caused by the LGR simulation strategy.
It consisted of a MCTS player using UCT selection and
the LGR simulation strategy playing against a MCTS
player with UCT selection and a random simulation
strategy. The results are shown in Table 5.

Map A B C D E F G H I J Avg

% 84 78 66 60 41 47 50 69 73 59 62.6% ± 2.1%

Table 5: Win rates of MCTS with UCT & LGR play-out
vs. MCTS with UCT & Random play-out

The results show that MCTS with LGR has an av-
erage win rate of 62.6%. On most maps the LGR player
has a win rate far higher than this average. However,
on maps E and F the LGR player has a below average
win rate. It is interesting to see that these are the same
maps on which the N-Gram simulation strategy also had
trouble to outplay its opponent. This could possibly in-
dicate that both the LGR and N-Gram simulation strate-
gies have difficulties providing good move sequences due
to the structure of these maps. The MCTS with LGR
achieves slightly higher win rates on some maps than the
MCTS with the N-Gram strategy. This is most likely
caused by the fact that the N-Gram strategy has a lower
number of simulations per second (about 55,000) when
compared to the LGR strategy (about 75,000) and there-
fore has gathered less information on which it has to base
its final decision.
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MCTS-UCT-N-Gram vs. MCTS-UCT-LGR
The next experiment shows the playing strength of both
the N-Gram and LGR simulation strategy when these
strategies play against each other. In this experiment a
MCTS player with UCT selection and N-Gram simula-
tions played against a MCTS player with UCT selection
and LGR simulations. The results are shown in Table 6.

Map A B C D E F G H I J Avg

% 59 50 47 52 53 47 51 45 45 53 50.2% ± 2.2%

Table 6: Win rates of MCTS with UCT & LGR play-out
vs. MCTS with UCT & N-Gram play-out

The results show that the N-Gram and LGR simu-
lation strategies are evenly matched. On almost every
map the win rate of the two players are almost equal,
indicating that neither of them can convincingly outplay
the other player. Averages show how close the two play-
ers actually are, indicating a 50.2% win rate for the LGR
player and therefore a 49.8% win rate for the N-Gram
player.

It is interesting that the N-Gram player, which
achieves 55,000 simulations per second, can perform as
well as the LGR player which has 75,000 simulations per
second. This suggests that the N-Gram player is better
in retrieving more useful information with fewer play-
outs than the LGR player. To see if this was actually
the case, another experiment was conducted with the
same players, but twice the time (2 seconds) to decide
upon which move to perform. The results are shown in
Table 7.

Map A B C D E F G H I J Avg

% 61 53 48 52 49 43 83 52 39 86 56.3% ± 2.2%

Table 7: Win rates of MCTS with UCT & LGR play-out
vs. MCTS with UCT & N-Gram play-out - 2 sec

The results indicate that it is not the case that
N-Gram outperforms LGR. The LGR player starts to
dominate heavily on maps A (61%), G (83%) and J
(86%). However, the N-Gram technique achieves a 57%
win rate on map F and a 61% win rate on map I. On
the other maps the equal win rate is retained. The
LGR strategy achieves an average win rate of 56.3%,
therefore resulting in a 43.7% win rate for the N-Gram
strategy.

MCTS N-Gram LGR Combo
The next experiment tested the performance of the
previously discussed LGR N-Gram Combo simulation
technique, by letting a MCTS player with this simula-
tion strategy and UCT selection play against a MCTS
player with UCT selection and various simulation
strategies. The results are shown in Table 8.

Map A B C D E F G H I J Avg

Random 57 45 64 47 40 45 41 70 74 57 53.8% ± 2.2%

N-Gram 49 50 48 58 47 46 47 51 55 30 47.9% ± 2.2%

LGR 33 50 46 43 45 48 42 57 60 32 45.5% ± 2.2%

Table 8: Win rates of MCTS with UCT & LGR N-Gram
Combo play-out vs. MCTS with UCT & various play-
outs

The results clearly indicate that the LGR N-Gram
Combo does not improve the performance of the MCTS
player at all, but actually underperforms when compared
to the LGR and N-Gram simulation techniques. This is
caused by the large overhead of using both LGR tables
and N-Gram tables. Because all 5 of these tables need
to be updated after each simulation, the number of sim-
ulation per second drop significantly (40,000), resulting
in inferior playing performance. Since the performance
of the LGR N-Gram Combo player was disappointing,
an additional test was conducted with exactly the same
players but with double the time (2 seconds) to decide
upon which next move to perform. This did not reveal
an increase of performance for the LGR N-Gram Combo
player. Results did not differ too much from those shown
in Table 8.

5.4 Selection Enhancement
Experiments

In this subsection the previously discussed UCT-ULM
and PB selection strategies are tested.

UCT-ULM
In this experiment a MCTS player with UCT-ULM
selection and the N-Gram simulation strategy played
against a MCTS player with UCT selection and the N-
Gram simulation strategy. In this way, the performance
of UCT-ULM can be tested. The results are given in
Table 9.

Map A B C D E F G H I J Avg

% 55 50 49 53 50 49 50 52 54 47 50.9% ± 2.2%

Table 9: Win rates of MCTS with UCT-ULM selection
& N-Gram play-out vs. MCTS with UCT selection &
N-Gram play-out

Results show that the UCT-ULM selection strategy
does not have a significant influence on the performance
of the MCTS-N-Gram player. The most likely cause is
that the nodes in the MCTS tree have a low branching
factor, in the case of Tron. Each node has at most
three children. Because only the ULM are considered
by UCT-ULM, all children of a node will most likely
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be visited soon. Once most of the nodes have been
visited, UCT replaces the ULM selection strategy
and there is no difference in selection strategies left
between the two players, resulting in the 50.9% win rate.

Progressive Bias
Another experiment was conducted to show the im-
provement in performance by using the previously
discussed Progressive Bias selection strategy. In this
experiment, a MCTS player with the PB selection
strategy and the N-Gram simulation strategy played
against a MCTS player with UCT selection and the
N-Gram simulation strategy. The results are shown in
Table 10.

Map A B C D E F G H I J Avg

% 46 50 47 41 47 52 50 45 48 51 47.7% ± 2.2%

Table 10: Win rates of MCTS with PB selection & N-
Gram play-out vs. MCTS with UCT selection & N-
Gram play-out

Similar to the results of the UCT-ULM selection
strategy, the PB selection strategy does not improve the
performance of the MCTS player. The reasons stated for
UCT-ULM hold here as well. Due to the low branching
factor of the MCTS tree in Tron, selection strategies do
not seem to be a critical part of MCTS. Therefore, the
selection strategies have not shown to be a performance
increasing enhancement for the MCTS player in the case
of Tron.

5.5 MCTS-Solver Experiments

In this subsection the N-Gram simulation strategy was
combined with the MCTS-Solver player provided by
the framework of den Teuling. The workings of this
MCTS-Solver player are not explained here. A complete
explanation of this MCTS enhancement can be found in
the paper of Winands et al. [20]. To adapt this strategy
in such a way that it can handle draws, a modification
is necessary as described in [4, 8]. MCTS-Solver is
an enhancement over MCTS that is able to prove the
game-theoretic value of a position. Therefore, proven
good positions do not have to be evaluated again and
more search time can be spent on unexplored positions.
This addition requires almost no additional computation
time and has shown that it can outperform a standard
MCTS-UCT player in the case of Tron [8].

MCTS-Solver N-Gram vs. MCTS-Solver
The first experiment was conducted to show the im-
provement in playing strength of combining the N-Gram
simulation technique with the MCTS-Solver player.
A MCTS-Solver player with the N-Gram simulation

strategy played against a MCTS-Solver player without
the N-Gram enhancement. The win rates for the
N-Gram enhanced MCTS-Solver are shown in Table 11.

Map A B C D E F G H I J Avg

% 50 48 40 54 50 54 34 47 52 40 46.8% ± 2.2%

Table 11: Win rates of MCTS-Solver & N-Gram play-out
vs. MCTS-Solver

Results indicate that the N-Gram enhanced MCTS-
Solver did not outperform the normal MCTS-Solver.
This could be caused by the simulation and expansion
cut-off applied in the MCTS-Solver. The expansion or
play-out phase of MCTS-Solver is aborted, when the
player already knows, before completing the simulation
or expansion phase, that the game will inevitably end
in either a win or a loss. In this case the value of a node
can be set to either the best possible value (in the case
of winning), or the worst possible value (in the case of
losing). In that way, only moves that are not certain to
lead to either an immediate win or loss are considered
during the search. This cut-off causes the N-Grams
either to be not filled with enough move sequences, or
that the move sequences held by the N-Grams are not
updated regularly, resulting in out-of-date statistics of
those sequences. The same experiment was conducted
for the LGR enhanced MCTS-Solver, but results did
not differ too much from those of the N-Gram enhanced
MCTS-Solver.

MCTS-Solver N-Gram with no cut-off vs.
MCTS-Solver
To actually see whether the previously discussed prob-
lem was the cause of the weak performance of the
N-Gram enhanced MCTS-Solver player, two additional
experiments were conducted. The first experiment con-
sisted of a normal MCTS-Solver with no cut-off which
played against another MCTS-Solver with a cut-off.
The results are shown in Table 12, indicating the win
rates of the MCTS-Solver without a cut-off. In the
second experiment, a N-Gram enhanced MCTS-Solver
player which did not perform the cut-off in the simu-
lation and expansion phases played against a normal
MCTS-Solver player. This could show an improvement
in performance of the N-Gram enhanced MCTS-Solver
player, since there is now more information available to
use for updating the N-Grams. The results, indicating
the win rates of the N-Gram enhanced player are shown
in Table 13.

The results of Table 13 show that the N-Gram en-
hanced MCTS-Solver player does perform better than
the original MCTS-Solver player. An average win rate
of 55.9% is achieved by the N-Gram enhanced player.
Win rates vary per map, but the N-Gram MCTS-Solver
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Map A B C D E F G H I J Avg

% 50 48 53 51 53 31 51 37 42 14 42.8 ± 2.2%

Table 12: Win rates of MCTS-Solver with no cut-off vs.
MCTS-Solver with cut-off

Map A B C D E F G H I J Avg

% 55 49 53 57 45 73 46 59 58 65 55.9% ± 2.2%

Table 13: Win rates of MCTS-Solver & N-Gram play-out
with no cut-off vs. MCTS-Solver

does not underperform against the original MCTS-Solver
on any map.

Furthermore, the results of Table 12 indicate that
a MCTS-Solver without a cut-off performs worse than
a MCTS-Solver with a cut-off. An average win rate of
42.8% is achieved by the no cut-off MCTS-Solver. There
is clearly an increase in performance when the N-Gram
enhancement is added to this no cut-off player. This in-
crease in performance is therefore solely caused by the
N-Gram enhancement, because the MCTS-Solver with-
out the N-Gram enhancement and without a cut-off per-
forms worse than the MCTS-Solver with a cut-off. This
indicates that the cut-off was actually the cause of the
previously disappointing win rates. Disabling this cut-
off is necessary for assuring that the N-Grams can be
updated frequently and sufficient new move sequences
are added.

It should however be noted that the average win rates
are not completely representative of the individual win
rates per map. On some maps the win rate increases
when the N-Gram enhancement is added, while on other
maps the win rate does not change much or even de-
creases slightly. This could be caused by a sub-optimal
ε value for that map. Because the ε value was tuned for
a normal MCTS player, the optimal ε value may be dif-
ferent for the MCTS-Solver player. Therefore, retuning
the ε value for the MCTS-Solver player could improve
the performance of this player. Another possible cause is
that by not performing a cut-off, simulations take longer
to complete. This results in having fewer simulations per
second.

6 Conclusions & Future
Research

In this paper the N-Gram and LGR simulation strate-
gies were discussed as enhancements for MCTS for Tron.
Furthermore, the ULM and PB selection strategies were
suggested as enhancements as well. Multiple combina-
tions of selection and simulation strategies were com-
pared to each other, resulting in mostly conclusive re-
sults.

First of all, the N-Gram simulation strategy showed a
clear improvement in performance over the MCTS player
with a random simulation strategy. This indicates that
the N-Gram simulation strategy is in fact a genuine im-
provement for the MCTS player for the game of Tron,
achieving a 60.3% win rate. It has been shown that the
optimal ε value varied heavily per map, making it dif-
ficult to pick one optimal value such that the N-Gram
enhancement performed well on all maps.

Second, the LGR enhancement showed an even
greater average win rate of 62.6% against a MCTS player
with a random simulation strategy. The LGR enhance-
ment is an improvement for MCTS for the game of Tron.
The LGR strategy had slightly higher win rates than the
N-Gram strategy, mainly due the fact that it achieved
a higher number of simulation per second, resulting in
more usable statistical information.

Third, the results showed that the playing strength of
both N-Gram and the LGR strategies are quite evenly
matched when playing against each other. The LGR
achieved a slightly higher win rate of 50.2%. It was
remarkable that the N-Gram simulation strategy, with
20,000 fewer simulations per second was such an even
match for the LGR strategy. This suggests that the N-
Gram strategy is better at extracting more useful in-
formation in fewer simulations. Experiments with more
search time for both of the players did not indicate that
this was the case.

Fourth, the combination of LGR and N-Grams did
not show to be an improvement, because the overhead
of updating all 5 of the tables needed by these strategies
was too large. Win rates of 53.8%, 47.9% and 45.5% were
achieved by the combo player against a random, N-Gram
and LGR simulation strategy MCTS player, respectively.
Additional experiments that provided the players with
more search time showed almost no difference in perfor-
mance.

Fifth, both of the selection strategies did not show
to be an improvement for the MCTS player in the case
of Tron. Average win rates of 50.9% and 47.7% were
achieved by the ULM-MCTS and PB-MCTS players,
respectively. Selection strategies do not seem to be a
critical part for Tron, since the branching factor of the
MCTS tree is low. Furthermore, the improvement in per-
formance, if there was any, did not outweigh the added
computation time of these enhancements.

Sixth, the N-Gram simulation strategy when com-
bined with the MCTS-Solver player performs best when
the MCTS-Solver player does not perform any cut-offs
during the simulation or expansion phase. Win rates of
46.8% and 55.9% were achieved by the N-Gram enhanced
MCTS-Solver player and the N-Gram enhanced MCTS-
Solver player with no cut-offs, respectively. Taking the
average 42.8% win rate of the no cut-off MCTS-Solver
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into account, these results may indicate, that by not per-
forming any cut-offs, more N-Gram relevant information
is gathered from the MCTS process and a slightly higher
win rate is achieved by the N-Gram MCTS-Solver player.

Future research could be done in dynamically deter-
mining what the best ε value for a given map is. This
could vastly improve the performance of the N-Gram
simulation strategy on some of the test maps. Another
possible improvement is the development of a more ag-
gressive selection strategy. This could be realized by
using the discussed PB strategy with a higher W value,
or a variant of ULM that is applied on all nodes instead
of only ULM nodes. Another option is the use of pro-
gressive unpruning [5]. It would also be interesting to
see how these enhancements fare against an αβ-player
for Tron. Because this algorithm has proven to lead to
the best performance, it would be the ultimate test that
shows the true strength of these enhancements.
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