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Abstract

In this thesis an agent for the Construction
and Management Simulation game OpenTTD
is presented, called MCTrAInS. OpenTTD is
a game in which a player manages a transport
company and constructs a transportation net-
work using various modes of transport. MC-
TrAInS makes use of the Monte-Carlo Tree
Search (MCTS) algorithm for the planning of
routes. A model of the game is discussed that
enables the use of MCTS in OpenTTD. Two
search enhancements to the MCTS algorithm
are implemented in MCTrAInS, namely Pro-
gressive History and ε-greedy playouts. Pro-
gressive History seems to improve the perfor-
mance of the agent, however ε-greedy play-
outs did not. MCTrAInS is compared to
two pre-existing agents for OpenTTD, trAInS
and AdmiralAI. MCTrAInS is an improve-
ment over trAInS, but AdmiralAI outper-
forms MCTrAInS.

Keywords: Monte-Carlo Tree Search,
OpenTTD

1 Introduction
Transportation and travel are both major parts of mod-
ern society. Every day trains, ships, trucks, busses and
aeroplanes transport people and goods all over the world.
For this transportation to operate, the necessary infras-
tructure has to be constructed and the routes and time
schedules of the vehicles have to be planned.

A genre of video games called Construction and Man-
agement Simulation (CMS) [13] lets a player run a com-
pany or other entity using construction and management
tools. The goal is usually to optimize a process in the
entity the player is controlling. The company a player is
managing could be a transportation company, but there
are also different examples. For instance, a well-known
CMS game is SimCity in which the player builds a city
and manages aspects like taxes [1].

1This thesis has been prepared in partial fulfillment of the re-
quirements for the Degree of Bachelor of Science in Knowledge En-
gineering, Maastricht University, supervisor: Dr. Mark Winands.

CMS games mostly try to model a certain level of
realism, as is the case in SimCity, where a player can
even build and manage real cities like Tokyo. However,
a perfect simulation of real life is not possible and mostly
not fun enough to be a video game.

Many CMS games employ Artificial Intelligence (AI)
tasked to control the simulation or agents in the simu-
lation, for example the people walking through a city in
newer versions of SimCity.

Another task for AI in the CMS genre is to actually
play the game, so a human player will have a competent
opponent when no other human player is at hand. Cre-
ating such an AI agent is a challenging problem because
the agent playing the game should be able to perform all
the construction and management tasks at preferably at
least the same level as a human player.

A CMS game which, like SimCity, is also well known
is OpenTTD (Open Transport Tycoon Deluxe). In
OpenTTD a player manages a transportation company
and builds transport routes using multiple modes of
transport. SimCity is a mostly single-player experience,
however multiple players can play together on a sin-
gle map in OpenTTD. This makes OpenTTD a logical
choice to develop AI agents for. There are many AI
agents available for OpenTTD, using a host of differ-
ent AI techniques. Some examples are PathZilla2, an
agent using graph theory for network planning, trAIns,
which uses a modified version of the A* algorithm [7] for
railroad construction and SPRING [20], which investi-
gated using a classic planner for management tasks in
OpenTTD.

Most parts of management in OpenTTD agents are
handled by rule-based approaches by many of the ex-
isting agents. They work relatively well, however it
is expected that by using more sophisticated AI tech-
niques like search algorithms the existing agents can be
improved.

Only few simulation games have employed search al-
gorithms, like Monte-Carlo Tree Search (MCTS) [4, 8]
in the agents playing their game. An example of a game
that does use MCTS in its agent is the hybrid CMS
and war game Total War: Rome II [2]. This agent uses
MCTS to assign resources to specific tasks, therefore tak-

2http://www.tt-forums.net/viewtopic.php?f=37&t=38645
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ing care of some of the management tasks the agent has
to perform.

1.1 Problem Statement and Research
Questions

To find out if MCTS is applicable in other CMS games,
the problem statement “In what parts of management
and construction in a CMS game can MCTS be success-
fully applied?” is investigated. In this thesis the Monte-
Carlo Tree Search algorithm is applied to the CMS game
OpenTTD. MCTS was selected over other search algo-
rithms like A* and minimax for the following reasons.
In A* an admissible heuristic, i.e. a heuristic that never
overestimates cost, needs to be used, however such a
heuristic is hard to design for OpenTTD. Minimax was
not selected for a similar reason because it requires an
evaluation function, which is also hard to design. The
following two research questions aid in investigating the
problem statement.

1. How can OpenTTD be fit into the framework required
by MCTS?

In MCTS a cloneable state has to exist to run the
required playouts, furthermore actions have to be defined
that will lead from one state to the next. Also, the value
of terminal states has to be determined at the end of
playouts.

2. Can an agent utilizing MCTS outperform already ex-
isting agents?

Members of the OpenTTD community have created
multiple agents for playing the game against human
players or other AI agents. The agent utilizing MCTS
created for this thesis, called MCTrAInS, is compared
to some of these agents.

1.2 Outline
The structure of this thesis is as follows. Section 2 intro-
duces the CMS game OpenTTD. Section 3 discusses the
MCTS algorithm and some of its enhancements that are
implemented in MCTrAInS. Furthermore it explains
the state and actions used in the MCTrAInS agent.
Section 4 describes how the MCTS algorithm is inte-
grated into OpenTTD to create a functioning agent.
Thereafter the experimental setup and results are dis-
cussed in Section 5. In Section 6 conclusions are drawn
and discussed. Finally, Section 7 outlines possible future
research.

2 OpenTTD
OpenTTD is an open-source CMS game in which one or
more players try to create the most efficient transporta-
tion network possible [11]. It is based on the game Trans-
port Tycoon Deluxe which was created by Chris Sawyer,

Figure 1: Screenshot of OpenTTD

the creator of other CMS games like Roller Coaster Ty-
coon. Transport Tycoon Deluxe was released in 1995
and published by Micropose [15]. The development of
OpenTTD started in 2004 and it is still being developed
actively.

OpenTTD is usually played on a randomly generated
map with a number of industries and cities divided over
it, all producing and accepting different kinds of cargo
in varying amounts. Maps can also be created by hand,
although this is less common than random generation.
A player can use trucks, busses, trains, ships and aero-
planes to deliver passengers and cargo from one city or
industry to another. OpenTTD also has chains of cargo.
For example a mine produces iron ore, which can be
transported to a steel mill, which produces steel to be
transported to a factory producing goods.

A considerable improvement of OpenTTD over the
original is the addition of a multiplayer mode. Players
can play either cooperatively, by controlling one com-
pany with multiple people or competitively, by control-
ling one company per person. When there is a lack of
other human players, AI agents can play against other
players in both single-player and multiplayer modes.

Since the game is a CMS game, it resembles the man-
agement and construction of transport routes in real life.
A player has to construct infrastructure like roads in the
case of trucks or buses and tracks, signals and stations in
the case of trains. Vehicles have to be bought and their
orders planned. They should be maintained to prevent
them from breaking down too often and when they be-
come too old they should be sold and replaced by newer
models. If the player has planned a transport route care-
fully it will create revenue to spend on other routes.

When classified by Russel’s and Norvig’s [14] en-
vironment properties the game is fully observable, ei-
ther single or multi-agent, non-deterministic, dynamic
(real-time) and discrete. The agent created in this the-
sis assumes the single-agent case by ignoring the oppo-
nent. This is done because there is little interaction be-
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MCTS in OpenTTD Geert Konijnendijk

tween multiple players, they are usually only working
on their own transportation network. The game is non-
deterministic because some events like vehicles breaking
down happen randomly, but in general most events are
deterministic.

3 MCTS Route Planner
To be able to play OpenTTD the MCTrAInS agent
was developed. This agent uses the MCTS algorithm for
route planning. Firstly, MCTS is discussed in Subsec-
tion 3.1 and afterwards the model used for simulating is
discussed in Subsection 3.2.

3.1 MCTS

MCTS is a best-first search algorithm with its main uses
in AI for games [4, 8]. In MCTS each node represents
a state of the game and each edge represents an action
which leads from one state to the next when executed.
The algorithm explores the state-space in a random fash-
ion, where further in the execution the algorithm is di-
rected by its previous results, striking a balance between
exploration and exploitation. MCTS is based on four
steps, which are executed repeatedly until a stopping
condition is reached, mostly this condition is a set time
limit [3]. The four steps are explained below. These
steps are illustrated in Figure 2.

Selection

In the selection step child nodes are selected repeatedly
until a state which is not part of the tree is reached. In
the MCTrAInS agent UCT (Upper Confidence Bounds
applied to Trees) [8] combined with Progressive His-
tory [9] are used as a selection strategy.

The UCT calculation is shown in Formula 1. This
formula determines if the algorithm explores or exploits
more. It is applied to all child nodes i of parent p. Usu-
ally, the child with the highest value of the UCT formula
is selected. In the formula x̄i is the value of node i, np is
the number of times p was visited and ni is the number
of times i was visited. C is a constant which should be
tuned experimentally.

x̄i + C ×

√
ln(np)

ni
(1)

UCT alone does not perform reliably when nodes
only have a small number of visits. A way to circumvent
this problem is to apply the Progressive History tech-
nique in the selection strategy. Progressive History is
selected as an MCTS enhancement since it has proven to
be a significant improvement over standard UCT [9, 10].

Progressive History assumes that actions which had a
good result in one situation will likely have a good result
when played in another. To keep track of how successful

actions are, actions previously executed and their aver-
age resulting score at the end of a playout are stored.
This history is then used to prefer selection of states
which are the result of better actions over those which
are the result of worse actions. The Progressive History
calculation is shown in Formula 2. In this formula x̄a is
the average score of all games in which action a was ex-
ecuted. W is a parameter determining the influence of
Progressive History which should be tuned experimen-
tally. All other parameters are the same as described
above for Formula 1.

x̄a ×
W

(1− x̄i)ni + 1
(2)

When the two formulas are combined, Formula 3 is
the result. Using this formula, starting from the root,
the child node with the highest vi is selected until a leaf
node is reached.

vi ← x̄i + C ×

√
ln(np)

ni
+ x̄a ×

W

(1− x̄i)ni + 1
(3)

Playout

In the playout step, one game is played until the end.
This is performed by playing random moves until a ter-
minal state is reached. The simulation strategy can also
be enhanced by selecting moves other than purely ran-
dom ones to make playouts more representative of actual
playouts, thereby being able to play better. Such an en-
hancement called ε-greedy playouts [16] is implemented
in MCTrAInS. The ε-greedy playouts enhancement en-
tails that every time an action has to be selected, a
heuristic is used to choose the best possible action. This
action is selected with probability 1 − ε. With proba-
bility ε a random action is selected. The heuristic used
in MCTrAInS is to choose the action that will build the
route with the highest monthly income as the best ac-
tion. This action will therefore be played in the playouts
with a probability of 1− ε.

Expansion

In the expansion step, new children of the node selected
in the previous step are added to the tree. In MCTS
all children of a node can be added in one go, or only
a subset of the children can be added. In MCTrAInS
only one child is expanded per iteration.

Backpropagation

During backpropagation the score of each node from
the currently selected leaf node to the root node is up-
dated and its visit count incremented. The score in MC-
TrAInS is calculated by using the sigmoid function in
Formula 4. In this formula s is the score and λ is the
estimated income in pound sterling.

(p.3)
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Repeated X times 

Selection Play-out Expansion Backpropagation 

The selection strategy is 
applied recursively until an  
unknown position is reached 

One node is added 
to the tree 

One simulated  
game is played 

The result of this game 
is backpropagated in 
the tree 

Figure 2: Steps of MCTS

s← 1

1 + e10−6(−λ+800000)
(4)

3.2 Model
In its default state OpenTTD is not well suited for usage
by tree search algorithms like minimax and MCTS since
it does not contain a forward model. Given an action,
such a model should be able to calculate the following
state. This section outlines the major design decisions of
a model for OpenTTD and describes its implementation.

A model for OpenTTD should strike a balance be-
tween realism and simplicity. When the model does not
imitate the internal workings of OpenTTD well enough
MCTS will not make adequate decisions. However, when
the model takes too many features of OpenTTD into ac-
count it could become too slow to simulate with, also
causing MCTS to make poor decisions because of a lack
of iterations. Construction in OpenTTD is a process
with many decisions to be made, like where to place rail-
roads, on what piece of track to place signs and where
and what kind of bridges to build. Considering all these
possibilities will result in a branching factor that is most
likely too high to be feasible for MCTS. Therefore it
was decided to implement MCTS and its model only
for the management part of the agent. MTCS combined
with the model make decisions about relatively high-level
management tasks like building, upgrading and demol-
ishing railroad routes.

In the model abstract representations of objects in
the OpenTTD game world are stored. These include

industries, cities and routes. The MCTrAInS agent
only considers railroad routes since they are the mode
of transport with most features, like signals, waypoints
and trains of varying length. They are usually the most
efficient kind of transport too. Furthermore simple data
like the current amount of money available and the com-
pany value is stored in the model. In the following para-
graphs the representation of industries, cities and routes
is elaborated on.

Both cities and industries are represented in a similar
fashion in the model. They store their location on the
map and an estimation of their cargo production. In ad-
dition to the previously mentioned attributes industries
also store the types of cargo they produce and the types
of cargo they accept, these are always passengers in the
case of cities.

In the model routes represent the connections be-
tween two industries or cities. Therefore the combina-
tion of routes, cities and industries can be seen as a graph
with each node containing an industry or city and each
edge representing a route. An example of such a graph
can be seen in Figure 3. Note that all routes are modelled
as a separate edge, but in the game map one route might
be using railroad track created for a different route. This
is shown as the dotted line in Figure 3. Routes store their
source and destination industry, the type of vehicles cur-
rently operating on the route, the type of cargo trans-
ported over the route, the estimated cost for building the
route and their estimated income. When an action to
build a route is generated in the playout step of MCTS,

(p.4)
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Figure 3: Routes Graph

discussed in Subsection 3.1, only routes with a Man-
hattan distance between 20 and 100 from their source
to their destination are considered because routes which
are any shorter or longer are usually not profitable.

There are three operations that can be executed on
the model. The first is building a route which will result
in building tracks in the actual game and populating
them with vehicles. The second one is removing a route,
which will sell all vehicles operating on that route. The
third is upgrading a route, which will sell the current
vehicles on that route and replace them with better ones.

4 Agent Architecture
The MCTS algorithm and model discussed in Section 3
alone do not suffice for creating a complete agent for
playing OpenTTD. Subsection 4.1 discusses how the
MCTS algorithm and the model are integrated into
OpenTTD. The construction of railroad routes is dis-
cussed in Subsection 4.2.

4.1 MCTS Integration

The main features of OpenTTD are all written in the
C++ programming language. The game features sev-
eral Application Programming Interfaces (API), accessi-
ble using the Squirrel scripting language [5] to allow for
easy additions to the game. Developers are able to write
agents to play OpenTTD using the NoAI API.

Since MCTS requires a large number of iterations
to perform adequately, a scripting language would not
be suitable for its implementation. Therefore MCTS,
discussed in Subsection 3.1 and the model, discussed in
Subsection 3.2 were implemented in C++.

To allow agents written in Squirrel to make use of
MCTS, methods were added to OpenTTD’s API. These
methods make the creation of a new model instance,
which is filled with information from the current game

Figure 4: Route constructed by trAIns

state, possible and allow for starting a MCTS run and
retrieving the results of a run.

OpenTTD is a real-time game, therefore the envi-
ronment can change while an agent is deliberating. The
MCTrainS agent will not take any of these changes into
account and will execute a chosen action using the infor-
mation it had available when it began planning. When
it is not possible to execute an action anymore it will
simply stop the execution and try to revert what was
already affected.

4.2 Route Building

To execute the actions found by the MCTS implementa-
tion, the trAIns agent [12] was adapted resulting in the
MCTrAInS agent. The trAIns agent was chosen since
it is able to build efficient railroad routes. The agent can-
not use any other types of transport, however trains are
usually the most efficient type of transport in OpenTTD,
but also the type of transport that is most difficult to
manage and construct. Furthermore trAIns has func-
tions for railroad construction that can be easily decou-
pled from the management components. The trAIns
agent was created by Luis Henrique Oliveira Rios and
Luiz Chaimowicz. The main focus of this agent is build-
ing efficient railroad routes, but it is lacking in manage-
ment tasks. Therefore the part of trAIns managing
which routes to build, upgrade or destruct is removed
and replaced by the MCTS route planner discussed in
Subsection 4.1. The parts of trAIns building the rail-
road routes are left in place. This results in MCTS mak-
ing the macro-decisions while the trAIns agent makes
the micro-decisions.

trAIns uses a number of techniques for building rail-
roads, these are discussed in the remainder of this sec-
tion. To create a railroad route, tracks first have to be
built. The agent will always build double railroad tracks,
these allow trains on one track to travel from the source
to the destination and the other way on the other track.
This allows large numbers of trains to use one route and
prevents collisions. These double railroad tracks are im-

(p.5)
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Figure 5: Track parts

plemented by using pre-determined combinations of rail-
road track as atomic parts for building a route. Figure 5
shows the different combinations of track used as parts.
By combining these parts a double railroad can be built
easily.

In addition to simply building routes from one source
to one destination, the agent also has the possibility to
connect a new route to an existing one. This enables the
transportation of more goods while reducing the build
cost of a route. Connecting routes is implemented using
junctions. Junctions are pre-constructed parts, each of
them being able to connect to the double railroad parts.

To determine the path tracks are built on, an adap-
tation of the NoAI A* algorithm [7] is used. A* is an
algorithm for finding a shortest path between two nodes
in a graph. It using a heuristic function h(x) to es-
timate the distance to the goal and uses this informa-
tion to expand fewer nodes while retaining optimality if
the heuristic is admissible. Since railroad parts can be
placed diagonally the h(x) used in this implementation
is Euclidian distance. Another notable change from the
original implementation is that in case of a tied h(x) the
node chosen is the one minimizing the number of direc-
tion changes, increasing the speed a train can travel over
the tracks.

5 Experiments

In order to tune the performance of the MCTS algorithm
used in MCTrAInS and to compare it to other already
existing agents, multiple experiments were designed and
run. The setup of these experiments is discussed in Sub-
section 5.1 and the acquired results are discussed in Sub-
section 5.2.

5.1 Experimental Setup

To be able to run experiments efficiently, a customized
version of OpenTTD without GUI and networking capa-
bilities was used to be able to simulate as fast as possible.
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Figure 6: Parameter Tuning

The MCTrAInS agent was compared to two other al-
ready existing agents, namely trAIns and AdmiralAI.

The trAIns agent can only build train routes. It
features rule-based management components and assigns
scores to different buildable routes and builds the route
with the best score. The construction components of
this agent are discussed in Subsection 4.2.

AdmiralAI3 is an agent that tries to use as much of
the features of OpenTTD available as possible. There-
fore it also uses multiple vehicle types, as opposed to
MCTrAInS and trAIns. AdmiralAI uses a rule-
based approach to the management of routes. Like
trAIns it assigns a score to routes and builds the one
that it assumes best. The latest version of AdmiralAI
was released in 2011, however it is still one of the best
known AI agents for OpenTTD.

All experiments were run on a 256×256 map with flat
terrain type. As usual in OpenTTD, the maps were ran-
domly generated. Agents were given a maximum loan
of £300,000. The experiments all lasted five in-game
years, where the MCTS of the MCTrAInS agent was
run each in-game month. All experiments were started
in the in-game year 1950. In all experiments the com-
pany value in pounds sterling was measured. Company
value was measured because in OpenTTD it functions
as a scoring mechanism for performance of a company.
The measurements of the company value were done each
quarter, equivalent to 3 in-game months.

In each run the MCTS algorithm was given 10 sec-
onds of running time, or enough time to do 50,000 itera-
tions. This extra time was usually only used in the first
run of MCTS because the number of available actions

3http://dev.openttdcoop.org/projects/ai-admiralai
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Figure 7: C parameter tuning

is large due to the amount of money available and the
lack of routes that have been built. Because OpenTTD
is not slowed down by a GUI or networking in these ex-
periments, one game without the MCTS algorithm run-
ning finishes fast. Therefore the game is paused during
MCTS simulations, effectively making the game turn-
based. When the game runs at normal speed and is not
paused during the running time of MCTS, only a few
days will pass, so there will be no large changes in the
game world.

Most experiments were run on computers containing
two AMD Dual-Core Opteron F 2216 processors run-
ning at 2.4GHz and containing 8GB of RAM. However,
the experiments were single-threaded and therefore only
used one core. The remaining portion of experiments
was run on computers containing two Intel Quad-Core
Xeon 5355 processors running at 2.66GHz and contain-
ing 8GB of RAM. Using this setup an average run took
19 minutes to complete.

Five different experiments were run. The first three
involve tuning the constants C, used in UCT, W , used
in the Progressive History heuristic and ε, used in the
ε-greedy playouts. The last two experiments are a com-
parison between AdmiralAI an MCTrAInS and be-
tween trAIns and MCTrAInS.

5.2 Results
Parameter Tuning

The C, W and ε parameters were tuned as follows. First
Progressive History and ε-greedy playouts were disabled.
Then C was tested with different values. Afterwards the
best value for C was kept and W was tuned. Then the
best W was kept and ε was tuned. Figure 6 shows the
mean and 95% confidence interval of the company val-
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Figure 8: W parameter tuning

ues achieved by the end of the five years for the three
experiments at all values tested. Figures 7, 8 and 9 show
the company values per quarter for the C, W and ε pa-
rameters respectively. All values are the result of 100
runs.

When considering the values for the C parameter in
Figure 7, a value of 1.3 seems to achieve the best mean in
all quarters, therefore this value was selected for use in
further experiments. When taking a more exploitative
approach, represented by the values 0.7 and 1.0 the mean
appears to drop compared to C = 1.3 and the mean
drops even more when C = 1.6, the more explorative
approach.

If Progressive History is enabled, only a small im-
provement in mean over plain UCT is observed when
W is set to 1.5 and 2.0. This improvement can be ob-
served in the last five quarters of the running time of the
experiment. When the history heuristic is given more
influence, which is the case when W = 2.5 then the per-
formance drops below that of plain UCT with C = 1.3.
Possibly the assumption that actions resulting in a good
result in one situation will also do so in another does not
hold often enough to be able to give Progressive History
a large influence, i.e. set W to a high value. Doing so
lowers the resulting company value. A value of W = 2.0
was used in the following experiments.

Opposite to Progressive History, enabling ε-greedy
playouts did not increase the mean company value on
any of the values of ε tested. This might be caused
by the heuristic for selecting the best move, discussed
in Subsection 3.1, not performing adequately. Because
ε-greedy playouts do not provide any significant improve-
ment over using only UCT combined with Progressive
History, it was left disabled for further experiments.

(p.7)
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Figure 9: ε parameter tuning

To test for significance of the measurements an
ANOVA test with a significance level of 5% was exe-
cuted on the company values of the last quarter. The
resulting p-value is 2.1230× 10−4, meaning that the null
hypothesis can be rejected and at least two of the means
are significantly different. When followed up by a post-
hoc test using Tukey’s Honestly Significant Difference
Procedure [18] the pairs of measurements differing sig-
nificantly are C = 1.6 compared to C = 1.3, W = 1.5,
W = 2.0, ε = 0.3 and ε = 0.4. This suggest that Progres-
sive History is not a significant improvement over plain
UCT and ε-greedy playouts are not significantly worse
than UCT combined with Progressive History. However,
further experiments with other values for W and ε are
needed to confirm this.

Agent Comparisons

Using the values for the parameters determined in the
previous experiments, the MCTrAInS agent was com-
pared to the AdmiralAI agent, a well-known agent
for OpenTTD and the trAIns agent, of which MC-
TrAInS re-uses the infrastructure construction compo-
nents. Two experiments were executed, in these ex-
periments MCTrAInS competes against the two other
agents separately, but in each experiment the two agents
play on the same randomly generated maps. All results
are based on 100 runs.

Figure 10 shows the mean company value and 95%
confidence interval of the MCTrAInS and trAIns
agents per in-game quarter over the five years of playing
time. The MCTrAInS agent maintains a higher mean
company value throughout all five years, outperforming
trAIns. This is also reflected in the win rate, MC-
TrAInS won 72% of the games played and trAIns won
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Figure 10: MCTrAInS against trAIns

28%. Welch’s t-test [19], with a significance level of 5%
was used to confirm that the mean company values of
both agents in the last quarter of the five in-game years
are significantly different. The test resulted in a p-value
of 0.0398, so the null hypothesis can be rejected and the
two means are significantly different.

Comparing MCTrAInS and AdmiralAI results in
a different outcome for MCTrAInS compared to the
previous experiment, this can be seen in Figure 11. Not
only is the mean company value achieved byAdmiralAI
consistently higher than that achieved by MCTrAInS,
the mean company value achieved by MCtrAInS is also
lower than in any previous experiments. AdmiralAI
has an advantage over MCTrAInS because it can use
all available modes of transport. Trains are usually more
efficient than other modes of transport, but in the cases
they are not, AdmiralAI can choose a better one. An-
other possible cause could be that the AdmiralAI agent
is building routes which could be profitable for MC-
TrAInS before MCTrAInS is able to build them. The
win rate also shows that AdmiralAI performs best be-
cause it won 99% of the games played. Again, Welch’s
t-test with a significance level of 5% was applied to the
company values of the last quarter. This resulted in a
p-value of 9.2004 × 10−36. Therefore the null hypothe-
sis can be rejected and the two means are significantly
different.

6 Conclusion
In this thesis the MCTS algorithm has been applied as
part of an agent for playing the CMS game OpenTTD.
A model for the management components of OpenTTD
has been designed for use with the MCTS algorithm,
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MCTS in OpenTTD Geert Konijnendijk

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

·106

Quarter

C
om

p
an

y
V
al
u
e
(£

)

MCTrAInS
AdmiralAI

Figure 11: MCTrAInS against AdmiralAI

abstracting the OpenTTD state and game logic. MCTS
was combined with several search enhancements in or-
der to improve performance. Progressive History seems
to have a positive effect on performance, while ε-greedy
playouts perform equal or less compared to only Progres-
sive History.

It has been shown that MCTS is applicable in man-
agement components of OpenTTD. The implementation
of an agent for OpenTTD presented in this thesis, MC-
TrAInS, outperforms the trAIns agent when compar-
ing company values. It did not outperform AdmiralAI,
it is likely that the construction components of the Ad-
miralAI agent perform better than those of the trAIns
agent, upon which MCTrAInS is based.

7 Future Research
OpenTTD has a large number of game features, only a
few of which have been used by the MCTrAInS agent.
Possible future research is therefore to implement more
of these features, like using trucks, boats and aeroplanes
in the agent. This will enable the agent to use the
optimal mode of transport for a given route, instead
of always building a train route. A possible way to
achieve this is by integrating the MCTS algorithm into
an agent other than trAIns that makes use of more
of OpenTTD’s features. Furthermore, the model could
be made more detailed, for instance by incorporating
the acceleration model of vehicles. However, a possible
downside could be that the playout will slow down. A
balance between detail in the model and speed of the
model should be maintained.

In further research other improvements for MCTS
could be investigated. For example, an improvement

that could replace the ε-greedy playouts is MAST [6].
Probably the ε-greedy playouts did not perform well be-
cause the heuristic domain knowledge used was not ade-
quate. MAST uses similar knowledge as the Progressive
History technique and could therefore be a better heuris-
tic for the playouts. An extension on MAST that can
also be implemented in future research uses N-Grams
instead of the single actions used by MAST. This N-
Grams Selection Technique (NST) [17] could be advan-
tageous in OpenTTD since it is likely that there are a
few good actions, for example three possible routes that
can be quite profitable, which are useful to execute in
sequence. NST would exploit these sequences and could
lead to improved results of the algorithm.
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